Phonetic Encoding of Prosodic Structure

PATRICIA A. KEATING

INTRODUCTION

Prosody has been defined as the “grouping and relative prominence of the elements making up the speech signal” (Pierrehumbert, 1999). That is, prosody serves both a grouping function and a prominence-marking function in speech. As examples of the grouping function, some ways in which smaller units are combined to form larger ones (perhaps via intermediate groupings) include: segments combine to form syllables, syllables combine to form words, and words combine to form phrases. As examples of the prominence-marking function, there are at least two levels of prominence in English: lexical stress, or prominence at the word level, and pitch accent, or prominence at a phrasal level.

<table>
<thead>
<tr>
<th>Some prosodic constituents</th>
<th>Some levels of prominence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Utterance</td>
<td>• Nuclear accent</td>
</tr>
<tr>
<td>• Intonational phrase</td>
<td>• Pitch accent</td>
</tr>
<tr>
<td>• Smaller phrases: Phonological phrase/</td>
<td>• Lexical primary stress</td>
</tr>
<tr>
<td>Intermediate phrase/Accentual phrase</td>
<td>• Lexical secondary stress</td>
</tr>
<tr>
<td>• Phonological word</td>
<td></td>
</tr>
<tr>
<td>• Foot</td>
<td></td>
</tr>
<tr>
<td>• Syllable</td>
<td></td>
</tr>
<tr>
<td>• Mora</td>
<td></td>
</tr>
</tbody>
</table>
The grouping function and the prominence-marking function can be seen together in a prosodic tree of an utterance. Figure 11.1 shows a partial prosodic tree of the phrase "that new propaganda" as part of some larger utterance, showing four levels of prosodic domains (leaving out several other levels); it shows a single intonational phrase (IP), containing two intermediate phrases (ip), the first of which contains three prosodic words (Wd) corresponding to the three lexical words in "that new propaganda." The third word has the phrasal accent or prominence, and it contains four syllables (sigma), of which the third has the lexical stress or prominence. This partial tree has syllables as its smallest prosodic unit. Each syllable contains some segments, and the features of the segments are the terminal nodes of the prosodic tree. A few of these segmental features are included in the figure. As can be seen, each segment and thus each feature has a position in the tree relative to the domains and prominences.

For the purposes of this chapter, we can consider any one interval of speech that is grouped into a single prosodic domain and ask, at what level of prosodic structure does this domain occur? What speech events occur at the beginning and end of this domain? How prominent is this domain relative to its neighbors? All of this information will be relevant phonetically.

The phonetic dimensions that are most obviously connected with prosody are pitch, duration, and loudness, which are generally thought of as the suprasegmental dimensions. But the phonetic dimensions that are typically thought of as more segmental than suprasegmental also serve to realize prosodic distinctions. For example, it is well known that vowel quality varies not only with phonemic vowel identity, but also with traditional suprasegmental factors such as stress and length (Leliste, 1970). This classic observation can be generalized to all of prosody as now understood, including its hierarchical structure. Put generally, then, the phonetic realization of phonological properties of an individual speech segment (vowel or consonant) depends in part on that segment's position in the entire prosodic structure (Hawkins & Smith, 2001; Pierrehumbert & Talkin, 1992). The exact pronunciation of any one feature will depend on the other features in that segment, features of neighboring segments, and the position of the feature in the overall tree. Thus, segmental phonetic dimensions, though they convey segmental contrasts, are influenced by prosody in much the same way as are the traditional suprasegmental dimensions (dimensions not involved in conveying segmental contrasts).

In the Levett, Roeofs, and Meyer (1999) important model of planning for speech production, a distinction is made between (1) phonological encoding, or generating a complete phonological representation, including prosody, from lexical entries and syntactic structure; and (2) phonetic encoding, which specifies the surface phonetic shape of the phonological representation. At each of these stages, Levett et al., relying on the traditional distinction between segmental and suprasegmental phonological representations and speech parameters, envision segmental and prosodic planning as virtually independent. Phonetic encoding of segments is thought to operate at the level of the word, and it consists largely of retrieval of stored syllable plans. Segmental and prosodic planning interacts in only a minor fashion, at the end of the encoding process, when the results of these two independent processes are brought together.

As discussed at length in Keating and Shattuck-Hufnagel (2002), the missing ingredient from their model (and similarly, from the model in Levett, 1999) is the close link between prosodic structure and segmental phonetic properties. We outlined instead an opposing view, according to which segmental and prosodic planning are not independent, since planning segmental articulation depends crucially on prosody. We stressed that even if phonetic encoding relies on stored syllable plans, the work of phonetic encoding has just begun with their retrieval, as adjustments to them are required on the basis of all kinds of prosodic information; and even if phonetic encoding relies on stored exemplars, then that retrieval operation itself must be highly sensitive to prosodic structure and the retrieved exemplar may still require further processing. The present chapter, like Keating and Shattuck-Hufnagel (2002), defends this claim by reviewing a variety of ways in which phonetic encoding must be sensitive to prosodic structure, focusing especially on results from my own laboratory. In particular, I will review results of experiments suggesting a strength relation between prosodic positions and phonetic realizations.

The general idea of a strength relation is that prosodic positions are stronger or weaker; segment/feature phonetic realizations are also stronger or weaker; and segment strength matches position strength, with stronger pronunciations in stronger positions. Positions of lexical and phrasal prosodic
prominence seem strongly due to their suprasegmental properties (e.g., greater loudness in the case of stress, and pitch excursions in the case of accent), and in these positions segment qualities can also vary. The notion of a strong position is then generalized to other positions in which the same variants are observed. For example, Donegan and Stampe (1979) observe that traditional segmental fortissimo are most likely in "strong" positions, in which they include prosodically prominent positions and syllable-initial position. Similarly, Vaux (1988) related certain prominent, domain-initial, and domain-final positions, in which vowel position patterned similarly, as [−strong].

What exactly does strengthening mean? Our strengthening is articulatory, meaning that the articulations themselves are stronger, or more extreme. For consonants in strong positions, for example, the primary oral constriction is more extreme, meaning that the primary articulator moves farther from a neutral position into a more extreme position, which reduces the size of any mouth opening. Also, any glottal opening is more extreme, giving more aspiration. Such strengthening (often called fortissimo in the historical linguistics literature) can be seen as the opposite of weakening (or lenition), by which, for example, a more reduced primary consonant articulation results in a greater mouth opening, or a more reduced glottal opening results in greater voicing. (However, other views are possible; for example, Donegan and Stampe define fortissimo as perceptual enhancement, and lenition as articulatory reduction.) In historical sound changes (e.g., Hock, 1981, 1992), "initial strengthening" as a specific process refers to something that happens to initial sonorants, in languages which also weaken medial obstruents; that is, it is a generalization to sonorants of the pattern of strong initial obstruents vs. weak medial obstruents. In our phonetic work, the term is used even more generally, to refer to increased articulatory opening or constriction in any articulation of any segment type.

Many previous studies have been concerned with the articulation of prominent vowels, including the direction of displacement for prominent high vowels, and differences between prominence and other strengthening (e.g., Beckman, Edwards, & Fletcher, 1992; Cho, 2002; de Jong, 1995; Edwards, Beckman, & Fletcher, 1991; Erickson, 2002; Fletcher & Watanabe, 1994; Harrington, Fletcher, & Beckman, 2000). Other studies (reviewed in Epstein, 2002, 2003) have been concerned with the phonation qualities associated with prominence. Strengthenings at the beginnings of prosodic domains and in prominent syllables are complemented by domain-final lengthenings, the well-known phenomenon where segments at the ends of domains have longer durations (e.g., Wightman, Shattuck-Hufnagel, Ostendorf, & Price, 1992). See Shattuck-Hufnagel and Turk (1996) and Foulgeron (1999) for reviews of the articulation of prominence and final lengthening, which will not be discussed in any detail in this chapter.

The total effect, then, is that at the end of one domain there is a slowing down, and at the beginning of the next domain a strong attack, with another strong moment associated with any prominence. Such phonetic effects are also seen in synchronic phonological patterns. At the word level, languages may license or distribute inherently stronger segment types in stronger positions, e.g., a preference for initial obstruents, especially stops, as opposed to noninitial sonorants or continuants (e.g., Bell & Hooper, 1978; Martinet, 1955). Overall, then, there is a tendency for prosodic domains, such as words, in a given language to have a phonological and/or phonetic shape conditioned by the prosodic structure of the language.

BASIC DOMAIN-INITIAL EFFECTS

In my work (with various collaborators) I have been most interested in domain-initial syllable stressing, that is, strengthening associated with the beginning of prosodic domains. I have put forward a specific claim about how this strengthening works through the whole of prosodic structure: that it is cumulative, in the sense that the higher in the prosodic tree an initial position is, the stronger that position and the segment in it. The empirical support for this claim is somewhat mixed, as I will make clear below, but there is an interesting range of data that seem to work this way.

The prosodic positions we compare are generally edges of domains. A domain-initial segment (or syllable) is at the beginning of some prosodic domain. A domain-final segment (or syllable) is at the end of some prosodic domain. Because prosodic domains are hierarchically organized, a given segment (or syllable) is usually initial or final in multiple (nested) domains. To see how this works for domain-initial syllables, look at the six syllables shown in the partial tree in Figure 11.1. The first is initial in all the domains shown. We generally refer to the highest domain in which some segment or syllable is initial, so in this case the syllable is IP initial. The second and third syllables are word-initial, but IP- and IP-medial. The other syllables are not initial in any domains. The last syllable of the six is final in the IP and in all lower domains.

Experimentally, we measure something we take to be related to segment strength, for example lingual palatal contact as a measure of oral constriction. At UCLA we have primarily used electromyography (EMG) to infer the strength of segment articulations. With the Kay Elemetrics EMG system, a speaker wears a custom-made false palate embedded with 96 contact electrodes. When the tongue touches any electrodes, a circuit is completed, current flows, and the contact is thereby registered. Figure 11.2 shows the electrode layout, which concentrates electrodes around the inner tooth surfaces and thus registers variation in tongue height. A computer samples the contact over the entire palate every 10 ms, and each frame of data shows which electrodes were contacted at that time. Figure 11.3 shows a sample frame of contact. Our general method is to construct speech materials that put a test consonant into different prosodic
positions, and then take the simplest measure of strength, namely the maximum amount of contact between tongue and palate found during that consonant in each condition. This measure ignores where on the palate, and when during the consonant, this peak contact occurs, but those aspects can be measured as follow-ups. For stop consonants, we also generally measure the duration of the stop seal, that is, the amount of time (in number of data frames) that the vocal tract is completely sealed off by the stop occlusion.

Our first study, Foulgeron and Keating (1997), looked at English /a/ and /o/ in initial and final positions in several domains. Three American speakers read reiterant versions of sentences, using the reiterant syllable /wa/ to replace every syllable of the sentences. The sentences were arithmetic expressions in which the use of parentheses was crucial to the meanings of the expressions. One speaker produced a larger set of sentences in which different numerals occurred in the sentences, but the other two speakers produced only sentences with the numeral "89." This numeral was chosen because its lexical stress is generally on the last syllable, and thus should not be a factor in the articulation of the initial syllable. The prosodic phrasing of the utterances was coded post hoc, using ToBI's constituent marks, and the prosodic position of each reiterant syllable was determined from these phrasings. The domains coded were the Utterance, the IP, the IP (or for Phonological Phrase, for typographical clarity), the Word, and the Syllable.

The percent contact was calculated for each frame of data, Figure 11.4 shows such data in a contact profile for a sample utterance. This figure illustrates that not only the consonants but also the vowels vary in contact across the utterance. The measured contacts for each segment are the values of the consonant peaks and vowel valleys as seen here. The temporal pattern can also be seen in this figure, though the duration measures that we took did not come from this kind of record. Articulatory seal duration (the duration of the frames in which a complete stop occlusion can be inferred) was not measured or

![Figure 11.2](image1.png)

FIGURE 11.2. Sample pseudo-palate used with Kay Elemetrics Palatometer, showing arrangement of 96 contact electrodes. The front of the mouth is at the top of the picture.

![Figure 11.3](image2.png)

FIGURE 11.3. Sample frame showing peak lingua-palatal contact for a Korean word-initial /w/. The orientation is the same as in Figure 11.2. Each circle is an electrode on the palate; filled circles have been contacted by the tongue (here, 42% contacted).

![Figure 11.4](image3.png)

FIGURE 11.4. Sample trace of percent contact over time for a reiterant utterance. The reiterant utterance is modeled on the arithmetic expression shown at the top of the figure, the 15 reiterant syllables are indicated above the trace. High values of contact occur for /a/ while low values of contact occur for /o/.

2. "(89+89) x (89+89)"
explicit tests for declination failed to provide any evidence for it. What we found instead in our data for /n/ was fairly cumulative domain-initial strengthening; each speaker made three or four pairwise cumulative distinctions between /n/ in domain-initial positions. However, no speaker made all possible distinctions, and there was no pairwise distinction that was made by all three speakers. There was also a trend toward strengthening (meaning less contact) of the vowels in initial /n/ syllables; and strengthening of /n/ in domain-final syllables was occasionally found. Domain-final vowel strengthening was observed, but it was not as strongly cumulative, in that phrase-final /n/ at different levels were not distinguished by amount of opening. Also, acoustic duration of /n/ did not vary much according to domain. In contrast, acoustic and articulatory durations of /n/ were more consistently cumulative than linguopalatal contact; nonetheless, correlations between /n/ durations and contact were minimal to modest.

We then followed up with a study of domain-initial strengthening in three other languages, which differ in their prosodic properties: French, Korean, and Taiwanese (Keating et al., 2003). None have lexical stress—French and Korean have phrasal tone patterns, and Taiwanese has lexical tones. In this study we used real-word utterances rather than reiterant speech, with test words beginning with the consonants /n/ or /l/, but similar prosodic domains as in the English study. Overall, each language showed cumulative initial strengthening—as in English, contact and duration are generally greater in higher prosodic positions. In fact, the surprising result was how similar the results were for the three languages, despite their prosodic differences. The pattern was most consistent for Korean, which we had predicted could show the most articulatory strengthening, as its domain beginnings are generally thought to be prosodically strong. Figure 11.6 shows the results for Korean /n/, /l/ is similar. Here the smaller phrase is the Accental Phrase (AP). This figure combines results for two different corpora, one for Word and above, the other for Word and below. Because the vowel contexts for the /n/ in the two corpora are different, the amount of contact for the two Word-initial /n/ is different. Indeed, it can be seen that the difference in contact between two prosodic domains is about the same size as the difference between two vowel contexts; it is furthermore about the same size as the difference between two consonant manners, such as /n/ vs. /l/ /n/ having less contact).

A further result concerned the relation of duration to linguopalatal contact in the different languages: While all the languages had fairly consistent cumulative initial lengthening, only in Korean was strengthening (contact) strongly related to that lengthening. In our English data, the correlations of contact with duration were low to modest ($r^2 < .3$); in French there was a stronger relation ($r^2 > .6$); but in Korean the correlations were very high ($r^2 < .9$). This strong relation suggests a sort of undershoot mechanism. Strengthening in Korean seems to be related to how much time is available for the articulation. In Cho
and Keating (2001), we showed that up to about 80 ms, the amount of contact is a function of the duration, with the peak contact coming at the end of the consonant and shorter consonants undershooting their target; but above about 80 ms, there is no additional contact. Thus it seems that in Korean, there is little if any independent effect of strengthening apart from lengthening. However, to the extent that the other languages are not like this, they in turn provide evidence that initial strengthening is a separate effect from lengthening—two effects, but both sensitive to prosodic position.

Other researchers have contributed to our knowledge about initial strengthening in a variety of languages, including Byrd, Kaun, Narayanan, and Sulzman (2000), Gordon (1999), Lavoie (2001), and Tabain (2003b). Most studies that have included several prosodic domains have found an overall tendency, but not a perfect pattern, of cumulative domain-initial strengthening. For example, in an EFG study of Japanese (Onaka, 2003; Onaka, Watson, Palethorpe, & Harrington, 2004), two speakers showed some effects of prosodic position on contact for /u/, but only one of the speakers showed effects for /t/. The effects on consonant duration (domain-initial lengthening), and on the preboundary vowel’s openness, were perhaps more striking in this study.

A major exception is found in EMA studies in which displacement is the spatial measure. Thus, Byrd et al. (2000) found that in Tamil /u/ and /a/ lengthen but show only small differences in spatial displacement; Tabain (2003b) likewise found no effect of prosodic position on the peak displacement of French domain-initial consonants /b d g f s j/. And, Byrd and Sulzman (1998) found a very different result for English than we did: Comparing lip movements at the boundaries of what were probably three different prosodic domains, they found that displacement to the postboundary consonant was highly correlated with duration. It seems from these studies that displacement does not depend on prosodic position in the way that peak linguopalatal contact does. Even in Fougeron and Keating (1997), we found that the closest EFG measure to true articulator displacement, namely change (difference) in contact, is not strongly related to peak contact. Peak linguopalatal contact is probably more closely related to constriction degree, and thus to the magnitude of the articulation, than is displacement of an EMA coil.

FURTHER RESULTS

First, some segments vary more than others; indeed some segment types show no initial strengthening. For example, Fougeron (1993, 2001) looked at EFG contact for French /t k l s ʃ/ and found that prosodic position had less effect on contact for /s/ and /l/ than for the other segments. For the bilabial fricative /ʃ/ Fougeron measured several aspects of the fricative constriction, not just overall contact. By all measures, it varied very little across prosodic positions, presumably because the production of bilabial constrains the articulation. That fricative /ʃ/ is highly constrained in its articulation is no surprise, and the same has been shown at the word level for English, e.g., Byrd and Keating (1999). However, Kim (2001) did find differences in the two Korean sibilants, /s/ and /ʃ/, specifically in the contact in the mid-palate and the fricative channel region, across three prosodic positions, with /ʃ/ seemingly showing more of an effect than /s/.

This result shows that sibilants in at least one language are free to vary, but no reason is offered for why Korean might be different in this respect. Perhaps it is another reflection of the strong relation in Korean between duration and articulatory contact; clear prosodically determined duration differences are seen for /s/ but not /ʃ/. As another example, Cho and Keating (2001) compared the four Korean coronal stops /n/ /l/ /t/ /s/, and while all showed an effect of prosodic position on contact, the range of variation differed across the consonants, such that the prosodic effect was larger for some than for others.

Second, domain-initial strengthening appears to be a very local effect largely limited to the first segment after a boundary, and is thus unlike final lengthening, which extends over a larger span. For example, in the French study (Fougeron, 1998), domain-initial strengthening was limited to only the /k/ in a /k/v/ cluster, and to a vowel only when there is no preceding initial consonant (//t p/ but not /s/ in //.m//). This very local effect is perhaps consistent with the fact that in French, final lengthening is more limited in extent than in English (Fletcher, 1991). Similarly, in our Korean study (Cho & Keating, 2001), we found no consistent domain-initial vowel lengthening in initial CVs. In English, the evidence seems more mixed, but in two studies vowels in CV varied only somewhat with prosodic domain (Cho, 2002, in press; Fougeron & Keating, 1997).

Third, it is noteworthy that strengthening does not result in discrete phonetic categories, corresponding to the domains of the prosodic hierarchy, even though descriptions of prosody are couched in terms of these discrete domains. In Cho and Keating (2001), we compared pooled measures of acoustic domain-final lengthening and EFG domain-initial contact, as seen here in Figure 11.7. In statistical comparisons, both sets of measures support a four-way prosodic distinction. However, only the data for final duration clearly fall into discrete categories, and only two of those; in contrast, the data for initial contact belong to a single large unimodal distribution. That is, it cannot be claimed that there are four (or however many) categories of phonetic strength, each of which gets
some additional increment of constriction; the effect appears instead to be continuous.

Finally, it is worth stressing that in Fougeron and Keating (1997), we were careful to distinguish initial strengthening from final weakening and declination. While these terms might sound as if they are different names for the same thing (e.g., some sort of downturn), in fact describe different outcomes when a large enough span of speech is considered. Fougeron and Keating called the effect initial strengthening because of explicit tests that favored that interpretation. (To be sure, initial strengthening cannot be distinguished from everywhere-but-initial-weakening, but that is the only sense in which strengthening and weakening are two sides of the same coin here.) Simple comparisons of two positions cannot decide this point. For example, a comparison of initial vs. final positions by itself cannot distinguish these three possibilities, and much of the literature compares only two positions in this way. In such two-way comparisons the terms initial strengthening, final weakening, and declination all come to the same thing, and no importance can be placed on the choice of descriptive term.

Fougeron and Keating did not look at domain-final consonants, since all our test syllables were CVs. Given the historical linguistics literature, it is plausible that domain-final consonants should show some weakening. In Keating et al. (1999) we made a very limited comparison of domain-initial and domain-final consonants—four coronals /t d n l/; in the test corpus, word-initial consonants occurred utterance-initially vs. utterance-medially, while word-final consonants occurred utterance-medially vs. utterance-final. The maximum EPC contact depended on position in both the word and the utterance. Overall, as expected, word-initial consonants had more contact than word-final, and also as expected, word-initial consonants had more contact when they were also at the beginning of an utterance. However, utterance-final consonants had more contact than other word-final consonants. That is, there appears to be no cumulative domain-final weakening of consonants; instead we see some strengthening at the end of the largest domain. The role of domain-final lengthening in this apparent strengthening deserves further study.

ACOUSTIC AND OPTICAL CORRELATES

The kinds of articulatory variation discussed above give rise to two kinds of potentially perceivable variation: acoustic and optical. Two influential phonetic studies of initial strengthening, Pierrehumbert and Tallin (1992) and Dilley, Shattuck-Hufnagel, and Ostendorf (1996), were in fact acoustic, not articulatory, studies. Piercehumbert and Tallin showed that in phrase-initial position, /h/ is more consonant-like by an RMS measure (lower RMS indicating less glottal excitation); and aspirated stops are more aspirated, suggesting greater magnitude of their glottal spreading gestures. Another interesting example of prosodically conditioned acoustic variation involving the glottis is Hsu and Jun’s (1991) study of Taiwanese VOT: Taiwanese has voiced (often prenasalized), voiceless unaspirated, and voiceless aspirated stops. Hsu and Jun found that when the /k/ and /b/ are initial in higher domains, the /k'/ is more aspirated and the /b/ is more voiced. Thus the phonetic voicing categories are acoustically more distinct in stronger positions. Other acoustic studies of initial strengthening include Cho and Keating (2001) and Tabain (2003a).

The optical correlates of prosody have been studied very little to date, mainly the correlates of prominence, but since many articulations involve the face, at least some aspects of phrasing should also be visible. Certainly durational differences should be apparent, even if subtler articulatory differences are difficult to see. A study with colleagues at the House Ear Institute in Los Angeles (Auer, Kim, Keating, Scarborough, Alwan, & Bernstein, 2004) tested the visual perceptibility of prosodic boundaries.

Talkers read minimal pairs of sentences differing in the presence/absence of boundaries, while movements of reflective markers on their faces, including on the chin, were tracked by the Qualysis infrared system. Some sentences contrasted in presence/absence of a word boundary (e.g., He was not for getting the right number vs. He just hated forgetting the right number), while others contrasted in presence/absence of a phrase boundary (e.g., When you sing, his songs are better vs. When you sing his songs, they’re better). The duration of the movement of the marker on the chin was measured, and was found to be longer around a boundary. Acoustic durations were also longer across a boundary. Perceivers then saw sentence fragments and had to decide which sentence (with or without boundary) the fragment had come from. Perceivers were generally good at doing this.
IMPLICATIONS OF STRENGTHENING

Whether the acoustic correlates of prosody, of the sort discussed in the preceding section, are used in auditory perception has only recently begun to be determined. When segmental contrasts are enhanced, listeners' perception of segments might be improved. And, when the acoustic correlates indicate a prosodic boundary, listeners' prosodic parsing might be improved. Cho, McQueen, and Cox (2004) review the literature so far and offer some evidence that listeners use segmental correlates in perceiving prosodic boundaries. In this section, I speculate on two possible functional implications of domain-initial strengthening, if it turns out to be useful to perceivers in these ways.

First, the information about phrase boundaries that might be conveyed by segment strength could also be seen as information about the local coherence vs. disjuncture in connected speech. A strengthened segment indicates a break and the start of a new domain, while domain-internal spans of segments are not interrupted by strengthening. We do not know whether speakers manipulate strength on purpose for the sake of listeners, but on this view, if they do, they may do so to indicate the degree of break/cohesion between words in connected speech. This suggests to me the possibility that while stronger segments may consume more calories of a speaker's articulatory energy than do weaker ones, weaker segments do not reflect laziness or inattention on the part of the speaker. Rather, we should think of the speaker's energy as constantly directed to control of the modulation of articulation, because all levels of strength carry information. To be sure, there is a general tendency in speaking toward ease of articulation, which is resisted in strong positions; and as a result, segmental cues may be weaker in weak positions. (See several chapters in Hayes, Kirchner, & Steriade, 2004 for examples.) But then this reduction in segmental information is itself information for listeners—information about junctures.

Second, if strengthening increases information about segment identity, it does so in just those positions where such information is most important. Psycholinguists (e.g., Levelt et al., 1999) have noted the special status of word-initial position in speech errors, at least in English; word-initial segments:

- Are more vulnerable to speech errors
- Are exchanged in speech errors
- Show stronger similarity effects in speech errors (Frisch, 2000)

And these word-initial segments are produced with articulatory strengthening. Is this a paradox? Phonetically, word-initial position is said to be "strong," yet much of the psycholinguistic evidence concerns errors. If these segments are strong, why do they seem so vulnerable? A possible resolution to this quandary can be found in the contributions of Dell (2000) and Frisch (2000) to the Laboratory Phonology V, in which they suggest that speech errors arise in word- (or in most such experiments, utterance-) initial position due to lack of a constraining prior context. Because other word candidates are activated and compete with the correct word, resulting in selection errors. Furthermore, word-initial position is a position of competition between many competitors, in the sense that words generally can begin with a greater variety of segments than they end with, such that there are more (different) segments in strong competition word-initially than elsewhere. That is, word-initial segments are more vulnerable to errors because there are more possibilities when context does not provide strong constraints.

This explanation seems comparable to a suggestion by Feugeron and Keating (1997) concerning phonetic strengthening. They noted that, from the perspective of the listener, initial segments are probably on average less determined by prior context, and that therefore the acoustic signal must bear a greater load in the recovery of the message in those positions. Anything that improves the perception of initial segments would compensate for their lack of predictability. Initial strengthening could thus help the listener by enhancing segmental properties in positions of uncertainty. Thus the resolution of the paradox would be that initial segments are contextually weak, that is, relatively unconstrained by their prior context. Because of this contextual weakness they are more vulnerable to competition from other lexical entries in the process of speech production, and more vulnerable to mis-hearing in speech perception; yet for the same reason they tend to benefit more from strengthening. On this view, we would expect to find a relation between predictability (on some independent measure) and degree of strengthening, with greater predictability associated with less strengthening.

Finally, as shown earlier, phonetic strengthening occurs in higher prosodic domains. The larger the phrasal domain, the more likely is the initial position to be unconstrained by context (for example, the first segment of a sentence is probably far less predictable than the first segment of most words within a sentence). If contextual uncertainty is indeed the connection between the psycholinguistic phenomena and phonetic strengthening, then we would also predict that speech errors and mis-hearings should be more frequent in initial positions of higher phrasal domains. As Keating and Shattuck-Hufnagel (2002) review, errors across phonological words are far more common than errors within words, so this prediction is plausible.

CONCLUSION

This review of findings about domain-initial articulatory strengthening counters the view, espoused by Levelt et al. (1999), that segmental and prosodic planning for speech production can proceed separately. Since phonetic encoding of
segments is highly sensitive to prosodic structure, prosody needs to be computed first, not last as in Levelt’s model. Returning to the example phrase in Figure 11.1 (“that new propaganda”), consider the effects of prosodic position on the feature values indicated. The word “that” is in the strongest position, initial in the highest domain, so the initial continuant consonant is likely to be strengthened to a stop articulation.11 The word “propaganda” is in a strong position because of its prominence, which will affect the stressed syllable “gan.” The /p/ at the beginning of the word should be somewhat stronger than the /p/ in the second syllable, and thus should have a closer oral consonant constriction, while its glottal abduction should be larger. Phonetic plans for those, and all other, aspects of the utterance must refer to prosody.

How might such prosody-dependent phonetic encoding of features be modeled? One possibility would be Byrd et al. (2000) ε-gestures, gestures associated with prosodic boundaries, by which the prosody could modulate precompiled syllable scores. Another possibility is a window-style model, in which prosody could modulate articulatory targets. Window models (Keating 1990, 1996) posit ranges, rather than fixed points, as the targets of articulatory movements. Guenther (1995) first suggested that such target ranges could be sensitive to prosody, expanding or contracting over the course of an utterance; Cho (2002, 2004) in contrast proposes that prosody specifies a subrange within the window. Either way, at an edge or a prominence, target ranges would shift toward extreme values. While such proposals remain to be worked out, they have the potential advantage of extending readily to other kinds of variability, on other timescales, that are not accounted for by fixed windows, or by Byrd et al.’s gestures. In addition to shifts that are local to a prosodic position, target ranges could shift at the word level, as a function of lexical difficulty due to competition, and more globally, as a function of discourse factors.

In summary, when a speaker plans for the phonetic aspects of speech production, prosodic structure organizes the treatment of possibly every feature in every segment, and the interactions of segments. One aspect of this dependence is the relation between the strength of a prosodic position, and the phonetic strength of a segment in that position. A theory of phonetic encoding that incorporates this basic fact is a major challenge, but an important one.

ACKNOWLEDGMENTS

This research was supported by an NSF Linguistics grant to P. Keating (#95-11118), an NSF dissertation improvement grant to P. Keating and T. Cho (#BCS-9600176), and an NSF grant to L. Bernstein et al. (#99-30098). Collaborations with all my co-authors on the various papers cited here, the contributions of the former students cited, and helpful comments on the manuscript by the editors and reviewers, are gratefully acknowledged.

NOTES

1. Possibly the articulations are more forceful, with greater muscular contraction—see Fonger (1999, 2001) for discussion.
3. This is not to say that synchronic phonological patterns or sound changes across languages uniformly illustrate initial strengthening. It seems clear that in some languages, at least at the word level, the stem, root, or some other part of a word is more important than the beginning. A striking example is provided by Australian languages, as described by Butcher (this volume) and Tabain, Breen, and Butcher (2004).
4. ToBI transcription uses the acoustic signal, particularly fundamental frequency and durations, to determine the phrasing of a spoken utterance. This phrasing is thus potentially different from a prosodic parse assigned by a theory of prosodic phonology, e.g., Nespor and Vogel (1983). In effect, ToBI transcription gives up a concern with predicting the different factors that could influence phrasing, in favor of a more vertical account of surface phonological form, after any restructuring. (Prosodic theories must allow for restructuring, or its nondeterministic equivalent, since most sentences have multiple possible prosodic phrasings.) For a review of the correspondences between these two types of representation, see Shattuck-Hufnagel and Turk (1996). For a proposal about how they might be related in production planning, see Keating and Shattuck-Hufnagel (2002). For discussion of transcription practice for boundaries, see de Pijper and Sandeen (1984).
5. Two points deserve mention in this connection. First, there is no reason that the prosodic domains should be exactly comparable across the languages; the small phrases in particular seem to vary across languages. Second, the speakers of the different languages differ in their use of pauses; the French speakers sometimes pause at IP boundaries, while the Korean and Tai speakers were instructed not to do so.
6. This result might seem to suggest that English is in fact like Korean, with a relation between strengthening and lengthening, contrary to our own result. However, our correlations are with peak context, not displacement.
7. Because our test utterances contained many syllables we were able to compare initial vs. medial vs. final syllables in the various domains. For example, final weakening would have meant that the final syllable consonants had less contact, and devoicing would have meant a decrease in contact across consonants in the domain.
8. The term “visual,” as opposed to “auditory,” is perhaps surprising, but it is paralleled to “acoustic” in the sound domain. That is, acoustic/auditory:optical/visual—optical and acoustic properties of signals lead to auditory and visual percepts. Characterization of the stimuli used in visual perception experiments involves optical phonetics.
9. It must be noted that the hypothesis that strengthening serves an enhancing function for listeners is controversial. Various views on the nature and possible function of segmental enhancement in domain-initial positions can be found in, for example, Perrehumbert and Talian (1992), Fonger and Keating (1997), Hsu and Jun (1998), Fonger (1998, 1999, 2001), and Cho and McQueen (2005).
10. We do not know of any evidence about segment predictability by prosodic position.
If large domains were more likely to begin with th- function words, then our assumption would be wrong.

11. Although not generally noted in the literature (though see Pierrelumbert and Tallin 1992 for one mention), stopping of nonbilabial fricatives, both labiodental and dental, seems to be common in at least American English. In the case of the dentals, the interdental articulation means that these stops do not sound like alveolars. By hypothesis, the stopped variants are in prosodically strong positions.

REFERENCES

Australian Aboriginal Languages
Consonant-Salient Phonologies and the “Place-of-Articulation Imperative”

ANDREW BUTCHER

ABSTRACT

Australian languages typically have small vowel inventories and very unusual consonant systems. They have no close vowels, no voiced contrast, and no manner-of-articulation contrasts among the obstruents but they have an unusually large number of places of articulation. Observation of spontaneous speech and acoustic measurements of laboratory speech indicate an overwhelming imperative to preserve place of articulation distinctions, especially in medial consonants. Controlled experiments on the articulatory dynamics and micro-prosody of these languages indicate that many of the positional contrasts and nearly all of the spectral contrasts we find in the medial consonants rather than in the vowels. This phonetic enhancement of the acoustic and perceptual salience of intervocalic consonants is manifested synchronically at the phonemic level in most currently spoken Australian languages. It has become phonologized to varying degrees in a number of these languages, whose phonological structure is now arguably VC(V) rather than the universally accepted CV(C). Moreover, languages that have reached this stage may not retain this structure, but show signs of moving towards a CV(C) pattern once more. Thus this may be a cyclical process, possibly driven by a tension between a universal linguistic preference for CV(C) structure in the human brain on the one hand and the unique phonetic characteristics of Australian languages on the other. These characteristics appear to be motivated by the “place-of-articulation imperative”, which strongly favours the VC(V) structure as a means of masking the perceptual distinctions between consonants. I conclude with some speculations as to what might be the motivation for the place-of-articulation imperative.
The Macquarie Monographs in Cognitive Science series will publish original monographs dealing with any aspect of cognitive science.

Each volume in the series will cover a circumscribed topic and will provide readers with a summary of the current state-of-the-art in that field.

A primary aim of the volumes is also to advance research and knowledge in the field through discussion of new theoretical and experimental advances.

Titles in the series

Routes to Reading Success and Failure: Toward an Integrated Cognitive Psychology of Atypical Reading, Nancy Ewald Jackson & Max Coltheart

Cognitive Neuropsychological Approaches to Spoken Word Production, Lyndsey Nickels (Ed.)

Rehabilitation of Spoken Word Production in Aphasia, Lyndsey Nickels (Ed.)

Masked Priming: The State of the Art, Sachiko Kinoshita & Stephen J. Lupker (Eds.)

Individual Differences in Theory of Mind: Implications for Typical and Atypical Development, Betty Repacholi & Virginia Slaughter (Eds.)

From Matting to Mentality: Evaluating Evolutionary Psychology, Kim Sterelny & Julie Fitness (Eds.)

Cognitive Neuropsychology Twenty Years On, Max Coltheart & Alfonso Caramazza (Eds.)

Forthcoming titles

Subsequent volumes are planned on various topics in cognitive science including visual cognition and modeling of visual word recognition.