Acoustic phonetic variability and auditory word recognition by dyslexic and non–dyslexic children
Patricia Keating, UCLA Linguistics
Kuniko Nielsen, UCLA Linguistics
Frank Manis, USC Psychology
Jennifer Bruno, USC Psychology

Work supported by NIH grant HD29891 to Frank Manis
Introduction

- Dyslexics show a phonological awareness deficit, and some are impaired in phoneme categorization.
- Not clear whether impaired in normal auditory word processing.
- Bonte & Blomert (2004) ERP study suggested normal late-stage lexical access, but deviant early acoustic → phonological processing.
Acoustic variability and normal word processing

- Trial-to-trial acoustic phonetic variation due to talker voices, speaking rate, style, and tokens impairs spoken word recognition (Sommers & Barcroft 2006 review; Ryalls & Pisoni 1997 for children)

- Effects of talker and rate variation seen when processing is “slow and effortful” (McLennan & Luce 2005)
Talker and allophone variability

- Words spoken by **multiple talkers** are recognized more slowly and less accurately compared to single talkers (e.g. Mullenix et al. 1989)
- **Different allophones** of a phoneme (e.g. released/unreleased final stop consonants) likewise provide personal/stylistic variation without lexical ambiguity
Research questions: Variability

- Do children demonstrate less accurate/slower recognition of words with greater acoustic variability due to different talkers?
- Do children demonstrate less accurate/slower recognition of words with greater acoustic variability due to different allophones?
Research questions: Dyslexia

- Do dyslexic children demonstrate less accurate/slower word recognition than non-dyslexic children with greater acoustic variability due to talkers?
- Do dyslexic children demonstrate less accurate/slower word recognition than non-dyslexic children with greater acoustic variability due to allophones?
Method: Word recognition task

Subjects hear:
- A prompt suggesting the target word
- The *target* word
- A series of 7 test *probes*, which are either the same word as the target, or a different (phonemically overlapping) word

Subjects respond:
- For each probe, press a key or button for “same word” or “different word”

Computer records choice and latency.
Method: Talkers

- All targets: 1 Californian woman
- Test probes in trials with **single talker**: same Californian woman
- Test probes in trials with **multiple talkers**: 2 Californian men, women, boys, girls (the women different from the one above)
- Mixed talker trials vary not only in voice (including age and sex), but in personal speaking rate and to some extent style, especially with children
Method: Wordlist

- All high-frequency words familiar to children
- Target words for Talker trials: cake, big, teach, pool
- Target words for Allophone trials: trade, hit, quit, treat
- Foil words vary in initial consonant, vowel, or final consonant
Single vs. Mixed talker trials

- Target stimuli are same in both sets
- In 4 Single talker trials, target voice also produces the probes
- In 4 Mixed talker trials, target voice does not produce any probes
- Number of match probes in a trial is 3 or 4 (randomized)
- Order of probes in trials randomized
- Order of Single and Mixed trial blocks balanced across subjects
Sample trials: Single vs. Mixed talkers

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Target: TEACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probes:</td>
<td></td>
</tr>
<tr>
<td>1. teach</td>
<td>1. teeth</td>
</tr>
<tr>
<td>2. teach</td>
<td>2. teach</td>
</tr>
<tr>
<td>3. tale</td>
<td>3. teach</td>
</tr>
<tr>
<td>4. peach</td>
<td>4. teach</td>
</tr>
<tr>
<td>5. teeth</td>
<td>5. teach</td>
</tr>
<tr>
<td>6. teach</td>
<td>6. tale</td>
</tr>
<tr>
<td>7. teach</td>
<td>7. peach</td>
</tr>
</tbody>
</table>
Allophone trials

- 4 Allophone trials all use multiple talkers
- Target voice is always among the probe voices
- 2 targets have unreleased final stop, 2 targets have released final stop
- 4 match probes in each trial:
 - SAME voice as target, vs. different
 - SAME allophone as target, vs. different
Sample allophone trial

Prompt

Target: **QUIT** (released /t/)

Probes:

1. pit
2. **quit** (unreleased /t/)
3. **quit** (released /t/)
4. quite
5. **quit** (released /t/)
6. quiz
7. **quit** (unreleased /t/)
Bells and whistles in methods for child listeners

- Practice items before new blocks
- Trials blocked into game-like “levels” with encouraging screen displays
- Spoken prompts to suggest what the target word is (in a voice different from any of the stimulus voices)
- RT countdown bar to encourage responses under 2 sec
Method: Subjects

○ 10 dyslexics, 10 controls
 ● Dyslexics at or below 25th percentile on one or two subtests of Woodcock test of reading ability (words, nonwords)
 ● Controls at or above 40th percentile on both subtests

○ All have normal performance IQ
○ Age ranges in both groups 8–14
○ Groups not yet carefully matched on all variables
Data analysis

- Scoring: eliminate errors, too-short RTs; replace RTs longer than 3 SDs with 3 SDs
- RTs corrected for word duration
- Foils not analyzed, only matches
- Separate analyses of Talker variability trials vs. Allophone variability trials
- Due to missing values, some averaging, but some cells empty
Analysis of Talker trials

- 1 datapoint per trial: average RT of correct matches
- RM ANOVA
 - Between-subject factors:
 - Group (dyslexic, control)
 - Wordlist (order1, order2)
 - Within-subject factors:
 - Talkers (target voice, mixed voices)
 - Word (big, cake, pool, teach)
Results: Talker variability

- In the Talker variability trials, is a mixed set of voices harder (slower)? (Talkers factor)
 - No effect of Talkers (no main effects at all)

- Does the order of conditions matter? (Wordlist interactions)
 - Talkers x Wordlist interaction
 - Mixed talker trials are slower when they are heard first, and those subjects are faster when they then hear the Single talker trials
Talker x Wordlist interaction

![Graph showing Talker x Wordlist interaction](image-url)

- **RT** on the y-axis
- **Wordlist** on the x-axis
- Lines for SingleFirst and MixedFirst conditions
- Asterisks indicating significance

20
Analysis of allophone trials

- 1 datapoint per match probe
- Averaged 2 trials with released stop targets and 2 with unreleased targets
- 2 RM ANOVAs
 - Between-subject factors:
 - **Group** (dyslexic, control)
 - **Wordlist** (order1, order2)
 - Within-subject factors:
 - **Talker** (target voice, other voice)
 - **Allophone** (released, unreleased)
Results: Talker variability

- In the Allophone variability trials, is a probe harder (slower) when the voice is different from the target voice? (Talker factor)
 - Main effect of Talker in trials with released stops in targets
 - Probes with voices different from target voice are slower than probes with the target voice
Effect of Talker on RT

![Bar chart showing the comparison of response time (RT) between a target voice and different voices. The x-axis represents the target voice vs. different voices, with two categories labeled 1 and 2. The y-axis represents RT in seconds, ranging from 0 to 0.45. The chart indicates a higher RT for the second category compared to the first.](image-url)
Results: Allophonic variability

In the Allophone variability trials, is a probe with a different allophone harder (slower)? (Allophone factor)

- Main effect of Allophone in both analyses:
- Probes with unreleased allophone are slower than probes with released allophone, whether it matches the target allophone or not
Allophones in targets & probes
Results: Allophonic variability

Is it even harder (slower) when the talker also varies? (Talker interactions)

- **Allophone x Talker** interaction in trials where target has a released allophone:
 - Unreleased allophone probes are especially slow in a different voice
 - Talker effect only with unreleased allophone probes
Talker x Allophone interaction with released allophone targets

![Bar chart showing reaction times (RT) for released and unreleased allophones for same and different talkers.](chart)

- **Y-axis:** Reaction time (RT)
- **X-axis:** Talker condition (Same talker vs. Different talker)
- **Legend:**
 - Released allophones
 - Unreleased allophones

The chart illustrates the reaction times for released and unreleased allophones across different talker conditions.
Summary: Talkers

- In the Talker variability trials, there was no overall effect of Single talker vs. Mixed talkers; listeners were slowest on Mixed talker trials when heard first (same result as Ryalls & Pisoni 1997)

- In the Allophone variability trials with released stop targets, listeners were slowest on unreleased allophones in a different voice from the target
Summary: Allophones

- In the Allophone variability trials, unreleased allophones are slower regardless of the target allophone.
- Only when the target stop is released, do other effects of interest arise: Talker, Group.
Why are released stops special?

- Released final stops are a form of clear speech; they are presumably better exemplars of the stops.
- Perhaps activation of released target also facilitates comparison with probes.
Results: Dyslexia

Main effect of **Group** in trials where target has a released allophone:

- **Controls are faster than dyslexics**
- No significant interactions of any factors with Group (e.g. the groups share the Talker x Allophone effect of slower unreleased stops in a different voice)
Group difference by target

![Bar chart showing group differences for rel and unrel targets between Dyslexics and Controls.](image-url)
Summary: Dyslexia

- Dyslexics are slower than controls in a subset of trials: Allophone trials with released allophone targets.
- Specifically, dyslexics are not any faster with released allophone targets than with unreleased allophone targets.
Overall summary

- Children re Talker variability: Effects in some conditions, but not all
- Children re Allophone variability: Unreleased allophones are slower; whether it matches target doesn’t matter
- Dyslexic children re Talker variability: Perform like controls
- Dyslexic children re Allophone variability: Slower than controls on some targets; perform like controls re probes
References

Streeter & Nigro (1979) The role of medial consonant transitions in word perception, *JASA* 65: 1533–1541