An Investigation of Conservativity

Background

- Determiners are words like every/some/most
- They express a relation between two sets
- Conservativity is a property that such a relation may or may not have

Descriptive typological fact: Every determiner attested in natural languages is conservative (Barwise and Cooper, 1981)

Widely known in semantics but most standard theories predict conservative and nonconservative determiners equally likely (Montague 1974, Heim and Kratzer 1998)

Research Question

Do children carry expectations of conservativity (a typological generalization) when learning determiners?

Hypotheses

- Hypothesis 1: Children's learning of determiners is constrained to consider only conservative meanings
- Hypothesis 2: Children's learning of determiners is not constrained to consider only conservative meanings

Theoretical Background

- Prerequisites for Experiment
- Experimental Design
- Methods, etc.
- Results and Conclusions
- Future Research
Theoretical details

- A determiner expresses a relation between the sets denoted by its internal and external arguments.

What is conservativity?

- A relation R between sets is conservative iff
 $R(X)(Y) \iff R(X)(X \cap Y)$

 - Example: “Every dog is brown”
 - Truth condition: $D \subseteq B$
 - Intuitively:
 - It is OK to limit your attention to the dogs
 - Brown things that aren’t dogs are irrelevant
 - Formally:
 - $D \subseteq B \iff D \subseteq (D \cap B)$
 - Every dog is brown \iff Every dog is a brown dog

What is conservativity?

- A relation R between sets is conservative iff
 $R(X)(Y) \iff R(X)(X \cap Y)$

 - Example: “Some dog is brown”
 - Truth condition: $D \cap B \neq \emptyset$
 - Intuitively:
 - It is OK to limit your attention to the dogs
 - Brown things that aren’t dogs are irrelevant
 - Formally:
 - $D \cap B \neq \emptyset \iff D \cap (D \cap B) \neq \emptyset$
 - Some dog is brown \iff Some dog is a brown dog

What is conservativity?

- A relation R between sets is conservative iff
 $R(X)(Y) \iff R(X)(X \cap Y)$

 - Example: “Equi dogs are brown”
 - Truth condition: $|D| = |B|$
 - Intuitively:
 - It is not OK to limit your attention to the dogs
 - Brown things that aren’t dogs are relevant
 - Formally:
 - $|D| = |B| \iff |D| = |D \cap B|$
 - Equi dogs are brown \iff Equi dogs are brown dogs

Previous Research on Novel word learning

- Most research on children’s learning of novel words focuses on nouns and verbs.
- Few studies on the acquisition of determiner meanings.
- Studies that investigate children’s knowledge of determiner meanings [Philip and Drozd], are silent with respect to conservativity.
Research Question

Do children carry expectations of conservativity (a typological generalization) when learning determiners?

Desiderata of experiment

- Experiment must test young children
- Novel determiner word
- Novel determiner meaning to avoid mapping to known determiner
- Way to expose children to meanings of a conservative and non conservative determiner
- The two meanings must be cognitively similar

Design

- Picky puppet task, accessible to young children and fun
- Novel determiner word, and meaning
- Create cards that depict a true instance of determiner meaning, visually available to kids
- Meanings are direct of inverses of each other

Our novel determiner: ‘gleeb’

- Gleen [girls] [like pizza]
- Conservative meaning:
 - “not all girls like pizza”
 - “at least one girl dislikes pizza”
 - Ignoring pizza-likers who aren’t girls is OK
- Non conservative meaning:
 - “not all pizza likers are girls”
 - “at least one non-girl likes pizza”
 - Ignoring pizza-likers who aren’t girls is not OK
- Recognising whether the required condition holds should be equally easy on either meaning

Picky Puppet

- Koala likes some things, but not others. He only likes things that are yellow. Can you help us put cards into piles?
Modify the Picky Puppet

- The picky puppet task doesn’t work because we are teaching children a new word
- Modify the task to teach new words by giving examples

Example/Warm up

- Koala likes some cards but not others. Can you help me figure out what kind of cards he likes? He said he only likes cards that are *splurfy*

Experimental design: picky puppet

- For this experiment, we want children to sort cards with scenes
- Each scene is either true on the meaning of the determiner being taught or not
Cards

• Need cards that can represent determiner meanings

• “Gleeb girls are on the beach”
• To make things clear, being a girl and being on the beach need to be clearly binary

Cards

• Beach/Park
• Boys/Girls

Cards

• “Gleeb [girls] [are on the beach]”
• Conservative version:
 – Not all girls are on the beach
• Nonconservative version:
 – Not all beach-goers are girls

Conservative true

• Gleeb girls are on the beach
• Nonconservative false

Nonconservative true

• Gleeb girls are on the beach
• Conservative false

Design

• Each child is exposed to only one novel determiner

• How does an experimental session work?
 – Warm ups (3 items)
 – Training Phase (5 cards)
 – Testing Phase (5 cards)
Scoring

- An experimenter recorded which pile the child placed the target card into
- Children were scored as ‘correct’ on that card if the pile corresponded to the determiner meaning taught in training phase

Method

- 2 conditions: children were taught that the puppet liked cards consistent either with the conservative or nonconservative meaning of the determiner
- Same stimuli cards and test sentence was used across conditions
- Children randomly assigned to condition

Participants

- 20 children
- 4;5 – 5;6
- Mean 5;0
- By condition:
 - Conservative: 4;5 – 5;5, mean 4;11
 - Nonconservative: 4;11 – 5;3, mean 5;1

Hypotheses

- Hypothesis 1: Children’s learning of determiners is constrained to consider only conservative meanings
 - Prediction: children should be able to learn a novel conservative quantifier, but not a novel nonconservative one
- Hypothesis 2: Children’s learning of determiners is not constrained to consider only conservative meanings
 - Prediction: children should do equally well at learning novel conservative determiners and novel nonconservative determiners

Results

<table>
<thead>
<tr>
<th></th>
<th>Conservative</th>
<th>Non-conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cards correctly sorted out of 5</td>
<td>4.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Greater than chance (2.5) \(p < 0.001 \)
Not different from chance (2.5) \(p > 0.17 \)

Percentage 100% correctly sorted | 50% | 10% | \(p = 0.07 \)
Results summary

Conservative
- Number of cards properly sorted
 - Out of 5
 - Greater than chance (2.5)
 - p < 0.001

4.1
- Kids do learn the novel conservative determiner
- No evidence of learning nonconservative version
- Very early mirroring of the typological

Research Question

- Hypothesis 1: Children’s learning of determiners is constrained to consider only conservative meanings
- Prediction: children should do be able to learn a novel conservative quantifier, but not a novel nonconservative one

- Hypothesis 2: Children’s learning of determiners is not constrained to consider only conservative meanings
- Prediction: children should do equally well at learning novel conservative determiners and novel nonconservative determiners

Who learned the nonconservative one?
- One child ‘learned’ the nonconservative determiner (10% perfect)
- 4;11
- What did she do?
 - She told the puppet he was confused, because he thought that the boys were girls

 let’s look at how this indicates the learning of a conservative determiner meaning…

Who learned the nonconservative one?
- “Gleeb girls are on the beach”
- Target (nonconservative) meaning:
 - not all beach-goers are girls
 - at least one boy is on the beach
- Since the puppet had girls/boys reversed, this is consistent with “gleeb” meaning “some”
- Therefore, a conservative determiner was learnt

Conclusion

- No evidence for learning of the nonconservative determiner meaning in these subjects
- Early learning of the constraint is still a possible explanation

Outline
- Theoretical Background
- Prerequisites for Experiment
- Experimental Design
- Methods, etc.
- Results and Conclusions
- Future Research
Future research

• Younger kids to check for early learning
 – Perhaps more practice?

• Novel determiners that are not logically built up from existing determiners ("gleeb" = "not all")
 – "Equi girls are on the beach"
 – "The number of girls is equal to the number of beach-goers"

Of dogs and kings

• Does the observed preference actually favour:
 – "living on" the internal arg. rather than external?
 – "living on" the set of girls rather than the set of beach-goers?

• With a different external argument we could control for this:
 – "Gleeb dogs are kings"
 – "Gleeb kings are dogs"

‘only’ is not a determiner

• The typological generalisation concerns a class of words defined distributionally

• The distribution characterising determiners:
 – Some dogs are brown
 – "Dogs are some brown"
 – "Dogs are any brown"
• ‘only’ does not have this distribution
 – Only dogs are brown
 – "Dogs only are brown"
 – "Dogs are only brown"

• Future research: test novel words with this wider distribution

Distribution of cards

<table>
<thead>
<tr>
<th></th>
<th>Conservative version</th>
<th>Nonconservative version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Puppet likes 3 of 5</td>
<td>Puppet likes 3 of 5</td>
</tr>
<tr>
<td>Test</td>
<td>Puppet likes 3 of 5</td>
<td>Puppet likes 4 of 5</td>
</tr>
</tbody>
</table>

Thanks to Jeff Lidz, Alexander Williams, Paul Pietroski, Bill Ldsardi, the children and parents at the Center for Young Children and members of the UM linguistics department!

(and to Microsoft, who has rockin’ clip art)