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Abstract

This paper presents a new theory of presupposition projection sim-
ilar to the strong Kleene (1952) trivalent logic. The primary merits of
the present theory are its unique and fine-grained predictions regard-
ing the presuppositions associated with quantified sentences, and its
predictiveness; the issue of overgeneration discussed by Soames (1989)
and Heim (1990) is avoided within a static, trivalent theory of pesup-
position. A number of alternative theories based on the strong Kleene
approach are also explored, and their strengths and weaknesses are
compared.
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1 Approaching the Projection Problem

The essence of the projection problem for presuppositions can be found in
the fact that (1-a) presupposes that Smith is incompetent, but (1-b) does
not:

(1) a. Smith knows that he is incompetent.
b.  Smith is incompetent and knows it.

Seeing that a complex sentence may have weaker presuppositions than its
simpler constituents, we find ourselves in need of a nontrivial theory of
presupposition projection to provide us with rules for computing the pre-
suppositions of a whole from those of its parts. This paper presents the
case for one such theory, framed in a trivalent semantics, without recourse
to the resources of dynamic semantics or to an account of presuppositions
as implicatures.

There is, of course, no shortage of theories of presupposition projection,
but recent work (such as that of Chemla (2007) and of Schlenker (2006,
2008a)!) has raised a number of concerns about the data taken for granted by
most established approaches? and about the conceptual and methodological
limitations of older theories. The present theory is an attempt to address
these issues, and an exercise in showing that these issues can be addressed
within a static semantics.

I begin with a review of the concept of presupposition and of the pro-
jection problem, followed by an overview of the major new and old data for
quantifiers and connectives. Next, I review a number of related theories, so
that the empirical differences between the new theory and those that came
before will be clear. Finally, the theory itself is presented in formal detail.
An interesting possible refinement is discussed in appendix A.

1.1 Presupposition

The presuppositions of an utterance are generally characterized as what that
utterance takes for granted. Of course, in normal conversation, we take all

L Although this recent work has called new attention to the issues involved, uncertainty
about the presuppositions of quantified sentences can be seen as a component of long-
standing disputes about universal and existential presuppositions, and the overgeneration
problem recently discussed by Schlenker is also mentioned by Soames (1989) and Heim
(1990).

2Most work has attributed the same projection behavior to all quantifiers, while, on
closer inspection the strength of judgments varies considerably between quantifiers.



kinds of things for granted, but some such things are tied specifically to
particular expressions. If I say the king of France is bald, I am presupposing
that France has a king, and asserting of that king that he is bald; if I say
Smith has stopped smoking, I am presupposing that Smith once smoked, and
asserting that this state of affairs has changed; and if I say Jones knows that
sugar is often refined with bone char, I am presupposing that sugar is often
refined with bone char, and asserting that Jones knows this.

There are two main families of empirical and intuitive phenomena asso-
ciated presupposition. The first thing to note is that, since a presupposition
is taken for granted, it is very poor conversational form to presuppose some-
thing that might be contentious - the presuppositions of any utterance should
either be among the commonly accepted facts of the conversation or else be
claims concerning which the speaker has some kind of authority.? Presup-
positions made without meeting these criteria will result in discourses that
sound funny or result in confusion or resentment. It is for this reason that
questions beginning with have you stopped ... are famously loaded. When
its presuppositions are not well-supported, an utterance is not merely wrong
- it is broken.*

Second, the idea that presupposition failure goes beyond an utterance’s
normal correctness or incorrectness gives rise to one of the most common
empirical tests of presupposition: the negation test of Keenan (1971). Un-
der this test, a sentence ¢ presupposes another sentence 1 (in a particular
utterance context) if ¢ follows from both ¢ and its natural negation. For
the presupposition triggers the, know, and stop, we can see this in action in
the following entailments, which remain valid with or without negation of
the premise:

(2)  a. The king of France (is/isn’t) bald
F France has a king.
b. Smith (has/hasn’t) stopped smoking

3Within many discourse models, this notion can be understood as meaning that presup-
position is the part of semantic meaning that gets evaluated against the common ground,
or against some contextually salient set of generally accepted facts, as distinct from the
primary, asserted content, which is evaluated against the private beliefs of the speaker.

40f course, this brokenness need not correspond to any particular theoretical status.
It might be a property associated with any of a wide variety of semantic, pragmatic, or
perhaps even syntactic modules. This intuition of brokenness does not by itself force us to
abandon a bivalent semantics: it might well be that every sentence suffering presupposition
failure is either true or false, and that failure is encoded in some other way. This last
approach is in fact taken by many very promising pragmatic accounts, including those
recently offered in Schlenker (2006, 2008a), Chemla (2008), and Simons (2006).



F Smith once smoked.

c. Jones (knows/doesn’t know) that sugar is often refined with bone
char
E Sugar is often refined with bone char.

It is, of course, not a priori clear that the negation test and the discourse
intuitions are picking out the same phenomena, and each criterion is subject
to numerous confounding factors. Nonetheless, throughout this paper, I will
adopt the standard assumption that these two criteria pick out the same
phenomenon of presupposition.

1.2 Projection

Under standard accounts of presupposition, the presuppositions of a sen-
tence must be met for us to even reach the point of considering its other
semantic content. Depending on our theory, a sentence that suffers presup-
position failure might still be true or false, but even if the sentence has a
truth value, the presupposition failure makes it irrelevant in ordinary con-
versational circumstances. In light of this, we might simply expect a trigger
with unsatisfied presuppositions to poison any constituent in which it ap-
pears - after all, once we have an item that cannot be evaluated, how would
we hope to evaluate its combination? This is, in fact, what is explicitly done
for presuppositions in early accounts like that of Keenan (1970), and it is
at least implicit in the simple accounts of presupposition based on partial
functions that are sometimes used in works primarily concerned with other
topics.

This might be the obvious thing to expect, but it’s been known for
quite a while that it’s not at all what we see. It is quite easy to devise
examples of sentences that contain presupposition triggers with unsatisfied
presuppositions, that are nevertheless quite true, as (3) attests:

(3) Either France has no king, or the king of France is a recluse.

This is not simply a matter of certain contexts suppressing presupposition
effects - in many cases, the presuppositions of a complex sentence containing
a trigger are different from the presuppositions we’d associate with that
trigger in a simpler sentence.

In general terms, the projection problem is just the problem of how to
compute these effects. From very early in its history as a subject of research,
however, the projection problem has served as a key battlefield for disputes
about the semantic and pragmatic machinery associated with presupposi-



tions, and for methodological disputes between different semantic theories.
Perceived methodological excesses of pre-dynamic approaches to projection
were given by Heim (1983) as a motivation for the dynamic approach to pro-
jection and the dynamic semantics in general,” and more recently, Schlenker
(2006) complained of methodological weaknesses of classic dynamic accounts
in advocating for a pragmatic theory of presupposition. This paper is in
large part an exercise in showing that the theoretical concerns discussed by
Heim (1983) and Schlenker (2006) are not inherently liabilities of static or
semantic approaches, by producing an example of a static, semantic theory
of projection that responds to their concerns. It is also an attempt to show
that a revised theory in the tradition of earlier work on trivalence like that of
Kleene (1952), Peters (1977), and van Fraassen (1969) can make interesting
and novel predictions about some cases where new empirical concerns have
recently been raised.

2 Background: Data

The projection behavior of the truth functions and, or, and not, of com-
mon nominal quantifiers, and of the conditional, has been discussed in the
literature extensively and from a number of angles. I will be ignoring the
conditional here (because, in the absence of an agreed-upon theory of condi-
tionals, I am unable to make any predictions for it, especially since this paper
develops only the extensional version of my theory), but the (lamentably in-
complete and tentative) presupposition data for the major truth functions
and for a number of quantifiers will be described in this section. Where the
data are uncertain or ambiguous, I have tried to note these difficulties, and I
have called attention to a few of the confounding factors that I find relevant,
although the confounds discussed here are not meant to be an exhaustive
list.6

"Here I mean the complaint of Gazdar (1979) that the theory of Karttunen and Peters
(1979) treated presupposition inheritance and truth-conditionalc ontent as entirely sepa-
rate lexically specified components. I won’t say more about this complaint because any
theory that addresses the overgeneration problem discussed elsewhere will also avoid this
issue.

SIn particular, contextual restrictors on quantification are mentioned only peripherally,
and nothing is said about issues related to the proviso problem. I also avoid explicit dis-
cussion of local accommodation, in large part because I suspect that local accommodation
as a distinct phenomenon may disappear or become quite marginal once a good projec-
tion theory is combined with a good theory of context-specific domain restrictions. The
phrasing of some of my examples has been selected with an eye towards controlling for
these effects (in particular, to make context-specific domain restriction less likely, most of



2.1 Negation and Testing Presuppositions

To begin, the presuppositions of a sentence are preserved under negation
- this is not so much an empirical fact as a part of the standard working
definition of presupposition (see, for example, Keenan (1971)) - it is true
that implicit in this working definition is the idea that being preserved un-
der negation should be correlated with the major discourse properties of
presupposition, and it is also true that some inferences we might not wish
to treat as presuppositions (certain relevance implicatures, say) may share
this property, but since the negation test is usually taken as the primary
evidence of presupposition, any attempt to motivate it would have to deal
with foundational questions beyond the scope of this work.

Simple negation tests often run into difficulty with complex sentences
built around connectives, since in these cases simple negation with not is
often syntactically questionable. A further possible confound for the nega-
tion test is that the English negation operator mot participates in scope
interactions, and in particular often scopes below certain modals and be-
low subject position quantifiers (indeed, many quantifiers, when in subject
position, are almost totally incapable of scoping under negation, requiring
strongly biasing discourse context or special intonation that seems to in-
dicate focus or metalinguistic negation). For this reason, simple negation
data are not always available, and we must resort to other tests such as the
formation of yes/no questions,” longer embedding structures that approxi-
mate the semantics of negation but display different scope bias®, conditions
for discourse deniability, and, as discussed in von Fintel (2004), availability
of wait a minute! responses. The claim that simple expressions of negation
or disagreement are linked to acceptance of presuppositions, while wait a
minute! responses are used to call what has just been presupposed into
dispute, suffers from the fuzziness associated with many discourse coher-
ence tests, but nevertheless appears to have some basis. In, particular the
responses marked with a # below are odd in a way that the unmarked ones
are not:

my quantified phrases have highly specific restrictors, often involving partitives or explicit
mention of numbers of entities or narrow contexts), but I do not pretend to have con-
clusively ruled out all these effects, and none of these issues are systematically addressed
here.

Tyes /no question data are not used here because for complex and quantified sentences
they encounter numerous scope-related and syntactic issues.

8Examples include the results of taking the sentence under investigation and embedding
it under it is not the case that ..., I doubt that ..., or I deny that ...



4) Smith: Watson knows that the Earth is flat.
Jones: Wait a minute! The Earth isn’t flat.

(5) Smith: Watson knows that the Earth is flat.
Jones: # I disagree; the Earth isn’t flat.

(6) Smith: Watson knows that the Earth is approximately spherical.
Jones: # Wait a minute! Watson believes that the Earth is cylindri-
cal.

(7) Smith: Watson knows that the Earth is approximately spherical.
Jones: I disagree; Watson believes that the Earth is cylindrical.

One test of which we should be wary (for reasons discussed in von Fintel
(2004)) is the direct elicitation of intuitions as to whether an untrue sentence
is “false” or “neither true nor false” - to ask such questions is to ask for
theory-laden rather than natural judgments,® and the judgments produced
in such cases are known to sometimes be at odds with the results of other
well-motivated tests of presupposition.

2.2 Binary Connectives
2.2.1 Conjunction

With negation out of the way, let’s consider the less trivial case of and. To
begin recall, the classic observation that (8) presupposes (9):

(8) The king of France is bald.
(9)  France has a king.
These presuppositions need not be preserved under coordination, however,

as we can see if we make a presuppositional sentence like (8) the second half
of a conjoined sentence. So, for example, (10) does not presuppose (9):

(10)  France is a monarchy and the king of France is bald.

The claim that a presupposition is absent here needs some motivation: (9)
must be true for (10) to be true, and scoping simple negation of and is
not really possible here, so whether the entailment from (10) to (9) is a

9More precisely, we might say that the English word false as a predicate of propositions,
need not correspond precisely to the falsehood truth value 0 used in most semantic theories,
where the main purpose of the system of truth values is to model entailment, informative
content, and the like.



presupposition or merely an assertion can only be decided with the aid of
other tests. First, let us try a paraphrased negation:

(11) I deny that France is a monarchy and the king of France is bald.

In uttering (11) the speaker in no way commits herself to the truth of (9).
This can be seen in further detail by considering the longer discourse.

(12)  The author of this leaflet describes France as a monarchy with a bald
king. I deny that France is a monarchy and the king of France is
bald. In fact, France is a republic.

Such examples do have the tendency to feel unwieldy and to take on a certain
flavor of metalinguistic negation. However, the available responses to (10)
also support the idea that there is no presupposition that France has a king;:

(13)  Jomes: France is a monarchy and the king of France is bald.
Smith: # Wait a minute! France is a republic.

(14)  Jonmes: France is a monarchy and the king of France is bald.
Smith: I disagree; France is a republic.

This contrasts with the case where the existence of the King is presupposed:

(15)  Jomes: The king of France is bald.
Smith: Wait a minute! France is a republic.

(16)  Jomes: The king of France is bald.
Smith: # I disagree; France is a republic.

Does (10) have any presuppositions at all that pertain to the French gov-
ernment? It turns out that it has some. Suppose in particular that France
is a monarchy, but that it does not have a king (because its head of state
is female, or, perhaps, because its head of state is male but is given some
title not deemed equivalent to the English word king): here the sentence
suffers presupposition failure. We get failure-like, rather than falsehood-like
dialogue patterns in such cases, as can perhaps be seen more easily if we
substitute actual monarchies without kings:

(17) a. Jones: The Netherlands is a monarchy and the king of the
Netherlands is bald.
Smith: Wait a minute! The head of state in the Netherlands is
female!
b. Jones: Japan is a monarchy and the king of Japan is bald.

10



Smith: Wait a minute! Japan has an emperor, not a king!

(18) a. Jones: The Netherlands is a monarchy and the king of the
Netherlands is bald.
Smith: # I disagree; the head of state in the Netherlands is
female.
b. Jones: Japan is a monarchy and the king of Japan is bald.
Smith: # I disagree; Japan has an emperor, not a king!

(10) appears to have its presuppositions met so long as either France is not
a monarchy or France has a king. In cases where France is not a monarchy,
we see above the sentence is deniable as false, and gives no sign of presup-
position failure, but in cases where France is a monarchy, we find that it
must have a King to avoid failure. The resulting disjunctive presupposition
is approximated by the claim that if France is a monarchy, then the France
has a king, which is the presupposition usually given. The literature usually
claims that (10) has a conditional presupposition, which is true to the extent
that the material conditional can be expressed by the standard conditional
of English, but I am more comfortable with the disjunctive statement of the
presupposition, because in my capacity as a semantic theorist I have a bit
more faith in my understanding of disjunctions than in my understanding
of conditionals.

When we reverse the order of the conjuncts, the situation seems very
different:

(19)  The king of France is bald and France is a monarchy.

A common view (adopted in, e.g., Heim (1983), Schlenker (2006)) is that
this sentence presupposes that France has a King. This seems reasonable,
since the following dialogue sounds inappropriate:

(20)  # Jones: The king of France is bald and France is a monarchy.
Smith: I disagree; France is a republic.

If the inappropriateness of this dialogue is to be found in Smith’s response,
then it would appear that stronger presuppositions are at work in (19) then
in (10) - however, it is not immediately clear that that is what is going on.
(19) sounds noticeably more odd than (10), while modifying (19) to form the
analogous true sentence (21) does nothing to reduce this sense of oddness:

(21)  The king of Norway is bald and Norway is a monarchy.

11



It appears that the kind of redundancy involved in these examples cre-
ates problems independent of the issue of presupposition - indeed, non-
presuppositional examples of a second conjunct that is entirely redundant
with the first display the same awkwardness that we saw in (20):

(22) #Jones: Watson devoured the cinnamon bun and she ate it.
Smith: I disagree; Watson doesn’t eat refined sugar.

Further, the problem is not alleviated by the substitution of wait a minute!
for I disagree:

(23) #Jones: The king of France is bald and France is a monarchy.
Smith: Wait a minute! France is a republic.

It is clear that there is some source of asymmetry in conjunction, but it
is not immediately clear whether the projection is itself asymmetrical, or
whether in cases where the first conjunct is presupposition-laden the simple
test examples are rendered problematic by some more general pragmatic
effect.

2.2.2 Disjunction

Disjunctions also project presuppositions in a weakened or conditionalized
form:

(24)  France is a republic or the king of France is bald.

(24) is taken to presuppose that either France is a republic or it has a
king. A wait a minute! response, but not a simple expression of doubt
or disagreement, is warranted if France is governed by, say, a quasi-Maoist
bureaucracy (so that it lacks a king but could not reasonable be called a
republic), and the sentence is unobjectionably true if France is a republic,
or if it has a bald king, but we only permit simple disagreement or doubt
responses in the case where one accepts that France has a king but denies
that he is bald. Unlike the case of conjunction, this projection behavior
appears symmetrical'® (although these symmetry claims are disputed in the
literature) - everything said above holds true for (25):

(25)  The king of France is bald, or France is a republic.

10 At least, or appears symmetrical with the triggers I've been discussing here. For some
others, especially too, we do see asymmetry effects.

12



This is easier to see if we consider a case where the presupposition involved
is not known to be false, as with the following:

(26)  The bathroom is well hidden, or there is no bathroom.

(27)  Either Watson has stopped eating refined sugar, or she doesn’t care
for cinnamon buns.

If the asymmetry of and is a genuine asymmetry of presuppositions, then a
good theory of projection will need to offer some explanation or excuse for
the fact that order-dependence is seen with and but is often absent with or.

2.3 Quantifiers
2.3.1 Nuclear Scope

The presuppositions of quantified sentences are uncertain even in simple
cases - even the truth conditions of sentences that include a presuppositional
predicate in the scope of a quantifier are in dispute, and things are even
more obscure when we attempt to determine which cases of untruth are
cases of simple falsehood, and which of presupposition failure. One common
claim is that presuppositions give rise to universal projections, so that (28)
presupposes (29):

(28) Each of these six philosophers has stopped drinking.
(29) Each of these philosophers once drank.

The inference from (28) to (29) is unobjectionable, although it is not im-
mediately clear whether all cases where (29) is false result in presupposition
failure, or whether some result in failure and others in falsehood. More
problematically, these universal inferences, whatever their character, are
questionable in some cases. According to my intuitions, at least, the infer-
ence remains valid in the case of (30), but not for cases like (31), (32), and

(33):

(30)  None of these six philosophers has stopped drinking.

(31) At least one of these six philosophers has stopped drinking.
(32)  Less than four of these six philosophers have stopped drinking.
(33) Exactly two of these six philosophers have stopped drinking.

For me (33) in particular is easily satisfied if the two who stopped drinking
were the only two who ever drank. The exact presuppositions are unclear,

13



however, and judgments are variable: Chemla (2007) finds that about half
of French speakers report that universal inferences are suggested by various
numerical quantifiers like those given above (with significantly higher rates
for universal and no-like quantification), and my own (unsystematic) im-
pression from conversations with others has been that judgments here vary
a great deal between speakers and between judgment occasions. In light of
the empirical uncertainty, any precisely articulated predictive theory is likely
to make predictions that go well beyond the established data - this paper
will not resolve the empirical questions, but I will make such fine-grained
predictions, and they will be broadly compatible with my own intuitions on
the matter.

2.3.2 Restrictors

Much less has been said about the role of presuppositions in the restrictor
positions of quantifiers than has been said about their nuclear scope. This
is in part because we must incur a significant degree of syntactic complexity
even to place a presupposition trigger in a restrictor. Many of the easiest
examples to produce involve relative clauses, and here we seem to get almost
no presuppositional force at all:

(34) Every student in my category theory course who stopped drinking
failed the midterm.

I judge sentence (34) to be quite true so long as the students in the class
include at least one who used to drink but no longer does, and all the
students with this property failed.'? The presupposition appears to simply
be narrowing the restrictor. A greater array of restrictor data would be
desirable, since it is possible (as mentioned by Schlenker (2008a)) that this
effect - where the presuppositions and assertions of a predicate are nearly
indistinguishable when it is placed in the restrictor of a quantifier - is in fact

HThe reference to the particular course is intended to reduce the potential impact of
contextual domain restriction - we could go further with any of the following rather stilted
examples, for which I have the same intuitions:

(1) a. My category theory course has forty-two students in it, and every student
in that course who stopped drinking failed the midterm.
b.  Every student in my forty-two student category theory course who has
stopped drinking failed the midterm.
c.  There are forty-two students in my category theory course, and every one
of them who stopped drinking failed the midterm.

14



a feature of the projection behavior of relative clauses, and not of restrictors.

3 Background: Theory

This section sets out some conceptual and historical background. It is con-
cerned primarily with reviving the strong Kleene trivalent logic of Kleene
(1952) and related systems discussed in van Fraassen (1969) and Peters
(1977) as viable approaches to the theory of presupposition projection.
These systems have a long history in the logical and linguistic literature,
predating the first reasonably general formalizations of dynamic semantics,
but have remained relatively obscure as treatments of projection. Since
these theories are the closest relatives of my own, I want to explore their
predictive strengths and weaknesses in some detail. This section also at-
tempts to familiarize the reader with the conceptual apparatus common to
many of these theories, and to call attention to some important influences
and related work.

3.1 A Word on Trivalence

Many of the theories presented below model presupposition with a third
truth value #, which is assigned to declarative clauses that suffer presup-
position failure, and treat the connectives and and or as truth functions.
That is, when we do our projection calculations to see how # percolates up
through the compositional system, we are able compute the failure condi-
tions for a sentence. The presuppositions of a sentence are just the logical
complement of its failure conditions. The discourse significance of presuppo-
sition and presupposition failure is left to the discourse model, presumably
with a rule that it is inappropriate to utter a sentence the presuppositions
of which you think another conversational participant might reasonably dis-
pute. In any case, I will have nothing more to say on the pragmatic act of
presupposing, but will concern myself entirely with the process of computing
failure conditions.

It will be good to look at how to derive presuppositions from other
semantic facts that implicitly characterize them. As already mentioned,
if we know the conditions of presupposition failure for a sentence, then we
negate a description of the failure conditions to get the presuppositions. If we
know the truth conditions and falsehood conditions of a sentence, then the
presuppositions of the sentence are exactly the disjunction of the truth and
falsehood conditions. For the case of truth-functional connectives, we can
state the above in terms of the truth tables: given a truth table for a trivalent

15



connective, we can calculate its presuppositions by taking a disjunction of
descriptions of all the lines where the lines where the connective outputs a
value other than #, or, equivalently, we can take the conjunction of all the
lines associated with #, and negate that. Of course, these rules will most
often produce very unwieldy descriptions of the presuppositions, but it will
usually be possible to paraphrase the resulting conditions more succinctly.
It is important to remember that the things we will directly see perco-
lating up are truth values (possibly including the failure code #). From this
behavior, we can compute the projection behavior, but trying to interpret
cases where # “projects” up directly as corresponding to the projection of
a presupposed proposition will lead to confusion and possible error in the
cases where the system predicts conditional or disjunctive presuppositions.

3.2 Repair and Substitution

Most of the theories described here will be theories that deal with presuppo-
sition failure in an argument by considering repairs of the presuppositional
element that avoid the failure, and evaluating by substituting those repairs
for the original, problematic, value. The reason that presuppositions some-
times project is that sometimes more than one repair is considered, and in
some cases, but not in others, substituting different repairs yields different
outcomes - presupposition failure in larger constituents results from this kind
of conflict between different repairs for the failures of smaller constituents.
For illustrative purposes, let’s consider a very informally how this might
play out with a few simple examples.

First, in the case of presupposition failure in a sentential argument of a
truth function, the truth value of # has two obvious repairs: 0 and 1. That
is, if a sentential argument of a truth function suffers presupposition failure,
we don’t care so long as it doesn’t matter whether the sentence is true or
false. Consider first this familiar case:

(35) France has a king, and the king of France is bald.

Evaluating this sentence against the facts of the real world, we find that the
first conjunct is false, and the second conjunct takes the truth value #. We
therefore consider two repairs - we entertain pretense that we have a true
second conjunct, and also the pretense that we have a false one. In each
case, however, the sentence is false, since France does not have a king, and
so the conjunction of France has a king with any sentence of any bivalent
truth value will produce a false conjoined sentence. No matter what repair
we choose, we get the same result, so this sentence is merely false. In the
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hypothetical world where France does have a king, matters are of course
different. There, the truth value of the second conjunct very much matters,
but in that case the second conjunct will never suffer presupposition failure,
since if France has a king then an attribution of baldness to him will be either
true or false. Thus, this sentence lacks in all cases the presuppositional force
that would be associated with the second conjunct by itself.

We can also verify that, given these repair options, presuppositions are
still unchanged under negation. Consider the following;:

(36) Watson hasn’t stopped drinking.

The case of failure for the sentence being negated is the case where Watson
doesn’t drink and never did. In this case, we want to take the negation of
each repair of the negated #, where the two repairs are 0 and 1. Since the
negation of 0 is 1 and the negation of 1 is 0, the two repairs do not produce
agreement, so the negation gets the value # when the presuppositions of
the negated sentence aren’t met, and the sentence and its negation share
the same presuppositions.

Now, let’s look at one possible repair approach to a quantification ex-
ample:

(37)  Each of these three logicians has stopped eating refined sugar.

Suppose that there are three logicians under discussion - Kurt, Bert, and
Rudy - and that none of them has ever eaten refined sugar. That is, for all
a € {[Kurt],[Bert],[Rudy]}, [has stopped eating refined sugar](a)=#. In
this case, we will always consider at least two repairs - the repair where all
items mapped to # are instead mapped to 0 (i.e., we pretend that Kurt,
Bert, and Rudy all persist in eating refined sugar), and the case where all
items mapped to # are instead mapped to 1 (i.e., we pretend that Kurt,
Bert, and Rudy all formerly ate refined sugar, but have stopped). Clearly,
under the first repair, the sentence is false, while, under the second it is true.
Because of this conflict between repairs, (37) suffers presupposition failure
if none of the logicians has ever eaten refined sugar, as do the following
sentences, assuming the same repairs:

(38) At least one of these three logicians has stopped eating refined sugar.
(39) None of these three logicians have stopped eating refined sugar.

Now suppose instead that Bert used to eat refined sugar and persists in the
practice, while Kurt and Rudy have always avoided the stuff. In this case, it
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is false that Bert has stopped eating refined sugar, so the predicate maps him
to 0, while Kurt and Rudy are still mapped to #. If we consider again just
the repair where we replace all the #s with 1 and the one where we replace
all the #s with 0, we see that both map Bert to 0, so in both cases it is false
that each logician has the property characterized by the repaired predicate.
Thus, given these repairs, we predict that (37) is false even though some of
the logicians do not meet the presuppositions of the predicate.

Above, we often saw that it was helpful to frame repairs in terms of
pretending that the situation was different in a way that avoided the value
#; besides imagining repairs in terms of pretense, we can imagine them in
terms of constituent substitution. In this case, the repair that differs [has
stopped eating refined sugar] in that all entities that would be mapped to
# are instead mapped to 0 is roughly equivalent to [used to eat refined
sugar but doesn’t anymore], while the repair that substitutes 1 for # is
approximately equivalent to [doesn’t eat refined sugar]]. Getting the same
truth values for (37) substituting both repairs will be the same as insisting
that, in the world as it is, we get the same truth values for both syntactic
substitutions:

(40) a. Each of these three logicians used to eat refined sugar but doesn’t
anymore.
b. Each of these three logicians doesn’t eat refined sugar.

Both the syntactic substitution approach and the pretense approach are, of
course, only heuristics, but they can be quite helpful in reasoning through
repair strategies.

To derive the full presuppositional behavior of any of the above sentences,
we would have to work through every possible circumstance, and determine
which ones cause the repairs to conflict - the proposition presupposed will
be the set of worlds in which the repairs don’t conflict. This task will be
made more complicated in various ways, but in particular it will depend on
how the set of repairs is determined (below, we will consider a number of
theories that differ in how they select the set of repairs). The set of repairs
will always depend on the item being repaired, and in some approaches
(including the main one I finally adopt below) it will also depend on the
context of evaluation, but one thing that will remain the same is that a
repair for any presuppositional item will always agree with the item being
repaired in those cases where presupposition failure does not come into play.
If Kurt has never eaten refined sugar, we can entertain either the pretense
that he is a current consumer of the substance or the pretense that he is
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a reformed one, but if Kurt used to eat refined sugar and has since sworn
it off, we are forced to keep this constant in all pretenses we consider in
the name of repair (or, on the syntactic substitution heuristic, we can only
substitute other predicates that are also true of Kurt).

For the cases mentioned above, we seem to be deriving the right results.
To build a theory around this intuition we will need to make precise the
notion of there being or not being a difference between repairs, specify the
point in the evaluation at which this not mattering is checked, and, as noted
above, give explicit rules for computing the set of possible repairs (there is,
of course, also the possibility of explicitly building in other components that
manipulate presuppositions and repairs). The key to a successful theory is
to define the notions of repairs and repair assessment in a way that gives
good results for whatever presuppositions and structures we throw at it.

3.3 Influences and Related Work

The present theory will be easier to understand in the context of some re-
lated work, which helps both to motivate my particular decisions and to
develop some intuitions for the general approach by exploring some easier-
to-follow related formalisms. The discussion of the strong Kleene logic for
connectives is assumed as background in later sections, but some of the
other formal material, especially the Peters-Kleene system and the discus-
sion of how strong Kleene may be generalized to quantifiers, is included to
show how the approach I eventually adopt contrasts with earlier work and
some natural generalizations thereof, and may be skimmed or skipped at
the reader’s discretion (although it will help to build familiarity with some
tricks developed later).

The discussion of quantifiers here and in subsequent sections makes use
of some new notations and formal devices. The most important of these is
the idea of output substitution, which it will be best to define in advance.
For function f, we define f%/° to be the function such that, for any argument
sequence @, f¥%(@) = a if f(@) = b, and f¥/*(#) = f(@) otherwise. The two
relevant cases are those of f%# and fY/#. For f a unary predicate, f%# can
usually be expressed in ordinary English by conjoining the assertions and
presuppositions of f, and f1/# can usually be expressed in ordinary English
by taking the disjunction of some expression of f9# with the negation of
the presupposition of f. Thus, if f = [knows that he is an idiot], f%# ~ [is
an idiot and knows it], and fY/# ~ [isn’t an idiot or is an idiot and knows
it].

Finally, a note is in order about my terminology - I call two systems below
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the strong Kleene and Peters-Kleene systems because the formulations below
are inspired by systems developed by Kleene (1952) and Peters (1977), and
because they coincide with these systems where commonly studied truth-
functions are concerned. However, these systems are presented below in
generalized forms and in quite different terms from the original descriptions,
so the reader should refer to the original authors before attributing to them
any specific view involving the systems named after them below.

3.3.1 Strong Kleene

The first system to consider is the strong Kleene trivalent logic of Kleene
(1952). This logic can be though of as analyzing each instance of presuppo-
sition failure as an instance where the value is unknown. Because the value
is unknown, we can only proceed if we are convinced that all possible values
would yield the same result, so we will have a fairly expansive notion of what
repairs need to be considered. If all the members of the repair set yield the
same result, then we have proven to ourselves that that is the result, even
if the value of a particular argument remains unknown. The application
of this intuition to the study of presuppositions has a long but somewhat
sparse history, going back at least to van Fraassen (1969) (where the for-
mally rather different but similarly motivated theory of supervaluations was
used).

In a bit more detail, a truth-functional strong-Kleene system has three
truth values - besides the usual 0 and 1, there is the third value #, which
is generated by failure and interpreted as uncertainty. To evaluate an n-
ary truth function on a sequence of n arguments, the strong Kleene system
evaluates every possible repair of the argument list, where a repair is a list
of Os and 1s that has Os everywhere the original argument list has 0Os and
1s everywere the original argument list has 1s, and may contain either a
0 or a 1 for any position where the original argument list had a #. If all
possible repairs produce the same result, that is the value we get from the
truth function. If different repairs produce different results, then the value
of the whole term is #.

Since my system agrees with the strong Kleene system in the proposi-
tional case, it will be useful to flesh out the strong Kleene predictions. To
begin, consider the case of negation. To evaluate —#, we must consider two
repairs: 1 and 0. Since =0 = 1 and —1 = 0 we have disagreement between
these repairs, so =# = # under the strong Kleene logic. For the other two
possible arguments, no nontrivial repair occurs and as before -0 = 1 and
=1 = 0. This is the trivalent truth function that corresponds naturally to
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negation in a presuppositonal system - it says that the circumstances that
make a sentence fail are exactly the same as those that make its negation
fail, so a sentence and its negation have the same presuppositions.

For conjunction, there are nine possible pairs of truth values. Four of
these contain only 0 and 1, and so don’t require us to consider alternative
repairs and remain the same as in the bivalent case. Of the five remaining
cases, four can be arranged into two symmetric pairs. First, (0 A #) = 0,
since the two repairs to evaluate are 0 A0 and 0 A 1, and both of these eval-
uate to 0, and by the same reasoning (# A 0) = 0. For 1 A #, we try both
repairs and find that (1 A1) # (1 A0), so (1 A#) = #, and so does # A 1.
Finally, the four possible repairs for # A # do not all agree (for example,
(LA1) # (0A0)), so (# A #) = #. The above considerations give us the
following trivalent truth table for conjunction:

al b |aAb
111 1
10 0
L | # | #
011 0
0]0 0
0 | # 0
# | 1| #
#1 0 0
#\#| #

It’s worth taking a minute to understand what this truth table repre-
sents. The function A that we start with - the thing we ought to consider
the lexical entry for and - is still the usual bivalent conjunction, definable
by the accustomed four-line truth table. However, the strong Kleene system
gives us a way to apply bivalent functions to trivalent arguments. Once one
accepts the strong Kleene system, we are free to stipulate new bivalent truth
functions, but the trivalent behavior we get for them is determined entirely
by the strong Kleene rules.

Applying the truth table derived above to the concrete case of (10) (re-
produced below as (41)), we find that if France is not a monarchy the sen-
tence is false, and that if France is a monarchy the sentence is subject to
failure if France has no king (since if France has a king then either he’s bald
or he’s not, which will yield either truth or fasehood). So to avoid failure,
what we require is that either France is not a monarchy or France is a monar-
chy with a king - this is exactly the disjunctive/conditional presupposition
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argued for earlier.
(41)  France is a monarchy and the king of France is bald.

Perhaps more problematically, since the truth table is symmetrical, we pro-
duce the same predictions for the case where the order of the conjuncts is
reversed.

Turning to disjunction, we reverse the pattern, with # percolating up in
the presence of 0 but not of 1. As before, the four bivalent argument pairs
create no need for repair and get their usual values. For 0V # (and likewise
for # Vv 0), we have (0V 1) # (0 vV 0), so (0V #) = #. On the other hand,
since (1vV1) = (1Vv0) =1, wefind (1V#) =1 (and likewise for # V 1).
Finally, since (for example) (0V0) # (1V0), and both of these are legitimate
repairs for # V #, we find (# V #) = #, so the strong Kleene system gives
us the following truth-table for or:

al|lb|laVvb
111 1
110 1
1| # 1
0|1 1
010 0
0| # | #
#1 1] 1
#| 0| #
# |\ #| #

Here we have a symmetrical disjunction, and it is associated with exactly
the disjunctive presuppositions we want. This means that, in the case of (24)
(reproduced below as (42)), we predict a presupposition that either France
is a republic or France has a king.

(42)  France is a republic or the king of France is bald.

3.3.2 The Peters-Kleene Connectives

Arguments in Karttunen (1973) attempted to show that trivalent semantic
theories of projection were inadequate on empirical grounds. Peters (1977),
took exception to this, pointing out that the possibility of specifying triva-
lent truth functions for the connectives that would produce the predictions
of Karttunen (1973). The system of Peters (1977) appears to have been
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developed mainly as an exercise to prove a formal point. The truth func-
tions associated with the connectives are not formally derived from any
general principle, and extensions to other types are considered only very
briefly. Nonetheless, if we draw up truth tables for the and and or of Pe-
ters (1977)'2 and compare them to the strong Kleene connectives above, a
natural generalizing intuition presents itself. Here are the truth tables for
conjunction and disjunction as given in Peters (1977):

al|lb|lanb|aVb
1|1 1 1
110 0 1
1| # | # 1
0|1 0 1
010 0 0
01#] O 7
# 1| # 7
#10 | # #
# |\ #| # #

The reader may verify that these Peters-Kleene connectives agree with
the strong Kleene connectives on instances of # in the second argument po-
sition, but always yield # when there is a # in the first argument position.
This can be made into a general principle by framing things incrementally:
for each argument, we get failure if there is any imaginable sequence of biva-
lent future arguments such that there are two distinct repairs for the present
argument that would produce different outcomes with that sequence of fu-
ture arguments. If, on the other hand, all repairs for the present argument
(of which there is only one when the argument is non-presuppositional) yield
the same results, given every fixed choice of a sequence of future arguments,
then we can pick any repair arbitrarily and ‘run with it’. The asymmetry
arises because in the second argument position there are fewer future argu-
ments left open as possibilities, and more past arguments that are already
known quantities.

Note that the Peters-Kleene connectives give us the (at least superfi-
cially desirable) asymmetrical and but also give us a more questionable
asymmetrical or. It is also noteworthy that in order to derive the Peters-
Kleene connectives from the general principle stated here, we need to frame

12Tn Peters (1977), there is also a treatment of if... then... derived from the material
conditional in the same way, but at present I wish to avoid discussion of conditionals,
which are known to introduce a number of complications to any semantic discussion.
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things in terms of left-to-right order - on most binary-branching analyses
of coordination, the argument to which the function is first applied on a
hierarchical traversal (i.e., the second argument in linear order - with which
the conjunction is analyzed as forming a constituent) will be the wrong one
to treat as the “first” argument for purposes of the notions of incremental
asymmetry discussed here, since then we would get asymmetry in exactly
the opposite of the direction we want. The degree to which one finds this
distressing will depend on one’s views of the notion of compositionality and
the syntax of coordination, but, in any case, it is worth remembering that
the notion of order involved would require clarification (such clarification is,
of course, also needed in the strong Kleene case, but there the symmetry
makes it a less pressing issue, and makes hierarchical order of arguments a
feasible conservative choice).

The present work is in the spirit of Peters (1977) in at least one sense -
just as Peters (1977) was developed as a counterexample to claims in Kart-
tunen (1973) that certain data demanded a pragmatic account of presuppo-
sition, so this paper was developed as a response to a similarly anti-semantic
outlook present in some of the discussion in Schlenker (2006, 2008a). It is
probable that this origin is part of the reason the theory of Peters (1977)
was not developed further, and was presented without any formalization of
the fact that the trivalent connectives proposed could be derived from a
unifying principle.

3.3.3 Related Systems in Programming Languages

It should be noted something equivalent to the Peters-Kleene approach to
boolean connectives is already found in the “short circuit”'® implemen-
tations of the boolean connectives in many computer programming lan-
guages.' In the computational setting, this approach is motivated less by
a need to control the propagation of errors than by a desire to save process-
ing time. When we wish to compute the disjunction or conjunction of two
expressions, the computational resources required to evaluate each of the
expressions may be substantial - the computer for this reason first devotes
its resources to evaluating the first argument of the truth function, and, if
this one is enough to determine the value of the larger expression (that is,

13The short circuit evaluation of connectives can be regarded as a special case of “lazy
evaluation” associated with call-by-name and call-by-need in some languages.

MExperienced computer programmers will cringe at some of my simplifications, but I
hope they will also appreciate my attempts to make the core intuitions available, and to
recognize their community’s early contributions in this area.

24



if it is 1 for disjunction or 0 for conjunction), the value is returned and the
second argument is never evaluated. In systems where serial computations
give rise to an error as soon as they encounter an expression that cannot
be evaluated,'® any error generated by the first argument (which is always
evaluated) will result in an error when the truth-functional expression is
evaluated. On the other hand, errors associated with the second argument
will only be generated if the second argument is evaluated, which will only
happen if the first argument’s truth value does not give us enough informa-
tion to compute the value of the whole with certainty. The applicability of
this core insight (and of a more generalized idea of one primary argument
“controlling” the evaluation of the function) to linguistic presupposition has
been recognized for a while, and some variations are discussed in Kracht
(1994). Although I have not conducted a detailed search, I'm not aware of
anything along these lines in the computational literature that provides an
improvement over the strong Kleene and Peters-Kleene approaches from a
linguistic perspective, but this piece of history seems worthy of recognition,
especially since it provided an early inspiration for my exploration of these
issues before I became familiar with Kleene (1952), Peters (1977), and van
Fraassen (1969).

3.3.4 (Generalization to Quantifiers

The generalization of these kinds of trivalent systems beyond the truth-
functional case has been explored on a number of occasions, but, although
it can lead to fascinating fine-grained predictions for quantifiers, I am not
aware of any serious attempts to apply such generalizations to presuppos-
tion projection of generalized quantifiers. In generalizing the strong Kleene
logic and related systems beyond the truth-functional case, we have a num-
ber of options. If f is a function'® that maps some possible arguments to
#, what are the acceptable repairs of f? The two most straightforward
generalizations of the strong Kleene intuition are as follows:

e First, we can treat each argument list mapped to # by f as a separate
case of failure, to be independently repaired with either 0 or 1. To do
this, let E(f) be the set of all functions g of the same type as f such
that, for every complete argument sequence Z, g(Z) € {0,1}, and, if
f(@) € {0,1} then g(Z¥) = f(&). We can then let the repairs of f be

5Many runtime errors, such as those arising from division by zero, could reasonably be
regarded as a kind of presupposition failure.
For simplicity, I consider only functions of types that “end in” t.
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exactly those functions in E(f). This is the approach most in keeping
with the “uncertainty” intuition underlying the strong Kleene system,
and it is equivalent to the traditional treatment of quantification in
strong Kleene theories, producing results like those associated with the
“supervaluation quantifiers” of van Eijck (1996). This is the option I
assumed in George (2007) and George (2008b).

e Second, we can replace all cases of # in the output of f with either
0 or 1, so that the repairs of f are just fO# and f1/#. (A modified
version of this option is pursued in the theory I adopt below. This
choice is based less on any certainty that this option is superior than
on the fact that the differences of prediction are subtle enough that I
do not know of any good empirical reason to favor one or the other,
and and that the computations are easier when only two repairs need
to be considered.)

Both of the above options will produce 0 and 1 as repairs for # if we
consider truth-values to be zero-ary functions.

The basic strong Kleene and Peters-Kleene approaches make some inter-
esting and fine-grained predictions for quantifiers under either of the above
options. Below, I want to consider quickly the predictions for universal,
existential, and ezractly quantification, as seen in sentences (28), (31), and
(33), reproduced below as (43), (44), and (45):

(43)  Each of these six philosophers has stopped drinking.
(44) At least one of these six philosophers has stopped drinking.
(45)  Exactly two of these six philosophers have stopped drinking.

For the present examples, where pesuppositions only occur in the last ar-
gument (the nuclear scope), the Peters-Kleene and strong Kleene approaches
will behave the same (this is because, for strong Kleene, the only thing to
vary is the nuclear scope, and for Peters-Kleene, the need to consider any
possible completion of the argument list becomes trivial with the last argu-
ment). We will thus need to consider only the two ways of generating a repair
set (although these will also turn out to yield very similar predictions). In all
cases, it will be helpful to separately assess the truth conditions, falsehood
conditions, and failure conditions of each sentence:

e Sentence (43) with {f%/#, f1/#}. Here we're applying the function
g = [each philosopher] to the function f = [has stopped drinking],
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by considering the two alternatives f0/# ~ [used to drink and doesn’t
at present] and f1/# ~ [doesn’t drink]."”

— When is (43) true? For (43) to be true, it is required that
g(fO#) = g(fY/#) = 1. Since f%# picks out a subset of the
entities picked out by f 1#  and g represents universal quantifi-
cation, this is the case iff g(f%/#) = 1, which is to say if each of
the philosophers used to drink but doesn’t anymore (so the sen-

tence does yield an inference that each of the philosophers used
to drink).

— When is (43) false? For (43) to be false, it is required that
g(fO#) = g(fY/#) = 0. Since we have a universal quantifier,
we know that if g(f%/#) = 0 then g(f%#) = 0, so the sentence
is false iff g(f'/#) = 0, which is to say if at least one philosopher
used to drink and still does.

— When does (43) suffer presupposition failure? The sentence gets
the value # iff it is neither true nor false. That is, we get a pre-
supposition failure iff none of the philosophers currently drinks,
but not all of them are ex-drinkers. (Thus, we compute for the
sentence the disjunctive presupposition that either at least one
philosopher currently drinks or all of them are ex-drinkers.)

e Sentence (43) with E(f): The case for the E(f) repair set is not really
different from the case of { fO/# g1/ #1, because of the monotonicity
of the universal quantifier. That is, both of these repairs are in E(f),
every repair in E(f) picks out a superset of the one picked out by
f9# and a subset of the one picked out by fY#, and if a universal
quantification is true of the subset then it is true of all its supersets,
and if it false of the superset then it is false of all its subsets.

e Sentence (44) with {f%/#_ f1/#}. Here we're applying the function g =
[at least one philosopher] to the function f = [has stopped drinking],
by considering the two alternatives f%# ~ [used to drink and doesn’t
at present] and f1/# ~ [doesn’t drink].

— When is (44) true? This sentence is true iff g(f%/#) = g(fV/#) =
1. Noting that this is an existential quantifier, this is true iff
g(fO#) = 1, which is to say if at least one of the philosophers

"Here doesn’t drink is used as a simpler approximate paraphrase of never drank or used
to drink and now doesn’t.
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used to drink but now does not. Note that this does not warrant
a universal inference.

— When is (44) false? By the same reasoning, g(f%#) = g(f\/#) =
0 iff g(f/#) = 0, since it’s always harder to make existential
quantification false over a more inclusive nuclear scope. That is,
(44) is false iff there is no philosopher who doesn’t drink, which
is to say if every philosopher drinks.

— When does (44) suffer presupposition failure? Presupposition
failure occurs in the gap case, so, here, when not every philoso-
pher drinks and no philosopher is an ex-drinker - so we presup-
pose that either every philosopher drinks or some philosopher is
an ex-drinker. Another way of framing this is that the sentence
has basically existential presuppositions in positive instances but
basically universal ones in negative instances. This prediction is
a bit unexpected, but, I think, rather appealing.

e Sentence (44) with E(f): As with the universal quantifier, with the
existential we find no difference between the two options for repair
sets discussed so far. If the existential quantification is true of fO/#,
it is true of all the other (weaker) predicates in E(f), if it is false of
fY# it is false of all the other predicates, and if it disagrees on the
two then, since both are in E(f), we don’t have agreement across all
repairs and so get failure.

e Sentence (45) with {f%/#, f1/#}. Here we're applying the function
g = [exactly two philosophers] to the function f = [has stopped
drinking]], by considering the two alternatives fO# [used to drink
and doesn’t at present] and fY/# ~ [doesn’t drink].

— When is (45) true? Yet again we ask when g(f%/#) = g(f'/#)
1. Here we must consider each repair separately. ¢( o/ #) =
iff exactly two philosophers are ex-drinkers, and g(fY/#) = 1
iff exactly two philosophers are non-drinkers. Since every ex-
drinker is a non-drinker, it follows from these two conditions both
being met that the ex-drinkers are the non-drinkers, which is to
say that each of the philosophers is either an ex-drinker or a
current drinker, so we predict a universal inference that all the
philosophers used to drink. This prediction is strongly at odds
with (at least) my intuitions for (45).

—

— When is (45) false? To make the sentence false, we need to en-
sure that g(f%#) = g(fY/#) = 0. This is the case whenever
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neither the number of non-drinking philosophers nor the number
of formerly drinking philosophers is two.

— When does (45) suffer presupposition failure? We have failure
whenever the two repairs fail to agree on truth or falsehood.
This occurs whenever there are either two philosopher ex-drinkers
or two philosopher non-drinkers, and the number of philosopher
never-drinkers is not zero. We thus compute the rather convo-
luted presupposition that either the number of philosopher ex-
drinkers and the number of philosopher non-drinkers are both
equal to two, or else neither number is equal to two.

e Sentence (45) with E(f): Unlike the previous cases, for ezactly quan-
tification the use of the larger repair set E(f) yields slightly different
predictions. The truth conditions will be the same, since if the two
extremes both contain exactly two philosophers then all the interme-
diate repairs will as well. The falsehood conditions, however, will be
trickier, since now we will have one repair that gives us truth whenever
the number two is (inclusively) in between the number of philosophers
who are ex-drinkers and the number of philosophers who don’t drink.
So for the sentence to be false, it must be either that both numbers are
greater than two or both are less than two. We get failure in all other
cases, so we predict a presupposition that either the two numbers are
both two, or both are less than two, or both are greater than two.

The observation made above for the monotonic quantifiers helps explain
the similarity in predictions between the two repair set options, so it’s worth
restating generally. If we have a generalized quantifier that is upward or
downward monotonic in its nuclear scope, with denotation f, then one of
f9# and f1/# will be the repair in E(f) that has the “hardest” time making
the quantifier true, and the other will be the one that has the “hardest” time
making it false, we will have agreement across E(f) iff we have agreement
between these two extremes, hence:

Proposition 1 For a predicate f in the nuclear scope of a non-presuppositional
monotonic generalized quantifier, the strong Kleene system derives the same
truth conditions and the same presuppositions when the repair set is {fo/#, fl/#}
as it does if the repair set is E(f).

The Peters-Kleene and strong Kleene approaches do diverge rather strik-
ingly for restrictors. Since the strong Kleene approach is fully symmetrical
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for argument positions, its predictions for presuppositions in the restric-
tors of symmetrical (intersective) quantifiers will just be the mirror images
of the nuclear scope predictions. Thus, on either of the above notions of
repair set, (46) is associated with roughly the same truth conditions and
presuppositions as (44), and likewise (47) will get the same predictions as
(45).

(46) At least one person who has stopped smoking is among these six
philosophers.

(47)  Exactly two people who've stopped smoking are among these six
philosophers.

For universal quantification, we do have asymmetry between the arguments,
so we will of course get different predictions for restrictor presuppositions.
Here, we should consider (34), reproduced below as (48):

(48) Every student in my category theory course who stopped drinking
failed the midterm.

To get the strong Kleene predictions for (48), we ask the same three questions
we’ve asked before. I will consider only the { fO/# g1/ #} case, although the
E(f) case comes out the same. Here, f = [student in my category theory
course who stopped drinking], f 0/# [student in my category course who is
a drinker], and f1/# ~ [student in my category course who doesn’t drink].

e When is (48) true? For (48) to be true, we need it to be the case
both that every student in the course who doesn’t drink failed and
that every student in the course who is a former drinker failed, but
the second of these is redundant with the first, so we get truth exactly
when every nondrinking student failed.

e When is (48) false? For falsehood, we need there to be one nondrinking
student who passed, and one formerly drinking student who passed.
But the former is true whenever the latter is true, so we find that
the sentences is false whenever there is a former drinker among the
students who passed.

e When does (48) suffer presupposition failure? The sentence suffers
failure whenever neither the truth nor falsehood conditions are met -
that is, when every former drinker among the students failed, but some
nondrinker passed. We thus get a presupposition roughly equivalent
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to a statement that if all the former drinkers failed, all the nondrinkers
did.

The predicted presuppositions we get for restrictors under the strong
Kleene theory are quite strange. They are also, at least in the case of the
universal, probably too strong. They are, however, weaker than the univer-
sal and near-universal restrictor presuppositions that many other theories
predict. This is an improvement if one rejects such universal presupposi-
tions, but on this line it would be preferable to have presuppositions that
are weaker still - the intuition that presuppositions can just be used to nar-
row down the restrictor does not correspond to the predictions we derive.

The Peters-Kleene theory predicts much stronger presuppositions in re-
strictors. Since the restrictor is the first argument considered, we predict
failure unless every repair of the restrictor produces the same truth value
for every possible nuclear scope predicate. With universal and (singular)
existential quantification, this means we predict presupposition failure as
long as the restrictor makes any presuppositions about the entities involved
- for some cardinal quantification the results are slightly weaker, since the
number of entities in even the largest repair of the restrictor can be small
enough that all repairs make the restrictor true or false simply because to
achieve one truth value we’d need more entities to work with. Since I think
restrictor presuppositions are weak, I think this isn’t a very good prediction,
but it is at least a prediction with advocates and a certain kind of coher-
ence, and it does reflect some kind of order-asymmetry. This is in contrast
with the predictions of the basic strong Kleene system, which are symmet-
rical and, so far as I know, do not accord especially well with anybody’s
intuitions.

3.3.5 The Methodological Challenge of Transparency Theory

The genesis of the present system closely parallels that of the Peters-Kleene
system. Schlenker (2006, 2008a) argues for a particular pragmatic approach
(transparency theory) as preferable over dynamic semantics. As with Heim
(1983)’s arguments for dynamic accounts of projection, methodological con-
siderations play a key part. The particular objection raised here is that
dynamic semantics overgenerates in the sense that the projection facts of
a connective are coded into its dynamic meaning in a way largely inde-
pendent of its truth-conditional (or at least truth-functional) contribution.
A constraining theory, such as one that derives projection behavior from
the normal truth-conditional semantics of words and their syntactic con-
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figurations, seems preferable. This work began as an exercise in arguing
that a static semantic theory with this desirable property is possible and
can make predictions similar to those of classical dynamic semantics and of
transparency theory. The present goal, developed below, is to show how a
certain refinement of the strong Kleene system can produce predictions that
are different from, and, I hope, preferable to, those of these earlier theories.

3.4 Towards a Revised Approach

The strong Kleene and Peters-Kleene approaches, as described here, have
two main components - a component that generates the repairs in the event
of presupposition failure (above we considered {f%#, f1/#} and E(f) op-
tions) and a component that computes truth values based on a calculated
repair set (above we considered the strong Kleene approach, which lets us
consider all arguments together, and the Peters-Kleene approach, which
takes the arguments one at a time and must make snap judgments). Over-
all, the most questionable predictions appear to be those relating to restric-
tors and to exactly quantification. There are also some possible issues with
the symmetry or asymmetry of various truth functions, and the fact that
the “universal presuppositions” of certain quantifiers are derived only as
entailments.

After introducing some technology to help with the more precise de-
scription of the system, I will outline describe a way to address the issues
with exactly and with restrictors by keeping the strong Kleene approach to
evaluating repairs, but introducing a new system for computing repair sets.
This new approach to repair sets will make the repair set dependent on the
function beng applied. The actual interaction of the function with a set of
repairs will be symmetrical between argument positions, as in the strong
Kleene system, but, since every time we apply a function to one argument
we produce a new function of lower arity, we can end up using different re-
pair sets in different argument positions, leading to asymmetrical projection
predictions for symmetrical quantifiers. The influence of the function on the
repair set is computed from the normal truth-conditional properties of the
function, so the desirable predictive properties of the theory are preserved.

The key trick will be to define the repair set so that in certain contexts
it is {fO/#, f1/#} while in others it is just {f%/#}. That is, sometimes we
are allowed to proceed simply by treating presupposition failure as if it were
falsehood - the cases where this is allowed will include almost all restrictors,
and also enough cases of the nuclear scope of exactly quantification to make
the relevant quantified sentences true whenever there are the right number
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of verifying examples. To make this work, we need to identify a property
of function-argument pairs that picks out the cases where we are allowed
to use {f%#} as the repair set - if we allow this in too many cases, we
may get undesirable predictions for other quantifiers. The key observations
will be that, owing to the conservativity of natural language determiner
denotations, the extension of the restrictor of a quantifier is often recoverable
from a DP denotation, and that the relationship of a DP denotation to its
restrictor can be understood as the same as the relation of a determiner
denotation to the whole universe of entities. To describe the right criterion,
we will need a notion of a set of values relevant to the evaluation of a
quantifier, and a way of generalizing this notion to functions of a variety of
different types, so that we cover, both DP and determiner denotations (and,
for uniformity, truth functions as well). Before these notions can be made
precise, though, it will be necessary to trudge through a certain amount of
supporting formalism.

4 Background: Some Technology

Before I can describe my proposed refinement precisely, I will need some new
formal machinery. In particular, it will be helpful to adopt a slightly deviant
approach to manipulating functions and dealing with trivalence. This is be-
cause the standard, heavily curried functional calculus common in semantics
will make the needed discussion of “possible outcomes” rather cumbersome,
and require numerous disjunctive definitions for clearly analogous cases. A
few definitions now will make things more concise later on. I will also be
retreading some ground in order to make ideas already put forward a bit
more precise.

4.1 Trivalence

Trivalence is implemented through a special error code value #. # is a
special item distinct from all ordinary items, be they entities, worlds, truth
values, events, indices, or functions or sequences of any types derived from
these. Crucially, # is a value “outside” of the core semantics as seen by the
lexicon - the domains of functions as defined in the lexicon do not include #
or other presuppositional values (such as functions with # in their ranges),
but will have their behavior in these cases derived by the operations of the
semantics.!® Functions in the lexicon may have # in their range if they are

18T the terms of Appendix C, denotations are all drawn from the set A, of generalized
denotations of some type 7, which means that they are defined directly only over arguments
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presupposition triggers.'® Technically, we might wish to define a distinct
#., for every basic type 7, but for convenience I will write them all as #,
and will in addition write # for any constant function that takes the value
# at every argument sequence appropriate to its type and arity.

4.2 Sequences

Functions will be applied to argument sequences. Sequence variables are
written with a small arrow symbol over them, so for instance @ and ¢ would
be sequences, and uv is the sequence that results from concatenating « with
¥, and ug would be the third element of @. Every sequence # has a length,
written ||, which may be any non-negative integer. A sequence of length 1
is understood to be identical with its sole element, and the unique sequence
of length 0 is written .

4.3 Functions

Functions will be manipulated in an extremely un-Curried format, with the
one-argument-at-a-time aspects of Currying put into the rules of function-
argument interaction. Everything we say could be paraphrased in terms of
the more common curried presentation, but the statements would be con-
siderably more unwieldy, and many subcases of what is intuitively the same
operation would have to be spelled out separately with awkward disjunctive
definitions.

For our purposes, every function has an arity n > 0. An n-ary function
is defined on a domain of sequences of length n (a function is still limited
by the types of the elements in the argument sequences), and a codomain
consisting of the set of items of some basic type combined with the error
code value #. Items of basic types are understood as zero-ary functions.?’

The kinds of functions denoted by various constituent types in this sys-
tem are generally easy to compute by flattening the extensional types com-
mon in semantic analyses, and reformulating them in terms of sequences.
Thus, unary predicates like verb phrases and count noun phrases will de-
note functions from unary sequences of entities to truth values, sentences
will denote truth values (or, equivalently, functions from zero-ary sequences

in sets of non-presuppositional denotations D, for various types .

19T do not mean to suggest that we should be content with a theory that treats pre-
supposition triggering as arbitrary and lexical - only that I do not wish to address the
triggering problem here.

20That is, the truth values 1 and 0 are manipulated as functions whose domain is {e},
where it is important to remember that {e} # .
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to truth values), determiners will denote functions from sequences of two
unary predicate denotations to truth values, and DPs will denote functions
from unary sequences of unary predicate phrases to truth values.

Note that, unlike the standard presentation, no function has a (non zero-
ary) function type as its natural output type. Instead, we get functions to
output other functions by putting the Currying into our rules of function
application. Thus, where f is an n-ary function, and 0 < |i@| < n, and where
for any 1 < m < ||, u,, is a non-presuppositional item of type appropriate
to the m!* argument position of f, we define f\i, or f reduced by i, as
the unique (n — |@])-ary function g such that, for all ¥ of length n — |4| and
suitable type, ¢g(v) = f(u¥). Considering the trivial cases, if @ = e, f\u = f
(this is the only case for a zero-ary function), and if |@| = n, f\@ = f().

As a quick example, let A be the usual (bivalent) function of boolean
conjunction on truth values: we find A\O is the constant function g such
that g(0) = g(1) = 0, A\1 is the identity function I where I(0) = 0 and
I(1) = 1, and A\# is not defined, since no sequence beginning with # is in
the domain of A.

4.4 Functions with Argument Alternatives

Repair theories understand presupposition as (at least sometimes) introduc-
ing cases where a function must be reduced not by a single argument value
but by a set of competing repair values. To accommodate this, where f is an
n-ary function for some n > 1, and is X a set of arguments of suitable type
to fill the first argument position of f, we define f\\ X, the strong Kleene
reduction of f by X, to be the unique (n — 1)-ary function g such that, for
all (n — 1)-ary sequences ¥ of arguments of suitable type:

e If there is a such that for all z € X, f(z¥) = a, then g(v) = a.
e If there are z,y € X such that f(z¥) # f(yv) then g(v) = #.

To see this in action, consider the case of A\{0,1}. Since A is a binary
function on truth values, this produces a function g on truth values. To
define g we need only identify the values of ¢g(1) and ¢(0). Now, (0 A 0) =
(1A0) = 0, so by the first clause of the above g(0) = 0, but (0A1) # (1A 1),
so by the second clause g(1) = #.

Note that, although strong Kleene reduction operates one argument at a
time, it actually exhibits no inherent asymmetry between argument positions
(although of course it is possible to introduce asymmetry into a system that
makes use of this operation). The corresponding asymmetrical operation is
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the Peters-Kleene reduction of a function f by a set X - written f %X and
defined it as follows:

e If there is g such that for all x € X, f\z = g, then f %X =g.

e If there are xz,y € X such that f\xz # f\y, then f X = # (that is,
the constant (n — 1)-ary function that for any arguments of suitable
types returns the value #).

These definitions are just one set of formalizations of the strong Kleene
and Peters-Kleene approaches discussed above. Here, as before, the differ-
ence between Peters-Kleene reduction and strong Kleene reduction as de-
fined here is a difference between hasty evaluation with limited knowledge of
the future, and cautious evaluation that waits to see what the future holds
to pass judgment. To avoid failure, Peters-Kleene reduction requires that
reduction by all alternatives in the set yield the same function (that is, that
all imaginable (non-presuppositional) future sequences of arguments yield
the same result with all the items between which we are uncertain) and
yields failure if this requirement is not met. Strong Kleene reduction always
gives us a function that, once it has seen the rest of the arguments, will give
us failure unless, for those remaining arguments, the present uncertainty
turned out not to matter. Peters-Kleene reduction gives up on any case of
uncertainty unless it can convince itself, with only the information at hand,
that the uncertainty is harmless, while strong Kleene reduction makes note
of the uncertainty and its perils, and waits to see if it’s really that much of
a problem.

Proposition 2 If x is a non-presuppositional argument of suitable type for

the first argument position of f, then f \w{z} = f\{z} = f\z.

4.5 Relevant Sets

Functions will from time to time take other functions as arguments, but it
is well known that a function is often only concerned with the behavior of
its functional arguments at particular values. A set X is a relevant set for
a function f iff, for all non-presuppositional functions g and h of the first
argument type of f, if g(@) = h(@) for all ¥ € X then f\g = f\h.

To see an example of relevant set computation, let f = [every engineer].
The relevant sets of f will be exactly those sets that contain all the engineers.
That every set containing all the engineers is a relevant set for f is an
immediate consequence of conservativity (see Keenan and Stavi (1986)),
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which guarantees that the action of the nuclear scope on the items in the
restrictor is all we care about. To see that every relevant set contains all the
engineers, suppose that X is any set that omits at least one engineer (call
her Ada), and let g = [is an engineer] map every entity to 1, and h = [is
an engineer but isn’t Ada]. Now, g(z) and h(x) for all x € X, since g and
h disagree only about Ada and Ada isn’t in X, but f(g) = 1 while f(h) =0
- s0 X cannot be a relevant set.

The idea is that a relevant set contains inputs to the first argument of
a function that together serve as “all that matters” about the behavior of
that argument. The notion of relevant set will mainly be relevant for the
cases where the function is a determiner denotation or DP denotation - in the
former case, the only relevant set will generally be the whole universe. In the
latter case, for many well-behaved, nontrivial DPs over finite domains, the
relevant set will be a way of recovering the restrictor from the DP denotation
(because, for many such DPs, the set of relevant sets is exactly the set of
supersets of the restrictor).

The behavior of a function on the relevant sets of the function of which it
is an argument will be exactly what we need to look at to pick which repair
sets to use, which will allow us to improve on the predictions of strong Kleene
in the main problem cases identified above.

5 How to Combine Functions and Arguments

The deployment of a function on a presuppositional argument will have
two steps: first, we will compute a set of non-presuppositional “repairs” of
that argument, and second, we will use strong Kleene reduction to test the
function on the repair set.

5.1 Computing Repair Sets

The repair set for an argument x will be considered with respect to the
function f being applied to it. The repair set of x in f will be written
REPs(x) and will be defined as follows:

o If, for every Y a relevant set of f, there is @ € Y such that z(@) = 1,
then REPf(z) = {a%/#}.

e If there is Y a relevant set of f such that for all @ € Y, z(@) # 1, then
REP () = {aV/# 21/#} .2

2 An alternative worth exploring would be to let REP(x) = E(x) in this case.
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These definitions will, of course, only be sufficient so long as we restrict
attention to types “ending in t”. Since some arguments are normally pre-
sumed to denote entities or other items not covered by the range of types
considered here, this will not be sufficient in the general case, but it will do
for most core quantifier and connective data.

Proposition 3 If x is non-presuppositional, then REP¢(x) = {x}.
Proposition 4 If f is a truth function, then REP ¢(#) = {0, 1}.

This last proposition will guarantee that our results are the same as
those of the strong Kleene logic in the case of truth functions.

Since we reduce the function by its arguments one at a time, by making
the repair set contingent on the function, we’ve also made it contingent on
the previous arguments. In particular, since for many quantifiers the class of
relevant sets encodes the restrictor, this means that the system is checking
against the restrictor when it computes the repair set for the nuclear scope.

As will be seen below, this more complex definition of repair sets, com-
pared with the various simple repair set theories discussed in the section on
strong Kleene logic, pays off primarily in two places: it weakens our predicted
inferences from ezxactly quantification, and it explains why presuppositions
in restrictors just serve to restrict, instead of projecting out.

5.2 Function Deployment

We can now define f[x], the deployment of f over x, as follows:

fle] = P\REP ()

We can generalize this to multiple arguments, so that f[z1, ..., z,] = flx1]...[z4].
The deployment operation will be how linguistic functions combine with

their arguments. Manners of combination that do not involve a simple

function-argument relation will presumably require additional operations.

6 Deployment of some Linguistically Relevant Func-
tions

6.1 Truth Functions

In the case of truth functions, we re-derive the strong Kleene logic. This is
because, as observed, for every f a truth function, REP¢(#) = {0, 1}, so
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we are just using the same old repairs we had before. We've already seen
the strong Kleene predictions for and and or. To give a flavor of how these
arguments go when framed with the new technology and repair system, I
will sketch the analysis for negation below.

For a € {0,1}, REP-(a) = {a}, since a®/# = a'/# = a. Thus —[0] =
“\REP-(0) = -\{0} = =\0 = —=(0) = 1, and in the same way —[1] = 0. On
the other hand REP-(#) = {#%#,#/#} = {0,1}, since the relevant set
of — contains just the empty sequence ¢, and #(c) # 1, so we are forced to
use this larger repair set. Since —(0) # —1, we find that —[#] = =\\0,1 = #.
That is, the presuppositions of a sentence are predicted to be the same as
those of its negation.

In this way, we likewise replicate the behavior of the strong Kleene sys-
tem for conjunction and disjunction, again getting a symmetrical disjunction
(which is probably desirable) but also a symmetrical conjunction (which is
much more questionable). The predictions that we would compute for the
material conditional are not especially plausible, but natural language con-
ditionals are widely believed to have semantic and syntactic complexities
beyond those of the material conditional - until we settle on a theory of con-
ditionals, and address the handling of intensionality in the present model, it
will be hard to say whether the performance of this system with conditionals
is acceptable.

6.2 Quantifiers

For quantifiers, the computation of repair sets is more involved. I will begin
by considering restrictors in general, and then look at the nuclear scopes of
some particular quantifiers:

6.2.1 Restrictors

Let us first consider the function feyery = [every]. This function (like other
determiner denotations) is a function from sequences of length 2, to truth
values, where the argument sequences are sequences of unary predicates.
Suppose we are evaluating feyery in a nonempty universe De. I claim that,
for every relevant set X of feyery, De € X. To see this, suppose (for the
sake of deriving a contradiction) that we have X a relevant set of f such
that D, g X. Tt follows that there is a € D, such that a ¢ X. Now consider
9gp., the characteristic function of the universe of entities, and gp,_(4), the
characteristic function of the set of all entities except in the universe a.
Since a ¢ X, and gp, and gp,_{,} disagree only at a, these two functions
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agree for all arguments drawn from X. If, as supposed, X is a relevant
set for fepery, it should follow that feyery\gp, = fevery\gDe_{a}, but this is
not the case, since (fevery\gDe)\gDe—{a} = fevery(gDeagDe—{a}) = 07 while

(fevery\gDe—{a})\gDe—{a} = fevery(gDe—{a}ygDe—{a}) = 1. Thus, there can
be no relevant set X that is not a superset of D,. Note also that D, is itself

a relevant set of f by type-theoretic considerations, since any argument for
f of suitable type will not even be defined outside of D,. Now consider any
function h - since D, is a relevant set and is a subset of all relevant sets,
there is b € D, such that h(b) = 1 iff, for every relevant set Y of fepery,
there is ¢ € Y such that h(c) = 1, since if there is such a b € D, then
b € Y for all relevant sets Y, and if every relevant set contains a ¢, such that
h(c) =1 then D, being a relevant set, also contains such a c. That is, the
REP fopery (h) = {R%#} iff h maps at least one entity in the universe to 1,
and REPy,,.,, (h) = {nO/# nl/#} otherwise.

This argument can be repeated, with minor modification, to show that
D,, if nonempty, plays the same role among the relevant sets of many other
common determiner types:

Proposition 5 Suppose that De is nonempty let n < |De|, and let f be any
of the following: [each], [no], [at least n], [at most n], [more than n], [less
than n], or [exactly n]. A set X is a relevant set of f iff De C X.

Note that this is not true for all possible determiner denotation - it fails
in particular with infinitely many.

This is all rather abstract - let’s consider the concrete case of (34), re-
produced below as (49):

(49) Every student in my category theory course who stopped drinking
failed the midterm.

Let g = [student in my category theory course who stopped drinking] (so g
is a trivalent predicate), and h = [[failed the midterm]. We wish to evaluate
Jeverylg], which is to say fevery \REP.,.,,(9) - as shown above, if any of the
students in my category theory course is a former drinker, then g maps some
entity (in particular that student) to 1, so, by the reasoning above, g maps
some entity in every relevant set of feyer, to 1, so REPy,,...(9) = {g0/#1,
SO

fevery [g] = fevery\\Rg,Pfevm-y (g) = fevery\\{go/#} = fevery\go/#

Now, on a standard analysis of stop, ¢%/# ~ [student in my category the-
ory class who once drank but does not currently drink]. That is, so long as
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the presuppositional predicate is true of some entity, using it in a restrictor
position with every (or any of the other quantifiers we’ve been considering)
will produce a sentence with exactly the same truth conditions as we would
get with a predicate that is true of the same entities but false of all other en-
tities, and no presuppositions are introduced. On the assumption that there
is a former drinker in the course (an assumption without which the sentence
is pragmatically rather questionable), (49) is true if every former drinker in
the course failed, and false if some former drinker in the course did not fail,
and the students who never drank are simply irrelevant. If no student in the
course is a former drinker, then the conditions presupposition failure will de-
pend on our analysis of the relative clause, but failure will almost certainly
be possible in, for example, the case where no student ever drank and not
every student failed.?? Still, the case where the restrictor predicate is true of
some entity is more common, and here restrictor presuppositions serve only
to restrict. This prediction of weak restrictor presuppositions is unusual,
and is a point of contrast with both Schlenker (2006) and Heim (1983), and
with the strong Kleene and Peters-Kleene systems outlined above. I think
that, in light of examples like (49), it is a desirable prediction.

6.2.2 Nuclear Scope - each

Now we return to the sentence (28), reproduced below as (50):
(50)  Each of these six philosophers has stopped drinking.

Let f = [each of these six philosophers], and g = [has stopped drinking].
We seek to evaluate f[g] = f\REP(g). To determine the value of REP¢(g)
in particular circumstances, we need to identify the relevant sets of f, but it
is easy to see that the relevant sets of f are exactly those sets that include all
six of the philosophers, since by conservativity the action of the nuclear scope
outside of the restrictor can never affect the outcome (so every set bigger
than the restrictor is a relevant set), and the value of the nuclear scope of
a universal quantifier at every point in the restrictor bears on the outcome

22This is because in this case the restrictor is true of no entity, since it is untrue of
everybody not among the students, and # for all the students. Under the rules for
calculating repair sets, we will have to consider the larger repair set for the restrictor,
which will produce one option where the restrictor is empty (leading to vacuous truth)
and one where it contains all the students (leading to falsehood, since the nuclear scope
including one student who failed is true of all the students). I say it is “almost certain”
to fail in this case because the argument I just sketched hinges implicitly on some issues
with the projection properties of relative clauses and the truth conditions of universal
quantification that are not entirely uncontroversial.
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(so no set that fails to include the whole restrictor is a relevant set). That is
REP;(g) = {g¥/#}, where ¢°/# ~ [formerly drank, but now does not] iff at
least one of the pilosophers is an ex-drinker, and otherwise (i.e., when every
philosopher either still drinks or never drank) REP(g) = {g¥#,g"/#},
where g'/# ~ [doesn’t drink]. With this background in mind, we again
inspect the conditions for truth and falsehood:

e When is (50) true? If every philosopher is a former drinker, then of
course the nuclear scope is true of at least one of them, so we have the
smaller repair set REPf(g) = {g”/#} = {g}, so flg] = fF\{g} = (9),
and since g is true of all the philosophers f(g) = 1. On the other hand,
if g(a) = 0 for any philosopher a, then ¢%#(a) = 0, and since ¢g%/#
must be in the repair set, just observing that in this case f (go/ #)=0
is enough to verify that f[g] # 1. Likewise, if any philosopher b is
mapped to # by g (that is, if any philosopher never drank) then we
have ¢%#(b) = 0 so flg] # 1. Thus, all the philosophers must get
mapped to 0 by g, and none of them can be mapped to anything
else. We get truth iff all the philosophers are former drinkers. This
means we get the commonly attributed “universal presupposition” as
an entailment. This is not entirely unreasonable - that the inference
from a sentence like (50) to the “universal presupposition” is a good
inference is well-documented, but much less evidence has been offered
that this inference has presuppositional force.

e When is (50) false? If any philosopher currently drinks, then that guar-
antees that f(g%#) = f(g%/#) = 0, since then it is neither the case
that each of the philosophers doesn’t drink nor that each of them drank
formerly but doesn’t at present, so whatever repairs set we consider we
find f[g] = 0. Since we already considered the case where all philoso-
phers are former drinkers, the only cases left to consider are those
where some are never-drinkers and the rest are former drinkers. In the
case where some are former drinkers and some are never-drinkers, the
former drinkers are mapped to 1 by g, so we get the smaller repair set
REP;(g) = {g”/#}, which maps the never-drinking philosophers to 0,
so the universal is false. In the case where we have only never-drinkers
among the philosophers, then none of them are mapped to 1, so we
have REP ;(g) = {g*/#, g"/#} - since this is the case where g maps
all the philosophers to #, the former repair is false of all of them and
the latter is true of all of them, so the two repairs produce different
results and so in this case we get a truth value of #. Since this ex-
hausts the possibilities, we find that the sentences is false if at least
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one philosopher is either a former or a present drinker, but not all are
former drinkers.

e When does (50) suffer presupposition failure? We get presupposition
failure only in the case where all the philosophers don’t drink and never
did, which is to say we avoid failure so long as at least one philosopher
used to drink - we compute a simple existential presupposition for the
universally quantified sentence.

6.2.3 Nuclear Scope - none

Now consider (30), reproduced below as (51):
(51)  None of these six philosophers has stopped drinking.

As before, the relevant sets of the generalized quantifier are exactly those
sets that contain the six philosophers, since any one philosopher can make
the difference between none and some - now, where ¢ is again the denotation
of the nuclear scope, and f is the denotation of the subject DP:

e When is (51) true? For it to be the case that f[g] = 1, there can be
no philosopher a such that g(a) = 1 (since then f(¢%/#) = 0, ruling
out the possibility of computing an answer of 1), so if the sentence
is true then none of the philosophers is a former drinker. If this is
the case, though, we find that g maps every element of the set of the
philosophers (which is a relevant set) to values other than 1, so we are
forced to consider the repair set {go/ #. g/ #1}. So for the sentence to
be true it must be the case both that none of the philosophers is a non-
drinker and that none of the philosophers is a former drinker, which is
to say that all of the philosophers drink (and have in the past). This
means we again get a universal inference that all philosophers used to
drink.

e When is (51) false? If there is one of the philosophers a such that
g(a) =1 (that is, a still-drinking philosopher), then the only repair we
need to consider is ¢%#, and since ¢%/#(a) = 1 and a is a philosopher,
flg] = f(g”#) = 0. If there is no such a, then we are back to the
case where we're forced to consider both repairs, and one of them will
map all the philosophers to 0 and the other will not, so we get failure.
Thus, the sentence is false so long as at least one philosopher is a
former drinker.
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e When does (51) suffer presupposition failure? We get presupposition
failure in the remaining cases where none of the philosophers are former
drinkers but not all of them are among those who used to drink and still
do - we thus compute a presupposition that either all the philosophers
are current drinkers or else at least one is a former drinker.

6.2.4 Nuclear Scope - at least one

For this quantifier, consider (31), reproduced here as (52):
(52) At least one of these six philosophers has stopped drinking.

Yet again, the relevant sets of the DP at least one of these six philosophers
are exactly the sets containing all six philosophers - where we let f be the
denotation of the subject DP and ¢ be the denotation of the nuclear scope,
we ask the familiar questions:

e When is (52) true? So long as there is at least one philosopher who
used to drink but doesn’t anymore, g maps at least one of the philoso-
phers to 1, so g"/# and ¢%# do as well, so f(¢V/#) = f(g'/#) = 1,
making the sentence true. On the other hand, if there is no philosopher
who used to drink and now does not, then f maps no philosopher to
1, so go/ # maps none of the philosophers to 1, so f (gO/ #) = 0, which
means that f[g] # 1 since ¢"/# is always among the repairs. Thus, the
sentence is true iff at least one of the philosophers used to drink and
no longer does. We predict no universal inference.

e When is (52) false? If all of the philosophers are mapped to 0 by g,
the they are also mapped to 0 by both possible repairs, so f (go/ #) =
g(g"/#) = 0, hence f[g] = 0. If none of the philosophers are mapped
to 1, but some are mapped to #, then the set of the philosophers is
a relevant set the repair set contains both ¢%# and ¢'/#, but since g
mapped some of the philosophers to #, ¢*/# maps those philosophers
to 1, so f(g"/#) = 1, and g"/# ¢ REPs(g), so flg] # 0. Thus, the
sentences is false iff f maps all the philosophers to 0 - i.e., if all of the
philosophers used to drink and still do. This means that the negation
of sentence (52) will yield a universal inference, since for the negation
to be true the sentence must be false, and for the sentence to be false
so it must be that all the philosophers used to drink and still do, which
is to say they all used to drink.
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e When does (52) suffer presupposition failure? We have presupposition
failure in the remaining case - the one where none of the philosophers
are former drinkers but some of them never drank, so the presupposi-
tion is the negation of this - that either the philosophers all persist in
drinking, or at least one is a former drinker.

6.2.5 Nuclear Scope - exactly two

Under the strong Kleene system, we predicted an undesirable universal in-
ference from (33), reproduced below as (53):

(53)  Exactly two of these six philosophers have stopped drinking,.

With the new system, we get no such inference, as can be seen below (here
f = [exactly two of these six philosophers]] and g = [have stopped drinking]])

e When is (53) true? If g maps a number of the philosophers other than
two to 1, then ¢%# maps the same number to 1, so f(go/#) =0, so
flgl # 1. If g maps exactly two of the philosophers to 1, then, since
every relevant set of f includes all six of the philosophers, g maps
something in any relevant set to 1, so REP;(g) = {g”/#}. Since g
maps exactly two of the philosophers to 1, and go/ # doesn’t differ
from ¢ in which things it maps to 1, ¢°# maps exactly two of them to
1 as well. so flg] = f\REP;(9) = f\g”# = f(¢”/#) = 1. Thus, the
sentence is true iff exactly two of the philosophers are former drinkers,
regardless of whether the others have any drinking experience.

e When is (53) false? If ¢ maps a number of the philosophers other than
zero or two to 1, then the repair set consists of just ¢%/# which is true
of some number of philosophers other than two, so the sentence is false.
This leaves only the case where g maps none of the philosophers to 1.
In this case, REP(g) = {¢”#,¢"/#}, and g maps some number of
the philosophers to 0 and the rest to #. Here, gO/ # will map all of the
philosophers to 0, so the sentence is false iff f(g'/#) = 0, which is to
say g/# doesn’t map exactly two philosophers to 1, which is to say ¢
maps a number of other than two to #. So the sentence is false so long
as some number of philosophers other than two are former-drinkers,
and it is not the case that no philosophers are former drinkers and
exactly two are never-drinkers.
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e When does (53) suffer presupposition failure? In the case where g
maps exactly two philosophers to # and the rest to 0, f (gl/ ) =1
but f(g%#) = 0, so flg] = #. All the other cases are accounted for
above, so this is the only case of failure.

The predictions above paint an encouraging picture: we get the desired
very weak inferences for exactly quantification and restrictors, while retain-
ing universal inferences for each and no.

7 Taking Stock

The theory presented above makes many desirable predictions about quan-
tification, improving empirically on many competitors (including transparency
theory and most versions of dynamic semantics) by introducing fine-grained
distinctions between quantifiers that correspond reasonably well to our in-
tuitions for simple examples, and improving on the strong Kleene theory
by predicting appropriately weak projection from restrictors and from the
nuclear scope of ezactly quantification, where the strong Kleene system pre-
dicted over-strong presuppositions. It also makes plausible predictions for
presuppositions in the second position of a conjunction and either position
with a disjunction, making its predictions reasonably appealing overall.

A few of the predictions might give one pause. First, for commonly
considered quantifiers, this theory never predicts universal presuppositions.
However, it does predict that the statements described as “universal pre-
suppositions” will be consequences of sentences with “each” and “none”
quantification, which are the cases where universal inferences are most re-
liable. These patterns of entailment accord with my intuitions, while the
question of whether these entailments are in fact presuppositions has not
yet been settled empirically (although readers who think that they are will
find a modification to address this issue discussed in appendix A).

If we are unconcerned about the fact that this theory predicts certain
quantified sentences false in cases where other theories attribute to them
presupposition failure (but where the data are at present unclear) we are
left with two major points of empirical concern: the predicted symmetry
of and and the fact that with many numerical quantifiers speakers are still
willing to report universal presuppositions about half the time, while this
theory predicts such presuppositions should never occur.

For the case of and, the best explanation from the perspective of this
theory is that the asymmetry is the result of an independent constraint
against a certain kind of redundancy, as previously discussed in the coverage
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of the data for and. One can reasonably maintain that the projection facts
for and are in fact quite symmetrical, but that simple examples with a
presupposition in the first conjunct are ill-formed because they make the
second conjunct violate a linear redundancy prohibition (one that also seems
to apply in examples with assertions). The difference between (54) and (55)
supports the idea that some kind of triviality effect is making some examples
sound worse than they would otherwise be,?? although it is not at all clear
that (55) is free of presuppositions, which is what my theory predicts.

(54)  # Watson has stopped drinking, and she used to drink.

(55)  Watson has stopped drinking, and she used to guzzle a mug of ab-
sinthe before every lab meeting.

Although this explanation of the conjunction data is reasonable, the question
of the projection behavior of triggers in the first argument of conjunction is
far from settled; it is not even clear that (55) is free of presuppositions, which
is what my theory predicts. If we decide the data demand an asymmetric
and, there are variations on the theory available that will provide one, as
discussed in appendix A.

For the data in Chemla (2007) about universal inferences being reported
about half the time with numerical quantifiers, we should first note that
most competing theories make a single prediction for projection facts, and
so are equally at a loss to account for this variation. The present theory
has an advantage over many competitors in that it makes significantly dif-
ferent predictions for different quantifiers, and predicts universal inferences
only for those where universal inferences are most frequent. If forced to
make a guess about the universal inferences sometimes seen with various
numerical quantifiers, I would argue that these inferences are in fact not
presuppositions or entailments, but conversational implicatures (in fact, the
study described in Chemla (2007) involved giving subjects examples of im-
plicatures as instances of the kinds of inferences being asked for, so this is
a very real possibility). Conversational implicatures are often quite fragile,
so this half-and-half behavior would be unsurprising on such an account.
This does, however, raise the question of where such implicatures would
come from, since it seems that they must be bound up in the presupposi-
tion system somehow. To see one way that such an implicature might arise,
note that ensuring the truth of universal presuppositions would be a nat-
ural production heuristic, since calculating the precise presuppositions of a

23Tt must be admitted, of course, thar (55) is not the best of sentences, and that a pair
of examples with a stronger contrast would be more compelling.
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quantified sentence is somewhat involved, but the present theory guarantees
that the presuppositions predicted will never be stronger than the univer-
sal presupposition. Making sure the common ground satisfies the universal
presupposition guarantees the speaker felicity (so far as the nuclear scope
presuppositions are concerned) without requiring him or her to even think
about which quantifier she is using - if the “universal presuppositions” are
checked for a production heuristic, it is only natural that hearers should
exploit the existence of the heuristic to make additional inferences about
the beliefs of speakers, giving rise to exactly the implicature we need. Obvi-
ously, a more developed theory of these kinds of production heuristics and
their associated implicatures would be needed to make this line of reasoning
really convincing, but some additional pragmatic resource will be needed to
account for this variation, and I think that the approach sketched here at
least shows that such variation could plausibly be accounted for while main-
taining that the presupposition projection predictions of the present theory
are accurate.

In spite of these open empirical issues and the limited coverage of the
current formulation of the theory (which is limited by the lack of an ac-
count of intensionality or of the evaluations of functions with codomains not
consisting of truth values), the present approach is among the few theories
of projection currently available that make significant distinctions between
different quantifiers,? and the distinctions predicted are on the whole quite
appealing. This theory is also one of a handful of predictive theories of
presupposition projection® - rather than freely stipulating the projection
behavior of each function in its lexical entry, with little or no dependence
on its truth conditional contribution, this theory allows only one projection
behavior for each possible bivalent function and syntactic configuration, so
the overgeneration problem discussed by Soames (1989), Heim (1983), and
Schlenker (2008a) is avoided. Besides the merits of its new predictions and
its methodological value as a theory that avoids overgeneration, this theory
serves to demonstrate that current challenges in the study of presupposi-
tion projection can still be fruitfully confronted within a static, trivalent

24The other theories with fine-grained quantifier predictions that I'm aware of are that
of Chemla (2008), the various strong Kleene and Peters-Kleene variations discussed here,
some other variants on the repair approach explored in George (2008b) and in appendix A,
and some other strong Kleene and supervaluation variants that Danny Fox and Philippe
Schlenker have looked at.

250ther predictive theories include various strong Kleene and supervaluation variants,
the transparency theory of Schlenker (2006, 2008a), the similarity theory of Chemla (2008),
the constrained dynamic semantics of LaCasse (2008), and the local context version of
dynamic semantics developed in Schlenker (2008b).
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semantics, and in fact with tools similar to those of some very old work
in trivalence, demonstrating that it is premature to cite projection as phe-
nomenon that forces us to abandon a static semantics or to reject a semantic
account of presupposition.
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A Possible Modifications

It is possible to combine the pieces set out above in a number of different
ways. We could, in particular, substitute the Peters-Kleene for the strong
Kleene reduction with the revised repairs sets, or we could change our re-
vised notion of repair set so that the bigger repair set possibility is E(f).
Since E(f) produces very similar results to { f/#, f1/#} in the cases consid-
ered so far, there is not likely to be a strong empirical case for the distinction
between them that is not based on some class of functions beyond those con-
sidered here. The Peters-Kleene case is a bit more interesting, as it would
allow us to trade in asymmetric versions of and and or for symmetric ones,
should that turn out to be desirable. Beyond these minor variations, we can
consider more radical revisions that involve adding entire new components
to the system. One of these previously explored in George (2007, 2008a,b) -
is considered below. This new component introduces significant additional
complexity, but also has a credible claim at substantially improving pre-
dictions, since for quantifiers it strengthens several universal inferences to
universal presuppositions, and for connectives it predicts asymmetry for and
but not for or.

A.1 Strengthening Presuppositions - A Disappointment Con-
straint

This disappointment constraint can be thought of as separating presup-
positions into “preconditions for truth” and “preconditions for falsehood”,
and treating the former as more important than the latter for projection
purposes. The idea is that we want to be forced to resort to attributing
falsehood to an utterance by virtue of the assertive content of something,
and that if an argument rules out truth simply by virtue of its presupposi-
tions, that is enough to make the incremental composition process give up
and declare presupposition failure - the system is biased in favor of truth
and against disappointment. This can be incorporated into any variant on
the system, and in each case it serves to strengthen some presuppositions,
by converting some cases of falsehood into cases of failure. As presented
here, this component is incremental and local, but a non-incremental ver-
sion would not be hard to formulate, and in a less compositional version of
the theory a global variant could also be described.

Here are the steps we introduce: whenever the presupposition failures as-
sociated with an argument, by themselves, rule out the possibility of truth
as an outcome (but truth was a possible outcome before we encountered
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that argument), we generate failure. This process is explicitly incremental
- the semantics moves through the argument list of a function from left to
right, and, for each new argument it first considers the impact of its pre-
suppositional aspects, and only goes on to consider the rest of it if these
presuppositional aspects aren’t sufficient to disappoint any hope of an even-
tual outcome of truth.

This gives us an asymmetric and, for the following reason: if we en-
counter # in the first argument position of and, we do not, under the func-
tion deployment defined above, know whether the outcome will be 0 or #,
but we know there is no second argument which will cause us compute a
value of 1 for the conjoined expression. Thus, before we saw # we had hope
of truth (since there is a possible pair of argument values for and that makes
things true). However, the presuppositional issues by themselves ruled this
out, so that, evaluating A on the sequence #,0 we now get an output of
#. On the other hand, when we consider the sequence 0, #, we find that
nothing about the presuppositional content of 0 rules out our hopes of truth,
but the fact that it is 0 does dash our hopes, so we don’t have an issue with
disappointing presuppositions, but we come to the second argument with no
more hope to disappoint, so here we compute an output of 0. The above is
vague - it can be made precise with a few more formal tricks.

First, we will need the notion of presupposition-equivalence - this will
allow us to identify what is true of a function by virtue of its presuppositional
part, since it will be exactly what is true of all presupposition-equivalent
things. For functions f and g of the same type, f and g are presupposition-
equivalent, written f = g, iff for every sequence @ of the same arity as f and
g and of suitable type, f(@) = # iff g(@&) = #. Note that, in the case where
f and g are zero-ary functions (that is, for present purposes, truth values),
fegiff either f(e) = f=#=9g=g(e) orelse f € {0,1} and g € {0,1}.

Now that we have a definition of presupposition-equivalence, we can de-
fine disappointment on the basis of presuppositions. For f an n-ary function,
x an item of the first argument type of f, x is presuppositionally disappoint-
ing in f iff the following two conditions are met:

e There is a sequence ¥ of suitable type for f such that f(v) =1

e For all y such that y = z, all @ an (n — 1)-ary sequence of non-
presuppositional items such that x4 is of suitable type for f, f[y](@) #
1.

Disappointment has two components - we must have hope of truth going
into the argument (otherwise, it was that argument in particular that disap-
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pointed us), and we must be able to infer, considering only the question of
where the argument takes the value #, that there will be no hope of truth
when we are done with it. The semantics is willing to compute outputs other
than 1, but only if it concludes this from evaluating the assertions, instead
of being pushed into it by the presuppositions.

We now turn to the notion of f:(x):, f deployed on z with concern for
disappointment, defined as follows:

e If z is disappointing in f, then f:(x): = # (where # is here shorthand
for the constant function of whatever type and arity is suitable that
takes the value # for any input).

e If x is not disappointing in f, then f:(z): = f[x].

As already noted, use of deployment with concern for disappointment
produces the asymmetric Peters-Kleene and, and so agrees as well with the
presuppositions given to and by Heim (1983) and Schlenker (2006). In con-
trast with and, the incremental disappointment criterion leaves or symmet-
ric. This is because if we try to compute V:(#):, we find no disappointment,
since # = # and V[#]|(1) = 1, so # in the first argument position is not
disappointing. # is likewise not disappointing in the second argument po-
sition unless the first argument is 0, and since V[0, #| = # already, nothing
changes.

Another promising prediction of the disappointment approach is that any
quantifier that gives rise to universal inference with respect to presupposi-
tions under the basic system will now give rise to universal presuppositions.
We can see this by proving a slightly more general result. Suppose that g is
a function that takes a function type as an argument, and there is f such
that g(f) = 1, and that X is a set such that, for all f', if g(f’) = 1 then
f(x) # # for all x € X. Now consider an h such that there is a y € X for
which h(y) = #. h is disappointing in g, since for all b’ = h, h/(y) = # and
so g(h') # 1. Thus g:(h): = #, which is to say g:(h): suffers presupposition
failure whenever h(z) = # for some x € X, thus:

Proposition 6 Where g is a unary function such that 1 is in the range of
g, and X is a set such that, for all f, if g[f] = 1 then f(x) # # for all
x € X, it is the case that, for all functions h of suitable argument type for
g, if there is y € X such that h(y) = # then g:(h): = #.

But if a quantifier g gives rise to the universal inferences, this means exactly
that the restrictor is a set such that the quantifier is only true of functions
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that never suffer presupposition failure on that set. So, whenever g is a
quantifier that gives rise to the universal inferences under the deployment
defined above, and g is true of some predicate, g gives rise to universal
presuppositions under deployment with consideration for disappointment.
This in particular covers the case of quantification with each and none, which
means that the new system renders the universal inferences we predicted
before as presuppositions.

In fact, the above reasoning works in both directions; if for f, x, g, and
X, such that x € X, f(z) = #, and g[f] = 1, we know, since f = f that f is
not disappointing in g, so g:(f): = g[f] = 1 # #, so all the quantifiers that
lacked universal inferences under standard deployment will still lack univer-
sal presuppositions under deployment with concern for disappointment.

The disappointment system is one possible incremental filter on the pre-
suppositional content of arguments. The mechanism of introducing such
filters has great power and should be used cautiously. This one, at least,
has a short, somewhat intuitive statement, and is limited in its impact be-
cause it does not affect truth conditions - it only takes some cases of of
falsehood and turns them into presupposition failure.

B Notions of Argument Order

Most of the systems discussed above depend, to one degree on another, on
a notion of the order in which the arguments of a function are read in. All
the theories with predicted order asymmetries for quantifiers assume that
the order of arguments places the restrictor before the nuclear scope, and
all the theories that predict asymmetric connectives assume that the left
argument of a connective is read in before the right one. For quantifiers, at
least two notions of order will work - hierarchical order (in which a function
first combines with the arguments that form smaller minimal constituents,
as in the semantics of Heim and Kratzer (1998)) or linear order at LF (in
which the argument of a function that is leftmost after QR is read in first).
For connectives, prominent accounts of the syntax involve either ternary
branching (in which case there is no hierarchical order to differentiate the
arguments) or a binary branching structure in which the connective forms
a constituent with its rightmost argument. In either of these cases, the
asymmetric theories (like the Peters-Kleene system and the asymmetrical
disappointment condition) will not be able to get the needed order out of
the hierarchical relations alone, at least not in the absence of some significant
additional assumptions.
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The system presented in the main body of this text does not have such
issues - since it doesn’t predict asymmetrical connectives, it can work fine
with hierarchical or linear order. This may be an advantage, as hierarchical
order of evaluation is closely associated with most formulations of strong
compositionality - I think that the weakening of compositionality needed to
introduce linear order would probably be harmless, but it would certainly be
contentious, and it would require some care to make sure that the natural
order could be read off the syntactic structure and the word order facts.

It is, of course, possible to combine the hierarchical and linear concep-
tions of order in various ways - we could, for example, say that the arguments
of a function are grouped into hierarchically defined regions (roughly, we’d
want to distinguish between the semantic arguments that are also “struc-
tural arguments” like restrictors, and those where the structural argument-
hood relationship is reversed, like nuclear scopes - notions of dependency
and natural projection could be used to formalize this idea in various ways,
depending on one’s preferred syntactic theory), and to say that the argu-
ment regions are evaluated in hierarchical order, but that within each region
linear order is maintained. If we want left-to-right-order for connectives, the
adoption of a hybrid system might allow us to get a restrictors-first order
for all quantifiers without a need to appeal to the notion of linear order at
LF.

A possible advantage of hierarchical order, in either its pure or hybrid
form, is that, to the extent that we can get reasonable predictions for con-
ditionals, they should allow us to get the same predictions for postposed if
clauses - this is an area where a linear order theory encounters difficulties,
but the two examples appear to have the same presuppositions:

(56)  If France is a monarchy, the king of France is bald.
(57)  The king of France is bald, if France is a monarchy.

Of course, in the absence of a particular semantics of conditionals, it is
hard to evaluate this. The various theories making use of strong Kleene (as
opposed to Peters-Kleene) reduction all associate rather weak projections
with presuppositions in the if clause under simple material and quantifier-
restricting theories of conditionals. A theory along the lines of Stalnaker
(1968), on which if clauses denote possible worlds, situations, or the like
might fare better, but this would require an extension of the theory to
functions of types not ending in t, which I have not developed here (although
the generalization of, say, strong Kleene to arbitrary types is reasonably
straightforward).
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In any case, the system where our function application is the f[z] appli-
cation (that is, a system based on strong Kleene reduction with the repair
sets dependent on relevant sets but without disappointment) gets as good
results as it can get at all with hierarchical order (although it does fine
with linear order too), in contrast with the theories of Schlenker (2006) and
Schlenker (2008b), which depend on linear order.

C Type Theory

The system presented here has taken some of the Currying associated with
typical semantic theories out of the types and put it into the combinatorics.
This section contains a brief sketch of the implicit type theory for the tech-
nically inclined. I assume throughout that singletons are identical with
sequences of length one and with zero-ary functions.

First, the system will have some set of basic types, including at least the
type t of truth values. With each basic type 7 is associated a nonempty
domain D, and an error code value #, ¢ D,. The whole system of types is
defined as the smallest set making the following true:

e For every basic type 7, T is a type.
e For every ¢ a sequence of types (¢'— 7) is a type.

Note that in this system the “end” type of any functional type is always
exposed, and the notion of filling in all the arguments of a function is always
just filling in a sequence of types associated with its type.

Every type 7 is associated with two domains - the non-presupposotional
domain D, and the expanded domain A,. It will also be useful to associate
with every nontrivial sequence of types ¢ associated domains D and Ag.
For 7 a basic type and {= ¢y, ..., <,, a nonempty sequence of types:

e D, is given by the model.
Ar =D; U{#:}.
¢ De=D x..xDq,.

o Ae= A, X ... xXA,.
[ ] D<§-'_)7.> = DTD€.

° A(?—w—) = A Ps.
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The mix of Ds and As in the last line of the above is intended - it
says that denotations are permitted to be presupposition triggers, but never
to specify how they filter or manipulate the presuppositional content of
arguments. A constituent of type 7 will always have a denotation in A,,
and so the normal application will be defined only on arguments in the D
sets, not the A sets. Wherever in the above I refer to non-presuppositional
arguments (including all cases of considering possible arguments or argument
lists in the definitions of disappointment and the function operations), I
mean arguments drawn from D, or D¢ for an appropriate ¢ or 7.

In the references to # throughout this paper, # is a shorthand for #., for
whatever 7 is appropriate, where the #.,s for the basic types are assumed,
and for the function types we say that # ., is the unique function in
A sy such that, for all 4 € De, #cp)(U) = #-.

D Nation-States Mentioned

current head of state
English title / bald?

name in English | form of government

France

Republic

President / not bald

Norway

Constitutional Monarchy

King / bald

The Netherlands

Constitutional Monarchy

Queen / not bald

Japan

E Notation

Constitutional Monarchy

E.1 Variable Name Conventions

Emperor / not bald

names ‘ sort
9 h f et functions
i, v, W, W', et c. sequences

z, vy, z, 7', et c.

sequences of length 1

X, Y, Z X' etec.

sets

a, b, d, et c.

zero-ary functions

m, n, n', et c.

non-negative integers

7,6, T, et c.

types

7, ¢ 7, et c.

sequences of types

@, ¥, ¢ etc.

o6

sentences, formulae, or other linguistic expressions



E.2 Relations, Operations, and Constants

notation ‘ interpretation
0 empty set
€ empty sequence
# “error code” value - denotes presupposition failure
(or #, for any type 1)
f\u f reduced by 4
(generalization of Curried function application)
X the strong Kleene reduction of f by X
%X the Peters-Kleene reduction of f by X
1 identity function
fo/b f with output substitution of a for b
E(f) the set of bivalent functions extending the bivalent part of f
REP(x) the repair set for z in f
flz] f deployed on x
(a presuppositional generalization of function application)
fi(z): f deployed on x with concern for disappointment
Sn, Unp, €t . the n'* elements of sequence &, @, et c.
X1 X ... x X, | the set of n-ary sequences u such that
when 1 <m < n, uy, € X
XY the set of functions from Y into X.
(C— 1) the ¢"to 7 function type.
D, the set of non-presuppositional denotations for type 7
A, the set of (possibly presuppositional) denotations for type 7
#r the failure value of type 7
(If 7 is basic, this is given by the model.
If 7 is a function type, this is a suitable constant function.)
| length of @
| X| cardinality of X
] the extension of ¢
z =~ [¢] it is probably harmless to act as if x = [[¢]
uv i concatenated with ¢
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