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1  Introduction 

Like many phonological models that preceded it, Optimality Theory (OT; Prince 

and Smolensky, 1993) characterizes phonological grammars as relations between inputs 

(underlying forms) and outputs (pronounced surface forms). Unlike earlier theories, OT 

does not give an explicit derivational scheme for producing outputs from inputs, but rather 

provides a set of ranked constraints governing the input-output relation and states that the 

actual output is the one (or ones) among the infinite range of possible output forms that 

optimally satisfies the ranked constraints. Moreover, the same universal set of constraints 

is assumed to govern every language and the differences among the phonological patterns 

that are observed across languages are assumed to emerge solely from differences in the 

ranking of the constraints in individual languages. 

There are three fundamental computational problems/questions that must be 

addressed within Optimality Theory, or indeed in any theory of generative grammar. The 

first question is how optimal output forms are to be found and whether or not it is the 

case that they can be found efficiently. This is the generation problem.  

Also at issue is whether or not it’s possible to work backwards from a surface form 

to the to the set of inputs that yield that form given some information about the ranking of 

the constraints. This is the recognition problem.  

Finally, of central importance is whether or not it’s possible to learn an optimality 

theoretic grammar (a ranking of the constraints) after having seen only a finite sample of 

the language defined by that grammar and, of course, whether this can be done efficiently. 

This is the learning problem.  
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1.1  Finite State Optimality Theory 

In this dissertation I will develop a computational implementation of Optimality 

Theory based on Ellison’s (1994) proposal that the optimization problem in OT should be 

modeled graph-theoretically as a “shortest paths” problem. Ellison showed that if the 

functions that generate the candidates and the constraints are both regular (representable 

with finite state machines) then the evaluation of the infinite range of possible output 

candidates for a given input can be given a concise representation as a single finite state 

machine that generates and evaluates candidates. The essential premise of this proposal is 

that optimization should be carried out on the representation of the function that 

generates and evaluates the candidates, which is finite, rather than on the set of actual 

candidates, which can be infinite. This essential premise of Ellison’s model has been used, 

explored, and extended by many researchers in a program that one might call Finite State 

Optimality Theory (FSOT). 

In reviewing various computational models of Optimality Theory, I’ll focus on 

three properties in particular. The first of these properties is the nature of optimization. 

Optimization in many models is “bounded” in the sense that the grammar is only sensitive 

to differences in the numbers of violations for various candidates when those numbers 

fall below a preset upper bound. This has obvious empirical consequences, because the 

grammars cease to adjudicate between candidates whenever the violations for the optimal 

candidate exceed the preset upper bound.  

The second property that I will attend to is the use of a priori restrictions on the 

candidate set. Many models restrict the action of the candidate generator, GEN, so that 
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only finitely many candidates may be generated for a given input. Sometimes this move 

is intended to allow brute force optimization via exhaustive search of the finite candidate 

set and other times this move is intended mainly to simplify the computation. If the 

restriction on the candidate set is principled – that is, if it provably reflects the action of 

undominated constraints then there will be no loss of empirical coverage. If, on the other 

hand, the restriction on the candidate set is just a stipulation that guarantees finitude then 

there will be a loss of empirical coverage for cases where the truly optimal candidates lie 

outside the finite candidate set. 

The third property that I’ll attend to is the way that optimization is carried out in 

the various models. Some models (like Ellison’s) evaluate candidates with respect to all 

constraints simultaneously and other models use cascades of evaluators, one for each 

constraint. Though this aspect of the models doesn’t have serious empirical ramifications, 

I’ll show here that this difference in the representational scheme for the grammars does 

have significant ramifications with respect to how much information can be extracted 

from a single derivation. Specifically, I’ll show that the use of a monolithic evaluator for 

all constraints simultaneously makes it possible to generate the set of optimal candidates 

for all possible rankings in a single derivation.  

Throughout this work I’ll focus solely on Optimality Theoretic phonology, and 

completely set aside any consideration of OT approaches to syntax or semantics. Though 

there is some excellent computational analysis of OT as applied to these domains (e.g.  

Jäger 1999, 2000), the restriction to phonology will help rein in the set of issues under 

consideration here.  
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1.2  FSOT models and variants 

Eisner (1997a, 1997b, 1997c, 1999) adopts Ellison’s assumptions that constraints 

are finite state, that there’s no bound on the number of violations to which constraints are 

sensitive, and that there are no a priori bounds on (the size of) the candidate set. Eisner 

departs from Ellison’s model in two central respects.  

Eisner formulates a model which he calls Primitive Optimality Theory (OTP). In 

OTP Eisner takes Goldsmith’s (1976, 1990) autosegmental representations and strips out 

the association lines, instead representing features as stacked overlapping constituents on 

a set of independent tiers that are synchronized by reference to a “constituent time-line”. 

Thus the constraints reference the overlap of features across the various tiers in a 

gestural-score-like representation (c.f. Browman and Goldstein 1989). In OTP constraints 

are constructed from a limited set of primitives and fall into one of two classes depending 

on whether they dictate that prosodic/morphological/featural constituents must or must 

not overlap temporally across the tiers. 

The second point of departure in Eisner’s model is the introduction of a “cascade” 

approach to evaluation in which the constraints are applied sequentially from highest to 

lowest ranked as a series of filters that winnow out suboptimal candidates. Eisner 

introduces the cascade approach to rein in the amount of computation by avoiding the 

need to intersect all of the constraints and GEN to produce a single large evaluator. This is 

especially necessary in Eisner’s tier-based model because the application of the generating 

function GEN to a particular input yields a finite state machine with as many as is 2|Tiers| 
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states. This can be quite large because there are distinct tiers for prosodic constituents, 

features, and morphological constituents.   

 Eisner (1997b: 6-7) proves that optimization in his model is NP-hard in the number 

of tiers. That is, the amount of computation required to do optimization is worse than a 

polynomial function of the number of tiers. It is important to note, however, that this 

hardness result is for the complexity of the representations (the number of tiers) and not 

for the number of constraints or the size of the inputs to be optimized. Though Eisner 

acknowledges that in a fixed grammar this complexity is reduced to a constant factor, he 

observes that the constant factor might be prohibitively large and that this complexity 

will become highly relevant in the learning scenario if learners are free to hypothesize 

grammar models with varying numbers of tiers.     

 It’s not surprising that the optimization problem in OT should be intractable in the 

dimension of representational complexity. Fortunately, however, even if we retreat from 

the position that the constraint set is fixed and universal, it would still be plausible to 

maintain the position that the set of building blocks (be they tiers or something else) that 

make up the representations over which the constraints are stated is finite and relatively 

small. This seems a reasonable position given that the search for simple and elegant 

representations has always been a central theme in linguistic theory. If, in modeling 

learning, we retreat even further and allow the learner to hypothesize arbitrary constraints 

over representations of arbitrary complexity, we still aren’t necessarily sunk. If the 

difficulty in using a model for generating outputs helps determine the attractiveness of 

that model for the learner then the increase in computational complexity could actually be 
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seen as a pressure on the learner to pursue models with simpler representations. These 

issues and conjectures are well beyond the scope of this dissertation as I will be assuming 

a fixed (non tier-based) representational scheme and a fixed universal set of constraints. 

What I’ll be more concerned with are issues of computational complexity in a range of 

“typical” OT analyses and how to make the representations and the grammar as efficient 

as possible in such cases.   

Albro (1998a, 1998b) explores and extends OTP, providing an analysis of Turkish 

vowel harmony and disharmony and introducing to OTP a method for formulating 

faithfulness constraints that can be satisfied at a distance, a representation for disjunction 

of constraints (Crowhurst and Hewitt 1997), and a representation for conjunction of 

constraints (Smolensky 1995). Albro (2000) augments the basic finite-state approach to 

OT with a non-finite-state module designed to be able to capture the phenomenon of 

reduplication and implement the Base-Reduplicant correspondence constraints of 

Correspondence Theory (McCarthy and Prince 1995). Albro (2003) uses this extension to 

provide a large-scale implementation of an OT analysis of the phonology of Malagasy 

(including reduplication). 

Frank and Satta (1998) propose a variant of OT in which every constraint makes 

only a binary distinction between candidates that are violators and candidates that are not. 

It’s important to distinguish this from Ellison’s (1994) restriction that each mark laid 

down by a constraint be 1 or 0, which nonetheless allows a single constraint to be violated 

multiple times. To encode something like multiple violability in Frank and Satta’s model 

several constraints are used: one for a single violation, another for two violations, and so 
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on up to a constraint for n violations. One result of this restriction is that the grammar 

won’t make distinctions among candidates with more than n violations. 

Frank and Satta prove that with the binarity restriction in place OT grammars are 

limited so that they can only define rational i/o relations (relations that are representable 

with finite state machines). Following a idea from Marcus Hiller, they observe that, without 

the binarity restriction, optimization for a single constraint can turn a rational relation into 

an irrational one. To see how this can occur, imagine that GEN mapped underlying forms 

of a*b* (some number of a’s followed by some number of b’s) to either themselves (the 

identity map) or to surface forms in which a’s are replaced with b’s and b’s are replaced 

with a’s (the unfaithful map). Optimization for a constraint penalizing each occurrence of 

the segment a would result either the identity map if there were more b’s than a’s in the 

input, the unfaithful map if there were more a’s than b’s, or both mappings just in case 

there were equal numbers of a’s and b’s in the input string. Relations involving this kind 

of unbounded counting are strictly beyond the power of finite state machines and therefore 

the addition of the *a constraint has rendered the relation irrational.1  

Eisner (2002) observes that this same kind non-rational relation can arise when  

agreement constraints interact with faithfulness to generate an unattested pattern that 

Baković (1999, 2000) calls “majority rule”. Specifically, if a string of surface segments is 

obliged to agree on the value α for some feature f and the only thing that dictates which 

value is chosen is the action of faithfulness constraints, then the relative prevalence of the 

                                                 
1 To state this a bit more technically “[a] relation R that realizes such a function is not rational, since its 
right restriction to the regular language { anbm | n, m ∈ ℕ} does not have a regular left projection, namely  
{anbm | n ≥ m}” (Frank and Satta 1998:8). 
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of +f and –f  features in the input will dictate which surface value is realized. As with 

Hiller’s case, optimization in this kind of harmony system gives rise to an unbounded 

counting dependency and thus defines a relation that is irrational. I’ll return to this issue 

in §7.5 but for now I’ll simply observe that many phonologists claim that this kind of 

unbounded counting dependency is not seen in human phonology (e.g. Johnson 1972,  

Koskenniemi 1983, Kaplan and Kay 1981 1994, Karttunen, Koskenniemi, and Kay 

1987).  

Karttunen (1998) capitalizes on Frank and Satta’s (1998) proposed violation-

bound to formulate an OT model in which the computation of optimal forms uses strictly 

finite state means without invoking any non-finite techniques like the dynamic 

programming used in shortest-paths algorithms. To achieve this effect Karttunen uses a 

cascade of binary finite state constraints as filters to successively winnow out suboptimal 

candidates. His constraints are binary in Frank and Satta’s sense – there’s a constraint 

against one violation, another against two violations and so on up to a bound of n 

violations. To use the constraints as filters Karttunen formulates an operation called 

“lenient composition.” When a constraint is leniently composed with a machine 

representing the candidate set either all violators are eliminated or, if eliminating all 

violators would eliminate all of the candidates, nothing is eliminated. Successively 

leniently composing constraints of varying degrees of strictness (the 1-violation version, 

the 2-violation version, etc.) with the candidate generator yields a machine that produces 

candidates with the minimal number of violations. Karttunen notes that, of course, this 
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only holds when, for all crucial comparisons, the optimal candidate gets fewer violations 

than the preset upper bound built into the constraints.  

Karttunen’s system is entirely finite state and as such obviously won’t give rise to 

irrational relations – there can’t be an unbounded counting dependency if the grammar is 

only sensitive to n or fewer violations. There is however, reason to be concerned with the 

violation bound. The lack of experimental (or even anecdotal) evidence supporting the 

position that people cease to distinguish levels of violation above some upper bound 

suggests that violation-bounded models fit poorly with human performance. Of course, in 

the face of such qualms, one could always suppose that the bound was so high that it was 

never exceeded in real-world situations. But such a response calls attention to an entirely 

different problem with the violation bounded model. That is, in order to implement 

constraints for the increased levels of violation the size of the machines representing the 

constraints must be multiplied. For instance, encoding the demand that there be no PARSE 

violations at all requires 66 states while encoding the demand there be fewer than five 

PARSE violations requires 248 states (Karttunen 1998:15). This suggests that any attempt 

to set the violation bound so high that it isn’t observed in practice might yield machines 

too cumbersome to use for generating optimal outputs.  

Gerdemann and Van Noord (2000) propose a model that is similar to Karttunen’s 

in which they work around the size issue by revising way that the constraints are used to 

filter out suboptimal candidates. That is, rather than simply killing off candidates with n 

constraint violations (as in lenient composition), they propose a model in which the 

function that generates the candidates is turned into a “comparative” filter that winnows 
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out suboptimal candidates. Like Karttunen’s, Gerdemann and Van Noord’s model is 

completely finite state. To turn a constraint into a filter for suboptimal candidates, they 

compose the current candidate generator with a constraint, add one or more violation 

marks to each candidate that it generates, and then turn the complement of the range of 

this machine into an identity transducer. This filter can then be composed with the 

composition of the candidate generator and the constraint to eliminate candidates that 

have supersets of the violations incurred by the candidates with the smallest sets of 

violations.   

Because the filter kills off candidates with supersets of the violations incurred by 

the optimal candidate, suboptimal competitors will only be eliminated if their violations 

“line-up” with the violations in the optimal candidate (i.e. the violations occur in the same 

positions in the string). For this reason Gerdemann and Van Noord call their strategy a 

“matching” approach. To allow the elimination of sub-optimal candidates whose 

violations don’t match up with the violations in the optimal candidates, they introduce an 

operation of  “mark permutation” in the construction of the filter. This operation allows a 

present number of violations, n, to be shuffled around in the string when constructing the 

filter. The bound n comes from the fact that finite state machines can only implement 

bounded permutation.   

The permutation bound improves on Karttunen’s (1998) violation bound because 

there are grammars where a small amount of permutation allows a true implementation of 

optimization for arbitrarily large inputs with arbitrarily many violations. Gerdemann and 

Van Noord call the resulting grammar for such cases an “exact” implementation of OT. 
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They show that the basic CV syllable theory of Prince and Smolensky (1993: chapter six) 

presents just such a case. There are, however, two points of concern. In their system 

Gerdemann and Van Noord limit epenthesis to one at most one segment before each 

underlying segment and one segment at the end of the word. This is not generally tenable 

because grammars can require more than one segment of epenthesis. The worry is that 

adding the possibility for unbounded epenthesis might make it harder to match up 

violations and thus give rise to (more) cases where the permutation bound is exceeded. 

The second concern is with the permutation bound itself. As with the violation bounded 

model, one might claim that the bound is so high as to be unobservable in practice. Alas,  

also like the violation bounded model, the cost of increasing the bound grows quite 

rapidly, so this doesn’t seem like a generally tenable solution.2 As with the violation 

bounded model, when the upper bound (on permutation) is exceeded the model simply 

fails to distinguish among candidates. Gerdemann and Van Noord call the resulting 

grammars for such cases “approximate” implementations of OT. 

The most tantalizing property of Karttunen’s and of Gerdemann and Van Noord’s 

models is that they produce transducers which directly map input forms to optimal output 

forms without the need to do optimization for each individual input. Because transducers 

can be inverted this will allow output forms to be mapped to inputs thereby opening the 

door for doing recognition in OT. Fosler (1996) suggests that a similar result might be 

obtained in Ellison’s (1994) model by adding correspondence constraints (McCarthy and 

                                                 
2 If it were possible to do so, proving that “reasonable” human phonological grammars never needed more 
than some particular bound of mark permutation would present a more appealing solution to this problem. 
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Prince 1994) and using heuristics to search through the candidate space but isn’t explicit 

as to how the recognition is to be implemented. 

In pursuit of transducers that directly encode optimal i/o mappings Eisner (2000, 

2002) introduces an OT-variant in which all constraints are evaluated directionally. Under 

directional evaluation, violations closer to one specified edge of a form are strictly worse 

than all violations further from that edge. The prime advantage of directional evaluation 

is that it allows the immediate resolution of all conflicts between candidates. This locality 

property allows the whole system to be recast as a transducer that maps inputs directly to 

optimal outputs. As noted above, the availability of such transducers will allow efficient 

generation of outputs and will allow recognition to be done by inverting the transducers. 

There are, however, some odd empirical predictions that arise in the directional proposal. 

First, the premise that all constraints are evaluated directionally seems to predict that 

directional phonological phenomena should be ubiquitous when, in fact, they’re relatively 

rare. Second, as Wilson (2004) points out, the use of directional constraint evaluation in 

generating harmony patterns with feature spreading, a domain to which it seems ideally 

suited, predicts odd and unattested harmonic patterns in which features spread towards 

the edge of the word just in case they can reach the edge, but if they cannot, there is no 

spreading at all.  

The modifications of optimization introduced in the violation-bounded, matching, 

and directional variants of OT are motivated by the desire to restrict the generative power 

of OT grammars to rational relations and by the desire to allow phonological grammars to 

be recast as transducers that directly map input forms to optimal output forms. Though 
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restricting the generative power of the models and allowing them to perform recognition 

tasks is indeed a worthwhile goal, each of these variants of OT makes significant changes 

to the way the theory works and to the range of empirical predictions the theory makes.  

The question that must be asked is whether these same results can be obtained 

without significantly modifying the nature of optimization. In this work I’ll argue that the 

answer to this question is a qualified yes. That is, I’ll show that a range of OT grammars 

define rational relations and can be recast as transducers capable of doing recognition. 

Rather than fundamentally altering optimization in OT, what I’ll propose is an algorithm 

for constructing transducers that simply fails when given constraints that don’t define a 

rational input/output relation. In chapter seven I’ll propose that the absence of irrational 

relations in phonology might be attributed to the fact that learners fail to make simple 

generalizations (i.e. fail to construct transducers) that describe languages that arise under 

the constraint rankings that define irrational relations. In this sense transducer construction 

can be seen as a filter that produces gaps in the factorial typology of a constraint set. The 

upshot of this proposal is that optimization will be left intact in the system I’ll use here.  

 

1.3  Other computational approaches to OT 

 There has been too much computational and mathematical analysis of OT for me 

to comprehensively review all of it here. In this section I will briefly discuss some of the 

non-finite-state analyses of Optimality Theory that are germane to the proposals that I’ll 

consider in this dissertation. 
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Tesar (1995ab, 1996b) presents a model of Optimality Theory in which generation 

is done by optimizing over “parse trees” that are built by matching the input string to the 

terminals of a context-free position structure grammar. Tesar uses dynamic programming 

techniques to evaluate sets of competing partial candidate structures with the constraints.  

When comparing various computational models of OT, a point that immediately 

stands out in Tesar’s implementation is the use of a principled bound on the amount of 

epenthesis that can occur in a single candidate. Unlike some researchers, who invoke an 

arbitrary upper bound, Tesar bounds epenthesis at a single syllable and proves that no 

optimal candidate could ever require more epenthesis than this in the grammars that he 

uses for the basic CV syllable theory of Prince and Smolensky (1993: chapter 6). Though 

this move renders the candidate set finite, it does so in a principled way, by eliminating 

infinitely many candidates that are guaranteed to be suboptimal.  

In chapter six, I’ll present a general automatic strategy for obtaining this kind of 

result with an algorithm that operates directly on the candidate generator and evaluation 

function to eliminate “harmonically bounded epenthesis” – the addition of epenthetic 

material that doesn’t improve the candidates under any ranking of the constraints. Thus 

I’ll show that rather than limiting epenthesis to “no more than n segments in each position 

p” it’s possible to limit epenthesis to those additions that can actually improve a 

candidate. 

 Walther (1996) uses a scheme akin to Tesar’s (1996b) position structure grammar 

in which context-free grammars delimit the space of possible tree-structures (candidates) 

that can be built for an input. Walther explicitly rejects Ellison’s (1994) proposal for 
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optimization over the candidate generating function, what Walther calls “an intensional 

description of the entire candidate set”, opting to “firmly reside on the object rather than 

on the description level.” To this end he proposes an algorithm that sorts finite sets of 

candidates according to their harmony and guarantees that that the sets will always be 

finite by imposing a bound on the amount of epenthesis allowed in any given candidate.  

From this perspective, Walther’s (2001) criticism that augmenting OT with the 

mechanisms of Correspondence Theory (CT; McCarthy and Prince 1995) gives rise to 

more candidates than there are atoms in the universe makes sense – if the candidate set 

were infinite to begin with this claim would be meaningless. Walther’s computation of 

the size of the candidate set is, however, somewhat odd. In order to ensure that the set is 

finite in the first place, he limits the number of epenthetic and reduplicated segments to 

“a reasonable default value” but then, to compute the range of possible candidates, he 

allows arbitrarily fusion, fission, permutation, deletion, and changes to segments. The 

permutation alone multiplies the candidate set by a factor of n! for inputs of length n. The 

candidate set would shrink drastically if the same kind of “reasonable” restriction was 

placed on permutation (to the inversion of pairs of adjacent segments for instance). An 

even more drastic reduction would be obtained if all unfaithful mappings were subject to 

the same sort of “reasonable” restriction. This is not to say that restricting Correspondence 

Theory to “reasonable” operations would make a brute-force search of the candidate space 

appealing. If anything, this foray into combinatorics should show the undesirability of 

brute-force approaches to optimization. I will come back to this point in §1.5, but first I’ll 

briefly mention two more OT models that make crucial use of finite candidate sets.  
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Heiberg (1999) presents a computational model of Optimality Theory specifically 

designed to handle constraints on autosegmental representations (Goldsmith 1976, 2000). 

In her system the candidate set is always guaranteed to be finite (and relatively small) by 

virtue of the action of the Obligatory Contour Principle (Leben 1973, McCarthy 1979, 

1986) and because she doesn’t allow epenthesis. For generation Heiberg’s model winnows 

suboptimal elements out of the finite candidate set with a cascade of optimizations one 

constraint at a time down through the ranking hierarchy.  

Hammond (1995, 1997) presents a computational model for a fragment of OT that 

is designed to do syllabification. Hammond’s model keeps the candidate set finite (and 

rather small) by ignoring deletion and epenthesis. Suboptimal candidates are eliminated 

from the finite candidate in a cascade-style evaluation one constraint at a time down 

through the constraint hierarchy. 

 

1.4  Learning and harmonic bounding  

Tesar (1995ab, 1996ab, 1997ab, 1998, 2000), Tesar and Smolensky (1998, 2000), 

and Prince and Tesar (1999) discuss the problem of inferring constraint rankings in OT 

from observed input/output pairs (and sometimes from outputs alone). To tackle this 

problem they propose a range of algorithms that rank constraints in a manner that is 

consistent with observed data. These algorithms constitute a variety of refinements and 

extensions of Tesar’s original (1995a b) recursive-constraint-demotion (RCD) algorithm.  

Of particular interest to the work in this thesis, Tesar (2000) shows how RCD can 

be used to efficiently detect inconsistency among sets of ranking arguments. This will 
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become quite relevant in chapter five where I’ll incorporate Tesar’s strategy into Ellison’s 

(1994) finite state model to make it possible to detect and eliminate all the harmonically 

bounded candidates in a single derivation and thus produce exactly the set of candidates 

that can win under some permutation of the constraints.  

An alternative strategy for ranking constraints consistently with observed data is 

presented in Boersma and Hayes (2001) and Boersma (1997, 1998, 2001). Boersma and 

Hayes propose a constraint ranking method that they call the Gradual Learning Algorithm 

(GLA) that responds to observed i/o pairs by perturbing the ranking of constraints along a 

continuous scale (see also Hayes and MacEachern 1998 and Hayes 1999). This model has 

the advantage that it is robust in the face of noise (errors) and can capture “free variation” 

by allowing constraints with overlapping probability distributions on the continuous scale. 

Attempting to rank constraints in a manner consistent with observations is made 

difficult by the fact that the data can be highly ambiguous. Both RCD and the GLA must 

contend with the fact that a single datum (i/o pair) can often be explained by any member 

of a disjunction of partial orderings of the constraints. In this work I’ll argue that the focus 

on actual constraint rankings is unnecessary. Instead, I’ll propose an alternative model of 

learning in OT in which the learner’s hypotheses are stated and manipulated using exactly 

the kinds of disjunctions of partial orderings that arise in observations. 

Prince and Smolensky (1993) show that when one candidate α has a strict superset 

of the violations incurred by another candidate β there is no constraint ranking under which 

α can ever triumph over β. In this state of affairs α is said to be “harmonically bounded” 

by β. Samek-Lodovici and Prince (1999, 2002) develop and extend this notion to include 
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cases where a α is “collectively bounded” by the presence of a set of competitors even 

when α is not harmonically bounded by any member of the set alone. In this work I will 

refer to candidates that are not harmonically bounded as “contenders.” Contenders play a 

crucial role in the model of learning in OT that I’ll present here, for they constitute 

exactly the set of candidates whose failure is most informative to the learner.    

Prince (2002a b) presents a scheme for encoding information about constraint 

rankings in the form of an Elementary Ranking Condition (ERC). This representational 

scheme based on Prince’s (1998, 2000) proposed reformulation of tableau notation and 

encodes the same information as Tesar’s (1995a et seq.) “mark-data pairs”. ERCs have 

two properties that will make them vital to the work presented here. First, they give us a 

concise representation of information about constraint rankings and can be manipulated 

and combined in a variety of ways to draw inferences, and second, an RCD-like algorithm 

can be used to efficiently identify candidates that are harmonically bounded by detecting 

“inconsistency” among sets of Elementary Ranking Conditions (see chapter six).  

 

1.5  My proposal 

The system I develop here will be based essentially on Ellison’s original finite state 

model of OT. I won’t adopt Frank and Satta’s (1998) binarity restriction on constraint 

evaluation, Walther’s (1996) bound on epenthesis, Eisner’s (2001) directional evaluation, 

or Gerdemann and van Noord’s (1998) violation matching and permutation technique. 

Instead of a cascade of evaluators for the various constraints I’ll build one monolithic 

evaluator that evaluates candidates with respect to all constraints simultaneously. Finally, 
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I’ll state constraints directly over segments rather than features, tiers, or autosegmental 

representations. I summarize these properties below in (1).  

 
(1) Basic properties of my model:  

a) no epenthesis bound – the candidate set is infinite  

b) no violation bound – constraints assess arbitrarily many violations  

c) standard evaluation – evaluation is neither directional nor matching 

d) monolithic Eval – constraints are applied in one fell swoop (not a cascade) 

e)  segmental representations – not tier-based or autosegmental 

 

Properties (a) through (c) above constitute substantive empirical claims about the nature 

of (computational) Optimality Theory. Properties (d) and (e) are merely implementational 

but they nonetheless have significant ramifications for the complexity of the computations 

and for the amount of information that can be extracted from a single derivation. I’ll go 

through these points one at a time below.  

While epenthesis-bounded models may serve to illuminate some phonological 

phenomena and types of constraint interaction, as a general model of OT the use of an 

arbitrary upper bound on epenthesis is linguistically unenlightening. Moreover the hope 

that such a bound could make a brute-force search of the candidate space tenable in the 

general case is doomed in the face of the combinatory complexity that can arise with 

even a finite set of options. In chapter six I’ll show how the action of constraints like DEP 

guarantee the finitude of the set of contenders (those candidates that are not harmonically 

bounded). I’ll argue that restricting our attention to the relevant candidates, the contenders, 

is ultimately more sensible (and more efficient) than placing restrictions like epenthesis 
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bounds directly on the candidate generator. Crucially, the issue at hand is not whether the 

candidate space is infinite, but rather whether the structure of the problem is such that it’s 

possible to formulate an efficient strategy for finding optimal candidates.  

I avoid the violation bounded, matching, and directional variants of OT for two 

reasons. First, they do not seem, in principle, to fit well with the empirical facts. Both the 

bounded violation set-up and the permutation technique are unable to adjudicate between 

competing candidates once the upper bound on violations/permutations is exceeded. The 

directional evaluation variant of OT has different empirical problems as it makes odd 

(and seemingly unattested) predictions about the prevalence of directional phonological 

phenomena and generates some odd harmony patterns. The second, and more important, 

reason that I do not adopt one of these variants of OT in this work is the hope to develop 

tools that provide insight into the workings of OT grammars as they are typically used by 

phonologists.  

In this work I’ll show that the use of a monolithic evaluator that encodes all of the 

constraints of the grammar has several advantages. Most of the computational proposals 

described above eschew such a technique out of concern that the representation of the 

evaluating function might grow explosively as constraints are added to the grammar (e.g. 

see Eisner 1997b and Albro 1998a for explicit discussion of this idea). I will argue here 

that this fear is not warranted. I’ll show in chapter two that the size of the representation 

of the grammar resulting from combining all of the constraints is bounded by the number 

of unique phonological environments to which the grammar is sensitive. While this may 
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be huge, it isn’t on the order of the billions and billions that would make the evaluator too 

cumbersome to be used in computing optimal forms.  

On the contrary, putting all of the constraints together into one evaluating function 

has several advantageous consequences. Given a fairly concise representation of the entire 

grammar it is possible to do several things that would not otherwise have seemed possible. 

First, it becomes possible to do optimization for all rankings simultaneously. That is, 

rather than generating a single optimal i/o pair for a single ranking it becomes possible to 

generate the contenders (the non-harmonically bounded candidates) in a single derivation 

that isn’t that much more complex than finding a single optimal i/o pair.  

 Combining all of the constraints into a single evaluator has other advantages as 

well. Given such a concise representation of the entire grammar it is possible to detect 

and eliminate sub-optimal fragments of parses in the evaluation function itself before 

considering a single input. This process, which I call preoptimization, provides numerous 

benefits. The most relevant of these benefits is that after preoptimization all subsequent 

optimization tasks can be done in linear time.  

 Finally, with the entire grammar represented as a single preoptimized evaluation 

function it is possible to detect and generalize recurring patterns across the optimization 

of various input strings and thereby construct a transducer that defines the same input/ 

output mappings as optimization. Unlike the OT-variants discussed above, this proposal 

doesn’t involve modifying the nature of optimization to guarantee that transducers can be 

constructed for all rankings, but rather discovers transducers that are equivalent to OT 
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grammars in cases where such transducers exist. There will still be OT grammars that 

cannot be represented with transducers; for such grammars the algorithm simply fails.  

If it is indeed the case that irrational phonological relations are absent in human 

phonologies then the process of transducer construction could explain these gaps in the 

factorial typology without a fundamental change to the nature of optimization in OT.  

The final point worthy of comment in my implementation is the character of the 

phonological representations. Throughout this work constraints will be stated over 

segments and optimization will be carried out on functions that generate candidates that 

are strings of segments. Whether autosegmental representations like Heiberg’s or tier-

based representations like those of OTP ultimately yield substantively different empirical 

predictions is an issue that I will return to in chapter eight.  

 

1.6  Why model OT computationally? 

Optimization problems are notoriously hard. Finding the optimal candidate among 

an infinite set of possibilities via exhaustive search is obviously not possible. Even if the 

range of candidates is somehow restricted so that it’s finite, if it grows geometrically with 

the size of the input then an exhaustive search is untenable in the general case.  

A plausible response to this state of affairs might be to regard computability issues 

as an irrelevant distraction in the task of devising illuminating models of human linguistic 

faculties. Indeed, Prince and Smolensky’s statements quoted in (2) might be seen as an 

instance of this attitude.   

 



 23

(2) Prince and Smolensky 1993: 215-216 

It is not incumbent upon a grammar to compute ... A grammar is a function that 
assigns structural descriptions to sentences; what matters formally is that the 
function is well-defined. ... [T]here are neither grounds of principle nor grounds of 
practicality for assuming that computational complexity considerations, applied 
directly to grammatical formalisms, will be informative. 

 

Prince and Smolensky’s comments in (2) highlight the difference between a well defined 

function and the algorithm that computes that function. This is especially necessary as a 

response to the often expressed, yet misguided, notion that the only way to do optimization 

is to exhaustively search a huge (or infinite) space of possibilities.  

 Optimization problems are not easy, but all good (tractable) solutions to nontrivial 

optimization problems involve techniques more subtle than brute-force search. Surely, if 

we find an algorithmic characterization of OT that is true to the spirit of OT and allows 

for efficient generation, then at the very least it should be adopted on pragmatic grounds, 

for without an efficient generation strategy it’s impossible to actually test the predictions 

of the theory for any but the simplest “toy” grammars.   

In other words, while the availability of an efficient computational implementation 

may not be required of phonological models, it is an invaluable asset to researchers using 

those models because it gives us some hope of understanding the predictions the models 

make and of understanding how changes to the basic ingredients of the models change 

those predictions.   

Phonological grammars built from competing interacting constraints can become 

hideously complicated, thereby rendering our intuitions about the effects of a particular 
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constraint or constraint ranking dubious at best. To support this claim with a personal 

anecdote, I’m often quite surprised by the predictions the models make once implemented. 

For instance, having an algorithm generate a vowel harmony-like pattern that is achieved 

via deletion and epenthesis is initially shocking. Such a pattern could surely be predicted 

from introspection about the constraints and their interaction, but the vast number of such 

possibilities all but guarantees that introspection alone will miss interesting predictions. 

All too often an argument in favor of one OT analysis over another that is based on a few 

illustrative examples comes crashing down when just one relevant candidate is added to 

the set of forms being compared. With a fully implemented model of generation in OT it 

is easy to avoid such calamities. 

Algorithmic methods are even more important when it comes to understanding 

the typological predictions made by the theory. Given that there could, in principle, be 

factorially many different input/output relations defined by a set of constraints, it is 

practically impossible to get a good idea of the typological predictions by simply 

reasoning about the constraint interactions.  

 Finally, the most relevant advantage conferred by actually implementing a model 

is that it makes it necessary to be totally explicit about every detail of the mechanics of 

the system. Though it would seem that when implementing a model one can get bogged 

down in minutiae, it is often the minute details that are left vague in most models that end 

up having unexpected global and systemic consequences.   
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1.7  Computation and computers 

The work presented herein is computational in the mathematical sense, not because 

it requires the use of a computer. Computers serve as vital aids in performing the complex 

calculations required here but are not an integral part of any of the proposals.  

Nonetheless, even the simple systems presented here would test the limits of 

patience if the calculations were carried out with pencil and paper. All through this work 

I’ve sought to use the smallest and simplest possible examples so that it is possible to 

follow the computations described (and so that the graphs fit on single pages).  

Two free software packages have been absolutely invaluable in this work. SWI-

prolog is a free distribution of Prolog, the logical programming language in which all of 

the algorithms presented here are implemented. SWI-prolog is freely available at 

www.swi-prolog.org. The graphs used throughout this work to illustrate the finite 

state machines were drawn with Graphviz. Graphviz is a free graph-drawing tool that is 

available from AT&T labs at www.research.att.com/sw/tools/graphviz. 

My prolog implementations of the algorithms presented throughout this work can 

be downloaded from my homepage. Given that affiliations and web-addresses can change, 

the best way to find my homepage is to follow the link from the alumni page of the UCLA 

linguistics department at www.linguistics.ucla.edu.  

 

1.8  Overview 

In this work I provide a formal characterization of Optimality Theory in which I 

address complexity and the learnability issues. I represent the constraints of OT as finite 
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state transducers and phonological grammars as intersections of these transducers. In this 

system, a phonological grammar is a function that maps input strings to sets of output 

strings paired with the numbers of constraint violations incurred by each such mapping.  

By putting all of the information of the grammar into one finite representation I 

am able to formulate the following algorithms.  

The CONTENDERS algorithm takes an unranked set of constraints and an input and 

finds the set of input/output pairings that could win under any ranking of the constraints. 

With such information the learner is then able to compare the actually observed form 

with the entire (finite) set of informative losers.  

The Optimality Transducer Construction algorithm (OTCA) takes a ranked set of 

constraints and from them constructs a transducer that directly generates optimal output 

forms from underlying forms. In effect, this move obviates the need for word-by-word 

optimization since all of the optimization is done in the process of the creation of the 

transducer. This proposal will yield a grammar that does not suffer from a geometric 

explosion in the amount of work to derive longer forms. Moreover, transducers can be 

inverted and therefore the grammar will be usable for comprehension (mapping surface to 

underlying forms) as well as for production.  
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2  Building Eval 

In Optimality Theory (OT; Prince and Smolensky, 1993) the sound pattern of a 

given language is generated by the interaction of a set of competing universal drives 

(constraints) that vie to exert their influence on the phonology of the language. As with 

many phonological theories that preceded it, in OT it is assumed that “underlying forms” 

that are specified in the mental lexicon serve as the input to the phonology and the job of 

the phonological grammar is to mediate the relation between the underlying forms and 

the pronounced “surface forms.” In OT this task is stated as an optimization problem. 

That is, the surface forms that are derived from a given input are those that optimally 

satisfy a set of ranked constraints governing the input-output relation. Optimal 

satisfaction of the ranked constraints is achieved by a given input-output pair, 〈i, o〉, just 

in case for any other possible output o' such that some constraint C1 prefers 〈i, o'〉 over 〈i, 

o〉, there is another constraint C2 ranked higher than C1 that prefers 〈i, o〉 over 〈i, o'〉. 

While it is fairly easy to concisely state what it means for a given output to be optimal, 

the task of finding an optimal output among the infinite range of possible outputs can in 

principle be quite hard.3 

One way to ensure that the input-output relation defined by the phonological 

grammar is a computable one is to restrict the formal power of the constraints that make 

up the grammar. In this chapter I’ll present a general scheme for representing constraints 

on the input-output relation with finite state machines that encode functions from input-

                                                 
3 Or even impossible. If, for example, constraints are allowed to be arbitrary functions from i/o pairs to 
numbers of violations then the use of noncomputable functions as constraints would result in a 
noncomputable grammar.  
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output mappings to violations. I will begin by presenting a single constraint and showing 

how it can be used to evaluate the range of possible output candidates for a given input. I 

will then present an operation that combines a set of constraints into a single finite state 

machine defining a function that evaluates the candidates with respect to the whole set of 

constraints simultaneously. I’ll call the combined set of constraints Eval. In this chapter I 

will illustrate the basic mechanics of this system with some very simple constraints. I will 

close the chapter by showing that Eval can be treated just like an individual constraint in 

evaluating the range of possible output candidates for a given input.  

 

2.1  The finite state restriction 

Ellison (1994) showed that if OT constraints are required to be regular (i.e. finite-

state transducers that map 〈i, o〉 pairs to numbers of violations) then optimal outputs can 

be computed by representing the set of possible parses of an input as a graph and using a 

shortest-paths algorithm to find the output candidates that minimally violate the ranked 

set of constraints. This approach has been taken up in much subsequent research in finite-

state Optimality Theory (Eisner 1997a, 1997b, 1997c, Frank and Satta 1998, Karttunen 

1998, Albro 1998a, 2000, Gerdemann and Van Noord 2000, and others).  

Unlike some other finite-state implementations of Optimality Theory, in this work 

I’ll attempt to retain all the basic assumptions of OT with the single caveat that constraints 

must be representable as finite state machines. The motivation here is to explore the basic 

computational properties of standard Optimality Theory, not to find some approximation 

or modification of OT that has desirable computational properties. Given the finite state 
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caveat on the theory it’s worth trying to understand what it buys us and what phenomena  

it allows us to describe. In (3) I lay out Chomsky’s hierarchy of language complexity and 

situate a couple of phonological phenomena and three theoretical models in the hierarchy.  

 
(3) Chomsky hierarchy of  language complexity: 

 

 

 

 

 

 

 

 

 

 

 
 Kaplan and Kay (1994) show that rewrite rules of the form ϕ → ψ / λ _ ρ can only 

define rational relations if the rules aren’t allowed to recursively rewrite their own output. 

This covers directional iterative application, simultaneous application, and application in 

any finite number of cycles.4  Rule-based phonological models are often touted as fitting 

well with the facts because most phonological processes seem to fall squarely in this class 

of relations. Grammars using optimization with ranked violable constraints (as in OT) are 

                                                 
4 The only potential for irrational relations with rules comes if cycles can be iterated without bound. 
Persistent rules as proposed in Myers (1991) would provide an architecture where this could occur. 

most phonological processes 

unbounded reduplication 

Optimality Theory  
 – P&S 1993 
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Rewrite rules of the 
form: ϕ → ψ / λ _ ρ 
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slightly more powerful because optimization can be used to generate unbounded counting 

phenomena (Frank and Satta 1998). The phenomenon of reduplication is slightly more 

complex still, requiring something like the constraints of Correspondence Theory 

(McCarthy and Prince 1995). 

 In this work, all of my constraints will be expressed as finite state machines. This 

restriction will put the generative power of the model presented here at the level of Prince 

and Smolensky’s original (1993) model of Optimality Theory. In chapter seven I’ll return 

to the issue of generative power and make a proposal for restricting the generative capacity 

of my model to just the rational relations. For the time being, however, I’ll present my 

basic system with the acknowledgement that there are ways in which it over-generates 

(by defining irrational relations) and ways in which it under-generates (by failing to model 

reduplication).  

The imposition of the finite-state restriction on constraints rules out a handful of 

non-regular constraints in the OT literature. For instance, consider in (4) and (5) two 

alignment constraints using McCarthy and Prince’s (1993) generalized alignment schema.  

 
(4) ALL-FEET-LEFT: 

 The left edge of every foot must be aligned to the left edge of a prosodic word.  

 (McCarthy and Prince 1993, 1994) 

(5) ALL-σ-LEFT:   

 The left edge of every syllable must be aligned to the left edge of a prosodic word.  

 (Mester and Padgett 1994) 
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These constraints aren’t regular because they impose overlapping “counting dependencies,” 

measuring the distances between multiple syllables/feet and the edge of the word. In (6) I  

illustrate evaluation with the constraint ALL-σ-LEFT. 

 
(6) Evaluation with ALL-σ-LEFT: 

      wd[σ  σ  σ  σ  σ  σ] 
  

 

The second syllable gets one violation (it’s misaligned from the left edge by one syllable), 

the third syllable gets two violations, the fourth gets three violations, and so on. The total 

violations for the form in (6) are 1+2+3+4+5 = 15. It is easy to see how the violations will 

keep climbing as more syllables are added to the form.  

 Eisner (1997b) and Bíró (2004) discuss the fact that that this type of constraint 

which Bíró calls a “quadratic” alignment constraint cannot be modeled with finite state 

means.5 Put simply, finite state methods fail here because there can be arbitrarily many 

syllables in a word, and thus there is no bound on how many simultaneous measurements 

might need to be made.  

Because the constraints in (4) and (5) are generally better satisfied by forms with 

fewer syllables/feet, they have been used to act as “size restrictors” in reduplication (cf. 

Spaelti 1997). Eliminating alignment constraints of this type doesn’t seem to pose a 

problem for the empirical coverage of the theory as there exist strategies for restricting 

reduplicant size and requiring adjacency of elements that don’t rely on non-regular 
                                                 
5 For a form with n syllables there will be (n2 – n)/2 violations.  
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constraints. Moreover, there may be empirical reasons to eliminate such non-regular 

constraints as they have come under attack recently for problems with over-generation 

(cf. Eisner 1997b, McCarthy 2002). 

The finite state restriction also makes it impossible to express the base/reduplicant 

faithfulness constraints of Correspondence Theory (McCarthy and Prince 1995). With 

their ability to enforce unbounded copying in reduplication, such constraints can’t be 

evaluated with finite state machinery.6  

For this initial examination I will also ignore the possibility of segments being 

reordered in the input-output relation (metathesis) because unbounded permutation of the 

input segments can’t be described with finite-state methods. Note, however, that metathesis 

that inverts pairs of segments (or metathesis with a fixed upper bound) can be described 

with finite state methods.   

The question of exactly what class of phonological phenomena the finite-state 

restriction excludes from consideration is an interesting one but one I won’t go into here. 

For now I’ll simply accept the possibility that the finite state restriction may exclude 

some interesting phonological phenomena from analysis but press onward because it 

seems a reasonable enough place to start.  

 

                                                 
6 For discussion of how to incorporate some non-finite-state components to handle reduplication into an 
otherwise finite state implementation of OT, see Albro (2004). 
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2.2  Finite-state constraints 

For this initial illustration of the mechanics of my implementation of Finite state 

Optimality Theory I will use the simple hypothetical language described in (7).7  

 
(7)  Baa: 

Baa has only two phonemes, one consonant ‘b’ and one vowel ‘a’.  Baa does not 

permit consonant-consonant sequences in surface forms (vowel-vowel sequences 

are okay). Baa speakers avoid uttering CC-clusters that occur in underlying forms 

by deleting consonants. 

 
To further simplify this scenario, I will assume that the only changes that can be made in 

mapping the input (the underlying form) to the output (the surface form) are the deletion 

of underlying segments and the insertion of new segments not present in the input. Even 

though this set up is simplified in the extreme, it is still of sufficient complexity to 

illustrate the basic mechanics of Optimality Theory.  

All regular OT constraints can be characterized as finite state transducers that 

evaluate candidates by assigning violations to certain input-output mappings. Basically, 

each constraint is a function that maps input-output mappings to the positive integers. 

Finite state constraints can be described formally as in (8).  

                                                 
7 I borrow this type of simple scenario from Prince and Smolensky’s (1993) work but use ‘b’ and ‘a’ as the 
symbols in the languages under consideration in place of the abstract markers ‘C’ and ‘V’.  
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(8) Finite state constraints are 5-tuples: (Q, Σ, δ, q0, F) where 

i)   Q is the nonempty set of states in the constraint,  

ii)  Σ is the set of symbols in the language,  

iii) δ is a transition function describing the input-output-violation triples that label 

the arcs leading from one state to the next: δ ⊆ Q × Σ+ × Σ + × {0,1} × Q, 

where Σ+ is the union of Σ with the special symbols {-, •} which denote the 

empty string and a wildcard that will be explained below, 
 

iv) q0 ∈ Q is the unique start state, and  

v)  F ⊆ Q, is the nonempty set of final states.  

 
The easiest way to get an idea of what a given finite state constraint does is to 

examine its graphical representation. Consider in (10) an illustration of the finite-state 

version of the familiar constraint DEP, which penalizes epenthesis by assigning one 

violation per segment that is added to the output (McCarthy and Prince 1995).  

 
(9) DEP: every segment in the output must have an input correspondent 

 
 

(10) DEP = ({dep}, {a, b}, δ, dep,{dep}), 

   δ = { (dep, -, a, 1, dep), 
(dep, -, b, 1, dep), 
(dep, a, -, 0, dep), 
(dep, a, a, 0, dep), 
(dep, b, -, 0, dep), 
(dep, b, b, 0, dep)}. 

 
 
 

(states, alphabet, arcs, start, finals)   

violation 

input/output

arc = (origin, input, output, cost, terminus) 
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As notational conventions in the graphs presented in this work the start state is 

egg-shaped, the final states are double circled, and the dash “-” is used to represent the 

empty string.8  The set δ makes up a list of the arcs in the machine. Each arc is a 5-tuple 

that begins with the state that is the origin of the arc, ends with the state that is the 

terminus of the arc, and whose middle three terms make up the label of the arc. The 

three terms constituting the label of each arc are an input, an output, and a cost, where 

the cost expresses the number of constraint violations that are incurred in mapping the 

input to the output.  

 

2.3  Generating the candidates 

To use a constraint, like DEP in (10), to evaluate candidates, a representation of 

the candidate set is needed. To build the candidate set we can simply extend the 

construction of the finite state representation for an input string given in (11).  

 
(11) Input acceptor: 

A(s1... sn) = ({0, ..., n}, Σ, δ, 0, {n}), where  

δ  ={(q, si, •, 〈〉,  i) |either 0 ≤ q = i ≤ n or si ∈ s1... sn, and q = i –1} 
 

The arcs defined by δ in (11) are described with (origin, input-symbol, •, 〈〉, terminus) 5-

tuples. The use of the wildcard • as the output term will allow the labels on the arcs of the 

input acceptor to unify with arcs of other machines that share a common input – I’ll 

explain this below. The 4th coordinate on each arc is the empty sequence 〈〉. This is where 

violations will be recorded once we add constraints to the picture.   
                                                 
8 I reserve epsilon to represent open-mid front vowels. 



 

 36

The linear acceptor for the input string /bba/ is a simple machine with four states 

{0, 1, 2, 3}, one arc per input segment, and one arc looping from each state to itself 

accepting the empty string. The start state “0” corresponds to none of the input having 

been accepted and the final state “3” indicates that the entire input string has been 

accepted. In general when graphing constraints and input acceptors I won’t include arcs 

that loop from states to themselves accepting empty strings, the wildcards for undefined 

segments or the empty cost vectors because they don’t contribute any unique information. 

The acceptor for the input string /bba/ is given in (12).  

 

(12)  A(bba):  

 
 
 
 A(bba) = ({0, 1, 2, 3}, {a, b}, δ , 0, {3}),   δ = {(0, -, •, 〈〉, 0), (0, b, •, 〈〉, 1),  

(1, -, •, 〈〉, 1), (1, b, •, 〈〉, 2),  
(2, -, •, 〈〉, 2), (2, a, •, 〈〉, 3),  
(3, -, •, 〈〉, 3)} 

 

To obtain a finite representation of the infinite set of possible output candidates 

for a particular input string, the wildcards in the output coordinates of the arcs of the 

input acceptor can be filled in with each possible output symbol in Σ. I’ll call the machine 

with this information filled in ɡ(x) or “GEN of input x.” For example, GEN of input /bba/ 

is represented below in (13).  

 (states, alphabet, arcs, start, finals)  
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- to be maximally explicit I’ve marked the empty cost-slots on the arcs

 

 

 

(13) ɡ(bba):  

  

 

 

ɡ(bba) = ({0, 1, 2, 3}, {a, b}, δ, 0, {3}), where  

                 δ = {(0, -, a, 〈〉, 0), (0, -, b, 〈〉, 0), (0, b, b, 〈〉, 1), (0, b, a, 〈〉, 1), (0, b, 1, 〈〉, 1), 
(1, -, a, 〈〉, 1), (1, -, b, 〈〉, 1), (1, b, b, 〈〉, 2), (1, b, a, 〈〉, 2), (1, b, 1, 〈〉, 2), 
(2, -, a, 〈〉, 2), (2, -, b, 〈〉, 2), (2, b, b, 〈〉, 3), (2, b, a, 〈〉, 3), (2, b, 1, 〈〉, 3), 
(3, -, a, 〈〉, 3), (3, -, b, 〈〉, 3)} 

This machine represents an infinite set of i/o mappings from input string /bba/ to 

outputs drawn from {a, b}*. Every path from the start state to a final state is a pairing of 

/bba/ with a particular output string.  

 In this initial examination the only unfaithful i/o mappings that I’ll consider will 

be those involving deletion and insertion. To restrict the candidate set in this way, an 

undominated faithfulness constraint can be used. Consider in (14) a member of McCarthy 

and Prince’s (1995) IDENT family of constraints which militates against input-output 

mappings that change the value of the feature [± sonorant].  
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(14) IDENT(SON):  

 

 IDENT(SON) = ({id-son}, {a, b}, δ,  id-son, {id-son}) 

               δ = { (id-son, -, a, 0, id-son), (id-son, -, b, 0, id-son), (id-son, a, a, 0, id-son), 
 (id-son, a, b, 1, id-son), (id-son, a, -, 0, id-son), (id-son, b, a, 1, id-son), 
 (id-son, b, b, 0, id-son), (id-son, b, -, 0, id-son)} 
 

If IDENT(SON) is ranked at the top of the constraint hierarchy then it will always be obeyed 

and only deletion, insertion, and faithful parsing will be allowed. I’ll present a method for 

encoding undominated constraints in the grammar in chapter five; for now I’ll simplify 

things by omitting arcs that violate IDENT(SON) from the machines under consideration. 

The candidate set generated for the input string /bba/ with this restriction in place is 

represented in (15).  

 

 

(15) ɡ(bba): 

 

The machine in (15) encodes every possible mapping from the input string /bba/ 

to an output string where each input segment may be faithfully parsed or deleted and any 

amount of epenthesis is allowed.  

This same technique can be used to represent output strings. A minor modification 

of the definition in (11) produces the definition of output acceptors given in (16).  
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(16) Output acceptor: 

Aout(s1... sn) = ({0, ..., n}, Σ, δ, 0, {n}), where  

δ  ={(q, •, si, 〈〉,  i) |either 0 ≤ q = i ≤ n or si ∈ s1... sn, and q = i –1} 
 

The thing that distinguishes input from output acceptors is the position of the 

wildcards. Specifying every arc label in every machine with all three values input, output, 

and cost gives all the machines the same structure and helps keep the values straight.  

 

2.4  Evaluating candidates 

The machine A(in) encodes input string in. To evaluate output candidates for in 

with a constraint, A(in) is used to “restrict” the range of i/o pairs under consideration. To 

impose this restriction A(in) is “intersected” with a the machine for the constraint. This 

operation, which I’ll call “machine intersection” or simply M-intersection is defined in 

(18). First, in (17), I define the unification of symbols so that anything unifies with itself 

or the wildcard and everything else unifies to zero.  

 
(17) def: symbol unification 

x⊔y = 
 if 
 if 
 if 

0 otherwise

x x y
y x
x y

=
 = •
 = •


 

 

(18) def: M-intersection  

〈M1, M2 〉⌦ =  M3 for M1 = (Q1, Σ1, δ1, S1, F1) and M2 = (Q2, Σ2, δ2, S2, F2), 

  M3 = (Q1×Q2, {Σ1∪Σ2}, δ, S1×S2, F1×F2) where 

   δ = {(qx, i, o, 〈v, w〉, ry) | (q, i1, o1, v, r)∈δ1, (x, i2, o2, w, y)∈δ2,  
 

i = i1⊔ i2 ≠ 0, and o = o1⊔ o2 ≠ 0} 
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I call the ⌦ operation M-intersection because it creates an arc in the new machine 

for each pair of arcs with unifiable labels in the old machine. This operation isn’t quite 

intersection in the classical sense because the cost vectors labeling the arcs are built up by 

concatenation as constraints are intersected – the operation isn’t commutative because the 

ordering in the cost vectors depends on the order in which machines are combined via M-

intersection. This operation does essentially the same thing as Ellison’s (1994) algorithm 

for generating the “augmented product” of two machines. I illustrate M-intersection with 

A(bba) and DEP in (19). 

 
 

 

(19) 〈A(bba), DEP〉⌦:  

 

〈A(bba), DEP〉⌦ = ({0dep, 1dep, 2dep, 3dep}, {a,b}, δ, 0dep, {3dep}), 

  where δ = {  
 

 
 
 
 

Because the costs on the arcs of A(bba) are empty, when it is intersected with DEP 

and the costs on the arcs are concatenated, only the costs from the arcs of DEP show up 

on the arcs of the intersected machine.  

 Each path through (19) encodes the evaluation of a single candidate with respect 

to the constraint DEP. To describe this the definitions in (20) will be useful.   

 

(0dep, -, a, 〈1〉, 0dep),  (0dep, -, b, 〈1〉, 0dep), (0dep, b, b, 〈0〉, 1dep), 
(0dep, b, -, 〈0〉, 1dep),  (1dep, -, a, 〈1〉, 1dep),  (1dep, -, b, 〈1〉, 1dep),  
(1dep, b, b, 〈0〉, 2dep),  (1dep, b, -, 〈0〉, 2dep), (2dep, -, a, 〈1〉, 2dep),  
(2dep, -, b, 〈1〉, 2dep),  (2dep, b, b, 〈0〉, 3dep), (2dep, b, -, 〈0〉, 3dep), 
(3dep, -, a, 〈1〉, 3dep),  (3dep, -, b, 〈1〉, 3dep) }. 
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(20) Paths and machines: 

 a.  A path is a sequence of arcs 〈a1, …, an〉, where for each pair of arcs ai and ai+1  

  the terminus of ai is the origin of ai+1.  

 b. A path p is a path between q1 and q2 if the first arc in p has q1 as its origin and  

  the last arc in p has q2 as its terminus. 

 c.  A path p is a path through machine M = (Q, Σ, δ, q0, F) if p is a path between  

  q0 and one of the final states of M. 

 
The machine given in (19) represents the evaluation of an infinite candidate set with 

respect to the constraint DEP. Each path through (19) corresponds to one row in an infinite 

tableau. Three of these paths are illustrated in (21). 

 

(21) Three candidates:  

 
  /bba/ DEP  

a. bba   
b. ba   
c. baba *!  

 

 

 

 

 

 

 

candidate a 

candidate b 

candidate c 
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Optimization for a single constraint can be quite easy. In the case above, removing 

all of the arcs marked with DEP violations will eliminate all of the candidates that violate 

DEP. When dealing with several constraints simultaneously things can, of course, become  

quite a bit more complicated. Now that the basic method for using finite state constraints 

to evaluate candidates has been laid-out I will turn to the issue of constraint interaction 

and introduce a few more constraints.  

2.5  Three more constraints 

Consider in (22) the constraint MAX which penalizes the deletion of material in 

the mapping from the underlying to the surface form (McCarthy and Prince 1995).  

(22) MAX: input segments may not be deleted 

MAX = ({max},{a, b}, δ, max,{max}),  

    δ = {(max, -, a, 0, max), 
(max, -, b, 0, max), 
(max, a, -, 1, max), 
(max, a, a, 0, max), 
(max, b, -, 1, max), 
(max, b, b, 0, max)}. 

 
 

Basic faithfulness constraints like DEP and MAX only require one state because 

they assign violations irrespective of any particular phonological environment. I won’t 

consider faithfulness constraints with environments in this work for simplicity’s sake, but 

note that multi-state faithfulness constraints can be used capture “positional” faithfulness 

constraints (cf. Beckman 1995, 1998, Casali 1997).   

violation 

input/output 
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Unlike faithfulness constraints, markedness constraints usually require multiple 

states to pick out the environments in which violations an occur.9 Consider, for instance, 

the constraint *CC  presented in (23) which assigns one violation per consonant-consonant 

sequence that occurs in a surface form. 

 
(23) *CC: consonant-consonant sequences are not allowed 

*CC = ({cc-0,cc-1},{a, b}, δ, cc-0, {cc-0, cc-1}),  
 

               δ = { (cc-0, •, a, 0, cc-0),  
(cc-0, •, b, 0, cc-1), 
(cc-0, •, -, 0, cc-0), 
(cc-1, •, b, 1, cc-1), 
(cc-1, •, a, 0, cc-0), 
(cc-1, •, -, 0, cc-1)}. 

 

In the finite state representation of *CC in (23), state cc-1 encodes the fact that a 

consonant has just been written as output. From this state, if another consonant is written 

as output then a violation of *CC occurs. In (23) and in the graphs throughout this work I 

won’t bother to denote wildcards on the arcs and I won’t write the arc looping from each 

node to itself accepting the empty string.  

In general, the input slots on the arcs of markedness constraints will be filled with 

wildcards because markedness constraints aren’t sensitive to properties of the input and 

thus needn’t specify any information about the input. By specifying information about the 

input on a markedness constraint like the one in (23) it’s possible to allow material that 

isn’t present in the output to dictate whether or not the constraint is violated and to use 

                                                 
9 Simple markedness constraints that  penalize every occurrence of a particular segment can be represented 
with a single state.   
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particular unfaithful i/o mappings to specify the environments where the constraint can be 

violated. Such constraints blur the line between markedness and faithfulness but allow a 

straightforward account of certain types of opacity and derived environment effects. This 

issue is worth further study, but for the current implementation I’ll keep markedness and 

faithfulness strictly separate by disallowing markedness constraints that specify anything 

about the input.  

In (24) I present the counterpart ot *CC, the constraint *VV, which penalizes 

vowel-vowel sequences in output strings.  

 
(24)  *VV: vowel-vowel sequences are not allowed 

*VV = ({vv-0,vv-1},{a, b}, δ, vv-0, {vv-0, vv-1}),  
 

               δ = { (vv-0, •, a, 0, vv-1),  
(vv-0, •, b, 0, vv-0), 
(vv-0, •, -, 0, vv-0), 
(vv-1, •, b, 0, vv-0), 
(vv-1, •, a, 1, vv-1), 
(vv-1, •, -, 0, vv-1)}. 

 

This quartet of constraints, *VV, *CC, DEP, and MAX, makes up the basic suite of 

constraints that will be used to illustrate most of the algorithms presented in this work. 

Larger and more complicated sets of constraints will be discussed and examined in order 

to assess the scalability of the proposals presented here but I’ll keep coming back to this 

simple case when illustrating new ideas. This suite of constraints will make it easier to 

explain the algorithms used in this work because the set is small enough and the constraints 

are simple enough that it will remain possible to rely on intuitions about their interactions 

to aid in understanding how the algorithms work.  
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2.6  Recursive M-intersection 

Ellison (1994) shows how candidates can be evaluated with respect to multiple 

constraints simultaneously by building a single evaluator for the entire set of constraints. 

To do this we can simply extend the definition of M-intersection recursively as in (25).  

 
(25) def: M-intersection  – recursive definition 

〈M1, M2, … Mk〉⌦ = 〈〈M1, M2, … Mk-1〉⌦, Mk 〉⌦ 

 

 When two markedness constraints are brought together no input is specified, so the 

wildcards are retained in the input slots on the arcs. If the constraints have multiple states 

then there is the possibility that “dead” states will be created by intersection. For instance, 

in the intersection of *VV and *CC, there is one state that is in the cross product of *VV 

and *CC  that could never be reached. This is illustrated in (26). 

 
(26) A dead state:  
 

 

 

 

 

 

 

 

 

dead state 
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State (vv-1,cc-1) corresponds to state (vv-1) in *VV and state (cc-1) in *CC. State 

(vv-1,cc-1) could only be reached if the previous output symbol were simultaneously ‘b’ 

and ‘a’. Thus there is no path from the start state (vv-0,cc-0) to (vv-1,cc-1) making it a 

dead (unreachable) state. Because dead states don’t contribute any complete paths to the 

machine, I’ll generally omit them when graphing intersected constraints.  

The number of nodes in the machine representing the intersected set of constraints 

depends on the number of possible phonological environments in the intersection of the 

environments specified by those constraints. In (26), for instance, there could be 2 × 2 = 4 

states in the intersected machine but only three states need be considered because there 

are only three phonological environments to which the grammar is sensitive. That is, 

either nothing has been seen yet, an ‘a’ has just been seen, or a ‘b’ has just been seen.  

I’ll return to the issue of the size of the machine representing Eval in chapter five. 

The point to take away from (26) is that the size of the intersected machine grows with 

the intersection of the environments specified by the intersected constraints and, because 

some environments overlap and others are mutually exclusive, the number of nodes in the 

machine resulting from intersection will often be smaller than the product of the number 

of nodes in the constraints used to build it.  

For an illustration of M-intersection that uses both markedness and faithfulness 

constraints, consider in (27), the machine resulting from intersecting *CC, DEP and MAX.  
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{((cc-0,dep,max), -, a, 〈0,1,0〉, (cc-0,dep,max)), ((cc-0,dep,max), a, -, 〈0,0,1〉, (cc-0,dep,max)), 
  ((cc-0,dep,max), a, a, 〈0,0,0〉, (cc-0,dep,max)), ((cc-0,dep,max), a, -, 〈0,0,1〉, (cc-0,dep,max)), 
  ((cc-0,dep,max), -, b, 〈0,1,0〉, (cc-1,dep,max)), ((cc-0,dep,max), b, b, 〈0,0,0〉, (cc-1,dep,max)), 
  ((cc-1,dep,max), -, b, 〈1,1,0〉, (cc-1,dep,max)), ((cc-1,dep,max), a, -, 〈0,0,1〉, (cc-1,dep,max)), 
  ((cc-1,dep,max), b, -, 〈0,0,1〉, (cc-1,dep,max)), ((cc-1,dep,max), b, b, 〈1,0,0〉, (cc-1,dep,max)), 
  ((cc-1,dep,max), a, a, 〈0,0,0〉, (cc-0,dep,max)), ((cc-1,dep,max), -, a, 〈0,1,0〉, (cc-0,dep,max))}. 

 

 
 
 
 
 
(27) 〈*CC, DEP, MAX〉⌦: 

  
 
 
 
 
 
 
 

〈*CC, DEP, MAX〉⌦ = (Q, {a,b}, δ, (cc-0,dep,max), F), where 

Q = {(cc-0,dep,max), (cc-1,dep,max)} = F, and δ =  
 

 
 
 
 
 
 

 

 All of the structure in 〈*CC, DEP, MAX〉⌦ comes from the constraint *CC. State 

(cc-1,dep,max) encodes the fact that a consonant has just been written in the output and 

that if another consonant is written a violation of *CC will occur. Because MAX and DEP 

have only one state they don’t increase the complexity of the machine by adding more 

states; they just add more detail to the cost vectors that label the arcs. In section 2.7 we’ll 

consider how Eval grows in complexity as more constraints are added, but first I’ll show 

how Eval can be used to evaluate candidate sets.  
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2.7  Using Eval 

Intersecting a set of constraints produces a finite state machine that defines an 

infinite set of 〈in, out, cost〉 triples. Each triple in the set corresponds to a path through the 

machine and encodes the cost in constraint violations of mapping in to out. The cost of a 

path in a machine like (27) is the sum of the costs of the arcs that make up the path. The 

sum of two cost-vectors is simply the pairwise sum of the corresponding coordinates and 

the difference of two cost-vectors is the pairwise difference of their coordinates. For 

instance 〈0, 2, 1〉 plus 〈0, 1, 1〉 equals 〈0, 3, 2〉 and 〈0, 2, 1〉 minus 〈0, 1, 1〉 equals 〈0, 1, 0〉. 

This is defined in (28). 

 
(28) Cost vector arithmetic:  

〈v1, v2, ..., vk〉 + 〈w1, w2, ..., wk〉 = 〈(v1 + w1), (v2 + w2), ..., (vk + wk)〉 

〈v1, v2, ..., vk〉 – 〈w1, w2, ..., wk〉 = 〈(v1 – w1), (v2 – w2), ..., (vk – wk)〉 

 
When it’s clear from the context what machine I am referring to, or when the 

specific machine doesn’t matter I’ll refer to the intersected set of constraints simply as 

Eval. The set of 〈in, out, cost〉 triples produced by Eval can be defined as in (29).    

(29) Defining Eval in terms of 〈in, out, cost〉 triples: 

 〈C1, …, Ck〉⌦ = {〈i, o, c〉 | there is a path p through 〈C1, …, Ck〉⌦ where  

  p =  〈〈q1, i1, o1, v1,  r1〉, ..., 〈qn, in, on, vn, rn〉〉,   

  i = (i1i2…in), o = (o1o2…on), and c = (v1+ ... + vn)} 
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To evaluate all of the candidates for the input string in, the input acceptor A(in) is 

intersected with the intersected set of constraints. For example, intersecting A(bb) with 

〈*CC, DEP, MAX〉⌦ produces the machine represented in (30). This machine defines an 

infinite tableau encoding the evaluation of every candidate i/o pair for the input /bb/ 

under the constraints 〈*CC, DEP, MAX〉⌦. 

 
(30)  〈A(bb),*CC, DEP, MAX〉⌦ 

  

  
  
 
 
 
 
 
 
 
Each member of the infinite set of paths though (30) corresponds to one row of a standard 

OT tableau. Each path accepts the input /bb/ along the first elements of its arc labels, writes 

an output candidate along the second elements of its arc labels, and marks violations along 

the third element of its arc labels. Consider the three candidates in (31).  
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(31) Three candidates: 

    /bb/ *CC DEP MAX 
 

 

 

 

  

 a. )  b   * 
 

 

 

 

 

 b.   bab  *!  
 

 

 

 

 

 c.   bb *!   
 

With simple graphs like the ones above it isn’t hard to visually examine the paths through 

the machine and find the best ones (e.g. candidate a in (31)). With more constraints and 

longer input strings this task can become quite difficult.  
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2.8  The complexity of Eval 

Adding *VV to Eval as presented in (27) could double its size. But when *VV is 

added the number of nodes in the machine is only increased by one because, as noted in 

(26), one of the nodes in the intersection is a dead state that can’t ever be reached. 

 
(32)  〈*VV, *CC, DEP, MAX〉⌦: 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

(33) 〈*VV, *CC, DEP, MAX〉⌦= (Q, {a, b}, δ, (vv-0, cc-0, dep, max), F)  

where Q = {(vv-0, cc-0, dep, max), (cc-0, vv-1, dep, max), (cc-1, vv-0, dep, max)} = F,  
 

          δ = {  
 

 

 
 
 
 

 – dep and max are omitted from the node-names in δ in (33).  

   (vv-0, cc-1, dep, max) 
is the state that the 
grammar is in when ‘b’
has just been written 
in the output. 

input/output 

Violations of *CC and 
DEP occur when ‘b’ is 
inserted at this state.

 ((vv-0, cc-0), a, -, 〈0,0,0,1〉, (vv-0, cc-0)), ((vv-0, cc-0), b, -, 〈0,0,0,1〉, (vv-0, cc-0)), 
 ((vv-0, cc-0), a, a, 〈0,0,0,0〉, (vv-1, cc-0)), ((vv-0, cc-0), -, a, 〈0,0,1,0〉, (vv-1, cc-0)), 
 ((vv-0, cc-0), b, b, 〈0,0,0,0〉, (vv-0, cc-1)), ((vv-0, cc-0), -, b, 〈0,0,1,0〉, (vv-0, cc-1)), 
 ((vv-1, cc-0), a, -, 〈0,0,0,1〉, (vv-1, cc-0)), ((vv-1, cc-0), b, -, 〈0,0,0,1〉, (vv-1, cc-0)), 
 ((vv-1, cc-0), a, a, 〈1,0,0,0〉, (vv-1, cc-0)), ((vv-1, cc-0), -, a, 〈1,0,1,0〉, (vv-1, cc-0)), 
 ((vv-1, cc-0), b, b, 〈0,0,0,0〉, (vv-0, cc-1)), ((vv-1, cc-0), -, b, 〈0,0,1,0〉, (vv-0, cc-1)), 
 ((vv-0, cc-1), a, -, 〈0,0,0,1〉, (vv-0, cc-1)),  ((vv-0, cc-1), b, -, 〈0,0,0,1〉, (vv-0, cc-1)), 
 ((vv-0, cc-1), a, a, 〈0,0,0,0〉, (vv-1, cc-0)), ((vv-0, cc-1), -, a, 〈0,0,1,0〉, (vv-1, cc-0)), 
 ((vv-0, cc-1), b, b, 〈0,1,0,0〉, (vv-0, cc-1)), ((vv-0, cc-1), -, b, 〈0,1,1,0〉, (vv-0, cc-1))}.
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Eval in (33) evaluates candidates with respect to 

*VV, *CC, DEP, and MAX simultaneously. Because 

the structure-building aspect of M-intersection is 

commutative, the only difference among the machines 

for the twenty-four rankings of these four constraints 

will be in the order of ones and zeroes on the arcs. 

(34) shows 〈*VV, *CC, DEP, MAX〉⌦ intersected with 

A(bbaa) to evaluate all output candidates for /bbaa/. 

Three of the candidates are presented in (35). 

 
(35) Three candidates: 

   /bbaa/ *VV *CC DEP MAX 

bold →  a. ba    ** 

dashed →  b. bbaa *! *!   

dotted →  c. aa *!  *! *** 
 

Given the rapid increase in the complexity of these 

machines, it’s obvious that visual examination is 

impractical in the search for optimal candidates.  

In the next chapter I will show how the fact that these 

graphs encode finite representations of the infinite 

candidate space can be exploited to allow us to  

efficiently find optimal candidates among the infinite 

range of possible outputs. 

(34)  〈A(bbaa),*V
V

, *C
C

, D
EP, M

A
X〉
⌦
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3  Optimization 

Following Ellison’s (1994) observation that the optimization problem in OT can 

be cast as a shortest paths problem in a graph-theoretic representation of the input/output 

mapping, I will present here an algorithm that takes the finite state machine resulting from 

intersecting an input acceptor with a set of finite state constraints and finds the cost of the 

most harmonic path to each node in that machine. This information will then be used to 

eliminate all suboptimal paths through the machine and thereby eliminate all suboptimal 

candidates. In other words, this algorithm will take a machine that generates an infinite 

set of candidates and return a sub-machine that generates only optimal candidates.  

 

3.1  Harmony 

In defining exactly what it means for one candidate to be more harmonic than  

another candidate, Grimshaw (1997) puts it most concisely: “[a] form which, for every 

pairwise competition involving it, best satisfies the highest-ranking constraint on which 

the competitors conflict, is optimal.” Following Samek-Lodovici and Prince (1999, 2002), 

in this work, I’ll abstract away from actual candidates and express harmony in terms of 

cost vectors.10 Given two cost vectors v and w, the former is more harmonic than the 

latter, written v;w, just in case for every constraint Cj for which w has fewer violations 

than v there is some constraint Ci ranked that’s above Cj for which v has fewer violations 

than w.  

                                                 
10 Several candidates might share the same cost vector (set of violations) and it is the cost vectors, not the 
candidates, that compete for optimality.  
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In the cost vectors on the arcs of the machines, dominance among the constraints 

corresponds to precedence in the vectors. I’ll make use of this fact in defining harmony in 

(36). In (36) I introduce the term INF to denote the infinite cost and the term 0̄ to serve as 

the all-zero cost. These will come in handy in defining optimization. 

 
(36) def: harmony 

  INF iff 0 , ,  orv w v w w v= ≠ = ≠;  

             for v = 〈v1, …, vk〉 and w = 〈w1, …, wk〉, there is an i such that  
  wi > vi and, for every j such that vj > wj, it is the case that j > i . 

 
The all-zero cost 0̄ doesn’t add or take anything away from other cost vectors when they 

are summed (e.g. v ± 0̄ = v). When representing machines containing k-length cost vectors 

I’ll usually represent 0̄ simply as a k-length sequence of zeroes. 

In (37) I give a function harm(V) that picks out the single most harmonic member 

among a set of cost vectors V. 

 
(37) harm(V) = v  such that v ∈ V and there is no w ∈ V for which w v; . 

 
Because the definition of harmony in (36) guarantees that no two distinct vectors can be 

equally harmonic, there will always be a single unique “most harmonic vector” in any set 

of cost vectors. 

 Throughout this work I’ll refer to the violations incurred by various paths through 

machines (candidates) as their cost. Concomitantly I’ll sometimes use the term “cheaper” 

to mean more harmonic and the term “cheapest” to mean most harmonic.   
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3.2  The OPTIMIZE algorithm 

In this section I present OPTIMIZE, an algorithm based on Dijkstra’s (1959) single 

source shortest paths algorithm that basically combines Ellison’s (1994) LABEL-NODES 

and PRUNE algorithms. This algorithm takes a machine whose arcs are “weighted” with 

cost-vectors and determines, for each node in a machine, the cost of the most harmonic 

(cheapest) path to that node from the unique start state. After gathering this information, 

the algorithm returns a new machine that contains all and only the most harmonic paths 

through the original machine. In this fashion it is possible to remove all suboptimal paths 

through the machine and thereby create a new machine that generates all and only the 

optimal candidates.  

OPTIMIZE works by maintaining for each node q in the machine an attribute o[q] 

that expresses the upper bound on the cost of the most harmonic path from the start state 

q0 to q. This “cost estimate” for each node is set initially to INF and then gradually lowered 

as more information becomes available. At the outset of the algorithm, all of the nodes of 

the machine are placed in the set H. The set H can be thought of as “to do” list containing 

nodes for which the current value of o[q] hasn’t yet necessarily converged on the lowest 

(most harmonic) possible value for q. Over the course of the algorithm nodes in H are 

extracted one at a time as stable final estimates for o[q] are reached. Finally, once the cost 

of the most harmonic path to each node has been found, this information is used to 

eliminate all of the suboptimal paths through the machine. The OPTIMIZE algorithm is 

presented in pseudo-code with comments in (38).  
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(38) OPTIMIZE(Q, Σ, δ, q0, F) 

  1 H ← Q - Put all of the nodes in the set H. 

  2 for each q ∈ H 

  3    do o[q] ← INF 
- Set all of the cost attributes to INF. 

  4 o[q0] ← 0̄ - Set the cost attribute of q0 to 0̄. 

  5 while H ≠ ∅ - While H is not empty loop as follows:  

  6      do qu ← qu ∈ H, and ¬∃q' such that  
                                        q'∈ H, o[q']; o[qu]      get one of the cheapest nodes in H, 

  7        H ← H - {qu}   remove that node, qu, from H and 

  8      for each (qu, i, o, w, qv) ∈ δ, qv ∈ H   for each arc from qu to a qv ∈ H,  

  9      do [ ] ({ [ ], ( [ ] )})v v uo q harm o q o q w← +   replace the cost-estimate for qv with 
  o[qu] + w if the latter is cheaper. 

  10 for each f ∈ F  

  11 
   do f ← ∅ if there is an f ′ ∈ F  
                    such that [ ] [ ]o f o f ′≺  

- Delete from the set of final nodes  
   any node less harmonic than the  
   most harmonic final. 

  12 for each a = (qu, i, o, w, qv) ∈ δ 

  13    do a ← ∅ if ( [ ] ) [ ]u vc q w c q+ ≠  

- Delete  any arc whose cost is not  
   equal to the difference between the  
   cost-estimate for its terminus and  
   the estimate for its origin. 

 

For an illustration of OPTIMIZE in action, consider in (39) the intersection of input /bb/ 

with Eval = *CC >> DEP >> MAX, repeated from (30). In (39) I’ve relabeled the nodes in 

the machine to {q0, q1, q2, q3, q4, q5} to make them easier to refer to and keep track of.  



 57

(39) 〈A(bb), *CC, DEP, MAX〉⌦ 

 
 
 
 
 
 
 
 

 

 
The algorithm is initialized by setting H to {q0, q1, q2, q3, q4, q5} (step one) and setting all 

of the costs estimates to INF (step two and step three). The cost of the start state is set to 

zero (step four). In (40) I give a table indicating the current value of o[q] for each node. 

These values serve as upper bounds on the cost of the most harmonic path from the start 

state to each node. Other than the start state (which can be reached from itself for free) all 

of the values are infinite. As paths to the nodes are found, these estimates will be lowered.  

 
(40) The cost estimates: 

   q0 q1 q2 q3 q4 q5 

  0. 〈0,0,0〉 INF INF INF INF INF 
 

Since H is nonempty (step five), the node in H with the most harmonic cost is selected 

(step six). The only node whose cost is not infinite is q0, so it is selected and removed 

from H (step seven) leaving H = {q1, q2, q3, q4, q5}. Next, for each arc in δ with an origin 

at q0 (step eight) the cost of the most harmonic path to that arc’s terminus is reassessed.  
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(41) Four arcs originate at q0:  

 
 
 
 
 
 
 
 
 
 

 

There are four arcs to be checked that have origins q0. By traversing arc (q0, -, a, 〈0,1,0〉, 

q0) node q0 can be reached at a cost of 〈0,1,0〉. This is the cost of the arc 〈0,1,0〉,  plus 

o[q0] = 〈0,0,0〉. Since node q0 is not in H (it was removed in step seven) no attempt is 

made to update the value of q0 (even if q0 was still in H, its value wouldn’t be updated 

because 〈0,1,0〉 isn’t more harmonic than the current cost estimate of 〈0,0,0〉 for q0).  

Taking arc (q0, -, b, 〈0,1,0〉, q1), node q1 can reached at a cost of 〈0,1,0〉. Since this is 

more harmonic than the current estimate of INF for o[q1], the value of o[q1] is updated to 

〈0,1,0〉 (step nine). Checking arcs (q0, b, b, 〈0,0,0〉, q2) and (q0, b, (), 〈0,0,1〉, q3) in the 

same fashion yields an update of the values of q2 and q3 to 〈0,0,0〉 and 〈0,0,1〉 respectively 

(step nine two more times). The updated cost-estimates are given in the table in (42).  

 
(42) The cost estimates:  

   q0 q1 q2 q3 q4 q5 

  0. 〈0,0,0〉 INF INF INF INF INF 

  1. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 INF INF 
 

〈0,0,0〉 
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In (42) I’ve shaded in the cell with the cost estimate for q0 because it has been removed 

from H. Since H is nonempty, the node with the most harmonic cost is selected (this is the 

second iteration of step six). Node q2 has the most harmonic cost estimate of any node 

remaining in H so it is removed, leaving H = {q1, q3, q4, q5}. For each arc in δ with an 

origin at q2, the cost of the most harmonic path to that arc’s terminus is reassessed.  

 
(43)  Four arcs originate at q2:  
 
 
 
 
 
 
 
 
 
 

Node q2 has already been removed from H, so arc (q2, -, b, 〈1,1,0〉, q2) does not need to be 

checked.11 Arc (q2, b, -, 〈0,0,1〉, q4) reaches node q4 at a cost of 〈0,0,1〉, which is more 

harmonic than the current cost estimate for q4, so o[q4] is updated. Arc (q2, b, b, 〈1,0,0〉, 

q4) reaches node q4 at a cost of 〈1,0,0〉, which is less harmonic than the estimate we just 

made for q4, so o[q4] is not updated. And finally, arc (q2, -, a, 〈0,1,0〉, q3) reaches node q3 

at a cost of 〈0,1,0〉, which is less harmonic than the current estimate for the most harmonic 

path to q3, so o[q3] is not updated. The updated cost-estimates are given in (44). 

                                                 
11 If q2 were still in H arc (q2, -, b, 〈1,1,0〉, q2) could reach it at a cost of 〈1,1,0〉, which is less harmonic than 
the current cost-estimate for the most harmonic path to q2, so o[q2] wouldn’t be updated. It is fairly easy to 
see here that epenthetic loops will never be optimal. Unless epenthesis changes the state in the machine it is 
merely gratuitous and can’t possibly remedy violations of any other constraint. 

〈0,0,0〉 
〈0,0,0〉
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(44) Updated cost estimates 

   q0 q1 q2 q3 q4 q5 

  0. 〈0,0,0〉 INF INF INF INF INF 

  1. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 INF INF 

  2. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 〈0,0,1〉 INF 
 

Since H is nonempty, the node with the most harmonic cost is selected (this is the third 

iteration of step six). The unshaded cells show the nodes that are still in H; of these the 

estimates for q3 and q4 are equally harmonic so either one may be selected and removed 

from H (it doesn’t matter which). If q3 is removed then H = {q1, q4, q5}. For each arc in δ 

originating at q3, the cost of the most harmonic path to that arc’s terminus is reassessed.  

 
(45) Four arcs originate at q3: 
 
 
 
 
 
 
 
 

 

 

Arc (q3, -, a, 〈0,1,0〉, q3) reaches node q3 at a cost of 〈0,1,1〉, which is less harmonic than 

the current cost estimate for q3, so o[q3] is not updated. Arc (q3, -, b, 〈0,1,0〉, q2) reaches 

node q2 at a cost of 〈0,1,1〉, which is less harmonic than the current cost-estimate for q2, 

so o[q2] is not updated. Arc (q3, b, b, 〈0,0,0〉, q4) reaches q4 at a cost of 〈0,0,1〉, which is 

equally harmonic to the current cost estimate for q4, so o[q4] is not updated. And finally, 

〈0,0,0〉 
〈0,0,0〉

〈0,0,1〉
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the arc (q3, b, -, 〈0,0,1〉, q5) reaches node q5 at a cost of 〈0,0,2〉, which is less harmonic 

than the current cost estimate for the most harmonic path to q5, so o[q5] is not updated. 

The updated cost estimates are given in the table in (46).  

 
(46) Updated cost estimates 

   q0 q1 q2 q3 q4 q5 

  0. 〈0,0,0〉 INF INF INF INF INF 

  1. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 INF INF 

  2. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 〈0,0,1〉 INF 

  3. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 〈0,0,1〉 〈0,0,2〉 
 

Three more iterations of the while loop in step five of the algorithm remove nodes q1, q4, 

and q5 from H leaving H = ∅. These last three iterations don’t yield new cost estimates 

for any of the nodes in the machine. The final estimates for the nodes are given in (47). 

 
(47) Final cost estimates 

   q0 q1 q2 q3 q4 q5 

  6. 〈0,0,0〉 〈0,1,0〉 〈0,0,0〉 〈0,0,1〉 〈0,0,1〉 〈0,0,2〉 
 

After the cost of the most harmonic path to each node in the machine has been 

computed in steps one through nine of the algorithm, steps ten and eleven render nonfinal 

all but the most harmonic final states in F. Consulting (47), we see that o[q4] = 〈0,0,1〉 

and o[q5] = 〈0,0,2〉. Thus, because 4 5[ ] [ ]o q o q;  node q5 is removed from the set of final 

states. The result of removing q5 from the set of final nodes is presented in (48).  
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(48) Suboptimal finals eliminated:  

 

 

 

 

 

 
In step twelve and step thirteen of the algorithm, any arc whose cost is not equal 

to the cost estimate for its terminus minus the cost estimate for its origin is eliminated. This 

is illustrated for a few arcs in (49). In (50) I give result of removing of all suboptimal arcs. 

 
(49) Evaluation of arcs:  

 arc origin cost terminus cost status 
 (q1, b, -, 〈0,0,1〉, q2) o[q1] = 〈0,1,0〉 o[q2] = 〈0,0,0〉 deleted! 
 (q2, -, a, 〈0,1,0〉, q3) o[q2] = 〈0,0,0〉 o[q3] = 〈0,0,1〉 deleted! 
 (q0, b, -, 〈0,0,1〉, q3) o[q2] = 〈0,0,0〉 o[q3] = 〈0,0,1〉 left intact 
 

(50)  OPTIMIZE(〈A(bb), *CC, DEP, MAX〉⌦):  
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At this point the algorithm is finished and only optimal paths/candidates remain. 

In (51) I omit the dead-ends to make clear exactly which candidates are generated.   

(51)   Dead-ends omitted:  

 

 

 

 

 
In (51) it is clear that there are actually two homophonous output candidates for input /bb/ 

that are optimal under *CC >> DEP >> MAX. In one candidate the first /b/ in the input is 

deleted and the second is faithfully parsed (the top path in (51)) and in the other candidate, 

the first /b/ is faithfully parsed and the second is deleted (the bottom path in (51)).  

 

3.3  The Optimal Subpath lemma 

Before proving that OPTIMIZE produces machines that generate all and only optimal 

candidates, I’ll lay out a few definitions and a lemma that will be useful.  

The cost of an arc is listed as the third element of its label. The cost of a path is 

the sum of the costs of its constituent arcs. I’ll refer to a path’s cost with the function in 

(52). This function takes a sequence of arcs and returns the coordinate-wise sum of the 

violation vectors along those arcs.  
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(52) The cost of a path: 

0
( )

t

i
i

c p v
=

= ∑  for p = 〈(q0, i0, o0, v0, r0), (q1, i1, o1, v1, r1), ..., (qt, it, ot, vt, qt)〉 

To denote a path from node qu to qv I’ll write p(qu, qv). Given a machine containing nodes 

qu and qv, the cost of the optimal paths from qu to qv can be defined as in (53).  

 

(53) The cost of an optimal path: 

INF

{ | ( ( , )) } if there is a path from  to ,
( , )

                                          otherwise.
u v u v

u v

harm cst c p q q cst q q
opt q q

=
= 


 

 

A path p from node qu to node qv is an optimal path just in case c(p) = opt(qu, qv).  

 

(54) def: optimal path through a machine 

A path p is an optimal path through M = (Q, Σ, δ, q0, F) iff p is an optimal path 

from q0 to qf ∈ F and there is no path p' from q0 to q' ∈ F such that c(p)≺ c(p').  

 

The definition in (54) takes into account the fact that there may be multiple final states in 

any given machine. To be optimal, a path must be among the most harmonic of all of the 

paths through the machine. To prove the correctness of OPTIMIZE I’ll show that, at the 

termination of the algorithm, every complete path that remains in the machine is an 

optimal path through the machine.  
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Following Dijkstra’s (1959) observation that shortest paths are made up of shortest 

paths, I observe here that optimal paths are made up of optimal paths. This gives us the 

lemma in (55).  

 
(55)  Optimal subpath lemma:  

Subpaths of optimal paths are optimal paths. Given p, one of the most harmonic 

paths from node q1 to qt, for any i and j such that 1 ≤ i ≤ j ≤ t, if pij is a subpath of 

p from node qi to node qj, then pij is an optimal path from node qi to node qj. 

 
proof: p can be seen as the concatenation of three subpaths p = p1i ⋅ pij ⋅ pjt where p1i is  
 

the path from q1 to qi, pij is the path from qi to qj and pjt is the path from qj to qt 

and the cost of p is the sum of the costs of the subpaths, c(p) = c(p1i) + c(pij) + 

c(pjt).12 To derive a contradiction assume there is a path p'ij from node qi to node qj 

such that c(p'ij) ; c(pij).  

 If this were the case then there would also be a path p' from node q1 to 

node qt such that c(p') = c(p1i)+c(p'ij)+c(pjt) ; c(p). But this contradicts the 

assumption that p is the most harmonic path from q1 to qt. ■ 

 
With the optimal subpath lemma in hand, the correctness of the OPTIMIZE algorithm can 

be shown to follow fairly straightforwardly.  

 

                                                 
12 Since there’s always the possibility of a zero-length path from a node to itself this statement covers the 
degenerate case where i equals 1 or j can equals t.  
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3.4  Correctness of OPTIMIZE 

In this section I prove the correctness of the OPTIMIZE algorithm. The proof comes 

in two parts. I’ll show first that at line ten of the algorithm (i.e. the point at which the cost-

attribute table is finished) the value of o[q] for each node is equal to opt(q0, q). Then I’ll 

show that, given opt(q0, q) for each node, steps ten through thirteen of the algorithm leave 

intact all and only the optimal paths through the machine.  

(56)  Theorem: correctness of OPTIMIZE 

Given a machine M = (Q, Σ, δ, q0, F), OPTIMIZE(M) returns a machine N in which 

there is a path p through N iff p was one of the most harmonic paths through M.   

 
proof:  First, I’ll show that for every q ∈ Q it’s the case that o[q]= opt(q0, q) at line ten of  

the algorithm. Then I’ll show that this guarantees that the biconditional holds.   

 

part 1: I show here that o[q] = opt(q0, q) when q is removed from H and that this equality 

is preserved until the termination of the algorithm.  

 For the purposes of a contradiction, assume that q is the first node removed 

from H for which o[q] ≠ opt(q0, q). I’ll consider the point at which q is about to be 

removed from H and derive the contradiction that if q is indeed removed from H, 

o[q] must in fact equal opt(q0, q), by examining an optimal path from q0 to q.  

 Node q must not be q0 because o[q0] = 0̄ which must be equal to opt(q0, q0). 

There must be some path from q0 to q or else o[q] = INF = opt(q0, q), which 

violates the assumption that o[q] ≠ opt(q0, q). Because there is at least one path 

from q0 to q, there must be an optimal path p from q0 to q. Consider qy, the first 
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node along p that is still in H and qx, the predecessor of qy. The path p can be 

decomposed into the subpath px from q0 to qx, the arc (px, i, o, w, py), and the 

subpath py from qy to q  – in the minimal case px and py are empty and qx = q0 and 

qy = q.   

 At this point the fact that o[qy] = opt(q0, qy) is entailed by the following facts. 

First, o[qx]=opt(q0, qx) because q was the first node that was removed from H where 

o[q] ≠ opt(q0, q) and qx has already been removed from H because it precedes qy in 

p and qy is the first node along p that is still in H. Second, arc (qx, i, o, w, qy) is the 

most harmonic path from qx to qy by the assumption that p is an optimal path and 

the optimal subpath lemma. Thus o[qy] is equal to o[qx] + w because line nine of 

OPTIMIZE updated the value of qy when qx was removed from H. Moreover because 

(qx, i, o, w, qy) lies along an optimal path opt(q0, qx) + w equals opt(q0, qy).  Thus 

o[qy] = (o[qx]+w) = (opt(q0, qx)+w) = opt(q0, qy), or simply o[qy] = opt(q0, qy).  

 Now the contradiction is evident. Because node qy can’t occur after q on a 

path from q0 to q and all of the costs are nonnegative, it must be the case that 

opt(q0, qy) ;  opt(q0, q) and thus because o[qy] = opt(q0, qy), it must be the case 

that o[qy] ;  opt(q0, q). Because o[q] descends from infinity towards opt(q0, q) as 

the algorithm proceeds, it must be the case that opt(q0, q) ;  o[q]. Putting these 

facts together we have o[qy] ;  opt(q0, q) ;  o[q] or simply o[qy] ;  o[q]. But 

because both qy and q were still in H and q was not selected for removal after qy it 

must be the case that o[q] ; o[qy]. Finally, if o[q] ; o[py] and o[qy] ;  o[q] then 
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o[qy] = o[q], and from the facts above o[qy] = opt(q0, qy) = opt(q0, q) = o[q]. But 

this is contrary to the assumption that o[q] ≠ opt(q0, q).  

 Thus when q is removed from H, it’s true that o[q] = opt(q0, q) and because 

o[q] doesn’t change after this point the equality holds until the termination of the 

algorithm. 

 

part 2: I’ll show first that given o[q] = opt(q0, q) for each q ∈ Q at the outset of step ten in  

OPTIMIZE, it’s the case that if p is an optimal path through M then p is retained in N.   

 For a contradiction assume that p was an optimal path through M and that 

either its final state qf was rendered nonfinal in line eleven or one of its arcs ax 

was deleted in line thirteen. Let’s try first, the possibility that qf was rendered 

nonfinal. For this to occur there must be some o[qf'] ;  o[qf]. For o[qf'] to be more 

harmonic than o[qf] there must be some path p' from q0 to qf' through M and 

c(p'); c(p). But this contradicts the assumption that p was an optimal path through 

M.  What about the possibility that one of p’s arcs was deleted? For this to occur p 

must contain an arc ax whose cost exceeds the difference in the cost-estimates for 

its origin and terminus (they are the only arcs deleted in step thirteen). If this were 

so then there would be a path px from q0 to ax’s terminus that was cheaper than the 

subpath of p from q0 to ax’s terminus. But the optimal subpath lemma tells us that 

if such a path existed then p would not be an optimal path, contradicting our 

assumption to the contrary. 

 I show second that given o[q] = opt(q0, q) for each q ∈ Q at the outset of line 

ten in OPTIMIZE, it is the case that only optimal paths through M are retained in N.   



 69

 There are two cases to consider. If p is not a path through M (it does not reach 

a final state) then it is not a path through N because no new finals or paths are 

created when building N. On the other hand, if p is a path through M but not an 

optimal path through M it won’t survive in N. To see that this is so, assume for a 

contradiction that p did survive as a path through N. Because p is not an optimal 

path in M there must be another path p' through M such that c(p'); c(p). There are 

two possibilities: if p is a path from q0 to qf and p' is a path from q0 to qf' then 

either qf = qf' or qf ≠ qf'. If qf = qf' then o[qf] = o[qf'] = c(p') ;  c(p), which means 

that somewhere along p there is an arc whose cost exceeds the difference in the 

cost estimates for its origin and terminus. But, because line thirteen of the 

algorithm deletes such arcs this contradicts the assumption that p was left intact 

by OPTIMIZE. Alternatively, if qf ≠ qf' then o[qf'] ;  o[qf]. If this were the case then 

qf would be rendered nonfinal by line eleven of OPTIMIZE contradicting the 

assumption that p is left intact by the algorithm.   ■ 

 

The OPTIMIZE algorithm given above in (38) will serve as the basis for several 

algorithms to be presented in the next two chapters. In chapter four I will examine 

optimization in detail and show how regularities across the optimization of various inputs 

can be generalized and utilized to make optimization more efficient, and in chapter five I 

will show how to generalize optimization so as to cover multiple rankings 

simultaneously.  
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4  Contenders 

Until now we have been mainly concerned with the task of finding optimal output 

candidates with a particular ranking of the constraints in mind. In this chapter we’ll take a 

broader perspective and turn to the task of finding all of the output candidates for a given 

input that can emerge as optimal under any ranking of a set constraints.  

Prince and Smolensky (1993) refer to candidates that can never triumph under any 

permutation of the constraint set as “harmonically bounded.” The simple case of harmonic 

bounding arises when one the violations for candidate are coordinate-wise-superset of the 

violations for another candidate (e.g. 〈0,0,1,2〉  is harmonically bounded by 〈0,0,1,1〉). 

Samek-Lodovici and Prince (1999, 2002) show that “complex harmonic bounding” can 

occur when two or more candidates gang-up to guarantee that a third candidate can never 

be optimal. Rather than calling the members of the complement of the set of harmonically 

bounded candidates “non-harmonically-bounded” or  simply “winners” as in Samek-

Lodovici and Prince (1999), I’ll call the candidates that can win under some permutation 

of the constraints the “contenders.”    

           To begin, let’s review the definition of harmony as it is expressed relative to the 

cost vectors that label the arcs of the machines.  

 
(57) Harmony:  

For v = 〈v1, …, vn〉 and w = 〈w1, …, wn〉, v is more harmonic than w, written v;w, 

iff for each j such that vj > wj there’s an i < j such that vi < wi.   
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Put simply, v is more harmonic than w just in case each constraint that v violates more 

than w is dominated (preceded) by a constraint that w violates more than v. Under this 

definition any given ranking of the constraints (ordering of the coordinates in the vectors) 

will select exactly one cost vector in any set as the most harmonic. From this observation 

Samek-Lodovici and Prince (1999) show that it readily follows that with n constraints 

there are at most n! contenders among any set of cost vectors (one contender per ranking). 

 

4.1 Contenders defined 

In (59) I give a recursive function that examines a cost vector w in a set of vectors 

V and returns true just in case there is some ranking of the constraints under which w is 

more harmonic every other member of V. First, to facilitate the definition of contenders, 

in (58) I give a function to pick out the lowest value at a particular coordinate among the 

vector in a set of cost vectors. 

 
(58) ( )imin V  is the lowest value at the ith coordinate for any vector in the set V.  

 

(59) 

true if { },

( , ) ( , ) if { | , ( ( ) )} ,

false otherwise

i i i i

V w

contender w V contender w V V v v V i w min V w v V

=
 ′ ′ = ∈ ∀ = → = ≠



 

 
The first clause of (59) states that w is a contender in the vector-set containing only itself. 

The second clause of (59) is a bit more complicated. It says that w is a contender in V if w 

is a contender in the proper subset of V containing just the vectors that, if w has the lowest 
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ith-coordinate value in V, are tied with w on the ith coordinate.13 If there is no such proper 

subset then there is no ranking that selects w and the contender function returns false.  

In (60) I give a function cont(V) that takes a set of cost vectors and returns the 

subset consisting of just the vectors that are contenders in that set.  

 
(60) { }( ) |  and ( , )cont V v v V contender v V= ∈  

 
The contenders can be quickly identified among any finite (and relatively small) 

set of cost vectors with the contenders function. As usual, the problem we face in trying 

to find the set of all contenders for a particular input is that the set of possible candidates 

(and thus the set of possible cost vectors) is not finite. In the next section I’ll show how 

the same kind of strategy that was used to find optimal paths in the OPTIMIZE algorithm 

can be used to find contenders.  

 

4.2  The CONTENDERS algorithm 

 Here I present CONTENDERS, a relatively straightforward extension of the OPTIMIZE 

algorithm presented in chapter three. In the CONTENDERS algorithm the gradient property 

of harmony that served as the “distance” metric in the OPTIMIZE algorithm is replaced 

with a binary distinction between cost vectors that are harmonically bounded and cost 

vectors that are contenders.  

                                                 
13 This recursive step is similar to Prince’s (2002b:20) operation of “Tableau Reduction” but is stated 
numerically rather than over Elementary Ranking Conditions. I’ll come back to this point in chapter 5 
where I will use Elementary Ranking Conditions in the search for contenders.  
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In this algorithm we aren’t trying to find a single shortest path through the machine 

but rather all of the paths with costs that are contenders. Unlike the OPTIMIZE algorithm, 

CONTENDERS proceeds by initially setting a cost attribute for each node in the graph to 

the empty set ∅ and then gradually adding the costs of paths that reach that node as they 

are discovered (provided that they are contenders). It isn’t necessary to start by setting the 

cost attribute for each node to INF because there is no point in the algorithm at which the 

set of cost attributes for the nodes is searched to find the cheapest one.  

Any node that cannot be reached from the start state will end up with the empty set 

as its cost attribute termination of the algorithm. This outcome simply indicates that there 

is no cost at which that node can be reached from the start state.  

 In CONTENDERS, the cost attribute for each node is a set rather than a single value. 

This set may be made up of many different cost vectors, the only requirement being that 

are all contenders when compared to one another.  

 In order to compare and evaluate various paths through the machine it will be 

necessary to add the cost vectors of individual arcs to the sets of cost vectors that make 

up the cost attributes for the nodes. Extending the definition of cost-vector-sums as in 

(61) will facilitate this comparison.  

 
(61) Vector-set sum:       e.g. {〈0,1,0〉, 〈0,0,0〉, 〈2,1,0〉} 

                 + 〈1,1,1〉 

{ 〈1,2,1〉,  〈1,1,1〉, 〈3,2,1〉} 

 

{ } if , else          

{ |  and }

w V
V w

v v V v w v

=∅+ = 
′ ′∈ + =
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In (62) I present the CONTENDERS algorithm in pseudo-code with comments. As 

usual, I’ll follow the presentation of the algorithm by stepping through its application to 

one optimization problem in detail. After running the algorithm to find the costs of the 

contenders we’ll need a function to generate the actual candidates corresponding to those 

costs. I’ll hold off on giving this function until §5.4 where it will be spelled out in detail. 

 
(62) CONTENDERS(Q, Σ, δ, q0, F) = CC 

  1 for each q ∈ Q 

  2      do o[q] ← ∅ 

- Set the cost attribute for each node 
   to the null set.  

  3 o[q0] ← {0̄} - Set the cost of the start to {0̄} 

  4 H ← {q0} - Put the start state in the set H. 

  5 while H ≠ ∅ - While H is not empty loop as follows:  

  6      H ← H - {qu}   remove a node, qu, from H and 

  7    for each (qu, i, o, w, qv) ∈ δ    for each arc from qu to qv,  

  8       if cont(o[qv] ∪ o[qu]+w) ≠ o[qv]   if there are any new contenders, 

 

 9          do o[qv] ← cont(o[qv] ∪ o[qu]+w) 
                   H ← H ∪ {qv} 

  update the cost attributes for o[qv]  
  and add qv to H. 

 

 10 Cn  ← [ ]
q F

cont o q
∈

 
 
 
∪  - Select the contenders from the union

   of the cost attributes for the finals  

  11     for each qx ∈ F   for the cost attribute of each final  

  12          do o[qx] ← o[qx] ∩ Cn   keep only values that are contenders. 

  13 CC = {(q, cst) | q ∈ Q and o[q] = cst}  - build a set of nodes paired with their 
   contender-costs.  
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4.3  Finding contender-costs 

In this section we’ll examine in detail steps 1-10 in the algorithm. These first ten 

steps examine the set of paths to each node and construct a table containing potential 

contender-costs for each node. The last three steps will then compare the costs at all of 

the final states and eliminate non-contenders. In (63) I define the contender-costs. 

 
(63) Cost c is a contender-cost for node n iff  

 c is the cost of a path p from the start state to n,  

 there’s a ranking R under which p is among the most harmonic paths to n,  

 and if n is final p is among the most harmonic paths to any final state under R.  
 

In §5.4 I’ll show how a table containing all of the contender costs be used to construct the 

set of candidates that are contenders.  

In (64) I present 〈A(bb), *CC, DEP, MAX〉⌦. This was first seen in chapter three in 

the search for optimal outputs for input /bb/ under the ranking *CC >> DEP >> MAX.  

 
(64) 〈A(bb), *CC, DEP, MAX〉⌦ 

 
 
 
 
 
 
 
 

 

 
At step 1 the cost attribute of each node is set to null. Next the cost attribute of 

the start state is set to {〈0,0,0〉} and the start state is added to H (step 3 and step 4).  
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In (65) I give the set of values in the cost attribute of each node. At this point the 

set H = {q0} – I’ve shaded the cells of the nodes that are not currently members of H.  

 
(65) The cost attribute table: 

   q0 q1 q2 q3 q4 q5 

  0. {〈0,0,0〉} ∅ ∅ ∅ ∅ ∅ 
 

Since H is not empty (step 5) we select a node at random from H (step 6) and 

remove it. The node in question must be q0 since it’s the only node currently in the set H.  

In step seven the four arcs originating at q0 are examined to see if adding o[q0] to 

any arc’s weight reveals a new contender-costs for the node at its terminus (step 8). 

 
(66) Four arcs to check: 

 

 

 

 

 

 

Taking arc (q0, -, a, 〈0,1,0〉, q0) and adding o[q0]={〈0,0,0〉} to its cost 〈0,1,0〉 yields 

{〈0,1,0〉}. The union of this set with the cost attribute of the arc’s terminus is the set 

{〈0,0,0〉, 〈0,1,0〉}. The subset of this set containing only contenders is {〈0,0,0〉}, which is 

no different from the current cost attribute for the arc’s terminus so the value of o[q0] is 

not updated and node q0 is not added to H. 



 77

Taking arc (q0, -, b, 〈0,1,0〉, q1) and adding o[q0]={〈0,0,0〉} to its cost 〈0,1,0〉 yields 

{〈0,1,0〉}, whose union with the cost attribute for the arc’s terminus yields the set {〈0,1,0〉}. 

This set has one contender {〈0,1,0〉}, which is an improvement over the current cost 

attribute for the arc’s terminus (o[q1] is currently ∅), so the value of o[q1] is updated to 

{〈0,1,0〉} and q1 is added to H.  

Taking arc (q0, b, b, 〈0,0,0〉, q2) and adding o[q0] to its cost yields {〈0,0,0〉}, whose 

union with the current value for o[q2] is {〈0,0,0〉}. This gives us one contender cost and is 

an improvement over the current value of ∅ for o[q2], so o[q2] is updated to {〈0,0,0〉} and 

q2 is added to H. 

Taking arc (q0, b, -, 〈0,0,1〉, q3) and adding o[q0] to its cost yields {〈0,0,1〉}, whose 

union with o[q3] is {〈0,0,1〉}. This reveals one contender, which is an improvement over 

the current value of ∅ for o[q3], so o[q3] is updated to {〈0,0,1〉} and q3 is added to H. The 

updated cost attributes for the nodes are given in the table in (67).  

 
(67) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  0. {〈0,0,0〉} ∅ ∅ ∅ ∅ ∅ 

  1. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉} ∅ ∅ 
 

H isn’t empty, so another node is selected at random and removed (the 2nd iteration 

of step 6). The selection is random because the algorithm is not searching for the single 

cheapest (most harmonic) path, but rather for any paths that have costs that are contenders.  
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Choosing q3 and removing it from H gives us four arcs originating at q3 to examine. 

The arcs to be examined are indicated in bold in (68). 

 
(68) Four arcs to check: 

 

 

 

 

 

 
Taking (q3, -, a, 〈0,1,0〉, q3) and adding o[q3] = {〈0,0,1〉} to its cost yields {〈0,1,1〉}, 

whose union with o[q3] contains no new contenders, so o[q3] isn’t updated and q3 is not 

added back into H. 

Taking (q3, -, b, 〈0,1,0〉, q2) and adding o[q3] = {〈0,0,1〉} to its cost yields {〈0,1,1〉}, 

whose union with o[q2] contains no new contenders, so o[q2] isn’t updated and q2 isn’t 

added back into H.  

The current cost attributes for nodes q4 and q5 are ∅, so arcs (q3, b, b, 〈0,0,0〉, q4) 

and (q3, b, -, 〈0,0,1〉, q5) yield new values of {〈0,0,1〉} for o[q4] and {〈0,0,2〉} for o[q5].  

Because they have been updated, o[q4] and o[q5] are added to H. The new values for the 

cost attributes are given in the table in (69).  
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(69) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  0. {〈0,0,0〉} ∅ ∅ ∅ ∅ ∅ 

  1. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉} ∅ ∅ 

  2. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉}    {〈0,0,1〉} {〈0,0,2〉} 
 

Removing node q2 from H (the 3rd iteration of step 6) gives us the four arcs in 

bold in (70) to examine.  

 
(70) Four arcs to check: 

 

 

 

 

 

 
Taking (q2, -, b, 〈1,1,0〉, q2) and adding o[q2] = {〈0,0,0〉} to its cost yields {〈1,1,0〉}. 

There are no new contenders in the union of this set with o[q2].  

Taking (q2, -, a, 〈0,1,0〉, q3) and adding o[q2] to its cost yields {〈0,1,0〉}, whose 

union with o[q3] is{〈0,0,1〉, 〈0,1,0〉}. This differs from the current value of o[q3], so o[q3] 

is updated to {〈0,0,1〉, 〈0,1,0〉} and q3 is added back into H. This step gives some cause for 

concern because we must be certain that nodes can only be added to H finitely many times 

or there’s a danger that the algorithm will fail to terminate. I’ll return to this issue in §4.5. 
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Taking (q2, b, b, 〈1,0,0〉, q4) and adding o[q2] to its cost yields {〈1,0,0〉}, whose 

union with o[q4] reveals new contenders, so o[q4]  is updated to {〈0,0,1〉, 〈1,0,0〉}. 

Taking (q2, b, -, 〈0,0,1〉, q4) and adding o[q2] to its cost yields {〈0,0,1〉}, whose 

union with o[q4] has the same set of contenders as o[q4], so it isn’t updated. The new 

values for the cost attributes are given in (71).  

(71) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  0. {〈0,0,0〉} ∅ ∅ ∅ ∅ ∅ 

  1. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉} ∅ ∅ 

  2. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉}    {〈0,0,1〉} {〈0,0,2〉} 

  3. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
  〈1,0,0〉} {〈0,0,2〉} 

 

Removing node q3 from H (the 4th iteration of step 6) gives us the four arcs in 

bold in (72) to examine. 

 
(72) Four arcs to check: 
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Arcs (q3, -, b, 〈0,1,0〉, q2) and (q3, -, a, 〈0,1,0〉, q3) don’t yield any new contenders, 

so o[q3] and o[q4] are not updated.  

Taking (q3, b, b, 〈0,0,0〉, q4) and adding o[q3] = {〈0,0,1〉, 〈0,1,0〉} to its cost yields 

{〈0,0,1〉, 〈0,1,0〉}, whose union with o[q4] is {〈0,0,1〉, 〈0,1,0〉, 〈1,0,0〉}. This set contains 

new contenders, so o[q4] is updated to {〈0,0,1〉, 〈0,1,0〉, 〈1,0,0〉} and q4 is added to H. 

Taking (q3, b, -, 〈0,0,1〉, q5) and adding o[q3] to its cost yields {〈0,0,2〉, 〈0,1,1〉}, 

whose union o[q5] is {〈0,0,2〉, 〈0,1,1〉}, which is different than the current value for o[q5], 

so o[q5] is updated. The updated cost attributes are given in the table in (73). 

 
(73) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  0. {〈0,0,0〉} ∅ ∅ ∅ ∅ ∅ 

  1. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉} ∅ ∅ 

  2. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉} {〈0,0,1〉}    {〈0,0,1〉} {〈0,0,2〉} 

  3. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
  〈1,0,0〉} {〈0,0,2〉} 

  4. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
     〈0,1,0〉 

  〈1,0,0〉} 

  {〈0,0,2〉, 
     〈0,1,1〉} 

 

Removing node q1 from H (the 5th iteration of step 6) gives us the four bold arcs 

in (74) to examine. 



 

 82

 
(74) Four arcs to check: 

 

 

 

 

 

None of these arcs necessitate an update of o[q0], o[q1] or o[q2]. The updated table 

of cost attributes is given in (75) – the only change is that q1 has been removed from H. 

(75) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  5. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
     〈0,1,0〉 

  〈1,0,0〉} 

  {〈0,0,2〉, 
     〈0,1,1〉} 

 

Removing node q5 from H (the 6th iteration of step 6) gives us two arcs to examine. 

 
(76) Two arcs to check: 
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Arc (q4, -, b, 〈1,1,0〉, q4) doesn’t necessitate an update for o[q4]. Taking (q4, -, a, 

〈0,1,0〉, q5) and adding o[q4] to its cost yields {〈0,1,1〉, 〈0,2,0〉, 〈1,1,0〉}. The union of this 

set with o[q5] is {〈0,1,1〉, 〈0,2,0〉, 〈1,1,0〉, 〈0,0,2〉}. Selecting the contenders in this set yields 

{〈0,2,0〉, 〈1,1,0〉, 〈0,0,2〉} for o[q5]. The newly updated values for the set of cost attributes 

are given in the table in (77).  

 
(77) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  6. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
     〈0,1,0〉 

  〈1,0,0〉} 

 {〈0,0,2〉,  
   〈0,2,0〉,  
   〈1,1,0〉} 

 

Removing node q5 from H (the 7th iteration of step 6) gives us the two bold arcs 

in (78) to examine. 

 
(78) Two arcs to check: 

 

 

 

 

 

 

Neither (q5, -, b, 〈1,1,0〉, q5) nor (q5, -, b, 〈0,1,0〉, q4) necessitate updates of the 

cost attribute for o[q4] or o[q5]. At this point H is empty so we move on to step 11 of the 

algorithm. The updated cost attributes for the nodes are given in (79). 
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(79) Updated cost attributes: 

   q0 q1 q2 q3 q4 q5 

  7. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
     〈0,1,0〉, 

  〈1,0,0〉} 

  {〈0,0,2〉,  
    〈0,2,0〉,  
    〈1,1,0〉} 

 

4.4  Generating the contender candidates  

In step 11 of the algorithm, the union of the cost attributes for the final nodes is 

taken and the contenders are selected from this set. The union of the contender-costs for 

each of the final states is given in (80). 

 
(80) Union of the final costs: 

[ ]
q F

o q
∈
∪ = {〈0,0,1〉, 〈0,1,0〉, 〈1,0,0〉, 〈0,0,2〉, 〈0,2,0〉, 〈1,1,0〉} 

 
Selecting the contenders from the union of the contender-costs for the final states gives us  

the set of contenders in (81). 

 

(81) Contenders in the union of the final costs: 

[ ]
q F

cont o q
∈

 
 
 
∪  = {〈0,0,1〉, 〈0,1,0〉, 〈1,0,0〉} 

 

In step 12 the cost attributes of nodes in the set of final states are updated so as to 

include only costs that are contenders when compared with all of the possible costs at the 

finals. Because none of the costs associated with q5 are contenders in this comparison, the 

value of o[q5] is set to ∅. The final values for the cost attributes are given in (82). 
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(82) The final values for the cost attributes: 

   q0 q1 q2 q3 q4 q5 

  8. {〈0,0,0〉} {〈0,1,0〉} {〈0,0,0〉}   {〈0,0,1〉, 
    〈0,1,0〉} 

   {〈0,0,1〉, 
     〈0,1,0〉, 

  〈1,0,0〉} 
∅ 

  

At this point, it would be nice if we could use the information in (82) to trim down 

the machine so that it generated only candidates that are contenders (like we did in the step 

13 of OPTIMIZE). Unfortunately, the fact that we’re using multiple rankings simultaneously 

makes this impossible. To see why this is so, consider the hypothetical case illustrated in 

(83) – I’ve suppressed the i/o-labels because they aren’t relevant to the point at hand.  

 
(83) Three contenders 
 
 

candidate a:  path cost = 〈0,0,2〉 
 
 
 
 

candidate b:  path cost = 〈0,2,0〉 
 
 
 
 

candidate c:  path cost = 〈2,0,0〉 
 
 
 

Every arc in (83) participates in path that generates a contender but it’s not the case 

that every path through (83) generates a contender. In fact, of the nine paths, only the ones 

in bold generate contenders. The contenders can be extracted from (83) by collecting paths 
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one arc at a time while checking that the cost of the path collected so far is present in the 

cost attribute for the terminus of the path. This task can be performed with the recursive 

function ccand(q, s, w). When q is the start state, s is the empty string and w is the all-zero 

cost vector the function returns a contender-candidate paired with its violation vector. I’ll 

go through some concrete examples of the application of this function below in (86). 

(84) 
,  if ,  else                                                              

( , , )
( , , ) where ( , , , , )  and [ ]

s w q F
ccand q s w

ccand r so w q i o v r w v w o rδ

〈 〉 ∈= 
′ ′∈ + = ∈

 

 
In step 15 of the CONTENDERS algorithm the function ccand is used to obtain the 

set of 〈output, cost〉 pairs for the paths that are contenders. In (85) I mark the nodes with 

contender-costs and in (86) and (87) I step through three applications of ( )0 , -, 0ccand q . 

 
(85) Nodes annotated with contender-costs: 

 
 
 
 
 
 
 
 
 

 
(86) ( )0 , -, 0ccand q  

      ( )3, -, 0,0,1ccand q= 〈 〉      ← q3 isn’t a final state, arc (q3, b, b, 〈0,0,0〉, q4) yields 

           ( )4 , b, 0,0,1ccand q= 〈 〉     ← q4 is final,  

                b, 0,0,1= 〈 〉                    ← so a value of ( )0 , -, 0ccand q is found. 
 

〈0,0,0〉 

〈0,1,0〉 

〈0,0,0〉

〈0,0,1〉
〈0,1,0〉

∅
〈0,0,1〉 
〈0,1,0〉 
〈1,0,0〉 

← q0 isn’t a final state, arc (q0, b, -, 〈0,0,1〉, q3) yields 
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(87) ( ) ( )0 0, -, 0                                      , -, 0ccand q ccand q  

      ( ) ( )2 2, b, 0,0,0                          , b, 0,0,0ccand q ccand q= 〈 〉 = 〈 〉  

           ( ) ( )3 4, ba, 0,1,0                          , bb, 1,0,0ccand q ccand q= 〈 〉 = 〈 〉  

                ( )4 , bab, 0,1,0                          bb, 1,0,0ccand q= 〈 〉 = 〈 〉  

                    bab, 0,1,0= 〈 〉  
 
In (88) I give a more familiar representation of the three contenders generated by (85).  

 
(88)  /bb/ *CC DEP MAX 

 a. b   * 
 b. bab  *  
 c. bb *   

 

Now that the operation of the algorithm has been laid out I’ll turn to the task of 

proving that it’s correct. In §5.5 I’ll show that the algorithm is guaranteed to terminate, 

and once the termination of the algorithm is established I’ll show in §5.6 that it is correct.  

 

4.5  Termination of the CONTENDERS algorithm 

 In the OPTIMIZE algorithm each node in the machine was removed from the set H 

at most one time. This removal occurred each time the cost of the most harmonic path to 

a node was found. In the CONTENDERS algorithm things are a bit more complicated. Each 

time a new contender-cost is found for o[q], node q is added to the set H. This ensures that 

the arcs leading away from q are assessed to see if any new contender-costs are revealed 

for the nodes that can be reached from q in a step of a single arc.  

 This is cause for concern because, unless there is an upper bound on how many 

times a given node can be added to the set H, the algorithm could go in circles forever 

and fail to terminate. In (89) I provide a proof that there is just such an upper bound.  
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(89) Theorem: termination of the CONTENDERS algorithm 

 The CONTENDERS algorithm can only add a given node to H finitely many times.  

 
proof:  Node q is put into H each time a path is found from q0 to q with a cost ci where ci  

isn’t a member of the current value of o[q] but ci is a contender in {ci} ∪ o[q].  

 Because the node that makes the two endpoints of a cycle can be reached from 

itself for free, we’ll find the cost of a cyclic path only after finding the cost of the 

corresponding acyclic one. Moreover, because there are no negative costs (a basic 

premise of OT), no path with a cycle can be more harmonic (have fewer violations) 

than the corresponding path without the cycle. Thus, the examination of a cycle 

can never reveal a cost for the node at the cycle’s terminus that is any better than 

the previously known costs. Thus, examination of a cycle can never reveal a new 

contender and can’t require adding the node to H. 

 There are only finitely many acyclic paths from the start state to any given 

node in a finite machine. Because there are only finitely many paths from q0 to q 

that can contribute an as yet unseen contender value for o[q], node q can only be 

added to H finitely many times. ■ 

 

Even if there are infinitely many actual candidates (input/output mappings) that all 

get the same set of violations, a state of affairs that can come about if there are zero-cost 

cycles in the machine, the CONTENDERS algorithm will terminate. This is so because the 

algorithm isn’t computing the actual candidates, but rather the cost vectors associated with 

the set of candidates that are contenders.  
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4.6  Correctness of the CONTENDERS algorithm 

 In (94) I give a correctness proof for the CONTENDERS algorithm. To prove that 

the algorithm is correct I show that once H is empty, the last time that any given node 

was removed from H the cost attribute for that node must have contained all contender-

costs. First, I will present two lemmas that will be helpful in the proof.  

 
(90) Harmonic relativity lemma:  

 If  then  and .v w v c w c v c w c+ + − −; ; ;   

 
proof: By the definition of harmony, v ;  w just in case for each j such that vj > wj there is 

an i < j such that vi < wi, and by the definition of the sum of cost vectors, c will 

add or subtract the same amount to each coordinate in v and w. Thus it is the case 

that if v ;  w then, because relative inequality is preserved under addition and 

subtraction, it must be the case that and .v c w c v c w c+ + − −; ;  ■ 

 
Two corollaries follow readily from harmonic relativity.  

 

(91) Corollary 1 of harmonic relativity:  

If v is a contender in V then v + w is a contender in V + w.  

 
proof: If v is a contender in V then v is among the most harmonic members of V under  

some ranking of the constraints. Harmonic relativity tells us that adding a fixed 

value w to every member of V doesn’t change their relative harmony. ■ 
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(92) Corollary 2 of harmonic relativity:  

If v is harmonically bounded in V then v + w is harmonically bounded in V + w.  

 
If v is harmonically bounded in V then for each ranking there is some v' ∈ V such 

that v v′ ; . By harmonic relativity we know that adding w to both v' and v doesn’t 

change their relative harmony, so v w+ is still harmonically bounded. ■ 

 

If there is a path p from the start state q0 to node q and p’s cost w is a contender among the 

costs of paths to node p, but the cost attribute for q doesn’t contain w then I’ll say that node 

q is “missing a contender-cost.” Corollaries 1 and 2 will be used to show that if a node q is 

missing a given contender-cost w then the penultimate node on the path that costs w from 

q0 to q must also be missing a contender-cost.   

In (93) I give one more lemma that nails down the observation that if a vector is 

harmonically bounded in a set of vectors it is harmonically bounded in any superset of that 

set of vectors.  

 
(93) Bounding lemma:  

 If v is harmonically bounded in V then v is harmonically bounded in W ⊇ V.  

 
proof: If v is harmonically bounded in V then there is some subset of V consisting of cost 

vectors that are preferred to v under every constraint ranking. Adding more cost 

vectors to V can’t change this fact. ■ 

 
With the lemmas and corollaries established in (90) through (93) in hand, the proof 

of the correctness of the CONTENDERS algorithm is actually relatively simple.  
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(94) Theorem: correctness of the CONTENDERS algorithm 

CONTENDERS(M) associates all and only the contender-costs with each node in M.  

 

proof:  First I’ll show that at the outset of step 10 the cost attributes for the nodes contain 

all possible contender-costs for each node. Then I’ll show that steps 11-13 of the 

algorithm eliminate any costs that aren’t contenders at the final states. 

 To derive a contradiction, suppose that the last time that node r was removed 

from H it was the case that the cost attribute o[r] was missing a contender-cost cr.  

 The first and only time that q0 is removed from H o[q0] is set to {0̄}. Because 

0̄ is optimal under all rankings o[q0] contains all contender-costs for q0. Thus, by 

the assumption that o[r] is missing a contender-cost, r is not q0. 

 For cr to be a contender-cost at r there must be a path p from q0 to r that costs cr. 

If q is the penultimate node in p and (q, i, o, w, r) is  p’s final arc, then o[q] must be 

missing the contender-cost (cr – w). Cost (cr – w) must be a contender at q because 

if it was harmonically bounded there then (cr – w) + w = cr would be bounded at r 

(corollary 2). Furthermore, (cr – w) must be missing from o[q] or else cr would have 

been discovered when q was removed from H.  

 Applying this reasoning to p’s penultimate arc reveals that p’s antepenultimate 

node must also be missing a contender-cost. Following this reasoning back to p’s 

origin reveals the contradiction because o[q0] can’t be missing any contender-costs. 

 Once the possible contender-costs are obtained, line 10 pools the costs for the 

final and lines 11 and 12 delete costs on finals that aren’t contenders.    ■ 
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 The mechanism used here to find the set of contenders is a surprisingly minimal 

addition to the mechanism used to find a single optimal candidate. This is feat is made 

possible because we are using a single monolithic evaluator for all of the constraints in 

the grammar that encodes the preferences of all of the constraints into a single machine. 

Cascade-style analyses (e.g. Hammond 1995, Eisner 1997abc, Albro 1998ab, Karttunen 

1998, Heiberg 1999, Gerdemann and Van Noord 2000) in which one constraint at a time 

is applied to the candidates to winnow out suboptimal elements can’t replicate this feat 

because there’s no single representation of the preferences of all of the constraints.  

 The amount of work involved in finding the contenders will go up with the number 

of contenders in contention because the number of cost vectors filling the cells of the cost 

attribute table will be larger. Crucially, however, this increase in workload is tied directly 

to the number of actual contenders and not to the number of constraints in the grammar. 

Though it is indeed possible for there to be n! contenders in a grammar with n constraints 

the CONTENDERS algorithm will only consider all n! rankings if there is a contender for 

each ranking. This means that, in general, this algorithm will provide massive savings 

over the brute-force approach of checking each of the factorially many rankings.  

 In the next chapter I’ll show the value of finding contenders with a more realistic 

grammar and I’ll reformulate CONTENDERS to use Prince’s (2002) Elementary Ranking 

Conditions to represent hypotheses about constraint rankings. This reformulation of the 

algorithm will make it possible to specify some partial ranking information R in advance 

and then determine the set of contenders modulo the partial rankings in R.   
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5  Contenders and Learning 

The ability to generate sets of contenders has important ramifications for learning 

in Optimality Theory, for the contenders are exactly the candidates whose failure can most 

inform a learner about the structure of the grammar. Tesar (1995a  et seq.) explains how 

the “implicit negative evidence” provided by the failure of possible alternative candidates 

in competition with an actually observed output form can be used to infer rankings among 

constraints in Optimality Theoretic grammars. 

 Comparing an observed datum to the entire set of contenders allows the maximal 

number of inferences to be drawn from each observation. Moreover this can ensure that 

no piece of relevant information is missed or ignored the first time that it is presented.  

 In this chapter I will show of how learning algorithms (and presumably human 

learners) can benefit from access to contenders. In addition to this I’ll address the larger 

questions of what the contenders show us about typology and what the contenders show 

us about how the difficulty of the learning problem scales when grammars with larger 

numbers of constraints are considered.  

 

5.1  More constraints: the basic CV syllable theory 

 So far we’ve been considering extremely simple grammars with only three or four 

constraints over an alphabet with only two symbols. In this section we will expand our 

horizons to the basic CV syllable theory of Prince and Smolensky’s (1993) chapter six 

(henceforth P&S). Since its presentation P&S’s basic CV syllable theory it has been the 

subject of much computational analysis and has served as a sort of benchmark and test-
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case for computational implementations of Optimality Theory (Tesar 1995a, Karttunen 

1998, Gerdemann and Van Noord 2000, to name a few). For the basic CV syllable theory 

we will need an alphabet with the following three symbols.  

(95) Our new alphabet: 

C – a consonant 

V – a vowel  

 x – the syllable boundary 

 
Many implementations of basic CV syllable theory explicitly encode the onset and coda 

positions into the alphabet itself or assign bracketing and/or tree-like structures to the 

syllables. For the simple take on this system presented here, the three alphabet symbols 

given in (95) will suffice.  

To implement the basic CV syllable theory we’ll need finite-state versions of the  

basic markedness constraints on syllable structure ONSET and NOCODA (Prince and 

Smolensky 1993). 

 
(96) ONSET: penalizes syllables without onsets  

 ONSET = (Q, {c, v, x}, δ, ons-0, F), where 

 Q = {ons-0, ons-1},  

 F = {ons-0, ons-1}, 

 δ ={ (ons-0, •, x, 0, ons-0),  
  (ons-0, •, v, 0, ons-0), 
  (ons-0, •, c, 0, ons-1),  
  (ons-1, •, c, 0, ons-1), 
  (ons-1, •, v, 0, ons-0),  
  (ons-1, •, x, 1, ons-0)}. 
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The start state of ONSET is the egg-shaped state ons0 on the left in (96); this is also the 

state that the constraint is in if a syllable boundary has just been written in the surface 

form. From this state, writing a consonant takes the constraint to state ons1 on the right 

(out of danger of a violation), but writing a vowel garners one violation. That is, a vowel 

at the beginning of a surface string or immediately after a syllable boundary incurs a 

violation of ONSET. Given this set-up, it’s unnecessary to explicitly encode the syllabic 

affiliation of the segments in the alphabet.  

 NOCODA is the partner of ONSET in the basic CV syllable theory. In terms of the 

representations here NOCODA penalizes syllable boundaries that occur immediately after 

a consonant. The finite-state version of NOCODA is given in (97).  

 
(97) NOCODA: penalizes syllables with codas 

 NOCODA = (Q, {c, v, x}, δ, noc-0, F), where 

 Q = {noc-0, noc-1},  

 F = {noc-0, noc-1}, 

 δ ={(noc-0, •, x, 0, noc-0),  
  (noc-0, •, v, 0, noc-0), 
  (noc-0, •, c, 0, noc-1),  
  (noc-1, •, c, 0, noc-1), 
  (noc-1, •, v, 0, noc-0),  
  (noc-1, •, x, 1, noc-0)}. 
 

In (97) the start-state of NOCODA is the egg-shaped node noc0 on the right; this is also 

the state that the constraint is in whenever a vowel or syllable boundary has just been 

written in the surface form. From this state, writing a consonant in the surface form takes 

the constraint to state noc1 on the left. From state noc1, writing a syllable boundary in 
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the surface form garners a violation of NOCODA. Put simply, this constraint penalizes the 

sequence ‘... C x ...’. With this formulation, NOCODA classifies syllables consisting of 

nothing but lone consonants as violators. It would be easy to formulate a more complex 

version of the constraint that would only be violated by consonants occurring immediately 

after a vowel and before a syllable boundary, but this simple version of the constraint will 

suffice for the current examination.  

 One of the factors that makes the basic CV syllable theory so straightforward is 

the assumption of a sort of “filter” that limits the scope of the forms under consideration 

to strings of the form ((C)V(C) x)*. That is, every candidate under consideration is a 

(possibly empty) string of syllables each of which must contain a vowel and may or may 

not have a single consonant onset or a single consonant coda. This filter can be given the 

following finite-state representation.  

 
(98) g = (Q, {a, b, x}, δ, noc-0, F), where 

 Q = {g0, g1, g2, g3},  

 F = {g0}, 

 δ ={(g0, •, C, 〈〉, g1),  
  (g0, •, V, 〈〉, g2), 
  (g1, •, V, 〈〉, g2),  
  (g2, •, x, 〈〉, g0), 
  (g2, •, C, 〈〉, g3),  
 (g3, •, x, 〈〉, g0)}. 
 

I call this filter g because it restricts the set of candidates generated by GEN for each input 

form. The machine in (98) is like a markedness constraint in that its arcs refer to surface 

strings and not to underlying segments (thus the wild-cards in the input slots), but it’s also 
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unlike a markedness constraint in that it doesn’t assign any violations (thus the empty cost 

vectors). This filter achieves its intended effect by simply lacking arcs that would allow 

the generation of the surface strings that it prohibits. Later in this chapter, I’ll describe 

how the filter can be replaced with constraints, but this simplification will suffice for the 

time being.  

 The final ingredients for the basic CV syllable theory are some familiar 

faithfulness constraints. MAX is analogous to Prince and Smolensky’s PARSE constraint in 

that it penalizes deletion. In (99) I repeat the MAX constraint from chapter two with the 

change that it is now specified over the alphabet Σ = {C, V, x}.  

 
(99) MAX: penalizes the deletion of segments 

 

 

 

 

In this presentation I will make the simplifying assumption that inputs are not syllabified. 

That is, I’ll assume that the input alphabet consists of ‘C’ and ‘V’. With this assumption 

the syllable boundary ‘x’ can be inserted (the mapping -/x) but there is no need for arcs 

on which where ‘x’ is deleted (the mapping x/-).  

 The constraint DEP is analogous to Prince and Smolensky’s FILL constraint in that 

it penalizes the addition of segments that aren’t present in the input. The range of cases 

covered by P&S’s FILLOnset and FILLNucleus will be covered here by the consonant-specific 

and vowel-specific versions of the DEP constraint given in (100) and (101).  
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(100) DEPC: penalizes the insertion of consonants 

 

 

 

 
 
(101) DEPV: penalizes the insertion of vowels 

 

 

 

 

 
Unlike P&S’s PARSE and FILL model, this set-up is not a “containment theory” in which 

all of the information about which segments have been deleted and inserted can be read 

off of the surface string. Nor is this system like Correspondence Theory (McCarthy and 

Prince 1995) in which the segments of the surface forms are indexed to indicate which 

underlying segments they correspond to.  

Because violations of faithfulness constraints are assessed directly on the function 

that maps the input to the output, there is no need to use correspondence theoretic indexing 

to assess the effects of basic faithfulness constraints. Of course, the indexing of CT has 

other uses like enforcing base-reduplicant identity and penalizing the rearrangement of 

segments in the input/output mapping that aren’t readily captured with finite state means. 

Eval for languages of the basic CV syllable theory is then obtained from the 

intersection 〈g, ONSET, NOCODA, DEPV, MAX, DEPC〉⌦. This is given in (102).  
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(102) Eval for the basic CV syllable theory: 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
 
 
 

In chapter three the grammars for various constraint rankings were derived by 

altering the order in which the constraints were intersected to build Eval. Recall that the 

order of intersection is reflected in the cost vectors on the arcs of the machine. In this 

chapter the CONTENDERS algorithm will be redefined so as to find the set of contenders 

modulo some pre-specified ranking information. With this redefinition, the order in the 

vectors will no longer be relevant because it will be possible to feed the CONTENDERS 

algorithm a total ordering of constraints and get the set containing the contenders (which 

will simply be the optimal forms) under that total ordering of the constraints.  
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In this fashion the redefined CONTENDERS algorithm will be able to do the duties 

of both the previous version of the CONTENDERS algorithm and the OPTIMIZE algorithm 

from chapter two. Moreover, with the redefined CONTENDERS algorithm, it won’t be 

necessary to use different versions of Eval for the different rankings of the constraints. In 

this sense, the machine in (102) is a representation of the grammar for the entire class of 

languages defined by the basic CV syllable theory.  

 

5.2  Matters of size 

As we are consider grammars with more constraints, the issue of the size of the 

machine resulting from intersecting all of the constraints becomes more relevant. The 

potential for intersection to multiply the number of states in of great concern, for if the 

grammars grow explosively as more constraints are added it might become infeasible to 

work with machines representing entire grammars.  

It is certainly true that artificial grammars built from hypothetical constraints of 

arbitrary complexity can grow geometrically under constraint intersection. Luckily, 

however, the object of study here is actual human phonological grammars which, at first 

blush, seem to be fairly well behaved in this regard. Understanding the difference between 

the worst case scenario and what seems to be the real-world problem can be illuminating, 

as will become clearer when we consider some approximations to real-world examples.   

The grammar resulting from 〈g, ONS, NOCODA, DEPV, MAX, DEPC〉⌦ could have 

16 states in it (the product of the number of states in machines going into the intersection), 

but, as we see in (102), there are actually only 4 states. This is so because the phonological 
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environments distinguished by ONSET and NOCODA are the same as the phonological 

environments distinguished by the filter g. The number of states in Eval is exactly the 

number of unique phonological environments to which the grammar is sensitive. Single-

state markedness and faithfulness constraints don’t increase the size of the machine at all, 

and the only way for a multi-state constraint to truly multiply the number of states in the 

grammar is for it to draw a new distinction in every environment that was distinguished 

by the grammar before the new constraint was added. This happens readily when just a 

few constraints are considered in isolation, but as more (real) constraints are considered 

their environments will overlap whenever they draw distinctions that are being made by 

constraints already present in the grammar.  

Even with the strong position that all of the constraints of Universal Grammar are 

present in the grammar of every language, the number of states in UG-Eval is bounded by 

the number of unique phonological environments distinguished by the set of constraints. 

Though this number might be huge, it isn’t on the order of the billions and billions that 

could arise from the geometric nature of intersection. The hope then, is that that by using 

maximally simple representations of real phonological constraints the grammars won’t 

become so huge and unwieldy that the search for optimal forms and contenders becomes 

intractable. Even if real grammars are generally too large to work with, the ability to find 

contenders for fragments or simplifications of those grammars will still be a useful tool 

for understanding constraint interaction and typology.  
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5.3  Contenders in the CV syllable theory 

 To see what kind of insight the CONTENDERS algorithm provides into the typology 

of the basic CV syllable theory, I constructed a lexicon of the 62 possible input strings 

made up of C’s and V’s from one to five segments in length – I’ll call this lexicon CV5. 

The set of contenders for each input string in CV5 is given in the tableaux presented in 

(103) through (109). In each tableau the candidates (contenders) are listed in descending 

order of harmony for the ranking ONSET >> NOCODA >> MAX >> DEPV >> DEPC. Because 

they are all contenders, at least one of the 120 possible constraint rankings selects each 

candidate as optimal. To improve the readability of the tableaux I’ve used a dot ‘.’ to mark 

medial syllable boundaries and omitted word-final syllable boundaries (the filter g ensures 

that there are no unsyllabified candidates). 

 

(103) Inputs of length 1:  
2. /v/ ons noc max depV depC
a. cv 0 0 0 0 1 
b. - 0 0 1 0 0 
c. v 1 0 0 0 0 

 
(104) Inputs of length 2: 

5. /cc/ ons noc max depV depC
a. cv.cv 0 0 0 2 0 
b. - 0 0 2 0 0 
c. cvc 0 1 0 1 0 
       
6. /vv/ ons noc max depV depC
a. cv.cv 0 0 0 0 2 
b. - 0 0 2 0 0 
c. v.v 2 0 0 0 0 

 
 

 
 

Input #3 in (104) has only one contender because all rankings prefer CV syllables. 

Seeing how an unknown grammar handles input #4 can be quite informative given the 8-

way distinction among contenders for this input. Note, however, that candidates b and c 

1. /c/ ons noc max depV depC
a. cv 0 0 0 1 0 
b. - 0 0 1 0 0 

3. /cv/ ons noc max depV depC
a. cv 0 0 0 0 0 
       
4. /vc/ ons noc max depV depC
a. cv.cv 0 0 0 1 1 
b. cv 0 0 1 0 1 
c. cv 0 0 1 1 0 
d. - 0 0 2 0 0 
e. cvc 0 1 0 0 1 
f. v.cv 1 0 0 1 0 
g. v 1 0 1 0 0 
h. vc 1 1 0 0 0 
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are homophonous. The former deletes the underlying vowel at the beginning of the input 

and adds a vowel after the consonant while the latter deletes the underlying consonant and 

inserts a consonant before the vowel. In this sense, candidates b and c are ambiguous. 

 
(105) Inputs of length 3: 

10. /vvc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 2 
b. cv.cv 0 0 1 0 2 
c. cv 0 0 2 1 0 
d. - 0 0 3 0 0 
e. cv.cvc 0 1 0 0 2 
f. v.v.cv 2 0 0 1 0 
g. v.v 2 0 1 0 0 
h. v.vc 2 1 0 0 0 
       

11. /ccv/ ons noc max depV depC
a. cv.cv 0 0 0 1 0 
b. cv 0 0 1 0 0 
       

12. /vcv/ ons noc max depV depC
a. cv.cv 0 0 0 0 1 
b. cv 0 0 1 0 0 
c. v.cv 1 0 0 0 0 
       

13. /cvv/ ons noc max depV depC
a. cv.cv 0 0 0 0 1 
b. cv 0 0 1 0 0 
c. cv.v 1 0 0 0 0 
       

14. /vvv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 3 
b. - 0 0 3 0 0 
c. v.v.v 3 0 0 0 0 

 
The flipside of ambiguity is a tie, this can be seen between the two forms in row c 

for input #7. In ambiguity multiple violation sets produce the same output form but in a 

tie  multiple outputs produce the same violation set. The two forms listed as candidate 7c 

differ only in where the NOCODA violation occurs.  

Input #8 /vcc/ shows an eleven-way distinction among the contenders and shows 

both ambiguity and a tie. The potential for ambiguity and ties can make the problem of 

inferring information about the grammar from observed i/o pairs even more difficult. 

7. /ccc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 3 0 
b. - 0 0 3 0 0 
c. cvc.cv, cv.cvc 0 1 0 2 0 
       
8. /vcc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 2 1 
b. cv.cv 0 0 1 2 0 
c. cv 0 0 2 0 1 
d. - 0 0 3 0 0 
e. cvc.cv, cv.cvc 0 1 0 1 1 
f. cvc 0 1 1 0 1 
g. cvc 0 1 1 1 0 
h. v.cv.cv 1 0 0 2 0 
i. v 1 0 2 0 0 
j. vc.cv, v.cvc 1 1 0 1 0 
k. vc 1 1 1 0 0 
       
9. /cvc/ ons noc max depV depC
a. cv.cv 0 0 0 1 0 
b. cv 0 0 1 0 0 
c. cvc 0 1 0 0 0 
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(106) Inputs of length 4: 
 

16./cvcc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 2 0 
b. cv 0 0 2 0 0 
c. cvc.cv 0 1 0 1 0 
d. cvc 0 1 1 0 0 

 

 

22. /vvvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 3 
b. cv.cv.cv 0 0 1 0 3 
c. cv 0 0 3 1 0 
d. - 0 0 4 0 0 
e. cv.cv.cvc 0 1 0 0 3 
f. v.v.v.cv 3 0 0 1 0 
g. v.v.v 3 0 1 0 0 
h. v.v.vc 3 1 0 0 0 
       

23. /cccv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 2 0 
b. cv 0 0 2 0 0 
c. cvc.cv 0 1 0 1 0 
       

24. /vccv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 1 
b. cv.cv 0 0 1 0 1 
c. cv.cv 0 0 1 1 0 
d. cv 0 0 2 0 0 
e. cvc.cv 0 1 0 0 1 
f. v.cv.cv 1 0 0 1 0 
g. v.cv 1 0 1 0 0 
h. vc.cv 1 1 0 0 0 
       

25. /cvcv/ ons noc max depV depC
a. cv.cv 0 0 0 0 0 
       

26. /vvcv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 2 
b. cv 0 0 2 0 0 
c. v.v.cv 2 0 0 0 0 
       

27. /ccvv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 1 
b. cv.cv 0 0 1 0 1 
c. cv.cv 0 0 1 1 0 
d. cv 0 0 2 0 0 
e. cv.cv.v 1 0 0 1 0 
f. cv.v 1 0 1 0 0 
       

28. /vcvv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 2 
b. cv 0 0 2 0 0 
c. v.cv.v 2 0 0 0 0 
       

29. /cvvv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 2 
b. cv 0 0 2 0 0 
c. cv.v.v 2 0 0 0 0 
       

30. /vvvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 0 4 
b. - 0 0 4 0 0 
c. v.v.v.v 4 0 0 0 0 

15. /cccc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 4 0 
b. - 0 0 4 0 0 
c. cvc.cvc 0 2 0 2 0 

17. /vccc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 3 1 
b. cv.cv.cv 0 0 1 3 0 
c. cv 0 0 3 0 1 
d. - 0 0 4 0 0 
e. cvc.cv, cv.cvc 0 1 1 2 0 
f. cvc 0 1 2 0 1 
g. cvc.cvc 0 2 0 1 1 
h. v.cv.cv.cv 1 0 0 3 0 
i. v 1 0 3 0 0 
j. vc 1 1 2 0 0 
k. vc.cvc 1 2 0 1 0 

       

18. /vvcc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 2 
b. cv.cv 0 0 2 0 2 
c. cv.cv 0 0 2 2 0 
d. - 0 0 4 0 0 
e. cv.cvc.cv, cv.cv.cvc 0 1 0 1 2 
f. cv.cvc 0 1 1 0 2 
g. cvc 0 1 2 1 0 
h. v.v.cv.cv 2 0 0 2 0 
i. v.v 2 0 2 0 0 
j. v.vc.cv, v.v.cvc 2 1 0 1 0 
k. v.vc 2 1 1 0 0 

       

19. /ccvc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 2 0 
b. cv 0 0 2 0 0 
c. cv.cvc 0 1 0 1 0 
d. cvc 0 1 1 0 0 

       

20. /vcvc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 1 
b. cv.cv 0 0 1 0 1 
c. cv.cv 0 0 1 1 0 
d. cv 0 0 2 0 0 
e. cv.cvc 0 1 0 0 1 
f. cvc 0 1 1 0 0 
g. v.cv.cv 1 0 0 1 0 
h. v.cv 1 0 1 0 0 
i. v.cvc 1 1 0 0 0 

       

21. /cvvc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 1 
b. cv.cv 0 0 1 0 1 
c. cv.cv 0 0 1 1 0 
d. cv 0 0 2 0 0 
e. cv.cvc 0 1 0 0 1 
f. cvc 0 1 1 0 0 
g. cv.v.cv 1 0 0 1 0 
h. cv.v 1 0 1 0 0 
i. cv.vc 1 1 0 0 0 
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The length 4 inputs show more ambiguity, more ties, and more forms with eleven-way 

distinctions among their contenders. Like #3, input #25 CVCV has only one contender.  

 
(107) Inputs of length 5: 

36. /vcvcc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cv.cvc.cv, cv.cv.cvc 0 1 0 1 1 
f. cv.cvc 0 1 1 0 1 
g. cvc.cv, cv.cvc 0 1 1 1 0 
h. cvc 0 1 2 0 0 
i. v.cv.cv.cv 1 0 0 2 0 
j. v.cv 1 0 2 0 0 
k. v.cvc.cv, v.cv.cvc 1 1 0 1 0 
l. v.cvc 1 1 1 0 0 
       

37. /cvvcc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cv.cvc.cv, cv.cv.cvc 0 1 0 1 1 
f. cv.cvc 0 1 1 0 1 
g. cvc.cv, cv.cvc 0 1 1 1 0 
h. cvc 0 1 2 0 0 
i. cv.v.cv.cv 1 0 0 2 0 
j. cv.v 1 0 2 0 0 
k. cv.vc.cv, cv.v.cvc 1 1 0 1 0 
l. cv.vc 1 1 1 0 0 
       

38. /vvvcc/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 2 3 
b. cv.cv.cv 0 0 2 0 3 
c. cv.cv 0 0 3 2 0 
d.  0 0 e. 0 0 
e. cv.cv.cvc.cv, cv.cv.cv.cvc 0 1 0 1 3 
f. cv.cv.cvc 0 1 1 0 3 
g. cvc 0 1 3 1 0 
h. v.v.v.cv.cv 3 0 0 2 0 
i. v.v.v 3 0 2 0 0 
j. v.v.vc.cv, v.v.v.cvc 3 1 0 1 0 
k. v.v.vc 3 1 1 0 0 
       

39. /cccvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 3 0 
b. cv 0 0 3 0 0 
c. cvc 0 1 2 0 0 
d. cvc.cvc 0 2 0 1 0 

31. /ccccc/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 e. 0 
b. - 0 0 e. 0 0 
c. 

cvc.cvc.cv, 
cvc.cv.cvc, 
cv.cvc.cvc 

0 2 0 3 0 

       
32. /vcccc/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 d. 1 
b. cv.cv.cv.cv 0 0 1 d. 0 
c. cv 0 0 d. 0 1 
d.  0 0 e. 0 0 
e. cvc 0 1 3 0 1 
f. 

cvc.cvc.cv, 
cvc.cv.cvc, 
cv.cvc.cvc 

0 2 0 2 1 
g. cvc.cvc 0 2 1 2 0 
h. v.cv.cv.cv.cv 1 0 0 d. 0 
i. v 1 0 d. 0 0 
j. vc 1 1 3 0 0 
k. 

vc.cvc.cv, 
vc.cv.cvc, 
v.cvc.cvc 

1 2 0 2 0 

       
33. /cvccc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 3 0 
b. cv 0 0 3 0 0 
c. cvc 0 1 2 0 0 
d. cvc.cvc 0 2 0 1 0 
       

34. /vvccc/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 3 2 
b. cv.cv.cv 0 0 2 3 0 
c. cv.cv 0 0 3 0 2 
d. - 0 0 e. 0 0 
e. cv.cvc 0 1 2 0 2 
f. cvc.cv, cv.cvc 0 1 2 2 0 
g. cv.cvc.cvc 0 2 0 1 2 
h. v.v.cv.cv.cv 2 0 0 3 0 
i. v.v 2 0 3 0 0 
j. v.vc 2 1 2 0 0 
k. v.vc.cvc 2 2 0 1 0 
       

35. /ccvcc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 3 0 
b. cv 0 0 3 0 0 
c. cv.cvc.cv, cv.cv.cvc 0 1 0 2 0 
d. cvc 0 1 2 0 0 
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(108) Inputs of length 5: -continued 

45. /cvvvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cv.cv.cvc 0 1 0 0 2 
f. cvc 0 1 2 0 0 
g. cv.v.v.cv 2 0 0 1 0 
h. cv.v.v 2 0 1 0 0 
i. cv.v.vc 2 1 0 0 0 
       

46. /vvvvc/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 1 d. 
b. cv.cv.cv.cv 0 0 1 0 d. 
c. cv 0 0 d. 1 0 
d. - 0 0 e. 0 0 
e. cv.cv.cv.cvc 0 1 0 0 d. 
f. v.v.v.v.cv d. 0 0 1 0 
g. v.v.v.v d. 0 1 0 0 
h. v.v.v.vc d. 1 0 0 0 
       

47. /ccccv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 3 0 
b. cv 0 0 3 0 0 
c. cvc.cv.cv, cv.cvc.cv 0 1 0 2 0 
       

48. /vcccv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cvc.cv.cv, cv.cvc.cv 0 1 0 1 1 
f. cvc.cv 0 1 1 0 1 
g. cvc.cv 0 1 1 1 0 
h. v.cv.cv.cv 1 0 0 2 0 
i. v.cv 1 0 2 0 0 
j. vc.cv.cv, v.cvc.cv 1 1 0 1 0 
k. vc.cv 1 1 1 0 0 
       

49. /cvccv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 0 
b. cv.cv 0 0 1 0 0 
c. cvc.cv 0 1 0 0 0 
       

50. /vvccv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cv.cvc.cv 0 1 0 0 2 
f. v.v.cv.cv 2 0 0 1 0 
g. v.v.cv 2 0 1 0 0 
h. v.vc.cv 2 1 0 0 0 

 
Note the 10-way distinction among contenders with no ambiguity and no ties for input #40. 

40. /vccvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cv.cvc 0 1 1 1 0 
f. cvc 0 1 2 0 0 
g. cvc.cvc 0 2 0 0 1 
h. v.cv.cv.cv 1 0 0 2 0 
i. v.cv 1 0 2 0 0 
j. vc.cvc 1 2 0 0 0 
       

41. /cvcvc/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 0 
b. cv.cv 0 0 1 0 0 
c. cv.cvc 0 1 0 0 0 
       

42. /vvcvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cv.cv.cvc 0 1 0 0 2 
f. cvc 0 1 2 0 0 
g. v.v.cv.cv 2 0 0 1 0 
h. v.v.cv 2 0 1 0 0 
i. v.v.cvc 2 1 0 0 0 
       

43. /ccvvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cv.cv.cvc 0 1 0 1 1 
f. cv.cvc 0 1 1 0 1 
g. cv.cvc 0 1 1 1 0 
h. cvc 0 1 2 0 0 
i. cv.cv.v.cv 1 0 0 2 0 
j. cv.v 1 0 2 0 0 
k. cv.cv.vc 1 1 0 1 0 
l. cv.vc 1 1 1 0 0 
       

44. /vcvvc/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cv.cv.cvc 0 1 0 0 2 
f. cvc 0 1 2 0 0 
g. v.cv.v.cv 2 0 0 1 0 
h. v.cv.v 2 0 1 0 0 
i. v.cv.vc 2 1 0 0 0 
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(109) Inputs of length 5: -fin 

57. /cvcvv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 1 
b. cv.cv 0 0 1 0 0 
c. cv.cv.v 1 0 0 0 0 
       

58. /vvcvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 0 3 
b. cv 0 0 3 0 0 
c. v.v.cv.v 3 0 0 0 0 
       

59. /ccvvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cv.cv.v.v 2 0 0 1 0 
f. cv.v.v 2 0 1 0 0 
       

60. /vcvvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 0 3 
b. cv 0 0 3 0 0 
c. v.cv.v.v 3 0 0 0 0 
       

61. /cvvvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 0 3 
b. cv 0 0 3 0 0 
c. cv.v.v.v 3 0 0 0 0 
       

62. /vvvvv/ ons noc max depV depC
a. cv.cv.cv.cv.cv 0 0 0 0 5 
b. - 0 0 5 0 0 
c. v.v.v.v.v 5 0 0 0 0 

 
 

 

 

Perhaps, the most interesting bit of information gleaned about the basic CV syllable 

theory by running the forms of CV5 through the CONTENDERS algorithm, is the twelve-way 

distinction among contenders for some of the input forms. This twelve-way distinction is 

only a tenth of variety we might have expected given that each of the 120 rankings could 

define a unique language. Nonetheless, these distinctions are slightly finer grained than the 

typology that is usually described for the basic CV syllable theory.   

51. /ccvcv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 1 0 
b. cv.cv 0 0 1 0 0 
       

52. /vcvcv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 1 
b. cv.cv 0 0 1 0 0 
c. v.cv.cv 1 0 0 0 0 
       

53. /cvvcv/ ons noc max depV depC
a. cv.cv.cv 0 0 0 0 1 
b. cv.cv 0 0 1 0 0 
c. cv.v.cv 1 0 0 0 0 
       

54. /vvvcv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 0 3 
b. cv 0 0 3 0 0 
c. v.v.v.cv 3 0 0 0 0 
       

55. /cccvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 2 1 
b. cv.cv.cv 0 0 1 2 0 
c. cv.cv 0 0 2 0 1 
d. cv 0 0 3 0 0 
e. cvc.cv.cv 0 1 0 1 1 
f. cvc.cv 0 1 1 1 0 
g. cv.cv.cv.v 1 0 0 2 0 
h. cv.v 1 0 2 0 0 
i. cvc.cv.v 1 1 0 1 0 
       

56. /vccvv/ ons noc max depV depC
a. cv.cv.cv.cv 0 0 0 1 2 
b. cv.cv.cv 0 0 1 0 2 
c. cv.cv 0 0 2 1 0 
d. cv 0 0 3 0 0 
e. cvc.cv.cv 0 1 0 0 2 
f. v.cv.cv.v 2 0 0 1 0 
g. v.cv.v 2 0 1 0 0 
h. vc.cv.v 2 1 0 0 0 
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5.4  Contenders and typology in the CV syllable theory 

Prince and Smolensky (1993: 104) illustrate how various rankings of the ONSET, 

NOCODA, PARSE, FILLOnset, and FILLNucleus constraints generate the CV syllable structure 

typology. In (110) I recreate Prince and Smolensky’s typology table replacing PARSE and 

FILL with MAX and DEP respectively. The notations “del.” and “ep.” in the cells indicate 

whether requirements on onsets and codas are achieved via epenthesis or deletion.  

 
(110) Basic syllable typology: 

    onset required not required 

           ONS, 
       MAX 

>>  DEPC        ONS, 
       DEPC >>  MAX        MAX, 

       DEPC  >>  ONS 

 NOC,  
MAX  >>  DEPV  1.  ΣCV

ep. ep.  2.  ΣCV
del. ep.  8.  Σ(C)VC

ep. 

 
 coda  
 forbidden NOC, 

DEPV  >>  MAX  3.  ΣCV
ep. del.  4.  ΣCV

del. del.  7.  Σ(C)VC
del. 

  coda  
 allowed 

MAX, 
DEPV  >>  NOC  5.  ΣCV(C)

ep.  6.  ΣCV(C)
del.  9.  Σ(C)V(C) 

 

Though there are nine points in the typology described in (110), it’s possible for a 

twelve-way distinction to arise among the contenders for a given input based on differences 

in the way consonant clusters are dealt with under various constraint rankings. Consider, 

for example, the contenders for the input /cvvcc/ presented in (111) below. 
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(111) Twelve contenders: 

 43. /ccvvc/ ons noc max depV depC  
 a. cv.cv.cv.cv 0 0 0 2 1  
 b. cv.cv.cv 0 0 1 2 0  
 c. cv.cv 0 0 2 0 1  
 d. cv 0 0 3 0 0  
 e. cv.cv.cvc 0 1 0 1 1 
 f. cv.cvc 0 1 1 0 1  

 g. cv.cvc 0 1 1 1 0 
 h. cvc 0 1 2 0 0  

 i. cv.cv.v.cv 1 0 0 2 0  
 j. cv.v 1 0 2 0 0  
 k. cv.cv.vc 1 1 0 1 0 
 L. cv.vc 1 1 1 0 0  

 

Candidates a, b, c, and d in (111) arise under rankings in which onsets are required 

and codas are forbidden. According to the numbers I’ve given the languages in the table 

in (110), candidate a is an instance of language 1, candidate b is an instance of language 2, 

candidate c is an instance of language 3, and candidate d is an instance of language 4.  

 
(112) Language five: 

  /ccvvc/ ons noc max depV depC  
 e. cv.cv.cvc 0 1 0 1 1 
 f. cv.cvc 0 1 1 0 1  ≈ language 5 

 

Candidates e and f both avoid the potential ONSET violation word-initially with an 

epenthetic consonant. They differ in that candidate e breaks up the consonant cluster at 

the end of the input string with an epenthetic vowel but candidate f eliminates the final 

cluster by deleting one of the final consonants. These changes are necessitated by the fact 

that g requires all surface forms to be of the shape ((C)V(C)x)*. If MAX dominates DEPV 

then candidate e is selected if DEPV dominates MAX then candidate f is selected. 
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(113) Language six: 

  /ccvvc/ ons noc max depV depC  
 g. cv.cvc 0 1 1 1 0 
 h. cvc 0 1 2 0 0  ≈ language 6 

 

 Candidates g and h both avoid a potential ONSET violation by deleting the initial 

vowel of the input. They differ in that g separates the cluster at the end of the input with 

an epenthetic vowel and h deletes one of the consonants in the final cluster. Again, the 

choice between these candidates will be determined by the ranking of MAX and DEPV. 

 
(114) Languages seven and eight:  

  /ccvvc/ ons noc max depV depC  
 i. cv.cv.v.cv 1 0 0 2 0  = language 7 
 j. cv.v 1 0 2 0 0  = language 8 
 

 Candidates i and j both allow onsetless syllables but don’t allow codas. The former 

avoids NOCODA violations with vowel epenthesis and the latter avoids NOCODA violations 

by deleting consonants.  

 
(115) Language nine: 

  /ccvvc/ ons noc max depV depC  
 k. cv.cv.vc 1 1 0 1 0 
 L. cv.vc 1 1 1 0 0  ≈ language 9 

 

 Candidates k and l avoid faithfulness violations by allowing ONSET and NOCODA 

to be violated. Like the candidate pairs e & f and g & h, these candidates differ in whether 

the consonant cluster at the end of the input is repaired via epenthesis or via deletion.  

 Adding one row to (110) so that the ranking MAX >> DEPV >> NOC is distinguished 

from DEPV >> MAX >> NOC would cover the twelve-way distinction that the contenders 
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in (109) show. This isn’t an omission on the part of P&S as they explicitly set aside 

treatment of forms with clusters. It is, however, illuminating to see exactly what the 

addition of an inviolable constraint, like the prohibition against clusters, does to the 

typology.   

 Given that the twelve-way distinction first arises for inputs of length five, one might 

reasonably ask whether longer inputs could reveal still more distinctions. In this case, a 

logical assessment of the constraint interactions (and letting the algorithm churn through 

the 131 thousand inputs up to length 16) can reassure us that we have identified all of the 

distinctions made by the constraints. For more complex problems with more constraints 

such an approach would, of course, not be feasible.  

5.5  Elementary Ranking Conditions 

 An Elementary Ranking Condition or ERC is a representation of the disparities in 

the violations incurred by two candidates (Prince 2002a, 2002b). ERCs are fundamentally 

comparative; one candidate is designated as the winner and the ERC describes, for each 

constraint, whether it prefers the designated winner, the other candidate, or neither.  

Elementary Ranking Conditions are recorded as a vectors of the symbols W, L, and 

e. The order of the terms in the vector corresponds to an arbitrary (but fixed) ordering of 

the constraints. I’ll call this fixed constraint-order the “key” because it allows us to read 

the ERCs. The occurrence the symbol  W in the ith coordinate of an ERC indicates that the 

ith constraint in the key prefers the designated winner, likewise the occurrence of L in the 

ith coordinate of an ERC indicates that the ith constraint in the key prefers the designated 
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loser, and the occurrence of the symbol e in the ith coordinate of an ERC indicates that the 

ith constraint in the key prefers neither the designated winner nor the designated loser.  

In (116) I give a function that takes two vectors, the first of which is assumed to be 

the winner and the second the loser, and yields an ERC encoding the rankings under which 

the first cost vector triumphs over the second.   

 
(116) Building ERCs by comparing cost vectors:  

1 1

1
1 1

 if ,..., ,..., ,  else
,...,  where   if ,

( ,..., , ,..., )
                           if ,  and

                            if .

n n

n i i i
n n

i i i

i i i

w w v v
e e e w v

erc w w v v
e w v
e w v

∅ 〈 〉 = 〈 〉
〈 〉 = =〈 〉 〈 〉  = >
 = <

e
L
W

 

 

The convention that the erc function returns null when an ERC is compared to itself will 

allow us to ignore the “degenerate” ERC whose coordinates are all e.  

For the sake of illustration, let’s assume that we know that the input /vc/ surfaces 

as the fully faithful output [vc] under some unknown constraint ranking and ask what we 

can glean about the unknown ranking from this fact. In (117) I give the set of contenders 

for the input /vc/. For each candidate I give the ERC that’s derived from comparing that 

candidate to the observed output (candidate a). The order of the terms in the ERCs (the 

key) corresponds to the order of constraints in the columns in (117). Note that this order 

is not the ranking of the unknown grammar that selects the input/output pair /vc/→ [vc].  
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(117)   /vc/ ons noc max depV depC ERCs 
 a. ) vc 1 1 0 0 0 ∅ 
 b.  v 1 0 1 0 0 〈e,L,W,e,e〉 
 c.  v.cv 1 0 0 1 0 〈e,L,e,W,e〉 
 d.  cvc 0 1 0 0 1 〈L,e,e,e,W〉 
 e.  - 0 0 2 0 0 〈L,L,W,e,e〉 
 f.  cv 0 0 1 1 0 〈L,L,W,W,e〉 
 g.  cv 0 0 1 0 1 〈L,L,W,e,W〉 
 h.  cv.cv 0 0 0 1 1 〈L,L,e,W,W〉 
 

In (118) through (122) I’ll go through the candidates in (117) one by one, comparing each 

to the observed winner a and discussing the ERC derived from this comparison.  

 
(118)   /vc/ ons noc max depV depC  
 a. ) vc 1 1 0 0 0 ERC 
 b.  v 1 0 1 0 0 〈e,L,W,e,e〉 
 

The ERC for candidate b is 〈e,L,W,e,e〉. The value at the first coordinate in the ERC 

is e because both candidate b and candidate a get one violation of ONSET – ONSET does 

not prefer either candidate. The value at the second coordinate in the ERC is L because 

candidate a, the winner, gets one violation of NOCODA while candidate b gets none – that 

is, NOCODA prefers the loser b. The value at the third coordinate is W because candidate a 

gets no violations of MAX while candidate b gets one – MAX prefers the winner a. The 

values at the fourth and fifth coordinates in the ERC are both e because candidates a and 

b get the same number of violations of DEPV and DEPC.  

The ERC 〈e,L,W,e,e〉 tells us that the constraint in the third coordinate, MAX, 

prefers candidate a while the constraint in the second coordinate, NOCODA, prefers b. Thus, 

in order to select candidate a over candidate b, MAX must dominate NOCODA.  
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(119)   /vc/ ons noc max depV depC  
 a. ) vc 1 1 0 0 0 ERC 
 c.  v.cv 1 0 0 1 0 〈e,L,e,W,e〉 
 

The ERC for candidate c is 〈e,L,e,W,e〉. This indicates that candidate a is preferred 

DEPV while candidate c is preferred by NOCODA. Thus DEPV must dominate NOCODA. 

 
(120)   /vc/ ons noc max depV depC  
 a. ) vc 1 1 0 0 0 ERC 
 d.  cvc 0 1 0 0 1 〈L,e,e,e,W〉 
 

The ERC for candidate d is 〈L,e,e,e,W〉. This tells us that DEPC prefers a while ONSET 

prefers d. Thus DEPC must dominate ONSET.  

 
(121)   /vc/ ons noc max depV depC  
 a. ) vc 1 1 0 0 0 ERC 
 e.  - 0 0 2 0 0 〈L,L,W,e,e〉 
 

The ERC for candidate e is 〈L,L,W,e,e〉. This is more informative than the previous 

three ERCs, it indicates that MAX a while ONSET and NOCODA both prefer candidate e. 

This means that MAX must dominate both ONSET and NOCODA.  

 
(122)   /vc/ ons noc max depV depC  
 a. ) vc 1 1 0 0 0 ERC 
 f.  cv 0 0 1 1 0 〈L,L,W,W,e〉 
 

The ERC for candidate f is 〈L,L,W,W,e〉. This indicates that MAX and DEPV both prefer 

candidate a but ONSET and NOCODA both prefer candidate f. Thus either MAX or DEPV 

must dominate both ONSET and NOCODA.  
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Fusing X with e yields X; e is the identity operator  

Fusing anything with L yields L; L is dominant   

 The ERCs for candidates g and h encode the same kind of disjunction seen in the 

ERC for candidate f.  

 ERCs are extremely useful tools for reasoning about ranking arguments. Their 

value is twofold: first, they are generalizations that abstract away from specific violations 

and encode just relevant differences between candidates, and second, as we’ll see in the 

next section, they can be logically manipulated to draw nonobvious inferences. 

5.6  Reasoning with Elementary Ranking Conditions 

 Prince (2002a) shows that Elementary Ranking Conditions are analogous to 

statements of three-valued relevance logics. The reader is referred to Prince’s detailed 

analysis for discussion of this fact. For our current purposes there are two logical 

operations on ERCs that can facilitate their use in reasoning about rankings.     

 Fusion is an operation that combines two Elementary Ranking Conditions to 

produce a third ERC that is entailed by the truth of the first two. In fusion the coordinates 

of the ERCs are combined as in (123).  

 
(123) Fusion of Entries: (Prince 2002a: 8) 

X ○ X = X – Fusing X with itself yields X; this is idempotence 
 

X ○ e = X 
e ○ X = X  
 

X ○ L = L 
L ○ X = L   

 

The fusion of ERC1 and ERC2, denoted ERC1 ○ ERC2, is simply the coordinate-wise 

fusion of the terms that make up ERC1 and ERC2. This is defined in (124).  
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(124) Fusion of ERCs: 

 1 2 1 2 1 1 2 2, ,..., , ,..., , ,...,n n n nx x x y y y x y x y x y〈 〉 〈 〉 = 〈 〉D D D D  

 
For an illustration of fusion, consider 〈W,L,e〉 and 〈e,W,L〉. Fusing these ERCs yields 

〈W,L,L〉. This straightforwardly capturing the transitivity of domination – if  constraint 1 

must dominate constraint 2 which in turn must dominate 3 then 1 must dominate 2 and 3.  

Fusion is even more useful in its ability to eliminate disjunctions. For instance, 

given ERC1 = 〈W,W,L〉 which says that either constraint 1 or constraint 2 must dominate 

constraint 3 and given ERC2 = 〈W,L,W〉 which says that either constraint 1 or constraint 

3 must dominate constraint 2 we can easily obtain ERC1 ○ ERC2 = 〈W,L,L〉 which says 

that constraint 1 must dominate both constraints 2 and 3.  

 While fusion determines what third ERC is entailed by the truth of two others, it 

is also the case that an ERC can be entailed from the truth of a single other ERC. In (125) 

I give Prince’s definition of entailment for nontrivial ERCs. An ERC is nontrivial if it 

contains at least one W and one L. Because the ERCs that we are working with here come 

from contenders, they are all nontrivial. For further discussion of trivial vs. nontrivial 

ERCs, see Prince (2002a: 2). 

 
(125) A nontrivial ERC = 〈x1, ..., xn〉 entails E' = 〈y1, ..., yn〉 iff  

 { i | xi = W} ⊆ { i | yi = W} and { j | xj = L} ⊇ { j | yj = L} 

 
In prose, E1 entails E2 if the coordinates containing W in E1 are a subset of those containing 

W in E2 and the coordinates containing L in E1 are a superset of those containing L in E2. 
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 If we consider L to be the most informative (strongest) bit of information, W to be 

the least informative (weakest) and e to intermediate then ERCs simply entail weaker 

ERCs. In (126) I illustrate the 18 nontrivial ERCs that are entailed by 〈W,L,L,L〉.14 

 

 
(126) 〈W,L,L,L〉    
 

 
         C1 >> C2, C3, C4                                                                            C1∨C2∨C4 >> C3 
        C1 >> C3, C4                           C1∨C2 >> C3 
                                   C1 >> C3 
 

A set of Elementary Ranking Conditions constitutes a hypothesis about how the  

constraints of a grammar are ranked. Entailment relations among ERCs make it possible 

to reduce a set of ERCs to a smaller set that encodes the same information. This is handy 

because it can reduce the number of ERCs that we need to keep track of. This will  become 

relevant in the next section when we turn to the problem of determining whether a set of 

ERCs is internally consistent. For now note in (127) how the set of ERCs from the losing 

contenders in (117) can be reduced from seven down to three statements.  

 
(127) (b) 〈e,L,W,e,e〉 ← entailed by(e)  
 (c) 〈e,L,e,W,e〉         
 (d) 〈L,e,e,e,W〉     all of the information is contained in this subset  
 (e) 〈L,L,W,e,e〉    
 (f) 〈L,L,W,W,e〉  ← entailed by(e)  
 (g) 〈L,L,W,e,W〉  ← entailed by(e)  
 (h) 〈L,L,e,W,W〉  ← result of(c)○(d)   
                                                 
14 Recall that a nontrivial ERC is one with at least one W and one L. 

→ 〈W,L,L,e〉 
 
→ 〈W,L,e,L〉 
 
→ 〈W,e,L,L〉 

→ 〈W,L,L,W〉 
→ 〈W,L,e,e〉 
→ 〈W,L,W,L〉 
→ 〈W,e,e,L〉 
→ 〈W,W,L,L〉 
→ 〈W,e,L,e〉 

→ 〈W,L,e,W〉 
→ 〈W,e,L,W〉 
→ 〈W,L,W,e〉 
→ 〈W,e,W,L〉 
→ 〈W,W,e,L〉 
→ 〈W,W,L,e〉 

→ 〈W,L,W,W〉 
 
→ 〈W,W,W,L〉 
 
→ 〈W,W,L,W〉 
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Removing the entailed ERCs in (127) eliminates the disjunctive ones(f),(g), and(h), 
leaving only their simpler brethren in(c),(d), and(e). Expressing the information 

encoded by these three ERCs with a conventional ranking diagram gives us (128). 

 
(128)   DEPC  MAX  DEPV 

  
   ONSET   NOCODA 
 

 
5.7  Recursive Constraint Demotion and contenders 

 Tesar’s (1995a) Recursive Constraint Demotion algorithm is used, modified, and 

discussed in a large body of work (RCD; Tesar 1995a, 1996ab, 1997ab, 1998, 2000, and 

Tesar and Smolensky 1998, 2000 for example. In addition to being useful as a method for 

finding constraint rankings that are consistent with observed winner/loser pairs, RCD can 

be used to check a set of Elementary Ranking Conditions for internal consistency. In (129) 

I provide a recursive function that captures the consistency detecting aspect of Recursive 

Constraint Demotion based on Prince’s (2002b) discussion of ERCs and RCD.  

 

(129) 
true                 if ,

( ) ( ) if { | ,  ,  and }
otherwise false

i i

E
consistent E consistent F F v v E v w E w E

=∅
= = ∈ = ∈ → ≠ ≠



e W  

 

The first clause in (129) establishes the base case that an empty set of ERCs is consistent. 

The second clause is where the recursion comes in; it says that given subset F of E whose 

ith coordinates are e where there’s no member of E whose ith coordinate is W, if set F is 

consistent and (not identical to E) then E is consistent, otherwise the function returns false. 
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 It is easy to recast the contenders function from the previous chapter in terms of 

ERCs and RCD. To determine whether a vector v in a set of vectors V is a contender in V, 

every vector in the set is compared to v and represented as an ERC. If the resulting set of 

ERCs is consistent then v is a contender.  

 
(130) { }( ) |  and ({ ( , ) | })contenders V v v V consistent erc v w w V= ∈ ∈  

 
To illustrate the redefined version of the contenders function, let’s consider the problem 

of finding the contenders among V = {〈0,0,2〉, 〈1,0,1〉, 〈0,2,0〉, 〈0,1,1〉}. 

 
(131) Illustration of a consistency check: 

 To check whether the vector 〈0,0,2〉 is among the contenders in V we express V 

as a set of ERCs relative to the vector 〈0,0,2〉 and check that set for consistency.  

  erc(〈0,0,2〉, 〈0,0,2〉) = ∅ 
  erc(〈0,0,2〉, 〈1,0,1〉) = 〈W,e,L〉 
  erc(〈0,0,2〉, 〈0,2,0〉) = 〈e,W,L〉 
  erc(〈0,0,2〉, 〈0,1,1〉) = 〈e,W,L〉 

 consistent({〈W,e,L〉,〈e,W,L〉}) = true, so 〈0,0,2〉 is a contender in E.  

 
Repeating this check for the vectors 〈1,0,1〉 and 〈0,2,0〉 reveals that they are also 

contenders in the set V. Moving on to the last vector 〈0,1,1〉 we detect inconsistency.  

 
(132) Expressing V as ERCs relative to 〈0,1,1〉 gives us:  

  erc(〈0,1,1〉, 〈0,0,2〉) = 〈e,L,W〉 
  erc(〈0,1,1〉, 〈1,0,1〉) = 〈W,L,e〉 
  erc(〈0,1,1〉, 〈0,2,0〉) = 〈e,W,L〉 
  erc(〈0,1,1〉, 〈0,1,1〉) = ∅ 

 consistent({〈e,L,W〉, 〈W,L,e〉, 〈e,W,L〉}) = false 
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The non-contending vector 〈0,1,1〉 shows an instance of collective harmonic bounding 

(Samek-Lodovici and Prince 1999). That is, 〈0,1,1〉 is not bounded by any particular 

member of V but rather by the combination of 〈0,0,2〉 and 〈0,2,0〉 as alternatives.  

In the recursive test for consistency, once the set of ERCs is reduced to the set E = 

{〈e,L,W〉,  〈e,W,L〉} only the 1st coordinate contains no instances of L, but the set of 

ERCs with an e in the 1st coordinate is {〈e,L,W〉, 〈e,W,L〉} which is identical to E, so 

the second clause of consistent fails and the function returns false.  

With the redefinition of the contenders function in (130) in terms of Elementary 

Ranking Conditions, it’s now the case that the information that is being manipulated to 

find the contenders among a set of cost vectors is exactly the kind of ranking information 

that is gleaned from comparing losing contender-candidates to an observed output. This 

suggests one final reformulation of the contenders function.  

 In (133) I reformulate contenders as a function over a set of vectors V and a set of 

elementary ranking conditions E. This definition is just like the one in (130) with the 

addition that before each set of ERCs is checked for consistency, the set E is added to it. 

This allows us to give the contenders function some partial information about the ranking 

that we have in mind when generating contenders.  

(133) { }( , ) |  and ( { ( , ) | })contenders V E v v V consistent E erc v w w V= ∈ ∪ ∈  

 
If E is empty then no ranking information is pre-specified and the function is just like the 

initial formulation in (130). On the other hand, if E contains some information about the 

ranking then contenders will return only those cost vectors that are possibly optimal 
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given that information. Finally, if E defines a total ordering of the constraints then the 

function will simply return the vector in V that is optimal under the ranking in E.  

5.8  Beyond error-driven learning 

Having reformulated the contenders function to take into account a set of known 

ERCs we can modify the CONTENDERS algorithm to take utilize the same information. In 

(134) I redefine CONTENDERS so that it takes an input, as set of constraints CON, and a set 

of ERCs and returns the set of contenders modulo the pre-specified ERCs.  

 
(134) CONTENDERS(in, CON, ERCs) = Cn 

  0 〈A(in), CON〉⌦ = (Q, Σ, δ, q0, F) - Intersect the input & constraints  
  1 for each q ∈ Q 
  2      do o[q] ← ∅ 

- Set the cost attribute for each node 
   in the machine to null.  

  3 o[q0] ← {0̄} where k = |CON| - Set the cost of the start to {0̄} 

  4 H ← {q0} - Put the start state in the set H. 

  5 while H ≠ ∅ - While H is not empty loop as follows:  

  6      H ← H - {qu}   remove a node, qu, from H and 

  7    for each (qu, i, o, w, qv) ∈ δ    for each arc from qu to qv,  

  8       if  V={o[qv] ∪ o[qu]+w} and  
           contenders(V, ERCs) ≠ o[qv] 

  if there are any new contenders, 

  9          do  o[qv] ← contenders(V, ERCs) 
                    H ← H ∪ {qv} 

  update the cost attributes for o[qv]  
  and add qv to H. 

  10 Cn  ← [ ],  
q F

contenders o q E
∈

 
 
 
∪  - Select the contenders from the union

   of the cost attributes for the finals  
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When no elementary ranking conditions are 

specified this new version of the algorithm outputs 

the same candidate set as the original CONTENDERS 

algorithm presented in chapter five. For instance, if  

〈g, ONSET, NOCODA, MAX, DEPV, DEPC〉 is CON then 

CONTENDERS(vv, CON, ∅) = {〈0,0,0,0,2〉, 〈0,0,2,00〉, 

〈2,0,0,0,0〉} which gives us the candidates in (135). 

 
(135) Three contenders:  

   /vv/ ons noc max depV depC
 a.  cv.cv 0 0 0 0 2 
 b.  - 0 0 2 0 0 
 c.  v.v 2 0 0 0 0 
 

Observing candidate c in (135) as the output allows 

us to turn the failed contenders into ERCs. Candidate 

b yields 〈L,e,W,e,e〉 and a yields 〈L,e,e,e,W〉.  

 When predicting the optimal output for another 

input it’s now possible to constrain the predictions to 

those that are viable given the currently known ERCs. 

So, given E = {〈L,e,W,e,e〉 , 〈L,e,e,e,W〉}, we 

can ask what does CONTENDERS(vc, CON, E) return? 

To answer this consider the machine 〈A(vc), CON〉⌦ 

presented in (136).   

C
O

N: 〈O
N

SE
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O

D
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A
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E
PV
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E

PC
〉 

present
ed

in
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The revised CONTENDERS algorithm is much the same as the version presented in 

chapter five. As such, I won’t illustrate the algorithm in detail again but rather will focus 

on the points where the presence of the pre-specified ERCs change the outcome.   

In (137) I give the cost table that results after the cost of the start-state has been 

set to 0̄ in step 3 of the algorithm. In the cost tables shown here I won’t bother to write 

brackets around the set that make up the contents of each cell. As in chapter five, unshaded 

cells in the cost table indicate nodes that are currently in set H.  

 
(137)  q0 q1 q2 q3 q4 q5 ... q11 

  
1. 

〈0,0,0,0,0〉 ∅ ∅ ∅ ∅ ∅  ∅ 
 

In step 4 of the algorithm H was set to {q0}, so there is only one node in H to remove. 

Taking q0 out of H and checking the arcs originating at it gives us the bold arcs in (138). 

 
(138) There are four arcs originating at q0: 

 

 

 

 

 

 

 

At this point there’s no competition at the nodes, so each arc supplies a new contender-

cost for the node at its terminus, and each node is added to H. In (139) I update the table.  
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(139)  q0 q1 q2 ... q5 ... q7 ... q11 

  
2. 

〈0,0,0,0,0〉 〈0,0,0,0,1〉 〈1,0,0,1,0〉  〈0,0,1,0,0〉  〈1,0,0,0,0〉  ∅ 
 

Next a node is selected at random from H and the arcs originating at it are checked. 

Selecting node q1 gives us the three arcs in bold in (140) to check.  

 
(140) There are three arcs originating at q1: 

 

 

 

 

 

 

 
Now we have some competition. The arc from q1 to q2 reveals a new potential cost 

of 〈0,0,0,1,1〉 for q2. Taking this cost together with the current estimate for q2 gives us the 

set {〈1,0,0,1,0〉, 〈0,0,0,1,1〉}. Feeding this set to the function cont from chapter five would 

return both values as contenders, but feeding this set along with our pre-specified ERCs to 

the contenders function returns only 〈1,0,0,1,0〉 as a contender because 〈0,0,0,1,1〉 cannot 

ever beat 〈1,0,0,1,0〉 under the pre-specified ERCs. This is illustrated in (141).  
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(141) contenders({〈1,0,0,1,0〉, 〈0,0,0,1,1〉},{〈L,e,W,e,e〉, 〈L,e,e,e,W〉})   

      i) checking 〈1,0,0,1,0〉:  
erc(〈1,0,0,1,0〉, 〈0,0,0,1,1〉) = 〈L,e,e,e,W〉 

  consistent({〈L,e,e,e,W〉} ∪ {〈L,e,W,e,e〉, 〈L,e,e,e,W〉}) = true 
 

      ii) checking 〈1,0,0,1,0〉: 
erc(〈0,0,0,1,1〉, 〈1,0,0,1,0〉) = 〈W,e,e,e,L〉 
consistent({〈W,e,e,e,L〉} ∪ {〈L,e,W,e,e〉, 〈L,e,e,e,W〉}) = false 

 

We have basically the same result for the arc from q1 to q7. This arc reveals a new 

potential cost of 〈0,0,0,0,1〉 for q7. Taking this new cost together with the current cost 

attribute for node q7 gives us {〈0,0,0,0,1〉, 〈1,0,0,0,0〉}. Obviously, given no specification 

of the ranking, these costs are both contenders – they each encode a single violation of one 

constraint. However, when they are expressed as ERCs, 〈0,0,0,0,1〉 gives us 〈L,e,e,e,W〉 

and 〈1,0,0,0,0〉 gives us 〈W,e,e,e,L〉. The former is one of the pre-specified ERCs and 

the latter is its antithesis. Thus the former is trivially consistent and the latter inconsistent, 

so 〈1,0,0,0,0〉 is not a viable cost for q7 and o[q7] is not updated.  

Checking the arc from q1 to q6 allows us to replace ∅ in the cost attribute for node 

q6 with the estimate 〈0,0,1,0,1〉. The updated table of cost attributes is given in (142). 

 
(142) Updated table: 

  q0 q1 q2 q3 q4 q5 

  〈0,0,0,0,0〉 〈0,0,0,0,1〉 〈1,0,0,1,0〉 ∅ ∅ 〈0,0,1,0,0〉 

  q6 q7 q8 q9 q10 q11 

  

3. 

〈0,0,1,0,1〉 〈1,0,0,0,0〉 ∅ ∅ ∅ ∅ 

 



 

 126

Since H is not empty, a random node is removed from H and the arcs originating at it are 

checked. If q7 is the node removed we have the four bold arcs in (143) to check. 

 
(143) There are four arcs originating at q7: 

 

 

 

 

 

 

 
The arc from q7 to q5 reveals a new potential cost of 〈1,0,0,0,0〉 for node q4 (that’s 

the cost of the arc plus 〈1,0,0,0,0〉, the cost attribute for q7). Taking this new cost together 

with the current cost attribute for node q4 gives us the set {〈1,0,0,0,0〉, 〈0,0,1,0,0〉}. The 

result of feeding this set to the contenders function is illustrated in (144). 

 
(144) contenders({〈1,0,0,0,0〉, 〈0,0,1,0,0〉},{〈L,e,W,e,e〉, 〈L,e,e,e,W〉})   

      i) checking 〈1,0,0,0,0〉:  
erc(〈1,0,0,0,0〉, 〈0,0,1,0,0〉) = 〈L,e,W,e,e〉 

  consistent({〈L,e,W,e,e〉} ∪ {〈L,e,W,e,e〉, 〈L,e,e,e,W〉}) = true 
 

      ii) checking 〈0,0,1,0,0〉: 
erc(〈0,0,1,0,0〉, 〈1,0,0,0,0〉) = 〈W,e,L,e,e〉 
consistent({〈W,e,L,e,e〉} ∪ {〈L,e,W,e,e〉, 〈L,e,e,e,W〉}) = false 

 

The contenders function returns only the cost vector 〈1,0,0,0,0〉 as a contender for q5; this 

is a change from the previous value for o[q5] so the cost attribute for q5 is updated.  
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 The current cost attributes for nodes q4, q8 and q11 are all ∅, so the arcs terminating 

at them arcs reveal new values for the cost attributes for those nodes. The updated values 

are given in (145). 

 
(145) Updated table: 

  q0 q1 q2 q3 q4 q5 

  〈0,0,0,0,0〉 〈0,0,0,0,1〉 〈1,0,0,1,0〉 ∅ 〈1,0,0,0,1〉 〈1,0,0,0,0〉 

  q6 q7 q8 q9 q10 q11 

  

4. 

〈0,0,1,0,1〉 〈1,0,0,0,0〉 〈1,0,0,0,0〉 ∅ ∅ 〈1,0,1,0,0〉 

 

Eleven more passes through the while loop in step 5 of the algorithm result in the 

removal of all of the nodes from H and gives us the finished cost table in (146).  

 
(146) Finished table: 

  q0 q1 q2 q3 q4 q5 

  〈0,0,0,0,0〉 〈0,0,0,0,1〉 〈1,0,0,1,0〉 〈1,0,0,1,1〉 〈1,0,0,0,1〉 〈1,0,0,0,0〉 

  q6 q7 q8 q9 q10 q11 

  
15. 

〈1,0,0,0,1〉 〈1,0,0,0,0〉 〈1,0,0,0,0〉 
〈1,0,0,1,0〉 
〈1,0,1,0,0〉 
〈1,1,0,0,0〉 

〈1,0,0,0,0〉 〈1,0,1,0,0〉 
〈1,0,0,1,0〉 

 

Once the set H is empty step 10 pools the costs at the final nodes and removes 

any costs that aren’t contenders in this set. Since q9 is the only final state, this check is 

redundant for this particular machine.  

The output of the algorithm is {〈1,0,0,1,0〉, 〈1,0,1,0,0〉, 〈1,1,0,0,0〉}. Feeding the 

cost table along with the machine to the ccand function (presented in §4.4) produces the 

set of candidates. In (147) I give the three candidates that are produced by the modified 
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CONTENDERS algorithm for the input /vc/ when  〈L,e,W,e,e〉, and 〈L,e,e,e,W〉  are 

pre-specified as conditions on which candidates are to be generated.   

 
(147) Three contenders: 

   /vc/ ons noc max depV depC
 a.  vc 1 1 0 0 0 
 b.  v 1 0 1 0 0 
 c.  v.cv 1 0 0 1 0 
 

Using the new CONTENDERS algorithm it’s possible to use the observation that /vv/ maps to 

[v.v] under some unknown grammar to reduce the set of predictions for a subsequent input 

like /vc/ from the eight contenders in (117) to just the three candidates In (147). 

Running the CONTENDERS algorithm with some ERCs pre-specified can radically 

reduce the amount of work involved in finding the contenders because the pre-specified 

ERCs reduce the size of the set of viable contender-costs for each node. This reduces both 

the number of times that a node will be added into H and the number of vectors that have 

to be summed and kept track of. 

 

5.9  Simulation 

The redefined CONTENDERS algorithm provides a natural method for assessing the 

success of hypotheses about grammars in cases where the lexicon is fixed. That is, if we 

are dealing with a finite lexicon then the success of a hypothesis (set of ERCs) can be 

stated as the portion of the lexicon for which it reduces the number of viable contenders 

to exactly one. This measurement is a worst-case assessment that classifies a hypothesis 
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as correct for a given input form just in case every linearization of the constraints that is 

consistent with the hypothesized ERCs predicts the right output for that input. In other 

words, a hypothesis will only be rated as 100% correct once every linearization of the 

constraints that respects the ERCs in the hypothesis generates the right output for every 

input form in the lexicon.   

With this tool I return now to the 62-form lexicon presented in §5.3. To assess the 

difficulty of learning languages in the class obtained from the interaction the CV5 lexicon 

with the grammars defined by permutation of {g, ONSET, NOCODA, MAX, DEPV, DEPC}, 

I use the simulation described in (148). In step (ii) in the measurement, cv is defined as the 

number of forms in the lexicon for which CONTENDERS produces exactly one cost vector 

when given the set of ERCs that makes up the current hypothesis.  

 
(148) TRIAL(CON, Lex):  

1 Randomly linearize the constraints in CON to obtain R. 
2 cv = |{ in | in ∈ CV5, |CONTENDERS(in, R, ∅)| = 1 }|, output→(0, cv) 
3 Run TRIALOOP(R, CV5, 0, ∅). 

 
(149) TRIALOOP(R, Lex, n, E0) 

 1 Draw a random input in from CV5 and for v the cost vector of an optimal  
  form in OPTIMIZE(in, R), and for V the set of cost vectors obtained  
  from CONTENDERS(in, R, ∅), obtain E1 = { e | erc(v, v') , v' ∈ V}. 
 2 cv = |{ in | in ∈CV5, |CONTENDERS(in, R, E1 ∪ E0)| = 1}|, output→(n, cv) 
 3 if k = |CV5| halt, else run TRIALOOP(R, CV5, n + 1, ERCs ∪ E0). 

 
The clause “output → (n, cv)” in step 2 of (148) tells the algorithm to write out the 

number of lexical items covered after the nth observation. In step 2 of TRIAL there haven’t 

yet been any observations so n = 0, with each subsequent observation n goes up by one.  
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For the basic CV syllable theory the value of cv at the first coverage check in step 

2 of TRIAL will always be 2. This is because there are two forms, /cv/ and /cvcv/, for which 

CONTENDERS produces exactly one prediction when fed no ERCs at all. In (150), I present 

two iterations of the TRIAL algorithm. 

 

(150) Trial 1 - random ranking: 〈NOCODA, MAX, ONSET, DEPC, DEPV〉 

 Observation 0:  Lexicon coverage at 0 observations = 2 

 Observation 1:  /cvv/ → CVxCVx 

  /cvv/ NOC MAX ONS DEPC DEPV ERCs 
1 ) cv.cv 0 0 0 1 0 ∅ 
2  cv.v 0 0 1 0 0 〈e,e,W,L,e〉 
3  cv 0 1 0 0 0 〈e,W,e,L,e〉 

 

 Total ERC set: E = {〈e,e,W,L,e〉, 〈e,W,e,L,e〉} 

 Lex coverage: 19 = |{ in | in ∈ CV5, |CONTENDERS(in, R, E)| = 1 }|  
 

 Observation 2:  /cvv/ → CVxCVx 

  /cvv/ NOC MAX ONS DEPC DEPV ERCs 
1 ) cv.cv 0 0 0 1 0 ∅ 
2  cv.v 0 0 1 0 0 〈e,e,W,L,e〉 
3  cv 0 1 0 0 0 〈e,W,e,L,e〉 

 

 Total ERC set: E = {〈e,e,W,L,e〉, 〈e,W,e,L,e〉} 

 Lex coverage: 19 = |{ in | in ∈ CV5, |CONTENDERS(in, R, E)| = 1 }|  
 

 Observation 3:  /cc/ → CVxCVx 

  /cc/ NOC MAX ONS DEPC DEPV ERCs 
1 ) cv.cv 0 0 0 0 2 ∅ 
2  - 0 2 0 0 0 〈e,W,e,e,L〉 
3  cvc 1 0 0 0 1 〈W,e,e,e,L〉 

 

 Total ERC set: E = {〈e,e,W,L,e〉, 〈e,W,e,L,e〉, 〈e,W,e,e,L〉,  
   〈W,e,e,e,L〉} 

 Lex coverage: 62 = |{ in | in ∈ CV5, |CONTENDERS(in, R, E)| = 1 }|  
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In trial 1 we see that after just three observations (actually only two because the 

second was identical to the first), the set of four ERCs collected is sufficient to make the 

right output prediction for every single form in the lexicon. Sometimes convergence on 

the correct grammar occurs after only one observation. This is illustrated in (151).  

 
(151) Trial 2 - random ranking: 〈DEPC, MAX, NOCODA, DEPV, ONSET〉 

 Observation 0:  Lexicon coverage at 0 observations: 2 

 Observation 1:  /cvv/ → CVxCVx 

  /vc/ DEPC MAX NOC DEPV ONS ERCs 
1 ) v.cv 0 0 0 1 1 ∅ 
2  vc 0 0 1 0 1 〈e,e,W,L,e〉 
3  v 0 1 0 0 1 〈e,W,e,L,e〉 
4  cv 0 1 0 1 0 〈e,W,e,e,L〉 
5  - 0 2 0 0 0 〈e,W,e,L,L〉 
6  cv.cv 1 0 0 1 0 〈W,e,e,e,L〉 
7  cvc 1 0 1 0 0 〈W,e,W,L,L〉 
8  cv 1 1 0 0 0 〈W,W,e,L,L〉 

 

 Total ERC set: E = {〈e,e,W,L,e〉, 〈e,W,e,L,e〉, 〈e,W,e,e,L〉,  
   〈e,W,e,L,L〉, 〈W,e,e,e,L〉, 〈W,e,W,L,L〉,  
   〈W,W,e,L,L〉} 

 Lex coverage: 64 = |{ in | in ∈ Lex, |CONTENDERS(in, R, E)| = 1 }|  

 

The i/o pair observed in (151) constitutes what Gibson and Wexler (1994) call a 

global trigger. That is, this single observed datum reveals enough information about the 

language for the learner to distinguish it from all others in the space of possible languages. 

In this case the set of possible languages is just the set of input/output relations over CV5 

defined by permutation of the constraints {DEPC, MAX, NOCODA, DEPV, ONSET}.  
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Though it’s often the case that one or two observations reveal enough information 

to make the right predictions thereafter for the entire lexicon (this happened in almost half 

of the trials I ran), in some trials fate is not so kind. For instance, observing the outcome 

for inputs /cv/ or /cvcv/ reveals nothing about the grammar, and observing the outcome 

for inputs that have been previously seen reveals no new information.  

To get a general idea of how easily this simple class of languages can be learned I 

ran one thousand iterations of the TRIAL algorithm, recording for each iteration the portion 

of lexicon coverage after each of the observations. In (152) I graph the lexicon coverage 

after n observations averaged over the thousand trials.  

 

(152) Average lexicon coverage after n observations (1,000 trials) 
 

 

obs. 0 3.33% 
obs. 1 50.03% 
obs. 2 77.12% 
obs. 3 89.52% 
obs. 4 94.30% 
obs.5 97.10% 
obs.6 98.28% 
obs.7 99.03% 
obs.8 99.40% 
obs.9 99.59% 

obs.10 99.69% 
obs.11 99.71% 

... ... 
obs.20 100.0% 

 

 

 
To assess the advantage gained by access to the entire set of contenders I devised 

a simple error-driven version of the TRIAL algorithm that I’ll call ED-TRIAL. In (153) I 
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give ED-TRIAL in detail. As with the version of the algorithm in (148), a random ranking 

R is selected and then input forms are randomly drawn from the lexicon and mapped to 

optimal outputs under R. If all linearizations of the constraints that are consistent with the 

current hypothesis (set of ERCs) generated by the observed i/o mapping then no errors are 

possible and thus no information is gained. On the other hand, if any linearization that is 

consistent with the current hypothesis generates a wrong prediction then a linearization is 

selected at random and if it makes an erroneous prediction then the failed candidate allows 

one ERC to be deduced and added to the hypothesis.  

 
(153) ED-TRIAL (CON, Lex):  

1 Randomly linearize the constraints in CON to obtain R. 

2 cv = |{ in | in ∈ Lex, |CONTENDERS(in, R, ∅)| = 1 }|, output (0, cv) 

3 Run ED-TRIALOOP(R, Lex, 0, ∅). 

 
(154) ED-TRIALOOP(R, Lex, n, E0) 

 1 Draw a random input in from Lex and for  CONTENDERS(in, R, E0) = C if  

  |C| > 1 then pick a random w ∈ C and for w the cost vector of an optimal  

  form in OPTIMIZE(in, R), obtain E = | erc(w, v). 
 
 2 cv = |{ in | in ∈ Lex, |CONTENDERS(in, R, E ∪ E0)| = 1 }|, output (n, cv) 

 3 if k = |Lex| terminate, else run ED-TRIALOOP(R, Lex, n + 1, E ∪ E0). 

 
In (155) I graph the lexicon coverage after n observations averaged over one 

thousand trials with the constraint set {g, ONSET, NOCODA, MAX, DEPV, DEPC}.  
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(155)  Average lexicon coverage after n observations (1,000 trials) 
 

 

obs. 0 3.33% 
obs. 1 4.69% 
obs. 2 8.83% 
obs. 3 15.24% 
obs. 4 24.73% 
obs.5 37.45% 
obs.6 48.90% 
obs.7 59.30% 
obs.8 69.43% 
obs.9 77.83% 

obs.10 83.48% 
obs.11 87.73% 

... ... 
obs.58 100.0% 

 

 
– The dashed line shows the ED trials, the solid line is repeated from (152) above.  

 

5.9  The (slightly) extended CV syllable theory 

 In this section I’ll present a class of grammars with twice the number of constraints 

used in the basic CV syllable theory grammars.15 Surprisingly, this increase in the number 

of constraints won’t greatly change the rate at which languages can be learned with the 

simple strategy of gathering ERCs from observed i/o-pairs. The constraint set that I’ll use 

for this exploration is given in (156) and (157). In (156) I start with four constraints that 

will be held undominated at the top of the hierarchy in every ranking considered and then 

in (157) I present the constraints whose rankings will be allowed to vary.  

                                                 
15 Actually these new grammars will have 14 constraints, but 4 of them will be undominated in all rankings. 
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(156)  Constraints held undominated in all rankings:  

 a) *CCC: sequences of three consonants are forbidden 

  – the sequence CCC gets one violation. This constraint has 3 states. 
 

 b) *VVV: sequences of three vowels are forbidden 

  – the sequence VVV gets one violation. This constraint has 3 states. 
 

 c) *HNUC: every syllable must have a nucleus (must contain at least one V) 

  – the sequence xC*x gets one violation. This constraint has 2 states. 

    (Prince and Smolensky 1993) 
 

 d) OCP: the sequence VC+V is not permitted within a syllable  

  – the sequence VC+V gets one violation. This constraint has 3 states. 

     (cf. Leben 1973, McCarthy 1979, 1986) 

 
Keeping the four constraints in (156) undominated will rein in the set of candidates 

considered in each derivation to consist of (possibly empty) sequences of syllables each 

of which consists of 0-2 consonants followed by 1-2 vowels followed by 0-2 consonants. 

As previously, I’ll assume that all surface segments are syllabified and that inputs are not 

specified for syllabification.  

 In (157) I give ten constraints whose ranking will be allowed to vary between 

trials. The first four are from the basic CV syllable theory and the last six round out what 

I’ll call the extended CV syllable theory.  
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(157)  Ranked constraints:  

  Basic CV syllable theory 
 a) ONSET: penalizes vowels word-initially and immediately following an ‘x’  
 b) NOCODA: penalizes syllable boundaries occurring immediately after a ‘C’  
 c) DEPC: penalizes consonant epenthesis 
 d) DEPV: penalizes vowel epenthesis 

 
  Extended CV syllable theory 
 e) MAXC: penalizes deletion of consonants 
 f) MAXV: penalizes deletion of vowels 
 g) *CC: penalizes consonant-consonant sequences  
 h) *VV: penalizes vowel-vowel sequences  
 i) *C: penalizes each occurrence of a consonant 
 j) *V: penalizes each occurrence of a vowel  

 

 Constraints a through d were presented in §6.1. Recall that ONSET and NOCODA 

each have two states. The new constraints in e through j aren’t too different from the 

constraints that we’ve seen thus far. The two versions of MAX in e and f distinguish 

consonant and vowel deletion respectively. Like all faithfulness constraints used here, 

each has one state. Constraints *CC and *VV penalizes pairs of adjacent consonants and 

vowels and each one has two states. At this point our alphabet has only one C and one V, 

so there is no need to distinguish good clusters and diphthongs from bad ones. Obviously, 

these constraints can be refined for larger alphabets. In i and j we have a pair of simple 

*STRUCTURE-style markedness constraints that penalize every occurrence of a consonant 

or vowel respectively.  



 137

          Intersecting the 14 constraints 

in (156) and (157) could result in a 

machine with: 3 × 3 × 2 × 3 × 2 × 2 

× 1 × 1 × 1 × 1 × 2 × 2 × 1 × 1 = 846 

states. However, because many of 

the environments specified by the 

constraints overlap, there are only 

ten states in Eval for the extended 

CV syllable theory. 

 

Eval for the extended CV 

syllable theory, is given in (158) at 

the right. Though a bit hard to read, 

this graph shows that the grammar 

doesn’t get that much more complex 

when the new constraints are added.  

By varying the ranking of the 

ten constraints in (157) we obtain 

10! = 3,628,800 permutations. The 

pertinent question is, then, how many 

different i/o-relations are defined by 

permutation of these ten constraints. 

Eval for the extended 
C

V
 syllable theory 

〈*C
C

C
, *V

V
V

, HN
U

C, O
C

P, O
N

SE
T, N

OC
O

D
A,  

  D
E

PC
, D

E
PV

, M
A

XC
, M

A
XV

, *C
C

,  *V
V

, *C
, *V

〉That is, how big is the typology? 
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 In  the lexicon CV5, the input /vvccc/ has 39 contenders under the ten constraints 

in (157). This establishes at least 39 different i/o-relations defined by these constraints on 

the lexicon CV5. There could easily be more than 39 languages, for it is entirely possible 

that no single input in the lexicon will show every possible distinction. In fact, the string 

/vccvvvccc/ has 78 contenders under the constraints in (157).  

 I’ll come back to the larger question of how many different i/o-relations are defined 

by a set of constraints over the range of all possible inputs from Σ* in chapter seven. For 

now I’ll continue to focus on the finite lexicon CV5 and ask how quickly the TRIAL and ED-

TRIAL algorithms converge on the languages that are defined by the application of different 

permutations of the constraints in (157) to the input forms in CV5. 

 As with the 5-constraint scenario, I ran one thousand trials with each algorithm and 

calculated the average lexicon-coverage after each observation in each trial. In (159) I give 

a table with averaged results over the first 30 observations for both the contender-driven 

and error-driven versions of TRIAL in both the five and ten constraint scenarios. 
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(159) Average results across types of trials: 

 obs. 5con 5con-ed 10con 10con-ed 
 0 3.33% 3.33% 0% 0.00% 
 1 50.03% 4.69% 51.64% 0.61% 
 2 77.12% 8.83% 74.12% 2.54% 
 3 89.52% 15.24% 84.08% 4.72% 
 4 94.30% 24.73% 89.68% 9.16% 
 5 97.10% 37.45% 93.39% 15.21% 
 6 98.28% 48.90% 95.23% 21.92% 
 7 99.03% 59.30% 96.51% 27.79% 
 8 99.40% 69.43% 97.30% 35.14% 
 9 99.59% 77.83% 97.91% 42.85% 
 10 99.69% 83.48% 98.38% 51.17% 
 11 99.71% 87.73% 98.63% 57.19% 
 12 99.89% 90.89% 98.97% 62.54% 
 13 99.89% 93.99% 99.13% 68.48% 
 14 99.89% 95.40% 99.33% 72.72% 
 15 99.95% 96.40% 99.48% 76.45% 
 16 99.95% 97.31% 99.59% 79.84% 
 17 99.95% 97.98% 99.63% 82.75% 
 18 99.95% 98.40% 99.69% 85.72% 
 19 99.95% 98.82% 99.71% 87.81% 
 20 100% 99.09% 99.72% 89.68% 
 21 100% 99.32% 99.75% 90.69% 
 22 100% 99.50% 99.79% 91.28% 
 23 100% 99.62% 99.83% 92.43% 
 24 100% 99.75% 99.83% 93.36% 
 25 100% 99.78% 99.84% 94.13% 
 26 100% 99.78% 99.87% 94.45% 
 27 100% 99.84% 99.87% 95.06% 
 28 100% 99.89% 99.89% 95.49% 
 29 100% 99.89% 99.89% 96.18% 
 30 100% 99.92% 99.90% 96.56% 
 
 
 Unlike the 5-constraint trials, the 10-constraint trials start at 0% coverage. This is 

because, with the addition of basic markedness constraints like *V and *C, it’s no longer 

the case that for inputs like /cv/ and /cvcv/ the identity map is optimal under all constraint 

rankings. In (160) I present a graph of the results for all four sets of trials.  
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(160) Average lexicon coverage after n observations (1,000 trials) 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are several interesting things illustrated in (160). The most surprising is the 

fact that doubling the number of constraints doesn’t have much of an effect on the rate of 

convergence for contender-driven learning even though the number of possible rankings 

goes from 120 to 3.6 million and the number of possible i/o-relations goes from 12 to 39. 

The error-driven algorithm, on the other hand, does significantly worse when the number 

of constraints is doubled and accordingly the disparity between the rates of convergence 

for the contender-driven and error-driven trials is even greater in the 10-constraint trials.  

As an initial examination of learning with contenders, these results are promising. 

The fact that, as more constraints are added, the size of Eval does not grow explosively 

and the rate of learning doesn’t drop too quickly suggests that the difficulties in learning 

real-world OT grammars may be far less than the imaginable worst case scenario. 
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6  OT in linear time 

In chapter three I presented a method for finding optimal parses in the intersection 

of an input string with Eval. In this chapter I’ll show how recurring structures across the 

evaluation of various inputs can be generalized and how suboptimal chunks of these 

structures can be excised ahead of time to make later optimization tasks more efficient.  

Notice that when Eval in (161) is intersected with the acceptor for input /abab/ in 

(162) to produce (163), the state-structure of Eval is iterated over each segment of the 

input string. 

 
(161) Eval: 

 〈*CC, MAX, DEP〉⌦ 

 

 

 

 
(162) A(abab): 

 

 

(163) 〈A(abab),*CC, MAX, DEP〉⌦ 

 

 

 
 

  Eval at index 0         Eval at index 1        Eval at index 2         Eval at index 3        Eval at index 4 
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When examining just one of the boxed iterations of Eval in (163) it’s not possible 

to know which of the arcs are in a globally optimal path through the machine. This is so 

because optimality is a global property of an entire path relative to an entire machine. On 

the other hand, it is possible to detect many arcs that could never participate in an optimal 

path. This is because suboptimality can be a strictly local property (cf. the optimal subpath 

lemma in §3.3).  

A path from point A to point B reading in input string S is locally optimal just in 

case there is no cheaper way to get from point A to point B reading in S. Conversely a 

path is locally suboptimal just in case there is a cheaper way to get from its origin to its 

terminus reading in the same input string that it does. It follows straightforwardly from 

the optimal subpath lemma that all subpaths of optimal paths are locally optimal paths.  

 In this chapter I will present an algorithm that capitalizes on the fact that the 

structure of Eval is repeated many times throughout the assessment of various inputs, by 

doing optimization on Eval itself. I’ll show that by removing locally suboptimal paths in 

Eval we obtain a “preoptimized” version of Eval that has many desirable properties. The 

most important of these properties is that the amount of work required to optimize the 

intersection of an input string with preoptimized Eval is a linear function of the length of 

the input string. In other words, the machine can be optimized in linear time.  

 

6.1  Overview of preoptimization 

 Preoptimization takes Eval and returns a machine E with the same set of nodes, the 

same alphabet, the same start state, and the same final states. The only difference between 
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Eval and E is that for every pair of nodes q and r, if w is the cost of an optimal from q to r 

in Eval that accepts exactly one input symbol i ∈ Σ, then there is an arc (q, i, Out, w, r) in 

E where Out is the set of outputs written by the paths from q to r in M at cost w reading 

the input i. In this new machine E, each arc corresponds to a set of optimal paths in Eval 

that accept exactly one segment from the input string. In (164) I illustrate the effects of 

preoptimization on Eval.   

 
(164) Preoptimization: 

 

 

 
 

 

 

 

 

           〈*CC, MAX, DEP〉⌦          PREOPT(〈*CC, MAX, DEP〉)  

 
Consider in (165) the intersection of preoptimized Eval with the input /abab/ and 

contrast this with the evaluation of the same input without preoptimization, presented 

above in (163). 



 

 144

(165) 〈A(abab), PREOPT(〈*CC, MAX, DEP〉)〉⌦ 

 

 

 

 

 
 

 
 The machine in (165) has many interesting properties. The most salient of these, 

when compared with (163), is that (165) has no cycles (loops). Computationally, the fact 

that (165) is a directed acyclic graph (DAG), means that the amount of work required to 

optimize it is a linear function of its size. Empirically, the lack of cycles means that (165) 

generates only a finite set of candidates  

 Now that I’ve shown where we are going, the remainder of the chapter will be 

spent showing how to get there and proving that the result is sound in the sense that no 

member of the infinite set of candidates eliminated by the preoptimization algorithm 

could ever be optimal. I will close with a discussion of the computational complexity of 

the preoptimization algorithm.  

 

6.2  Isomorphism across evaluations 

 Across the evaluation of various inputs, any given substring always contributes 

the same structure to the various machines in which it occurs. For example, consider in 

(166) the machine that results from intersecting Eval = 〈*CC, MAX, DEP〉⌦ with A(ab). 
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(166)  〈A(ab),*CC, MAX, DEP〉⌦ 

 

 

 

 

 
Notice that (166) is identical to the first half of 〈A(abab),*CC, MAX, DEP〉⌦ given 

in (163). In fact, modulo the differences in the indices at the tops of the nodes, (166) is also 

the same as the second half of (163); that is, they are isomorphic. Two graphs that contain 

the same number of nodes connected to one another in the same ways (with arcs with the 

same labels) are isomorphic. In the machines we are considering here, the only difference 

between the graphs is in the indices that make up the first part of the node-names.  

 The two halves of (163) are isomorphic to each other and will be isomorphic to a 

subgraph of 〈A(in),*CC, MAX, DEP〉⌦ for any input string in that has ‘ab’ as a substring. 

This can be put formally with the following lemma. 

 
(167) Eval isomorphism lemma:  

 For M1 = 〈A(〈r1, ..., rt〉), E〉⌦ and M2 = 〈A(〈s1, ..., su〉), E〉⌦ if 〈ri, ..., rm〉 = 〈sj, ..., sn〉 

then the subgraph of M1 from index i to index m is the same as the subgraph of M2 

from index j to index n modulo point-wise substitution of the indices.  

proof:  From the definition of linear acceptors we know that A(〈ri, ..., rm〉) ≡ A(〈sj, ..., sn〉). 

They both consist of a string of arcs that accepts the same string of input segments 
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but differ in that the first node of the former is named i (ri is the ith segment of r), 

and the first node of the latter is named j (sj is the jth segment of s).  

  Because M-intersection is not sensitive to the names of the nodes but only to 

the labeling of the arcs, and both A(r) and A(s) are intersected with E, the portion 

of 〈A(r), E〉⌦ that accepts 〈ri, ..., rm〉 will contain the same arcs as the portion of 

〈A(s), E〉⌦ that accepts 〈sj, ..., sn〉 modulo the differences in the indices on the nodes. 

Where the former has nodes numbered i – m the latter has nodes numbered j – n.  ■ 

 
Given that the same structures will arise over and over again in the evaluation of 

various input strings, we can save a lot of work by modifying Eval itself so that chunks of 

parses that are locally suboptimal aren’t generated in the first place. I’ll call this process 

“preoptimization” of Eval. Preoptimization could, in principle, be done for strings of any 

length, but for our current purposes it will be most useful to preoptimize for individual 

segments. In the next section I will present the preoptimization algorithm and step through 

it in detail.  

 

6.3  The preoptimization algorithm 

 In preoptimization, optimal paths accepting individual input segments will be fused 

into single arcs. To facilitate this process I introduce in (168) a function out(M) that yields 

the set of output strings generated by a machine.  

 
(168) out(M) = {o1...on | 〈(q1, i1, o1, w1, r1), ..., (qn, in, on, wn, rn)〉 is a path through M} 
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When the machines we are dealing with are optimized out(M) will always yield a 

finite set of strings. This is so because optimization will always remove epenthetic cycles 

because they incur extraneous violations of DEP. This observation can be captured with the 

theorem in (169). 

 
(169) Theorem: optimal parse acyclicity 

 If epenthetic material (any arc with the empty string as input) is penalized in Eval  

then optimal paths in the intersection of Eval with an input never contain cycles.  

 
proof: Suppose p is an optimal path through M = 〈A(i), Eval〉⌦ and, for a contradiction, 

that p contains a cycle cp. Node names in M have two parts, first a numeric index 

contributed by A(i) and second a position in Eval contributed by Eval.  

  Because only arcs that don’t accept input segments (epenthesis) don’t advance 

one state in A(i), cp must consist entirely of epenthetic arcs. Furthermore, by the 

assumption that epenthesis is penalized in Eval, cp must have a non-zero cost.  

  Considering the path p' that’s identical to p except that it lacks the cycle cp it 

is the case that p' must be more harmonic than p because the cycle is not free. This 

contradicts the assumption that p was an optimal path thereby demonstrating that 

if all epenthetic material is penalized then optimal paths must be acyclic. ■ 

 
Because the constraint DEP penalizing epenthetic material is universally present 

under standard OT assumptions and because DEP will be used in all grammars considered 

here, the set of output strings produced by the optimized machines can always be given as 

finite sets. If, for some reason, it were desirable to consider grammars in which material 
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could be epenthesized for free, then the output of the function out(M) could just as easily 

be represented with a finite state machine defining a set of strings. 

 A theorem similar to the one presented in (169) can be constructed based on the  

constraints of the *STRUC family. Put simply, whenever it’s the case that material cannot be 

inserted for free it will follow that optimal paths are acyclic. This is true  regardless of the 

ranking of the constraints that penalize such additions. In terms of the algorithms presented 

here, the acyclicity theorem yields the following corollary for the OPTIMIZE algorithm. 

 
(170) corollary 1 of optimal parse acyclicity:  

OPTIMIZE(〈A(in), Eval〉⌦) yields acyclic machines. 

 
 The preoptimization algorithm PREOPT is presented in (171) in pseudo-code with 

comments. Basically, PREOPT takes a machine, Eval, and returns a new machine identical 

to the original except for the fact that all of Eval’s arcs have been replaced with new arcs 

corresponding to optimal paths between pairs of nodes that accept single segments.   

 
(171) PREOPT(〈C1, ..., Ck〉) = (Q, Σ, δP, q0, F) 

  0 〈C1, ..., Ck〉⌦ = (Q, Σ, δ, q0, F) -Intersect the constraints. 

  1 δP ← ∅ - Initialize δP, the preoptimized  
   arc set, to null. 

  2 for each 〈i, q, r〉 ∈ Σ × Q × Q - For each 〈segment, node, node〉 trio 

  3   do (Q', Σ, δ', s, F') ← 〈A(i), (Q, Σ, δ, q0, F)〉 ⌦
  intersect the acceptor for  
  that segment with Eval, then  

  4   do M ← OPTIMIZE(Q', Σ, δ', (0, q), {(1, r)})   optimize, but use (0, q) and (1, r)  
  as the start and final states, and 

  5   do δP  ← {δP ∪ (q, i, out(M), w, r)} where 
                     w = c(p) for p, a path through M.

  build an arc from q to r reading i 
  and writing out(M) at a cost of w.
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In (172) through (180) I’ll use Eval = *CC >> MAX >> DEP to illustrate the action 

of the PREOPT algorithm.  

 
(172) Eval = 〈*CC, MAX, DEP〉⌦ Eval = (Q, {a,b}, δ, (cc-0, max, dep), F),  
 

 

 

 

 

 

 

 

Paths that accept exactly one input segment can be assessed by intersecting the acceptor 

for that segment with Eval. For instance, the acceptor for input /b/ is given in (173). 

 

(173) A(b): 

 

Instead of intersecting (173) with Eval as given in (172), which would allow us to 

determine the optimal routes from the start in (172) to the final states in (172) accepting 

input /b/, let us chose a pair of nodes (cc-0, max, dep) and (cc-0, max dep) in (172) to act 

as the start and final states respectively. That is, we’ll be finding optimal paths from the 

left-hand node of (172) to itself. Along with the selection of /b/ as the input symbol this is 

step 2 of the algorithm. In step 3 A(b) is intersected with a machine identical to (172) 

modulo the specification of the start and final states that have been selected in step 2.  

Q = F = {(cc-0, max, dep), (cc-1, max, dep)},  

δ = {((cc-0, max, dep), -, a, 〈0,0,1〉, (cc-0, max, dep)),
 ((cc-0, max, dep), a, -, 〈0,1,0〉, (cc-0, max, dep)), 
 ((cc-0, max, dep), a, a, 〈0,0,0〉, (cc-0, max, dep)),
 ((cc-0, max, dep), b, -, 〈0,1,0〉, (cc-0, max, dep)), 
 ((cc-0, max, dep), -, b, 〈0,0,1〉, (cc-1, max, dep)),
 ((cc-0, max, dep), b, b, 〈0,0,0〉, (cc-1, max, dep)),
 ((cc-1, max, dep), -, b, 〈1,0,1〉, (cc-1, max, dep)),
 ((cc-1, max, dep), a, -, 〈0,1,0〉, (cc-1, max, dep)), 
 ((cc-1, max, dep), b, -, 〈0,1,0〉, (cc-1, max, dep)),
 ((cc-1, max, dep), b, b, 〈1,0,0〉, (cc-1, max, dep)),
 ((cc-1, max, dep), -, a, 〈0,0,1〉, (cc-0, max, dep)), 
 ((cc-1, max, dep), a, a, 〈0,0,0〉, (cc-0, max, dep))}
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In order to find the optimal paths from state (cc-0, max, dep) to (cc-0, max, dep) 

reading the input symbol /b/ we’ll assume that (cc-0, max, dep) is the start state of (172) 

and also its final state. With this specification (172) is as in Error! Reference source not 

found. – this is the set-up for   step 4 of the algorithm. Intersecting the acceptor for /b/ in 

(173) with Error! Reference source not found. modulo the specification of (cc-0, max, 

dep) as both the start and final states produces (174). Running OPTIMIZE on the machine in 

(174) produces (174)-B.  

 
(174) Optimizing for a single segment: 

        A. input     B. output 
 

 

 

 

 

 

 

 

The machine presented in (174)-B. has just one path p that writes the output string 

‘ba’ at a cost of 〈0,0,1〉. Thus, referring to the machine in (174)-B. as M,  it’s the case that 

out(M) = {ba} and c(p) = 〈0,0,1〉. With this information we are ready to construct an arc 

for the preoptimized machine (step 5). The arc is given in (175). 

 
(175) a = ((cc-0, max, dep), b, {ba},  〈0,0,1〉, (cc-0, max, dep)) 
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In (176), on the left I outline the arcs left intact by OPTIMIZE in bold, and on the right I 

show the arc that these arcs contribute to the preoptimized version of Eval.  

 
(176) Optimizing for a single segment: 

 

 

 

 

 

 

 

 

 

Sticking with the input /b/, another pair of nodes is chosen to act as the start and 

the final states and the procedure is repeated − the second iteration of step 2. This is 

illustrated in (177) with (cc-0, max, dep) and (cc-1, max, dep) serving as the start and 

final states respectively.  
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(177) Again:    

 

 

 

 

 

 

 

Next (cc-1, max, dep) and (cc-0, max, dep) are taken to serve the start and final states 

respectively − the third iteration of step 2 of the algorithm. This is shown in (178). 

 
(178) And again: 

 

 

 

 

 

 

 

 

Finishing off the 〈segment, node, node〉 triples beginning with the input segment 

/b/, we take states (cc-1, max, dep) and (cc-1, max, dep) to be the start and final states 

respectively − the fourth iteration of step 2 of the algorithm. This is shown in (179).  
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(179)  

 

 

 

 

 

 

At this point the arcs with /b/ as input are finished and four more iterations of step 2 

in the algorithm are needed to cover the 〈segment, node, node〉 triples that begin with the 

input /a/. These last four steps fill out the remaining arcs in preoptimized Eval producing 

the machine on the right in (180), repeated from (164) above. 

 
(180)  

 

 

 

 

 

 

 
 The number of arcs in preoptimized Eval is determined by the size of the set of 

symbols that make up Σ and whether or not every state in Eval can be reached from every 
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other state by reading every input symbol. If the constraints are restricted so that only 

markedness constraints have multiple states (to distinguish different surface environments) 

then it will generally be the case that every state can be reached from every other state by 

virtue of some sequence of epenthetic arcs. For Eval in which every state can be reached 

from every other state reading any given input symbol, if e is the number of nodes in Eval 

and s is the number of symbols in the alphabet, there will be e × s arcs originating at each 

node. With e nodes in total there will be se2 arcs.  

 

6.4  Correctness of PREOPT 

 To show that the preoptimization algorithm is correct I’ll show that for any input 

in, if the string out is an output candidate from an optimal path in 〈A(in), E〉⌦ then there 

is an optimal path in 〈A(in), PREOPT(E)〉⌦ that also outputs the candidate out.  

To do this I will show first that the language of PREOPT(Eval) is a subset of the 

language of Eval. Then I’ll show that every candidate generated by 〈A(in), E〉⌦ that is not 

generated by 〈A(in), PREOPT(E)〉⌦ is guaranteed to be suboptimal. In (181) I repeat the 

definition of the language of a machine as the 〈input, output, cost〉 triples it produces.  

 
(181) The language of a machine: 

 L(M) = {〈i, o, c〉 | there is a path p =  〈〈q1, i1, o1, v1,  r1〉, ..., 〈qn, in, on, vn, rn〉〉,   

 through M where i = (i1i2…in), o = (o1o2…on), and c = (v1+ ... + vn)} 
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With this description of the machines in mind it is easy to show that the language 

of the preoptimized machine is a subset of the language of the original machine. This is 

given as PREOPT lemma 1 in (182).  

 
(182) PREOPT lemma 1: 

L(PREOPT(M)) ⊆ L(M) – preoptimized machines generate subsets of the languages  

 generated by their non-preoptimized counterparts.   
 
proof: By the definition of PREOPT, for every arc (q, i, o, w, r) in PREOPT(M) there is a 

path from q to r in M that reads i and writes o at a cost of c. Thus it follows from 

the definition of L(X) that if x∈ L(PREOPT(M)) then x∈ L(PREOPT(M)).  ■ 

In (183) I provide another lemma demonstrating that every optimal candidate 

generated by 〈A(in), Eval〉⌦ is also generated by 〈A(in), PREOPT(Eval)〉⌦.   

 
(183) PREOPT lemma 2: 

 If p is an optimal path through 〈A(in), Eval〉⌦ that writes the candidate out then 

there’s an optimal path p' through 〈A(in), PREOPT(Eval)〉⌦ that also writes out.  

 
proof:  PREOPT uses OPTIMIZE (whose correctness was shown in chapter three) to take a 

path pi from node q to node r accepting the input segment i and writing the output 

string o at cost c and build an arc from q to r accepting i and writing o at cost c iff 

pi was among the most harmonic paths from q to r accepting i.  

 Thus if p is a path from node q0 to node r reading in and writing out at a cost 

of c in 〈A(in), Eval〉⌦, the only way for there not to be a path p' from node q0 to 
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node r reading in and writing out at a cost of c in 〈A(in), PREOPT(Eval)〉⌦ would 

be for p to contain a subpath from qi to qj accepting one input segment for which 

there was a more harmonic path from qi to qj accepting that same input segment. 

But, by the optimal subpath lemma and the assumption that p is an optimal path, 

this is not possible.  ■ 

 
From these two lemmas the correctness of PREOPT follows straightforwardly. 

Lemma 1 tells us that PREOPT doesn’t introduce any new parses, and lemma 2 tells us 

that, though preoptimization may destroy (infinitely) many parses, all of the parses that 

are destroyed by preoptimization in are guaranteed to have been suboptimal. In (184) I 

use these two lemmas to provide a correctness proof for PREOPT.  

 
(184) Theorem: correctness of PREOPT 

For any input in, if the string out is an output candidate from an optimal path 

through 〈A(in), E〉⌦ then there is an optimal path through 〈A(in), PREOPT(E)〉⌦ 

that also outputs the candidate out.   

 
proof: By PREOPT lemma 2, if cand is the output candidate from an optimal path through 

〈A(in), E〉⌦ it is an output candidate from a path through 〈A(in), PREOPT(E)〉⌦. By 

PREOPT lemma 1, there are no competitor candidates in 〈A(in), PREOPT(E)〉⌦ that 

weren’t present in 〈A(in), E〉⌦ thus cand is optimal in 〈A(in), PREOPT(E)〉⌦. ■ 

 

 Assessing the complexity of PREOPT is relatively straightforward. As defined in 

(171) PREOPT requires that OPTIMIZE be run once for each 〈segment, node, node〉 trio. If e 
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is the number of nodes in Eval and s is the number of segments in the inventory then we 

have se2 runs of OPTIMIZE. Each run of OPTIMIZE covers the intersection of a single input 

segment with Eval which yields a machine with at most 2e nodes. The complexity of 

OPTIMIZE is roughly quadratic, so the complexity of PREOPT is basically s × e2 × (2e)2 or 

simply Θ(e4).  

 We can reduce  the complexity of preoptimization from quartic to cubic by using 

an all-pairs shortest paths algorithm like the Floyd-Warshall algorithm (cf. Cormen et al. 

2001: 620) once per input segment to build the arcs of the preoptimized machine. Since 

the complexity of the Floyd-Warshall algorithm is cubic in the number of nodes and we’ll 

need s runs of the algorithm on machines with e nodes apiece, the overall complexity is s 

× e3 or simply Θ(e3). This difference isn’t terribly relevant in practice because the PREOPT 

algorithm only needs to be run once for a given grammar and doesn’t need to be run on-

line to produce optimal forms.  

 

6.5  Optimization after PREOPT 

 In the previous section I showed that any optimal parse (input output pairing) in 

the intersection of an input with Eval will also be an optimal parse in the intersection of 

that input with preoptimized Eval and vice versa. This means that OPTIMIZE could be run 

on the intersection of an input with preoptimized Eval and it would yield the same result 

as running it on the intersection of that same input with Eval without preoptimization.  

Nonetheless, the point of preoptimization is to obviate the need for the OPTIMIZE 

algorithm altogether and enable us to use something simpler and more efficient to generate 
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optimal forms. Consider in (185) the evaluation of the input string /abab/ with preoptimized 

Eval for the ranking *CC >> MAX >> DEP, repeated from §6.1 above.  

 
(185) 〈A(abab), PREOPT(〈*CC, MAX, DEP〉)〉⌦ 

 

 

 

 

 

 

 

Running OPTIMIZE on the machine in (185) reveals the cost of the most harmonic 

paths to each node. With this information, finding the optimal paths through the machine 

is trivial. In (186) I annotate the nodes with their cost attributes and outline the optimal 

path in bold.  

 
(186) OPTIMIZE(〈A(abab), PREOPT(〈*CC, MAX, DEP〉)〉⌦) 

 

 

 

 

 

 

 

〈0,0,0〉 

〈0,0,1〉
〈0,0,0〉 

〈0,0,1〉 

〈0,0,0〉

〈0,0,0〉

〈0,0,1〉

〈0,0,1〉 

〈0,0,0〉 
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As a consequence of the linear structure of the input acceptor and the fact that 

preoptimization removes epenthetic cycles in Eval, it is the case that in (185) nodes with 

index i are ancestors of nodes with index j just in case i is less than j.  

The linear structure of these machines makes it possible to optimize them without 

considering the structure of the entire machine. By building the machines in chunks that 

accept single input segments and proceeding left-to-right one segment at a time through 

the input, it’s possible to build machines encoding all and only optimal parses. Consider, 

in (187), the acceptance of the second segment of the input string /abab/.  

 
(187)  

 

 

 

 

 

 
In (187) I’ve annotated each node with the cost of the most harmonic path to it. 

From the nodes at index 1 there are four arcs in Eval that could be used to reach the nodes 

at index 2. At this point, however, we know that only the arcs in bold can participate in an 

optimal path. This is so because the bold arcs reveal paths from the start state to the nodes 

at index 2 that are more harmonic than any path through (1, (cc-1, max, dep), 〈0,0,1〉). By 

simply failing to build the arcs originating at (1, (cc-1, max, dep), 〈0,0,1〉), the suboptimal 

paths that they encode are avoided. Consider in (188), arcs accepting the next segment.  



 

 160

(188) 

 

 

 

 

 

 Just as with the nodes at index 1, of the four arcs from Eval that might be used to 

reach the nodes at index 3 from the nodes at index 2, only the two in bold could possibly 

participate in an optimal path. Again, by simply failing to build the suboptimal arcs, the 

suboptimal paths that they encode are avoided. Consider in (189) the completion of the 

machine with the last segment of the input.  

 
(189) 

 

 

 

 

 

 

 The same comparison made at indices 1 and 2 reveals that the bold arcs in (189) 

can be part of optimal paths and that the dotted arcs in (189) can’t. By building only the 

bold arcs and allowing only the cheaper of the two possible final nodes to be final, we 

finish a machine that encodes only the optimal parses of /abab/ under Eval.  



 161

 In (190) I present a function that performs the comparison of the arcs illustrated in 

(187) through (189). This function takes the set of states currently in the machine, the 

index of the rightmost states, an input segment, and the arc-set of preoptimized Eval and 

yields the set of optimal arcs accepting the next segment of the input.   

 
(190) bestArcs(Q, id, in, δE) = {((id, q, c), in, o, (id + 1, r, c + w)) | (id, q, c) ∈ Q,   
 (q, in, o, w, r) ∈δE and there are no (id, q', c') ∈ Q, and  
 (q', i, o', w', r) ∈δE such that ( ) ( )c w c w′ ′+ +; } 

 
In this function I assume that the nodes are annotated with the costs of the most 

harmonic paths that reach them. With this function in hand it is possible to formulate an 

algorithm that uses bestArcs to build machines that generate all and only optimal parses 

of an input segment under preoptimized Eval. In (191) I present the algorithm OPT(in, Ev) 

in pseudo-code with comments.  

 
(191) OPT(in, (QE, Σ, δE, q0, FE)) = (Q, Σ, δ, (0, q0, 0̄), F) 

  1 Q ← {(0, q0, 0̄)} - Put the start state in Q. 
  2 id ← 0 - Set the starting index to 0. 
  3 while in = 〈i, 〈in'〉〉 - While segments remain to be done: 

  4      do in ← in'   remove the 1st segment from in and 

  5      for A = bestArcs(Q, id, in, δE)   get the best arcs from id reading in 

  6           δ  ← δ  ∪ A   add the new arcs to δ  

  7           Q ← Q ∪ {r | (q, i, o, r) ∈ A}   add the new nodes to Q 

  8           id ← id + 1   increment the index counter by 1. 

 

 9 
F = {(id, q, c) | (id, q, c) ∈ Q, q ∈ FE, 
         and there is no (id', q', c') ∈ Q,  
         such that q' ∈ FE and c c′ ; } 

- Keep only the cheapest possible finals. 
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To show that this algorithm is correct I’ll show that the machine that it creates for 

any given input is the same as that derived from running OPTIMIZE on the intersection of 

that input with Eval. The correctness follows straightforwardly from the similarity of the 

comparison steps that are used to construct the arcs in the OPT algorithm and the arc 

removing portion of OPTIMIZE. 

 
(192) Theorem: correctness of OPT 

Given preoptimized Ev, every path in OPT(in, Ev) is identical, save for the costs 

annotating the node names, to a path in OPTIMIZE(〈A(in), Ev〉⌦) and vice versa.  

proof:  I will show that this is so by proving that the costs annotating the nodes are the 

same as the cost attributes in the cost table built by OPTIMIZE. From there it 

follows that the arcs of the two machines are the same because in both machines 

the arcs are drawn from Ev and are present just in case their cost is equal to the 

cost associated with their terminus minus the cost associated with their origin.   

  For each node (id, ev, c) in OPT(in, Ev) the cost attribute o[(id, ev)] for the 

node (id, ev) in OPTIMIZE(〈A(in), Ev〉⌦) equals c. I’ll show that this is true by 

induction on the indices. For the base case, it is easy to see that at the start states 

(0, q0, 0̄) and (0, q0) this holds trivially. This is so because o[(0, q0)] is set to 0̄ at 

the outset of the OPTIMIZE algorithm.  

  If the similarity holds at index n it must hold at index n+1. This is so because 

the two machines use the exactly the same set of arcs A from Ev to connect nodes 

at indices n and n+1 and because the costs associated with nodes at n+1 in both 
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machines are the most harmonic combination of the cost of an arc in A and the 

cost for that arc’s origin at index n. Thus since the costs at n are the same and the 

costs of the arcs in A are the same, the costs at n+1 must be the same as well. ■ 

 

The OPT algorithm does not require very much computation. The algorithm goes 

through the input one segment at a time comparing at most e2 arcs to one another for each 

segment (at most one arc from each node of Eval at index n to each node of Eval at index 

n+1). Thus the complexity is basically |in| × e2. Because e is a constant of the grammar, 

the computation required in constructing OPT(in, Eval) goes up as a linear function of the 

length of in. Thus with preoptimized Eval, optimization can be done in linear time.  
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7  Transducing Optimality 

How complex is phonology? Given the fact that most phonological phenomena are 

describable with simple rewrite rules, the answer must be a qualified “not very.” There are, 

of course, complexities like reduplication, directionality, opacity, optionality, lexical strata, 

paradigm uniformity, ordering paradoxes, iterativity, and exceptionality that present varied 

difficulties for various phonological models. But, nonetheless, the “vanilla” phonological 

phenomena that constitute the bulk of what’s observed in phonological grammars cross-

linguistically seem to be fairly simple.  

In rule-based phonological frameworks this simplicity is reflected in the fact that 

rules can be represented as transducers that take underlying forms containing the rule’s 

environment of application and map them to surface forms in which the rule has been 

applied (Johnson 1972). The transducers can then be composed into a single transducer that 

encodes the serial application of a sequence of phonological rules (Kaplan and Kay 1994). 

If the whole grammar (the sequence of rules) is represented as a single transducer it can 

then be inverted and fed output forms to generate the set of input forms that map to those 

outputs. Such a set-up has the advantage that, once the transducer has been constructed, 

using the grammar for  recognition is no more complex than using it for generation. 

In constraint-based phonological frameworks things don’t seem so straightforward. 

This is a bit odd, given that the object of study for both the rule-based and constraint-based 

frameworks is the same. The differences arise partly from the fact that the phenomena that 

are describable by optimization with grammars of ranked violable constraints are more 

complex than those describable with ordered rules. Indeed, Frank and Satta (1998) show 



 165

that  even if constraints are restricted to those expressible with finite state transducers, the 

very process optimization can generate i/o-relations that are more complex than those that 

can be generated with finite state transducers alone. Before retuning to this issue in §7.5, 

I’ll show that it is possible to find finite state transducers that define a large portion of the 

simple phonological patterns that are describable in constraint-based systems.  

Specifically, I’ll present here an algorithm for constructing transducers that map 

input forms directly to the output forms that would be selected as optimal under a given 

ranking of a set of constraints. With such transducers it will be possible to generate optimal 

output forms without the need to do optimization on each input/output pair. By encoding 

optimal parses directly into a finite state transducer it will thus be possible to circumvent 

the need for on-line optimization.  

 Because transducers can be inverted, once we have a transducer that maps inputs 

directly to optimal outputs, it is relatively easy to generate the input strings that map to a 

known output under a given grammar. Thus transducers will allow us to do recognition. 

 

7.1  Relativity 

The core insight that was behind the preoptimization technique presented in chapter 

six lies at the heart of transducer construction. The crucial observation is that it’s possible 

to detect and eliminate chunks of parses (partial i/o-mappings) that are guaranteed to be 

suboptimal without access to global information about the range of all possible parses for 

a given input.   
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In (193) I present PREOPT(〈*CC, MAX, DEP〉). To make the nodes easier to refer to 

I’ll rename them ev0 and ev1. Through §7.3 I’ll use the term Eval to refer to the machine 

presented in (193). 

 
(193) PREOPT(〈*CC, MAX, DEP〉) 
     Renaming the nodes of Eval 

 

 

 

 

 

 

 

Consider in (195) and (196) the machines OPT(abbaa, Eval) and OPT(baabb, Eval). 

For these machines I’ve indicated in a box next to each node the cost of the most harmonic 

path that reaches that node expressed relative to the costs of the most harmonic paths to the 

other nodes at the same index.  

To obtain these relative costs I “normalized” the costs annotating the nodes by re-

expressing each coordinate of each vector relative to the minimal value at that coordinate 

for any cost vector in the set of nodes sharing the same index. The function used to create 

the normalized costs for the nodes is given in (194).  

 
(194) 1 1 1( ) { ( ),..., ( ) | ,...,  and  = { | ... ... }}n n n i i inorm V v b v b v v V b min w w V= 〈 − − 〉 〈 〉∈ 〈 〉∈  
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Attending to the relative costs reveals several recurring patterns in (195) and (196).  

 
(195) OPT(abbaa, Eval) 

 
 
 
 
 
 
 
 
 

 
 

Subtracting 〈0,0,1〉 from both nodes at index 3 shows their relative costs to be the 

same as the relative costs for the nodes at index 2. The process of normalization can be 

seen as an instance of “mark cancellation” whereby any violations that are shared by all 

competitors are factored out of the computation of optimality (Prince and Smolensky 1993: 

42). This removal of violations is valid because every single candidate generated by (195) 

comes from a path that passes through exactly one of the nodes at index 3. Normalization 

reveals the same kind of recurring pattern in OPT(baabb, Eval). 

 
(196)  OPT(baabb, Eval) 

 
 
 
 
 
 
 
 
 

 

〈0,0,1〉 〈0,0,0〉 〈0,0,0〉〈0,0,1〉〈0,0,0〉 

〈0,0,0〉 〈0,0,1〉 〈0,0,1〉〈0,0,0〉〈0,0,1〉 

〈0,0,0〉 〈0,0,1〉 〈0,0,1〉〈0,0,0〉〈0,0,1〉 

〈0,0,1〉 〈0,0,0〉 〈0,0,0〉〈0,0,1〉〈0,0,0〉 
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The examples in (195) and (196) strikingly demonstrate that, for many of the arcs in 

the machine, the determination of whether they are among the potentially optimal acceptors 

for segment i at index id depends only on the relative costs of the nodes at index id. That is, 

whenever a particular set of relative costs occurs, the same arcs will be locally optimal in 

accepting the next input segment regardless of what comes before or after that segment.  

Another interesting pattern that (195) and (196) illustrate is the fact that the set of 

relative costs for the nodes at index id +1 depends entirely on the relative costs at index id 

and on the input segment that labels arcs from nodes at id to id +1. This local dependence 

can be exploited in constructing machines that encode optimal parses.  

 

7.2  Infinite generalization: the simple case 

When assessing various paths through a machine, it is the differences among the 

costs of those paths, not their absolute costs, that are relevant in determining which paths 

are optimal. By abstracting away from the absolute costs of the paths it is possible to see 

the grammar defined by PREOPT(〈*CC, MAX, DEP〉) as having essentially two states. In 

one state the relative cost of ev0 is 〈0,0,1〉 and the relative cost of ev1 is 〈0,0,0〉 and in the 

other state the relative cost of ev0 is 〈0,0,0〉 and the relative cost of ev1 is 〈0,0,1〉.   

By capitalizing on the regularities that arise in machines like (195) and (196) it is 

possible to construct a new machine that contains all and only the paths (candidates) that 

the OPT algorithm generates for any input. This can be done incrementally by building the 

machine one segment at a time and asking with each added segment which arcs the OPT 
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algorithm would provide to accept that input segment. Consider in (197) the start state of 

OPT(s, Eval) – the start state will be the same regardless of the input string s.  

 
(197) The start-state:  
      

 

 

Because the machine in (197) accepts no input strings at all, it is trivially true that 

it generates all and only optimal parses for every string it accepts. From this starting point 

we ask which arcs could possibly be optimal if the input /b/ were accepted at this state. In 

(198) I extend the machine with arcs that accept the input symbol /b/.  

 
(198) Extending the machine with the segment /b/: 
 

 

 

 

 

 

 

 
Though both ev0 and ev1 are final states in Eval, the fact that (1, ev1, (0,0,0)) can 

be reached more harmonically than (1, ev0, (0,0,1)) while reading the same input segment 

means that the former is a viable final state but the latter is not. At this point the machine 

← index 
← position in Eval 
← relative cost
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is exactly the same as OPT(b, Eval) thus it follows that (198) generates all and only the 

optimal parses for the input /b/ under the grammar defined by Eval. 

 In (199) we ask what arcs could be optimal if another /b/ were accepted from the 

nodes at index 1. If we were constructing the machine according to the OPT algorithm of 

chapter six, another set of arcs and nodes with the index 2 would be added to the machine 

to accept the additional input segment. Instead of introducing the index 2, at this point in 

(199) I give the newly created nodes a “temporary” index TMP.  

 
(199) Accepting /b/ : 
 

 

 

 

 

 
Since we know that accepting more /b/’s will keep giving us at the same pair of 

relative costs (〈0,0,1〉 for ev0  and 〈0,0,0〉 for ev1), it’s possible to make a generalization 

at this point. That is, rather than building a new pair of nodes at a new index we can give 

the nodes at the termini of the newly created arcs the index 1, which is already present in 

the machine. This creates the loop shown in (200).  

 

← temporary index
← position in Eval 
← relative cost = 〈0,0,1〉 

← temporary index
← position in Eval 
← relative cost = 〈0,0,0〉 
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(200) Extending the coverage with another /b/  

 

 

 

 

 

 

 

 
In this single move we’ve made an infinite generalization. That is, the machine in 

(200) now accepts any string of b* and maps it to its optimal output under Eval. This will 

be proven below, but first I’ll explain in detail the construction step used to create (200).  

The first ingredient is the bestArcs function from chapter six with the modification 

that instead of assigning the nodes at the termini of the newly created arcs an index one 

higher than the index of their origins, it assigns them a temporary index TMP. The revised 

bestArcs function is given in (201). 

 
(201) Revised bestArcs function: 

bestArcs(Q, id, in, δE) = {((id, q, c), in, o, w, (TMP, r, c + w)) | (id, q, c) ∈ Q,   
 (q, in, o, w, r) ∈δE and there are no (id, q', c') ∈ Q, and  
 (q', i, o', w', r) ∈δE such that ( ) ( )c w c w′ ′+ +; } 

 
To facilitate generalization, the costs annotating the termini of the newly created arcs will 

be normalized with the function in (202).  
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(202) A function for normalizing the node-costs in newly created arcs: 

1 1

1

( ) {( , , , , ( , , ,..., ) | ( , , , , ( , , ,..., )  and

                      ( ) for { | ( , , , , ( , , ... ... ) }}

n n

i i i i i n

norma q i o c id r v v q i o c id r w w

v w b min b q i o c id r b b b

δ δ

δ

= 〈 〉 〈 〉 ∈

′ ′ ′ ′ ′= − 〈 〉 ∈
 

  
 

Once the arcs have been created and the costs annotating their termini have been 

normalized it’s possible to check whether the set of relative costs for their termini is already 

present at some index in the machine. If so, the nodes are coindexed with the nodes that 

share their relative costs; if not, the nodes are given a new index that hasn’t yet been used 

in the machine. This move is accomplished with the index function defined in (204). First, 

in (203) I give a term to refer to the set of nodes in a machine that share a particular index.  

 
(203) {( , , ) | ( , , ) }idQ id ev cst id ev cst Q= ∈   – the subset of Q with the index id.  
 

(204) index(Q, δ) = ( , )Q δ′ ′  where 

  if there is an id such that TMP{( , , ) | ( , , , ( , , )) } idid ev cst q i o ev cst Qδ∈ = then  

  TMP{( , , , , ( , , )) | ( , , , , ( , , )) }q i o c id ev cst q i o c ev cstδ δ′ = ∈ ,  

  else for  such that ( , , )id id ev cst Q′ ′ ′ ′∈ ∉`  

 TMP{( , , , , ( , , )) | ( , , , , ( , , )) }q i o c id ev cst q i o c ev cstδ δ′ ′= ∈ . 

{ | ( , , , ) }Q Q r q i o r A′ ′= ∪ ∈ . 

 
The first clause of (204) indexes new arcs with an existing index if there’s already 

a set of nodes in the machine with the same set of relative costs. Barring this, a new index 

is created for the termini of the new arcs. Either way, the node-set Q is updated to include 

the termini of the recently created arcs.  
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 Now that the machine accepts any sequence of /b/’s as input, we ask what happens 

if the segment /a/ is accepted at the start state. In (205) I give the arcs that accept /a/.  

 
(205)  
 
 
 
 
 
 
 
 

Accepting /a/ from the start yields a pair of nodes with the relative costs of 〈0,0,0〉 

and 〈0,0,1〉. The first of these costs is already expressed on the start state. This situation 

suggests that we might index the new nodes with 0, thus making another generalization.  

In (206) I give the machine resulting from assigning index 0 to the termini of the 

new arcs. A revised version of the indexing function will be given below in (207). 

 
(206) Extending the coverage with the input /a/: 
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In (206) I’ve constructed a new set of nodes at index 0 by linking arcs accepting 

/a/ at index 0 back to nodes at index 0. This is acceptable because the arcs that currently 

originate at index 0 will remain optimal with this addition. The following revision to the 

indexation function will cover this case.  

 
(207) index(Q, δ) = ( , )Q δ′ ′  where if there’s an id such that  

  ,idQ ≠ ∅ TMP{( , , ) | ( , , , , ( , , )) }T id ev cst q i o c ev cst δ= ∈ , idQ T⊆ , and  

for each in ∈ Σ  bestArcs(Qid, id, in, δE) =  bestArcs(T, id, in, δE) 

then TMP{( , , , , ( , , )) | ( , , , , ( , , )) }q i o c id ev cst q i o c ev cstδ δ′ = ∈ ,  

  else for  such that ( , , )id id ev cst Q′ ′ ′ ′∈ ∉`  

TMP{( , , , , ( , , )) | ( , , , , ( , , )) }q i o c id ev cst q i o c ev cstδ δ′ ′= ∈ . 

{ | ( , , , ) }Q Q r q i o r A′ ′= ∪ ∈ . 

 

Next we ask which arcs optimally accept the symbol /a/ as the next input segment 

from the nodes at index 1. The potential new arcs are given in (208).  

 
(208) Arcs accepting /a/ from index 1: 
 

 

 

 

 

 

Giving the nodes at the termini of the arcs in (208) index 0 extends the machine to 

accept input /a/ from the nodes at index 1. After this step the machine is finished because 

every input is accepted from nodes at every index. The finished product is given in (209). 

No normalization is required to reveal
that the set of relative costs for these
nodes is already present in the machine. 
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(209) The finished transducer: 

 

 

 

 

 

 

 

 

The machine in (209) now has arcs accepting every input segment at every index. 

Because every input string is accepted by the nodes at exactly one index and is accepted 

by all of the nodes at that index, the machine accepts every one of the infinite set of input 

strings drawn from {a, b}*. Moreover, this machine maps every input string that it accepts 

to all and only its optimal output forms. This will be proven in §7.3, but first I’ll present 

the transducer construction algorithm in a bit more detail.  

 

7.3  The Optimality Transducer Construction Algorithm 

In (210) I present the Optimality Transducer Construction Algorithm or OTCA in 

pseudo-code with comments. After proving that this version of the algorithm is correct 

I’ll move on to slightly more complex cases of generalization. 
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(210) OTCA(ΣI , (QE, ΣE, δE, q0
E, FE)) = (Q, Σ, δ, q0, F) 

  1 q0 ← (0, q0
 E, 0̄) - Build the start state. 

  2 Q ← {q0} - Put the start state in Q. 

 
  3 δ ← ∅ - Initialize the arc-set to null. 

  4 T ← {0} - Add the index 0 to T – the “To do” list 

  5 while T ≠ ∅ - while there are indices in the To do list 

  6 { }T T id← −    remove one index from the list, 

  7     for each i ∈ Σ    for each segment in the inventory, 

  8       do A  ← bestArcs(Q, id, i, δE)   find the best arcs from id accepting i, 

  9       do ( )A norma A′ ←    normalize the costs on the termini, and

  10 
      do Q ← Q' , index(Q, A') = ( , )Q A′ ′′
           δ ←  Aδ ′′∪  

  add the newly created arcs and nodes  
  to the machine.  

 

 11 
F = {(id, ev, c)|(id, ev, c) ∈ Q, ev ∈ FE,  
        and there’s no (id', ev', c') ∈ Q 
        such that ev '∈ FE and c c′ ; } 

- Keep only the cheapest final at each  
  index as a final in the finished machine. 

 

To facilitate the proof of the correctness of the OTCA I’ll abstract away from the 

algorithm to just the change made by each iteration of the while loop in step 3. I’ll call the 

change in question a “best extension” just in case it meets the following criteria.  

 
(211) Best extension:  

  def: (Q+, Σ, δ+, q0, F+) is a best extension of (Q, Σ, δ, q0, F) under (QE, Σ, δE, q0
E, FE) 

iff it’s the case that for every arc ((id, ev1, c), i, o, w, (idx, ev2, cx)) in (Q+ - Q) there 

are no (id, q', c') ∈ Q and (ev1, i, o', w', ev1) ∈δE such that ( ) ( )c w c w′ ′+ +; .  
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The fact that each set of arcs added to the machine makes a best extension follows 

directly from the definition of the bestArcs function. To show that the algorithm is correct 

I’ll prove that if a machine is built from best extensions then every path in that machine 

accepting string s is an optimal s-accepting path between the start state and some node.  

In (212) I define E-equivalence, this will come in handy in showing that the set of 

paths in the result of the OTCA are the same as those that occur under optimization.  

 
(212) ( , , ) ( , , )Eid ev c id ev c′ ′≡ – nodes with the same Eval component are E-equivalent. 

Arcs (q, i, o, r) and (q', i, o, r') are E-equivalent iff Eq q′≡ and Er r′≡ . 

Two paths are E-equivalent iff they consist entirely of E-equivalent arcs.   

Two sets of paths A and B are E-equivalent iff every path in A is E-equivalent to 
a path in B, and every path in B is E-equivalent to a path in A.  

 

Having defined E-equivalence, it’s easy to say exactly what it means for a machine 

(the transducer under construction) to generate exactly the same parses (i/o mappings) as 

optimization for any input string. The property that we are after is defined in (213). 

 

(213) A machine M is OPT equivalent to Ev iff for any string s the set of paths through 

M that accept s are E-equivalent to the set of paths through OPT〈s, Ev〉 that accept s.  

 
With this definition in hand I will show that transducer construction is correct by 

proving that each step in transducer construction preserves OPT equivalence. Because the 

machine resulting from first step in the OTCA (the start state) is trivially OPT equivalent 

we have a good basis for induction. If it can be shown that the OPT equivalence is invariant 

throughout transducer construction then the correctness will be established. 
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(214) Theorem: best extensions preserve OPT equivalence 

Any best extension of M under Ev preserves OPT equivalence to Ev.  

 
proof:  For a contradiction, assume that after a best extension under Ev the paths through 

M accepting s are not equivalent to the paths through OPT〈s, Ev〉 for some s. 

  Thus there must be some first segment si of s where the arcs accepting si from 

index a to index b in M are not equivalent to the arcs accepting si from index x to 

index y in OPT〈s, Ev〉. But, since si was the first point of non-equivalence, the same 

set of relative best costs must annotate the nodes at index a and index x. Moreover, 

because Ev contributes the same set of possible arcs to both machines, the set of 

possible arcs from a to b are equivalent to the set of possible arcs from x to y. Thus, 

because the same arcs in both sets yield the set of cheapest relative best costs for the 

nodes at index b and index y, the arcs accepting si must be equivalent, and thus we 

have a contradiction.  ■ 

 
The above theorem shows that the OTCA is sound. That is, that every i/o-mapping the 

transducer generates is an optimal parse. Given this, all that’s needed to establish the  

correctness of the algorithm is proof that it encodes an i/o-mapping for every input string. 

The completeness of the OTCA follows trivially from the fact that the algorithm only 

terminates once every input symbol can be accepted from every index taken together with 

the fact that every input string accepted leads to all of the nodes at exactly one index. 

Thus, the OTCA is sound and complete.   
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7.4  Generalization with variables 

 Transducer construction isn’t always as straightforward as the case given in §7.2. 

For a slightly more complex case that uses exactly the same constraints, consider in (215) 

Eval for the ranking *CC >> DEP >> MAX.  

 
(215)      PREOPT(〈*CC, DEP, MAX〉) 

          Renaming the nodes of Eval 

 
 

 

 

 

 

 

For the remainder of this section I’ll refer to PREOPT(〈*CC, DEP, MAX〉) as Eval.  

Consider in (216) the machine resulting from OPT(baaa, Eval). Next to each node in the 

machine I’ve indicated the relative cost of the most harmonic path to that node.  

 
(216) OPT(baaa, Eval) 

 

 

 

 

 

 

〈0,0,0〉 〈0,0,0〉 〈0,0,0〉〈0,0,0〉〈0,0,1〉 

〈0,0,2〉 〈0,0,3〉 〈0,0,4〉〈0,0,1〉〈0,0,0〉 
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Unlike the machines in §7.3, the patterns in (216) cannot be captured by simply 

normalizing the costs at each index. This is so because the relative costs of ev0 and ev1 

nodes can grow ever more disparate as longer and longer sequences of /a/’s are considered.  

Nonetheless, there is a very obvious pattern playing out in (216) that is fairly easy 

to generalize. With each successive /a/ the cost of the best path to the node at ev1 goes up 

by 〈0,0,1〉 and the cost of the best path to the node at ev0 does not change at all. More 

importantly, the exact disparity between the costs of the nodes at ev0 and ev1 is never 

relevant in choosing which arcs to extend the machine with. No matter how many /a/’s 

are added, ev1 will always cost more than ev0, ev1 will not be a viable final state, and the 

same set of arcs will be used to accept the next input segment at each successive iteration.  

To capture this pattern I’ll introduce variables into the costs annotating the nodes. 

Consider in (217) a machine just like the one in (216) but with the change that the nodes 

at indices 2 through 5 have been collapsed down to a single pair of nodes at index 2.  

 
(217) Generalizing with variables:  
 

 

 

 

 

 

 
In (217) the variable n in the cost annotating node (2, ev1, 〈0,0,n〉) stands for any 

number greater than one. The collapsing of the nodes at indices 2-5 is licensed in this case 
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by the fact that, for all values of n greater than one, the same set of arcs will be used to 

accept the input /a/. For this generalization to be valid, all daughters of the node with the 

variable must inherit the variable, and it must remain true that for all values of n greater 

than one the same arcs are optimal in accepting the next input segment. I will lay this out 

more explicitly below; for now let’s go through transducer construction with the additional 

possibility of variable introduction to allow generalization. The OTCA always begins with 

the start state at index 0. This is given in (218).  

 
(218) The start sate:  
 

 

 

 
In (219) the machine is extended to accept the input symbol /b/. At this point the 

choice of which arcs to add to the machine to accept the input /b/ is simple because there 

is only one arc leading away from ev0 to each of the other nodes in Eval that accepts /b/.  

 
(219)   
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Though both ev0 and ev1 are final states in Eval, the fact that (1, ev1, (0,0,0)) can 

be reached more harmonically means that only it will be final in the transducer. At this 

point (219) is exactly the same as OPT(b, Eval) and as such we know that it generates all 

and only the optimal parses for the input /b/ under Eval. 

The prospect of accepting another /b/ as input from the nodes at index 1 suggests a 

generalization. Consider in (220) the arcs that might be used to extend the machine. 

 
(220) Accepting another /b/:  
 

 

 

 
 
 
 
 

Normalizing the costs at the termini of the arcs reveals the same set of relative 

costs as those at index 1. By giving the termini at the ends of the newly created arcs the 

index 1 we generalize. The resulting machine is given in (221). 

 
(221)  

 

 

 

 

 

← temporary index
← position in Eval 
← relative cost = 〈0,0,1〉 

← temporary index
← position in Eval 
← relative cost = 〈0,0,0〉 
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The machine in (221) currently generates an infinite range of optimal parses by 

deleting all but one /b/ when fed any input sequence consisting of nothing but /b/’s.   

Next we ask what happens if an /a/ is accepted from the start state. In (222) I give 

the arcs that accept /a/ from ev0.  

 
(222) Extension with /a/: 
 

 

 

 

 

 
The definition of the index function in (207) suggests that the new nodes might be 

given the index 0 because the nodes currently indexed with 0 express a subset of the costs 

associated with the newly created nodes. For this indexation to go through it must be the 

case that with the assignment of index 0 to the new nodes, the arcs already in the machine 

originating at index 0 are still correct. That is, the addition of a new node at index 0 must 

not create new and more harmonic paths leading away from the nodes at index 0 than the 

ones already discovered.  

In the case at hand, the /b/ accepting arcs will still be linked to node (0, ev0, (0,0,0)) 

with the addition of the node (1, ev1, (0,0,1)), thus the generalization is legitimate. The 

resulting machine is given in (223).  
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(223) Generalization on /a/ at index 0: 
 

 

 

 

 

 

 

 

 

Turning to the acceptance of an input of /a/ at index 1 gives us the arcs in (224) to consider.  

 
(224) Extending the machine with an /a/: 
 

 

 

 

 

 
This set of relative costs is not already present in the machine, so a new index is 

created and arcs are added to the machine. The result is given in (225).  

 



 185

(225)  
 

 

 

 

 

 

 

 

 

 

 

 

When the check is made to see which arcs optimally accept an input of /a/ at index 

2, a pattern emerges that can be generalized. Consider in (226) the arcs that accept /a/.  

 
(226)  
 

 

 

 

 
When checking the nodes already in the machine, we don’t find the set of relative 

costs 〈0,0,0〉 for ev0 and 〈0,0,2〉 for ev1 but we do find the highly similar costs 〈0,0,0〉 and 

← generalized cost = 〈0, 0, n〉 
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〈0,0,1〉 at index 2. When such a similarity exists an attempt can be made at generalization. 

Both 〈0,01〉 and 〈0,0,2〉 for ev1 can be seen as instances of 〈0,0,n〉 for n ≥ 1. If we replace 

〈0,0,1〉 and 〈0,0,2〉 with 〈0,0,n〉 then the new nodes can be indexed with 2.  

The generalization step is licit for the nodes at a given index just in case the exact 

value of n (provided that it’s greater than one) never matters in determining which arcs are 

optimal in accepting an input segment from that index. Furthermore, for the generalization 

step to be licit for the whole machine, every daughter of a node with a variable must inherit 

the variable and the generalization must be licit at each index where the variable has been 

inherited. In (227) I give the machine resulting from this generalization.   

 
(227)  
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For the generalization with the variable to have been legitimate at index 2, it must 

be the case that when /b/ is accepted at index 2 the value of n has no effect on which arcs 

optimally accept /b/. Consider in (228) the arcs that could be taken with /b/ from index 2. 

 
(228) Accepting /b/ at index 2: 
 

 

 

 

 

 
In (228) it’s clearly the case that for all values of n greater than one the same set of 

arcs will be used to accept /b/. Since no locally optimal arcs originate at (2, ev1, (0, 0, n)), 

no nodes inherit the variable. If some nodes had inherited the variable we would have had 

to repeat the same check again to ensure that the variable introduction was licit.  

 The nodes at index 1 already express the set of relative costs annotating the termini 

of the arcs in (228). By indexing the new arcs with 1, the input /b/ is accepted from index 

2 and the machine is completed. In (229) I give the completed transducer.  
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(229) The transducer: 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

7.5  Majority rule 

 The generalizations that are allowed by normalizing costs and introducing variables 

capitalize on recurring patterns across optimizations. These generalization work by re-

expressing the infinite set of possible absolute costs as finitely many patterns of relevant 

dissimilarity. There are, however, OT grammars that cannot be rendered finite in this way 

because they do not have finitely many relevant patterns of dissimilarity. In this section I 

will show how the OTCA fails when it encounters such patterns. For this scenario I’ll add 

the constraint given in (230) to the grammar.  
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(230) AGREE: adjacent segments must agree on the ±cons feature (Lombardi 1996, 1999) 
 
 

 

 

 

 

 

This isn’t a terribly realistic constraint on vowel and consonant cooccurrence but it 

will suffice to provide a nice simple illustration of the mechanics of the system. Regardless 

of the merits of this particular constraint, the patterns predicted by constraints of this type 

must be taken into account because constraints like (230) are often used in OT analyses of 

agreement, assimilation, harmony and other similar phenomena.  

If the AGREE constraint in (230) dominates INDENT(CONS) the following patterns 

will emerge. Because AGREE is dominant, every surface string will consist either solely 

of [a]’s or solely of [b]’s. The deciding factor will be whether there were more instances 

of /a/ or /b/ in the input string. To minimize IDENT violations, whichever segment type is 

relatively less prevalent will assimilate to the more prevalent segment type.  

Lombardi (1996, 1999) argues that this sort of dependency on relative frequencies 

of segment types in the input is unheard of in the phonology of natural languages and offers 

a couple of proposals for how it might be avoided. Baković (1999, 2000) dubs this sort of  

counting prediction “majority rule” and proposes yet another strategy for it’s elimination. 

Lombardi suggests that one way to avoid the majority rule prediction would be to modify 

- penalizes ‘b’ after ‘a’ and ‘a’ after ‘b’ 
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faithfulness constraints so that sequences of featural changes get exactly one faithfulness 

violation regardless of how many features are changed. Baković argues that this proposal  

gives rise to an altogether different problematic typological prediction in which features 

are especially vulnerable to change in the vicinity of other segments that have surfaced 

unfaithfully. Baković calls this new problem “contrast dependency” and argues that it is 

just as bad as majority rule.  

Another way that the majority rule prediction might be avoided is through the use 

of faithfulness constraints that, unlike typical IDENT constraints, are sensitive to specific 

feature values. This is, in fact, exactly the way that Prince and Smolensky’s (1993) PARSE 

and FILL faithfulness constraints are applied to features (Kirchner 1993, Itô, Mester and 

Padgett 1995). In Correspondence theory (McCarthy and Prince 1995) this same effect 

can be achieved with Dep and Max constraints that refer to specific features (Lombardi 

1995, Walker 1997). Alternatively, to avoid the need for a mechanism to keep the features 

from floating around (Itô, Mester and Padgett 1995), Baković suggests that McCarthy and 

Prince’s (1995) feature-value-specific versions of IDENT constraints could be used.  

Baković own proposed remedy for majority rule is that local constraint conjunction 

(Smolensky 1993, 1995, 1997) be used to combine markedness and faithfulness constraints 

(Lubowicz 1998) to create constraints that are violated by unfaithful input/output-mappings 

that increase markedness. Given Smolensky’s (1993) basic tenet that it’s universally the 

case that (C1&C2) >> C1, C2, it follows that the constraint against assimilating to the marked 

feature value will universally dominate the basic constraint against assimilation (IDENT).  
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Lombardi’s and Baković’s proposals can remedy the majority rule problem for the 

interaction of IDENT and AGREE constraints. But alas, as we know from Frank and Satta’s 

(1998) work, counting dependencies arise from the fundamentally comparative nature of 

OT and aren’t the fault of a few ill behaved constraints. Consider, for instance, the rather 

perverse grammar in (231) that enforces agreement by deleting offending segments.  

 
(231) 〈AGREE, DEP, MAX〉⌦ 

      PREOPT(〈AGREE, DEP, MAX〉) 
 
 

 

 

 

 

 
        – nodes renamed to ev1, ev2, & ev3 

 

In this grammar surface strings will consist entirely of [a]’s or [b]’s because AGREE 

is dominant. If the vowel and consonant specific MAX constraints are ranked below the 

general version of MAX then the determination of whether the surface string is all [a]’s or 

all [b]’s will be made on the basis of which segment type is more prevalent in the input – 

MAX will demand that the less prevalent type be the one that’s deleted to satisfy AGREE.  

 This is majority rule all over again and, due to the unbounded counting dependency,  

another instance of an OT grammar that doesn’t define a rational i/o-relation. It is worth 

noting here that though Frank and Satta’s (1998), Karttunen’s (1998), and Gerdemann 
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and Van Noord’s (2000) modified versions of OT eliminate the possibility of unbounded 

counting dependencies they actually don’t solve the majority rule problem. In these OT 

variants there is an upper bound on the number of violations to which the grammar is 

sensitive (or for Gerdemann and Van Noord an upper bound on the number of violations 

that can be permuted to eliminate suboptimal competitors). If the bound in these cases is 

set to n then it will still be possible to generate majority rule phenomena when the majority 

in question is smaller than n.  

The only proposed variant of OT to date that completely eliminates the majority 

rule problem is Eisner’s (2002) directional OT variant. In Eisner’s model every constraint 

is evaluated directionally in such a way that violations closer to one specified edge of the 

form are strictly worse than any violations further from that edge. In this system majority 

rule can’t arise because all decisions about optimality are strictly local. Eisner’s proposal 

also has the advantage that, as with Karttunen’s and Gerdemann and Van Noord’s models, 

his OT grammars can be turned into transducers and thus used for recognition.  

Eisner’s proposed directional variant of Optimality Theory does, however, have 

one major drawback. Specifically, it predicts that directional preferences in phonological 

phenomena should be ubiquitous rather than a relative rarity. While not pathological, this 

typological prediction seems to be a poor fit with observation. Furthermore, Wilson (2004) 

points out that when Eisner’s directional evaluation is used to generate directional harmony 

systems, it predicts an anomalous harmony pattern in which harmony occurs only if the 

harmonizing feature can spread all the way to the edge of the word.   
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What I would like to propose here is that rather than attempting to rid the theory of 

constraints that can interact to generate majority rule and rather than changing the nature 

of optimization so that majority rule cannot arise, we can instead eliminate majority rule 

as a prediction on the basis of the fact that grammars evidencing it do not define rational 

i/o-relations. That is, because grammars with majority rule can’t be described as finite state 

transducers, if part of the phonological acquisition process involves extracting regular (i.e. 

finite-state) generalizations about the phonology, then this requirement can act as a sort of 

filter that blocks the grammars that generate majority rule. Below, I’ll show just how the 

OTCA fails when it counters a grammar defining an i/o-relation that is not rational. 

Consider in (232) the effect of optimizing /babab/ with the grammar in (231). I’ve 

indicated the relative costs of the most harmonic paths to each node in a box next to it.  

 
(232) Opt(bbaaa, Eval) 
 

 

 

 

 

 

 

 
If the transducer were being constructed incrementally, then, upon encountering the 

boxed portion of (232), the algorithm would attempt introduce a variable to capture the 

similarity between the relative costs of the nodes at indices 1 and 2. Indeed, if more /b/’s 

〈0,0,0〉 〈0,0,0〉 〈0,0,1〉〈0,0,0〉〈0,0,0〉 

〈0,0,1〉 〈0,0,0〉 〈0,0,0〉
〈0,0,2〉〈0,0,1〉 

〈0,0,2〉 〈0,0,2〉 〈0,0,3〉
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are encountered at this point the disparity between the relative cost of ev0 and ev1 can 

grow without bound. Therefore, unless variables can be introduced, there will be no way 

to recast the range of possible relative costs as a finite set.  

If a variable is introduced at this point, however, its presence will obliterate any 

ability to make relevant distinctions among the paths in the machine downstream from 

the node where the variable is added. This is so because, unlike the example in §7.4, the 

variable would be introduced on a “live” path and once the daughters of the node with the 

variable inherited it from their mothers it would become impossible to adjudicate between 

the various paths.  

In practical terms, variable introduction fails in the OTCA because, at the very next 

index, the value of n is critical in determining which arcs should be added to the machine. 

Considering the bigger picture, variable introduction will always fail in grammars that 

generate majority rule precisely because it isn’t possible to abstract away from the exact 

value of the disparity in the cost of the various paths. This is so because it’s the number 

of underlying segments bearing a particular feature that determines which segment-type 

is in the majority.  

 

7.6  Recognition 

 Construction of transducers for the languages of the basic CV syllable theory is 

fairly straightforward. As with the cases presented in §7.3  and §7.4 the first step is the 

preoptimization of Eval. In (233) I present the results of preoptimization for the ranking 

ONSET >> NOCODA >> DEPV >> MAX >> DEPC.  
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(233)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               – renaming the nodes of Eval  

 
In (233) preoptimization creates a machine with quite a few more arcs than Eval 

before preoptimization. This happens because every node in Eval can be reached from 

every other node by adding some sequence of epenthetic segments. Thus, because there 

are two input symbols and four nodes, there are eight arcs originating at each node. In 

(233) and in (234) below, I’ll omit the set-brackets around the output strings on the arc 

labels because all of the sets are singletons. 

 Constructing a transducer from the preoptimized machine in (233) proceeds 

exactly as in §7.3  and §7.4. In (234) I present the results of the OTCA for the input 

alphabet {c, v} and the machine in (233). 
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(234) The transducer for 〈ONSET, NOCODA, DEPV, MAX, DEPC〉: 
 
 
 

 

 

 

 

 

 

 

 

In (234) I’ve removed dead ends and the arcs that lead to them to make the graph 

easier to read. I have also omitted the first three coordinates of each cost vector because 

they were zeroes in all cases. This comes as no surprise as the only constraints that will 

ever be violated in an optimal i/o-mapping are the two lowest ranked, MAX and DEPC.  

Using the transducer in (234) for recognition is relatively trivial. By intersecting 

an output string with the machine, it is possible to derive the set of input strings that are 

mapped to that output under the grammar used to construct the transducer. The only novel 

point is that, because the outputs labeling the arcs are strings, we’ll need a new definition 

of M-intersection to allow an output string to be intersected with a machine like the one 

in (234). This new version of M-intersection is given in (235). 
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(235) def: M-intersection 

〈M1, M2 〉⌦ = M3 for M1 = (Q1, Σ1, δ1, S1, F1) and M2 = (Q2, Σ2, δ2, S2, F2), 

  M3 = (Q1×Q2, {Σ1∪Σ2}, δ, S1×S2, F1×F2) where 

 δ = {(qx, i, o, v, ry) | there’s a path from q to r in M1 accepting o 

  and (x, i, o, w, y) ∈ δ2} 

 

By intersect the linear acceptor for an output string with the transducer in (234), 

which I’ll simply call Trans, we derive the set of inputs that yield that output string. In 

(236) I give the intersection of the linear acceptor for a simple CV-syllable with Trans.  

 
(236) 〈A(cvx), Trans〉⌦ 
 

 

 

 

 

 

 

 

 The machine in (236) defines an infinite set of i/o-mappings that are optimal under 

the ranking ONSET >> NOCODA >> DEPV >> MAX >> DEPC. Examining the paths through 

this machine reveals that every string of /c*vc*/ will be mapped to the output [cv]. 

Transducers like (236) have the nice property that if an attempt is made to intersect 

them with an output string that can’t be generated by the grammar, the result is a machine 

that contains no complete paths from the start state to a final state. For instance, there are 
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no arcs originating at the start state of (236) that are labeled with output strings beginning 

with a vowel. Because ONSET is dominant in the grammar, such strings simply cannot be 

generated.  

 

7.7  Learning and generative power 

I have proposed here an algorithm that generates a transducers that are equivalent 

to optimization for ranked sets of constraints just in case the relation that’s determined by 

optimization is rational. Transducer construction can be done only once ‘off-line’ and does 

not need to be repeated for every input string. This method will yield a parser that is quite 

fast. Furthermore, since the grammar is represented with a transducer it will be reversible, 

thereby enabling its use as a perception grammar as well as a production grammar.  

 This approach offers a novel take on the issue of generative power. Rather than 

placing some overarching restriction on optimization itself to keep the patterns generated 

strictly regular, we could suppose that transducer construction was part of the process of 

learning phonological grammars. Taking this approach would constrain the languages 

that the learner actually learns to the regular subset of the set of languages generated under 

constraint permutation.  
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8  Conclusions 

 In this dissertation I have implemented and assessed various properties of a finite-

state model of Optimality Theory. Following a growing body of work including that of 

Ellison (1994, 1995), Walther (1996), Eisner (1997a, 1997b, 1997c, 2000, 2002), Albro 

(1998a, 1998b, 2000, 2003), Karttunen (1998), and Gerdemann and Van Noord (2000), I 

model the constraints of Optimality Theory as finite-state machines. There are, however, 

four main differences between the model proposed here and these previous proposals.  

 In the model presented here optimization is left intact and not modified by placing 

upper bounds on the number of violations that can distinguish competing candidates or 

by adding directionality to evaluation so that violations near one edge are strictly worse 

than violations further from that edge.  

 In the model presented here constraints can be multiply violated by an individual  

candidate thereby distinguishing different levels of violation rather than simply making a 

binary distinction between candidates that are violators and candidates that are not. 

 In the model presented here no arbitrary upper bounds are placed on the candidate 

set vis a vis its size or the amount of epenthesis that can occur in a particular candidate.  

 These three points affect the empirical predictions and coverage of the theory. By 

leaving optimization intact, allowing multiple violation, and allowing an infinite candidate 

set, the model presented here is much closer to Optimality Theory as usually practiced by 

phonologists. The fourth point of departure between the model presented here and other 

finite-state models of OT is not a deep property of the model with empirical ramifications 

but rather a property of the implementation. Nonetheless, it is this fourth point of difference 
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from the previous models that sets the stage for almost all of the results presented in this 

dissertation.  

 In the FSOT-model that I formulate here all of the constraints of the grammar are 

combined into a single evaluation function (a finite state machine) that is used in one fell 

swoop to perform optimization. This is unlike most other finite state models of OT where 

evaluation is carried out one constraint at a time using a cascade of finite-state transducers. 

This aspect of the model has many felicitous consequences. 

 

8.1  Contenders and the utility of monolithic Eval 

The strategy of performing evaluation one constraint at a time with a cascade of 

transducers is motivated by concerns about the potential size of the representation of the 

evaluator obtained by combining all of the constraints of the grammar into a single finite 

state machine. Indeed this is a valid concern given the potential for explosive growth when 

machines are intersected. I have, however, argued here that this fear is not warranted 

because the number of states in the evaluator obtained by intersecting of all constraints  

cannot exceed the number of unique phonological environments to which the grammar is 

sensitive. Though this number may be quite large it doesn’t seem that it will grow so large 

as to make the machines impossible to work with.  

Intersecting a set of constraints to produce a single machine creates a finite and 

relatively concise representation of the entire class of grammars defined by permutation 

of those constraints. Given such a machine it’s possible to take an input and find the set of 

outputs that can emerge as optimal under any ranking of the constraints (the contenders) 
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without the necessity of performing factorially many calculations. Such a feat is obviously 

impossible in any model that requires building a different cascade of evaluators to find the 

optimal output for each particular ranking of the constraints.  

 

8.2  Preoptimization and efficient generation 

 Having a single finite representation of the evaluation function Eval also makes it 

possible to examine the structure of Eval itself to detect and eliminate (infinitely many) 

suboptimal parses before any input us considered. Eval only needs to be preoptimized one 

time to drastically reduce the complexity of all subsequent optimization tasks. Moreover, 

preoptimization of Eval yields a machine that can be used to evaluate candidates in linear 

time and, if every i/o-mapping that adds structure to the output is penalized by some 

constraint then the candidate set is always guaranteed to be finite. This is quite promising 

given the standard OT assumption that such constraints (e.g. DEP or even Zoll’s (1993) 

*STRUC) are present, albeit possibly lowly ranked, in all phonological grammars.  

In a sense, preoptimization factors epenthesis out of the system, leaving epenthetic 

material as an option only when it increases the harmony of the output form. This idea has 

been around for some time. Tesar (1995a) restricts the amount of epenthetic material that 

is allowed to occur in candidates to less than a syllable arguing that if it were the case that 

an entire epenthetic syllable could increase harmony then unbounded syllable epenthesis 

would be predicted. Explicit upper bounds on the amount of epenthesis allowed in 

candidates have been either proposed or discussed by many researchers (Hammond 1997, 

Karttunen 1998, Walther 1996, and Lubowicz 2003, to name a few). What is new in the 
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proposal here is that rather than picking a particular quantity of epenthesis and simply 

disallowing candidates that exceed that limit, epenthetic material can be restricted in a 

principled way to only those additions that actually have some chance of increasing the 

harmony of a candidate. The question ‘what is the longest sequence of epenthetic material 

that can ever occur in an optimal candidate’ can be answered for a given class of grammars 

(set of constraints) by intersecting the constraints and doing preoptimization. 

The most relevant ramification of the fact that preoptimization factors epenthesis 

out of the system is that it creates an evaluation function that when intersected with an 

input string produces a directed acyclic graph. This means that optimization tasks can be 

carried out in linear time and should put to rest all qualms about the “computational 

feasibility” of Optimality Theory.  

Even if it is possible to use a principled method to obtain a finite candidate set,  

the quest for a trick that makes the candidate set finite is misguided. Far more promising is 

the possibility of generating the set of contenders which are not only finite but also exactly 

the relevant candidates.  

 

8.3  Transducers and recognition 

 In chapter seven I showed how transducers can be constructed that perform the 

same mapping as optimization with a ranked set of constraints. Constructing a transducer 

is more costly in terms of computation than preoptimization, but it creates a machine that 

can perform generation tasks even faster than optimization with preoptimized grammars.  
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 The most relevant property of the transducers, however, is the fact that they can 

be inverted to do recognition. I haven’t devoted much space to the recognition problem in 

this work because once the transducers have been created it is a relatively trivial matter to 

run them backwards to do recognition. Of course, this presupposes that the ranking of the 

constraints is already known (it was used to build the transducer). A more interesting and 

realistic problem arises if we consider the task learning from outputs rather than i/o-pairs. 

I’ll return to this issue in §8.6. 

 

8.4  The finite state restriction 

The only significant departure in the finite-state OT model developed in this work 

from OT as it is practiced by phonologists at large is the imposition of the restriction that 

constraints must be able to be represented as finite-state machines. This restriction buys 

us a tremendous amount. It allows optimization to be very naturally characterized graph-

theoretically as a shortest paths problem, it allows efficient generation, it allows us to find 

contenders, and for many rankings it makes possible the construction of transducers that 

can be inverted to do recognition.  

There are, however, two domains where the finite-state restriction is a poor fit with 

OT analyses that appear throughout the literature. These two domains are alignment and 

reduplication. The ill-suitedness of finite state methods to some constraints on alignment 

may actually turn out to be an asset to the theory, but the failure of finite-state models to  

readily handle reduplication presents an open problem.  
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As Eisner (1997b) and Bíró (2004) have discussed, many alignment constraints 

cannot be modeled with finite-state machines. For instance ALL-SYLLABLES-LEFT, which 

assigns to each syllable in the word a number of violations dependent on its distance from 

the left edge, cannot be modeled because the violations it assesses grows as a quadratic 

function of the length of the word. Interestingly, such constraints have recently come under 

attack on independent empirical grounds. Eisner (1997c) observes that constraints of this 

type make odd and unattested typological predictions like the centering of floating tones 

in words. McCarthy (2002) also argues that this type of constraint  should be eliminated 

from the theory citing a variety of problematic empirical predictions that arise with these 

so called “gradient” constraints.   

The other domain to which finite state methods are ill-suited is more of a problem. 

Reduplication, with its apparently unbounded crossing dependencies, presents a canonical 

instance of a pattern that is strictly more complex than that which can be generated using 

finite-state machines. There are several plausible responses to this state of affairs that do 

not involve abandoning the finite state approach to phonology.  

One tack that might be taken here would be to relegate to morphology some of the 

computation in reduplication. It’s well known that there are morpho-syntactic patterns that 

are well beyond those describable with finite state methods, so calling on the morphology 

to play a role in candidate generation or base/reduplicant coindexation might factor out 

some of the complexity in reduplication. Such a strategy would require that the cases of 

over-application and under-application be dealt with carefully because they do seem to be 

truly part of the phonology and not the morphology.  
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Another approach to the complexity of reduplication is laid out by Albro (2003). 

He suggests that a non-finite-state module can be incorporated into an otherwise finite-

state grammar expressly for the purposes of handling reduplication.   

8.5  Representations 

 Unlike some previous computational models of Optimality Theory which modify 

the nature of optimization to achieve desirable computational properties, I’ve tried to stay 

as true as possible to OT as it is usually practiced. I have, however, made representational 

choices in this work that aren’t totally standard.  

For the most part the decision to formulate the constraints over segments rather than 

features, autosegmental representations (cf. Heiberg 1999 ), or tiers (cf. Eisner 1997b and 

Albro 1998) is motivated by simplicity and is not an essential property of the model that 

I’ve developed in this work. These representations have the advantage that the constraints 

are usually quite small (only one or two states) and the input and output strings can be read 

directly off of the paths through the machines.  

A perfectly viable alternative would be to use features on the arcs of the machines 

rather than segments. Indeed, when considering languages with large numbers of phonemes 

it may become quite cumbersome to have an individual arc for every pair of segments that 

show a particular featural change in the input/output mapping.  

Whether this is a trivial or significant aspect of the implementation hangs on what 

the featural/autosegmental/tier-based representations buy us in terms of codifying possibly 

universal properties of phonological grammars like locality, strict-adjacency, and natural 

class behavior. It is certainly the case that any restriction that autosegmental or tier-based 
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representations impose on the system as a whole can also be captured via meta-constraints 

on the statement of segmental constraints. This alternative may, however, come with a 

serious loss of elegance in the statement of the generalizations.  

On the other hand, grammars built from segmental constraints seem, at least for 

the simple cases, to be much easier to work with. This suggests the possibility that, while 

autosegmental representations make some generalizations more elegant, the off-loading 

of the generalizations into the structure of the representations themselves may ultimately 

come at a high price in terms of our ability to manipulate grammars stated over those 

representations.  

 Another aspect of the model developed here that should receive further scrutiny is 

the representation of OT grammars as preoptimized evaluators or as transducers. There is  

some tension between ranked sets of universal constraints on one hand and finite state 

machines on the other. The former is far more elegant in terms of describing the range of 

possible languages and the relatedness of languages to one another while the latter is far 

more transparent in terms of describing the input/output mapping defined by a particular 

grammar. One might ask if one of these representations of phonological grammars was 

more “right” or more illuminating than the other.  

 Considering my algorithm for turning ranked sets of constraints into finite state 

transducers that map inputs directly to optimal outputs, it might seem as if I’ve taken the 

OT out of Optimality Theory. That is, one might think that the low-level description of the 

computation of optimality is somehow closer to the “true” phonology and should therefore 

obviate the need for constraints and rankings. Such a conclusion would be mistaken, first 
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and foremost, because ranked constraints provide elegant descriptions of the relations that 

are defined by phonological grammars and of the relationships among various grammars 

(languages), while the algorithms that I present here represent merely one method for 

computing these relations. 

 Even if it’s the case that the algorithms make substantive predictions about human 

phonology (e.g. commitment to finite state computation eliminates irrational i/o relations), 

there’s no sense in which the utility of the constraint-based representation of the grammars 

is diminished. After presenting algorithms for creating transducers that define the same i/o-

relations as sequences of phonological rules, Kaplan and Kay (1994) stress a similar point.  

“The common data structures that our programs manipulate are clearly states, transitions, 
labels, and label pairs--the building blocks of finite automata and transducers. But many of 
our initial mistakes and failures arose from attempting also to think in terms of these objects. 
The automata required to implement even the simplest examples are large and involve 
considerable subtlety for their construction. To view them from the perspective of states and 
transitions is much like predicting weather patterns by studying the movements of atoms 
and molecules or inverting a matrix with a Turing machine.” – Kaplan and Kay 1994:376. 

 

Kaplan and Kay stress the need for tools that allow high-level reasoning about grammars 

and languages. This is a general point that holds for all linguistic models and, while a 

formal idea of how the computation for a particular model might be carried out can aid in  

understanding that model, we still need an appropriate high-level description of the range 

of possible grammars in that model. 

 

8.6  The future 

The finite state model of Optimality Theory presented in this work is somewhat 

preliminary in several respects. Though the results for the toy grammars that I have 
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considered are promising, the only way to convincingly address the issue of scalability in 

real-world phonology will be to apply this system to a large range of phonological 

problems. There are numerous details of the implementation and representations that 

might be tweaked as needed when addressing new problems, but the basic strategy of 

building a single evaluator to allow generation of contenders, preoptimization, and 

transducer construction should be applicable to a wide range of problems.  

The significance of the model and algorithms presented here does not lie in the 

deepening of our understanding of the basic CV syllable theory but rather in the possibility 

that the tools developed here can be applied to Optimality Theory as it is generally 

practiced to deepen our understanding of the interactions among the various components 

of the theory and of the predictions made by our phonological models.  

One of the most promising areas for further research in this model is the possibility of 

suspending the assumption that the constraint set is fixed and universal and instead 

exploring methods of constraint construction and discovery. Not only does the finite-state 

assumption for constrains, provide a natural complexity metric and a scheme for 

formulating new constraints, but the representation of the entire grammar as a single 

evaluating function makes it possible to ask how the addition of a new constraint affects 

the complexity of the whole grammar.   
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