17

Asymmetric procedural effects on the language brain

Richard Ogden
Phonological Phrase proposed in the theory of Prosodic Phonology (Selkirk, 1986; Nespor & Vogel, 1986; Hayes, 1989). The notion of a higher level of an Accidental Phrase (AP) is a sequence (or section) that applies anywhere within a certain domain, all phonological elements being under the AP. In this paper, I focus on the voicing of the codal element at the end of a Coda Phrase (CP). The AP is defined as the onset of the initial syllable of the following AP. The AP is divided into two parts: (1) the voiceless stop, which is realized as the onset of the initial syllable of the following AP, and (2) the voiced stop, which is realized as the onset of the initial syllable of the following AP. The AP is divided into two parts: (1) the voiceless stop, which is realized as the onset of the initial syllable of the following AP, and (2) the voiced stop, which is realized as the onset of the initial syllable of the following AP.
The word in parentheses after each sentence was used to trigger the sentence. The word 'the' at the end of each sentence was not used to trigger the sentence. The sentences were placed in a random order, so that no sentence was placed in the first position of the paragraph or the second position of the second paragraph.
Asymmetrical effects on the longed gesture

Table 17.2. Four prosodic positions of the target lenis stop.

<table>
<thead>
<tr>
<th>Prosodic Position</th>
<th>Word</th>
<th>Accentual Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One/A-initial</td>
<td>beginning</td>
</tr>
<tr>
<td>2</td>
<td>Coda/A-final</td>
<td>end</td>
</tr>
<tr>
<td>3</td>
<td>One/A-medial</td>
<td>middle</td>
</tr>
</tbody>
</table>
| 4 | Coda/A-medial | end

Contrary to my prediction, the lenis stop seems to differ in its voicing depending on which edge of the Accentual Phrase the position is placed on. It is evident that the Accentual Phrase initial position remains voiceless, while that in the Accentual Phrase final position is voiced. Accordingly, the data do not support the claim that one/A-medial position is the accent.

(3) Given: jalam-ka tahassam? (nse) "Was the fruit sweet? (the tree)"

"The tree was the fruit sweet?"

For each utterance, the target lenis stop and context segments were analyzed for voicing using a Key Sonagraph Model 5500 and the pitch track was checked simultaneously in the upper window. The amount and amplitude of prosody were displayed on the spectrogram, which was also used to determine the duration of relevant segments.

For the lenis stop, the duration was measured to the nearest hundredth of a second. The duration of the lenis stop was measured from the point where the vowel closure (the target lenis stop) was placed. The duration of the vowel following the target lenis stop was measured from the first formant onset to the onset of the stop.

17.4 Results and Discussion

17.4.1 Voicing of the Accentual Phrase final lenis stop and recylification

As in my earlier work, onset stops are voiced most often in Accentual Phrase initial position and voiceless in Accentual Phrase medial position. But, for all subjects, onset stops are voiced most often in the time-position (0 to 10% of sentences x 6 subjects x 10 repetitions) for each prosodic condition.
The figure illustrates the effects of account realization on the linguistic features of a productive language. The realization of the account phrase is shown in Figure 17(a) and is represented by a cross-referential phrase. The cross-referential phrase is realized in the following way:

1. The cross-referential phrase is realized in the matrix clause.
2. The cross-referential phrase is realized in the embedded clause.
3. The cross-referential phrase is realized in the main clause.

This realization process is illustrated in the figure by the different positions of the cross-referential phrase in the matrix clause (d) and in the embedded clause (c). The cross-referential phrase is realized in the main clause (b) and in the matrix clause (a). The cross-referential phrase is realized in the embedded clause (e) and in the main clause (f). The cross-referential phrase is realized in the main clause (g) and in the matrix clause (h). The cross-referential phrase is realized in the matrix clause (i) and in the embedded clause (j).
The representation of leafy stop positions

It is shown on top of each plant.

Initial/overlapping vs. initial/overlapping and overlapping vs. non-overlapping (OVA). The mean duration of the word medial stop positions is shown in the figure. The results of the OVA for all positions show a significant main effect of prosodic position (F = 119.7, p < .001) and a main effect of word-medial position (F = 19.9, p < .001). In addition, for all positions, the larger the size of the stop is significantly longer in the following vs. non-overlapping position, but it is not significant in the overlapping vs. non-overlapping position.

For all positions, there is a significant main effect of prosodic position on the vowel duration stop and accentual segments in different prosodic positions.

In summary, we can predict most of the vowel data in terms of the

...
Asymmetrical effects on the laryngeal gesture

For all subjects, there is no separation of data points between voiced and voiceless lens stop duration. Rather, the duration of the lens stop is negatively correlated to that of the following vowel. This seems to be the case for the different lens stop positions. However, no subject shows a clear separation between the groups of the data for the different prosodic positions. Subject C1 seems to have a better separation between the tokens in Onset/A-initial position and the tokens in the other two groups. However, if we compare voiced tokens with voiceless tokens in the same prosodic position, we can clearly see that the voiceing of the lens stop is predicted by the relative duration of the lens stop and the following vowel. i.e., longer stops followed by shorter vowels tend to be voiceless and shorter stops followed by longer vowels tend to be voiceless.

Sun Ah Jun

Individual tokens of the target lens stop are plotted against the following vowel position in three prosodic positions: Onset/A-initial, Onset/A-medial, and CodA/A-initial. This is shown in Figure 17.6. If the rule is categorical, we would expect two separate groups of consonant durations: longer lens stop, here, a token was counted as a separate duration, while all partially or fully voiceless ones were considered "voiceless". The lens stop in CodA/A-initial position showed a similar pattern to that of Onset/A-medial position. For graphing convenience, only the lens stops in Onset/A-medial position are plotted.

Figure 17.6. The duration of the target lens stop against the following vowel, for each subject, in three different prosodic positions: Onset/A-initial, Onset/A-medial, and CodA/A-initial. Tokens of voiced lens stop are indicated by a filled circle, and tokens of voiceless lens stop are indicated by an empty circle. Time (ms)
This result suggests that voicing is a function of duration. This duration-sensitive voicing is further supported by the fact that the length of the stop is more likely to be voiced in a context when the following vowel is high. This non-categorical condition is also supported by the fact that a high vowel in a context when it is preceded by a short and high vowel, or a high vowel in a context when it is followed by a long and low vowel, tends to be voiced. The voicing of vowels is also affected by the position of the stop. For example, in a context when it is preceded by a high vowel, the stop tends to be voiced. The voicing of vowels is also affected by the position of the stop. For example, in a context when it is preceded by a high vowel, the stop tends to be voiced. The voicing of vowels is also affected by the position of the stop. For example, in a context when it is preceded by a high vowel, the stop tends to be voiced. The voicing of vowels is also affected by the position of the stop. For example, in a context when it is preceded by a high vowel, the stop tends to be voiced.
Asymmetrical effects on the laryngeal gesture

1. Cho (1987, 1990), Kang (1992), and Silva (1999, 1992) propose the Phonological Phrase as the domain of laryngeal stop voicing based on either Sekiyama's (1985, 1990) and/or Neperve and Vogel's (1986) relation-based theory. The final rise in Figure 17.4(b) is the second ACCENTUAL PHRASE in Figure 17.4(a) due to the phonological phrase boundary (14a). An intersegmental sentence.

2. The word-final /s/ is realized as [u] due to its influence on /s/ weakened or not realized in (1a). The same is true for the word-final /s/ in (2b).

3. The words /s/ and /s/ are agree in (1) and /s/ and /s/ in (2b). This fact is well understood in Table 17.1, where the possible meanings are given. The difference is whether /s/ and /s/ is a possible meaning.

4. The percentage of voicing of the second ACCENTUAL PHRASE is higher than that of the first ACCENTUAL PHRASE in every possible word. Subjects had no trouble understanding the possible meanings and were trained with the possible meanings. The percentage was a little higher (70-100%) within an ACCENTUAL PHRASE: more often in fast and casual speech.

5. The percentage of voicing of the second ACCENTUAL PHRASE is higher than that of the first ACCENTUAL PHRASE in every possible word. Subjects had no trouble understanding the possible meanings and were trained with the possible meanings. The percentage was a little higher (70-100%) within an ACCENTUAL PHRASE: more often in fast and casual speech.

6. Comparing the voicing with the /s/ of the second ACCENTUAL PHRASE, it seems that a larger stop is more likely to be rearticulated than /s/. It is because there are two strategies for rearticulation: (a) rearticulation begins at the end of the first ACCENTUAL PHRASE, and (b) rearticulation begins at the end of the second ACCENTUAL PHRASE.

7. The percentage of voicing of the second ACCENTUAL PHRASE is higher than that of the first ACCENTUAL PHRASE in every possible word. Subjects had no trouble understanding the possible meanings and were trained with the possible meanings. The percentage was a little higher (70-100%) within an ACCENTUAL PHRASE: more often in fast and casual speech.

17.5 Conclusion

In contrast to word initial /s/ stops in Korean, which are almost always voiceless at the beginning of the ACCENTUAL PHRASE, word-final /s/ stops are always voiceless in the rearticulation of the ACCENTUAL PHRASE. The data show that the voicing of the second ACCENTUAL PHRASE is determined by the following vowel, but it is a by-product of some other effect of prosodic position on the gestural amplitude and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is determined by the following vowel, not by its duration. The data support the idea that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is determined by the following vowel, not by its duration. The data support the idea that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result. To distinguish the different duration of the second ACCENTUAL PHRASE, I propose that the laryngeal stop voicing rule in Korean is not phonological but rather a by-product of some other effect of prosodic position on the gestural amplitude, and overlapping, thus producing the result.

