Introduction

As Bolinger (1967) observed, certain adjectives that are ambiguous in prenominal position, are disambiguated when they appear in postnominal position:

1. Suppose that Capella is usually visible, but tonight is obscured by clouds:
 - a. The stars visible include Capella ⇒ False (Postnominal: Temporal)
 - b. The visible stars include Capella ⇒ True (Prenominal: Ambiguous)

Let us call these adjectives **Domain Adjectives** (DAs).

Research questions

Q1: What restrictions are there on DAs in English?
- a. Which adjectives define the class of DAs, and why?
- b. What determiners can co-occur with prenominal and postnominal DAs, and why?

Q2: How can we provide an explicit compositional semantics for DAs in prenominal and postnominal positions that captures the restrictions in Q1?

Reduced relative clause analysis

The RRC is an elegant and intuitive approach to the Bolinger contrast (Larson 1998; Larson & Marusick 2004; Larson & Takahasi 2007; Cinque, 2010)

Syntactically, DAs merged postnominally as elided RRCs:

1. John met every candidate possible.
2. John met every candidate that was possible for him to meet.

Stipulate that prenominal DAs are derived by movement above NP, committed to a non-standard analysis of RCs.

Semantics: DP vs. NP modification

(4) \[\text{DP} \alpha \Rightarrow \text{NP } \Gamma \text{ Fe. } B' N \text{ \& } \alpha \text{, where } \alpha = \text{DP modifier and } \beta = \text{NP modifier} \]

While NP modifiers are interpreted as **individual-level** via the Generative operator \(\Gamma \), DP modifiers escape \(\Gamma \) and are interpreted as **stage level**. DAs are claimed to be DP modifiers.

Issues: Not only are the questions in Q1 and Q2 still open, but the RRC makes several predictions, some of which may be falsified.

Adjectival restrictions

Fact 1: Restriction. The class of DAs is highly restricted.

John bought every book.

1. \(\{ \text{possible, visible, conceivable, imaginable, accessible} \} \)
2. \(\{ \text{suggestible, believable, possible, believable, imaginable} \} \)

Pilot study: 8 items; 24 subjects on Amazon’s Mechanical Turk (AMT); 7-point acceptability (7 = highest).

(5) Carla went on the worst . . .

- a. date possible 6.19 (19)
- b. possible date 6.62 (11) \(\left\lfloor \begin{array}{c} d = 43 \\ d = 1.02 \end{array} \right. \)
- c. date comprehensible 4.88 (30)
- d. comprehensible date 5.90 (19)

Crucial interaction: Effect of position weaker for items from Class I (42) than Class II (1.02), \(t = 2.72, p < 0.05 \); while this difference between \(a/b \) conditions is not significant, \(c \) was rated worse than every other condition.

Issue: DAs cannot be uniformly paraphrased as elided RRCs, cf. B. Schwarz (2003); Blöhdorn (2009).

(6) The captain sailed every possible navigable . . .

- a. it was possible for him to sail if
- b. that was possible | that was navigable

Fact 2: Complexity. Prenominal DAs are intolerant to morphological complexity beyond the apparent -able affixation without additional clausal material.

(7) The astronomer noted every

- a. invisible star possible
- b. visible star invisible (without a telescope)

Determiner restrictions

Fact 3: Strong determiners. DAs only licensed by strong determiners.

Pilot study: 66 subjects on AMT; task as before.

(8) The committee interviewed

- a. every possible (few) 1.71 (.42)
- b. * every possible (a few) 2.33 (.53)
- c. * every possible (a) 2.57 (.78)
- d. * every possible (many) 2.62 (.46)
- e. * every possible (candidate) possible 2.78 (.64) \(\text{candidate possible} \)

(9) DAs are banned from existential-there contexts:

- a. * There was (each | every | the best | the only) (possible) candidate(s) (possible) . . .
- b. * There was a (the | some | few) (possible) candidate(s) (‘possible’) . . .

Lexical semantics

Exhaustification.** DAs exhaustify the domain of objects for all accessible situations to the domain that is given by the resource situation \(s \), DAs non-compositional and listed separately in lexicon (Aronoff, 1976; Dowty, 1979)

\[\text{Let} \text{acc}^\alpha(s)(s’) \text{be an accessibility relation of type } a \text{ between situations } s \text{ and } s’. \]

\[\text{EXH}(P)(s) = \alpha \Gamma(P(x)(s’) \land \neg P(y)(s’)) \]

Fact: \(\text{EXH_book}(s) \) means that every situation \(s’ \) accessible from the resource situation \(s \) has same book-objects as \(s \).

Different: Adjectives specify different accessibility relations \(a \) on acc e.g., visibility, imaginability, etc.

Syntactic licensing

DAs are licensed by determiners with a resource situation pronoun in the sense of F. Schwarz (2009; a.o.)

- Akin to particles like up as in Keyser & Roeger’s (1992) treatment of particle verb constructions.
- Adjunct directly to D
- Bare, acategorical elements
- Presumed to lack the phrase structure for morphological or clausal complexity
- Congruent with B. Schwarz’s (2005) proposal for modal superlatives

Compositional semantics

Step 1: Generalize Chung & Ladusaw’s mode of composition and intensionalize the first argument to \(\text{EXH} \).

(10) Restrict(\(\lambda y.\lambda x.\lambda e.\left[\text{find}(y)(x)(s’), \text{dog} \right] \))

\[\text{EXH}(P)(s) \neq \text{EXH}(P)(s’), \text{EXH}(P)(s’) \neq \text{EXH}(P)(s), \text{EXH}(P)(s’), \text{EXH}(P)(s) \neq \text{EXH}(P)(s’). \]

Step 2: Combine the strong determiner with the DA possible.

Let types \(a = \beta = \gamma = (, s, t) \)

\[\forall \text{every possible } \alpha \Gamma(P_{\beta_e}(\lambda x.\lambda e.\left[\text{find}(y)(x)(s’), \text{dog} \right])) \]

\[\text{EXH}(P)(s) \land \text{EXH}(P)(s’), \text{EXH}(P)(s), \text{EXH}(P)(s’), \text{EXH}(P)(s) \]

Step 3: Feed the resource situation \(s \) to the complex D.

\[\forall \text{every possible } s’ \Gamma(P_{\beta_e}(\lambda x.\lambda e.\left[\text{find}(y)(x)(s’), \text{dog} \right])) \]

Step 4: Saturate the repressor with the NP book.

\[\forall \text{every possible } \beta \Gamma(P_{\beta_e}(\lambda x.\lambda e.\left[\text{find}(y)(x)(s’), \text{dog} \right])) \]

\[\text{EXH}(P)(s), \text{EXH}(P)(s’), \text{EXH}(P)(s’), \text{EXH}(P)(s) \]

\[\text{EXH}(P’)(s’), \text{EXH}(P’)(s), \text{EXH}(P’)(s), \text{EXH}(P’)(s) \]

Linear order

- Merge DAs as adjuncts to NP, but must adjoin to D for composition
- Movement may be
 - Covert movement: postnominal
 - Overt movement: prenominal

- Merge DAs as adjuncts to D
- Acategorical elements may exploit gap in linearization algorithm
 - Immediate linearization: prenominal
 - Postponed linearization: postnominal – at end of DP phase boundary.

Acknowledgements

Thanks to Sigrid Beck, Rajesh Bhatt, Michael Diercks, Kyle Johnson, Barbara H. Partee, and Malte Zimmermann.