Fall 2005

STATISTICS

MARCUS KRACHT

Assignments, Part 1.

You may email me the graphics instead of printing it out. Similarly for the answers to the assignments. Notice that in case you submit nonelectronically, you do *not* have to type them, I accept handwriting as well! When I ask you to use R, the answer will always at least consist in telling me what you told R to do, ie I want to see the code that you issued.

Ex 1.1 There is a lottery, where you have to guess 6 numbers between 1 and 49. What is the chance of getting $0, 1, 2, \dots 6$ numbers right? How much more should one award to a person that gets 5 numbers right than to someone who gets 3 numbers right for this to be a fair reward scheme? Use R to generate a few sample bets.

Solution The chance of getting 6 numbers right is $\binom{49}{6} = 13983816$. To get 5 numbers right, proceed as follows. Let x_1, x_2, \ldots, x_6 be the 6 correct numbers. Now discard 1 of these numbers and replace it by any of the other numbers that have not been drawn: so you get $6 \cdot 43 = 258$ possibilities for each draw. To get 4 numbers right, discard 2 numbers $\binom{6}{2}$ choices) and replace them by the other numbers $\binom{43}{2}$ choices). The general formula is $\binom{6}{(6-i)} * \binom{43}{i}$ with values:

(1) 1 258 13545 246820 1851150 5775588 6096454

Now, the reward is given according to the odds, so you should get $246820/258 \approx$ 957 times more. The code to get 6 samples with no repetitions is sample (49, 6, F).

Ex 1.2 Write a program that plots the function $y = 20 - x^2$ and generate the ouput between 0 and 5 in a file. Overlay the following data points onto the graphics: (0, 19.6), (2, 15), (3.5, 13), (4, 10), (5, .4).

Solution

Ex 1.3 Draw the function $\binom{20}{i}$ using triangles as data points. Calculate the mean of this function and draw the mean as a line into the graphics. Can you give a short expression that calculates the mean other than adding up all the numbers?

Solution The function will be defined by issuing f <- function (x) choose (20, x). The mean can be calculated as follows.

(3) mean (choose (20, 0:20))

This will give you 49932.19, which is incidentally $2^{20}/21$. Check this by issuing (2 ****** 20)/21. (The mean is the sum of all numbers divided by the length of the sequence, here 21! The sum is, as we have noted earlier, 2^{20} .)

For the drawing do the following.

> pdf (file="graph2.pdf")
> plot (0:20, choose (20, 0:20), pch=2)
> abline (h=49932.19)
> dev.off ()

Ex 1.4 Find a simple expression for $\binom{n}{k} + 2\binom{n}{k+1} + \binom{n}{k+2}$. *Hint.* Generate a few of these numbers and see if you can find a nice expression for them.

Solution The expression is $\binom{n+2}{k}$. To see this, do for example this:

(5) $x \leftarrow rep(0, 7)$ x <- choose (8, 0:6) + 2 * choose (1:8) + choose (8, 2:8) What you get is

(6) [1] 45 120 210 252 210 120 45

Now issue

(7) y <- rep(0, 7) y <- choose (10, 2:8)

And you get the same value. Of course, a proof can also be given:

$$\binom{n}{k} + 2\binom{n}{k+1} + \binom{n}{k+2}$$

$$= \left(\binom{n}{k} + \binom{n}{k+1}\right) + \left(\binom{n}{k+1} + \binom{n}{k+2}\right)$$

$$= \binom{n+1}{k+1} + \binom{n+1}{k+2}$$

$$= \binom{n+2}{k+2}$$