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Abstract of the Dissertation

Studies in Computational Optimality Theory, with Special

Reference to the Phonological System of Malagasy

by

Daniel Matthew Albro

Doctor of Philosophy in Linguistics

University of California, Los Angeles, 

Professor Edward P. Stabler, Chair

This dissertation examines Base-Reduplicant Correspondence Theory (brct) and, to a

lesser extent, various approaches to phonological opacity via a two-pronged approach.

The first half of this dissertation develops a computational model of Optimality The-

ory which is capable of encoding brct analyses. The model may be taken as an extension

or reworking of the weighted finite state models of Ellison b; Eisner c; Albro

a, in which the candidate set of Optimality Theory is modeled as a finite state ma-

chine and the constraints as weighted finite state machines. Whereas the constraint com-

ponent of Optimality Theory is still modeled by finite state methods, the candidate set

induced by Gen is represented by a higher member of the Chomsky hierarchy, Multiple

Context Free Grammars (Seki et al. ). Also presented is a simple but complete repre-

sentation of candidates and constraints that allows for an order-of-magnitude increase in

efficiency over earlier representations.

xi



The second half attempts to validate the model, presenting the full-scale phonological

analysis of the Merina dialect of Malagasy, the primary language of Madagascar. Malagasy

has an extensive system of reduplication and a highly opaque stress system. The analysis

shows that Base-Reduplicant Correspondence Theory does not work as a model of Mala-

gasy reduplication. Instead, a combination of Kiparsky’s () lpm-ot framework and

a morphological doubling account similar to that of Inkelas & Zoll () accounts for

the patterns of Malagasy reduplication and opaque stress without requiring any computa-

tional power beyond the finite state.
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CHAPTER 1

Introduction

This dissertation is part of a research program that attempts to provide a complete, im-

plemented formal model of Phonological Optimality Theory (Prince & Smolensky ),

where “complete” indicates that the model may be used to provide complete phonological

analyses of the world’s languages.

1.1 CONTEXT: PROS AND CONS OF OPTIMALITY THEORY

Optimality Theory is a grammar framework with many advantages for phonological anal-

ysis. Compared with analyses in previous rule-based frameworks, analyses in Optimality

Theory arguably have more explanatory power, greater universality of application, and

better coverage of many areas of the data. However, Optimality Theory has certain disad-

vantages with respect to the rule-based frameworks, and a large set of outstanding prob-

lems.

.. advantages of optimality theory

Previous rule-based frameworks failed to integrate particular sound changes with the over-

all phonotactic pattern of the language (cf. Kisseberth (), who first pointed out this





problem). Optimality Theory allows the analyst to concentrate on characterizing general-

izations that are true or mostly true of the surface form actually pronounced. The surface

form is an appropriate form to concentrate on, as it is the level of phonological represen-

tation for which we have the most evidence. Further, within Optimality Theory there are

many phonological phenomena that receive a comprehensive analysis for the first time,

such as under-application and overapplication of reduplication, and “emergence of the

unmarked” effects.

.. current disadvantages of optimality theory

However, Optimality Theory has a few disadvantages when compared with other frame-

works.

In most phonological analyses of the sort where Occam’s razor is respected, the under-

lying form of an utterance and its surface form tend to be quite similar, differing primarily

to the extent that morphological juxtaposition of otherwise surface-possible forms creates

violations of surface well-formedness conditions. In a rule-based analysis the reason for

this is quite clear and built into the system itself—if no rule changes some aspect of the

underlying form, then that aspect remains unchanged on the surface. This means that

rule-based analysis consists essentially of noticing sound changes induced by the pres-

ence of a form in differing environments due to morphology and sentential context, and

proposing a phonological rule for each type of change that takes place in a particular en-

vironment. Since this analytical process is reasonably straightforward and its correctness

is fairly easy to check—rule-based generation can easily be simulated by hand—it was





possible for phonologists to create complex systems of phonological rules that covered all

or most of the sound changes present in the vocabulary of a human language.

In Optimality Theory, on the other hand, the analyst must propose constraints and

orderings to account not only for the ways in which surface forms differ from their un-

derlying counterparts, but also for the ways in which they do not differ from them¹.

Furthermore, once an analysis is complete, its correctness is usually still far from obvious.

To justify a particular constraint ranking, the analyst must show that the ranking proposed

is best satisfied by the surface forms naturally found, and that none of the infinite set of

potential outputs would better satisfy it. This could be done by simulating generation

on the data set to be checked, but Optimality Theoretic generation is too complex to be

performed by hand. As it is, justification of a constraint ranking requires the analyst to

characterize a potentially infinite set of candidates and argue that all parts of the set are

less well-formed according to the constraint ranking than the actual output.

Typically a ranking A � B is justified by showing that the opposite ranking B �

A would favor a different output candidate. Such a ranking argument is insufficient,

however—the analyst must also ensure that no constraint C where C � A, B exists that

would independently rule out the candidate favored by the ranking B � A. In the

vast majority of Optimality Theoretic analyses only a small sub-part of the phonology

of a language is considered, so it is impossible to ensure that the entire constraint set

for the language has been considered. Of course if the entire phonology of a language

is considered, it becomes extremely difficult to check the large number of constraints

that will probably be necessary to account for the data. As a result, since the advent of

1Rule-based accounts of phonotactics tend to have this problem as well.
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Optimality Theory there has been a dearth of large-scale analyses in the vein of The Sound

Pattern of English (Chomsky & Halle ) and Spanish Phonology (Harris ).

Because of the difficulty of justifying a particular analysis, several computational lin-

guists have proposed formal models by which the computation of an optimal surface form

from an underlying form might be carried out: Ellison b and other methods using

weighted finite state machines, Tesar  and other methods involving context free gram-

mars, and Karttunen  and other methods involving finite state transducers. An analy-

sis that can be shoehorned into one of these models can then be justified by showing that

the model generates the correct output forms from the proposed input forms. However,

none of these models are sufficiently developed (or computationally adequate) to encode

the majority of actual analyses, due to lack of support for reduplication, long-distance

metathesis, and opacity.

The problems discussed above make it difficult to analyze a large body of data and

phonological phenomena in a consistent and demonstrably correct way. The work de-

scribed here uses computational methods to get around the difficulties posed by ot and

renders feasible a return to large-scale, whole-language analysis.

1.2 PRESENT CONTRIBUTION

Previous computational models of Phonological Optimality Theory have not accounted

for reduplication. The mainstream approach to reduplication — Base-Reduplicant Cor-

respondence Theory (McCarthy & Prince ) — appears, as will be seen, to rely upon

computational power beyond the finite state. The same can be said for many approaches
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to phonological opacity. This dissertation examines Base-Reduplicant Correspondence

Theory (brct) and, to a lesser extent, various approaches to phonological opacity via a

two-pronged approach.

The first half of this dissertation proposes a computational model of Optimality The-

ory which is capable of encoding brct analyses. The model may be taken as an extension

or reworking of the weighted finite state models of Ellison b; Eisner c; Albro

a, in which the candidate set of Optimality Theory is modeled as a finite state ma-

chine and the constraints as weighted finite state machines. The principal innovation of

my system is that whereas the constraint component of Optimality Theory is still mod-

eled by finite state methods, the candidate set induced by Gen is represented by a higher

member of the Chomsky hierarchy, Multiple Context Free Grammars (Seki et al. ).

Also presented is a simple but complete representation of candidates and constraints that

allows for an order-of-magnitude increase in efficiency over earlier representations.

The second half attempts to validate the model, presenting the full-scale phonological

analysis of a language featuring problematic elements. The language chosen here was the

Merina dialect (the standard dialect) of Malagasy, the primary language of Madagascar.

Malagasy has an extensive system of reduplication and a highly opaque stress system.

The analysis shows that Base-Reduplicant Correspondence Theory does not work as a

model of Malagasy reduplication. Instead, a combination of Kiparsky’s () lpm-ot

framework and a morphological doubling account similar to that of Inkelas & Zoll ()

accounts for the patterns of Malagasy reduplication and opaque stress without requiring

any computational power beyond the finite state.
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CHAPTER 2

Optimality Theory with Multiple Context-Free Grammars

2.1 INTRODUCTION

As noted in the previous chapter, the grammar framework Optimality Theory (Prince &

Smolensky ) has arguably increased both the explanatory force of linguistic analyses

and the universe of phenomena amenable to analysis. However, it achieves this at the price

of increased complexity. This increased complexity is multi-faceted, including complexity

of conceptualization of the framework itself, complexity of analysis (including increased

difficulty in proving the correctness of analyses), and complexity of computation. Chap-

ter  touches upon complexity of analysis; here I look into other forms of complexity.

In order to get a clear conception of a grammatical framework, it is necessary to con-

struct a formal model of it. There is such a model in Prince & Smolensky ()—this

model will be reviewed in §A—but the model is not computable¹. Further, the model

given there is inadequate to account for various natural language phenomena, in particu-

lar, opacity, that is, cases where morphological considerations cause a surface form not to

1To be clear, the model as described there, with no limitations on the descriptive power of constraints,
is not computable. This chapter is among a number of attempts to specify a computational model for
Optimality Theory that is as close as possible to the description given in Prince & Smolensky () while
still being (feasibly) computable.
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appear to be the most well-formed candidate for its underlying form, as pointed out by

Steriade (), Kenstowicz (), McCarthy (), and Burzio (). Since the model

is not computable as given, it appears unrealistic and therefore limits full conceptualization

of the framework, precluding analysis of computational complexity and computer simu-

lation (for the benefits of which, see Chapter ). There have been a number of notable at-

tempts to supply a computable model of phonological Optimality Theory. These include

cfg parsing and dynamic programming (Tesar ), transducer methods (Karttunen

; Frank & Satta ; Eisner ), and the weighted finite state model (Ellison b;

Eisner c; Albro a). Unfortunately, none of these models has been shown to be

capable of handling the full universe of phenomena explored in phonological Optimality

Theoretic analyses. One of the purposes of this dissertation is to expand the Weighted Fi-

nite State model sufficiently to allow it to cover these phenomena. This chapter covers the

phenomenon of reduplication (here defined as possibly imperfect copying of all or part

of a word in order to fulfill a morphological function). Chapter  explores reduplication

further, in the context of a large-scale analysis of Malagasy. It also takes on opacity and

metathesis.

The most prevalent framework for analysis of reduplication within Optimality Theory

is Base-Reduplicant Correspondence Theory (McCarthy & Prince ), which states that

part of a reduplicating form is marked as a reduplicant, another part as a base of redupli-

cation, and that constraints encourage similarity between the base and the reduplicant.

This framework has been criticized on empirical grounds, for example by Inkelas & Zoll

() and will be further criticized in Chapter , below. It has also been criticized on

formal grounds by Walther (), who provides an alternative model (Walther ),
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based in the One-Level Phonology framework (Bird & Ellison ) rather than Opti-

mality Theory. Earlier mention of reduplication as an area with higher computational

complexity than other areas of phonology was made by Sproat ().

The remainder of this chapter reviews the weighted finite state model of Optimality

Theory and shows that Base-Reduplicant Correspondence Theory may in fact be modeled

fairly directly in an extended version of the model, and that the extended version is in fact

computable, albeit less efficient than the original. The matters discussed here belong both

to the disciplines of linguistics and computer science, both fairly broad fields. In order to

keep the material accessible to practitioners of both, I have postponed rigid mathematical

detail and proof to the appendices, in favor of exemplification and explanation.

2.2 THE WEIGHTED FINITE STATE MODEL OF OT

Before showing how to extend the weighted finite state model of Optimality Theory to

model the Base-Reduplicant Correspondence Theoretical approach to reduplication, it is

necessary first to explain what the weighted finite state model is. Furthermore, in order

to explain the weighted finite state model of Optimality Theory, it is first necessary to

explain the basic model of Optimality Theory².

The framework of phonological Optimality Theory is defined in terms of three com-

ponents: Gen, Con, and Eval. Gen is a function that takes an underlying form, such as

/aha/, and produces a potentially infinite set containing anything that could be a possible

output form for that underlying form in any human language. It is frequently assumed

2A more formal exposition of the weighted finite state model is given in Appendix A





that each of these output candidates contains within it a representation of the underlying

form. For example, one element of the set produced by the application of Gen to in-

put /aha/ might be [a:a h:− a:a]. The pronounced form here is [aa], and the underlying

form is /aha/, i.e., the /h/ was deleted. A more pictorial representation for this candidate

might be the following coïndexing representation, in which subscripts indicate segment

correspondence:

underlying : a1 h a2

surface: a1 a2

The next component is Con. This is a set of constraints. A constraint is an abstract

device that harmonically orders the candidates produced by Gen. That is, it tells how

good or bad a particular candidate is with respect to the others. In the mainstream tra-

dition, a constraint is a well-formedness measure on candidates (or, more accurately, an

ill-formedness measure); each constraint assigns a number of constraint violations to each

candidate. For example, the constraint MaxIO states “assess a violation for any underlying

segment that does not have a surface counterpart,” i.e., MaxIO penalizes deletion (alter-

natively, it prefers candidates that preserve underlying segments). Thus, the candidate [a:a

h:- a:a] would have one violation of MaxIO. The general idea is that Con is the universal

set of all constraints available to a human being in forming their grammar. An actual

language-particular grammar consists of a strict ranking of these constraints. In a strict

ranking, each constraint is infinitely more important than the constraints it outranks; i.e.,

if constraint A prefers candidate a to candidate b, no lower-ranked constraint B can cause

candidate b to win over candidate a (of course there could be a hypothetical constraint

C that outranks A and causes b to win anyway). All of this leads up to the final compo-
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nent, Eval. Eval is the mechanism by means of which it is determined what output form

should be uttered to represent a given underlying form. This works (abstractly) as follows:

. Take the output of Gen applied to the underlying form as the pool of candidate

outputs.

. Start with the highest ranked constraint (call it the current constraint, for now).

. Evaluate each of the candidates in the pool with respect to the current constraint.

. Calculate the minimum number of violations any candidate in the pool has.

. Remove all candidate outputs that have more than the minimum number of viola-

tions.

. If there is only one candidate in the pool, it’s the output.

. Otherwise, the current constraint is now the next highest ranked constraint.

. If there are no more constraints, the output consists of whatever candidates there

are in the pool.

. Otherwise, proceed back to step .

The immediate reaction most people have when seeing this definition for the first

time is to ask how this could possibly be computed. In particular, step  requires a func-

tion to be applied to a potentially infinite set of objects! Even if that is left aside, it is

still necessary to figure out how one is to represent the ever-shrinking infinite pool of

candidates. The answer to the first of these questions comes fairly naturally from the
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answer to the second. Each candidate is a linguistic utterance (in computational terms,

a string). Thus, the question is how to represent an infinite set of utterances. Luckily

there is a known answer to this question — a grammar is a finite representation of a

potentially infinite set of utterances. The next question, then, is how to evaluate all of

the strings described by a grammar (that is, the set of grammatical strings with respect

to said grammar) in terms of a constraint and produce a grammar that contains exactly

the (again, possibly infinite) set of optimal strings with respect to the constraint. Sev-

eral potential answers have been offered. As previously mentioned, these include cfg

parsing and dynamic programming (Tesar ), transducer methods (Karttunen ;

Frank & Satta ; Eisner ), and the weighted finite state model (Ellison b;

Eisner c; Albro a). I will explore the Weighted Finite State approach. In this

approach a candidate set is represented as a finite state machine. A finite state machine is

a computationally convenient representation of a Regular Grammar, which is one of the

simplest grammar formalisms capable of representing an infinite set of strings. This sort

of grammar is a rewrite grammar with two types of productions: A → aB and A → ε. An

example should make this clear:

S → aA

A → aA

A → bA

A → aB

B → ε

In this grammar, S is a special non-terminal symbol referred to as the start symbol. A rewrite
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grammar describes the set of strings that can be produced by the following procedure

(known as a derivation):

. Let the current string be the start symbol S.

. If the current string contains no non-terminal symbols (non-terminals are repre-

sented by uppercase letters; they are the only symbols that appear in the left-hand

side of productions in a regular grammar), the current string is the final output of

the procedure.

. Otherwise, select an arbitrary non-terminal symbol from the current string. Replace

this symbol with the right-hand side of a production headed by that symbol (if the

right-hand side of the production is ε, which represents the empty string, delete the

non-terminal symbol and replace it with nothing). Repeat step two.

For example, one derivation from the above grammar is the following:

. S [start symbol]

. aA [S → aA]

. aaA [A → aA]

. aaaB [A → aB]

. aaa [B → ε]

Therefore, the string aaa is a member of the language (set of strings) denoted by the

grammar.
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It was mentioned above that candidate sets are not represented as regular grammars.

Instead, they are represented via an equivalent formalism, finite state machines. A finite

state machine is simply a representation of a regular grammar as a directed graph. Each

non-terminal symbol in the grammar is a node in the graph, and each production of the

form A → aB is an edge of the graph. The non-terminal symbols that head productions

of the form A → ε are noted as final states. Here is the example grammar as a finite state

machine:

S Aa

a

b

Ba

Using the finite state formalism, a string is a member of the language represented by a

machine if it is possible to trace a path from the start state of the machine (usually labeled

“1,” but here labeled “S”) to an accepting state where the path is made up of edges labeled

by the elements of the string. For example, this machine accepts “aaa” because one can

take the arc labeled “a” from state “S” to state “A,” then the arc labeled “a” from state “A”

back to state “A,” and finally the arc labeled “a” from state “A” to state “B.”

There is one more equivalent formalism that comes in handy: the regular expression. A

regular expression is an expression of an algebra over the members of some alphabet, using

the operations concatenation, union, and Kleene star. The most basic regular expression

is made up of a single alphabetic symbol, e.g., a. The result of the concatenation operation

applied to two regular expressions is a regular expression denoting the set of strings where
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the first part of each string comes from the first expression and the second from the second

expression. For example, a concatenated with b is the expression ab (more examples to

follow). The union of two regular expressions is a regular expression that denotes the

union of the sets denoted by the operands. For example, a unioned with ab contains

the strings “a” and “ab.” This is written a|(ab). Finally Kleene star applied to a regular

expression denotes the concatenation of the regular expression with itself zero or more

times. For example, a∗ denotes the set containing the empty string, “a,” “aa,” “aaa,” etc. A

regular expression equivalent to the example grammar presented above is a(a|b)∗a. That

is, each string in the set begins with “a,” followed by zero or more elements of the set {a,b},

and ending with “a.” Another way of saying this is that it is the set of strings from the

alphabet {a, b} that begin and end with the symbol “a” and are at least two elements long.

There is a reason that one might want to use finite state machines: the set of finite state

machines over a particular alphabet is closed under intersection, and intersection of finite-

state machines is fairly efficient to compute. Thus, one might represent a binary constraint

(a constraint that any given form either violates or does not violate) as a finite machine

that accepts just those strings that do not violate the constraint. Then, intersecting that

machine with the machine representing the pool of candidates will either indicate that

the machines do not intersect, in which case the constraint will have no effect, or it will

produce the set of candidates that obey the constraint. Intersection is a fairly simple

process. It essentially works as follows:

. Create a new finite state machine whose states are labeled with pairs of states from

the machines being intersected. The start state is labeled 〈1, 1〉, indicating that it
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corresponds to state  in both machines.

. If symbol a labels an arc from state s1 to state d1 in the first machine, and it labels

an arc from s2 to state d2 in the second machine, it labels an arc from 〈s1, s2〉 to

〈d1, d2〉in the intersection.

. Any state 〈s1, s2〉 in the result machine where s1 is an acceptor in the first machine

and s2 is an acceptor in the second machine, is an acceptor.

Here’s an example. Assume that the candidate set is described by the machine given above,

repeated here for convenience:

S Aa

a

b

Ba

Then, assume that there is a constraint that bans the symbol b. As a binary constraint of

the form described above, this would appear as follows:

1

a
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The intersection proceeds by first creating the product states 〈S, 1〉, 〈A, 1〉, and 〈B, 1〉. Of

these, 〈B, 1〉 is a final state. Applying rule () above, we get the following intersection:

S,1 A,1a

a

B,1a

The a-labeled arcs all survived because there were a-arcs in both machines, but the b-

labeled arc in the first machine had no counterpart. Another example might be a con-

straint that bans sequences of a’s:

1

b

2a

b

Here it is necessary to be more systematic. Let us begin at state S in the first machine

and state  in the second. From here, a goes to state A (first machine) and state  (second

machine), and b goes nowhere in the first machine, and to state  in the second. So far,

therefore, the result machine appears as follows:

S,1 A,2a

From state 〈A, 2〉, a goes to states A and B (first machine) and nowhere (second machine).

Since it only appears in one machine, we do not add any arcs for a. The symbol b goes to
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state A (first machine) and state  (second machine). Therefore we add a corresponding

arc:

S,1 A,2a A,1b

From state 〈A, 1〉, a goes to states A and B (first machine) and state  (second machine).

Symbol b goes to state A (first machine) and state  (second machine). We add three arcs:

S,1 A,2a A,1b

a

b

B,2a

No arcs lead from state B in the first machine, so we are done. Notice that this pool

of candidates does not include any that satisfy the “no b” constraint, so no intersection

would be possible (following this algorithm you would get a machine with no final states

that are reachable from the start state).

The major problem with the method laid out above is that not all constraints are

binary. For example, one would usually expect a constraint like *b to incur one violation

for a form with one b, two for two b’s, and so forth. One solution to this is to employ

weighted finite state machines. A weighted finite state constraint is a weighted finite state

machine that accepts all potential candidates (every string that can be written in the given

alphabet), but applies a weight to suboptimal candidates.
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For example, *b would be represented as follows:

1

a/0

b/1

Note that every edge has a weight, that all strings from the alphabet {a, b} are accepted,

and that the b edge has a non-zero weight. With a constraint like this, the number

of constraint violations incurred by a given candidate can be computed by finding the

lowest-weight path from the start state to a final state that follows edges labeled by the

symbols in the candidate and summing the weights traversed. For example, “abb” here

would go from state  to state , picking up  weight and consuming “a,” then going from

 to  again, picking up weight , and finally the same, for a total of weight . It is also

straightforward to use one of these weighted constraints to evaluate an entire candidate

pool at the same time, via weighted intersection. If we were to intersect this constraint

with the candidate set given above, the result would be as follows:

S,1 A,2a/0 A,1b/1

a/0

b/1

B,2a/0

Note that no path from the initial state to the final state will have a non-zero weight,

but some paths are better than others. If we use Dijkstra’s Single-Source Shortest Paths

algorithm to figure out which paths to the final state are optimal, we find that the optimal
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paths are those that do not include the edge from 〈A, 1〉 to 〈A, 1〉. Thus, the candidate set

can be winnowed to the optimal one by removing the suboptimal arcs and dropping the

weights:

1 2a 3b

a
4a

More detail on this can be found in Albro (a), which notes that the shortest-paths

algorithm as presented by Eisner (c) actually calculates the shortest paths to all final

states, whereas what is desired is actually the shortest path to any final state. That is, if

the candidate set fsm has multiple final states and all of the candidates that go to one of

them are worse than all of the candidates that go to the other, applying the shortest paths

algorithm without modification results in keeping suboptimal candidates. The solution is

to combine the multiple final states into a single state before applying the shortest paths

algorithm.

2.3 CONSTRAINTS AND REPRESENTATIONS

The previous section showed in general how to emulate the evaluation mechanism of Op-

timality Theory via weighted finite state methods. However, there is a large gap between

having a computational model and actually being able to encode human-language analy-

ses in it. The missing ingredients include a representation for candidates and an encoding

of Optimality Theoretic constraints as finite state machines. The problem of representing

phonological forms in a way that facilitates efficient computation on those forms has been
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addressed many times.

The kimmo project and its various incarnations (Koskenniemi ; Karttunen )

represent a phonological form as a string of symbols, each of which represents a phoneme

or boundary (morphological, word, or syllable, generally). This method is quite efficient,

but does not include the idea of incorporation where the representation contains both the

underlying and surface forms. This makes the method unsuitable for a weighted finite

state approach such as the one discussed here, but the transducer approach to Optimality

Theory (Karttunen ; Frank & Satta ) typically uses essentially the same method

to good effect (although with perhaps less coverage up to this point in the area of redupli-

cation and long-distance metathesis).

Albro () evaluates both the kimmo representational scheme and the scheme intro-

duced by the Delta Programming Language (Hertz ) with respect to their utility for

representing forms with prosody and autosegmental tiers. It also includes its own repre-

sentation, but that representation (a directed acyclic graph) is not particularly appropriate

for finite state representation. The Delta Programming Language uses a metrical grid to

represent phonological forms, but, not being designed for finite state representation, it is

a bit too unwieldy for present purposes.

The most fully specified representation scheme for finite state phonology with prosody

and autosegmental tiers (and incorporated underlying forms) is that of Primitive Opti-

mality Theory (otp) (Eisner c; Eisner d; Eisner b). In Primitive Optimality

Theory all representations take the form of a grid composed of the five characters ‘+’, ‘-’,

‘[’, ‘]’, and ‘|’. For example, a closed syllable with a sonorant in the nucleus and an obstru-
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ent in the coda, followed by an open syllable headed by an obstruent might be partially

represented as follows, where the underlying form is the same (the labels are not actually

part of the representation)³:

���������	�
����
����������������������

��������
! � "���������# "�����

���������	�	$�%�
& � "�����# � � "�����

�'��()�*����(,+)
����������# � � "�����

---

Further tiers would be necessary to specify the other features and prosodic levels, and

another set of tiers within the representation would be required to represent the underlying

form of this utterance. For example, if the underlying form was the same, but syllable and

mora structure was assigned by rule, this might look as follows:

���������	�
����
����������������������

��������
! � "���������# "�����

���������	�	$�%�
& � "�����# � � "�����

�'��()�*����(,+)
����������# � � "�����

---

���������	�	$�% 
. � "�����# � � "�����

�'��()�*����(,+ 
/���������# � � "�����

3In general, I will put the actual parts of representations in non-italicized 02143�1�576�8�9;:=<�143�>,? Abbrevi-
ations and labels will be italicized.
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Albro (a) argues that this representation has a number of flaws as a representation

for Optimality Theory; in particular, there is no clear distinction between the absence of

material at a level (as in the case where a segment has been deleted in the surface form but

is present in the underlying form) and negative feature values. The amended version of the

representation proposed by Albro (a) fixes these flaws at the expense of introducing

one new tier per level of representation, a tier intended to indicate absense of material.

Unfortunately, the presence of these tiers and the complication of having three symbols

to indicate boundaries makes representation of reduplicated forms overly complicated. It

also greatly increases the number of states necessary in constraints that evaluate forms in

the representation.

There are two basic ways a Primitive Optimality Theoretic representation can be re-

duced to a string suitable for use with a finite state machine. Either each column of the

grid can be taken as a single edge label, i.e., as a single alphabet symbol, or the repre-

sentation can be laid out column-by-column (“[–[...+–+...+[[+...”) (row-by-row would

be less feasible because whereas the number of columns in a given language might be

fixed, the number of rows could not be, and, besides, such a representation would make

constraints extremely difficult to formulate). The implementations of Eisner (c) and

Albro (a) take the former tack.

The problem with the large-alphabet model, however, is that it has a very large alpha-

bet, on the order of 5n where n is the number of tiers. Many essential algorithms, such

as Hopcroft’s () finite state machine minimization algorithm, have a time complexity

based on the size of a finite state machine’s alphabet, so a large alphabet can be a problem.

The column-by-column small-alphabet scheme poses an even larger problem, however, as





the crucial Single-Source Shortest Paths algorithm takes time proportional to the (square

of ) the number of edges in the finite state machine (Dijkstra ), and the number of

edges is based on the number of alphabetical symbols used in a given representation. The

small-alphabet scheme does have one major advantage over the large-alphabet scheme,

though—the same representation can be used for the finite state machine algorithms and

also the parsing algorithms that will be necessary later to handle reduplicating forms.

The solution proposed here is essentially an amalgam of the small-alphabet and large-

alphabet schemes for the Primitive Optimality Theoretic representation. It has the added

bonus that it dispenses with the symbols ‘[’, ’]’ and ’|’, replacing them by the equivalent of

one additional tier. This means that the representations are significantly shorter. Further,

the insertion/deletion problems referred to by Albro (a) are bypassed without addi-

tional complication. Basically, the idea starts with Eisner’s representation and removes the

edge symbols:

���������	�
����
#���������

��������
! ���  �

���������	�	$�%�
& �  � �

�'��()�*����(,+)
#���  � �

---

���������	�	$�% 
. �  � �

�'��()�*����(,+ 
 ���  � �
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Next, a partial version of the “large alphabet” system is applied, using a symbol to

abbreviate a column of features. This is done in the conventional way, with phonetic

symbols:

���������	�
����
 ���������

��������
! ����! ��

��� 

	���
�
��

� � 

	���
�
��

Note here that the representation above actually encodes more information than the Eis-

nerian one it replaces. It also has a problem: it is not possible to determine how many

syllables there are on the syllable tier, how many t’s there are in the sr and ur tiers, etc.

The solution to this is to add a continuation and an initial version of each symbol. The

continuation version of the symbol indicates that it represents the same entity as the pre-

vious symbol in its row. The initial version indicates that it is a different entity from the

previous symbol in its row. Here, the continuation version is marked with a comma, and

the initial version with a period (‘-’ is not marked with a comma or a period because it is

a different sort of thing; see below):

���������	�
����
 � - ��������� - ���

��������
! � - � -  � -

��� 

	 - � - 
 - 
 - � -

� � 

	 - � - 
 - 
 - � -

This representation is now complete. It is possible here to determine that there are two

syllables and three moras, and that there are five phones at each level of the representation.
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Note that ‘-’ indicates the lack of something at a given position, not the minus feature.

Thus, if the surface form had an inserted final vowel and a deleted initial consonant, the

form might appear as follows:

���������	�
����
 � - ��������� - ���

��������
! � - � -  � -

��� 
! � - 
 - 
 - � -

� � 

	 - � - 
 - 
 -  

This representation has no more ambiguity of the sort by which the Primitive Optimality

Theoretic representation was plagued. The serialized form of this, suitable for encoding

as a finite state machine, is “s. - - n. s, m. a. a. s, m. t. t. s. - t. t. s, m. a. -”. Note that

this is much shorter than the otp representation would be if serialized in the same way

(syllable, mora, surface phonetic, underlying phonetic).

For ease of constraint family specification, I have added one more wrinkle to the

candidate specifications. At each end of each tier of an utterance, there must be a word-

edge boundary symbol (’#’):

���������	�
����
�� � - ������� � - ��� �

��������
��# � - � -  � - �

��� 
��# � - 
 - 
 - � - �

� � 
�� 	 - � - 
 - 
 -  �
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.. representation of constraints

Primitive Optimality Theory comes equipped with a very simple language for representing

constraints, a language which necessarily depends upon its representation for candidates.

Thus, if I discard the Primitive Optimality Theoretic representation in favor of the one

proposed here, it is necessary to devise a new system of constraints. For this, I will intro-

duce yet another compromise. This time, it is between Eisner’s (d) idea that there are

only two basic families of constraints, and each individual constraint is specifiable as a pa-

rameterization of one of these two and Ellison’s (a) idea that any constraint encodable

as a weighted finite state machine is permissible. What I have done is to take the fam-

ilies of constraints that are common in the Optimality Theoretic literature and develop

weighted finite state templates for a useful subset of them. Like Eisner’s, these constraints

have in common that they are represented by weighted finite state machines that accept

all strings, but apply weights to some strings. Further, no edge is weighted more heavily

than . The families I have up to this point found useful are described in Chapter . An

example of one such family follows.

.. constraint family example: dep- io

Each family of constraints takes one or more parameters, each of which is a natural class,

that is, a set of phonemes (to be a natural class, the set has to have something in common,

such as a similarity in articulation). For example, DepIO(S) is a family of constraints that

penalizes instances where a member of natural class S appears in the surface representation,

but no corresponding segment appears in the underlying form. Say that the total segment
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inventory of a language is {a,b,h}, of which {a} constitutes the vowels (call it natural class

V) and {b,h} constitutes the consonants (C). Take natural class C, the set of consonants.

Then DepIO(C) might be represented by the weighted finite state machine in Figure ..

This machine is fairly complicated, so I’ll introduce some abbreviations:

• An edge labeled “C.” abbreviates a set of edges, each edge of which is labeled by one

of the initial consonants “b.” and “h.”.

• An edge labeled “C,” abbreviates a set of edges labeled by the continuation conso-

nants “b,” and “h,”.

• “C” indicates an edge set that is the union of “C.” and “C,”.

• “V.” indicates an edge labeled “a.”.

• “V,” indicates an edge labeled “a,”.

• “V” indicates the set of edges “a.” and “a,”.

• “X” indicates the set of edges that is the union of “C” and “V”.

• “?” indicates the set of edges that contains every edge in “X”, the edge labeled “-”

(indicating the lack of a segment), and the edge labeled “#” (indicating the end of a

word).
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4 1

a./0

a,/0

b./0

b,/0

h./0

h,/0

-/0

#/0

a./0

a,/0

-/0

#/0

3

b./0

b,/0

h./0

h,/0

h,/0

a./0

a,/0

b./0

b,/0

h./0

2-/0

5

a./0

a,/0

b./0

b,/0

h./0

h,/0

-/0

6

a./1

a,/1

b./1

b,/1

h./1

h,/1

-/1

#/1

a,/0

b,/0

h,/0

a./0

b./0

h./0

-/0

#/0

Figure .: Unsimplified DepIO(C) representation
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The abbreviated machine appears as follows:

4 1

?/0

V/0

-/0

#/0

3
C/0

X/0 2-/0

5

X/0 -/0

6?/1

X,/0

X./0

-/0

#/0

This machine is much easier to read. State  is the start state of the machine, and states

 and  are the acceptors. Note that all paths through the machine from a start state to

an acceptor are of a length that is a multiple of . This is because the representations

evaluated by this constraint have two rows: sr and ur (the syllable and mora rows referred

to above are not used here, nor in any of the examples to follow in this chapter). One

further abbreviation makes the machine even easier to read. The abbreviation consists of

putting the parts of an entire column of the representation together, separating the rows

by means of the symbol ‘:’. For example, an edge labeled “X:-”, and drawn from state s1

to state s2 indicates a set of edges leading from s1 to some unrepresented state s
′

1 where

each edge is labeled by one of the elements of “X” (see above), and an edge from s
′

1 to s2

labeled by “-”.
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This method of abbreviation leads to the following machine:

1

C:X/0

V:?/0

-:?/0

#:?/0

2

C:-/0

X,:X/0

X.:?/1

-:?/1

#:?/1

X,:-/0

Finally, one may notice from the machine above that some of the edges described are more

meaningful than others. For example, the edge from state  to state  labeled “C:-/” is

fairly meaningful—it indicates that when a surface consonant is paired with nothing on

the underlying form, there is a chance that DepIO(C) will be violated (the only weighted

edges originate in state ). The other edges from state  simply indicate that in every other

case rather than “C:-” the machine will stay in state , which could be called the “safe”

state. This suggests a final abbreviation: if an edge from state s1 to state s2 is labeled

“other”, it indicates a set of edges labeled by all symbol pairs (in the case of representations

with two rows) derivable from the alphabet of the language that are not covered by other

edges from state s1.
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This should become clear from the example:

1

other/0

2

C:-/0

X,:X/0

other/1

X,:-/0

Now this machine is finally fairly simple to read. It may be interpreted as follows:

Start in state  (the “safe” state). If a surface consonant is encountered, paired

with nothing on the underlying form, move to state  (the “danger” state);

otherwise, stay in state . From state , stay in state  if a surface contin-

uation segment is encountered, still paired with nothing on the underlying

form. On the other hand, if a surface continuation segment is paired with

something on the underlying form, move to safety in state . If anything else

is encountered, it signifies that the surface consonant had no underlying cor-

respondent, and therefore one should pass through a weighted edge to state

, where the process begins again.

It should be possible to see that this implements DepIO(C).

Now for something concrete: an example of how the Weighted Finite State system

described above, using the representation and constraint families described above, can

handle one of the basic Optimality Theoretic examples given in McCarthy & Prince .
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2.4 OPTIMALITY THEORETIC EXAMPLE: JAVANESE /H/-DELETION

This section will work through a slightly simplified version of [McCarthy and Prince’s

(, p)] example of reduplicative over-application in Javanese. Take first a language,

let’s call it Pseudo-Javanese, with three phonemes: /a/, /b/, and /h/. For such a system of

phonemes, only two features are needed: [±cons] and [±spread-glottis]. The phoneme

/a/ is a vowel: [−cons, −spread-glottis]; /b/ is a non-spread-glottis consonant: [+cons,

−spread-glottis]; and /h/ is a spread-glottis consonant: [+cons, +spread-glottis]. In

this language, [h] may not appear between vowels, thus adding the suffix /-a/ leads to

/h/-deletion. In reduplication this carries over so that both the reduplicant and the base

exhibit /h/-deletion even though the conditioning context only occurs in one of them:

root (a) isolation (b) +a sfx (c) redup’d (d) red,+a

() /ah/ [ah] [aa] [aah] [aaa]

() /bah/ [bah] [baa] [bahbah] [babaa]

Let us begin with form (b). The input to Gen is the underlying form, /aha/. For this ex-

ample only two tiers will be necessary: the underlying representation (ur) and the surface

representation (sr). Therefore, from the input “a h a”, Gen produces a set of candidates

with two tiers. These candidates include all forms in which /aha/ is the underlying form

and the surface may be anything (so any insertion or deletion is possible):

��� 
 � ����� ��������� �	�
����� ������� �

� � 
 �. � - � �  � - � �  � - � �  �
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Note that the candidate set representation above is a special form of regular expression in

which ‘X’ indicates that any member of the set {a,b,h} of permissible segments can appear;

‘?’ indicates that any member of the set represented by ‘X’ may appear, as well as ‘-’ (which

indicates deletion); ‘*’ indicates that the column it is in may appear  or more times; ‘.’

indicates the first element of a given segment; ‘,’ indicates the continuation of a segment;

and ‘#’ indicates the beginning or end of a word.

The candidate set embodied by the above regular expression, the output of Gen, will

now be winnowed down by the constraints of the analysis (these are essentially the con-

straints given in McCarthy & Prince , with some additional constraints needed in

order to show a complete derivation), in order from the highest ranked to the lowest

ranked.

DepIO(X): The highest constraint in the ranking is DepIO(X), where ‘X’ as usual rep-

resents the set of all segments (both the continuation and initial versions). The constraint

indicates that no segment is to be inserted. Here is a representation of the constraint in

the simplified scheme developed in §.:

1

other/0

2

X:-/0

X,:X/0

other/1

X,:-/0
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The candidate set that results from the intersection is as follows:

��� 
 � � �	� � ����� �	� �

� � 
 ��� - � � � - � � � - � � �

It is simply the candidate set before the intersection, with all insertion candidates removed.

MaxIO([-cons]): The next candidate indicates that underlyingly [-cons] segments can-

not be deleted (here, ‘V’ represents the set of [-cons] segments, i.e., {a}), and is represented

by the following wfsm:

1

other/0

2

-:V/0

X:V,/0

other/1

-:V,/0

The candidate set that results from the intersection is as follows:

��� 
 � � � � � ����� � � �

� � 
 ��� - � � � - � � � - � � �

In other words, the deletion option “-” has been removed from the surface correspondents

for underlying /a/.
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IO-Integrity(X): This constraint ensures that the surface correspondent for each seg-

ment must be only one segment.

1

other/0

2

X:X./0

X.:X,/1

other/0

X,:X,/0

X:X./0

The resulting candidate set is as follows:
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 � �
�

�
�

�  �
�

�
�

� �

� � 
 ��� - � � � - � - � � � �

��� 
 � �
�

�
�

�
� �
�

�
� �
�

� �

� � 
 ��� - � - � - � � � - � � �
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IO-Uniformity(X): The underlying correspondent for each segment must be only one

segment.

1

other/0

2

X.:X/0

X,:X./1

other/0

X,:X,/0

X.:X/0

The resulting candidate set is as follows:

��� 
 � �
�

�
�

�  �
�

�
�

� �

� � 
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��� 
 � �
�

�
�

�
�
�

�
�

�
�
�

�
�

� �

� � 
 ��� - � � � - � � � - � � �

The only difference here from the previous candidate set is that the second underlying

segment must correspond to a different surface segment from the first, and similarly with

the third underlying segment.
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*Contour: Bans contour segments (essentially, bans the continuation version of a seg-

ment, on the surface).

1

X,:?/1

other/0

The result is as follows:

��� 
 � �
�

 � - �

� � 
 ��� - � - � - � �

��� 
 � �
�

�
�

�
�

�

� � 
 ��� - � - � - �

IdentIO([−cons]): Bans changing a vowel into a consonant.

1

other/0

2C:V/1

other/0

C:V,/0

C:V./1
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The result is as follows:

��� 
 ��� -  � - �

� � 
 ��� - � - � - � �

��� 
 ��� - � �

� - �

� � 
 ��� - � - � - �

IdentIO([+cons]): Prevents changing a consonant into a vowel.

1

other/0

2V:C/1

other/0

V:C,/0

V:C./1

Result:

��� 
 ��� -  � - �

� � 
 ��� - � - � - � �

��� 
 ��� - �
�

� - �

� � 
 ��� - � - � - �
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IdentIO([+spread-glottis]): Preserves [+spread-glottis]. Here ‘h’ represents the set of

spread-glottis segments {h}, and ‘G’ represents the set of non-spread-glottis segments {a,b}.

1

other/0

2G:h/1

other/0

G:h,/0

G:h./1

Result:

��� 
 ��� -  � - �

� � 
 ��� - � - � - � �

��� 
 ��� - � - � - �

� � 
 ��� - � - � - �

*DoubleSequence([-cons],[+sglot],[-cons]): Bans [h] intervocalically (*VhV).

1

other/0

2V:?/0

other/0

V:?/0

3

h.:?/0

other/0

V.:?/1

h,:?/0
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The result is as follows:

��� 
 ��� -  � - �

� � 
 ��� - � - � - �

The remaining constraints are, in order, DepBR(C) (see below), which asserts that a

consonant may not appear in the reduplicant without corresponding to a segment in the

base, and MaxIO(C), which penalizes underlying consonants with no surface correspon-

dent. The application of these other constraints will have no effect, as there is now only a

single candidate.

2.5 REDUPLICATION

The next step, given the above example, is to figure out how to model McCarthy and

Prince’s analysis of over-applied forms such as [babaa] above. Their analysis is based upon

the introduction of a new kind of correspondence – “Base-Reduplicant.” In this analysis

faithfulness relations are computed based on a correspondence between the surface form of

the base and the surface form of the reduplicant. The problem with such a correspondence

is that heretofore correspondence has been represented by vertical alignment. The options

here are to introduce some sort of horizontal correspondence, e.g., “a segment shall be

faithful to the nth segment to its right,” or to change the representation to somehow

make the seemingly horizontal correspondence vertical. The first of these options has

some promise, but also seems likely to be fairly complicated to implement in a general

way, given word-length variation (the basic idea would be to have a separate constraint for

each position in the base or something like that). It will be saved for possible future work.
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Here I will describe an implementation of the second option.

The basic idea (Albro a; Eisner a) is that each candidate includes an exact copy

of the reduplicant aligned vertically with the base. The inclusion of this reference copy

allows constraints essentially identical to those used in the previous section to model Base-

Reduplicant Correspondence. This benefit, however, comes at a price. The requirement

that the candidate set consist only of candidates with two copies of the reduplicant puts

this beyond the expressive power of finite state machines. The least complicated grammar

type in the Chomsky Hierarchy that is able to represent such a set is a mildly context

sensitive grammar. Unfortunately, the class of mildly context sensitive grammars is not

closed with respect to intersection, so it is not possible for both the candidates and the

constraints to be such grammars. It is a good thing that this is not one of our requirements,

then. Luckily, mildly context sensitive grammars (or at least, the type I will be using —

multiple context free grammars⁴) are closed with respect to intersection with finite state

machines. The challenge, then, is to develop an algorithm for intersecting mcfgs with

weighted finite state machines. This I have done, see Appendix C. The intersection

algorithm has time complexity O(n6), which although still polynomial, is significantly

slower than fsm intersection, which is O(n2) (both measured approximately in number of

edges of the machine being intersected with the grammar).

4Examples of multiple context free grammars (mcfgs) will be given shortly; a formal definition is given
in Appendix B.
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.. mcfg intersection example

... An Example cfg

The multiple context free grammar formalism is a fairly simple extension of the more well-

known context free grammar formalism. Here is an example of a context-free grammar:

S → R (.)

R → X

R → X R

X → A A

X → B B

A → a

B → b

Each of the lines in this grammar is called a production, or a rewrite rule. In a cfg the

capitalized symbols are called nonterminals (only nonterminals appear on the left-hand

side of a production) and the lowercase symbols are called terminals. A cfg represents

the set of strings that can be derived from the start symbol S. A derivation proceeds by

replacing nonterminal symbols by the right-hand side of some production they head, until

no nonterminal symbols are left. The grammar above derives the language (aa|bb)+, that

is, the set of strings consisting of one or more aa or bb sequences. It would include,
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then, aa, bb, aaaa, aabb, bbaa, bbbb, etc. An example from this language is the string

bbaabbbb, which is derived as follows:

. S [start symbol]

. R [S → R]

. XR [R → XR]

. BBR [X → BB]

. bBR [B → b]

. bbR [B → b]

. bbXR [R → XR]

. bbAAR [X → AA]

. bbaAR [A → a]

. bbaaR [A → a]

. bbaaXR [R → XR]

. bbaaBBR [X → BB]

. bbaabBR [B → b]

. bbaabbR [B → b]

. bbaabbX [R → X]

. bbaabbBB [X → BB]

. bbaabbbB [B → b]

. bbaabbbb [B → b]
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S

R

X

B

b

B

b

R

X

A

a

A

a

R

X

B

b

B

b

R

X

B

b

B

b

Figure .: cfg derivation tree for bbaabbbb.

A derivation such as the above may be represented by a derivation tree, such as that shown

in figure .. Notice that the derived string can be read off by traversing the leaves of

the tree from left to right. One more note about this derivation: the tree shows not only

that bbaabbbb derives from S, but also that b derives from B, bb derives from X, aabbbb

derives from R, etc.

A production such as

A → B C

Can be read as an implication of the form

If string β is derived from B and string γ is derived from C, then the concate-

nation βγ of those strings is derived from A.
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... An Example mcfg

Now for a similar mcfg. This mcfg represents a simple language of totally reduplicated

strings from the alphabet {a, b}. A compact representation of the language it represents

might be {ww|w ∈ {a, b}+}.

S → g1[R], g1(x1) = (x11x12) (.)

R → g2[X], g2(x1) = (x11, x12)

R → g3[X, R], g3(x1, x2) = (x11x21, x12x22)

X → g4[A, A], g4(x1, x2) = (x11, x21)

X → g4[B, B]

A → a

B → b

Notice that this grammar looks just like the cfg given in (.) above, except that each

nonterminal production (production with nonterminals in the right hand side) has a

function associated with it. The function indicates what string (or group — “tuple”

— of strings) is derived from a nonterminal given the (tuples of ) strings derived from

the terminals in the right-hand side. In a cfg, this function is always left-to-right con-

catenation, so if in a derivation the production A → B C is used where B derived abc

and C derived def, then A derives abcdef. In an mcfg, however, the function may in-

volve any concatenation of the derived strings, possibly grouping the strings into tuples
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or ungrouping them. The functions are written in terms of subscripted variables such

as x12. These variables represent strings; the first subscript indicates which member of

the rule’s right-hand side the string comes from, and the second subscript indicates a

particular element of the tuple of strings associated the selected right-hand side mem-

ber. For example, in R → g3[X, R], g3(x1, x2) = (x11x21, x12x22), X and R both derive

pairs (-tuples) of strings such as (a, a) or (b, b). In g3(x1, x2) = (x11x21, x12x22), x1 rep-

resents a pair of strings derived from the X in the right hand side of the production,

and x2 represents a pair of strings derived from R in the right hand side. The right-

hand-side symbol x11 refers to the first element of a pair of strings derived from X; x12

to the second; x21 to the first element of a pair derived from R; and x22 to the second.

Thus if it is previously known that (a, a) derives from X and (bb, bb) derives from R,

g3(x1, x2) = g3((a, a), (bb, bb)) = (x11x21, x12x22) = (abb, abb) and therefore (abb, abb)

is derived from R.

These functions must mention all of the components of the right-hand side of the

productions to which they are attached, and each component must be mentioned only

once. Because of these functions, the mcfg represents a different language from the cfg

({ww|w ∈ {a, b}+} vs. {(aa|bb)+}) despite having otherwise identical productions.

Figure . shows a derivation tree from the mcfg above; it is structurally identical to

the tree in figure ., but due to the string re-write functions of the mcfg it represents the

derivation of an entirely different string. The obvious difference between this tree and the

tree of figure . is that each node is labeled with a tuple of strings. This is not necessary in

a cfg because the string derived at each node of a cfg derivation tree is computable from

the tree without reference to the original grammar (the string derived from a given node
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S : babbbabb

R : (babb, babb)

X : (b, b)

B : b

b

B : b

b

R : (abb, abb)

X : (a, a)

A : a

a

A : a

a

R : (bb, bb)

X : (b, b)

B : b

b

B : b

b

R : (b, b)

X : (b, b)

B : b

b

B : b

b

Figure .: mcfg derivation tree for babbbabb

is the left-to-right concatenation of the labels of the leaves dominated by that node). The

tree in figure . derives babbbabb despite its leaves reading, from left to right, bbaabbbb,

which is, not so coincidentally, what the tree of figure . derives.
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... mcfg for Base-Reduplicant Correspondence Theory Candidate Sets

At this point the difference between an mcfg and a cfg should be reasonably clear. The

process of computing Optimality Theoretic derivations using mcfgs to simulate

Base-Reduplicant Correspondence Theory is not yet clear, however. The basic idea here

is to have a candidate set in which each candidate has a copy of the reduplicant vertically

aligned with the base such that correspondence relations can be computed. For example,

the underlying form /red+bah+e/ might have candidates like the following:

��� ��� - � -  � - � - � -�� - �

� � ��� - � - � - � - � - � -�� - �

��� �#   � - � -   �

� � �	� - � � � ��
 - 
 ��
 �  �

Here S represents the surface form, U the underlying form, R the reduplicant reference

copy that is used for computing correspondence relations, and M represents a layer of

morphological information. Inside M, “R. R, R,” represents a reduplicant morpheme, “B.

B, B,” represents a base, and “–” represents no particular distinguished morpheme.

The candidate set properties described above are enforced by requiring that the can-

didate set be a subset of the language described by an mcfg that embodies the properties.

This mcfg is a bit complex, so I will begin with a simplification of it—this simplification

covers prefixing reduplication only, with no morphemes described other than the redu-

plicant and the base (i.e., no prefixes or suffixes are allowed, other than the reduplicant

itself ). I will also, for now, leave out the word boundary symbols. Given these caveats,
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here is an mcfg that describes the set of all candidates with four tiers as described above,

where the reduplicant reference tier aligned with the base must contain an exact copy of

whatever the surface tier aligned with the reduplicant contains:

S → g1[R], g1(x1) = (x11x12) (.)

R → g2[Ri], g2(x1) = (x11, x12)

| g3[Ri, Rr], g3(x1, x2) = (x11x21, x12x22)

Ri → g3[Ra, MRBi]

Rr → g2[Rc]

| g3[Rc, Rr]

Rc → g3[Ra, MRBc]

Ra → g4[X, O] g4(x1, x2) = (x11x21, x22x12)

X → g2[Cai, Cai]

| g2[Cac, Cac]

| g2[Cbi, Cbi]

...

Cai → � -

Cac |
� �

...

O → g5[Our, Osu], g5(x1, x2) = (x11, x21)

Our → g6[A, C−], g6(x1, x2) = (x11x21)
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Osu → g6[A, A]

A → � -

|
� �

|
� -

...

C− → −

MRBi → g5[CRi, CBi]

MRBc → g5[CRc, CBc]

CRi → � -

CBi →

 -

CRc → � �

CBc →

 �

In words, the grammar says that a candidate (S) consists of a reduplicated form (R), where

a reduplicated form is a pair of strings. These strings are concatenated (reduplicant, then

base) to make a candidate. A reduplicated form

R → g2[Ri], g2(x1) = (x11, x12)

| g3[Ri, Rr], g3(x1, x2) = (x11x21, x12x22)

Ri → g3[Ra, MRBi]

Rr → g2[Rc]

| g3[Rc, Rr]

Rc → g3[Ra, MRBc]
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Ra → g4[X, O] g4(x1, x2) = (x11x21, x22x12)

consists of an initial reduplicated form (Ri), optionally followed by the continuation redu-

plicated form (Rr). Ri represents the underlined parts of the example form in the following:

� 
 � - � -  � - � - � -

� 
 � - � - � - � - � - � -

� 
.   � - � -  

� 
 � - � � � ��
 - 
 ��
 �

Rr then represents the remainder, each vertical slice of which is represented by Rc. Notice

that Ri and Rc are not recursive, but Rr is. Each of Ri and Rc contains Ra. Ra is the

component that ensures that the reduplicant reference tier contains within the base an

exact copy of the surface form of the reduplicant. It consists of a pair X of identical

elements, plus O, an amalgam of the stuff that does not require dependency. It is then

arranged such that the first element of each X is the surface element of one vertical slice in

the reduplicant and the second (identical) element is the reduplicant reference-tier element

of a corresponding slice of the base. A partial derivation tree for the /red+bah/ example

above is given in Figure .. For reasons of space I was unable to include the derived

text at each node as in Figure .. Instead, I included the indices of the derived text, in

square brackets (so, for example, “[,]” would indicate “- R.”, the reduplicant reference

and morphological elements of the first vertical slice, and [,] would indicate the entire

example).
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S[0,24]

R[0,12][12,24]

Ri[0,4][12,16]

Ra[0,3][12,15]

X[0,1][14,15]

Cbi[0,1]

b.

Cbi[14,15]

b.

O[1,3][12,14]

OUR[1,3]

A[1,2]

b.

C
−[2,3]

−

OSU[12,14]

A[12,13]

b.

A[13,14]

b.

MRBi[3,4][15,16]

CRi[3,4]

R.

CBi[15,16]

B.

Rr[4,12][16,24]

Rc[4,8][16,20]

..

.

Rr[8,12][20,24]

..

.

Figure .: Derivation tree for /red+bah/

The full grammar adds word boundaries, prefixes, and suffixes, and supports both

prefixing and suffixing reduplication. It is as follows:

S → g1[Bw4, Wir], g1(x1, x2) = (x11x21) (.)

Bw4 → g1[Bw2, Bw2]

Wir → g1[Wi, Bw4]

Bw2 → g1[Bw, Bw]

Bw → �

Wi → g1[F, Wi2]

| g2[Wi2], g2(x1) = (x11)

| g2[F]
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Wi2 → g1[Wr, F]

| g2[Wr]

Wr → g3[Rp], g3(x1) = (x11x12)

| g3[Rs]

Rp → g4[Rpi], g4(x1) = (x11, x12)

| g5[Rpi, Rpr], g5(x1, x2) = (x11x21, x12x22)

Rs → g4[Rsi]

| g5[Rsi, Rsr]

Rpi → g5[Rpa, MRBi]

Rsi → g5[Rsa, MBRi]

Rpr → g4[Rpc]

| g5[Rpc, Rpr]

Rsr → g4[Rsc]

| g5[Rsc, Rsr]

Rpc → g5[Rpa, MRBc]

Rsc → g5[Rsa, MBRc]

Rpa → g6[X, O], g6(x1, x2) = (x11x21, x22x12)

Rsa → g7[O, X], g7(x1, x2) = (x12x21, x22x11)

X → g8[Cai, Cai], g8(x1, x2) = (x11, x21)

| g8[Cac, Cac]

| g8[Cbi, Cbi]
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...

Cai → � -

Cac |
� �

...

O → g8[Our, Osu]

Our → g1[A, C−]

Osu → g1[A, A]

A →
� -

|
� �

|
� -

...

C− → −

MRBi → g8[CRi, CBi]

MRBc → g8[CRc, CBc]

MBRi → g8[CBi, CRi]

MBRc → g8[CBc, CRc]

CRi →
� -

CBi →

 -

CRc → � �

CBc →

 �
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F → g2[Fa]

| g1[Fa, F]

Fa → g1[Osu, Omm]

Omm → g1[C−, C−]

... Ground Covered So Far

To summarize the ground covered so far, I have shown how weighted finite state Optimal-

ity Theory can work, including a system for constraint and candidate representation, and

I have introduced the multiple context-free grammar formalism and shown how it can de-

limit a set of candidates that have a reference copy of the reduplicant aligned with the base

such that the same sort of constraint that enforces input-output correspondence relations

can enforce base-reduplicant correspondence relations. What remains is to show how to

take the candidate set produced by Gen, which is expressed as a finite state machine, and

modify it such that it obeys the restrictions of the grammar given in (.) above, and,

further, how to apply the winnowing process to the resulting candidate set.

The output of Gen is a grammar that describes a set of candidates. The grammar of

(.), above, also describes a set of candidates. What is desired then is the set of candidates

described by both grammars, i.e., the intersection of the Gen candidate set with the gram-

mar’s candidate set. Luckily, it is possible to find such an intersection by a modification of

deductive chart parsing (Shieber et al. ).
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... Bottom-Up cfg Chart Parsing

The goal is to show how bottom-up chart parsing of multiple context free grammars can be

used to intersect a candidate set—expressed as a finite state machine—with the reference-

identity requirement for the Base-Reduplicant Correspondence Theoretic representation—

expressed as a multiple context free grammar. To do this, it is first necessary to investigate

what bottom-up chart parsing is. The full algorithm for bottom-up deductive chart pars-

ing of multiple context free grammars is somewhat complicated, so I will first discuss a

simpler, and more standard, application of bottom-up deductive chart parsing. Deductive

chart parsing is most simply applied to prove whether or not a given string is a member of

the language described by a grammar. I will begin with context free grammars since they

are simpler than multiple context free grammars, and show how this process is applied to

a string taken from the context free grammar given in (.), repeated here as (.):

S → R (.)

R → X

R → X R

X → A A

X → B B

A → a

B → b

The string is part of the same one that was derived earlier: bbaa.
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Deductive chart parsing is a variant of chart parsing that views the parsing process as a

logical proof in a simple system. The chart, here, is a database of known facts, called items.

Each item in a bottom-up context free grammar parse consists of a single grammatical

symbol (i.e., a terminal or a non-terminal) plus an indication of the extent of the string to

be parsed that is covered by the symbol. In the example string, the positions in the string

are numbered as follows: 0b1b2a3a4. Thus 0 is the initial position in the string and 4 is

the final position. Using this numbering, an item looks like γ[p, q], where p and q are

indices chosen such that 0 ≤ p < q ≤ 4, and γ represents some terminal or nonterminal

symbol from the grammar employed. γ[p, q] indicates that the subsequence of the string

bounded by p, q can be derived from γ in zero or more steps (a terminal symbol derives

itself in zero steps, so one item might be b[0, 1]). For example, X[0, 2] indicates that X

derives the initial bb of the string.

I mentioned deduction and proof. Deductive chart parsing, like all systems of logical

deduction, begins with a set of axioms — things known at the beginning of the process —

and a set of deductive rules used to establish new derived facts. The axioms in chart parsing

are the words of the sentence being parsed, in this case b[0, 1], b[1, 2], a[2, 3], a[3, 4]. The

deductive rules are related to the rules of grammar:

A[i, j]B[j, k]
C[i, k]

if C → AB ∈ G (.)

A[i, j]
C[i, j]

if C → A ∈ G (.)

The interpretation of a deductive rule is that if a set of facts from the set of known facts

matches the top part of the rule (the antecedents), then the rule applies and the facts in

the bottom part of the rule (the consequents) are deduced. In deductive chart parsing there
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are two places where facts are stored: a stack and a chart. The stack is like the in-box on

a desk — it contains a pile of items to be worked on; only the top item in the stack can

be removed from it at a given time. The chart contains all known facts, all of which are

accessible at all times.

To summarize the above, bottom-up deductive chart parsing for context free grammars

works as follows:

. Add all axiomatic items (one for each terminal symbol in the sentence being parsed)

to the stack and the chart.

. Take the top item from the stack. If this item matches a deductive rule (by itself

or with any other item in the chart), i.e. if it is in the right-hand side of some

grammar production, add the item deduced (the left-hand side of the production,

with string-coverage marked) to the top of the stack and to the chart.

. Repeat step  until the stack is empty.

If at the end of the process above a goal item has been added to the chart, the sentence

being parsed has been proved to be a member of the language of the grammar being used.

A goal item is of the form S[0, f], where S is the start symbol of the grammar and f is the

length of the sentence being parsed.

In the example, the initial chart contains b[0, 1], b[1, 2], a[2, 3], a[3, 4] and the stack is

the same. Removing the top item, b[0, 1], the deductive rule

b[0, 1]
B[0, 1]
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applies, since B → b is a production, so B[0, 1] is added to the chart and the stack becomes

B[0, 1], b[1, 2], a[2, 3], a[3, 4]. B is in the right-hand side of X → BB, but

B[0, 1]B[0, 1]
X[0, 1]

does not match

B[i, j]B[j, k]
X[i, k]

since 0 6= 1. Therefore no rule applies to B[0, 1] so we proceed to b[1, 2] and get

B[1, 2], the stack becoming B[1, 2], a[2, 3], a[3, 4]. It is now possible to apply the X →

BB rule properly. B[0, 1] from the chart and B[1, 2] from the stack combine to form

X[0, 2], and the stack becomes X[0, 2], a[2, 3], a[3, 4]. From X[0, 2] we derive R[0, 2]—

R[0, 2], a[2, 3], a[3, 4], and from R[0, 2] we derive S[0, 2], which is not a goal item and

which derives nothing else, so we move on to a[2, 3]. From a[2, 3] we get A[2, 3]—

A[2, 3], a[3, 4]. A[2, 3] by itself cannot make an X, so we move on to a[3, 4], which yields

A[3, 4]. From A[2, 3] and A[3, 4] we get X[2, 4]. The stack now contains only X[2, 4], from

which we get R[2, 4]. From R[2, 4] we derive two items: S[2, 4] via S → R, and R[0, 4], via

R → XR with X[0, 2]. S[2, 4] is a dead end, but R[0, 4] derives S[0, 4], which is the goal

item. Therefore bbaa is an element of the language. The derivation tree,

S[0, 4]

R[0, 4]

X[0, 2]

B[0, 1]

b[0, 1]

B[1, 2]

b[0, 1]

R[2, 4]

X[2, 4]

A[2, 3]

a[2, 3]

A[3, 4]

a[3, 4]
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may be reconstructed from the chart by working backwards from S[0, 4]. The process

works something like this:

In the grammar S heads only one production: S → R, so from S[0, 4] we must

derive R[0, 4]. That is in the chart, so add it to the tree. R then heads both

R → X and R → XR, but there is no X[0, 4] in the chart. The only Rs in the

chart that end in  are R[0, 4] and R[2, 4]. There is no X in the chart ending

with , but there is an X ending with , X[0, 2]. Therefore R[0, 4] derives

X[0, 2], R[2, 4] in the tree...

The process continues from there, building the tree top-down by looking up elements in

the chart to find anything that could complete a production.

Chart Parsing with Finite State Machines Earlier it was promised that chart pars-

ing could be used to intersect a finite state machine with a multiple context-free grammar.

In approaching that goal it may be helpful to consider a finite state machine-context free

grammar intersection example. Take the following fsm:

1 2b

a

b

To intersect this machine with the context-free grammar in (.), it is possible to use

almost exactly the same algorithm as was used to parse the sentence bbaa. The main

difference is that the axioms are drawn from the arcs of the fsm rather than the words
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of the sentence. The indices used to label the items in the chart are no longer word

numbers within the sentence, but rather state numbers from the finite state machine.

Thus, the algorithm begins with the axioms b[1, 2], a[2, 2], and b[2, 2] in both the stack

and the chart. The goal item here is S[1, f], where f is any final state (here, either  or

). The parse then proceeds much as the earlier parse did. The top item of the stack,

b[1, 2], yields B[1, 2]— B[1, 2],a[2, 2], b[2, 2]. B[1, 2] yields nothing by itself, so the parse

proceeds to a[2, 2], which yields A[2, 2]—A[2, 2], b[2, 2]. From A[2, 2] we get X[2, 2] (via

X[2, 2] → A[2, 2]A[2, 2]), and thence R[2, 2], which leads to S[2, 2]. Further, R[2, 2] plus

X[2, 2] yields R[2, 2], but that is already in the chart. The stack now contains b[2, 2].

From there we get B[2, 2], which yields both X[1, 2] via X[1, 2] → B[1, 2]B[2, 2] and X[2, 2]

via X[2, 2] → B[2, 2]B[2, 2]. From X[1, 2] we get R[1, 2] both directly (R[1, 2] → X[1, 2])

and via R[1, 2] → X[1, 2]R[2, 2]. Finally, R[1, 2] gives us S[1, 2], which is the goal item.

Reconstructing the intersection grammar, we get

S[1, 2] → R[1, 2]

R[1, 2] → X[1, 2]

| X[1, 2] R[2, 2]

R[2, 2] → X[2, 2]

| X[2, 2] R[2, 2]

X[1, 2] → B[1, 2] B[2, 2]

X[2, 2] → B[2, 2] B[2, 2]

| A[2, 2] A[2, 2]

B[1, 2] → b[1, 2]
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A[2, 2] → a[2, 2]

B[2, 2] → b[2, 2]

This can be simplified slightly to the following:

S → R1

R1 → X1|X1 R2

R2 → X2|X2 R2

X1 → B B

X2 → A A|B B

A → a

B → b

The language of this grammar is bb(aa|bb)∗, which is indeed the intersection of b(a|b)∗

(the finite state language) with (bb|aa)+ (the context-free language).

... mcfg Chart Parsing

Up to this point it has been shown how to intersect a finite state machine with a cfg

and recover the intersection grammar (also a cfg). From here all that remains is to show

how to extend this to intersecting finite state machines with multiple context free gram-

mars, and finally to extend that to intersection of a multiple context free grammar with

a weighted finite state machine. The first extension allows for adding the reduplicant ref-

erence property to a candidate set, and the second extension allows for winnowing said

candidate set via finite state constraints.
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To review, a cfg of the normal form used above (a normal form is a restriction in the

way a grammar is written that does not affect the expressive power of the grammar) has

three types of productions:

A → a

B → C

D → E F

Expressed as an mcfg, the same thing would be

A → a

B → g1[C], g1(x1) = (x11)

D → g2[E, F], g2(x1, x2) = (x11x21)

In words, both grammars can be interpreted as follows:

. The string a is of category A. Alternatively, A derives a, a parses as A, a is in the

yield of A.

. Any string that is of category C is also of category B.

. If string x1 is of category E and string x2 is of category F, then their concatenation

x1x2 is of category D.

An mcfg adds some new possibilities, as the string-combination function on the right

hand side of a production may be something other than simple left-to-right concatena-

tion. It can also do two other things: first, it may reorder the substrings, and, second, it
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may group strings into tuples or extract strings from tuples, as has been seen. The ques-

tion, then, is how to deal with this added complexity. Looking at the items from the chart

parsing example given earlier, each consists of a grammatical symbol plus a pair of num-

bers that indicates a subsequence of the input sentence, or a sub-fsm consisting of paths

between two states. For mcfgs, we extend the definition of an item to include a tuple of

such pairs instead of just one pair, and the pairs combine to form new items according

to the string function of the production being used. The usual rule applies that [p, q]

concatenates with [r, s] only if q and r are the same. The exact details of the extension are

given in Appendix C (see also Albro () for an alternative method), but an example

should help to make the idea clear.

Let us take the simple reduplication grammar given before:

S → g1[R], g1(x1) = (x11x12) (.)

R → g2[X], g2(x1) = (x11, x12)

R → g3[X, R], g3(x1, x2) = (x11x21, x12x22)

X → g4[A, A], g4(x1, x2) = (x11, x21)

X → g4[B, B]

A → a

B → b





As before, we intersect with

1 2b

a

b

I will show the intersection via the stack, plus the production used:

. b[1, 2], a[2, 2], b[2, 2] axioms

. B[1, 2], a[2, 2], b[2, 2] B → b

. X[1, 2][1, 2], a[2, 2], b[2, 2] X → g4[B, B], g4(x1, x2) = (x11, x21)

. R[1, 2][1, 2], a[2, 2], b[2, 2] R → g2[X], g2(x1) = (x11, x12)

. A[2, 2], b[2, 2] A → a

. X[2, 2][2, 2], b[2, 2] X → g4[A, A]

. R[2, 2][2, 2], b[2, 2] R → g2[X]

. B[2, 2] B → b

. X[1, 2][2, 2], X[2, 2][1, 2] X → g4[B, B]

. R[1, 2][2, 2], X[2, 2][1, 2] R → g2[X], R → g3[X, R],

g3(x1, x2) = (x11x21, x12x22)

. S[1, 2], X[2, 2][1, 2] S → g1[R], g1(x1) = (x11x12)

. R[2, 2][1, 2] R → g2[X], R → g3[X, R]

Some notes — after step  we do not produce an element of S from R[1, 2][1, 2] because

this would involve concatenating [1, 2] with [1, 2], and  is not equal to . After step ,

R[2, 2][2, 2] combines with X[2, 2][2, 2] to produce R[2, 2][2, 2], as well as with X[1, 2][1, 2]
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to produce R[1, 2][1, 2], but these are already in the chart, so the stack is not affected.

After step , B[2, 2] could produce X[2, 2][2, 2],but it is already in the chart. Step  uses

B[1, 2] and B[2, 2]. Step  produces R[1, 2][2, 2] either via X[1, 2][2, 2] directly or the

combination of X[1, 2][2, 2] with R[2, 2][2, 2]. From the chart it is possible to reconstruct

the intersection grammar in the same manner as before:

S[1, 2] → g1[R[1, 2][2, 2]]

R[1, 2][2, 2] → g2[X[1, 2][2, 2]]

| g3[X[1, 2][2, 2], R[2, 2][2, 2]]

R[2, 2][2, 2] → g2[X[2, 2][2, 2]]

| g3[X[2, 2][2, 2]], R[2, 2][2, 2]]

X[1, 2][2, 2] → g4[B[1, 2], B[2, 2]]

X[2, 2][2, 2] → g4[A[2, 2], A[2, 2]]

| g4[B[2, 2], B[2, 2]]

A[2, 2] → a

B[1, 2] → b

B[2, 2] → b

Simplified, the grammar appears as follows:

S → g1[R1]

R1 → g2[X1]

| g3[X1, R2]

R2 → g2[X2]
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| g3[X2, R2]

X1 → g4[B, B]

X2 → g4[A, A] | g4[B, B]

A → a

B → b

The language of this grammar is {ww|w ∈ b(a|b)∗}, which is indeed the intersection of

{ww|w ∈ (a|b)+} with b(a|b)∗.

At this point all of the necessary steps are in place to convert a finite state candidate

set into a multiple context free grammar with a proper reduplicant reference tier. Simply

replace the simple grammar used here with the more complex one given in (.). After

this has been accomplished, however, it is still necessary to intersect this candidate set with

a series of constraints, which are here represented as weighted finite state machines. To

achieve this a simple extension of the mcfg-fsm intersection is necessary. This involves

adding to each item in the chart a weight. There are three ways of creating items in the

chart, and each must be modified to deal with weights. First of all, the weight of an

axiomatic item is just the weight of the arc from which the item is derived. Second, the

weight of an item derived by a rule with a single element in its right hand side is just the

weight of the item that corresponds to that single element. Finally, the weight of an item

derived by a rule of the form A → g[B, C], that is, with two right-hand-side elements,

is the sum of the weights of the two items that combined to form it. In the original

algorithm, an item is added to the chart whenever no equivalent item is already in the

chart. In this update, an item is added whenever no equivalent or lower-weight equivalent
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item is already there. This modification is necessary to keep getting in an infinite loop

uselessly adding higher and higher weight versions of the same item. When reconstructing

the intersection grammar, one starts with the lowest-weighted goal elements and then

proceeds as before, making sure that weights sum correctly.

As an example, take the finite state machine from the last example and add a weight:

1 2b

a

b/1

The intersection of this machine with the simple reduplication grammar of (.) proceeds

as follows:

. b[1, 2] : 0, a[2, 2] : 0, b[2, 2] : 1 axioms

. B[1, 2] : 0, a[2, 2] : 0, b[2, 2] : 1 B → b

. X[1, 2][1, 2] : 0, a[2, 2] : 0, b[2, 2] : 1 X → g4[B, B], g4(x1, x2) = (x11, x21)

. R[1, 2][1, 2] : 0, a[2, 2] : 0, b[2, 2] : 1 R → g2[X], g2(x1) = (x11, x12)

. A[2, 2] : 0, b[2, 2] : 1 A → a

. X[2, 2][2, 2] : 0, b[2, 2] : 1 X → g4[A, A]

. R[2, 2][2, 2] : 0, b[2, 2] : 1 R → g2[X]

. B[2, 2] : 1 B → b

. X[1, 2][2, 2] : 1, X[2, 2][1, 2] : 1 X → g4[B, B]

. R[1, 2][2, 2] : 1, X[2, 2][1, 2] : 1 R → g2[X], R → g3[X, R],

g3(x1, x2) = (x11x21, x12x22)
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. S[1, 2] : 1, X[2, 2][1, 2] : 1 S → g1[R], g1(x1) = (x11x12)

. R[2, 2][1, 2] : 1 R → g2[X], R → g3[X, R]

The derivation process is essentially the same as before, except that weights are added.

Notice that we avoided combining B[2, 2] : 1 with itself to form X[2, 2][2, 2] : 2. The

reconstructed grammar appears as follows:

S[1, 2] : 1 → g1[R[1, 2][2, 2] : 1]

R[1, 2][2, 2] : 1 → g2[X[1, 2][2, 2] : 1]

| g3[X[1, 2][2, 2] : 1, R[2, 2][2, 2] : 0]

R[2, 2][2, 2] : 0 → g2[X[2, 2][2, 2] : 0]

| g3[X[2, 2][2, 2] : 0], R[2, 2][2, 2] : 0]

X[1, 2][2, 2] : 1 → g4[B[1, 2] : 0, B[2, 2] : 1]

X[2, 2][2, 2] : 0 → g4[A[2, 2] : 0, A[2, 2] : 0]

A[2, 2] : 0 → a

B[1, 2] : 0 → b

B[2, 2] : 1 → b

It can then be simplified to remove weights and such:

S → g1[R1]

R1 → g2[X1]
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| g3[X1, R2]

R2 → g2[X2]

| g3[X2, R2]

X1 → g4[B, B]

X2 → g4[A, A]

A → a

B → b

So, interestingly, although the intersection process was almost identical, the resulting

grammar is different — it represents the language {ww|w ∈ ba∗} rather than {ww|w ∈

b(a|b)∗} as before.

.. javanese /h/-deletion under reduplication

With this machinery in place, we can resume the pseudo-Javanese example from §.,

looking now at some of the reduplication examples.

... Simple Reduplication

Consider first a fairly transparent example where the reduplicant looks like the base and

the non-reduplicating phonology of the language applies: /red+ bah/ = [bahbah]. The

output of Gen is the following:
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(Note – I’ve left the morphological tier inaccurate for reasons of space. The actual idea

is that all candidates have one ‘R.’ followed by zero or more ‘R,’, followed by one ’B.’,

followed by zero or more ’B,’, and that ‘R.’ is the first element of the tier in all candidates

and ‘B.’ starts either aligned with the initial underlying base ‘b.’ or somewhere in the

insertion interval just before it). The candidate set here is represented by a finite state

machine, as before. For reasons of efficiency, the candidate set is not converted into

an mcfg until it is absolutely necessary, i.e., until just before the first Base-Reduplicant

correspondence constraint must be applied to the candidate set.

The constraints are the same as before, in the same ranking.

DepIO(X): The highest-ranked constraint ensures that nothing is inserted, so the can-

didate set after winnowing is much simplified:
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MaxIO([-cons]): Next, the possibility of vowel deletion is dispensed with, and some ?’s

become X ’s.
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MaxIO([-spread-glottis]): This constraint is not necessary, but it makes no difference

to the outcome and helps make presentation of the candidate sets bearable. After it, only

/h/ can be deleted in candidates.
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IO-Integrity(X): This constraint ensures that no underlying segment corresponds to

more than one surface segment. Essentially, it prevents surface members of the “initials”

(dot) set of segments from corresponding to underlying members of the “continuation”

(comma) set. A representation using surface “?” symbols is no longer possible, so I now

give four distinguished subsets depending on whether or not underlying /h/ is preserved.
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IO-Uniformity(X): This constraint discourages instances wherein two or more under-

lying segments correspond to a single surface segments, i.e., instances of coalescence. It

prevents surface members of the “continuation” (comma) set of segments from corre-

sponding to underlying members of the “initial” (dot) set. At this point, each underlying

segment now corresponds to either no surface segment, or exactly one.
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*Contour: This constraint bans contour segments (essentially, bans the continuation

version of a segment, on the surface). This is sort of an automatic constraint that is

not part of the analysis; any generation process using this representation should include

*Contour just after the final IO-Integrity or IO-Uniformity constraint.
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IdentIO([−cons]): Keep vowels as vowels. Normally X aligned with a vowel would

become V, but since this simplified language has only one vowel, the candidate set just

includes that one.
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IdentIO([+cons]): Keep consonants as consonants. All remaining X instances have

become C.
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IdentIO([+spread-glottis]): Now all C s aligned with ‘h’ have become ‘h’.
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IdentIO([-spread-glottis]): The remaining C instances have become ‘b’.
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*DoubleSequence([-cons],[+sglot],[-cons]): Due to the lack of a triggering environ-

ment, this constraint has no effect.
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Introduce Reduplicant Reference Property MCFG: The candidate set is now in-

tersected with the mcfg given earlier in (.). The resulting candidate set is represented

as an mcfg and obeys the reduplicant reference property. The reduplicant reference tier

contains a base-aligned copy of the reduplicant, ready for the next constraint.
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DepBR(C): The candidate [bahba] contains an element in the reduplicant that is not in

the base, thus violating DepBR(C), and it is therefore eliminated.
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MaxIO(C): DepBR(C) didn’t really play any role in this generation process, as MaxIO(C)

would have eliminated the same candidate. At any rate, it goes on to eliminate all the other

h-deleting candidates, leaving the candidate which violated no constraints.
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The correct output, [bahbah], is derived.

... Suffixed Reduplication

Now for an interesting example, in which an /h/ deleted in the stem duly fails to show up

in the copy: /red+bah+a/ becomes [babaa] where *[bahbaa] might be expected. By this

point it should be clear that the constraints up to *VhV produce a candidate set that is

exactly like the underlying form except that candidates with /h/-deletion are allowed. I

will begin with that sort of candidate set, to avoid repetition:
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*DoubleSequence([-cons],[+sglot],[-cons]) [*VhV]: The final /h/ is intervocalic, so

*VhV eliminates the candidates in which it is preserved.
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Introduction of Reduplicant Reference: Here the reduplicant reference mcfg is

intersected in, just as before.
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DepBR(C): The candidate *[bahbaa] contains a consonant in the reduplicant that is not

in the base, and is therefore eliminated, leaving the winning candidate.
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MaxIO(C): Prior to this constraint the candidate set has only one candidate, so the

constraint has no effect. The surviving candidate may be transcribed as [babaa]; it is the

observed surface form.

.. a further example: malay nasal spreading

McCarthy & Prince () introduced Malay nasal spreading as a major argument for

their theory, as the pattern is difficult to explain in a rule-based way. The data used comes

from a single source, however, and has never been confirmed (see Raimy ()). The

following makes no claims with respect to the accuracy of the data, but merely shows

how McCarthy & Prince’s () analysis may be encoded. In Malay, nasality persists

from a nasal consonant or vowel onto the following vowel or glide. Thus what might

be underlying /waNi/ (‘fragrant’) appears on the surface as [waÑı]. Interestingly, in total

reduplication nasality from the final vowel of one copy appears to spread to the initial part

of the other and from there is again copied to the first copy⁵, resulting in [w̃ãÑıw̃ãÑı] rather

than *[waÑıwaÑı] or *[waÑıw̃ãÑı] as might be expected. The following derivation processes

yield the facts just described. See McCarthy & Prince () starting at page  for further

details and discussion. Note that, due to space limitations, in what follows the candidate

sets at each stage will be described rather than explicitly depicted.

5In Malay total reduplication it is impossible to distinguish a reduplicant and a base. In this example
I have assumed that the reduplicant precedes the base, but the analysis works equally well in the other
direction
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... Simple Form

To begin, the output of Gen as applied to /waNi/ is the set of all surface strings with

underlying /waNi/ included, as usual. The three most highly-ranked constraints are IO-

Integrity(X), IO-Uniformity(X), and *Contour. Together these produce a candidate

set in which coalescence and splitting are not allowed. All candidates are formed by

insertion, deletion, or feature change. Next, DepIO(X) removes the possibility of segment

insertion, and MaxIO(X) removes the possibility of segment deletion. Now the candidates

include all four-segment strings from the segment set of Malay.

Following this, there is a bank of IdentIO constraints: IdentIO([ ±syllabic]),

IdentIO([ ±consonantal]), IdentIO([ ±spread-glottis]), IdentIO([ ±high]), Ident-

IO([ ±back]), IdentIO([ ±low]), IdentIO([ ±labial]), IdentIO([ ±dorsal]), and

IdentIO([ ±coronal]). After these constraints, the candidate set includes only varia-

tions of nasality: [waNi], [waÑı], [wãNi], [wãÑı], [w̃aNi], [w̃aÑı], [w̃ãNi], and [w̃ãÑı].

IdentIOIn([±nasal], [+cons]): This constraint preserves nasality in consonantal seg-

ments (this does not include glides). It has no effect on the current candidate set.

*Sequence([+nasal], [−nasal], [+spread-glottis]): This constraint could be written

*[+nasal]h0[−nasal]. It essentially enforces nasal spreading, transparent to glottals. All

remaining candidates that feature a nasal followed by a non-nasal are removed, leaving the

following: [waÑı], [wãÑı], and [w̃ãÑı].
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IdentBR([±nasal]): This constraint has no effect on the current candidate set, as it is

not reduplicative.

*[+nasal]: This constraint bans all nasal segments. The effect this has in the gram-

mar is that underlying nasal marking only matters in consonantal (non-glide, non-vowel)

segments. Therefore, the underlying form /w̃ãÑı/ would have led to the same output as

/waNi/. The candidate set is now reduced to its least nasal member: [waÑı].

IdentIO([±nasal]): Since this constraint, which preserves underlying nasality, is ranked

below *[+nasal], it has no effect regardless of the input.

The winning candidate is as observed, [waÑı].

... Reduplicated Form

The output of Gen as applied to /red+waNi/⁶ is the set of all surface strings with underly-

ing /waNiwaNi/ included, where the first half is marked as a reduplicant, the second half as

a base. The top-ranked constraints, up to and including the bank of IdentIO constraints,

produce a candidate set where all candidates look like the underlying form except that any

nasality pattern is possible, varying from [waNiwaNi] to [w̃ãÑıw̃ãÑı].

IdentIOIn([±nasal], [+cons]): This constraint preserves nasality in consonantal seg-

ments (this does not include glides). It has no effect on the current candidate set.

6Once again, this representation assumes prefixing reduplication; the input could equally be /waNi+red/.
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*Sequence([+nasal], [−nasal], [+spread-glottis]): This constraint could be written

*[+nasal]h0[−nasal]. It essentially enforces nasal spreading, transparent to glottals. All

remaining candidates that feature a nasal followed by a non-nasal are removed, leaving the

following: [waÑıw̃ãÑı], [wãÑıw̃ãÑı], and [w̃ãÑıw̃ãÑı].

IdentBR([+nasal]): This constraint requires that if a segment in the base is nasal, the

corresponding segment in the reduplicant must be nasal as well, and vice versa. This

reduces the candidate set to one: [w̃ãÑıw̃ãÑı].

*[+nasal]: This constraint has no effect, as there is a single candidate.

IdentIO([±nasal]): This constraint has no effect.

The winning candidate is as observed, [w̃ãÑıw̃ãÑı].

2.6 CONCLUSION

The preceding sections showed how to model the Base-Reduplicant Correspondence The-

oretic framework of Optimality Theoretic Phonology by an extension of weighted finite

state Optimality Theory. It also introduced a simple, efficient, and complete representa-

tion for phonological forms and a system for encoding Optimality Theoretic constraints

as weighted finite state machines. The essential elements of this extension are the addition

of a reference tier that duplicates the surface form of a candidate’s reduplicant but aligns

it with the base so that Base-Reduplicant correspondence relations can be computed via

constraints that are essentially identical to Input-Output correspondence constraints. In
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order to meet the reference identity requirement in candidates, the candidate set must

be represented by a grammar with higher representational complexity than a finite state

machine. Therefore the candidate set is represented by a multiple context free grammar

(a type of mildly context sensitive grammar) and finite state intersection is replaced by

weighted mcfg parsing.

There are practical consequences to this increase in complexity. In the original finite

state method, each step in the winnowing process takes time proportional to the square

of the number of states required to represent the candidate set being winnowed. Unfor-

tunately, the size of the candidate set has the potential to increase exponentially as a result

of repeated intersection (the intersection of an n-state fsm with an m-state fsm may have

up to nm states, so in theory r m-state constraints applied to an n-state candidate set

could lead to a nmr-edge candidate set). The practical effect of this is that the efficiency of

Optimality Theoretic generation is affected greatly by the ranking of constraints, and by

the size (in other words, complexity) of the constraints. For example, a -state constraint

can only reduce the size of a candidate set representation, so high ranking of such con-

straints makes for an efficient generation process. Essentially, an optimal ranking, from an

efficiency point of view, consists of the available constraints ranked from the most simple

(generally markedness constraints predicated on a single segment) to the most complex

(for example, a faithfulness constraint with both left and right context).

The Base-Reduplicant Correspondence Theoretic extension using mcfgs makes the

importance of rank order even greater. Each non-terminal symbol in a constraint set

representation can become as many as n4 after a constraint intersection, where n is the

number of states in the constraint being intersected, so size increases faster, and the inter-
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section itself is less efficient (on the order of n6 instead of n2 as before). The practical effect

of this is that the conversion of the candidate set from an fsm to an mcfg, as discussed on

page , must be delayed as long as possible, both to limit the number of intersections that

must be made and to reduce the potential for combinatorial explosion. The other effect

is that highly ranked constraints should be as simple as possible in terms of the number

of states necessary to represent them (simple faithfulness constraints such as DepIO(X),

MaxIO(X), IO-Uniformity(X), and IO-Integrity(X) are especially important to rank

highly). This is borne out by the common empirical observation that constraints are sel-

dom needed that count past three, i.e., ideally constraints should have no more than three

states (in the compressed representation given earlier).





CHAPTER 3

An Analysis of Malagasy Phonology

3.1 INTRODUCTION

Optimality Theory offers a valuable framework for investigation of the phonological pat-

tern of the world’s languages, tying together as it does the formal description of a language’s

sound pattern with functional explanations for why that sound pattern falls out the way it

does. It is, however, based on a complex computational model that makes hand-checking

of analyses impossible, for all practical purposes. For this reason almost all analyses pre-

sented within the framework deal only with isolated phenomena, and only one or two

have presented the full body of constraints that would be necessary to check whether the

analysis in fact produces the actual surface forms of the language when given as input the

hypothesized underlying forms¹. Optimality Theoretic analyses have been focused pri-

marily on questions of typology, looking at selected data patterns in multiple languages.

As a result, I would assert, phonological theories based in the framework have missed out

on the insights that might be gathered from in-depth analyses of individual languages. In

fact the typological claims upon which most work in Optimality Theory has been focused

may be suspect, based as they are on shallow analyses.

1One fairly complete analysis is McCarthy & Prince’s () analysis of Axininca Campa.
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Given a computational model of Optimality Theory, as discussed in the previous chap-

ter, it is possible to encode an analysis on a computer. Such analyses can be scaled up con-

siderably while maintaining the same or a greater level of confidence in their correctness.

The following sections present a trial of this analytical method.

The case study presented here is the Merina dialect (the standard dialect) of Malagasy,

a West Austronesian language spoken by approximately  million people in Madagascar.

The analysis given here is based upon a database of  Malagasy forms, each chosen

to illustrate some aspect of the sound pattern of Malagasy, plus  constructed forms

chosen to test the system’s ability to rule out illegal forms, i.e. the completeness of the

system’s phonotactic component. The analysis attempts to cover the entire phonology of

the language as it is currently known, and it is given in its entirety, with the complete

set of constraints needed to check it, as well as a fixed ranking of those constraints. It

has in fact been checked by computer against the aforementioned body of data, using my

OTPad toolkit².

I have relied for data and generalizations primarily on Erwin (), Paul (), Hol-

langer (), and Keenan & Polinsky (). Keenan & Polinsky () provide references

for much of the Malagasy literature.

The analysis leads to a few conclusions of a typological or theoretical nature, one

being a calling into question of the Base-Reduplicant Correspondence Theory (McCarthy

& Prince ) analysis of reduplication as a universal analysis for all or most instances of

reduplication. Although at first glance the reduplicative system of Malagasy seems to fit

2For a free copy of this software, which currently runs on Windows and UNIX platforms, please send a
request to <albro@alum.mit.edu>.
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with a Base-Reduplicant Correspondence Theoretic analysis, a more in-depth look at the

data reveals that an analysis based on a simpler compounding-type model (the Morpheme

Doubling model of Inkelas & Zoll ()) accounts for the data much more simply and

completely than a Base-Reduplicant Correspondence Theoretic analysis could.

3.2 NECESSARY CHARACTERISTICS OF THE ANALYSIS

.. morphological levels

I have analyzed Malagasy in the framework of Lexical Phonology and Morphology in

Optimality Theory (lpm-ot; Kiparsky ). A comparison of this framework with

other treatments of opacity may be found in §.... An lpm-ot analysis such as this

one consists of three separate banks of constraints (although the same constraints will, at

least theoretically, be present in each of the three banks—only the ranking will differ).

The first bank of constraints will be referred to as the stem grammar, the second as the

word grammar, and the third as the post-lexical grammar. For Malagasy the following

generation algorithm was sufficient; further cross-linguistic study will doubtless produce

some refinement:

. The root, together with any stem-level affixes, is passed through the stem grammar.

. The word-level affixes are added to the result of the previous step and the output of

the concatenation is passed through the word grammar.

. The result of the previous step is passed through the post-lexical grammar.
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When I say a form is “passed through” a grammar, I mean that the Optimality Theoretic

Eval specified for that grammar is applied to the output of Gen for that form. Note that

compounding is produced here by having two or more forms pass independently through

one level and having the outputs joined together as input to the next level, so compounds

joined prior to word-level may exist, as well as compounds joined prior to the post-lexical

level.

In the sections to follow, constraints described as undominated should be interpreted

as being undominated in all three grammars, most crucially in the post-lexical grammar.

... lpm-ot Typographical Notes

A complication that arises when using lpm-ot is that in addition to the two types of rep-

resentations necessary with the standard model, i.e. the underlying form and the surface

form, there are the output of the stem grammar and the output of the word grammar. In

this document a form such as /manGatah/ represents an underlying form, [maN"Gatah]s rep-

resents the output of the stem grammar, [man"gatak]w represents the output of the word

grammar, and something like [maN"gataka] represents the surface form of an utterance.

Candidates in tableaux are not explicity labeled, but they are always the output of the next

higher grammar from the source of the tableau’s input form. For example, if the input

form of the tableau is marked as a stem-level output (e.g., [maN"gatah]s), it may be assumed

that the candidates are word-level outputs. Forms in data tables are always surface outputs

unless otherwise marked (as in the case of hypothesized underlying forms).

In some forms I have indicated morpheme boundaries. In glosses and underlying
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forms (in other words, in any place where the morpheme boundary is an explicit artifact

of the analysis), I have used the symbol “+” to denote such a boundary. In data tables

I have occasionally marked morpheme boundaries as well. Here they are included only

as an aid to the reader (the boundary erasure convention of lpm-ot has removed them),

and are indicated by the symbol “-” in order to distinguish them from boundaries that are

active in the representation and analysis.

The final typographical note is that constraint rankings are generally specific to partic-

ular levels of grammar, so they are marked as such: “�s” for a stem-level ranking, “�w”

for word-level ranking, and “�p” for a post-lexical ranking.

.. representations

In order to explain some of the constraint families used in this analysis, it is necessary

to briefly discuss the representational scheme that was used to build and check it. The

representation was designed to be as simple as possible while still allowing analysis to

succeed. The scheme is not particularly autosegmental (in the sense of Goldsmith ());

rather, the fundamental building block of a representation here is a phone. That is, to

describe a given language in this scheme, one begins with a set of permissible surface

phones. Features are then defined as natural classes, that is, sets of phones. These basic

natural classes, defined by listing, may be added to by the application of set complement
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(like -feat in standard terms) and intersection (like presence in a matrix, e.g.,
















+son

-son

+nas

















,

in standard terms). See §.. for a discussion of the features employed in this analysis.

... Representing Correspondence

The computational model employed here does not mandate a strictly segmental represen-

tation, but it does tend to favor such a model, because the complexity of the generation

system is exponential in the number of tiers used. I have found it useful here to adopt

a conservative position with respect to hierarchical structure. I posit some structure, but

nothing higher than complex segments. The term complex segment here encompasses sim-

ple segments such as b and e, and also bipartite segments such as diphthongs and affricates.

In a language with a more complex syllable structure, it might be necessary to extend the

hierarchy further, but for Malagasy this appears to be sufficient. Candidates in this scheme

are represented as simple strings made up of the candidate surface form, the underlying

form, and the correspondences between the members of both. A simplified example might

be surface [pe] corresponding to underlying /ba/. This candidate could be represented as

“b:p a:e.” Here correspondence is indicated by the “:” character before which we place

the underlying correspondent, and after which we place the surface correspondent. This

representation allows a simple encoding of all the correspondences needed for this exam-

ple, but not all the types of correspondence embodied in the full Correspondence Theory

of McCarthy & Prince (). To be specific, it cannot encode correspondences involving
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multiple segments (for example if a single surface segment corresponds to multiple un-

derlying segments) or correspondences where the order has changed (metathesis). Both of

these additional types of correspondences may be encoded in such a way as to allow more

or less efficient implementation, but for this analysis only the many-to-one type is needed.

... Representing Complex Segments

To allow for many-to-one correspondence, the representation of a segment is modified

such that it can stretch. If surface [pe] were instead to correspond to underlying /p>aı/

(as in p1a2i2:p1e2, to use the usual correspondence-theoretic indexing notation), a first try

at a representation might be “p:p a:e i:e.” However, in this representation it is not clear

that the two surface e’ s in fact refer to the same segment. To make this distinction, I

introduce segment boundaries: “|:| p:p |:| a:e |:e i:e |:|.” This is a somewhat complicated

representation, but it becomes clear in a more vertical format³:

UR: | p | a | i |

SR: | p | e e e |

As mentioned above, the boundaries here mark off complex segments; “eee” in the sur-

face representation represents a single [e] segment and does not imply anything about

phonetic duration (“e|e” would imply a longer duration). A complex segment that has

multiple phones, such as an affricate or a diphthong, will be termed a contour segment.

3In the more compact representation of Chapter  this would appear as

UR: p. a. i.
SR: p. e. e,
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Thus there are two types of sequences in the representation: contour sequences within a

single complex segment, and segmental sequences which include multiple segments. The

first type of sequence is dealt with by a family of contour constraints that operate within

segments, such as *Contour([αplace], [−αplace]), which bans multiple places of artic-

ulation within a single segment. The second type is dealt with by sequence constraints that

operate between segments, such as *Sequence([αplace, C], [−αplace, C]), which bans

multiple places of articulation within a consonant cluster. See §.. for more information

on these constraint families.

... Representing Non-Correspondence

There is still an essential element missing from this representation of correspondence,

however—non-correspondence. The representation encodes an area where something

corresponds to nothing by means of the symbol −. In the following representation

UR: | m | b | a | t |

SR: | p p p | e | − −

the underlying consonant /t/ has no surface correspondent, i.e. m1b1a2t3:p1e2.

... Summary

To summarize, the representation uses segment boundaries and segment interior sym-

bols to establish one-to-one or one-to-many correspondence. It cannot represent corre-

spondence in cases of metathesis⁴. The symbol “−” in a representation indicates non-

4The representation can be extended for metathesis as well, as laid out in Appendix F.
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correspondence.

.. the constraint component

... Difference from Standard Correspondence Theory

The constraints used in this analysis are members of a restricted set of parametrized con-

straint families more or less approximating the family of constraints assumed in McCarthy

& Prince (). They differ from standard Correspondence Theory constraints in the fol-

lowing ways:

. They use the definition of correspondence from §.. rather than the standard one.

. They use a slightly different model of contextual faithfulness. The conventional

model (Steriade ; Steriade  (in press); Beckman ) uses surface contexts

for contextual IdentIO, but here contextual IdentIO uses underlying contexts, an

underexplored alternative. There are four reasons for maintaining this difference

here: () in Malagasy there are contexts that appear identical on the surface but

differ in terms of their faithfulness based on a context difference underlyingly; ()

it is possible to use underlying contexts with this representation because they are

not syllable-bound (that is, surface contextual faithfulness is often based on syllable

positions, which under the concept of Richness of the Base cannot be guaranteed

to to exist in underlying forms, whereas these contextual faithfulness constraints

are based on segments or morphological edges); () surface and underlying contexts

are equivalent in terms of their computational complexity (the constraint automata
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used for one or the other use an equivalent number of states), but the analysis

given here shows that underlying contextual faithfulness can account for opaque

phenomena that are unamenable to explanation via surface contextual faithfulness;

and () the intuition is that certain positions in the reference form (UR or Base)

are more salient—easier to remember by the speaker, more likely for change to

be noticed by the listener. With that said, I am not claiming, pending further

investigation, that there is no place for surface-contextual IdentIO; it simply has

not been necessary for Malagasy.

. They include a few constraint families that could be termed “two-level constraints.”

Such families are essentially markedness constraints that have the unusual ability to

refer to the underlying form. They originate with pre-Optimality Theory work by

Koskenniemi (); see Kager () for an introduction to their use in an Opti-

mality Theoretic context. These two-level constraints can be used to account for

opacity, among other things. In this analysis, however, I have avoided the use of

two-level constraints where possible; their only use is the constraint OpqStress

introduced in §... There may be legitimate uses of two-level constraints in ac-

counting for opacity, but in general their use is stipulative rather than explanatory,

and loses the typological generality that can be characteristic of Optimality Theo-

retic analyses.

. They are uniformly implementable as weighted finite state machines, which rules

out certain overly powerful constraint families (see, for example, Eisner (d)).
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Most of the constraint families used in this analysis are fairly standard families taken

from the Optimality Theoretic literature, but some of them are new, and some of them

have slight but important differences from the standard constraint families of the same

name. Thus, it will be worthwhile to spend some time reviewing the details of each before

heading into the analysis.

A particular constraint is formed from a constraint family by supplying one or more

parameters. These parameters are, in general, the names of natural classes; i.e, they repre-

sent sets of segments. Throughout the analysis I have typically named these natural classes

in the traditional way, using a feature matrix. Note that in examples illustrating particular

members of the constraint families, I have used features from the feature set defined in

§...

... Faithfulness Constraints

Most of the faithfulness constraints are the standard Correspondence constraints of Mc-

Carthy & Prince (), but as mentioned above there are contextual versions of many

of the families, and some families vary slightly from the standard. Note in the constraint

definitions to follow that S refers to a natural class (feature matrix) matched against the

surface representation, U refers to a class matched against the underlying form, B refers to

one that is matched against both, and M refers to a morphological context. Further note

that where a family is listed as NameIO (that is, input-to-output faithfulness), there are

also versions of the family with input-to-reduplicant (IR), input-to-base (IB), and base-

to-reduplicant (BR) faithfulness.
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MaxIO(U) For each segment of natural class U in the UR, there must exist at least one

corresponding segment in the SR. Output a violation for each underlying segment

of natural class U for which there is no corresponding surface segment. There are

positional variants, e.g., MaxIO(U1)/ U2, which acts like MaxIO(U1) except

that the trigger segment must be followed in the underlying form by a segment

matching U2 for any violation to accrue.

DepIO(S) For each segment of natural class S in the SR, there must exist at least one cor-

responding segment in the UR. Output a violation for each surface segment match-

ing S for which there is no corresponding underlying segment. As with MaxIO, the

DepIO family includes positional variants. For example, DepIO(S)/ U acts like

DepIO(S) except that the trigger segment must be followed in the underlying form

by a segment of natural class U for any violation to accrue.

IO-Integrity(U) A family of constraints that disallows splitting. Its operation is as fol-

lows: a segment of natural class U in the underlying representation (UR) may not

correspond to more than one segment in the surface representation (SR). Output

a violation for each surface segment beyond the first one corresponding to an un-

derlying segment matching U. In representational terms, this constraint outputs a

violation for each instance in a candidate of “U:|”; that is, of the surface form having

a segment divider aligned with an underlying member of natural class U. It is the

opposite of IO-Uniformity, q.v.
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IO-Uniformity(S) A ban on coalescence, which operates as follows: a segment of natural

class S in the SR may not correspond to more than one UR segment. Output

a violation for each underlying segment beyond the first one corresponding to a

surface segment matching S. For example, if S were “C” (equivalently, “[-syl]”) this

would output a violation for the candidate

UR: | a | n | t | a |

SR: | a | n n n | a |
.

FeatMaxIO(B) (feature max) If a segment of natural class B appears in the underlying

form, then a segment of class B must appear on the surface somewhere aligned with

it. Outputs a violation for each such segment appearing in the underlying form

without a vertically aligned matching correspondent on the surface. Note that this

is not a standard family; it is essentially the local conjunction of MaxIO(B) with

PtIdentIO(B) (see below). The family has all of the positional variants that MaxIO

has.

IdentIO(B) Given corresponding segments in the UR and the SR, if the underlying seg-

ment is a member of natural class B then the surface segment must be a member

of B as well. Output a violation for each underlying member of B that corresponds

to a surface segment that is not in B. In addition, the family may be specified as

IdentIO(±B) for a bidirectional constraint more similar to the standard IdentIO

family of McCarthy & Prince () (this is like IdentIO(B) except that addition-

ally if a surface segment matches B then its underlying correspondent, if any, must

match B as well). Positional variants exist as well. For example, IdentIO(B)/ U
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acts like IdentIO(B) except that the trigger segment must be followed on the un-

derlying form by a segment matching U for any violation to accrue (see §...

for more discussion of the somewhat non-standard model of contextual faithfulness

used here). The version of IdentIO given here is both more and less powerful than

the standard. First, the way in which this IdentIO is more powerful: the major

difference between IdentIO here and in the standard treatment is that the param-

eter, B, is not a feature, but a natural class, so the standard IdentIO([±cont])

constraint would here be replaced by the equivalent IdentIO(±[+cont]), and a

constraint like IdentIO(±[+cont,-son]) is possible—this constraint would penal-

ize a change from a fricative to something that is not a fricative, or vice versa. (Note

that this extension can be modeled (albeit less efficiently) by the IdentIOIn family

– IdentIO(±[+cont,-son]) is equivalent to IdentIOIn([+cont], [-son]) ranked

together with IdentIOIn([-son], [+cont]).) IdentIO as given here is less powerful

than the standard version just in one case—the standard IdentIO constraint family

is often given without parameters, with the meaning “penalize any corresponding

segments if they are different in any particular,” whereas no single constraint in the

IdentIO family given here can have that meaning (such a constraint would be more

complicated computationally, requiring additional states).

PtIdentIO(B) (Input-Output Identity at a Point) This is a non-standard constraint fam-

ily that works like IdentIO(B) except that where IdentIO(B) outputs a violation if

two corresponding segments differ at any point (say an underlying segment corre-

sponds to a surface contour), PtIdentIO(B) outputs a violation only if at no point

are the two segments identical with respect to their membership in natural class B.
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For example, the candidate

UR: | t | a a |

SR: | t | a u |

violates IdentIO([+low]), but not PtIdentIO([+low]) because the corresponding

segments are both [+low] at one point.

Preserve{Rt,Lft}(U, M) (A family of constraints that takes the place of Anchor{Rt,Lft}

plus Contiguity.) PreserveRt outputs a violation for each underlying segment

of natural class U, within a morphological context M, that does not have a surface

correspondent, but only after the first such underlying segment that does have a sur-

face correspondent. For example, compare the following candidates⁵ with respect

to PreserveRt(X, red)⁶:

M: - - - - - - - - red red red red red red red red red

UR: | v | u | v | u | v | u | v | u |

SR: | v | u | v | u | v | - - - | u |

and

M: - - - - - - - - red red red red red red red red red

UR: | v | u | v | u | v | u | v | u |

SR: | v | u | v | u | - - - | v | u |

.

In the first candidate, the first segment of the reduplicant has a surface correspon-

dent but the next two segments do not, so PreserveRt(X, red) is violated twice.

5Note — this is the Malagasy form for to bark ( [vu"vu], reduplicated as [vu­vu"vu]).
6The parameters here indicate that the morphological context is the reduplicant—the morphological

context parameter specifies the contents of the morphological tier where the constraint is to be valid. The
“X” indicates that all segments are being preserved.
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In the second candidate, the first two segments of the reduplicant have no sur-

face correspondents, but this is ignored since PreserveRt starts counting violations

after the first faithful segment; thus, the second candidate does not violate Pre-

serveRt(X, red). The mirror image constraint, PreserveLft, outputs a violation

for each deleted segment preceding the last preserved segment in the morphological

context. For PreserveLft, the equivalent candidates to those given above are

M: red red red red red red red red red - - - - - - - -

UR: | v | u | v | u | v | u | v | u |

SR: | v | - - - | u | v | u | v | u |

and

M: red red red red red red red red red - - - - - - - -

UR: | v | u | v | u | v | u | v | u |

SR: | v | u | - - - | v | u | v | u |

,

where the first candidate incurs two violations of PreserveLft(X, red) and the

second incurs none, since in the first candidate the last faithful segment, the one

that terminates the violation counting, is the final /u/ of the reduplicant, whereas

in the second candidate it is the first /u/. Note that candidate

M: red red red red red red red red red - - - - - - - -

UR: | v | u | v | u | v | u | v | u |

SR: - - - - - - - - | v | u | v | u |

would incur no violations of the PreserveLft(X, red) constraint.
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... Markedness Constraints

Most of the standard markedness constraints found in the literature should be repre-

sentable as some member of one of the following families, unless they rely upon some

complex structural property of the representation. In addition to the variables found in

the previous section, I have added the variable I here (for “intervening ignored surface

segments”) to indicate a natural class of segments that are ignored.

*(S) Bans segments of natural class S from the SR. Outputs a violation for each surface

segment from natural class S. For example, [azusa] violates *([+cont] ) five times

and *([+cont,-son]) twice. An extended version of this family exists — *M(S, M)

— where the violation is triggered only for segments within a specified set of mor-

phological domains. For this analysis the morphological domains are limited to

“inside a reduplicant,” “inside a base of reduplication,” and “inside neither a base

nor a reduplicant.”

*Initial(S, I) Bans S in SR if preceded only by members of I — *(#(|I∗)+S). For example,

*Initial([-low], C) would output a violation for a words such as [ENT] or [stôENT] in

which the first vowel of the word is non-low, whereas *Initial([-low], ∅)⁷ would

output a violation for [ENT] but not for [stôENT]. There is a morpheme-bound variant

*InitialM(S, I, M) that outputs a violation if the first post-I element in morpheme

M is of natural class S. For example, *InitialM([-prim], C, red) requires the initial

vowel of a reduplicant to carry primary stress. Caveat: a *Initial(S,I) constraint is

only valid if natural classes S and I do not intersect. For sake of brevity, in cases

7∅ is the empty natural class—no segment is a member of it.
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where the I parameter of a constraint is set to ∅, I will generally omit the parameter;

thus *Initial([-cont]) is equivalent to *Initial([-cont], ∅).

*Final(S, I) This is the mirror image of *Initial—Bans S in SR if followed only by mem-

bers of I — *(S(I∗|)+#).

*Contour(S1, S2, I) Bans members of natural class S1 from following members of class

S2 within a segment (i.e., within the segment boundary characters “|”). Zero or

more members of natural class I may intervene—*(S1I
∗S2). For example, *Con-

tour([+high], [+low], [-high,-low]) would ban an [>ıa] diphthong or a [ >ıea] triph-

thong (weird as such a thing might be). It is required that natural class I intersect

with neither S1 nor S2. If I is the empty set (∅), then the segments S1 and S2 must be

adjacent for violations to accrue; thus, *Contour([+high], [+low], ∅)⁸ would ban

[>ıa] but not [ >ıea]. Since *Contour only applies within a single complex segment,

*Contour([+high], [+low], ∅) would not be violated by [ia].

*Sequence(S1, S2, I) This is like *Contour except that it operates between segments.

That is, for such a constraint to be violated, there must be a segment boundary

intervening between the members of classes S1 and S2—*(S1(I
∗|)+S2). For exam-

ple, *Sequence([αrnd, V], [-αrnd, V], C)⁹ would enforce roundness harmony in

vowels, where intervening consonants are transparent to the harmony.

*InitialSequence(S1, S2, I) Like *Sequence, except that it only notices sequences at the

beginning of words — *#(I∗|)+S1(I
∗|)+S2. For example, *InitialSequence([V,-

8Typically written *Contour([+high], [+low]).
9Note that this is actually an abbreviation for the constraint sequence *Sequence([+rnd, V], [-rnd, V],

C), *Sequence([-rnd, V], [+rnd, V], C).
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stress], [V,-stress], C) penalizes a stress lapse at the beginning of a word (the

mirror image of this, *FinalSequence([V,-stress], [V,-stress], C) is employed in

the Malagasy analysis).

*FinalSequence(S1, S2, I) This is the equivalent of *InitialSequence, but at the end of

the word.

Exists(S) Outputs one violation for each word in which no surface segment matches S.

For example, Exists([+stress]) would output a single violation for a word with no

stress.

More on *Sequence and *Contour The use of constraint families such as these,

which allow the banned sequence to be non-local in the sense that they can skip over zero

or more intermediate segments (e.g., *"VC0"V or in the terms used here *Sequence([V,

+stress], [V, +stress], C)—a ban on stressed vowels separated by zero or more conso-

nants), is somewhat controversial. A common restriction in current phonological work

is that *Sequence-type constraints may only refer to elements which are adjacent in the

representation in some way. The intent of this restriction is to reduce the formal power

of constraints, but the effect of the restriction in actual practice is to complicate repre-

sentations sufficiently to allow non-adjacent segments to fall under the purview of such

constraints. The additional formal power gained by this complication of the representa-

tion in fact outweighs the formal power lost by accepting the strict adjacency condition on

constraints. In terms of the computations involved in a finite-state model of Optimality

Theory (Ellison b; Eisner c; Albro a; Frank & Satta ; Karttunen ;





Eisner )¹⁰, the complexity of a representation might be defined by the number of

states necessary to represent it as a finite state machine, and similarly the complexity/power

of a constraint might be defined in terms of the number of states necessary to represent it.

In the case of *Sequence([V,+stress], [V,+stress], C), the addition of an ignored class

of intermediate segments requires only the addition of a single arc to the finite state ma-

chine that represents the constraint, whereas an analysis of stress without such a constraint

would require the addition of explicit syllables in the representation. Such an addition

almost doubles the number of states in a candidate set representation¹¹. There is one nec-

essary restriction on the *Sequence constraints, however — in a constraint matching the

template *Sequence(S1, S2, I) the natural class I (the parameters of a constraint class are

always natural classes, which may be thought of as sets of phonemes) may not intersect

with the natural classes S1 or S2. There is no reason that the set of allowable *Sequence

parameters could not be restricted further.

Aside from computational considerations, there are also empirical arguments against

a strict adjacency requirement for *Sequence constraints. See, for example, Frisch et al.

(in press) and Ringen & Heinämäki ().

10Amongst these references Ellison b is the original article on the weighted finite state model of
Optimality Theory, and Frank & Satta  plus Karttunen  are the original articles on the transducer
model. Eisner c, Albro a and this dissertation expand on the weighted finite state model (Eisner
c mostly consists of a new representation and constraint formalism, and Albro a modifies this rep-
resentation and the formalism to deal with certain problems with the representation of non-correspondence;
this dissertation expands the weighted finite state model to areas where Gen is not finite state and provides
yet another new representation and constraint formalism).

11Of course an explicit syllable would also be useful for modeling a weight-based stress system, but one
might still do without explicit syllables by treating weight as a feature (i.e., adding heavy versions of each
vowel phone).
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... Two-Level Constraints

The following constraint families can be used to construct fairly arbitrary constraints, of

which some would be considered two-level.

*SequenceIO(S1, U1, S2, U2, I) S1 corresponding to U1 may not precede S2 corresponding

to U2 with only I intervening — *(S1 : U1I
∗(|I∗)∗S2 : U2). This has the usual IR, IB,

and BR variants.

*ContourIO(S1, U1, S2, U2, I) Similar to *SequenceIO, but confined to the interior of

a segment. This has the usual IR, IB, and BR variants.

.. background on malagasy

A complete description of Malagasy morphology and syntax is beyond the scope of this

endeavor. Please refer to Keenan & Polinsky () and works cited therein for further

details. For the purpose of this document, it should be sufficient to list the affixes that

appear in the data together with the abbreviations that are used in glosses.
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Abbrev. Expansion Note/Examples

pres. present Prefixed m- appears in pres. tense and imperative forms

(word-level prefix)

imp. imperative The imperative suffix.

-a in the examples used here (word-level)

act. active Active voice marker, differs from one verb to another.

Allomorphs: aN-, a-, i-, ∅−, aha- (stem-level prefix)

pass. passive Passive voice marker, differs from verb to verb. -an, -in

in the examples used here; there are also prefixes.

red. reduplication Usually has a diminutive or pejorative meaning.

circum. circumstantial Used when oblique obj. or adjunct of a vb. is made the

subject. The suffix is -an, a word-level suffix.

gen. genitive Genitive marker; word-level, placed between

possessed object and possessor.

3.3 SEGMENT INVENTORY

.. feature system

The representation used here represents phones directly, based on the assumption that

native speakers have determined the allophones of their language and used this as the

basis for learning a grammar. The feature system, then, is based on natural classes, that is,

sets of phones. In addition to the surface allophones, the analysis below makes use of a
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few abstract (that is, non-surface) phones—“B,” “F,” and “G”—which may be defined by

the features already necessary to describe the surface phones.

The following features are used in this analysis (for values see charts below in SS..

and ..):

syl Syllabic. [+syl] is abbreviated as V, [-syl] as C.

nas Nasal (articulated with raised velum).

lab Labial articulator.

cor Coronal articulator.

dors Dorsal articulator.

ant Relevant only to coronals, indicates point of articulation at or in front of the alveolar

ridge.

son Sonorant.

vce Voiced.

cont Continuant.

sglot Spread glottis.

high High, applies to vowels.

low Low, applies to vowels.

back Back, applies to vowels.
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round Rounded vowel.

lat Lateral airflow.

strid Strident (increased turbulence in a fricative), applies here to s, z, Ù, f, and v.

stress Stressed (of a vowel).

prim Having primary stress (of a vowel).

x Lexical flag for the opaque prefix an-; an arbitrary lexical marking—see §....

.. consonants

The following are the consonantal segments of Malagasy, given in ipa transcription:

()

labial coronal dorsal glottal

alveolar post-alveolar

obstruent stop -voice p t,ţ Ù k

+voice b d,dz,
>
dR g

cont -voice f s h

+voice v z

sonorant cont +nasal m n n
¯

N

-nasal l,R

Malagasy orthography represents dz as “j,” Ù as “tr,” and
>
dR as “dr.” Otherwise, the or-

thography and the transcription agree. Note that this consonant inventory is based largely
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upon the inventory given in Keenan & Polinsky () but differs from it by not including

prenasalized stop consonants, which are treated here as sequences.

The consonants I’ve described as palato-alveolar may in fact be alveolo-palatal; pho-

netic study is needed. In general they are further back than the alveolars, and are laminal

rather than apical. Note that in the sections to follow the segment /Ù/ is occasionally split

into /t
¯
/ plus /S/, mainly to describe constraints that forbid such a split (that is, /Ù/ is a

complex segment made up of the phones /t
¯
/ plus /S/, which do not appear by themselves).

The /R/ is an alveolar tap, and /
>
dR/ is a pre-stopped r of some kind (Ying Lin, p.c.). The

/h/ is often written but not pronounced; when pronounced it is glottal.
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In terms of the feature system used in this analysis, the consonants are analyzed as

follows:

p b f v F B m t d s z n l R t
¯

S k g G N h

syl + + + + + + + + + + + + + + + + + + + + +

nas - - - - - - + - - - - + - - - - - - - + -

lab + + + + + + + - - - - - - - - - - - - - -

cor - - - - - - - + + + + + + + + + - - - - -

dors - - - - - - - - - - - - - - - - + + + + -

sglot - - - - - - - - - - - - - - - - - - - - +

ant - - - - - - - + + + + + + + - - - - - - -

son - - - - - - + - - - - + + + - - - - - + -

vce - + - + - + + - + - + + + + - - - + + + -

cont - - + + + + - - - + + - + + - + - - + - +

high - - - - - - - - - - - - - - - - - - - - -

low - - - - - - - - - - - - - - - - - - - - -

back - - - - - - - - - - - - - - - - - - - - -

round - - - - - - - - - - - - - - - - - - - - -

lat - - - - - - - - - - - - + - - - - - - - -

strid - - + + - - - - - + + - - - + + - - - - -
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... Consonant Contour Inventory Constraints

The inventory of segments allowable in candidates is fixed by listing¹², but the way these

combine into segment positions (the space between “|” symbols in the representation)

needs to be specified by constraint. The following undominated constraints determine

the allowed affricates of Malagasy.

() *Contour([+son], [-son]):

No segment contains a sonorant component followed by an obstruent one. Short form:

*|[+son] [−son]|.

() *Contour([αplace, C], [-αplace, C])

Segments are pronounced in only a single point of articulation. Short form: *|[αpl, C]

[−αpl, C]| Note that this is actually an abbreviation for a fairly large number of con-

straints: *Contour([−ant], [+ant]), *Contour([+ant], [-ant]), *Contour([lab],

[dors]), *Contour( [dors], [lab]), *Contour([cor], [dors]), etc. The place fea-

tures for consonants are lab, dors, cor, and ant.

() *Contour([αlat], [−αlat]):

There are no consonant contours involving [l]; i.e., [l] only appears as a simple segment.

This constraint bans, for example, [
>
dl]. Short form: *|[αlat] [−αlat]|

12This is not inevitable—the computational model would allow for a system where all permutations of
the base features are included as possible segments and simple constraints ban illegal feature combinations.
However, as stated before, it was assumed here that before learning an Optimality Theoretic grammar for a
language, each child has already discovered the set of allophones for their language and would therefore use
that as the candidate inventory. The system in which illegal segments are ruled out by constraint would be
slightly less efficient computationally.
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() *Contour([-cont], [+cont, -cor]):

All affricates are coronal. Short form: *|[-cont][+cont,-cor]|. Note that I could have

mentioned [-cor] in both parts of this, but it was unnecessary due to the homorganic-

ity constraint above.

() *Contour([αnas], [−αnas]):

No segment has a nasal part and a non-nasal part. Short form: *|[αnas][−αnas]|.

() *Contour([+cont], [-cont]):

No continuant-stop contours are allowed within a consonantal complex segment (since con-

sonantal complex segments in Malagasy act as what would elsewhere be termed as syllable

onsets, and a continuant-stop contour would constitute a decrease in sonority heading into

a syllable). Short form: *|[+cont][-cont]|.

() *Contour([αvce], [-αvce]):

No segment may have a voicing contour. Short form: *|[αvce][-αvce]|

These constraints are all *Contour constraints because in this implementation the in-

ventory of phones is given explicitly; no phone will be considered in a candidate outside

of the list given in the table above. The same consideration will apply when specify-

ing vowel constraints. There are also a few non-contour constraints which mandate that

post-alveolars must appear only in contours¹³:

13These constraints look like the classic problematic spe rules that diagnose a need for explicit syllables
(McCawley ). Here, though, they are simply diagnosing a possible need to add constraints that allow
more fine-grained control of complex segments, such as a requirement that some phone not appear at
the left or right edge of a complex segment. These constraints would then be *SegmentInitial(S) and
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() *Sequence(t
¯
, X):

t
¯

may not directly precede another segment. Short form: *t
¯
X.

() *Final(t
¯
):

[t
¯
] may not end a word. Short form: *t

¯
#.

() *Sequence(X, S):

The phone S may not appear directly after any segment. Short form: *XS

() *Initial(S):

The phone S may not begin a word. Short form: *#S.

.. vowels

Malagasy has a four vowel system, consisting of the vowels /a/, /e/, /i/, and /u/. The /i/

vowel appears standardly as “y” in the orthography when word-final, and /u/ is standardly

written “o.” There are vowel diphthongs: / >au/, />aı/, and />uı/.

*SegmentFinal(t
¯
). Alternatively, there could be a family *Simple(S) that prevents segments of natural class

S from appearing in anything except for a multi-phone contour.
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The natural classes into which the vowels are divided are expressed by the following

feature matrix:

a i e u

syl + + + +

nas - - - -

lab - - - +

cor - - - -

dors - - - +

sglot - - - -

ant - - - -

son + + + +

vce + + + +

cont + + + +

high - + - +

low + - - -

back + - - +

round - - - +

lat - - - -

strid - - - -
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... Diphthong Inventory Constraints

The following undominated constraints help to determine the vowel inventory of Mala-

gasy:

() *Contour([e], [i]):

There is no [>eı] diphthong. Short form: *|ei|

() *Contour([+high], [-high]):

All diphthongs are rising. Short form: *|[+high][-high]|.

() *Contour([-low], [+low]):

Once again, all diphthongs are rising. Short form: *|[-low][+low]|.

.. general segment inventory constraints

The following undominated constraints keep vowels and consonants from mixing within

a segment.

() *Contour(C, V), *Contour(V, C):

Any given segment is either a consonant or a vowel, but not a complex segment that encom-

passes both. Short forms: *|CV|, *|VC|.
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3.4 THE BASIC STRESS PATTERN

The general stress pattern for Malagasy is right-to-left trochaic with the rightmost stress

of a word having special prominence, as can be seen in (). Note the forms in the bottom

row of the table, which constitute evidence, albeit imperfect (they are not monomor-

phemic), against an analysis in which the primary stress is assigned to the penultimate

syllable and secondary stresses are assigned in trochees from left to right.

()

Gloss Form Gloss Form

to go man"deha to see ma"hita

to wait mi"an
>
dRi to work mi"asa

to sun-dry mi"hahi cotton ­landi"hazu

to drink mi"suÙu the brain ­ati"duha

to visit ma"maNgi bamboo ­baRa"Rata

work together mi­fampi­Raha"Raha love each other mi­faNka"tia

.. right-to-left trochaic stress

The right-to-left trochaic pattern exemplified in () is analyzed here by a *Clash/*Lapse

account similar to that of Gordon () (see Appendix D for a comparison of Gordon’s

approach with the approach taken here). This type of stress analysis has a number of

advantages over a foot-based account. Explicit metrical feet would bring an unwarranted

complexity into the representation and require constraints of alignment; the Generalized

Alignment constraints generally used for this purpose are demonstrably overly powerful
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(Eisner d). For a defense of this general approach from a typological standpoint see

Gordon () and works cited therein. The constraints needed for a *Clash/*Lapse

account are as follows:

() *Sequence([V,+stress], [V,+stress], C):

Short form — *Clash. Output a violation for each sequence of adjacent stressed vocalic

sonority peaks. That is, a violation is incurred by each instance of a stressed vowel

segment followed by another stressed vowel segment, where zero or more consonants

may intervene. Note that a vowel segment is made up of one or more vowel symbols

bounded on either side by segment boundary symbols; a diphthong, for example, is

treated as a single vowel segment or a single vocalic sonority peak in this representation,

although it is made up of more than one vocalic symbol.

() *Sequence([V,-stress], [V,-stress], C):

Short form — *Lapse. Output a violation for each sequence of adjacent unstressed vocalic

sonority peaks.

() *Final([V,+stress], C):

Short form — NonFinality. Output a violation if the final vowel segment (recall that a

diphthong is a single vowel segment in this representation) of a word carries stress.

The operation of each of these constraints in a typical penultimate-stressed output is

shown in ().
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() /landihazu/→[­landi"hazu]s ‘cotton’

/landihazu/ N
onFi

nal
it

y

*C
la

sh

*L
ap

se

�

­landi"hazu

landi"hazu *!

lan­di"hazu *!

lan­diha"zu *!

.. primary stress ass ignment

The final stress of a word carries special prominence in Malagasy, and is therefore referred

to as primary, with other stresses being referred to as secondary. This distinction is present

at all levels of representation, and is analyzed in the same way in all of them. The cause

of this stress pattern is a trio of constraints which together might be called “Culminativity

with Rightward Alignment.” The first of the three constraints, given in (), has the

effect of forcing the rightmost stress in the word to be primary, i.e. it gives the final

syllable special prominence. A language with leftmost primary stress would employ the

constraint given in (). The second constraint () discourages multiplication of primary

stresses. When outranked by *Rtmost2ndary, this makes sure that all stresses except the

rightmost are secondary. Finally, constraint () ensures that every word has at least one

stressed vowel (note that this is necessary only for one-syllable words, since existence of

stress is otherwise ensured by *Lapse).

() *Final([+stress,-prim], [-stress]) :
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Short form—*Rtmost2ndary. Output a violation for any word in which the rightmost

stress is secondary.

() *Initial([+stress,-prim], [-stress]) :

Short form — *Lftmost2ndary. Output a violation for any word in which the initial

stress is secondary.

() *([+prim]) :

Output a violation for each segment with primary stress.

() Exists([+stress]) :

Output a violation for any word with no segments marked [+stress].

I will use the same example as for the basic pattern of stress location to show how the

primary stress assignment constraints operate, in ().

() /landihazu/→[­landi"hazu]s ‘cotton’

/landihazu/ *R
tm

ost
2n

dar
y

*[+
pr

im
]

�

­landi"hazu *

"landi"hazu **!

­landi­hazu *!

"landi­hazu *! *
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.. exceptions

Exceptions to the basic stress pattern are discussed in §§.–..

3.5 THE LEXICAL/POST-LEXICAL DISTINCTION

.. weak and pseudo-weak roots: data summary

... Pre-Vocalic Consonant Neutralization

Malagasy has a class of roots that Keenan & Polinsky () refer to as the weak and pseudo-

weak roots. These roots have a number of interesting characteristics. First, as shown in

Table . on page , and summarized in (),

()

Present Circumstantial

[n] [n]

[n] [m]

[Ù] [f]

[Ù] [t]

[Ù] [Ù]

[Ù] [R]

[k] [f]

[k] [k]

[k] [h]
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the present indicative active form of these roots (this is an unsuffixed form) has only three

endings: [-n] ((a)–(c), (g), (h)), [-ka] ((d), (e), (m)–(o)), and [-Ùa] (the rest). The circum-

stantial form, however, has eight¹⁴. The simplest explanation here is that the nine different

present-circumstantial pairings involving weak roots have nine different underlying forms,

and that the distinctions inherent in these underlying forms are neutralized to form the

present tense. This is an extremely unusual finding cross-linguistically—consonant neu-

tralization in a prevocalic environment.

14[-nan], [-man], [-fan], [-tan], [-Ran], and [-han] are shown in Table ., which is from Erwin (). Erwin
() asserts the existence of the other hypothesized endings ([-kan] and [-Ùan]), but thus far I have not been
able to find any examples. Note that the forms in the table are given without secondary stress, as in Erwin’s
() original.
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Present (m+stem) Circumstantial (stem+an) Gloss

(a) ma"nan
>
dRan anan"

>
dRaman to try

(b) "min
>
dRan in"

>
dRaman to borrow

(c) mi"tan
>
dRin itan"

>
dReman to care for

(d) maN"gataka aNga"tahan to ask for

(e) ma"naRaka ana"Rahan to follow

(f ) mi"anaÙa ia"naRan to study

(g) mi"hinan ihi"nanan to eat

(h) mi"ţaNgan iţaN"ganan to stand

(i) mi"s >auÙa i"s >auRan to thank

(j) ma"nan
>
dRaÙa anan"

>
dRatan to promote

(k) mahafi"naRiÙa ahafina"Retan to please

(l) man"
>
dRakuÙa an

>
dRa"kufan to cover

(m) ma"nahaka ana"hafan to scatter

(n) ma"naluka ana"lufan to shade

(o) mi"lelaka ile"lafan to lick

Table .: Pre-Vocalic Consonant Simplification
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... Aberrant Stress

Looking at the table it is possible to notice another interesting fact about the present tense

forms—many of them ((d)–(f ), (i)–(o)) have antepenultimate stress, contrary to the basic

stress pattern of the language (§.). The nasal-final elements of the table ((a)–(c), (g), (h))

appear normal, having penultimate stress, but in fact nasal-final roots other than weaks

and pseudo-weaks generally carry final stress:

()

Gloss Form

soften, weaken ­mana"lem

pleasant conversation ku"Ran

tree with reddish wood la"lun

forget ha"din

... Compounds

The final clue comes from genitives and reduplicated forms.

Normal Vowel-Initial Compounds Normally a genitival construction where the pos-

sessor begins with a vowel consists of the object of possession, followed by [n], and finally

the possessor:

()

Gloss Object Possessor Genitive

someone’s clothes a"kandzu "ulun a­kandzu­nulun

Vao’s money "vula i"v >au ­vulani"v >au
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Reduplicated forms are similar, dispensing only with the linking [n]:

()

Gloss Isolation Form Reduplicated

understood "azu ­azu"azu

high "avu ­avu"avu

Normal Consonant-Initial Compounds In a normal genitive (i.e., one in which the

object of possession is not a weak or pseudo-weak root) where the possessor begins with

a consonant, the construction consists of the object, followed by a nasal whose place of

articulation is the same as the first consonant of the possessor, followed by the possessor,

whose first consonant has been changed to the closest affricate, or a stop if there is no

affricate at the same point of articulation. This is illustrated by the following examples

(see §... for more information on this sort of data):

()

Gloss Object Possessor Genitive

Rabe’s father "R>aı Ra"be ­R>aın
>
dRa"be

plum (foreigner’s peach) "p>aısu va"zaha ­p>aısumba"zaha

Rabe’s money "vula Ra"be ­vulan
>
dRa"be

Normal reduplication (where the reduplicant is not a weak or pseudo-weak root) of short

consonant-initial roots involves a simple concatenation of the root with its copy:
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()

Gloss Simple Reduplicated

big "be ­be"be

tell lies "l>aıNga ­l>aıNga"l>aıNga

visit "vaNgi ­vaNgi"vaNgi

continue "tuhi ­tuhi"tuhi

Compounds with Nasal-Final Weak Roots A genitival construction involving a nasal-

final weak or pseudo-weak root is indistinguishable from a normal genitive except for the

stress pattern of the object:

()
Gloss Object Possessor Genitive

Rabe’s month "vulan Ra"be ­vulan
>
dRa"be

In reduplication, however, there is a distinction between nasal-final weak and non-weak

roots. The weak roots reduplicate to an output that looks like a genitive, with the nasal

hardening found in (). This is seen in ().

()

Gloss Simple Reduplicated

baggage "entan ­enta"nentan

some "sasan ­sasan"ţasan

alive "velun ­velum"belun

Reduplication of nasal-final non-weak roots is quite different—a linking vowel emerges

between the base and the reduplicant, a vowel that is unpredictable from the isolation

form, except in extremely careful speech, where it sometimes appears word-finally. Ex-
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amples are given in (). The details of Malagasy partial reduplication ([ha­dinu"dinu] as

opposed to *[ha­dinuha"dinu]) will be covered in §..

()

Gloss Simple Reduplicated

forget ha"din ha­dinu"din

wander about "ren ­reni"ren

Compounds with Oral-Final Weak Roots In genitives where the object of posses-

sion is a weak root whose final consonant is oral, the linking nasal does not appear. If

the possessor begins with a consonant, the final consonant of the object of possession dis-

appears and the initial consonant of the possessor is hardened to the closest affricate or

stop (full analysis of this phenomenon will be given in §...), as in (), where part (a)

shows vowel-initial possessors and part (b) shows consonant-initial.

()

Gloss Object Possessor Genitive

(a) chicken’s foot "tuNguÙa a"kuhu ­tuNguÙa"kuhu

Soa’s shoulder "suRuka i"sua ­suRuki"sua

(b) a child’s shoulder "suRuka "zaza ­suRu"dzaza

foot of a bed "tuNguÙa ­faRa"faRa ­tuNgu­para"fara

Reduplication of weak oral-final roots comes out the same way:
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()

Gloss Simple Reduplicated

shade "aluka ­alu"kaluka

bouncing back "evuÙa ­evu"ÙevuÙa

writing "suRaÙa ­suRa"ţuRaÙa

conversation "Resaka ­Resa"
>
dResaka

selling "vaRuÙa ­vaRu"baRuÙa

thing "zavaÙa ­zava"dzavaÙa

... Pre-Theoretical Analysis

To summarize the data given above, weak roots appearing in isolation carry primary stress

one syllable earlier than non-weak roots (pseudo-weak roots are those that are too short

for this to be the case, but otherwise act like weak roots). They behave in compounds

as though they are consonant-final, and, finally, they exhibit a reduced consonant in-

ventory in isolation. A mono-stratal analysis for these facts would of necessity be rather

complicated, but multi-stratal theories such as lpm-ot or classical rule ordering offer a

simpler explanation: at an earlier level (the lexical level), weak and pseudo-weak roots are

consonant-final. At this earlier level the final consonants are not protected by a final vowel

and thus become simplified. Stress is assigned at the earlier level as well, following the ba-

sic stress pattern described in §., with some significant exceptions to be discussed later

(§.). At the top (post-lexical) level, weak and pseudo-weak oral-consonant-final roots

are supplied with an epenthetic final vowel which does not affect the stress pattern, so

the primary stress on weak roots is antepenultimate (penultimate for pseudo-weak roots,
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which are underlyingly one syllable long). A post-lexical process removes vowels after a

word-final nasal, so non-weak roots lose the vowel that protected their final nasal conso-

nant from being simplified at the lexical level and thus their primary stress appears one

syllable to the right of their weak-root counterparts. This vowel appears in combined

forms for the non-weak roots, as in the reduplication examples of ().

Now that the justification for post-lexical and lexical levels has been established, it

remains to see how the phenomena under discussion may be accounted for in this lpm-ot

analysis. Because the purpose of this section is simply to establish the overall architecture

of the system, only the simplest of these phenomena (the post-nasal apocope and post-oral

epenthesis) will be analyzed here. The rest will be dealt with in §..

.. illustration of the architecture

Before delving into the details of the Optimality Theoretic analysis, it may be useful to

look at some derivations and see how the system is claimed to work. Below are given

derivations of ordinary stems whose final consonant is a nasal, followed by weak nasal

stems, ordinary oral-final stems, and finally weak oral-final stems.

... Non-Weak Nasal Stems

An ordinary stem whose final consonant is a nasal has a derivation similar to that given in

() for sa"lam ‘healthy.’
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()

Underlying /salama/

Lexical [sa"lama]w

Post-Lexical [sa"lam]

Essentially, the underlying form and the lexical form have a final vowel, and this vowel is

removed in the post-lexical form (notice the lack of stem-final neutralization). A redupli-

cation of another ordinary stem whose final consonant is a nasal appears in ().

()

Simple Reduplicated

Underlying /hadinu/ /hadinu+red/

Lexical [ha"dinu]w [ha"dinu]w+["dinu]w

Post-Lexical [ha"din] [ha­dinu"din]

Here the simple derivation for ha"din ‘to forget’ follows the same pattern as the derivation

for la"lun above, but reduplication allows the final vowel of the stem to survive. Redupli-

cation will be investigated in more detail in §..

... Weak Nasal Stems

A nasal-final weak stem such as an
>
dRam ‘to try’ comes out looking somewhat similar to an

ordinary nasal stem because the effect of post-nasal apocope erases some of the distinction

between them, but such stems have final neutralization and other effects given above.

Here, in (), is a derivation of the present indicative active form, which shows final

neutralization, and the circumstantial form, which does not.
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()

Present Active Circumstantial

Underlying /m+an+an
>
dRam/ /an+an

>
dRam+an/

Lexical [man"an
>
dRan]w [anan"

>
dRaman]w

Post-Lexical [man"an
>
dRan] [anan"

>
dRaman]

Note that the stress lapse found in the circumstantial form here is analyzed further in §..

... Non-Weak Oral Stems

Stems that end underlyingly in an oral consonant followed by a vowel are not subject

to much phonological change of the sort described above. For example, ma"hita ‘see’ is

unchanged from its underlying form:

()

Underlying /m+a+hita/

Lexical [ma"hita]w

Post-Lexical [ma"hita]

Compounding behaves similarly here as well (­l>aıNga"l>aıNga ‘tell lies’):

()

Simple Reduplicated

Underlying /l>aıNga/ /l>aıNga+red/

Lexical ["l>aıNga]w ["l>aıNga]w+["l>aıNga]w

Post-Lexical ["l>aıNga] [­l>aıNga"l>aıNga]
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... Weak Oral Stems

The weak stems are, as stated before, underlyingly consonant final. At the postlexical level

a final vowel is added, but at the lexical level, before the epenthesis, the final consonant

undergoes neutralization. In compounds the final consonant of the first part of the com-

pound interacts with the initial consonant of the second part. All of these phenomena can

be seen in the paradigm of "fantaÙa ‘known,’ seen in ().

()

Present Passivized Reduplicated Passivized Redup.

UR /fantaR/ /fantaR+in/ /fantaR+red/ /fantaR+red+in/

Lex. ["fantaÙ]w [fan"taRin]w ["fantaÙ]w+["fantaÙ]w ["fantaÙ]w+[fan"taRin]w

P-Lex. ["fantaÙa] [fan"taRin] [­fanta"pantaÙa] [­fantapan"taRin]

The analysis underlying these derivations will be worked out in more detail in §. (for

the consonant patterns) and §. (reduplication), but essentially in the present tense form

the final consonant is in word-final position at the lexical level and becomes neutralized,

and a final [a] is inserted at the post-lexical level. With the passive suffix appended, the

stem-final consonant is protected and remains unchanged. In the reduplicated forms, the

stem-final consonant in the base has changed from a continuant, as in the underlying

form, to an affricate at the lexical level. The [-cont] feature of the affricate merges with

the labial place of the stem-initial consonant to form a labial stop.

.. post-nasal apocope

As stated in §..., my analysis for the data pattern of roots whose final consonant is a

nasal is that each form’s stress pattern is established at the lexical level and subsequently
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final unstressed vowels are removed at the post-lexical level¹⁵. This proposal is illustrated

in (), which shows the proposed output of the lexical level and how it is transformed to

the actual surface form.

()

Gloss Hyp. Lex. Output Surface Form

(a) give [­manu"me]w [­manu"me]

do [ma"n >au]w [ma"n >au]

(b) believes ["minu]w ["min]

soften, weaken [­mana"leme]w [­mana"lem]

tree with reddish wood [la"luna]w [la"lun]

forget [ha"dinu]w [ha"din]

(c) baggage ["entan]w ["entan]

to borrow ["min
>
dRan]w ["min

>
dRan]

eat [mi"hinan]w [mi"hinan]

take care of [mi"tan
>
dRin]w [mi"tan

>
dRin]

Final post-nasal vowels are deleted due to the effect of the following constraint:

() *FinalSequence([+nas],V,∅):

Output a violation for any word ending on the surface in a sequence consisting of a nasal

immediately followed by a vowel. Short form—*NV#.

*NV# is violated in the output in some cases, due to preservation of final vowels that carry

stress at the lexical level. This preservation is driven by MaxIO([+stress]):

15How final vowels come to be stressed in some words will be explored in §..
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() MaxIO([+stress]):

Output a violation for each underlyingly stressed vowel (here, this means stressed at the

lexical level) that does not correspond to a segment on the surface level.

Further, it cannot be satisfied by inserting an extra segment at the end of the word (i.e.,

by violating DepIO) or by deleting the nasal (MaxIO(C)).

() DepIO:

Output a violation for any segment in the surface level that has no underlying correspondent.

An abbreviation for the two constraints DepIO(V) and DepIO(C).

() MaxIO(C):

Output a violation for any underlying consonant that does not correspond to a surface

segment.

Finally, many of the forms above satisfy *NV# at the expense of allowing vowel deletion

(thus violating MaxIO(V) ()) and word-final stress (NonFinality).

() MaxIO(V):

Output a violation for any underlying vowel that does not correspond to a surface segment.

The postlexical constraint ranking that accounts for the phenomenon is ()¹⁶

()
DepIO, MaxIO([+stress]), MaxIO(C) �p *NV# �p MaxIO(V),

NonFinality

16Recall that “�p” means “outranks postlexically.”
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as can be seen in tableaux ()–().

() />aına/ → [">aına]s → [">aına]w → [">aın] ‘breath’¹⁷

[">aına]w M
ax

IO
(C

)

*N
V#

N
onFi

nal
it

y

M
ax

IO
(V

)

�

">aın∅ * *

">aına *!

">aı∅a *!

() /m+anx+u"mez/ → /m/+[­anxu"mez]s → [­manxu"me]w → [­manu"me] ‘pres.+act.+give’¹⁸

[­manxu"me]w M
ax

IO
([+

st
re

ss
])

*N
V#

N
onFi

nal
it

y

M
ax

IO
(V

)

*[-
lo

w
]

�

­manu"me * * **

"manum∅ *! * *

() /laluna/ → [la"luna]s → [la"luna]w → [la"lun] ‘a tree with hard reddish wood’

[la"luna]w D
ep

IO
(V

)

*N
V#

N
onFi

nal
it

y

M
ax

IO
(V

)

*L
ap

se

�

la"lun∅ * *

la"luna *!

la"lunaa *! *

17Here and in the tableaux to follow I have used the symbol ‘∅’ to denote a deleted segment.
18The symbol nx represents an abtract underlying segment belonging only to this morpheme. It will be

explained in §....
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See Blevins () for similar data in Gilbertese.

Note that DepIO(C) and MaxIO([+stress]) are undominated at the postlexical level.

.. post-oral final vowel epenthesis

To recap, my analysis is that weaks and pseudo-weaks are underlyingly consonant-final,

and they continue to be so at the output of the lexical level. Compounding takes place

post-lexically, and its input appears to be consonant-final when weak roots are involved.

In all cases, not just compounding, the stress pattern established by the lexical level is

preserved at the post-lexical level, but oral consonants are not allowed word-finally, so the

vowel [a] is epenthesized after the final consonant. It does not disturb the stress pattern,

so antepenultimate stress results if the output of the word level had penultimate stress.

In the epenthetic forms the final consonant is not deleted but instead epenthesis oc-

curs, because the undominated ban on deleting oral consonants () outranks the ban on

inserting vowels and (subsequently) creating a stress lapse, as shown in ranking ().

() MaxIO([-nas,C]):

Output a violation for each underlying oral consonant that does not correspond to a surface

segment.

() MaxIO([-nas,C]) �p DepIO(V), *Lapse

Stress is not assigned to the inserted vowel because it is word-final.

() NonFinality �p *Lapse
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Finally, the vowel inserted is always [a]. I analyze this as being the result of a constraint

banning non-low vowels (). This constraint has no effect on vowels with an underlying

basis due to *[-low] being outranked by a bank of constraints enforcing faithfulness to

vowel place features ().

() *[-low]:

Output a violation for each surface non-low vowel.

() IdentIO(V-place):

Output a violation for any underlying segment whose surface correspondent differs from it

in one of more place features. Note that this is actually an abbreviation for a sequence

of constraints whose ranking with respect to one another is irrelevant to the phe-

nomenon at hand: IdentIO([±low]), IdentIO([±high]), IdentIO([±back]), and

IdentIO([±round]).

And of course MaxIO(V) must be active to prevent all vowels other than [a] from being

deleted. The ranking that establishes all of this behavior is shown in ().

() MaxIO(V), IdentIO(V-place) �p *[-low]

Rankings (), (), and () are all demonstrated in tableau ().

() /aluk/ → ["aluk]s → ["aluk]w → ["aluka] ‘shade’
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["aluk]w M
ax

IO
([-

nas
,C

])

Id
en

tI
O

([±
V-p

la
ce

])

*[-
nas

,C
]#

M
ax

IO
(C

)

D
ep

IO
(V

)

N
onFi

nal
it

y

*[-
lo

w
]

*L
ap

se

�

"aluka * * *

"aluku * **! *

"aluki * **! *

­alu"ka * *! *

"aluk *! *

"alaka *! * *

"alu∅ *! * *

.. rankings so far

So far it has been stated that the following constraints are undominated at all levels:

*|[+son] [−son]|, *|[αpl,C] [−αpl,C]|, *|[−cont] [+cont, −cor]|, *|[αnas] [−αnas]|,

*|[+cont] [−cont]|, *|[αvce] [−αvce]|, *t
¯

X, *t
¯
#, *X S, *#S, *|ei|, *|[+high] [−high]|,

*|[−low] [+low]|, *|CV|, and *|VC|. In addition all levels have the ranking *Rtmost-

2ndary � *[+prim].

The current section added to this some rankings for the post-lexical level. Here the

constraints DepIO(C), MaxIO([+stress]), and MaxIO([−nas,C]) were asserted to be

undominated, and other rankings were given consistent with the following Hasse diagram:
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UNDOMINATED

DepIO(V)

IdentIO([+/-low])

*[+prim]MaxIO(C)

IdentIO([-high])*N V#

*[-low]

NonFinality MaxIO(V)

*Lapse

In order to try to keep the diagrams readable, I have omitted mention of undominated

constraints in the ranking diagrams given here and elsewhere in this text.

3.6 THE WORD/STEM LEVEL DISTINCTION

Section §. went into the justification for having a grammar for lexical phonology and

a different grammar for post-lexical phonology. The analysis given here is not composed

of two grammars (lexical and post-lexical), however, but three. There are two classes of

affixes in Malagasy — one that binds tightly to its stem and has idiosyncratic allomorphs,

and one that binds less tightly and is more uniform across words (see §.. for some

examples). The behavior of these two classes of affixes suggests, as will be seen below,

a division of the lexical grammar into a stem grammar, which comes first, and a word

grammar, which follows it.
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.. word-level suffixes

The rightmost stress of a word—and only that stress—is shifted to the right after the

addition of any one of a class of suffixes including -a, the imperative suffix, and -an,

the circumstantial suffix (referred to in some places, e.g. Erwin (), as the relativizing

suffix). This behavior is shown in the following table¹⁹.

()

Present Active Circumstantial Proposed UR of Circ.

(a) sleeps ma"tuRi matu"Ria /m+a+tuRi+a/

(b) sits mi"peÙaka mipe"Ùaha /m+i+peÙah+a/

(c) sings mi"hiRa mihi"Ra /m+i+hiRa+a/

(d) arranges ­manam"buaÙa ­manambu"aRa /m+anx+ambuaR+a/

(e) goes home "mudi mu"dia /m+udi+a/

(f ) works mi"asa mia"sa /m+i+asa+a/

The suffixes that take part in this data pattern appear at the extreme right edge of a word,

and have the property of being regular in the sense of having a single allomorph regardless

of the stem to which they are attached. Because stress assignment is driven by constraints

on allowable stress patterns at the right edge of a word, no prefixes induce stress shift,

but there are a number of prefixes that occur at the extreme left edge of words, with no

allomorphs, and with, in some cases, lexicalized stress patterns. I would class these prefixes

as members of the same set of affixes, which I will call, for reasons to be made clear later,

word-level affixes.

19Note that forms (c) and (f ) exhibit vowel merger with opaque stress, which will be analyzed in §...
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.. stem-level suffixes

The affixation of other suffixes leads to a different pattern of stress shift.

()

Active Passive Proposed UR of Pass.

(a) to disorder sa"Ritaka ­saRi"tahin /saRitah+in/

(b) to overthrow ku"Runtan ­kuRun"tanin /kuRuntan+in/

These affixes appear, essentially, to create a new stem that continues to obey the basic

stress pattern of the language. Stem-level affixes, as I will call this class, tend to be more

idiosyncratic than the word-level affixes, with multiple stem-specific allomorphs (for ex-

ample, the passive suffix above appears as -an or -in depending on the stem), and although

suffixes appear not to stack in Malagasy, the stem-level prefixes appear to the interior of

the word-level prefixes (the stem-level prefixes include, for example, the active marker

an-/ana-/i-/a-/∅-.) Stem-level prefixes, unlike word-level prefixes, never carry a phonemic

stress.

.. the three-level architecture

My analysis for these facts is that there is a stem level of grammar in which the basic stress

pattern described in §. is followed without much exception (see §. for the inevitable

complications). The output of the stem level grammar is fed into the word level. At this

level the basic stress pattern constraints are still operative, but they are partially superceded

by faithfulness to the stress pattern established at the stem level. §. referred to a “lexical

output.” The word and stem levels together make up the lexical level, so the output of the
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lexical level is the same as the output of the word level.

The behavior of the stem-level forms is covered by §§.–. (basic stress plus final

epenthesis for [sa"Ritaka]), so all that needs elaboration is the word-level stress shift.

... Word-Level Stress Shift

Stress shift caused by word-level suffixes (these include the imperative ending -a and the

circumstantial ending -an, as opposed to the passive ending -in/-an) can create lapse. This

is because a stress must appear on the newly penultimate syllable (due to undominated

*FinalLapse and high-ranked NonFinality). If the stress on what had been the penulti-

mate syllable were to be preserved, a stress clash would result. Since a stress clash does not

appear in the actual forms, the desire to avoid a clash must outrank the desire to preserve

stress:

() IdentIO([+stress]):

Output a violation for each underlyingly stressed segment that has a unstressed surface cor-

respondent.

hence ranking (), demonstrated in tableau ().

() NonFinality, *Clash �w IdentIO([+stress])
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() /m+udi+a/→/m/+["udi]s+/a/→[mu"dia]w ‘pres.+go home+imp.’

/m/+["udi]s+/a/ *F
in

al
Lap

se

N
onFi

nal
it

y

Id
en

tI
O

([-
st

re
ss

,V
])

*C
la

sh

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

mu"dia * *

­mu"dia * *!

­mudi"a *! *

"mudia *! *

Additionally, the syllable that had been antepenultimate continues not to receive a stress,

thus creating a lapse. The desire to preserve lack of stress in a syllable () outranks the

desire to avoid lapse, as seen in ranking () and tableau ().

() IdentIO([V,-stress]):

Output a violation for each underlyingly unstressed vowel segment that has a stressed surface

correspondent.

() IdentIO([V,-stress]) �w *Lapse

() /m+a+turi+a/→/m/+[a"turi]s+/a/→[matu"ria]w ‘pres.+act.+sleep+imp.’

/m/+[a"tuRi]s+/a/ Id
en

tI
O

([V
,-s

tr
es

s])

*L
ap

se

�

matu"Ria * *

­matu"Ria **!
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Stress preservation is outweighed by vowel preservation, however:

() MaxIO(V) �w IdentIO([V,-stress]), IdentIO([+stress])

() /anx+dihiz+an/ → /anx/+["dihiz]+/an/ → [anxdi"hizan]w ‘act.+dance+circum.’ ²⁰

/anx/+["dihiz]s+/an/ M
ax

IO
(V

)

Id
en

tI
O

([-
st

re
ss

,V
])

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

anxdi"hizan * * *

anx"dih∅zan *!

Notice that both *Lapse and IdentIO([+stress]) could be avoided in longer forms by

creating a clash, but this does not occur, as shown in (). It appears, then, that the

following ranking exists:

() *Clash �w *Lapse

() /aha+fali+an/ → /aha/+["fali]s+/an/ → [­ahafa"lian]w ‘act.+make happy+circum.’

/aha/+[fali]+/an/ *C
la

sh

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

­ahafa"lian * *

­aha­fa"lian *!

20The annotation “/nx/” here indicates the lexical marking feature [+x], discussed in §....
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.. looking ahead

The analysis of Malagasy will henceforth be the discovery of three different constraint

rankings: stem level, word level, and post-lexical. The overall picture is that stem-level

affixes are added at the stem level, word-level affixes are added at the word level, and

compounds are put together at the post-lexical level.

In the above sections I have attempted to justify a stem-word-postlexical approach

to Malagasy analysis. In so doing I have introduced a number of complex phenomena

without fully analyzing these phenomena. Below I will first explore the weak and pseudo-

weak stems in more detail, then move on to the fuller details of the Malagasy stress system.

Later, I will introduce a new set of consonant-final stems where the final consonants

undergo deletion rather than simplification. Next will be vowels that weaken. Wrapping

up the analysis of Malagasy will be reduplication and compounding.

.. rankings so far

At this point, undominated constraints and rankings for all levels other than word are

unchanged from those given in §... The word level now has the following known

rankings:
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UNDOMINATED

NonFinalityMaxIO(V) *Clash *[+prim]

IdentIO([+stress])IdentIO([-stress,V])

*Lapse

3.7 ANALYSIS OF WEAK AND PSEUDO-WEAK STEM BEHAVIORS

Now that the stem-word-postlexical architecture has been established, it remains to see

how the phenomena under discussion may be accounted for in this lpm-ot analysis. I

will begin with the nasal-final weak and pseudo-weak roots and their behavior in isolation

and compounds and proceed from there to the oral-final roots.

.. nasal-final weak and pseudo-weak roots

There are two types of nasal-final weak roots: in the first (forms (a)–(c) below) the nasal

appears as [m] in the suffixed form, and in the other (forms (d) and(e)) it appears as [n].
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()

Present (m+stem) Circumstantial (stem+an) Gloss

(a) m-a"n-an
>
dRan an-an"

>
dRam-an to try

(b) "m-in
>
dRan in"

>
dRam-an to borrow

(c) m-i-"tan
>
dRin i-tan"

>
dRem-an to care for

(d) m-i-"hinan i-hi"nan-an to eat

(e) m-i-"ţaNgan i-ţaN"gan-an to stand

The obvious choice, then, is to analyze the underlying form of the final nasal in the first

set as /m/ and the second as /n/.

... Word-Final Simplification

I posit that underlying /m/ becomes [n] when word-final because of a cross-linguistic

dispreference for labial consonants (), which in Malagasy appears to dominate general

preservation of labial place () as shown in ranking ().

() *([lab, C]):

Output one violation for each instance of a surface labial consonant.

() IdentIO([lab]):

Output a violation for each underlyingly [+lab] segment that has a surface correspondent

which is [-lab].

() *[lab,C] �w IdentIO([lab])
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However, an underlying labial release into a vowel is preserved via the undominated con-

straint IdentIO(lab)/_V () as well as MaxIO(C)/_V (78), so underlying pre-vocalic

/m/ remains as such thanks to the ranking given in ().

() IdentIOBefore([lab], V):

Short form—IdentIO([lab])/_V. Output a violation if an underlyingly labial segment,

followed by an underlying vowel, changes to non-labial.

() MaxIOBefore(C, V):

Short form—MaxIO(C)/_V. Output a violation for each instance of an underlyingly [-

syl] segment that immediately precedes, in the underlying form, a [+syl] segment if the

underlying [-syl] segment does not have a surface correspondent.

() MaxIO(C)/_V, IdentIO([lab])/_V �w *[lab, C].

The rankings above are illustrated in tableaux () and ().

() /m+i+tan
>
dRem/ → /m/+[i"tan

>
dRem]s → [mi"tan

>
dRin]w ‘pres.+act.+take care of ’

/m/+[i"tan
>
dRem]s *[l

ab
,C

]

Id
en

tI
O

([l
ab

])

�

mi"tan
>
dRin * *

mi"tan
>
dRim **!
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() /i+tan
>
dRem+an/ → [i"tan

>
dRem]s+/an/ → [itan"

>
dReman]w ‘act.+take care of+circum.’

[i"tan
>
dRem]s+/an/ Id

en
tI

O
([l

ab
])/

_V

M
ax

IO
(C

)/_
V

*[l
ab

,C
]

M
ax

IO
(C

)

Id
en

tI
O

([l
ab

])

�

itan"
>
dReman *

itan"
>
dRe∅an *! *

itan"
>
dRenan *! *

... Second Member Nasal-Consonant-Initial Compounds

In genitives where the possessor begins with a nasal, or reduplication where the redupli-

cating root begins and ends with a nasal, compounding creates a nasal + nasal cluster. In

these situations the final nasal of the first half of the compound disappears—it is either

deleted or merged into the initial nasal of the second half of the compound. A similar

phenomenon occurs with nasal-final prefixes. The underlying form of the present ac-

tive prefix seems to be /man/, on the basis of its appearance in vowel-initial stems, as in

["an
>
dRan]—[man"an

>
dRan]. When /man-/ is placed before a nasal-initial stem, however, the

/n/ of /man-/ appears to have deleted or merged with the following nasal. The table in

() shows some of the data for nasal + nasal clusters.
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()

man- Prefixation

Gloss Unprefixed Prefixed

bewitch mu"savi ­mamu"savi

regret "nenin ma"nenin

be bitter "Ngidi maN"gidi

cover "mbumba mam"bumba

Reduplication

Gloss Root Reduplicated

holy "masin ­masi"masin

The pattern of these data is summarized in ().

()

N N Result

n m m

n n n

I have chosen a coalescence analysis for these facts: the coalescence occurs (at the post-

lexical level) because the ban on coalescing two consonants () and the ban on changing

the place features of a consonant () are ranked below the ban on deleting consonants

(), the undominated ban on changing the feature [±nas] (87), the undominated ban on

a complex segment with two consonantal place features (), and the undominated ban

on consonant clusters wherein the second consonant is a nasal ().
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() IO-Uniformity(C):

Output a violation whenever two underlying consonants correspond to a single surface con-

sonant (see §...).

() IdentIO(C-place):

Output a violation for any underlying consonant that corresponds with a surface segment

that differs from it in consonantal place. Note—this is actually a simplification. Here,

the real constraints that matter are IdentIO([-lab]), plus IdentIO([cor]).

() MaxIO(C):

Output a violation for each underlying consonant that does not correspond to a surface

segment.

() IdentIO([±nas]):

Output a violation for any segment which has changed its specification for the feature

[±nas].

() *Contour([αplace,C],[−αplace,C]):

Short form—*|[αplace,C][−αplace,C]|. Output a violation wherever two consonant

places abut within a single complex segment, as in [ >nm]. Note that this is actually an

abbreviation for a number of constraints such as *Contour([cor,C],[dors,C]).

() *Sequence(C, [+nas]):

Short form—*C [+nas]. Output a violation for each consonant+nasal sequence in a word.
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The resulting ranking is as follows:

()
MaxIO(C), IdentIO([±nas]), *C [+nas], *|[αplace,C][−αplace,C]| �p

IO-Uniformity(C), IdentIO(C-place)

as shown in ().

() /masin+red/ → ["masin]s+["masin]s → ["masin]w+["masin]w → [­masi"masin] ‘holy+red.’

["masin]w+["masin]w Id
en

tI
O

([±
nas

])

*C
[+

nas
]

*|[
α
pl

ac
e,C

][−
α
pl

ac
e,C

]|

M
ax

IO
(C

)

Id
en

tI
O

(C
-p

la
ce

)

IO
-U

nifo
rm

it
y(

C)

�

­masi"masin * *

­masi∅"masin *!

­masi"n∅asin *!

­masi" >nmasin *! *

­masim"masin *! *

­masin"masin *!

­masim"basin *! *

... Second Member Oral-Consonant-Initial Compounds

The table in () exemplifies the general behavior of nasal-initial consonant clusters in

Malagasy (the behaviors in the other contexts are simply special cases inside this one).
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()

Gloss Unreduplicated Reduplicated

(a) alive "velun ­velum"belun

(b) cured "siÙan ­siÙan"ţiÙan

(c) quickly "h>aıNgan ­h>aıNgaN"k>aıNgan

(d) first ­vua"luhan ­vua­luhan"duhan

(e) average an"tunin an­tunin"tunin

The different types of clusters are shown in the following (consonant C1 can be any nasal).

()

C1 C2 Cluster C1 C2 Cluster

n,m,N p mp n,m,N z ndz

n,m,N b mb n,m,N l nd

n,m,N f mp n,m,N r n
>
dR

n,m,N v mb n,m,N Ù n
¯
Ù

n,m,N t nt n,m,N k Nk

n,m,N d nd n,m,N g Ng

n,m,N s nţ n,m,N h Nk

Remains a Cluster Notice here that the underlying cluster of two consonants remains

a cluster on the surface. Nasal + oral clusters are the only consonant clusters allowed in

the language—others are banned by the constraint *CC (94).

() *Sequence(C, C):

Output a violation for a surface consonant segment immediately following a surface conso-

nant segment (so, for example, [abbbba] would incur three violations). Short form—*CC.
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There are four ways to break up a consonant cluster: () insert a vowel between the two

consonants, () delete one or both of the consonants, () change one of the consonants

into a vowel, or () merge the two consonants into one. The first sort of fix would violate

the constraint DepIO(V). The second fix, deletion, violates MaxIO(C). The third fix,

changing a consonant into a vowel, violates the undominated constraint IdentIO([±syl])

().

() IdentIO([±syl]):

Output a violation for any surface segment that is consonantal while its underlying corre-

spondent is vocalic, or vice versa.

Finally, the coalescence fix clearly violates IO-Uniformity(C), but since coalescence is

desirable in some contexts (e.g., see §...) that constraint cannot be the barrier in this

case. Instead, coalescence is banned by the undominated constraints *|[αnas][−αnas]|,

first seen in §..., and IdentIO([±nas]) (see §...). The final ranking therefore is

(), shown in tableau ().

()
DepIO(V), IdentIO([±syl]), *|[+nas][-nas]|, MaxIO(C), IdentIO([±nas])

�p *CC
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() /lambu/ → ["lambu]s → ["lanbu]w → ["lambu] ‘wild boar’²¹
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�

"lambu * * *

"la∅bu *!

"lanabu *! *

"la
>

mbu *! * * *

"lan∅u *! * *

"laabu *! * * * *

Nasal Assimulation A second fact about these clusters is that the nasal assimilates in

place to the following oral. This is analyzed as being the result of the general (inviolable)

ban on heterogeneous consonant clusters (). The resulting cluster takes on the place

features of the second consonant because the second consonant is in a prevocalic position

and therefore its place features are better preserved, via the undominated constraint Ident-

IO([C-place])/_V (99) (see Steriade ( (in press)) for more argumentation in favor of

this sort of constraint, albeit a surface-contextual form of it). The ranking is (), as

demonstrated in tableau ().

() *Sequence([αplace,C], [−αplace,C], ∅):

21This derivation seems a bit odd, as an assimulated nasal becomes unassimilated, then assimilated again.
The reason for this odd behavior (irrelevant as the behavior actually is to the point being illustrated here,
which is that nasal + oral clusters survive as such) is that place assimilation in consonant sequences is kept
undominated at the stem and post-lexical levels, but at the word level the simplest analysis for word-final
nasal simplification was to ban all nasals other than [n], with the exception that [m] can survive prevocalically.
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Output a violation for any consonant cluster in which the constituents differ in place fea-

tures. This is actually an abbreviation for a fairly large set of constraints—*Sequence(

[lab, C], [dors, C]), *Sequence( [cor, C], [lab, C]), etc. The short form is *[αplace,

C] [−αplace, C].

() IdentIOBefore([C-place], V):

Output a violation for any surface consonant which corresponds to an underlying segment

which differs from it in place features, if that underlying segment is followed in the un-

derlying form by a vowel. Short form—IdentIO([C-place])/_V. Note that this con-

straint is actually an abbreviation of the constraints IdentIO([lab])/_V (77), Ident-

IO([cor])/_V, IdentIO([dors])/_V, and IdentIO([ant])/_V.

() IdentIO([C-place])/_V, *[αplace,C][−αplace,C] �p IdentIO([C-place])

() /lambu/ → ["lambu]s → ["lanbu]w → ["lambu] ‘wild boar’

["lanbu]w Id
en
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O
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n])/
_V
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�

"lambu * *

"laNbu *! *

"lanbu *!

"landu *! *
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Alveolar Fricative Hardening If the oral consonant in a nasal + oral consonant se-

quence is an alveolar fricative, it becomes the corresponding affricate (keeping its voice fea-

tures), as in ["siÙan]:[­siÙan"ţiÙan] (form (b) of table ()). The consonant does not remain

a fricative because an undominated stop assimilation constraint *[-cont][+cont,C] (102)

outranks the violable identity constraints which protect fricatives (IdentIO([+cont,-

son])/_V () and IdentIO([±cont]) ()).

() *Sequence([-cont], [+cont,C], ∅):

Output a violation for each instance of a surface continuant consonant immediately pre-

ceded by a stop. Short form—*[-cont][+cont,C].

() IdentIOBefore([+cont,-son], V):

Output a violation for any instance of an underlying fricative immediately followed in the

underlying form by a vowel if that fricative corresponds to something which on the surface

is not a fricative. For example, this would be violated by a change from /s/ to [t] or

[ţ], if /s/ is immediately followed by a vowel in the underlying form. This is as op-

posed to FeatMaxIO([+cont, −son])/_V (106), which would be violated by a change

from /s/ to [t] but not [ţ] because the features [+cont, −son] are preserved (Feat-

MaxIO([+cont, −son])/_V would also be violated if /s/ were deleted in this context,

whereas IdentIO([+cont, −son])/_V would not). Short form — IdentIO([+cont,

−son])/_V.

() IdentIO([±cont]):

Output a violation for any surface stop which is underlyingly a continuant, or vice versa.
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The resulting ranking is thus:

()
MaxIO(C), *[-cont][+cont,C] �p IdentIO([+cont,-son])/_V,

IdentIO([±cont])

The fricative becomes an affricate and not a stop because the feature preserving con-

straint FeatMaxIO([+cont, −son])/_V (106) outranks the general ban on fricatives and

affricates (*[+cont, −son], see ()), the purpose of which will become clear when later-

als are discussed later on. The ranking is in ().

() FeatMaxIOBefore([+cont,-son], V):

Output a violation for any instance of an underlying phone of natural class [+cont, −son]

immediately followed in the underlying form by a vowel if the segment containing the phone

[+cont, −son] corresponds to a complex segment (that is, a simple segment or a segment

contour) on the surface that does not somewhere in it contain a phone from the natural

class [+cont, −son], or if it corresponds to no surface segment at all . See IdentIO-

Before([+cont, −son], V) () for further explanation and examples. Short form—

FeatMaxIO([+cont, −son])/_V.²²

() *([+cont,-son]):

Output a violation for each surface member of the natural class [+cont,-son], that is, for

each surface fricative segment.

() FeatMaxIO([+cont,-son])/_V �p *[+cont,-son]

22The fact that FeatMaxIO([+cont,-son])/_V was used here and not PtIdentIO([+cont,-son])/_V is
primarily a matter of expediency—the two constraints are almost entirely equivalent, and no contextual
faithfulness versions of the PtIdentIO family have yet been implemented in the program used to develop
and test this analysis.
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These rankings are illustrated in tableau () and further in (), ()–().

() /sasan+red/ → ["sasan]s+["sasan]s → ["sasan]w+["sasan]w → [­sasan"ţasan] ‘some+red.’

["sasan]w+["sasan]w *[-
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M
ax

IO
([+

co
nt,-

so
n])/

_V

Id
en

tI
O

([+
co

nt,-
so

n])/
_V

*[+
co

nt,-
so

n]

Fe
at

M
ax

IO
([+

co
nt,C

])

Id
en

tI
O
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�

­sasan"ţasan * **** *

­sasan"tasan *! * *** * *

­sasan"sasan *! ****

Lateral Hardening If the oral consonant is /l/, it becomes [d]. This is accounted for

by the above rankings, plus the undominated constraint *|[-lat][+lat]| (constraint () of

§3.3.2.1), as shown in ().
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() /vualuhan+red/ → [­vua"luhan]s+["luhan]s → [­vua"luhan]w+["luhan]w → [­vua­luhan"duhan]

‘first+red.’

[­vua"luhan]w+["luhan]w *[-
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]
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�

­vua­luhan"duhan *** * *

­vua­luhan"dzuhan ****! *

­vua­luhan"
>
dRuhan *! *** *

­vua­luhan"
>
dluhan *! *** *

­vua­luhan"luhan *! ***

The tableau also illustrates how *[+cont,-son] prevents /l/ from expressing its [+cont]

feature in an affricate, via the ranking in ().

() *[+cont,-son] �p IdentIO([±cont]), FeatMaxIO([+cont,C])

There is another way that /l/ could express [+cont], and even [+son] – it could become

[R], which is, after all, the closest phoneme in the language. Further, the sequence [
>
dR]

is permitted in the language. However, the constraint IdentIO(±R) (112) prevents this

change, ranked as in ().

() IdentIO(±[+son,-lat,-nas,C]):

Short form—IdentIO(±R). Output a violation for any underlying [+son,-lat,-nas,C]

segment that corresponds to something that is not [+son,-lat,-nas,C]. Additionally, out-

put a violation for any surface [+son,-lat,-nas,C] segment that corresponds to something
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that is not [+son,-lat,-nas,C]. This penalizes, for example, /l/→[R] (because surface [R]

corresponds to a lateral) and /R/→
>
dR (because underlying /R/ corresponds to [d]). See

§... for more discussion of this sort of constraint.

() IdentIO([±R]) �p IdentIO([±cont]), FeatMaxIO([+cont,C])

Hardening of Rhotics If the oral consonant is /R/, it becomes [
>
dR], by the ranking

given in (), adding IdentIO([±R]) to the bottom of that ranking. An example tableau

appears in (114).

() /lavaRaNgan+red/ → [­lava"RaNgan]s+["RaNgan]s → [­lava"Rangan]w+["Rangan]w → [­lava­RaNgan-

"
>
dRaNgan] ‘veranda+red.’
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­lava­RaNgan"
>
dRaNgan * *

­lava­RaNgan"daNgan * *! *

­lava­RaNgan"RaNgan *!

Hardening of Non-Alveolar Fricatives If the oral consonant is a peripheral frica-

tive, it becomes the corresponding stop. This is due to the undominated constraint

*|[−cont] [+cont, −cor]| (§...), as can be seen in tableaux () and ().
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() /velun+red/ → ["velun]s+["velun]s → ["velun]w+["velun]w → [­velum"belun] ‘alive+red.’
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­velum"belun * * * * *

­velum"
>
bvelun *! * ** *

­velum"velun *! **

() /h>aıNgan+red/ → ["h>aıNgan]s+["h>aıNgan]s → ["h>aıngan]w+["h>aıngan]w → [­h>aıNgaN"k>aıNgan]

‘quickly+red.’
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­h>aıNgaN"k>aıNgan *** * * * * *

­h>aıNgam"p>aıNgan *!* *** * * * * *

­h>aıNgaN"
>
kh>aıNgan *! *** * ** *

­h>aıNgaN"h>aıNgan *! *** **

­h>aıNgan"t>aıNgan *! ** * * * * *

Note in () that /h/ hardens to [k], a dorsal, rather than a coronal or a labial. This is

because /h/ is more faithful to its property of not being labial () or coronal () than it
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is to its property of not being dorsal.

() IdentIO([-cor,-son])/_V:

Output a violation for any underlying non-coronal obstruent that corresponds to a surface

coronal and/or sonorant if said underlying non-coronal obstruent underlyingly precedes a

vowel.

() IdentIO([-lab]):

Output a violation for any underlying non-labial segment that corresponds to a labial seg-

ment on the surface.

.. related nasal-initial cluster phenomena

... Word-Initial Clusters

A related data group is that of word-initial nasal clusters. In Malagasy words may begin

with a nasal + oral consonant cluster, with the same data pattern as above, with the excep-

tion that no examples exist wherein the second consonant is voiceless. The table in ()

shows the behavior of word-initial consonant clusters beginning with a nasal. The under-

lying nasals in the examples with an initial voiceless consonant are Rich Base candidates,

there just to show that such forms will not appear on the surface even if present in the

underlying form (the chosen words happen to be spelled with an initial nasal for historical

reasons—in an earlier stage of the language these words started with a vowel which has

since disappeared),
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()

Gloss Hypothetical UR Surface

numb from cold /Nguli/ ["Nguli]

cross-eyed /ndzula/ ["ndzula]

please /mba/ [mba]

worker /mpiasa/ [pi"asa]

ancestors /ntaulu/ ["taulu]

Essentially they work like this: if the second consonant is voiceless, the nasal is dropped,

otherwise the cluster behaves as a medial cluster would. The primary motivating con-

straint here is *#[+nas][-vce] (), which is undominated at the post-lexical level. The

overall effect is due to ranking ().

() *InitialSequence([+nas], [-vce]):

Output a violation for any word in which the first surface segment is a nasal and the second

is voiceless. A specialization of the proposed universal *[+nas][-vce] (see Pater ()).

Short form—*#[+nas][-vce].

()
IdentIO([-vce])/_V, *|[+nas][-nas]|, *#[+nas][-vce], DepIO(V) �p

MaxIO(C),

where undominated MaxIO([-nas,C]) causes the nasal to delete rather than the oral con-

sonant. DepIO(V) prevents saving the underlying nasal by vowel insertion. IdentIO([-

vce])/_V () is another instance of increased faithfulness in underlying prevocalic posi-

tion.

() IdentIOBefore([-vce], V):
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Output a violation for any voiceless prevocalic segment in the underlying form that corre-

sponds on the surface to a voiced segment. Short form—IdentIO([-vce])/_V.

All of this is illustrated in the following tableau:

() /nt >aulu/ → [n"t >aulu]s → [n"t >aulu]w → ["t >aulu] ‘ancestors’
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∅"t >aulu *

na"t >aulu *!

n"t >aulu *! *

n"d >aulu *! * *

"
>
nt >aulu *! * * *

"n∅>aulu *! *

... The an- Prefix

Like the word-initial nasal clusters of the previous section, the an- prefix (one of the

language’s active voice markers) introduces a nasal-initial cluster with slightly different

properties from those described in §...

Table . presents data that show the phonological effects caused by prefixation of the

active prefix an- (also man-, fan-, nan-, but not, e.g., locative an-)²³. For the most part

23The data here is mostly from Paul ().
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Gloss Simple Prefixed

Voiced Stops/Affricates

(a) bump "dun man"dun

(b) squeeze "gedza maN"gedza

(c) stop dza"nun man"dzanun

(d) grab "beda mam"beda

Voiced Continuants

(e) soaks "lun man"dun

(f ) progresses "Rusu man"
>
dRusu

(g) measure "zehi man"dzehi

Voiceless Consonants

(h) bite "k>aıkiÙa ma"n
>
aikiÙa

(i) continue "tuhi ma"nuhi

(j) wash "sasa ma"nasa

(k) remove "ţ>aıNguka ma"n>aıNguka

(l) fence in "fefi ma"mefi

(m) put "peÙaka ma"meÙaka

Unstable Cases

(n) cut "heti ma"neti

(o) ask "hataka maN"gataka

(p) help "vundzi ma"mundzi

(q) plant "vuli mam"buli

Table .: Nasal+Oral Clusters in man- Prefixation
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these are the same effects caused by any underlying nasal+oral cluster except when the

following consonant is voiceless, in which case the following consonant deletes, or is what

would otherwise surface as [v] or [h], in which case the effect varies from root to root²⁴.

The pattern is schematized in the table below:

()

Stem-Initial C Result Stem-Initial C Result

p m z ndz

b mb l nd

f m r n
>
dR

v mb,m Ù n

t n k n

d nd g Ng

s n h n,Ng

Pater () takes on similar data patterns, including this prefix, which shows up with

similar patterns throughout the Western Austronesian languages. In this work he analyzes

the situation as an instance of coalescence, where the final nasal of the prefix merges with

the following consonant if it is nasal or voiceless. He also describes the traditional analysis

for these phenomena:

The standard analysis invokes two ordered rules to generate the single nasal

from the underlying pair of segments: nasal assimilation, followed by a rule

of root-initial, post-nasal, voiceless consonant deletion.

24There are also two words in which initial /b/ is dropped, but I have chosen to analyze these as listed
forms.
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For a variety of reasons a coalescence analysis is extremely difficult to integrate with the rest

of my Malagasy analysis, and therefore I have followed the traditional line, implemented

with sequentially-ordered levels rather than rules. However, the coalescence analysis may

be a worthwhile area for future work. The effect of an- prefixation appears to be partially

lexicalized, and as such I have moved part of its explanation from the postlexical level

to the word level. At the word level voiceless following consonants are deleted, plus the

consonants in forms that pattern like (n) and (p) in the table. Thus, the input to the

postlexical level will be such that the normal nasal+oral cluster mechanisms there will do

the right thing. The word level analysis works as follows.





Lexical Markings on the Prefix The nasal at the end of the -an prefix has a special

lexical marking, here noted as “x,” as in /nx/. This passes through up to the start of the

postlexical level, where the ranking in () removes it.

() *[+nas,+x], MaxIO(C) �p IdentIO([+nas,+x])

At the word level the ranking is reversed ():

() MaxIO(C)/_V, MaxIO(C)/_C, IdentIO([+nas,+x]) �w *[+nas,+x]

The same is true of the stem level:

() MaxIO(C), IdentIO([+nas,+x]) �s *[+nas,+x].

Voiceless Consonants Following voiceless consonants are deleted, including underly-

ing /h/, due to the ranking (), as shown in (). The constraint *[+nas,+x][-vce] ()

is a lexicalized reflex of Pater’s () universal *[+nas][-vce] constraint.

() *Sequence([+nas,+x], [-vce], ):

Short form—*[+nas,+x][-vce]. Output a violation for every instance of a lexically marked

(+x) nasal followed by a voiceless segment.

() MaxIO(C)/_C, IdentIO([-vce])/_V, *[+nas,+x][-vce] �w MaxIO(C)/_V
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() /m+anx+tuseh/ → /m/+[ans"tuseh]s → [ma"nxusik]w ‘pres.+act.+shove’

/m/+[anx"tuseh]s M
ax
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)/_
C

Id
en

tI
O
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vc

e]
)/_

V

*[+
nas
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]
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x]
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or,C

]

M
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IO
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)

*[+
vc

e,-
so

n]

�

ma"nx∅usik * * * *

manx"tusik *! * **

manx"dusik *! * ** *

ma∅"tusik *! ** *

Voiced Labial Fricatives Following voiced labial fricatives are either deleted or changed

to the corresponding stop. Which of these is chosen appears to be stem-specific, and not

predictable from the isolation form of the stem. For example, the isolation form of the

verb to help is ["vundzi] and the prefixed form is [ma"mundzi], so here the stem-initial seg-

ment is deleted. However the indistinguishable form ["vuli] ‘to plant’ behaves differently

under prefixation—[mam"buli]. I have analyzed this situation as one where the underly-

ing form of the initial consonant in ["vuli] differs from that of ["vundzi]. In particular, I

claim that the underlying form of the latter is /vundzi/ whereas the underlying form of the

former is /Buli/. This is of course, an abstract segment analysis, and therefore a bit contro-

versial, so discussion of alternatives is in order. One alternative option would be to analyze

one as underlying /v/, as before, and the other as underlying /b/. The problem there is

that there is another behavior pattern that seems more likely to be due to underlying /b/:

isolation ["beda] ‘to grab’ becomes [mam"beda]. Another option would be /v/:/f/, which

is ruled out by ["fefi]:[ma"mefi] ‘to fence in.’ The final option, of course, is to analyze the
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alternations as being memorized on a stem-specific basis. I prefer the abstract segment

analysis as exposing more regularity. Note that Pulleyblank () argues for a similar

approach in which abstract underlying representations involving segments not found in

surface representations are licit just in the case where the abstract segments differ from

non-abstract segments just in a feature or features that lead to surface contrast elsewhere

in the language.

Having chosen somewhat abstract underlying forms, the analysis proceeds as follows.

After the an- prefix, following voiced labial fricatives are changed or deleted, depending

on whether or not they are [+strid]. The sequences are not left alone because of an

undominated constraint forbidding them:

() *Sequence([+nas,+x],[+cont,-son,lab]):

Output a violation for any surface sequence of a lexically marked nasal segment followed by

a labial fricative.

These labial fricatives do not change point of articulation because of the earlier-mentioned

inviolable constraint IdentIO([lab])/_V (). Underlyingly strident labial fricatives (/v/)

resist change due the following undominated constraint:

() IdentIO([+strid]):

Assess a violation for any underlyingly strident segment that has a non-strident surface cor-

respondent.

Because there is no acceptable labial strident fricative, these segments delete. Non-strident
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labial fricatives, however, change to voiced stops because their barrier to change () is

lower ranked. The ranking is as given in ().

() IdentIOIn([-strid,+cont,-son,lab], B):

Output a violation for any underlying /B/ that has a surface correspondent which is some-

thing other than a member of the natural class [-strid,+cont,-son,lab].

()
*[+nas,+x][+cont,-son,lab], IdentIO([+strid]) �w MaxIO(C)/_V �w

IdentIOIn([-strid,+cont,-son,lab], B), IdentIO([+cont,-son])/_V

See tableaux () and () for an illustration of this mechanism.

() /m+anx+Bule/ → /m/+[amx"Bule]s → [mamx"buli]w ‘pres.+act.+plant’

/m/+[amx "Bule]s *[+
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M
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)
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�

mamx "buli * *** * * *

ma"mx∅uli *! ** *

mamx "vuli *! * *** * * * *

mamx "Buli *! *** * * *
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() /m+anx+vali/ → /m/+[amx"vali]s → [ma"mxali]w ‘pres.+act.+answer’

/m/+[amxvali]s Id
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ma"mx∅ali * ** *

mamx "vali *! *** * * *

mamx "bali *! * *** * * *

It still remains to be explained why /B/ appears as [v] on the surface. There will be some

complications explored in §..., but essentially /B/ survives word-initially and post-

nasally to become an input to the post-lexical level, and at that point it changes to [v] due

to the agency of there-undominated *[-strid,+cont,-son,lab] (), as shown in ().

() *([-strid,+cont,-son,lab]):

Output a violation for each surface instance of a non-strident labial fricative.
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() /Bule+an/ → [Bu"lean]s → [Bu"len]w → [vu"len] ‘plant+pass.’

[Bu"len]w *[-
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ri
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so
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b]
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M
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vu"len *

bu"len *! * * *

Bu"len *! *

In cases where the following consonant is deleted, a constraint preserving labial place in

lexically marked nasals () outranks the general ban on labial consonants (), and this

keeps the nasal assimilated to the place of the deleted consonant. This place assimilation

occurs at the stem level, with the same analysis () as at the post-lexical level.

() IdentIOIn([lab], [+nas,+x]):

Output a violation for any instance of an underlyingly labial lexically marked nasal with a

surface correspondent that is not labial.

() IdentIOIn([lab], [+nas,+x]) �w *[lab,C]

() IdentIO(C-place)/_V, *[αC-place][−αC-place] �s IdentIO(C-place)
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Velars and Glottals It was stated above that underlying /h/ is deleted following

the an- prefix. This accounts for the pattern ["heti]:[ma"neti] (‘cut’), but leaves ["hataka]:

[maN"gataka] unexplained. Here I have employed a similar analysis to that used for the

voiced labial fricatives above—the underlying consonant in forms like ["hataka] is abstract

/G/. Underlying /G/ surfaces as [h] in all contexts except following a nasal, because of a

general (word-level undominated) ban on dorsal fricatives () and also the higher rank-

ing of preservation of frication before a vowel with respect to the general ban on fricatives.

() *([+cont,-son,dors]):

Output a violation for each instance of a surface dorsal fricative.

The relevant rankings are given in () and (144) and shown in ().

() *[+cont,-son,dors] �w IdentIO([±vce])/#_, IdentIO([+vce])/_V

() IdentIO([+cont,-son])/_V �w *[+cont,-son]

() /Gatah/ → ["Gatah]s → ["hatak]w ‘ask’

["Gatah]s *[+
co

nt,-
so

n,d
ors

]

Id
en

tI
O

([+
co

nt,-
so

n])/
_V

Id
en

tI
O

([±
vc

e]
)/#

_

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

*[-
co

r,+
vc

e,+
co

nt,-
so

n]

Id
en

tI
O

([+
vc

e]
)/_

V

*[+
vc

e,-
so

n]

�

"hatak * * * *

"gatak *! ** *

"Gatak *! * * * *
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After a nasal, /G/ becomes [g] at the word level because of undominated *[+cont,-son,dors]

(142) and IdentIO([+vce])/[+nas]_ (146) (also *[+nas,+x][-vce] (), but /G/ becomes

[g] after lexically unmarked nasals as well), as illustrated in tableau ().

() IdentIOAfter([+vce], [+nas])

Output a violation for any underlying sequence of a nasal followed by a voiced segment

where that segment corresponds to a surface voiceless segment.

() /m+anx+Gatah/ → /m/+[aNx"Gatah]s → [manx"gatak]w ‘pres.+act.+ask’
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]
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manx"gatak * ** *

ma"nx∅atak *! * *

manx"Gatak *! * * * *

manx"hatak *! * * * *

.. oral-consonant-final weak and pseudo-weak roots

Table . shows the behavior of oral-consonant-final weak and pseudo-weak roots in isola-

tion vs. their behavior when suffixed. This behavior is summarized in Table .; essentially,

the isolation forms have fewer contrasting consonant phonemes than the suffixed forms

do. My analysis for these phenomena is that the isolation forms are consonant-final at
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Present (m+stem) Circumstantial (stem+an) Gloss

(a) maN"gataka aNga"tahan to ask for

(b) ma"naRaka ana"Rahan to follow

(c) mi"anaÙa ia"naRan to study

(d) mi"s >auÙa i"s >auRan to thank

(e) ma"nan
>
dRaÙa anan"

>
dRatan to promote

(f ) mahafi"naRiÙa ahafina"Retan to please

(g) man"
>
dRakuÙa an

>
dRa"kufan to cover

(h) ma"nahaka ana"hafan to scatter

(i) ma"naluka ana"lufan to shade

(j) mi"lelaka ile"lafan to lick

Table .: Oral Consonant Simplification

the word level. At the word level these consonants simplify to either [Ù], for coronals and

some labials, or [k] for everything else. At the post-lexical level the vowel [a] is epenthe-

sized word-finally, so both the isolation and suffixed forms end up having the stem-final

consonant precede a vowel. The sections to follow give further details.
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Before Epenthetic [a] Elsewhere Proposed UR

[Ù] [f] [f]

[Ù] [t] [t]

[Ù] [Ù] [Ù]

[Ù] [R] [R]

[k] [f] [F]

[k] [k] [k]

[k] [h] [h]

Table .: Word-Final Oral Consonant Summary

... Determination of Underlying Forms

See Table . for a summary of the behavior of the final consonants in the oral-consonant-

final stems. Ignoring the “Proposed UR” column for now, it appears that for the most part

the isolation form of each root is predictable from the suffixed form. The only question

then is what to do about the forms which are not completely predictable from the suffixed

form. These are the forms where the suffixed stem ends in [f]. Here I have chosen a

somewhat abstract analysis, analogous to those proposed in §.... The phoneme /f/ is

quite similar to the bilabial voiceless fricative /F/, differing only in the feature [±strid].

As it happens, [Ù] differs from [k] by this feature as well (also some others). Therefore I

propose that the consonant that surfaces as [f] in the suffixed form and [Ù] in the unsuffixed

form is underlyingly /f/ and the other is /F/.
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... Word-Final Simplification

The generalization here is that when the suffixed form of a weak stem ends in a dorsal

or glottal consonant, the isolation form ends in [-ka]. When the suffixed form ends in

a coronal consonant, the isolation form ends in [-Ùa]. If the suffixed form ends in a

labial consonant, the isolation form is unpredictable—in §... I proposed that labial

stems that emerge as [-ka] are underlyingly non-strident, and those that emerge as [-Ùa] are

underlyingly strident. Thus the prediction is that, although no weak stems appear to exist

whose suffixed form ends in [b] or [p], the isolation form of these stems would be [-ka], if

they did exist, since [b] and [p] are non-strident.

Velars As seen above, Malagasy seems to prefer alveolars when it comes to nasal con-

sonants. Among oral consonants, however, there seems to be a preference for velars.

Cross-linguistically this is quite unusual—alveolar oral consonants are generally preferred

across languages, but Malagasy seems not to share this preference. A related result is that

of Trigo (), who also found velars to be less marked than coronals in some languages,

and Hume & Tserdanelis (), who found a language where the labial point of articula-

tion seems to be the least marked. Perhaps there are available constraints to penalize every

point of articulation, but in Malagasy the velar penalty is the lowest. Here the previously

introduced constraint *[lab,c] () penalizes labial consonants while a new constraint

() penalizes oral alveolar consonants.

() *[-nas,+ant,cor,C]:

Output a violation for each oral alveolar consonant in the surface representation.
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An underlyingly word-final /k/ stays constant not because of identity constraints neces-

sarily, but because there are no active²⁵ markedness constraints penalizing it:

() /fuk/ → ["fuk]s → ["fuk]w → ["fuka] ‘absorb’

[fuk]s *[-
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an

t,c
or,C

]

*[l
ab

,C
]
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IO
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�

"fuk * *

"fuÙ * **! * *

"fu∅ * *! *

"fup **! *

"fut *! * *

There is only one other non-labial underlying form that becomes [k] in word-final con-

texts, however, or at least only one for which there is evidence. That is the glottal fricative

/h/, which surfaces as [k] word-finally because of the general ban on fricatives (places other

than velar are not chosen because there are constraints against them).

() *[+cont,-son] �w IdentIO([±cont])

25“Active,” when applied to a constraint, is used here to indicate that the constraint is not outranked
by constraints that would cause it to have no candidate-selecting effect. That is, in the Optimality Theo-
retic generation process, which consists of a successive winnowing of a pool of candidate outputs, an active
constraint is one that is ranked such that it will reduce the candidate pool for at least one potential input.
An inactive constraint is ranked such that it never eliminates output candidates no matter what underly-
ing form is being evaluated. For example, *[dors] is inactive if it is outranked by IdentIO([dors]) and
MaxIO([dors]). In general I have not included inactive constraints in the analysis unless the constraints
are active in some level of grammar and not in another.
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The glottal fricative does appear in other contexts because of prevocalic faithfulness to

fricatives (IdentIO([+cont,-son])/_V ()), which outranks the ban on fricatives:

() IdentIO([+cont,-son])/_V �w *[+cont,-son].

These rankings are demonstrated by the tableaux () and ().

() /peÙah/ → ["peÙah]s → ["peÙak]w → ["peÙaka] ‘sit’

["peÙah]s *[+
co

nt,-
so

n]
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en

tI
O
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nt]
)
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en
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O
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st

ri
d])

�

"peÙak * *

"peÙah **!

"peÙaÙ **! * *

() /m+i+peÙah+a/ → /m/+[i"peÙah]s+/a/ → [mipe"Ùaha]w ‘pres.+act.+sit+imp.’

/m/+[i"peÙah]s+/a/ Id
en

tI
O

([+
co

nt,-
so

n])/
_V
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�

mipe"Ùaha **

mipe"Ùaka *! * *

Final [k] is preferred to [g] in these words because of a general dispreference for voiced

obstruents:
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() *([+vce,-son]):

Output a violation for each voiced obstruent on the surface.

The selection of [k] in the case of /peÙah/ can be seen in the simplest tableau so far ().

() /peÙah/ → ["peÙah]s → ["peÙak]w → ["peÙaka] ‘sit’

["peÙah]s *[+
vc

e,-
so

n]

�

"peÙak

"peÙag *!

Beyond this, however, the constraint *[+vce,-son] has little effect ()—it does not cause

prevocalic voiced obstruents to change, nor does it cause consonant clusters involving

voiced obstruents to simplify ().

() IdentIO([+vce])/_V, IdentIO([±cont]) �w *[+vce,-son]

() /atiduha/ → [­ati"duha]s → [­ati"duha]w ‘brain’

[­ati"duha]s Id
en

tI
O
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vc

e]
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�

­ati"duha *

­ati"tuha *!
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() /in
>
dR>aı/ → [in"

>
dR>aı]s → [in"

>
dR>aı]w ‘again’

[in"
>
dR>aı]s Id

en
tI

O
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nt]

)

*[+
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e,-
so

n]

�

in"
>
dR>aı *

in"R>aı *!

Alveolars No alveolars survive as such in final position, although non-fricative alveo-

lars survive as the post-alveolar affricate [Ù]. Word-final alveolars can become [Ù] because

the cross-linguistically unusual constraint *[-nas,+ant,cor,C] () banning alveolar oral

consonants outranks the constraints which penalize [Ù] and the feature changes that are

necessary to change an alveolar stop to a post-alveolar affricate (see ranking ()).

()
*[-nas,+ant,cor,C] �w *[+cont,-son], IdentIO([±cont]),

IdentIO([-strid]).

Underlying alveolars do not become velars because the ban on changing coronals into

non-coronals (or deleting them) outranks the penalizing constraints:

()
IdentIO([cor]), MaxIO(C) �w *[+cont,-son], IdentIO([±cont]),

IdentIO([-strid]).

The effect of these rankings is illustrated in the following tableau:
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() /avut/ → ["avut]s → ["avuÙ]w → ["avuÙa] ‘redeem (redemption)’

[avut]s Id
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"avuÙ ** * *

"avu∅ *! *

"avut *! *

"avuk *! *

This change does not occur before a vowel because of a prevocalic positional faithfulness

constraint (), in ranking (), shown in tableau ().

() IdentIOBefore([+ant],V):

Short form—IdentIO([+ant])/_V. Output a violation for each instance of the under-

lying sequence of an anterior consonant preceding a vowel where the anterior consonant

corresponds to a surface segment that is not a member of the natural class [+ant]. For

example, [aÙa] derived from underlying /ata/ would violate the constraint once.

() IdentIO([+ant])/_V �w *[-nas,+ant,cor,C].





() /avut+an/ → [a"vutan]s → [a"vutan]w ‘redeem+pass.’

[a"vutan]s Id
en

tI
O

([+
an

t]
)/_

V

*[-
nas

,+
an

t,c
or,C

]

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

Id
en

tI
O

([-
st

ri
d])

�

a"vutan * *

a"vuÙan *! ** * *

Labials As opposed to the alveolars, the only evidence for underlying labials in word-

final position seems to come from fricatives²⁶. For weak stems with a proposed underlying

labial final consonant, there are two different patterns. In one pattern, forms with a vowel-

initial suffix show the segment [f] whereas the unsuffixed form has [k]. In the other, the

suffixed form has [f] but the unsuffixed form has [Ù]. As mentioned in §..., I am

analyzing the underlying form behind the first pattern as /F/ and the second as /f/ (I also

propose underlying voiced labial fricatives in some consonant-final stems, as will be seen

in §.). For underlying /F/, the ranking in () propels a change away from the labial

place of articulation and keeps the consonant from being deleted entirely in the unsuffixed

form, and the presence of *[+cont,-son] in the grammar causes [k] to be preferred over

[Ù], as shown in tableaux () and ().

() MaxIO(C), *[lab,C] �w IdentIO([±cont]), IdentIO([lab])

26I can find no instances of [b] or [p] in consonant-final stems. As previously stated, the prediction of this
analysis is that if such stems were found, /b#/ and /p#/ would surface as [ka].
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() /m+i+lelaF/ → /m/+[i"lelaF]s → [mi"lelak]w ‘pres.+act.+lick’

/m/+[i"lelaF]s *[l
ab

,C
]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

Id
en

tI
O

([-
st

ri
d])

Id
en

tI
O

([l
ab

])

�

mi"lelak * * *

mi"lelaÙ * *! * * *

mi"lela∅ * *!

mi"lelaF **! *

() /i+lelaF+an/ → [i"lelaF]s+/an/ → [ile"laFan]w ‘act.+lick+circum.’²⁷

/[i"lelaF]s+/an/ Id
en

tI
O

([l
ab

])/
_V

*[l
ab

,C
]

Id
en

tI
O

([+
co

nt,-
so

n])/
_V

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

Id
en

tI
O

([-
st

ri
d])

Id
en

tI
O

([l
ab

])

�

ile"laFan * *

ile"lafan * * *!

ile"lakan *! * * *

The underlying labial remains labial in the suffixed form because of the already-seen rank-

ing

() IdentIO([lab])/_V �w *[lab,C].

27Here the surface form becomes [ile"lafan] due to post-lexical dispreference for non-strident fricatives.
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Note that lexical-level [F] becomes [f] at the post-lexical level due to the undominated

constraint *[−strid, +cont, −son, lab], which outranks IdentIO([±strid]). In fact,

IdentIO([±strid]) is low-enough ranked that it is inactive at the post-lexical level.

Similar forces work on underlying /f/, but the ranking

() IdentIO([+strid]) �w *[+cont,-son]

causes the alternative [Ù] to be chosen, as shown in the following tableau:

() /rakuf/ → ["rakuf]s → ["rakuÙ]w ‘cover’

[Rakuf]s Id
en

tI
O

([+
st

ri
d])

*[l
ab

,C
]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

Id
en

tI
O

([l
ab

])

�

"RakuÙ * * *

"Raku∅ *!

"Rakuf *! *

"Rakuk *! * *

... Second Member Nasal-Consonant-Initial Compounds

Genitives where the object of possession is an oral-consonant-final weak root and the

possessor begins with a vowel introduce oral + nasal clusters. In the output, the nasal

disappears and the oral consonant is preserved.





()

Gloss Object Possessor Genitive

chicken’s foot "tuNguÙa a"kuhu ­tuNguÙa"kuhu

Soa’s shoulder "suRuka i"sua ­suRuki"sua

From () it appears that this behavior derives from the combination of a number of

undominated constraints. The essential characterization is that an underlying nasal con-

sonant deletes after an underlying oral consonant. This happens for the following reasons:

. Nasality does not change, due to IdentIO([±nas]) (87).

. Nasal-final clusters are banned, due to *C [+nas] ().

. Clusters may not simplify by becoming a single complex segment with differing

values for [±nas], due to *|[αnas][−αnas]| ().

. Oral consonants may not be deleted ().

() MaxIO([-nas,C]):

Output a violation for each underlying oral consonant that does not appear on the surface.
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() /tuNgut/+/n/+/akuhu/ → ["tuNgut]s+/n/+[a"kuhu]s → ["tuNgut
¯
n]w+[a"kuhu]w →

[­tuNguÙa"kuhu] ‘foot+gen.+chicken=chicken foot’

["tuNgut
¯
n]w+[a"kuhu]w Id

en
tI

O
([
±

n
as

])

M
ax

IO
([

-n
as

,C
])

*|
[-

n
as

][
+

n
as

]|

*C
[+

n
as

]

Id
en

tI
O

([
+

vc
e]

)/
_

V

*|
[-

vc
e]

[+
vc

e]
|

M
ax

IO
(C

)

*C
C

Id
en

tI
O

([
±

an
t]

)

Id
en

tI
O

([
±

vc
e]

)

*[
+

fr
ic

]

Id
en

tI
O

([
±

co
n

t]
)

IO
-U

n
if

o
rm

it
y(

C
)

�

t­uNguÙ∅ak"uhu * * ** *

t­uNgutnak"uhu *! ** * *

t­uNgu
>
tnak"uhu *! * * * * *

t­uNgu∅nak"uhu *! * * *

t­uNgutak"uhu *! * * * * * *

... Second Member Oral-Consonant-Initial Compounds

The behavior of oral+oral clusters, shown in Table ., is almost identical to that of

nasal+oral clusters. The only difference is that the output is a single consonant, formed by

coalescence rather than deletion. The remaining consonant keeps the voicing and place

of articulation features of the second of the two underlying consonants, but becomes an

obstruent stop.

The explanation for why the consonants simplify by coalescence rather than deletion

comes from ranking (), as illustrated in ().

() MaxIO(C), *CC �p IO-Uniformity(C)
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Gloss Isolation Form Hyp. Word-Output Reduplicated

Second Consonant is a Stop or Affricate

offer "tuluÙa ["tuluÙ]w+["tuluÙ]w ­tulu"tuluÙa

cut "tapaka ["tapak]w+["tapak]w ­tapa"tapaka

Second Consonant is an Alveolar Fricative

writing "suRaÙa ["suRaÙ]w+["suRaÙ]w ­sura"ţuraÙa

thing "zavaÙa ["zavaÙ]w+["zavaÙ]w ­zava"dzavaÙa

Second Consonant is a Peripheral Fricative

known "fantaÙa ["fantaÙ]w+["fantaÙ]w ­fanta"pantaÙa

fault "heluka ["heluk]w+["heluk]w ­helu"keluka

selling ­varuÙa ["vaRuÙ]w+["vaRuÙ]w ­vaRu"baruÙa

Second Consonant is a Sonorant

flexibility "lefaka ["lefak]w+["lefak]w ­lefa"defaka

conversation "Resaka ["Resak]w+["Resak]w ­Resa"
>
dResaka

Table .: Oral+Oral Consonant Clusters
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() /tuluR+red/ → [­tuluR"tuluR]s → [­tulut
¯
"tuluÙ]w → [­tulu"tuluÙa] ‘offer+red.’

[­tulut
¯
"tuluÙ]w M

ax
IO

([-
nas

,C
])

M
ax

IO
(C

)

*C
C

Id
en

tI
O

([±
an

t]
)

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

IO
-U

nifo
rm

it
y(

C)

�

­tulu"tuluÙa * * *

­tulut"tuluÙa *! * *

­tulu∅"tuluÙa *! * *

­tulu"Ù∅uluÙa *! * ** *

Some of the forms, such as ["fantaÙa]:[fan"taRin]:[­fanta"pantaÙa], would be paradoxical in a

mono-stratal analysis. In [­fanta"pantaÙa] an underlying continuant merges with another

underlying continuant, but the result is a stop. Where the first position consonant is not

a fricative, it makes sense that its non-continuant nature is preserved in the merged con-

sonant, via the independently needed undominated constraint PtIdentIO([-son,-cont])

() (it is independently needed so that underlying affricates remain as such on the sur-

face). Under the lexical/post-lexical analysis, however, the first position consonant is al-

ways a stop or affricate at the level (post-lexical) where the coalescence occurs, due to

word-final consonant neutralization.

() PtIdentIO([-son,-cont]):

Assess a violation for any surface segment that corresponds to an underlying obstruent stop

and does not have the feature [-son,-cont] at any point within its segment contour.
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() /suRat+red/ → ["suRat]s+["suRat]s → ["suRaÙ]w+["suRaÙ]w → [­suRa"ţuRaÙa] ‘writing+red.’

["suRaÙ]w+["suRaÙ]w PtI
den

tI
O

([-
so

n,-c
ont]

)

Fe
at

M
ax

IO
([+

co
nt,-

so
n])/

_V

Id
en

tI
O

([+
co

nt,-
so

n])/
_V

*[+
co

nt,-
so

n]

Fe
at

M
ax

IO
([+

co
nt,C

])

Id
en

tI
O

([±
co

nt]
)

�

­suRa"ţuRaÙa *** * *

­suRa"tuRaÙa *! * ** ** **

­suRa"suRaÙa *! *** *

When consonant clusters coalesce, they take on the place and voicing value of the second

consonant, due to the following ranking:

()
IdentIO([C-place])/_V, IdentIO([±vce])/_V, *CC �p

IdentIO([C-place]), IdentIO([±vce])

This behavior is partially illustrated in tableaux () and ().

() /suRat+red/ → ["suRat]s+["suRat]s → ["suRaÙ]w+["suRaÙ]w → [­suRa"ţuRaÙa] ‘writing+red.’

["suRaÙ]w+["suRaÙ]w *C
C

Id
en

tI
O

([±
an

t]
)

*[+
co

nt,-
so

n]

Fe
at

M
ax

IO
([+

co
nt,C

])

Id
en

tI
O

([±
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nt]
)

IO
-U
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y(

C)

�

­suRa"ţuRaÙa * *** * * *

­suRa"ÙsuRaÙa *! ****
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() /vaRut/+red → ["vaRut]s+["vaRut]s → ["vaRuÙ]w+["vaRuÙ]w → [­vaRu"baRuÙa] ‘selling+red.’

["vaRuÙ]w+["vaRuÙ]w *|[
-v

ce
][+

vc
e]
|

*C
C

Id
en

tI
O

([±
vc

e]
)

IO
-U

nifo
rm

it
y(

C)

�

­vaRu"baRuÙa * *

­vaRup"baRuÙa *!

­vaRu"
>
pbaRuÙa *! *

All the other behaviors shown in Table . fall out of the same constraint rankings de-

scribed in §....
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.. rankings so far

... Stem Level

At the stem level the only ranking facts that have been established so far are the vio-

lable status of IdentIO([Cplace]) and the inviolable status of IdentIO([Cplace])/_V,

*[αCplace] [−αCplace], and the constraints listed in .. as being undominated in the

other levels.

... Word Level

Other than the generally undominated constraints, the following constraints have been

established as undominated at the word level: IdentIO([lab])/_V and IdentIO([±syl]).

The rankings of violable constraints are as follows, up to this point:

UNDOMINATED

MaxIO(C)/_V

*[-nas,+ant,cor,C]MaxIO(C)

NonFinalityMaxIO(V)IdentIO([+/-vce])/#_ *Clash *[+prim]

IdentIOIn([-strid,+cont,-son,lab], B) *[+nas,+x]*[lab,C] IdentIO([+cont,-son])/_V

IdentIO([+/-cont])

IdentIO([-strid])IdentIO([lab]) *[+cont,-son]

IdentIO([+stress])IdentIO([-stress,V])

*[-cor,+vce,+cont,-son]

*[+vce,-son]

*Lapse

IdentIO([+vce])/_V

... Post-Lexical Level

Other than the generally undominated constraints, the following constraints have been

established so far as undominated at the post-lexical level: DepIO(C), MaxIO([+stress]),
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MaxIO([−nas, C]), IdentIO([±nas]), *C [+nas], IdentIO([±syl]), *[αC-place] [−αC-

place], *[−cont] [+cont, C], and PtIdentIO([−son, −cont]).

The rankings of violable constraints are as follows, up to this point:

UNDOMINATED

DepIO(V)

IdentIO([+/-low])

*[+prim]

IdentIO([-high])

FeatMaxIO([+cont,-son])/_V

MaxIO(C)

*[-low]

*C C

IdentIO(+/-r)

*N V#

IdentIO([+cont,-son])/_V

IdentIO([-lab])

IdentIO([cor])

IdentIO([+/-ant])

IdentIO([+/-vce])

IdentIO([dors])

IO-Uniformity(C)

FeatMaxIO([+cont,C])

IdentIO([+/-cont])

NonFinality

MaxIO(V)

*Lapse

*[+cont,-son]

3.8 EXCEPTIONS TO THE BASIC STRESS PATTERN

This section details various phenomena related to stress in Malagasy, including opaque

stress under vowel loss, quantity sensitive stress, and phonemic stress.

.. hiatus and opaque stress

There seems to be a pattern of opaque stress under vowel loss. In certain instances of

created vowel hiatus, one of the vowels deletes, and the resulting vowel generally carries

stress. In () group (a) does not exhibit this pattern—falling patterns (high to low) are





apparently acceptable as hiatuses in Malagasy.
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()

Gloss Less Morph. More Morph.

(a) wait "an
>
dRi mi"an

>
dRi

/an
>
dRi/ /m+i+an

>
dRi/

believes "min mi"nua

/m+inu/ /m+inu+a/

understood "azu ­azu"azu

/azu/ /azu+azu/

(b) work mi"asa ia"san

/m+i+asa/ /i+asa+an/

reap mi"dzindza idzin"dzan

/m+i+dzindza/ /i+dzindza+an/

carry, bring mi"tun
>
dRa ­itun"

>
dRan

/m+i+tun
>
dRa/ /i+tun

>
dRa+an/

change "uva ­uv"uva

/uva/ /uva+uva/

(c) look at mi"dzeRi idze"Ren

/m+i+dzeRe/ /i+dzeRe+an/

back-carry "babi ba"ben

/babe/ /babe+an/

confess mi">aıki i­>aı"ken

/m+i+>aıke/ /i+>aıke+an/

(d) spit "ivi ­iv"ivi

/ivi/ /ivi+ivi/
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In group (b) the affixed vowel /a/ cannot follow the stem-final vowel /a/ and opaque

stress can be seen in the resulting word-final main stress. Group (c) is much the same,

with stem-final /e/ similarly incompatible with affixed /a/. Finally, group (d) partially

illustrates a general pattern wherein adjacent identical vowels merge. Note that some of

this data (mostly in (c)) shows evidence of vowel weakening, where unstressed word-final

front vowels raise to [i]. This phenomenon is analyzed in §..

When one of two adjacent vowels delete and one carries stress, the resulting vowel

must carry stress as well, with one exception to be noted later. The first part of this, of

course, is the vowel deletion—why does it occur? Looking at Table (), it is possible to

see that the language appears to allow some vowel combinations in hiatus and disallow

others. The analysis for vowel deletion here consists first of a set of constraints that bans

all of the vowel combinations that are never found in Malagasy:

() *Sequence(Vi, Vi, ∅):

Short form—*ViVi²⁸.

() *Sequence(a, V, ∅):

Short form—*aV. Output a violation for any low vowel followed immediately by another

vowel.

() *Sequence(e, a, ∅):

Short form—*ea.

28Implemented as a set of constraints such as *Sequence(i, i, ∅), *Sequence(e, e, ∅), one for each vowel
type.
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() *Sequence(e, i, ∅):

Short form—*ei.

I will abbreviate these collectively as *BadVSeq. My analysis for this is that when a banned

vowel sequence occurs, one of the vowels is deleted, unless for some reason both vowels

carry stress. If only one of the vowels carries stress, the unstressed vowel is deleted. If both

vowels are unstressed, the second vowel deletes²⁹. One of the rankings that account for

this is (). Note also in this ranking that contexts for positional faithfulness with respect

to the Max family of constraints are presumed to be underlying, thus the second “V”

in MaxIO(V)/_V represents an underlying vowel. The ranking is illustrated in tableaux

()–().

()
*BadVSeq, IdentIO([±round]), IdentIO([±back]) �w MaxIO(V),

MaxIO(V)/_V, *Clash, NonFinality

() /i+asa+an/ → [i"asa]s+/an/ → [ia"san]w ‘act.+work+circum.’

[i"asa]s+/an/ *B
ad

VSe
q

N
onFi

nal
it

y

M
ax

IO
(V

)

�

ia"sa∅n * *

ia"saan *!

29I have not thoroughly investigated prefix-stem boundary cases. Perhaps MaxIO(V)/_V actually reflects
increased faithfulness to stem vowels.
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() /ivi+red/ → [­ivi"ivi]s → [­i"vivi]w ‘spit+red.’

[­ivi"ivi]s M
ax

IO
([+

st
re

ss
])

Id
en

tI
O

([±
ba

ck
])

Id
en

tI
O

([±
ro

und])

Id
en

tI
O
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lo

w
])/

V_

*B
ad

VSe
q

M
ax

IO
(V

)/_
V

M
ax

IO
(V

)

Id
en

tI
O

([-
st

re
ss

,V
])

*C
la

sh

�

­iv∅"ivi * * *

­ivi"ivi *!

­ivi"uvi *! *

­iv"i∅vi *! * * * *

() /i+dzeRe+an/ → [i"dzeRe]s+/an/ → [idze"Ren]w ‘act.+look at+circum.’

[i"dzeRe]s+/an/ Id
en

tI
O

([±
ro

und])

*B
ad

VSe
q

N
onFi

nal
it

y

M
ax

IO
(V

)

*e
C 0

#

Id
en

tI
O

([-
hig

h])

Id
en

tI
O

([+
lo

w
])

�

idze"Re∅n * * *

idze"Rean *!

idze"Reun *! * *

The other is (), illustrated in tableau ().

() MaxIO([+stress]) �w MaxIO(V)/_V

The basic statement of the opaque stress pattern here is that stress is attracted to a vowel

just before another deleted one. This could be something related to compensatory length-

ening, except that there appears to be no lengthening. Alternatively, it could be related to
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stress inheritance, except that it occurs in forms such as [i"dzeRe]s+/an/ → [idze"Ren]w where

neither the surviving vowel ([e], here) or the deleted vowel ([a], here) has a previously

assigned stress. A fairly direct encoding of the basic statement above is used (complicated

somewhat by a restriction to cases where the deleted vowel was underlyingly [+back]):

() *SequenceIO([V,-stress], V, zero, [+back], ∅):

Short form—OpqStress. Output a violation for any unstressed vowel appearing directly

before a deleted back vowel (opaque stress attraction appears not to apply when the second

vowel is a front vowel, as will be seen in §..). Reminder: *SequenceIO(S1, U1, S2,

U2, I) signifies *S1 : U1 I0 S2 : U2, and zero indicates a deleted element, so a literal

reading of the constraint would be “output a violation for any two-segment sequence

wherein the first segment is a non-stressed vowel that is also a vowel underlyingly and

the second is a deleted segment where the underlying form is a member of the natural

class [+back].”

The following ranking is also necessary (illustrated in ()):

()
MaxIO(V)/_V, OpqStress �w IdentIO([-stress,V]), NonFinality,

IdentIO([+stress]), *Lapse
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() /m+i+sala+red+a/ → /m/+[i­sala"sala]s+/a/ → [mi­salasa"la]w ‘pres.+act.+hesitate+imp.’

/m/+[i­sala"sala]s+/a/ O
pq

St
re

ss

M
ax

IO
(V

)/_
V

N
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nal
it

y

Id
en

tI
O
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st
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,V
])

*L
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se

Id
en

tI
O
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ss

])

�

mi­salasa"la∅ * * * *

mi­sala"sal∅a *!

mi­sala"sala∅ *!

.. quantity-sensitive stress

Recall from §.. that the basic stress pattern of Malagasy is right-to-left trochaic, en-

forced by *Clash, *Lapse, and NonFinality, each unviolated as far as the basic pattern

is concerned. However, the data in ()³⁰ shows that stress is attracted to diphthongs in

Malagasy, and this quantity-sensitive stress attraction can cause violations of two of these

basic constraints.

30Note that the stem level output for the form [i­>aı"ken] is [i­>aı"kean]s. I have analyzed the underlying
form as /i+>aıke+an/, where all affixes are stem level. Thus, the final-syllable stress on this form is due to the
opaque stress phenomenon analyzed in §...
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()

Gloss Form

(a) command "b>aıku

(b) to do ma"n >au

(c) gnat a"l>uı

(d) patched ­bemi"R>aı

(e) since ­haÙi"z>aı

(f ) give in i­>aı"ken

(g) darkened ­>aı"zinin

In particular, in forms (b)–(e) stress attraction to diphthongs leads to final stress, and

forms (f ) and (g) exhibit stress clash. The attraction of stress to diphthongs comes from

the Weight to Stress Principle (WSP), encoded here as follows.

() *Contour([V,αVplace,-stress],[V,−αVplace,-stress]):

Short form — WSP. Output a violation for each diphthong that does not carry stress. The

constraint is formulated in this way because in the present representation there is no

way to distinguish separate elements in a contour unless they differ on some feature³¹.

In forms such as [a"l>uı] and [ma"n >au], WSP causes stress to gravitate to the final syllable

in contravention of the NonFinality constraint. This could be repaired by splitting the

diphthong into separate syllables, but that would violate IO-Integrity(V) (196).

31In the implementation there is actually no direct encoding for feature variables such as α, so this abstract
constraint is represented by a bank of constraints, one for each matching featural specification. Only two are
actually necessary in Malagasy—*|[V,-high,-stress][V,+high,-stress]| and *|[V,+back,-stress][V,-back,-
stress]|.
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() IO-Integrity(V):

An underlying vocalic segment (whether a simple vowel or a diphthong) may not correspond

to more than one surface segment. Output a violation for each corresponding segment other

than the permitted first one, e.g., if an underlying vowel corresponds to three surface vowels,

output two violations.

The diphthong is in actuality not split. This indicates that WSP and IO-Integrity(V)

outrank NonFinality. See () for an illustration.

() WSP, IO-Integrity(V) � NonFinality (applies at all levels)

() /al>uı/ → [a"l>uı]s ‘gnat’

/al>uı/ W
SP

IO
-In

te
gri

ty
(V

)

N
onFi

nal
it

y

�

a"l>uı *

a"lui *!

"al>uı *!

As seen in (f ) and (g) above, forms with diphthongs can exhibit stress clash. This clash is

not broken up by vowel insertion, so DepIO(V) is active here. Further, these never exhibit

stress lapse in the final two syllables of a word, due to the following constraint:

() *FinalSequence([V,-stress], [V,-stress], C):

(Short form — *FinalLapse) Output a violation for every word-final lapse.
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Thus, as seen in (), the following ranking must be in effect:

() *FinalLapse, NonFinality, DepIO(V) � *Clash (at all levels),

() />aızin+in/→[­>aı"zinin]s ‘darkness+pass.’

[">aızin]s+/in/ D
ep

IO
(V

)

*F
in

al
Lap

se

N
onFi

nal
it

y

*C
la

sh

*L
ap

se

�

­>aı"zinins *

­>aızi"nins *!

">aızinins *! *

­>aıza"inins *!

.. phonemic stress

Other than some stress-bearing prefixes, which I will not go into other than to say that

they are added at the word or post-lexical level, depending on the prefix, the only evidence

of phonemic stress in the language seems to involve the final syllable. In Malagasy occa-

sionally stress appears on the final syllable of a word even if that syllable does not include

a diphthong. In many of these instances the stressed final syllable takes the vocalic value

[e] (not all, however—for example, there is the word vu"vu). Pearson () has taken

this as evidence that the phoneme /e/ is inherently long, but it appears that underlying

/e/ can appear on the surface without stress, subject to some complications that will be

explored later (see §.). My analysis is simply to make reference to an inviolable posi-

tional faithfulness constraint IdentIO([+stress])/_C0# () that promotes faithfulness
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to phonemic stress in the context of the final syllable of a stem.

() IdentIOFinal([+stress], C):

Short form — IdentIO([+stress])/_C0#. Output a violation for any word whose final

vowel is unstressed if that vowel carried stress in the underlying form.

The rankings used here are (203) and ().

() IdentIO([+stress])/_C0# �s NonFinality

() *Lapse, *Clash �s IdentIO([+stress])

The ranking in (203) are illustrated in (), and the rankings of () are partially illus-

trated in ().

() /lehi"be/→[­lehi"be]s ‘big’

/lehi"be/ Id
en

tI
O

([+
st

re
ss

])/
_C

0
#

N
onFi

nal
it

y

�

­lehi"be *

le"hibe *!

() [ku"Runtan]s+/in/ → [­kuRun"tanin]s ‘overthrow+pass.’
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[ku"Runtan]s+/in/ *F
in

al
Lap

se

*C
la

sh

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

­kuRun"tanin *

ku­Run"tanin *!

ku"Runtanin *! *

I cannot seem to unearth any examples of a morphologically simple four-syllable stem that

submits to passivization, e.g. hypothetical [­ala"helu]—[a­lahe"luan], which is what would

be necessary to show that *Lapse � IdentIO([+stress]); at any rate, the tableau shows

that either *FinalLapse or *Lapse must outrank IdentIO([+stress])).

.. ranking so far

... Stem Level

Other than the generally undominated constraints (see §..), the following constraints

have been established as undominated at the stem level: IdentIO([Cplace])/_V, *[αCplace]

[−αCplace], WSP, *FinalLapse, IdentIO([+stress])/_C0#.
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Stem-level rankings are as follows:

UNDOMINATED

*[+prim] IO-Integrity(V)

*LapseNonFinality

*Clash

IdentIO([+stress])

... Word Level

Other than the generally undominated constraints, the following constraints have been

established as undominated at the word level: IdentIO([lab])/_V, IdentIO([±syl]),

*ViVi, *ea, *ei, and WSP.





The rankings of violable constraints are as follows, up to this point:

UNDOMINATED

MaxIO(C)/_V *a V

*[-nas,+ant,cor,C]MaxIO(C)

IdentIO([+/-vce])/#_ *[+prim]

IdentIOIn([-strid,+cont,-son,lab], B) *[+nas,+x] *[lab,C] IdentIO([+cont,-son])/_V MaxIO(V)/_VMaxIO(V)

IdentIO([+/-cont])

IdentIO([-strid])IdentIO([lab]) NonFinalityIdentIO([-stress,V])*[+cont,-son]

*Clash

IdentIO([+stress])

*[-cor,+vce,+cont,-son]

*[+vce,-son] *Lapse

IdentIO([+vce])/_V

... Post-Lexical Level

Other than adding WSP as undominated, the post-lexical level has been unaffected by

this section.

3.9 CONSONANT-DELETING STEMS

Section . introduced a class of Malagasy roots that appear to be underlyingly consonant-

final. However, in this analysis these roots are hypothesized to end in a limited set of

consonants: /f/, /F/, /m/, /t/, /Ù/, /n/, /k/, and /h/. The analysis hypothesizes that

roots that end in /b/, /p/, /d/, and /g/ would behave similarly, although such roots are

unattested. There appears, however, to be another set of underlyingly consonant-final

roots. The table in () shows a set of present indicative active forms paired with their

circumstantial counterpart (except for (i), which has the present indicative active paired

with the imperative).
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()

Gloss Isolation Form Suffixed

(a) to do ma"n >au a"n >auvan

(b) to sun-dry mi"hahi iha"hazan

(c) to wait, watch mi"an
>
dRi ian"

>
dRasan

(d) to take man"
>
dR>aı an"

>
dR>aısan

(e) to seek mi"tadi itadi"avan

(f ) to kill maha"fati ahafa"tesan

(g) to go man"deha ande"hanan

(h) to buy mi"vidi ividi"anan

(i) to flatter man"duka mandu"kafa

The present indicative active form is unsuffixed, the circumstantial form carries the suffix

-an, and the imperative form carries the suffix -a. Note, however, that in these forms an

unpredictable consonant is present in the suffixed form, but absent in the isolation form.

There is also some vowel change going on; it will be analyzed in §.. The consonants

that appear in forms like these are [v], [f], [z], [s], and [n]. The simplest explanation for

these facts would be to say that the consonant that emerges is in fact underlying, and

is deleted in the isolation form due to being ill-formed in some way. This is, in fact,

essentially the explanation that I will give, but the simple form of it does not quite work.

Recall that in roots ending with /f/, /F/, /m/, /t/, /Ù/, /n/, /k/, or /h/, the final consonant

neutralizes in isolation, but is not deleted, and notice that this list of consonant endings

includes two of the consonants that appear in the suffixed forms of () (that is, [f] and

[n]). I should note that case (i) is in fact the only instance I have found of surface [f]
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disappearing in the isolation form. In this case I have hypothesized that underlyingly this

consonant is in fact /B/, a voiced non-strident bilabial fricative. The consonant /B/, it

is hypothesized, deletes word-finally, hardens to [b] after a consonant (see §...), and

surfaces as [f] elsewhere. As for surface [n], it is notable that [N] appears in Malagasy words

only preceding a velar consonant. My hypothesis here, then, is that velar nasals are marked

in Malagasy, and therefore /N/ appears on the surface as [n] when followed by a vowel, and

does not appear at all word-finally. Thus, the proposed underlying consonants are as in

().

()

Surface Consonant Proposed UR

[v] /v/

[f] /B/

[z] /z/

[s] /s/

[n] /N/

First the analysis of deleting oral consonants, and then nasals.

.. deleting stem-final oral consonants

... Deleting Alveolars

Unlike alveolar stops and sonorants, alveolar fricatives delete at the end of a word or at the

end of the base morpheme (except when the reduplicant begins with a consonant, as will

be seen later). Tableau () shows that alveolar fricative preservation () prevents alveo-

lar fricatives from changing into non-alveolars, and thus the only way to satisfy the general
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(cross-linguistically unusual, see §...) dispreference for oral alveolars is to delete them,

as shown in ().

() IdentIO([+cont,-son,+ant,cor]):

Output a violation for each instance of an underlying alveolar fricative that corresponds to

a surface segment that is not an alveolar fricative.

() IdentIO([+cont,-son,+ant,cor]), *[-nas,+ant,cor,C] �w MaxIO(C)

() /m+aha+fates/ → /m/+[­aha"fates]s → [­maha"fati]w ‘pres.+act.+kill’³²

/m/+[­aha"fates]s Id
en

tI
O

([+
co

nt,-
so

n,-a
nt,c

or]
)

*[-
nas

,+
an

t,c
or,C

]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

�

­maha"fati∅ * * **

­maha"fatis **! ***

­maha"fatiÙ *! * *** *

This deletion does not occur prevocalically due to the ranking

() MaxIO(C)/_V �w *[-nas,+ant,cor,C],

as shown in the following tableau:

32The vowel raising in this form will be discussed in §..
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() /aha+fates+an/ → [­aha"fates]s+/an/ → [­ahafa"tesan]w ‘act.+kill+circum.’

[a­hafa"tesan]s M
ax

IO
(C

)/_
V

*[-
nas

,+
an

t,c
or,C

]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

�

­ahafa"tesan ** ***

­ahafa"te∅an *! * * **

Finally, as can be seen in tableaux () and (), the same rankings that account for /s/

account for /z/ as well.

() /m+anx+dihiz/ → /m/+[anx"dihiz]s → [manx"dihi]w ‘pres.+act.+dance’

/m/+[anx"dihiz]s Id
en

tI
O

([+
co

nt,-
so

n,-a
nt,c

or]
)

Id
en

tI
O

In
([+

vc
e,+

co
nt,-

so
n],

[+
st

ri
d])

*[-
nas

,+
an

t,c
or,C

]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

Id
en

tI
O

([±
co

nt]
)

*[+
vc

e,-
so

n]

�

manx"dihi∅ * * * *

manx"dihiz **! ** **

manx"dihiÙ *! * * ** * *
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() /anx+dihiz+an/ → [anx"dihiz]s+/an/ → [anxdi"hizan]w ‘act.+dance+circum.’

[anx"dihiz]s+/an/ M
ax

IO
(C

)/_
V

*[-
nas

,+
an

t,c
or,C

]

M
ax

IO
(C

)

*[+
co

nt,-
so

n]

*[+
vc

e,-
so

n]

�

anxdi"hizan ** ** **

anxdi"hi∅an *! * * * *

... Deleting Labials

Section .. illustrates two alternations involving stem-final labials: [Ù]:f in, e.g., [man"
>
dRa-

kuÙa]:[an
>
dRa"kufan] ‘to cover’; and [k]:[f] in, e.g., [mi"lelaka]:[ile"lafan] ‘to lick.’ These were

explained as reflexes of stem-final underlying /f/ and /F/, respectively. There are two other

similar alternations to be explained: ∅:[v] in, e.g., [mi"tadi]:[i­tadi"avan] ‘to seek,’ and ∅:[f] in

[man"duka]:[andu"kafan] ‘to flatter.’ I account for these as underlying stem-final /v/ and /B/,

respectively. The feature-altering forms are underlyingly voiceless, and the deleting forms

are underlyingly voiced.

Underlying /B/ Recall from §... that the ranking in () causes /f/ and /F/ to

resist deletion and change place from labial to dorsal.

() MaxIO(C), *[lab,C] �w IdentIO([±cont]), IdentIO([lab])

This does not happen with the underlyingly voiced fricatives. First of all, /B/ does not

change to [k] as /F/ does because of IdentIOIn([-stri,+cont,-son,lab],B) (133), repeated

here as (217).
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() IdentIOIn([-stri,+cont,-son,lab],B):

Output a violation for each instance of /B/ that changes into something other than a non-

strident labial fricative; i.e., /B/ can delete, remain the same, or change into [F], but nothing

else.

() /dukaB/ → ["dukaB]s → ["duka]w ‘flatter’

["dukaB]s Id
en

tI
O

In
([-

st
ri
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fr

ic
,la

b]
, B)

*[l
ab

,C
]

M
ax

IO
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)
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vc
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ic
]
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]
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O
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nt]
)
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O
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d])

*[+
vc

e,-
so

n]

�

"duka- * *

"dukaB *! * * **

"dukaF *! * *

"dukav *! * * * * **

"dukak *! * *
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() /m+anx+dukaB+a/ → /m/+[anx"dukaB]s+/a/ → [manxdu"kaFa]w ‘pres.+act.+flatter+imp.’

[manx"dukaB]s+/a/ Id
en

tI
O

In
([-

st
ri

,+
fr

ic
,la

b]
, B)

*[-
co

r,+
vc

e,+
fr

ic
]

Id
en

tI
O

([-
st

ri
d])

Id
en

tI
O

([+
vc

e]
)/0

[_
V]

*[+
vc

e,-
so

n]

�

manxdu"kaFa * *

manxdu"kaBa *! **

manxdu"kava *! * * **

() IdentIOIn([-stri,+cont,-son,lab], B), *[lab,C] �w MaxIO(C)

The ranking shown above in () causes the consonant to delete word-finally. In the

suffixed form, the ban on peripheral voiced fricatives *[-cor,+vce,+cont,-son] () out-

ranking IdentIO([+vce])/_V (222), ranking in (), causes /B/ to become voiceless. The

final step from [F] to [f] comes at the postlexical level, due to an undominated ban on

labial nonstrident fricatives (), shown in tableau ().

() *([-cor,+vce,+cont,-son]):

Output a violation for any instance of a surface peripheral (non-coronal) voiced fricative.

() IdentIOBefore([+vce], V):

Output a violation for any instance of an underlyingly voiced prevocalic segment with a

voiceless surface correspondent. Short form—IdentIO([+vce]) / _ V.
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() *[-cor,+vce,+cont,-son] �w IdentIO([+vce])/_V.

() *([-strid,+cont,-son,lab]):

Output a violation for each instance of a surface non-strident labial fricative.

() /m+anx+dukaB+a/ → /m/+[anx"dukaB]s+/a/ → [manxdu"kaFa]w → [mandu"kafa]

‘pres.+act.+flatter+imp.’

[manxdu"kaFa]w *[-
st

ri
d,+

co
nt,-

so
n,la

b]

�

mandu"kafa

mandu"kaFa *!

The change from /B/ to [F]w and thence to [f] does not occur word-initially, as seen earlier

in §.... This is because a constraint preserving voicing word-initially () outranks

the ban on peripheral voiced fricatives (), as shown in tableau ().

() IdentIOInitial([±vce]):

Output a violation for any instance where an underlyingly word-initial segment corre-

sponds to a surface segment that differs from it in the feature [±vce]. Short form—

IdentIO([±vce])/#_.

() IdentIO([±vce])/#_ �w *[-cor,+vce,+cont,-son].
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() /Bule+an/ → [Bu"lean]s → [Bu"len]w ‘plant+pass.’

[Bu"lean]s Id
en
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O
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st
ri
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)
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n]
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O
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e]
)/_

V

*[+
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n]

�

Bu"le∅n * * *

Fu"le∅n *! * *

bu"le∅n *! * * *

Underlying /v/ Underlying /v/ does not become [Ù] as /f/ does because the quality

of being a voiced fricative is better preserved in strident fricatives, due to the following

undominated constraint:

() IdentIOIn([+vce,+cont,-son],[+strid]):

Output a violation for every instance of an underlying strident segment that is underlyingly

a voiced fricative but corresponds on the surface to something that is not a voiced fricative.

This is shown in tableaux () and ().
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() /laluv/ → ["laluv]s → ["lalu]w ‘blind’

["laluv]s Id
en

tI
O
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"lalu∅ *

"laluv *! * * *

"laluÙ *! * * *

() /laluv+an/ → [la"luvan]s → [la"luvan]w ‘blind+pass.’

[la"luvan]s M
ax

IO
(C

)/_
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�

la"luvan * * * *

la"lu∅an *! *

The first form shows that the ranking

() IdentIOIn([+vce,+cont,-son], [+strid]), *[lab,C] �w MaxIO(C)

leads to similar results as for /B/. The usual constraints IdentIO([lab])/_V, MaxIO(C)/

_V and IdentIO([+vce])/ _V are responsible for [v] in the suffixed form.
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.. deleting stem-final nasal consonants

Underlying word-final /N/ deletes because of a general ban on dorsal nasals () outrank-

ing MaxIO(C). The consonant deletes instead of changing because a constraint against

changing place in dorsal nasals () outranks MaxIO(C) as well ().

() *([+nas,dors])

Output a violation for each surface instance of a dorsal nasal segment.

() IdentIO([+nas,dors])

Output a violation for any underlying dorsal nasal segment that corresponds to a surface

segment which is not a dorsal nasal.

() *[+nas,dors], IdentIO([+nas,dors]) �w MaxIO(C),

This is shown in tableau ().

() /m+anx+lehaN/ → /m/+[anx"lehaN]s → [manx"leha]w ‘pres.+act.+go’

/m/+[anx"lehaN]s *[+
nas

,d
ors

]

Id
en

tI
O

([+
nas

,d
ors

])

M
ax

IO
(C

)

�

manx"leha∅ *

manx"lehan *!

manx"lehaN *!
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In prevocalic position the /N/ appears as [n] because the ban on dorsal nasals () and the

ban on prevocalic consonant deletion (MaxIO(C)/_V ()) outrank the relevant IdentIO

constraint as shown in (), so feature change results. See tableau () for an illustration

of this.

() *[+nas,dors], MaxIO(C)/_V �w IdentIO([+nas,dors]).

() /anx+lehaN+an/ → [anx"lehaN]s+/an/ → [anxle"hanan]w ‘act.+go+circum.’

[anx"lehaN]s+/an/ *[+
nas

,d
ors

]

M
ax

IO
(C

)/_
V

Id
en

tI
O

([+
nas

,d
ors

])

M
ax

IO
(C

)

N
onFi

nal
it

y

M
ax

IO
(V

)

�

anxle"hanan *

anxle"ha∅∅n *! * * *

anxle"haNan *!

3.10 VOWEL WEAKENING

As has already been demonstrated, Malagasy has a number of consonant-neutralizing phe-

nomena at the right word boundary. There appear to be two word-final vowel reduction

phenomena as well, both having to do with front non-high vowels.

.. mid to high weakening

The following forms illustrate a frequent pattern of [e]–[i] alternation in Malagasy.
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()

Gloss Unsuffixed Suffixed

to kill ­maha"fati a­hafa"tesan

to please ma­hafi"naRiÙa ­aha­fina"Retan

to sit mi"peÙaka mipe"Ùaha

to speak a dialect mi"Ruki ­iRu"kian

to look at mi"dzeRi ­idze"Ren

There are some forms where [i] alternates with [e], some where [e] appears in both forms,

and some where [i] appears consistently. This would seem to be a completely random

affair, then, except that there are some consistent features of the data. First, in the forms

that do alternate, the [i] alternate appears in the immediate posttonic syllable. In all of the

forms, [e] appears in or before the main stress of the word; [i] may appear anywhere.

Due to these characteristics, I have chosen to analyze the situation as one where the

underlying vowel of the alternation is /e/. The alternation is accounted for at the word

level partially because at that level the change from /e/ to [i] occurs in an easily defined

location—the last syllable of the word, if that syllable does not have phonemic stress.

The explanation for the phenomenon is grounded primarily in an effort minimization

constraint against high-sonority front vowels at the right edge of the word:

() *Final([-back,-high], C):

Short form—*[-back,-high] C0#. Output a violation for any word in which the last

vowel is front and not high.
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Heightened vowel faithfulness in the environment of underlying stress () or prevocalic

position () counteracts the effort minimization constraint—ranking ().

() IdentIOIn([-high], [+stress]):

Output a violation for each underlying stressed non-high vowel that has a surface correspon-

dent that is high.

() IdentIOBefore([-high], V):

Short form—IdentIO([-high])/_V. Output a violation for each underlyingly prevocalic

segment that is non-high but has a high surface correspondent.

()
IdentIO([-high])/_V, MaxIO([+stress]), IdentIOIn([-high], [+stress]),

MaxIO(V)/_V �w *[-back,-high] C0# �w IdentIO([-high])

The constraint IdentIO([-high])/_V essentially takes care of situations where a word-

final environment is created by vowel deletion³³.

The ranking is demonstrated in tableaux ()–().

33This could be a situation where an argument for surface contextual faithfulness (in IdentIOIn([-high],
[+stress])) might legitimately be made. That is, if the [+stress] context were taken to be a surface context
rather than underlying, it might not be necessary to employ IdentIO([-high])/_V to rule out candidates
like *[midze"Ria] of tableau (). I have not investigated this possibility in detail due to the amount of time
it would take to reconfigure the system for this, but I imagine that there would be some problems with
the fact that IdentIOIn([-high], surface([+stress])) would act as an implicit *Final([+stress,-high], C)
constraint.
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() /m+anx+eÙe/ → /m/+[anx"eÙe]s → [manx"eÙi]w ‘pres.+act.+demote’

/m/+[a"nxeÙe]s *[-
ba

ck
,-h

ig
h] C 0

#

Id
en

tI
O

([-
hig

h])

�

ma"nxeÙi *

ma"nxeÙe *!

() /"be/ → ["be]s → ["be]w ‘numerous’

["be]s Id
en

tI
O

In
([-

hig
h],

[+
st

re
ss

])

*[-
ba

ck
,-h

ig
h] C 0

#

Id
en

tI
O

([-
hig

h])

�

"be *

"bi *! *

() /m+i+dzeRe+a/ → /m/+[i"dzeRe]s+/a/ → [midze"Re]w ‘pres.+act.+look at+imp.’

/m/+[idzeRe]s+/a/ Id
en

tI
O

([-
hig

h])/
_V

M
ax

IO
(V

)/_
V

*[-
ba

ck
,-h

ig
h] C0#

N
onFi

nal
it

y

M
ax

IO
(V

)

Id
en

tI
O

([-
st

re
ss

,V
])

Id
en

tI
O

([-
hig

h])

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

midze"Re∅ * * * * * *

mi"dzeR∅a *! *

midze"Ria *! * * * *
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.. low to high weakening

Malagasy has another, similar, alternation, but it is much less prevalent. In some of the

forms given below, [a] and sometimes [ia] alternates with [i].

()

Gloss Unsuffixed Suffixed

(a) to sun-dry mi"hahi iha"hazan

(b) to wait, watch mi"an
>
dRi ian"

>
dRasan

(c) to seek mi"tadi itadi"avan

(d) to buy mi"vidi ividi"anan

(e) love each other mi­faNka"tia fi­faNkati"avan

(f ) be flattered man"duka mandu"kafan

(g) fruit "vua famu"azan

As can be seen from the last two forms in the table, this alternation does not always occur,

and its occurrence or non-occurrence does not appear to be predictable from any quality

of the phonological context. The phenomenon may be summarized as follows: in forms

where a stem consonant appears in a combined form but not in isolation (these forms

being the ones discussed in §.) and where the vowel that appears just before the deleting

stem consonant is [a], the isolation form has the vowel [i] instead.

My analysis for these forms is that at the lexical level they are quite similar to the [e]–[i]

alternations discussed above. I propose to set up the underlying form of the [a] vowels that

rise to [i] as abstract /æ/. Looking back to the previous section, the same motive for raising

/e/ to [i] applies in even greater force here, since [æ] is a higher-effort vowel, although this
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is perhaps counterbalanced by the increased severity of the faithfulness violation. There

are three basic patterns in the table above:

. Like (a) and (b), where [a] alternates with [i].

. Like (c) and (d), where [ia] alternates with [i].

. Like (e)–(g), where no alternation occurs.

I will illustrate each of these cases with tableaux.

Alternation of [a] with [i] The behavior in cases (a) and (b) is due to the following

ranking,

() *[-back,-high] C0#, MaxIO(V) �w IdentIO([-high]), IdentIO([+low])

as shown in the tableau of ().

() /m+i+hahæz/ → /m/+[i"hahæz]s → [mi"hahi]w ‘pres.+act.+sun-dry’

/m/+[i"hahæz]s *[-
ba

ck
,-h

ig
h] C 0

#

M
ax

IO
(V

)

Id
en

tI
O

([-
st

re
ss

,V
])

Id
en

tI
O

([-
hig

h])

Id
en

tI
O

([+
lo

w
])

Id
en

tI
O

([+
st

re
ss

])

�

mi"hahi∅ * *

"mihah∅∅ *! * *

mi"hahæ∅ *!
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In the suffixed form there is no pressure to reduce the vowel, and it is maintained as is due

to faithfulness constraints, as shown in tableau ().

() /i+hahæz+an/ → [i"hahæz]s+/an/ → [iha"hæzan]w ‘act.+sun-dry+circum.’

[i"hahæz]s+/an/ Id
en

tI
O

([-
hig

h])

Id
en

tI
O

([+
lo

w
])

�

iha"hæzan

iha"hezan *!

iha"hizan *! *

This vowel then changes to its [+back] equivalent [a] at the postlexical level through a ban

on low front vowels:

() /i+hahæz+an/ → [i"hahæz]s+/an/ → [iha"hæzan]w → [iha"hazan] ‘act.+sun-dry+circum.’

[iha"hæzan]w *[-
ba

ck
,+

lo
w

]

Id
en

tI
O

([±
lo

w
])

*[-
lo

w
]

�

iha"hazan *

iha"hezan *! **

iha"hæzan *! *
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Alternation of [ia] with [i] These cases, like the first, have *[-back,-high] C0# elim-

inating [æ] from the right edge of a form, but here it is by deletion rather than by raising.

A vowel raising solution to the problem of a word-final non-high front vowel is ruled out

because it would create an illegal hiatus. Normally, as discussed in §.., hiatus avoidance

creates an opaque stress, but here it does not, because deleted front vowels do not trigger

compensatory lengthening via the OpqStress constraint (perhaps they are less perceptu-

ally salient). Because of its specificity for deleted back vowels, OpqStress does not play

a part in the analysis of these (second case) forms, so the relevant ranking is simply that

shown in ().

()
*i i, *[-back,-high] C0#, NonFinality �w MaxIO(V),

IdentIO([-stress,V]), IdentIO([+stress])

This is illustrated in tableau ().

() /m+i+tadiæv/ → /m/+[­ita"diæv]s → [mi"tadi]w ‘pres.+act.+look-for’

/m/+[­ita"diæv]s *i
i

*[-
ba

ck
,-h

ig
h] C0#

N
onFi

nal
it

y

M
ax

IO
(V

)

Id
en

tI
O

([-
st

re
ss

,V
])

Id
en

tI
O

([-
hig

h])

Id
en

tI
O

([+
lo

w
])

*L
ap

se

Id
en

tI
O

([+
st

re
ss

])

�

mi"tadi∅∅ * * **

­mita"di∅∅ *! *

­mitadi">eı∅ *! * * * * *

­mitadi">æı∅ *! * * * * *

­mita"diæ∅ *!

­mita"dii∅ *! * *





Non-alternation Forms (e)–(g) do not alternate, and need little explanation. When

the underlying form is /a/, the constraint *[-back,-high] C0# no longer applies and there-

fore no change is made. This is illustrated in ().

() /vuaz/ → ["vuaz]s → ["vua]w ‘fruit’

["vuaz]s Id
en

tI
O

([±
ba

ck
])

*[-
ba

ck
,-h

ig
h] C 0

#

Id
en

tI
O

([-
hig

h])

Id
en

tI
O

([+
lo

w
])

�

"vua∅

"vue∅ *! * *

"vui∅ *! * *

.. analysis so far

Before moving into an analysis of reduplication, it will be worthwhile to review the current

constraint rankings and the phenomena that occur at each level of analysis.

... Stem Level

The following constraints have been established so far as undominated at the stem level:

*|[+son] [−son]|, *|[α C-place] [−α C-place]|, *|[−cont] [+cont, −cor]|, *|[α nas]

[−α nas]|, *|[+cont] [−cont]|, *|[α vce] [−α vce]|, *t
¯

X, *t
¯
#, *X S, *#S, *|ei|, *|[+high]

[−high]|, *|[−low] [+low]|, *|CV|, *|VC|, IdentIO([Cplace]) / _ V, *[α C-place] [−α

C-place], WSP, *FinalLapse, IdentIO([+stress]) / _ C0#.
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The following diagram shows the current relative rankings of the stem level violable

constraints:

UNDOMINATED

*[+prim] IO-Integrity(V)

*LapseNonFinality

*Clash

IdentIO([+stress])

The changes induced by this level on an input form are as follows:

• Stress is assigned in right-to-left trochees, with the exception that stress always falls

on a diphthong, and stress may be lexically marked as word-final.

• The rightmost stress of a word is marked as primary, the rest as secondary.

• From right to left, a pre-consonantal consonant assimilates in place to the following

consonant.
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... Word Level

The following constraints have been established so far as undominated at the word level:

*|[+son] [−son]|, *|[αCplace] [−αCplace]|, *|[−cont] [+cont, −cor]|, *|[αnas] [−αnas]|,

*|[+cont] [−cont]|, *|[αvce] [−αvce]|, *t
¯

X, *t
¯
#, *X S, *#S, *|ei|, *|[+high] [−high]|,

*|[−low] [+low]|, *|CV|, *|VC|, IdentIO([lab]) / _ V, IdentIO([±syl]), *Vi Vi, *ea, *ei,

WSP, and IdentIO([+cont, −son, +ant, cor]), IdentIO([−high]) / _ V, and Ident-

IOIn([-high], [+stress]).

The following diagram shows the current relative rankings of the word level violable

constraints:

UNDOMINATED

MaxIO(C)/_V *a VIdentIO([+/-vce])/#_ *[+prim]

IdentIOIn([-strid,+cont,-son,lab], B) *[+nas,+x]*[-nas,+ant,cor,C] *[lab,C] IdentIO([+nas,dors])

IdentIO([+cont,-son])/_VMaxIO(C)

MaxIO(V)/_V

*[-back,-high] C0# NonFinality

*[+cont,-son]IdentIO([-strid]) IdentIO([lab]) MaxIO(V) *Clash

IdentIO([-stress,V])IdentIO([-high]) IdentIO([+low]) IdentIO([+stress])

*[-cor,+vce,+cont,-son]

IdentIO([+/-cont])

*[+vce,-son] *Lapse

IdentIO([+vce])/_V

The changes induced by this level on an input form are as follows:

• If a word-level suffix is added, the final stress in the word shifts to the right to ensure

primary stress on the penultimate syllable.

• Disallowed vowel sequences (ViVi, aV, ea, and ei) are resolved in favor of the vowel

that bore stress in the input. If neither bore stress, the leftmost vowel survives. In
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this latter case, the leftmost vowel acquires stress if the rightmost vowel was [+back].

• Word-final consonants either neutralize to one of {[n], [Ù], [k]}, or they delete.

• Word-final non-high front vowels raise to [i].

• Voiceless consonants and voiced strident labial fricatives delete after the prefix -an.

... Post-Lexical Level

The following constraints have been established so far as undominated at the post-lexical

level: *|[+son] [−son]|, *|[αCplace] [−αCplace]|, *|[−cont] [+cont, −cor]|, *|[αnas]

[−αnas]|, *|[+cont] [−cont]|, *|[αvce] [−αvce]|, *t
¯

X, *t
¯
#, *X S, *#S, *|ei|, *|[+high]

[−high]|, *|[−low] [+low]|, *|C V|, *|V C|, WSP, DepIO(C), MaxIO([+stress]), Max-

IO([−nas, C]), IdentIO([±nas]), *C [+nas], IdentIO([±syl]), *[αCplace] [−αCplace],

*[−cont] [+cont, C], and PtIdentIO([−son, −cont]).
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The following diagram shows the current relative rankings of the post-lexical level

violable constraints:

UNDOMINATED

DepIO(V)

IdentIO([+/-low])

*[+prim]

IdentIO([-high])

FeatMaxIO([+cont,-son])/_V

MaxIO(C)

*[-low]

*C C

IdentIO(+/-r)

*N V#

IdentIO([+cont,-son])/_V

IdentIO([-lab])

IdentIO([cor])

IdentIO([+/-ant])

IdentIO([+/-vce])

IdentIO([dors])

IO-Uniformity(C)

FeatMaxIO([+cont,C])

IdentIO([+/-cont])

NonFinality

MaxIO(V)

*Clash

*Lapse

*[+cont,-son]

The changes induced by this level on an input form are as follows:

• As in the other levels, the final stress of the word is marked as primary, others as

secondary.

• Consonant clusters are simplified in various ways depending on their constituent

segments and their position in a word.

• Unstressed vowels after a nasal at the end of the word are deleted.

• If the word ends in an oral consonant, the vowel [a] is introduced word-finally.
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3.11 REDUPLICATION AND COMPOUNDING

Earlier sections have established the stem, word, and post-lexical levels and the morpho-

logical processes that occur at the stem and word levels. This leaves only post-lexical

morphology, which I claim includes, in Malagasy, both genitival compounding and redu-

plication (with some exceptions in the case of reduplication). The phonological phenom-

ena that occur at a compound boundary has already been covered in §§. and ., so I

will discuss genitival compounding only to summarize how the morphology works in this

analysis and then I will move on to a more complete coverage of reduplication.

.. genitival compounding

As stated earlier, the genitive construction in Malagasy is a compound consisting, in order

from left to right, of the object possessed, a nasal element, and finally the possessor. The

procedure for creating a compound in this analysis is as follows:

. Introduce the object possessed at the stem level, generating cyclically as usual to add

stem-level affixes.

. Introduce the possessor at the stem level, generating cyclically as usual, in the same

manner as for the object possessed.

. Take the output of step (), add any word-level affixes, then use the word-level

grammar to generate a word-level output.

. Take the output of step () plus any word-level affixes, with the genitive prefix /n-/
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attached at the beginning of the word³⁴, and generate a word-level output.

. Concatenate the outputs of steps () and (). This is the input to the post-lexical

grammar, the output of which is the compound.

In summary, the parts of the compound go through the stem and word levels in isolation

from one another, the genitive suffix being added to the first part of the compound at the

word level, and the two parts are joined before going through the post-lexical level. The

key here is that word-boundary effects and vowel hiatus resolution apply individually to

the separate parts of the compound before it is joined together, so any vowel hiatus created

by compounding remains unresolved, and word-boundary effects apply to both members

of a compound.

... Example

The above is best understood by an example. The word [­tuNguÙa"kuhu] signifies “chicken’s

foot,” and is composed of the morphemes /tuNgut/ ‘foot,’ /n/ ‘genitive,’ and /akuhu/

‘chicken.’ The derivation is as follows, according to the steps laid out above:

. Stem (possessed object): /tuNgut/ ⇒ ["tuNgut]s.

. Stem (possessor): /akuhu/ ⇒ [a"kuhu]s.

. Word (possessed object): ["tuNgut]s ⇒ ["tuNguÙ]w (note application of word-final neu-

tralization).

34This assumes that /n-/ is a word-level prefix. As far as the phonology of this analysis goes, it could just
as well be a suffix on the possessed word or a separate word altogether.
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. Word (possessor with genitive prefix): /n/+[a"kuhu]s ⇒[na"kuhu]w.

. Post-lexical (entire compound): ["tuNguÙ]w+[na"kuhu]w ⇒[­tuNguÙa"kuhu] (note sim-

plification of [Ùn]w to [Ù], as discussed in §...).

Actually, this derivation contains more information than the actual computational mech-

anism gets, because of lpm bracket erasure. The actual inputs at the five generations are

unbracketed strings where stress is marked only on the stressed vowel itself (I will use acute

accents here for primary stress [+stress,+prim] and grave for secondary [+stress,-prim]):

. tuNgut ⇒ túNgut

. akuhu ⇒ akúhu

. túNgut ⇒ túNguÙ

. nakúhu ⇒ nakúhu

. túNguÙnakúhu ⇒ tùNguÙakúhu

.. reduplication data

Here are the general patterns of Malagasy reduplicated forms, presented in an order that

facilitates gradual discovery of what shape an analysis must take. Throughout this section

I will attempt to decide between two basic hypotheses about how reduplication might

occur:

. Correspondence Theory: at some stage of the derivation, whether it be stem, word,

or post-lexical, the morpheme “red” is affixed. This morpheme is taken as having





as its underlying form the entirety of its base of affixation. For example, if the

morpheme is affixed at the beginning of the stem level, its underlying form is the

underlying form of the base. If affixed later at a later cycle, its underlying form is

the output of the previous cycle. If affixed at the word level, its underlying form is

the output of the stem level, and so forth. During this level, and during this level

alone, since lpm-ot bracket erasure will eradicate evidence of a reduplicant and a

base before the next level is entered, base-reduplicant correspondence will play a

role in ensuring that the base and reduplicant are as similar as possible. At this level

and at subsequent levels, input-output correspondence will also play a role. The key

features of the correspondence theory approach are that reduplication is treated as

affixation and that there are constraints requiring that the surface form of the base

be similar to the surface form of the reduplicant.

. Morpheme Doubling: A reduplicating form enters the derivation process as two

separate underlying forms (essentially, two separate words). Both of the forms con-

tain an instance of the same root morpheme, but they may also contain affixes.

For example, the form “mi­salasa"la” (‘pres.+act.+hesitate+red.+imp.’ ) would begin

its derivation process as two forms: /m+i+sala/ and /sala+a/ where the root mor-

pheme of the first form is marked as being a base and the second is marked as

being a reduplicant. At some stage in the derivation the two forms merge, as in

compounding, and proceed thenceforth as a single form. The key features of the

morpheme doubling approach are that reduplication is treated as compounding and

that there are no constraints requiring that the surface form of the base be similar

to the surface form of the reduplicant. The morpheme doubling framework here
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essentially follows Inkelas & Zoll ().

Once one of these frameworks is decided upon, it will then become necessary to decide,

in the case of Correspondence Theory, at which stage the reduplicant is affixed, or, in the

case of Morpheme Doubling, at which stage the independent forms become merged.

... Two-Syllable Vowel-Final Paroxytones

() below shows the reduplication pattern for simple stems consisting of a single trochaic

foot.

()

Gloss Simple Reduplicated

(a) white "fuţi ­fuţi"fuţi

(b) stinky "m>aımbu ­m>aımbu"m>aımbu

(c) different "hafa ­hafa"hafa

It is difficult to come to any firm conclusions from these simple reduplicated forms. It

appears clear that reduplication involves copying a stem, but it is not yet clear whether the

copy is placed to the left or right of the base stem. Nor is it clear whether the reduplication

is total or partial. It is total here, but the bases are small. At any rate it is already apparent

that the reduplicant may comprise more than one syllable.
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... One-Syllable Vowel-Final Stems

()

Gloss Simple Reduplicated

(a) big, numerous "be ­be"be

(b) rotten "lu ­lu"lu

One new fact becomes clear from these forms: stress class of a type unacceptable in

unreduplicated forms can be found in reduplicated ones. There could be several explana-

tions for this:

. (Correspondence Theoretic) Base-Reduplicant stress identity (IdentBR([±stress]))

outranks the ban on stress clash.

. (Either) Stress assignment precedes reduplication, i.e. reduplicant affixation or base-

reduplicant form merger occurs after the word level, since *Clash outranks Ident-

IO([+stress]) at the word and stem levels.

. Stress rankings have base- or reduplicant-specific exceptions, for example, Ident-

IO([+stress]) / red[_] �*Clash.

By Occam’s Razor explanations () and () may be preferable to ().

... Multi-Syllabic Vowel-Stem Paroxytones

()
Gloss Simple Reduplicated

(a) sadness ­ala"helu ­ala­helu-"helu
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This example shows that reduplication is partial, not total. Further, there are only two

plausible theories as to the placement of the reduplicant with respect to the base: either

the reduplicant is suffixed, or it is infixed just before the final foot of the base. For the sake

of simplicity I will assume that reduplication is suffixing, and it will become evident that

this assumption works out reasonably well.

... Two-Syllable Vowel-Stem Oxytones

()

Gloss Simple Reduplicated

(a) again in"
>
dR>aı in­

>
dR>aı-n"

>
dR>aı

(b) barking vu"vu vu­vu-"vu

The bases in these examples have final stress due to wsp (a) or phonemic stress (b). Only

the stressed syllable reduplicates. This implies that the reduplicant does not follow a two-

syllable template, but instead is a left-headed foot.

... Underlying Nasal + Vowel Final Stems

The unreduplicated forms in the following table end in a nasal, and the final syllable is

stressed.

()

Gloss Simple Reduplicated

(a) forget ha"din ha­dinu-"din

(b) healthy sa"lam sa­lama-"lam

Forms like these are analyzed in §.. as ending underlyingly in a vowel which is deleted

at the post-lexical level. The reduplicated form confirms this — an unpredictable vowel
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appears between the base and the reduplicant. These forms narrow the choice of analysis

somewhat—either reduplication must occur before the post-lexical level or if a correspon-

dence-theoretic reduplication occurs at the post-lexical level, *Clash and *NV# must

outrank MaxBR(V).

... Vowel-Initial Weak Stems

()

Gloss Simple Reduplicated

(a) bouncing back "evuÙa ­evuÙ-"evuÙa

(b) baggage "entan ­enta"n-entan

(c) twist "ulika ­uli"k-ulika

In a one-level or post-lexical correspondence-theoretic account, these forms would force

an analysis wherein the reduplicant is the two syllables after the primary stress, infixed to

the left of the rightmost foot in the base. In a multi-level account, however, it suffices

to say that reduplication occurs either at the word level (for a Correspondence Theoretic

account) or between the word level and the post-lexical level (for a morpheme doubling

account), so word-final consonant neutralization is reflected in both the base and the

reduplicant, but the epenthetic vowel, which does not exist at the word level, is not copied.
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... Consonant-Initial Weak Stems

()

Gloss Simple Reduplicated

(a) thing "zavaÙa ­zava"dzavaÙa

(b) veranda ­lava"RaNgan ­lava­RaNgan"
>
dRaNgan

(c) known "fantaÙa ­fanta"pantaÙa

(c) far "laviÙa ­lavi"daviÙa

These forms show that weak roots, when reduplicated, introduce consonant clusters that

are resolved as laid out in §.. This is further evidence that reduplication occurs before

the post-lexical level.

... Reduplication with Suffixes

The following forms are quite paradoxical.

()

Gloss Simple Passive Reduplicated Reduplicated Passive

(a) offer "tuluÙa tu"luRan ­tulu"tuluÙa ­tulutu"luRan

(b) known "fantaÙa fan"taRin ­fanta"pantaÙa ­fantapan"taRin

(c) redemption "avuÙa a"vutan ­avu"ÙavuÙa ­avuÙa"vutan

Earlier I have analyzed the final consonant in the simple forms above as being a neutral-

ized version of the consonant revealed by the passive form. The consonant is neutralized

when word-final. However, the neutralized form appears in the reduplication despite

not being word-final. In the active (unsuffixed) reduplicated form, a Correspondence-

Theoretic analysis might analyze the neutral consonant in the base as being a case where
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Base-Reduplicant identity has caused the reduplicant to be reflected in the base, but in

the suffixed form, the neutralized consonant appears in the base with no place for it to

have been copied from! The expected form from a Correspondence Theoretic perspec-

tive would be, e.g. [­avuta"vutan]. The morpheme doubling analysis works quite well here,

however – if we take the base of reduplication as one independent form and the redupli-

cant plus the suffix as another and have them proceed independently through the stem

and word levels and then join just prior to the post-lexical level, the data pattern falls out

exactly as given above:

()

Base Reduplicant+Passive Sfx

UR /avut/ /avut+an/

Stem ["avut]s [a"vutan]s

Word ["avuÙ]w [a"vutan]w

Post-Lexical ["avuÙa"vutan]

Note that such forms are also highly problematic for a Correspondence Theoretic analy-

sis in their stress pattern as well. If ranking identity of stress pattern above conformance

to the basic stress pattern of the language is responsible for forms such as [­be"be] and

[vu­vu"vu], why do we get forms such as [­avuÙa"vutan] where both the basic stress pattern

and base-reduplicant identity are violated? After all, the form *[a­vuta"vutan] is better on

both counts. A Correspondence Theoretic account would need to treat this pattern in

terms of something like Paradigm Uniformity, i.e., an output-output correspondence ver-

sion of the analysis given here, leaving Base-Reduplicant identity with essentially no rôle

in the grammar. The stress pattern seen here falls out straightforwardly from a morpheme
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doubling account paired with lpm-ot.

... Early and Late Reduplication

From the forms seen so far, it seems that a straightforward account of the reduplication

pattern of Malagasy is possible—reduplicated forms are derived as in (), where the base

and any prefixes proceed as one unit through the stem and word levels, and the reduplicant

plus any suffixes proceed as another unit through these levels, and then the two are merged

just prior to the post-lexical level. As data set () shows, however, there are still a few

complications.

()

Gloss Simple Passive Reduplicated Red. Pass.

(a) coward "usa — ­usa"usa —

(b) redemption "avuÙa a"vutan ­avu"ÙavuÙa ­avuÙa"vutan

(c) wander about "Reni Re"nen ­Reni"Ren —

(d) change "uva — ­u"vuva —

(e) spit "ivi — ­iv"ivi —

(f) ray of light "hiRan — ­hiRaN"giRan —

(g) blind "lalu la"luvan ­lalu"dalu ­laluda"luvan

Compare (a) with (d). The forms are nearly identical, but (d) exhibits vowel merger,

whereas (a) does not. It should be noted that for (d) [­u"vuva] is in fact in free variation

with [­uva"uva]. As shown in §.., vowel merger occurs at the word level, so the predic-

tion of the previous section would be that the data would pattern as (a), not (d). One

account for this difference would be to hypothesize that in (d) reduplication occurs before
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the word level rather than after it. Another hypothesis would take the reduplicated form

of (d) as being a lexicalized form with no base-reduplicant marking. I believe the former

hypothesis to be preferable on the grounds that these forms pattern semantically like the

other reduplicated forms. The free variation might tend to support the former hypothesis

as well. The forms in (a)–(c) all exhibit evidence of being late reduplications: (a) has been

covered, (b) exhibits word-final consonant neutralization in what would otherwise have

been a word-internal consonant, and (c) exhibits word-final vowel weakening in what

would otherwise have been a word-internal position. Forms (d)–(g) are early reduplica-

tions. Forms (d) and (e) exhibit vowel merger, indicating hiatus at the word level. For

form (f ) I must hypothesize the underlying form /GiRan/. In isolation, such an underly-

ing form would become ["hiRan]w before the post-lexical level, and therefore its predicted

reduplicated form would be *[­hiRaN"kiRan] if reduplication occured after the word level.

For form (g) I hypothesize the underlying form /laluv/, which loses its final consonant

at the word level in isolation. Therefore if it underwent typical late reduplication the ex-

pected output would be *[­lalu"lalu]. Instead the obstruent /v/ survives to coalesce with

[l]w, producing [d].

... Prefixed Forms

There is one other category of forms that requires some attention: reduplication with

prefixes. Here I will confine myself to the active prefix an-, but others (e.g., present m-

when combined with active prefix ∅-) behave in the same manner. Table () shows a

number of examples.
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()

Gloss Simple Present Active Redup. Redup. Pres. Act.

(a) cut, read "vaki ma"maki ­vaki"vaki ma­maki"vaki

(b) writing "suRaÙa ma"nuRaÙa ­suRa"ţuRaÙa ma­nuRa"ţuRaÙa

(c) shiver "huviÙa maN"guviÙa ­huvi"kuviÙa maN­guviN"guviÙa

(d) refusal "la man"da ­la"la man­dan"da

(e) hit, kill "vun ma"mun ­vunu"vun ma­munu"mun/

ma­munu"vun

(f ) lie "l>aıNga maN"d>aıNga ­l>aıNga"l>aıNga man­d>aıNgan"d>aıNga/

man­d>aıNga"l>aıNga

In the first group, the final nasal of the prefix is not copied during reduplication. In

the second group, it is. In the third group, it is optionally copied (according to Keenan

& Razafimamonjy (), children are more likely to choose to copy the nasal, adults

less likely). Two analyses are possible for these facts: either the nasal-copying forms rep-

resent cases where the present active form has lexicalized (so the input is actually, e.g.,

/m+anuRat+red/ or /manuRat+red/ rather than /m+an+suRat+red/), or reduplication is re-

alized in the nasal-copying cases by doubling the prefix along with the base. The first of

these analyses seems to me more plausible.

In all the cases of free variation treated in this analysis, I hypothesize that the phe-

nomenon is due to uncertainty on the part of the speaker between competing underlying

forms.
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... Summary

Thus the final story for reduplication is that many (perhaps most) forms are joined after

the word level, the base (with any prefixes) and the reduplicant (with any suffixes) having

proceeded in isolation up to that point. The remaining reduplicated forms proceed in

isolation either not at all, or at most through the stem level. Given the stress pattern of

[­laluda"luvan], it is simplest to say that these early-reduplicated forms proceed in isolation

through the stem level and join just before the word level.

.. rankings for reduplication

The great benefit of the chosen analysis is that, as will be shown below, almost the entire

picture of reduplication falls out from the existing rankings. The only remaining question

is how to account for the shape of the reduplicant. In order to determine that, I will

first discuss the particulars of how a reduplicating form is represented, and then I will

introduce the necessary rankings by looking at a series of examples.

... Representation

This analysis treats the reduplicant as a form similar to the base. That is, its underlying

form is the same as the underlying form of the base, except that in the underlying form the

reduplicant is marked as being in the morpheme red and the base is marked bas³⁵. There

is a constraint family MaxIB which acts exactly like the MaxIO family except that it does

not apply inside the reduplicant, and MaxIR, which applies only inside the reduplicant.

35Nothing in the analysis depends on this—the base could possibly remain unmarked.
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Similarly, any constraint may be restricted to apply only inside the reduplicant, or only

outside of it.

... Examples

The following examples show reduplication where the base has more than two syllables,

with penultimate main stress at the stem level.

()

Gloss Simple Reduplicated Hyp. Red. Output (Stem)

(a) forget ha"din ha­dinu"din ["dinu]s

(b) sadness ­ala"helu ­ala­helu"helu ["helu]s

(c) verandah ­lava"RaNgan ­lava­RaNgan"
>
dRaNgan ["RaNgan]s

Here the reduplicant consists of the last two syllables of the root. There are a number of

factors to account for:

. Why only two syllables?

. Why the final two syllables?

A possible answer is as follows:

. The syllable that carries the greatest stress in a word is the most prominent, and

therefore it should be copied.

. The right edge of the word is prominent as well, and therefore should be copied.

. More than this should not be copied in order to limit overall word length, or,

possibly, to cope with the difficulty of copying.
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To encode this answer, I employ the following constraints:

() MaxIR:

Output a violation for any underlying segment of the morpheme marked red that has not

surface correspondent. Here this constraint has the effect of making the reduplicant as

large as possible.

() *M([+stress,-prim], red):

Short form—*[+stress,-prim]/red[_]. Output a violation for each instance of a sec-

ondary stressed segment at the surface level within the reduplicant. Here this undominated

constraint has the effect of eliminating any secondary stressed vowels from the redupli-

cant. Since a word can have only one primary stressed vowel (via *[+prim] (), q.v.),

this means the reduplicant will have only one stressed vowel.

() *InitialM([-stress,V], C, red):

Short form—*[-stress,V]/red[C0_. Output a violation if the initial vowel of the redu-

plicant is unstressed. This undominated constraint has the effect (when combined with

the previous constraint) of forcing the reduplicant to begin with a primary stressed

vowel.

() *Final([+stress,-prim], [-stress]):

Short form—*Rtmost2ndary. Output a violation if the rightmost stress of a word is

[-prim]. To satisfy this constraint, a word must either have no stress at all, or the

rightmost stress must be primary. Any other stressed in the word may be secondary or

primary, as far as the constraint is concerned. Undominated.
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() *([+prim]):

Output a violation for each primary-stressed vowel in a word. This, along with *Rt-

most2ndary and Exists([+stress]) has the effect of the standard constraint Culmi-

nativity plus rightward alignment of primary stress.

() Exists([+stress]):

Output a violation for any word that has no stress. Undominated. This ensures, in

addition to the obvious requirement that all words carry stress, that the reduplicant

will not be empty, since it is a separate word in the earlier levels.

() PreserveRtM(X, red):

Short form—PreserveRt. See §... for a detailed explanation. Ensure that the part

of the underlying base that is preserved in the stem-level output form of the reduplicant is

contiguous and rightward aligned. This constraint is vacuously satisfied by an empty

reduplicant, but this outcome is prevented by Exists([+stress]).

Of these constraints, most are undominated: all but MaxIR and *[+prim]. One ranking

is already known (see §.. above):

() *Rtmost2ndary �*[+prim]

Many others can be inferred from the output [­ala­helu"helu].
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() /alahelu+red/ → [­ala"helu]s+["helu]s ‘sadness+red.’
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∅∅∅"helu * *

() "ala"helu **!

() ∅"lahelu *! * *

() ∅la"helu *! *

() ∅l∅"helu *! *

() ∅"lah∅lu *! *

() ∅l"ahel∅ *! *

() ­ala"helu *! *

() "ala­helu *! * *

Tableau () illustrates how the reduplication template constraints above limit the redu-

plicant to the rightmost foot in base. Note that MaxIR(C) appears here instead of the

bare MaxIR. This is because Exists([+stress]) and PreserveRt, together with the stress

templates, serve to make MaxIR(V) superfluous. The constraint MaxIR(V) may exist,

but it is inactive in the ranking.

The first, seventh, and eighth losing candidates in the tableau show total reduplica-

tions. The seventh is, in fact, a perfect copy of the base. It, as well as the eighth, lose out

because secondary stresses are forbidden in the reduplicant.

() *[+stress,-prim]/red[_] �s MaxIR(C)
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The eighth candidate violates *Rtmost2ndary as well. The first losing candidate avoids

these pitfalls, but has more than one primary stress.

() *[+prim] �MaxIR(C)

The second losing candidate shows that the normal stress pattern of the language

helps to determine the size of the reduplicant. If the primary stress is moved back by one

syllable, it creates a stress lapse, and either *FinalLapse or *Lapse therefore rules it out.

The third losing candidate illustrates the requirement that the reduplicant must begin

with a stressed syllable.

() *[-stress,V]/red[C0_ �s MaxIR(C)

Candidates ()–() show how PreserveRt rules enforces contiguity and rightward

alignment.

() PreserveRt �s MaxIR(C)

At this point all that remains is to examine monosyllabic reduplicants.

()

Gloss Simple Reduplicated Proposed red Output (Stem)

(a) again in"
>
dR>aı in­

>
dR>aın"

>
dR>aı [n"

>
dR>aı]s

(b) bark vu"vu vu­vu"vu ["vu]s

(c) big ­lehi"be ­lehi­be"be ["be]s
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Table () can be summarized by noting that in all cases where the isolation form of a

root has final stress, the reduplicant consists of a single syllable (more precisely, as shown

by the inclusion of [n] in (a), it consists of the final stressed vowel segment, preceded and

followed by any consonants that were contiguous to it in the isolation form). The same

undominated constraints (IdentIO([+stress)/_C0# and WSP) that forced final stress in

the isolation form force one-syllable reduplicants. See ranking () and tableau ().

() WSP, IdentIO([+stress])/_C0# �s MaxIR(C)

() /lehi"be+red/ → [­lehi"be]s+["be]s ‘big+red.’
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∅∅∅∅"be ** *

∅∅"hibe *! * *

.. summary

Perhaps this is not the case for all languages, but the somewhat unusual patterns of Mala-

gasy reduplication turn out not to require the complex machinery afforded by Base Redu-

plicant Correspondence Theory (in fact, that machinery is insufficient for the Malagasy

patterns). Instead, the patterns fall out from the basic lpm-ot analysis that covers the rest

of the language. The only additions required are reduplicant template constraints and the

idea that reduplication is compounding of a root together with itself.
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3.12 CONCLUSION

In reviewing this analysis, three features, aside from exhaustiveness, emerge as worthy of

note: it uses a non-correspondence analysis of reduplication; it is overwhelmingly com-

prised of undominated constraints; it utilizes a system of constraint families that dif-

fers somewhat from those used elsewhere; and it uses lpm-ot extensively to account for

opaque phenomena.

.. compounding analysis of reduplication

The primary benefit, to my mind, of a non-correspondence treatment of reduplication

(leaving aside the obvious benefit of covering the data more completely in this case) is

computational in nature. Chapter  shows that a computational model of Correspondence

Theory reduplication must necessarily be of greater time complexity than a model that

does not employ Base-Reduplicant correspondence. This increased complexity has the

practical result that for such a model to be feasibly computable by a finite device such

as the human brain, either B-R correspondence constraints must be quite low in the

ranking³⁶ or the size of the base of reduplication must be limited. If a Correspondence

Theory account of reduplication is indeed necessary for the rare cases of overapplication,

then one should expect that one of these mitigations will apply. It would be a valuable

research program to construct whole-phonology analyses of the languages (such as Malay

36Low-ranking of B-R correspondence constraints (actually what is relevant is the ranking level of the
highest-ranked B-R correspondence constraint) only helps with a weighted fsm model rather than a trans-
ducer model, but then again a full model of reduplicative correspondence theory seems not to be possible
with a transducer model.
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and Javanese) in which a B-R correspondence account is claimed to be necessary.

.. dominance of the undominated

A perhaps surprising fact about the Malagasy analysis is that three quarters of the con-

straints that are active in the analysis (i.e., shown to be necessary by the ranking algorithm)

are exceptionlessly true at their level, or in the usual parlance, undominated³⁷. What im-

plications does this fact have for the Optimality Theoretic claim that all constraints are

innate and only the rankings are learned? The first question that might be asked from this

point of view is whether many of these constraints are universally undominated. Such a

state of affairs would strengthen the argument for universal constraints and make matters

easier for ranking algorithms. Unfortunately, however, this appears not to be the case.

There is no reason to believe that any of the active undominated constraints in this anal-

ysis could not be violable in some language or another. Instead, the lesson I take from

this state of affairs is that most active constraints in a given analysis are exceptionlessly

true and only a small minority submit to the necessity of constraint demotion, but the

learner cannot assume inviolability for any constraint. The type of learning algorithm

that stands to benefit from this situation is not the usual Optimality Theoretic ranking-

only algorithm, but rather one in which the constraints themselves are learned. In such

an algorithm the ranking step would be reserved for non-universal generalizations. An

exceptionless generalization should be easier to learn than one that only applies to a subset

of the data.

37The constraints that are undominated in the post-lexical level are surface-true, and are similarly un-
dominated at lower levels. At each lower level additional constraints are level-true, or undominated at that
level.
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.. constraint system

The constraint system used here (described in §..) was arrived at by a process of at-

tempting as much as possible to use standard constraints of the sort seen extensively in

the Optimality Theoretic literature. In some cases, however, this was not possible due

either to the excessive power of those constraints or to the unforeseen side-effects some

of them have (as in the case of contextual faithfulness, discussed below). For example,

the Align family of constraints proved unimplementable in general. Various *Sequence,

*FinalSequence, *Initial, *Final, etc. constraints were used instead. Another example

is the general IdentIO constraint which penalizes any feature difference between an un-

derlying segment and its surface correspondent. Actual translation of this constraint into

a weighted finite state machine would be prohibitively expensive in terms of the size of

the resulting machine, so I did not try to use this constraint.

Another area where I was unable to use standard constraints is contextual faithfulness.

Typically in the literature the context for a contextual faithfulness constraint is expressed

on the surface. For example, DepIO(C)/_V would penalize insertion of a consonant be-

fore a surface vowel. Such constraints are perfectly easy to implement, but when employed

in a grammar they make a correct ranking rather tricky to find, because such constraints

act simultaneously as a constraint of faithfulness to an underlying segment and, perhaps

unintentionally, as a well-formedness constraint banning the context. In the example of

DepIO(C)/_V, the constraint system must ensure that Gen does not delete a following

vowel in order to be able to insert a consonant. For example, while developing this anal-

ysis I had a constraint like MaxIO(V)/_# where the word-final context was surface rather
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than underlying. Given an input like /be/ where /e/ was a dispreferred vowel, the out-

put was [ba] where the vowel [a] had been inserted word-finally in order to be able to

delete /e/. This sort of thing seems less than natural to me, but frequently occurs with

surface contextual faithfulness. A constraint system where both the object to which the

constraint is mandating faithfulness and the context where that faithfulness is enhanced

are underlying is much better behaved. An extension of underlying contextual faithfulness

may be required, however: realized underlying contextual faithfulness. That is, faithful-

ness in the environment of some entity that is both underlying and surface. For example,

MaxIO(C)/_V:V would be faithfulness to an underlying consonant that precedes a real-

ized underlying vowel. An example requiring this sort of faithfulness constraint is given

by Wilson () (there arguing for an entirely different constraint scheme)—a language

with syncope and consonant cluster simplification where underlying /akta/ appears on the

surface as [ata], not *[aka], and, further, underlying /akata/ appears as [ata] as well. The

point of this example is that the rightmost consonant is always chosen here, even though

hypothetical *[aka] satisfies MaxIO(C)/_surface(V) just as well in both examples, and

MaxIO(C)/_ur(V) in the second example. In both cases, however, MaxIO(C)/_V:V

makes the correct prediction.

Finally, most surface well-formedness constraints in the literature appear to be ad hoc,

whereas here there is a standard scheme for representing them: all well-formedness con-

straints fall into the families *(), *Sequence, *Contour, and Exists, with contextual vari-

ants (word-initial, word-final, inside a morpheme, morpheme-initial, morpheme-final).
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.. lpm-ot

The final analysis characteristic I would like to discuss is its use of lpm-ot, in three con-

texts: how it interacts with Correspondence Theory, what it implies for learnability, and

how it compares with other treatments of opaque phonology.

... Compatibility with Correspondence Theory

There is no reason why lpm-ot should not be compatible with a Correspondence Theory

account of reduplication, but adding lpm-ot does complicate a Correspondence Theory

account somewhat. If evidence of stem-level morphological boundaries is to be erased at

the word level and word-level boundaries are to be erased at the post-lexical level, then

Base-Reduplicant correspondence constraints are only active at the level of which red is

an affix, so if red is a stem-level affix, B-R correspondence will take place there. On the

other hand, perhaps it will be necessary to preserve some morphological information from

one level to another.

... Learnability Implications

There are two major differences between an lpm-ot grammar and a grammar used in

one of the other Optimality Theoretic frameworks that have been designed for analyzing

phonological opacity: () an lpm-ot grammar has three constraint rankings instead of

just one, and () an lpm-ot grammar uses only the constraints of standard Optimality

Theory with no additional constraints specific to treatment of opacity. The first of these

differences is a problem for learnability, but the second is a major boon. It remains to
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be seen whether the problematic aspect outweighs the beneficial, but tentatively I would

assert that the advantages lpm-ot presents for learnability outweigh the disadvantages. I

must be tentative at this point, of course, because no concrete algorithm has been proposed

for learning opaque phonology under any of the frameworks. Here, at least, is a sketch of

an algorithm that might work for lpm-ot:

Post-lexical phonology is learned first, using no knowledge of morphological structure—

this learning process could use a phonotactic learner of the sort discussed in Albro ,

in addition to other facilities. The rankings of lower levels (stem, word) then differ from

those of the post-lexical level due to the morphological knowledge that can be applied

to lower levels or increased regularities that can be found when affixes are removed or

phonological changes occurring at the post-lexical level are reversed³⁸. For example, at the

post-lexical level the stress pattern of Malagasy is fairly idiosyncratic. WSP and *ExtLapse

are the only constraints that appear to apply without exception at the top level. Once final

epenthesis is removed, however, it becomes clear that *FinalLapse can be promoted to

undominated at the word level, and the basic right-to-left trochaic stress pattern becomes

clear at the stem level once the agency of suffix-driven stress shift becomes clear. Thus for

stress the overall story is one of increasingly powerful markedness constraints as you move

from the post-lexical level down to the stem level, reflecting generalizations that become

apparent as the details of morphology are used in the learning process.

The following principles can be used to guide analysis or learning when levels are

38Reversing phonological changes is trivial with a transducer model of Optimality Theory, but even with
a non-transducer model the post-lexical learner would include as its output surface-underlying pairs for
the utterances that formed its input. The underlying forms in these pairs, then, are the result of reversing
post-lexical phonology.
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involved:

• “Lexical” contrasts between stem groups which seem to have similar phonological

properties may diagnose a higher ranking of some markedness constraint at level n

than at level n − 1, this higher ranking having obscured an underlying distinction

(as in the /n#/ vs. /N#/ case here).

• Paradigm-Uniformity/Base-Exponence-type effects diagnose an increasing rôle for

faithfulness constraints at some level n when compared with n − 1, as in Malagasy

stress.

• Any segment that seems invisible to a phenomenon is introduced at a higher level

than that phenomenon (as in Malagasy final epenthetic vowels vs. the trochaic stress

pattern).

• Cases where some phenomenon appears influenced by a segment that does not exist

indicate segment deletion at a higher level than the locus of the phenomenon (as in

Malagasy post-nasal vowel deletion).

... Opaque Phonology Frameworks Compared

Every framework that is capable of accounting for opaque phonological phenomena, in-

cluding lpm-ot, is more complex than standard Optimality Theory on some standpoint,

but they differ widely on just how much they differ from it. I must note beforehand

that I cannot give an explicit complexity measure for any of these frameworks. Computa-

tional complexity depends on a specific algorithm and a specific representational scheme.
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In general, though, I can say that the complexity of generation using any of the finite

state methods is dependent on the alphabet size of the representation and on the num-

ber of states in the machines that are being manipulated. Any framework that increases

the number of tiers or levels of representation required for generation necessarily increases

one or both of these factors (alphabet size or number of states), generally in an exponential

fashion, since, for one thing, Gen must encode all possible correspondences between the

different levels of representation.

LPM-OT The lpm-pt model of phonological opacity fares well on the scale of com-

putational complexity. In terms of the time complexity of generation, it differs from the

standard non-opaque model of Optimality Theory by no more than a constant factor.

This project has, I believe, shown it to be within the realm of the feasible. It does present

some difficulties for learnability, however, but opacity is, I would think, inherently more

difficult to learn, and lpm-ot does have the advantage that it introduces no new constraint

families and no complex apparatus.

Note, however, that lpm-ot is not without its flaws. It predicts a level ordering model

where stem-level affixes are universally farther from word-boundaries than word-level af-

fixes. To the extent that this is not true, lpm-ot is inadequate without some emendation.

Base Exponence Base Exponence (Kenstowicz ) was one of the first frameworks

proposed for dealing with opaque phenomena in Optimality Theory. It includes the

usual Input-Output correspondence and also Output-Output correspondence between an

affixed form and its stem. Since this involves an extra level of representation over standard
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Optimality Theory, this framework has greater time complexity of generation with respect

to lpm-ot, although not overwhelmingly greater. There are certain phenomena, however,

such as the dual-stem correspondence shown by Malagasy reduplication (e.g., a form such

as [­avuÙa"vutan] seems to correspond both with the isolation form ["avuÙa] and the suffixed

form [a"vutan]), for which the framework has no ready explanation.

Paradigm Uniformity/Transderivational Correspondence The frameworks of Para-

digm Uniformity (Steriade ; Flemming ) and Transderivational Correspondence

(Benua ) appear to cover opacity data fairly well. These are frameworks in which an

output form is faithful not only to the underlying form, but also to all other members of

its paradigm. This implies that its representations will therefore have many more levels of

representation than lpm-pt does, and therefore the output of Gen will be exponentially

larger. Thus, these frameworks will necessarily have exponentially greater time complex-

ity of generation. See Albro a for a sketch of how one might formally model these

frameworks in the weighted finite state paradigm.

Two-Level Constraints Some opaque phenomena may be analyzed by reference to

constraints which act essentially as markedness constraints that have reference to the un-

derlying form (Koskenniemi ). The use of two-level constraints has been criticized, for

example by Kiparsky (), as tending to miss available empirical generalizations. From

the perspective of computational complexity, however, two-level constraints do not add

much, if any, complexity (the only complexity they might add is by virtue of the fact that

the finite-state representations of two-level constraints tend to require a larger number of





states and edges than other constraints) to the standard model. There are somewhat less

minor learnability implications, however, in the larger constraint space that a learner must

traverse. Note that proposals to locally conjoin faithfulness and markedness constraints

can be characterized similarly.

Sympathy Theory Sympathy Theory (McCarthy ) has a similar complexity to

Paradigm Uniformity and Base Exponence. In this framework output forms may be in

correspondence with forms that are produced by varying constraint rankings. If no more

than one sympathy candidate is employed by an analysis, then the computational com-

plexity will be similar to Base Exponence, but each additional sympathy candidate will

increase the complexity exponentially.

.. summary

This analysis of Malagasy has served to show the sort of insights that might be gained from

a whole-language analysis. It exemplifies what such an analysis might look like, points out

flaws in the Correspondence Theory model of reduplication, and demonstrates the utility

of the lpm-ot framework. It is hoped that others will soon employ the tools that made

this analysis possible, or others like them, to begin construction of a large body of such

analyses so that phonologists will be able to construct a more complete picture of what

the languages of the world are really like.
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APPENDIX A

The Weighted Finite State Model of Optimality Theory

The basic structure of Optimality Theory comprises three components: Gen, a function

which converts an underlying representation (a single string) into a representation of the

infinite set of possible outputs (for I-O Correspondence Theory the outputs include the

input, plus a correspondence relation between the segments of the input and the outputs);

Con, a universal set of constraints, which map output candidates to integer penalty values

according to some constraint-specific metric; and Eval, an function that uses the con-

straints, arranged in a language-specific ranking, to select from the infinite set of potential

outputs produced by Gen a single “most harmonic” candidate.

A.1 GEN

The Gen function, in the Ellison model, is fairly simple. It simply produces a finite state

machine representing the input string paired with all well-formed output strings (the set

of well-formed output strings is the primary difference between the Ellison, Eisner, and

Albro models¹).

1The Albro model here primarily refers to the model used in this dissertation rather than the separate
Albro model from Albro a, which uses a representation similar to that of Eisner but modified to be
complex and powerful enough for full-scale real-world phonological analyses.
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A.2 CON

Each constraint in Con is implemented as a weighted finite state machine of a particular

sort. For every constraint c, the implementation C of c is a weighted finite state machine,

i.e., a -tuple 〈Q, Σ, δ, q0, A〉:

• Q ⊆ N is a set of states.

• Σ is a set, disjoint from Q, of symbols making up the alphabet of the machine.

• δ is the transition function. It maps from Q × (Σ ∪ ε) to 2Q×{0,1}.

• q0 ∈ Q is the initial state of the machine.

• A ⊆ Q is a set of acceptor (final states).

The extended transition function δ̂ is defined as follows: (s, ω) ∈ δ̂(q, u) iff (s, ω) = (q, 0)

and u = ε, or there exist ui ∈ (Σ ∪ ε) and ωi ∈ {0, 1}, for 1 ≤ i ≤ n and n ≥ 1, such

that u1u2 . . . un = u and Σn
i=1ωi = ω, (si, ωi) ∈ δ(si−1, ui) for 1 ≤ i ≤ n, q = s0 and

s = sn. The language accepted by a constraint implementation C is the set L(C) =

{u|δ̂(q0, u) ∩ (A× {0, 1}) 66= ∅}. For a constraint, L(C) = Σ∗. For a given string u the weight

WC(u) assigned u is defined as min{ω|(q, ω) ∈ δ̂(q0, u), q ∈ A}. The constraint c itself is

then the function WC—a total function from Σ∗ to N.
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A.3 EVAL

My fsm algorithm for the Eval function operates as follows²:

. Gen applies to the input string, producing an fsm, which will be referred to as

cands.

. cst is set to the most highly ranked constraint.

. cands is intersected with cst to yield the strings of cands, each weighted with a

penalty value.

. A modified form of Dijkstra’s Single Source Shortest Paths algorithm (see Albro

a) is used to remove all but the least penalized candidates. The variable cands

now refers to the result of this step.

. cst is set to the next most highly ranked constraint. If there is none, the value of

Eval is set to the current value of cands and the algorithm exits. Otherwise the

algorithm continues at step .

2Eisner’s version, on which my version is based, is the same for the most part. Ellison’s version uses a
different intersection algorithm.
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APPENDIX B

MCFG Background

An mcfg is an extension to context free grammars that yields greater expressive power (an

mcfg can describe any language that a cfg can, but there are languages that a context

sensitive grammar can describe that an mcfg cannot). In a context free grammar, each

non-terminal symbol in the grammar represents (that is, yields) a set of strings. A multiple

context free grammar expands upon this by allowing non-terminal symbols to represent

tuples (that is, groupings) of sets of strings. For example, in a cfg the non-terminal N

might yield the set {“dog,” “cat,” “mouse,” “ball”}. In an mcfg NV might yield the tuple

〈{ “dog,” “cat,” “mouse”}, { “eats,” “sleeps,” “drinks”}〉. Here is a formal definition of

mcfgs. This is followed by an exploration of their descriptive power, some examples, and

finally a definition of the intersection of an mcfg with an fsm.

B.1 DEFINITIONS

B.. mcfg

An mcfg G is defined as a -tuple 〈N, Σ, F, P, S〉where

• N is a set of nonterminal symbols. Each A ∈ N has an associated degree d(A) ∈ N
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• Σ is a set of terminal symbols, disjoint from N.

• F is a set of functions f ∈ F, each f being a function from (Σ∗)d1(f) × (Σ∗)d2(f) × · · · ×

(Σ∗)da(f)(f) to (Σ∗)r(f) where:

– a(f) describes the number of arguments of f

– r(f) describes the range of f

– di(f), 1 ≤ i ≤ a(f) is the degree of each argument of f

• P is the set of productions of the grammar, where each p ∈ P is a finite subset of

⋃

q(Fq×Nq+1) where Fq is the subset {f ∈ F|a(f) = q}. A production is conventionally

notated as A0 → f[A1, A2, . . . , Aa(f)]. For any such production, r(f) = d(A0),

di(f) = d(Ai)(1 ≤ i ≤ a(f)).

• S ∈ N is the start symbol for the grammar. The grammar must be such that d(S) =

1.

The following requirements also pertain to the members of F:

Let xi = (xi1, xi2, . . . , xidi(f)) and X = {xij|1 ≤ i ≤ a(f), 1 ≤ j ≤ di(f)}. Then

if f ∈ F is terminating (a(f) = 0), then r(f) = 1, and f is defined as f = α

for some α ∈ Σ∗. If f is nonterminating (a(f) > 0), then each component

fh(1 ≤ h ≤ r(f)) of f is defined as fh[x1, x2, . . . , xa(f)] = zh1, zh2, . . . , zhvh(f)

where zhk ∈ X (1 ≤ k ≤ vh(f)), subject to the condition that each member of

X appears exactly once in the definition of f.
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B.. grammar arity

d(G), the arity of a grammar, is defined as follows: d(G) = max{d(A)|A ∈ N}. An mcfg

G with d(G) = m is referred to as an m-mcfg.

B.. language/yield set

The language (yield set) LG(A) of a nonterminal category A within an mcfg G is defined to

be the smallest set satisfying the following conditions (here θ is a tuple 〈α1, α2, . . . , α|θ|〉, αi ∈

Σ∗):

. If a terminating rule A → θ∈ P, then θ ∈ LG(A)

. If θi ∈ LG (1 ≤ i ≤ a(f)) for A → f[A1, A2, . . . , Aa(f)] ∈ P then f[θ1, θ2, . . . , θa(f)] ∈

LG(A)

Then L(G) = LG(S).

B.. derivation tree

For an mcfg G, the set CL(G) contains the derivations trees for all strings in G. This is

defined as limk→∞ CLk(G) where CLk(G) is defined as follows:

. For a terminating rule A → θ, the tree consisting of a single node labeled A : θ is a

derivation tree of θ, and is a member of CL0(G).

. For all τ ∈ CLk−1(G), τ ∈ CLk(G).
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. Given a rule A0 → f[A1, A2, . . . , Aa(f)] ∈ P, if for all i, 1 ≤ i ≤ a(f), τi ∈ CLk−1(G)

is a derivation tree of θi whose root is labeled Ai : θi, then the derivation tree of

θ0 = f[θ1, θ2, . . . , θa(f)] is the tree whose root is a node labeled A0 : θ0 that has a(f)

children, of which child i for all i such that 1 ≤ i ≤ a(f) is isomorphic to τi. This

tree is a member of CLk(G).

. CLk(G) has no other members.

B.2 EQUIVALENCES AND PLACEMENT WITHIN THE CHOMSKY

HIERARCHY

An mcfg is a specialization of Pollard’s () Generalized Context-Free Grammars. The

complexity of the languages describable by mcfgs is placed in the Chomsky hierarchy is

as follows:

RL ( CFL = 1 − MCFL ( HL = MHL = TAL = LIL = CCL( 2 − MCFL (

. . . ( MCFL = LCFRS = ML ( PMCFL ( CSL,

where these are defined as follows:

RL Regular Language (describable by a Finite State Machine)

CFL Context Free Language

-MCFL -ary Multiple Context Free Language (see §B..)

HL Head Language (Pollard )
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MHL Modified Head Language (Vijay-Shanker et al. )

TAL Tree-Adjoining Language (Joshi et al. )

LIL Linear Indexed Language (Gazdar ; Hopcroft & Ullman )

CCL Combinatory Categorial Language (Steedman ; Steedman )

m-MCFL m-ary Multiple Context-Free Language

MCFL limm→∞ m-ary Multiple Context-Free Language

LCFRS Linear Context-Free Rewrite System (Vijay-Shanker et al. )

ML Minimalist Language (Stabler )

PMCFL Parallel Multiple Context-Free Language

CSL Context Sensitive Language

B.3 EXAMPLES

B.. copy language

The following grammar yields the language {ww|w ∈ {a, b}∗}:

S → f1[R], f1[x1] = x11x12

S → ε
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R → f2[X], f2[x1] = x11, x12

R → f3[X, R], f3[x1, x2] = x11x21, x12x22

X → f4[A, A], f4[x1, x2] = x11, x21

X → f4[B, B]

A → a

B → b

An example derivation is the string abaaba, whose derivation tree (not the one according

to the definition, but a derivation tree more like the usual one for a cfg) appears as follows:

S

R

X

A

a

A

a

R

X

B

b

B

b

R

X

A

a

A

a

It is immediately apparent from this tree what the difference is between an mcfg and a

cfg—the leaves of this tree, taken in order, do not produce the derived string. Instead, a

function applies at each node to change the order of words within the string. The type of

derivation tree given in the definition in §B.. makes this more clear:
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S:abaaba

R:aba,aba

X:a,a

A:a A:a

R:ba,ba

X:b,b

B:b B:b

R:a,a

X:a,a

A:a A:a

Here each node has been decorated with the string that was derived from its category. The

derivation might be put into words as follows:

. Rule A → a applies twice; a ∈ LG(A).

. Rule X → f4[A, A] applies; f4[a, a] = a, a ∈ LG(X).

. Rule R → f2[X] applies; f2[(a, a)] = a, a ∈ LG(R).

. Rule B → b applies twice; b ∈ LG(B).

. Rule X → f4[B, B] applies; f4[b, b] = b, b ∈ LG(X).

. Rule R → f3[X, R] applies; f3[(b, b), (a, a)] = ba, ba ∈ LG(R).

. Rule A → a applies twice.

. Rule X → f4[A, A] applies.

. Rule R → f3[X, R] applies; f3[(a, a), (ba, ba)] = aba, aba ∈ LG(R).

. Rule S → f1[R] applies; f1[aba, aba] = abaaba ∈ LG(S) = L(G).
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B.. viso

The following grammar, when suitably extended, yields a language with Verb Infl Subject

Object order, including such sentences as “wave -s Gumby” and “ride -s Gumby Pokey”:

S → f1[CP], f1[x1] = x11

CP → f2[C, IP], f2[x1, x2] = x11x21

IP → f3[I1], f3[x1] = x12x11

P0 → f4[P1, DP], f4[x1, x2] = x21x11, x12

I1 → f5[I, P0], f5[x1, x2] = x11x21, x22

P1 → f6[vP, VI], f6[x1, x2] = x11, x21

P1 → f4[P2, DP]

P2 → f6[vP2, VT ]

DP → Gumby

DP → Pokey

VI → wave

VT → ride

C → ε

I → -s

vP → ε

vP2 → ε
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The derivation tree for “ride -s Gumby Pokey” would be as follows, complete with derived

string decorations:

S:ride -s Gumby Pokey

CP:ride -s Gumby Pokey

C:ε IP:ride -s Gumby Pokey

I1:-s Gumby Pokey,ride

I:-s P0:Gumby Pokey,ride

P1:Pokey,ride

P2:,ride

vP2 : ε VT :ride

DP:Pokey

DP:Gumby

B.4 INTERSECTION WITH AN FSM

The basic definition (not a serious algorithm; just a construction—see Seki et al.  for

a correctness proof ) for intersection of an mcfg with an fsm is as follows:

Let G = 〈N, Σ, F, P, S〉 be an m-mcfg which generates L and M = 〈Q, Σ, δ, q0, A〉 be an

fsm which accepts R. We construct an m−mcfg G′
= 〈N′, Σ, F, P′, S′〉 that generates L ∩ R

as follows:

. N′
= {S′} ∪ {A[p1, q1, p2, q2, . . . , pd(A), qd(A)]|A ∈ N, pi, qi ∈ Q, 1 ≤ i ≤ d(A)}

. P′ is the smallest set of which the following requirements hold.
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(a) For each rule

A0 → f[A1, A2, . . . , Aa(f)] ∈ P

and

A
′
i = Ai[p

(i)
1 , q

(i)
1 , . . . , p

(i)
d(Ai), q

(i)
d(Ai)], 0 ≤ i ≤ a(f)

which satisfy the connecting condition (see below), let

A
′
0 → f[A′

1, A
′
2, . . . , A

′
a(f)] ∈ P

′

.

(b) For all qF ∈ A, S′ → S[q0, qF] ∈ P′.

B.. connecting condition

B... Nonterminating f

Let each component fh (1 ≤ h ≤ r(f) = d(A0)) of f be

f
h[x1, x2, . . . , xa(f)] = zh1zh2 . . . zhvh(f),

where

zhk = xi(h,k)j(h,k)
, 1 ≤ k ≤ vh(f), 1 ≤ i(h,k) ≤ a(f), 1 ≤ j(h,k) ≤ di(h,k)

(f).

Then the following conditions must hold:

. p
(i(h,1))
j(h,1)

= p
(0)
h ,

. p
(i(h,k))
j(h,k)

= q
(i(h,k−1))
j(h,k−1)

, 2 ≤ k ≤ vh(f), and

. q
(0)
h = q

(i(h,vh(f)) )
j(h,vh (f)

.
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B... Terminating f

Here the original rule in P is A0 → α, α ∈ Σ∗ and the corresponding intersection rule is

A0[p
(0)
1 , q

(0)
1 ] → α. The connecting condition here is that

q
(0)
1 ∈ δ̂(p(0)

1 , α).
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APPENDIX C

A Bottom-Up Algorithm for MCFG/WFSM Intersection

Intersection of mcfgs with wfsms may be accomplished via a modified cyk chart parsing

algorithm in the deductive chart parsing tradition (Shieber et al. ). I will introduce

the full weighted finite state intersection algorithm in five steps: first, an overview of

deductive chart parsing; second, a presentation of a bottom-up (cyk) chart parser for

mcfgs; third, a sketch of a correctness proof; fourth, a modification of the parser to

intersect mcfgs with fsms instead of simply parsing sentences; fifth, a modification of the

intersection algorithm to deal with weight minimization; and sixth, an overview of the

implementation with some notes on complexity.

C.1 DEDUCTIVE CHART PARSING

A deductive chart parser attempts to construct the parse tree of a sentence under a par-

ticular grammar by using a special-purpose deductive system to prove that the sentence

can be derived in the grammar. In order to avoid duplication of effort, the chart parser

stores all formulas of the deductive system (known as chart items) as they are derived. A

bottom-up deductive chart parser uses the words of the sentence—what will be the leaf

nodes of the derivation tree—as the axioms of its deductive system and the productions
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of the grammar as derivation rules. Each chart item makes some claim about licit subtrees

built up from parts of the sentence being parsed. The deductive procedure used here is

taken from Shieber et al. ; for a correctness proof see that article.

The procedure employs a chart, as mentioned above, in order to store items as they

are computed, avoid redundant computation, and allow reconstruction of a parse three

when the algorithm has completed. In addition the procedure makes use of an agenda to

keep track of items to which the rules of deduction have not yet been applied. Overall,

the procedure is as follows.

. Initialize the chart and the agenda to contain the axiomatic items provided by the

deductive system.

. Repeat until the agenda is empty:

(a) Select and remove an item from the agenda. This item will be referred to as

the trigger item.

(b) Generate all items that can be derived from the trigger item and zero or more

items from the chart by one application of a rule of inference, and add these

items to the chart if they are not already there. If an item is added to the chart,

add it to the agenda as well.

. If a goal item is in the chart, the sentence is recognized as a member of L(G),

otherwise it is not.
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C.2 BOTTOM-UP MCFG PARSING

The following deductive system is sufficient to parse an input string w = w1w2 . . . wn

against an mcfg G = 〈N, Σ, F, P, S〉 as defined in §B... The items of the deductive system

are of the form A[p1, q1, p2, q2, . . . , pd(A), qd(A)] for 0 ≤ pi ≤ qi ≤ n,1 ≤ i ≤ d(A), A ∈ N.

Such an item constitutes an assertion of existence of a derivation tree τ for grammar G

with the following properties:

. The head of τ is labeled by A.

. The yield of τ, that is, the string for which τ is a derivation tree, is the tuple

θ = 〈wq10+1 . . . wq11
, wq20+1 . . . wq21

, . . . , wqd(A)0+1 . . . wqd(A)1
〉.

By the definition of a derivation tree, θ ∈ LG(A).

C.. axioms

For each terminating rule A → α in P such that α = wp+1 . . . wq (0 ≤ p ≤ q ≤ n)¹, there

will be an axiom A[p, q] in the deductive system.

C.. goal

The goal item which indicates a successful parse is S[0, n]. This is because the interpreta-

tion of this item is that a derivation tree headed by S exists that yields the string w1 . . . wn,

which is exactly what the parser is attempting to show.

1If i = j then α = ε.
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C.. rule of inference

Unlike many deductive chart parsers, this one contains only a single rule of inference,

albeit a rather general one:

A1[p
(1)
1 , q

(1)
1 , . . . , p

(1)
d(A1), q

(1)
d(A1)], . . . , Aa(f)[p

(a(f))
1 , q

(a(f))
1 , . . . , p

(a(f))
d(Aa(f))

, q
(a(f))
d(Aa(f))

]

A0[f((p
(1)
1 , q

(1)
1 , . . . , p

(1)
d(A1), q

(1)
d(A1)), . . . , (p(a(f))

1 , q
(a(f))
1 , . . . , p

(a(f))
d(Aa(f))

, q
(a(f))
d(Aa(f))

))]

if A0 → f[A1, A2, . . . , Aa(f)] ∈ P and

f((p(1)
1 , q

(1)
1 , . . . , p

(1)
d(A1), q

(1)
d(A1)), . . . , (p(a(f))

1 , q
(a(f))
1 , . . . , p

(a(f))
d(Aa(f))

, q
(a(f))
d(Aa(f))

))

obeys the connecting condition of §B....

C.3 CORRECTNESS PROOF SKETCH

To prove this deductive system correct, it is necessary to prove soundness (that derivation

of the goal item implies that the string is a member of the language) and completeness

(that for any string in the language a goal item will be derived).

C.. soundness

This amounts to showing that the axioms are sound (that is they are only added if the

claim they make is correct) and that the inference rules are sound as well (from correct

antecedents they derive only correct consequences).
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C... Axioms

The axiom A : [p, q] asserts the existence of a tree τ ∈ CL(G) with the following proper-

ties:

. The head of τ is labeled A.

. τ has one child, the leaf labeled γ = wp+1 . . . wq

. The yield of τ is γ = wp+1 . . . wq.

This claim is transparently correct by the definition (part ) of CL(G) and the definition

of the axioms.

C... Rule

Since the rule of inference follows exactly the definition of a derivation tree, its application

from derivation trees will produce derivation trees.

C... Goal

If the goal has been derived then by the definition of an item the sentence w is derived

from S and therefore w ∈ L(G).

C.. completeness

This amounts to showing that given a sentence w = w1 . . . wn in the language, any deriva-

tion tree of that sentence will be derived by the system.





C... Lemmas

First, note that by the definitions of membership in the language and of derivation trees,

any sentence in the language will have one or more associated derivation trees. Pick an

arbitrary one, call it τ. τ has the following properties, from the definition of a derivation

tree:

. Each leaf node of τ is labeled by a nonterminal symbol paired with a contiguous

subsequence wp+1 . . . wq for some p, q such that 0 ≤ p ≤ q ≤ n. The subsequence

is contiguous because by the definition of mcfg all f ∈ F have only the power to

concatenate strings, not to rearrange the parts of strings or pull out subparts.

. The string labels of the leaves of the tree can be placed in some linear sequence such

that the ordered concatenation is equal to w. This linear sequence is furthermore

such that each leaf label appears exactly once in it.

These properties in fact extend to any cut through the derivation tree, modified only by

the fact that interior nodes can be labeled by a tuple of subsequences

〈wp1+1 . . . wq1
, wp2+1 . . . wq2

, . . . , wpm+1 . . . wqm
〉,

for some m.

The proof that the item S : [0, n] will be derived for any sentence w = w1 . . . wn if

τ, a derivation tree for w, is in CL(G), is by induction, showing that, first, the leaves of τ

are represented in the chart, and second, that if all τ nodes of maximum distance k from

a leaf node in τ are represented in the chart, then all τ nodes of maximum distance k + 1

are represented as well.
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C... Basis Step

If a leaf node A : γ is in τ, then

. There must be a production A → γ in the grammar, and

. γ must be a subsequence wp+1 . . . wq(0 ≤ p ≤ q ≤ n) of w (by the lemmas).

This is the exact condition under which an axiom A : [p, q] will be entered into the chart.

Therefore the nodes of distance  are represented, since A : γ was arbitrary.

C... Inductive Step

Assume that all τ nodes of maximum distance k from a leaf node are in the chart. Then

take an arbitrary node A : θ in τ of maximum distance k+1 from a leaf node. By the defini-

tion of derivation tree, some production A → f[A1, A2, . . . , Aa(f)] must exist in P such that

the node A : θ has a(f) children where child i is labeled A1 : θ1 and f[θ1, θ2, . . . , θa(f)] = θ.

Furthermore the connectivity condition must hold, since parts  and  of the connectivity

condition are just consequences of the way f is defined, and condition  is a consequence

of the fact that θ cannot be part of a successful derivation if it contains subsequences

wp1+1 . . . wq1
wp2+1 . . . wq2

where q1 6= p2, since no f ∈ F has the power to fill in the

middle of a string, only to concatenate its arguments in an order of its own determin-

ing. Therefore the connectivity condition is met and the chart contains the antecedents

for the rule of derivation that will add the item A : [p1, q1, p2, q2, . . . , pd(A), qd(A)] where

θ = 〈wp1+1 . . . wq1
, wp2+1 . . . wq2

, . . . , wpd(A)+1 . . . wqd(A)
〉, corresponding exactly to A : θ.
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Since A : θ was arbitrary, all nodes at maximum distance k + 1 from some leaf node will

be generated.

Since all nodes of the derivation tree τ are generated, the top node of which must be

S : w by the definition of a derivation tree, the algorithm recognizes any arbitrary sentence

in the grammar, and thus the completeness property holds.

C.4 CHART PARSING FOR FSM INTERSECTION

It should be clear from examining the items used by the previous algorithm and the def-

inition of well-definition that the algorithm relates quite closely to the fsm intersection

construction of §B.. The primary difference is that the algorithm from the previous sec-

tion has as its input a string of lexical items rather than a finite state machine over those

items. To modify this into an fsm intersection algorithm requires only a few changes:

items will be interpreted in terms of the fsm, axioms will be derived in a slightly different

way, the goals will differ slightly, and a grammar recovery step will need to be added to

retrieve the intersection grammar from the chart (a nearly equivalent algorithm can be

used with sentence parsing to recover the parse tree). The sections to follow describe the

algorithm for intersection of an fsm M = 〈Q, Σ, δ, q0, A〉 with an mcfg G = 〈N, Σ, F, P, S〉.

C.. interpretation of an item

An item A[p1, q1, p2, q2, . . . , pd(A), qd(A)] indicates the existence of a derivation tree τ ∈

CL(G) with the following properties:
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. The root node of τ is labeled A.

. The yield of τ is L(M1) ∩ L
(1)
G (A) × L(M2) ∩ L

(2)
G (A) × · · · × L(Md(A)) ∩ L

(d(A))
G (A),

where Mi = 〈Q, Σ, δ, pi, {qi}〉 and L
(i)
G (A) = {αi|〈α1, α2, . . . , αi, . . . , αd(A)〉 ∈ LG(A)}.

C.. axioms

For each arc 〈p, γ, q〉 ∈ δ for which there is a terminating rule A → γ ∈ P, add axiomatic

item A : [p, q].

C.. goals

The goal items are S : [q0, qF] such that qF ∈ A.

C.. grammar recovery

The grammar recovery algorithm operates as follows:

. Add all goal items in the chart to an agenda.

. While the agenda is not empty:

(a) Remove an item A0[p1, q1, p2, q2, . . . pd(A0), qd(A0)] from the agenda.





(b) For all rules A0 → f[A1, A2, . . . , Aa(f)] ∈ P look up all combinations of items

headed by A1 . . . Aa(f). For each combination, check whether f is well-defined.

If so, add rule

A0[p1, q1, p2, q2, . . . pd(A0), qd(A0)] → f[A1[p
(1)
1 , q

(1)
1 , . . . , p

(1)
d(A!)

, q
(1)
d(A1)], . . . ,

Aa(f)[p
(a(f))
1 , q

(a(f))
1 , . . . , p

(a(f))
d(Aa(f))

, q
(a(f))
d(Aa(f))

]]

to the intersection grammar. Add the item

Ai[p
(i)
1 , q

(i)
1 , . . . , p

(i)
d(Ai), q

(i)
d(Ai)]

to the agenda for every i if the item has not yet been added to the agenda.

Although step (b) looks rather inefficient, it is possible to use the connectivity condition

to speed item lookup.

The grammar produced by this process is transparently that produced in the intersec-

tion construction, so its language is L(G) ∩ L(M).

C.5 WEIGHTS

Modifying the mcfg/fsm intersection to introduce weights and weight minimization is

a straightforward matter of adding a weight value to each item and adjusting to take the

weight value into account. An item now takes the form A[p1, q1, p2, q2, . . . , pd(A), qd(A)]/ω.

The input to the algorithm is now a Weighted Finite State Machine (wfsm).
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C.. item interpretation

Here I am assuming that weights come from the fsm only; weights from an mcfg could

equally well be incorporated, but I cannot for the moment think of how that would be

relevant to Optimality Theory. An item A[p1, q1, p2, q2, . . . , pd(A), qd(A)]/ω is interpreted

as asserting the existence of a derivation tree τ ∈ CL(G) such that:

. The root node of τ is labeled A.

. The yield of τ is as defined in §C... Furthermore, there exists at least one θ =

〈γ1, γ2, . . . , γd(A)〉 in the yield of τ such that if ωi(γi) is defined as min{ω′|(qi, ω
′) ∈

δ̂(pi, γi)} then Σ
d(A)
i=1 ωi(γi) = ω. In other words, at least one element of Y(τ) has

weight ω.

C.. axioms

For each arc 〈p, γ, q, ω〉 ∈ δ, if A → γ ∈ P, add A[p, q]/ω to the agenda.

C.. goals

The goal items are S[q0, qF]/ω such that qF ∈ A. The ω parameter may carry any value.

C.. rule of inference

The rule of inference is almost the same, except for the weights. The following rule

abbreviates formulas which do not change as Γ (e.g., Γ1 = A1[p
(1)
1 , q

(1)
1 , . . . , p

(1)
d(A1), q

(1)
d(A1)])
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and just gives the formula for weights:

Γ1/ω1, Γ2/ω2, . . . , Γa(f)/ωa(f)

Γ0/Σ
a(f)
i=1 ωi

C.. grammar reconstruction

The weight-minimizing grammar recovery algorithm operates as follows:

. Let Ig be the set of goal items in the chart, and let ωmin be min{ω|S[p, q]/ω ∈ Ig}.

Add the goal items {S[p, q]/ω|ω = ωmin, S[p, q]/ω ∈ Ig} to the agenda.

. While the agenda is not empty:

(a) Remove an item A0[p1, q1, p2, q2, . . . pd(A0), qd(A0)]/ω0 from the agenda.

(b) For all rules A0 → f[A1, A2, . . . , Aa(f)] ∈ P look up all combinations of items

headed by A1 . . . Aa(f). For each combination, check whether f is well-defined

and whether the weights sum correctly. If so, add rule

A0[p1, q1, p2, q2, . . . , pd(A0), qd(A0)] → f[A1[p
(1)
1 , q

(1)
1 , . . . , p

(1)
d(A1), q

(1)
d(A1)], . . . ,

Aa(f)[p
(a(f))
1 , q

(a(f))
1 , . . . , p

(a(f))
d(Aa(f))

, q
(a(f))
d(Aa(f))

]]

to the intersection grammar. Add the item

Ai[p
(i)
1 , q

(i)
1 , . . . , p

(i)
d(Ai), q

(i)
d(Ai)]/ωi

to the agenda for every i if the item has not yet been added to the agenda.

That is, the algorithm is as before except that only minimum-weight goal items are used

and weight sum values are checked.
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C.. note

In the actual implementation it is not necessary to keep any but the lowest-weighted

weight-variant of any item in the chart. That is, for any two items

A0[p1, q1, . . . , pd(A0), qd(A0 )]/ω1

and

A0[p1, q1, . . . , pd(A0), qd(A0)]/ω2,

only item

A0[p1, q1, . . . , pd(A0), qd(A0)]/ωmin,

where ωmin = min{ω1, ω2}, need be in the chart. If all weight-variants were allowed in

the chart, it is possible, since constraints and candidate representations may be cyclic, that

the chart would increase in size unboundedly. Thus, it is necessary that new items not be

added to the chart that have higher weights than already present weight-variants.

C.6 IMPLEMENTATION NOTES

The implementation of the algorithms described here² relies on a slightly different normal

form for mcfgs—it requires all nonterminating productions to have no more than two

categories on the right hand side. An mcfg not in this normal form can be brought into

it by means of the following transformation:

2Actually, two implementations exist at present: one for wfsm intersection written in C++ and one
for mcfg parsing written in O’Caml. The C++ implementation is less general, having been optimized
for the particular demands of Correspondence Theory Reduplication. Both are available at ��> > 6������������,?
���;0�3�: >,?	� 9�
 8
? :����
� 6�: 1;6

;:�� 8�
�����1���541 < >���8���:)?�� >40�
 .
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While illegal productions exist:

. Take a production A0 → f[A1, A2, . . . , An] such that n > 2 and remove it from the

grammar.

. Add a new production B → g[A1, A2] where d(B) = d(A1) + d(A2) and

g
h[x1, x2] =















x1h, 1 ≤ h ≤ d(A1)

x2(h−d(A1)), d(A1) < h ≤ d(B)

. Add production A0 → f′[B, A3, . . . , An] to the grammar where f′ is the result of

substituting xi−1j for xij in f for 3 ≤ i ≤ n, 1 ≤ j ≤ d(Ai) and also x1(j+d(A1)) for x2j

(1 ≤ j ≤ d(A2)).

Since step  removes an illegal production, step  adds a legal one and step  adds one with

a smaller number of arguments than the one removed, eventually the loop will terminate

with a legal binary grammar.

I will not specify the implementation in exact detail—the source code is freely avail-

able; I will limit myself to a brief description. Here is how it works:

. Start with an mcfg G.

. Analyze G and produce tables to speed up chart lookups based on the well-definition

(connectivity) condition. For example, for a rule A → f[A1, A2] compute the de-

pendencies that tell you given an item of type A2 with particular p, q values what

p, q values to use to look up a compatible A1 item in order to form an item of type

A. Also compute the dependencies for finding A1, A2 given A (used in grammar

reconstruction).
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. Given an fsm to parse, produce axioms as described before.

. Continue as described before, using the computed tables to speed chart lookup. If

there are empty categories, assume their presence in the chart if possible rather than

looking them up.

The chart was designed to be as compact and flexible as possible, at a possible expense of

time complexity for some lookups. The chart will allow efficient lookup of any item or

set of items where the category is known and the p, q values are specified as integers or

wild-card values, e.g. A[2, ∗, 5, 7] or A[2, 5, ∗, ∗], which would both match, among other

things, the item A[2, 5, 5, 7].

The chart is represented as an array of sets of recursively nested tries. Each set of tries

represents all of the items belonging to a particular category. For example, the trie

5

2

7

5

3

4

5 6

7

14

3

1

6

5

2

5

contains the items A[5, 2, 7, 5], A[5, 3, 4, 6], A[7, 14, 3, 1], A[6, 5, 2, 5], and A[5, 3, 4, 5]³.

The estimated worst-case time complexity for parsing with a m-mcfg is no greater

than O(n3m) but should be less than that given limitations on p, q values. This is be-

cause there are O(n2m) items max (less because of p, q limitations), and for each item it is

necessary to look up no more than O(nm) items, where lookup is theoretically O(1).

3Actually the order of the p, q values differs from the display order whenever so differing increases average
lookup speed.
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APPENDIX D

Relation to Gordon’s (2002) Factorial Stress Typology

The constraints used here to analyze Malagasy stress are quite similar to those presented

in Gordon (). In order that the origins and justification of the constraints used here

may be more fully understood by reference with that work, I would like to present a map-

ping here from the terminology used there to that used here, although some constraints

referenced there are inactive in Malagasy:

Align(x1, R, 0, PrWd) The effect of this constraint is to require that the left edge of a

word should have a stress, and refers to a stress grid with levels , , and , where

level  contains the syllables of the word (each syllable has a mark in the grid),

 contains the secondary stress, and  contains primary stress(es). In my system

this constraint is represented as *Final([V,-stress], C). There are slight differences

between Gordon’s constraint and mine—Gordon’s constraint penalizes any stress

which is not rightmost in the word, whereas mine penalizes any word which does

not have a stress in its rightmost syllable. To make up this difference, my stress

system requires the addition of lower-ranked *[+stress]. To make an exact equiva-

lent of Gordon’s constraint, you would have to consider tightly ranked *Final([V,-

stress], C)�*[+stress] as a single constraint of sorts.
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Align(x1, L, 0, PrWd) This is the mirror image of the previous constraint; its effect is

to require that the left edge of a word should carry stress. The loose equivalent is

*Initial([V,-stress], C), subject to the necessity for lower-ranked *[+stress] for

full equivalence, as in the previous constraint.

Align(x2, R, 1, PrWd) This constraint penalizes any primary stress that is not the right-

most stress in a word. Its effect is to cause primary stress to be rightmost in a word.

The loose equivalent for this constraint in my system is the pair *Final([+stress,-

prim], [-stress]) (*Rtmost2ndary) and *[+prim]. The system is only loosely equiv-

alent however, as these two constraints allow only languages which require words to

have primary stress or forbid them from having it. I believe that Gordon assumes

the existence of a Culminativity constraint which would penalize words with no

primary stress. The combination of Culminativity with Align(x2, R, , PrWd)

should behave similarly to the combination of *Rtmost2ndary and *[+prim].

Align(x2, L, 1, PrWd) This is the mirror image of the previous. The loose equivalent in

my system is the constraint pair *Initial([+stress,-prim], [-stress]) and *[+prim].

Align(Edges, 0, PrWd, x1) This constraint is violated once if a word has no left-aligned

stress and also once if a word has no right-aligned stress (for a total of two possible

violations per word). The equivalent in my system would be a constraint disjunc-

tion of *Initial([V,-stress], C) with *Final([V,-stress], C) (see Albro b for

the finite state formalization of constraint disjunction within the framework used

here), although my guess would be that the separate existence of these two con-

straints is sufficient for all actual cases.
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NonFinality: This constraint outputs a violation for any word in which the final syllable

bears a stress. The equivalent here is *Final([V,+stress], C).

*Lapse: This constraint outputs a violation for any sequence of two adjacent unstressed

syllables. The equivalent here is *Sequence([V,-stress], [V,-stress], C).

*ExtendedLapse: This constraint outputs a violation for any sequence of three adjacent

unstressed syllables. The equivalent here is *DoubleSequence([V,-stress], [V,-

stress], [V,-stress], C, C).

*Lapse-Right: Outputs a violation for any word in which the rightmost two syllables are

unstressed. The equivalent here is *FinalSequence([V,-stress], [V,-stress], C).

*Lapse-Left: Outputs a violation for any word in which the leftmost two syllables are

unstressed. The equivalent here is *InitialSequence([V,-stress], [V,-stress], C).

*ExtendedLapse-Right: Outputs a violation for any word in which the rightmost three

syllables are unstressed. The equivalent here would be *FinalDoubleSequence([V,-

stress], [V,-stress], [V,-stress], C, C).

*Clash: Outputs a violation for any sequence of two adjacent stressed syllables. The

equivalent here is *Sequence([V,+stress], [V,+stress], C).
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APPENDIX E

Diagrams of the Malagasy Analysis

The following are the final rankings and constraints used in the analysis. Note that some

of these rankings were not mentioned in the text. For the most part, such unmentioned

rankings are somewhat arbitrary choices required to ensure that randomly generated in-

puts respect the phonotactics of the language.

E.1 STEM LEVEL

The constraints used in the Stem level of the analysis divide into the strata shown in

Table E.. The necessary rankings that influence these strata are shown in Figure E..

E.2 WORD LEVEL

The constraints used in the Word level of the analysis divide into the strata shown in

Table E., and necessary rankings that influence these strata are shown in Figure E..
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DepIO IdentIO(±[-nas,lab,C]) *t
¯
X

IO-Integrity(C) IdentIO([±ant]) *XS

MaxIB IdentIO([+nas,lab]) *[-stress]/red[C0_

IdentIO([±syl]) IdentIO([dors]) *|[-prim][+prim]|

IdentIO([±nas]) *[+stress,-prim]/red[_] *FinalLapse

IO-Uniformity *Rtmost2ndary WSP

IdentIO([V-place]) PreserveRt IdentIO(Vs)/_C0#

IdentIO([±vce]) Exists([+stress]) IdentIO(±[-nas,cor,C])

IdentIO([±strid]) *|[αplace,C][−αplace,C]| IdentIO(±[+nas,cor])

IdentIO([±r]) *[αplace,C][−αplace,C]

IdentIO([+nas,+x]) *|[αstress][-αstress]||

*[+nas,+x] IdentIO([±cont])

IdentIO(±[cor,+nas,+x]) *[+prim]

MaxIR(C) *|[+cont][-cont]|

IO-Integrity(V)

NonFinality

*Clash

*Lapse

IdentIO([+stress])

Table E.: Stem Level Strata
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UNDOMINATED

IdentIO([+/-cont]) *[+nas,+x] IdentIO(+/-[cor,+nas,+x]) *[+prim]

*|[+cont][-cont]| MaxIR(C)

IO-Integrity(V)

NonFinality

*Clash

*Lapse

IdentIO([+stress])

Figure E.: Stem Level Hasse Diagram
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DepIO IO-Integrity IdentIO([±nas])

IdentIO([±syl]) IO-Uniformity IdentIO([cor])

IdentIO([+nas,+x]) MaxIO([+stress]) IdentIO([±round])

IdentIO([+high]) IdentIO([-low]) IdentIO([±back])

*Rtmost2ndary *|[-prim][+prim]| IdentIO([-high]) in [+stress]

IdentIO([+strid]) *u u MaxIO(C)/_C

IdentIO([-vce])/_V IdentIO([+vce])/N_ *[+nas,+x][-vce]

IdentIO([lab])/_V *|[+cont][-cont]| *[+nas,+x][+cont,-son,lab]

IdentIO([+ant])/_V IdentIO([-high])/_V *FinalLapse

*|[αstress][-αstress]| OpqStress IdentIO([+vce,+cont,-son]) in [+strid]

WSP IdentIO([+stress])/_C0# IdentIO([lab]) in [+nas,+x]

*t
¯

V *[+cont,-son,dors] IdentIO([+cont,-son,-ant,cor])

*X S *e a *[+nas,dors],*[+nas,-ant,cor]

*t
¯

# IdentIO([-low])/_V

*# S *i i

MaxIO(C)/_V *a V

*[+nas,+x] IdentIO([+nas,-ant,cor]) IdentIO([-strid,+fric,lab]) in B

*[-nas,+ant,cor,C] IdentIO([+nas,dors]) MaxIO(V)/_V

*[lab,C] *[-back,-high] C0# NonFinality

MaxIO IdentIO([+cont,-son])/_V

IdentIO([±vce])/#_ IdentIO([±lat]) *[+cont,-son]

IdentIO([-strid]) IdentIO([-stress,V]) IdentIO([-high])

IdentIO([+low]) *Clash *[+prim]

IdentIO([lab])

IdentIO([±cont]) *[-cor,+vce,+cont,-son] *Lapse

IdentIO([+stress])

IdentIO([+vce])/_V

*[+vce,-son]

Table E.: Word Level Strata
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UNDOMINATED

MaxIO(C)/_V *a V

IdentIOIn([-strid,+cont,-son,lab], B) *[+nas,+x]

IdentIO([+nas,-ant,cor]) *[-nas,+ant,cor,C]IdentIO([+nas,dors])

MaxIO(C)

MaxIO(V)/_V

*[lab,C]

IdentIO([+cont,-son])/_V

*[-back,-high] C0# NonFinality

IdentIO([+/-vce])/#_IdentIO([+/-lat]) *[+cont,-son]IdentIO([-strid]) IdentIO([lab])

MaxIO(V)

IdentIO([-stress,V]) IdentIO([-high]) IdentIO([+low])*Clash *[+prim]

*[-cor,+vce,+cont,-son]

IdentIO([+/-cont])

*[+vce,-son]

*Lapse

IdentIO([+vce])/_V

IdentIO([+stress])
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E.3 POST-LEXICAL LEVEL

The post-lexical strata are shown in Table E. and the ranking diagram is Figure E..
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DepIO(C) IO-Integrity IdentIO([±syl])

IdentIO([±nas]) IO-Uniformity(cont) MaxIO([-nas,C])

MaxIO([+stress]) IdentIO([+stress]) *[-back,+low]

*[+nas,+x] *[-strid,+cont,-son,lab] IdentIO([±round])

*|ei| IdentIO([+high]) *|[αnas][−αnas]|

IdentIO([-vce])/_V *#[+nas][-vce] *C [+nas]

*[-nas,C]# Exists([+stress]) *|C V|

IdentIO([+ant])/_V IdentIO([-ant,-nas,cor])/N_ IdentIO([+lab])/_V

*|[+son][-son]| IdentIO([+vce])/_V *|[αstress][-αstress]|

*[-cont][+cont,C] *[αC-place][−αC-place] *|[-prim][+prim]|

*|[+cont][-cont]| *|[αC-place][−αC-place]| *|[-cont][+cont,-cor]|

*Rtmost2ndary IdentIO([-cor,-son])/_V *|[αvce][−αvce]|

*|[-lat][+lat]| *t
¯

X *X S

*|[+high][-high]| PtIdentIO([-son,-cont]) IdentIO([-stress])

*|[-low][+low]|

IdentIO([±low]) DepIO(V) *[+prim]

MaxIO(C) IdentIO([-high]) *Clash

*N V# *C C IdentIO([±r])

IdentIO([-lab])

IdentIO([cor]) IdentIO([±ant]) IO-Uniformity(C)

IdentIO([±vce]) IdentIO([+cont,-son])/_V NonFinality

MaxIO(V) FeatMaxIO([+cont,-son])/_V

IdentIO([dors]) *[+cont,-son] *Lapse

*[-low]

FeatMaxIO([+cont,C]) IdentIO([±cont])

Table E.: Post-Lexical Level Strata
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UNDOMINATED DepIO(V)

IdentIO([+/-low])

*[+prim]
MaxIO(C)

IdentIO([-high])

*[-low]

*C C

IdentIO(+/-r)

IdentIO([-lab])

*N V#

IdentIO([cor])

IdentIO([+/-ant])

FeatMaxIO([+cont,-son])/_V

IdentIO([+cont,-son])/_V

IdentIO([+/-vce])

IO-Uniformity(C)

FeatMaxIO([+cont,C])

IdentIO([+/-cont])

NonFinality

MaxIO(V)

IdentIO([dors])

*Clash

*Lapse

*[+cont,-son]
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APPENDIX F

A Finite-State Representation of Metathesis

The coïndexing representation of standard Correspondence Theory (McCarthy & Prince

) is overly powerful—an accurate implementation would require a potentially infi-

nite random-access memory, thus such an implementation would necessarily be of greater

complexity than a finite state machine or even a push-down automaton (equivalently, a

context free grammar). In §.. I showed how to represent other forms of Input-Output

correspondence with finite state methods; here is a representation for metathesis.

In this variant, the Gen function takes as its input an underlying form, as before,

and produces a finite state machine representing an infinite set of candidates where each

candidate is comprised of the underlying form paired with some output of the function

scramble (to be described) and some surface form assembled from the list of valid segments.

Such a machine may be constructed as follows:

Let the underlying representation be represented by the symbol u and

the ith segment of the underlying form by ui. Further, let the output of the

scramble function be a set S where each element of S is a reördering of the

elements of u. Some cross-linguistic limit might be placed on the number of

transpositions allowed in the output of scramble, so one might, for example,





define scramble as relating the underlying form to set of strings such that each

string is identical to the underlying form except for having a single segment

out of order. Let an arbitrary element of S be represented by the symbol sj

and the kth segment of sj by sjk.

The construction process then begins with machines Mjk (representing

the kth underlying element in the candidate using scramble output sj) where

Mjk consists of an initial state q1, a first middle state q2, a second middle state

q3, and final state q4. One arc for each permissible symbol (including the

segments and also the segment divider symbol | and the non-correspondence

symbol −) connects q1 to q2 (representing the surface form), a single arc

labeled with segment uk connects q2 to q3, and an arc labeled sjk connects q3

to q4.

Now let M| be a finite state machine with states q1, q2, q3, q4, where all

possible arcs connect q1 to q2 as in Mjk, and arcs labeled with the symbol |

connect q2 to q3 and q3 to q4.

Next, define M+

jk as the result of applying the Kleene plus operation to

the machine Mjk and M
+|

jk as the result of concatenating M+

jk with M|. The

machine Mj is then defined as a concatenation beginning with M| and con-

tinuing with each M
+|

jk for all k, in sequence. The final machine is the union

machine for all Mj.

The above was a bit technical, but it should be clear from it that it is possible to construct

a candidate set with candidates that look like the following example (underlying /asta/,

surface [atsa]—coda simplification by local metathesis):





Output: | a | t | s | a |

Input: | a | s | t | a |

Scrambled: | a | t | s | a |

The usual Input-Output correspondence constraints of Correspondence Theory are then

replaced by Scrambled-Output correspondence constraints, and IdentIS (Input-Scrambled)

constraints are used instead of the standard Linearity constraint. In this example all of

the S-O constraints are satisfied, but IdentIS([±cont]) is violated in two places. A final

example shows that non-local metathesis can be represented this way as well:

Output: | s | a | t |

Input: | p | a | s |

Scrambled: | s | a | p |

The example has coda simplification by non-local metathesis as well as by change of artic-

ulator place, so both IdentIS (for place and [±cont]) and IdentSO (for place only) are

violated at various places.
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