I. Introduction

- Source-filter interactions: degree of oral constriction (filter) can affect ease of initiating and sustaining voicing source, and its amplitude (Bickley & Stevens, 1987; Fant, 1997; Hallé & Stevens, 1947; Sole, 2015; Stevens, 2000)
- Mittal et al. (2014): examined differences in strength of glottal excitation across six voiced consonants
- Degree of oral constriction argued to correlate with phonological sonority
- But previous studies of physical manifestation/quantification of sonority either: Make no connection to inherent source-filter dependencies (Parker, 2002), or
- Divorce glottal state (source) from aperture (filter) (e.g. Miller, 2012)

Research Questions:
1. Does strength/degree of voicing differ across different segment types?
2. How do source-filter interactions distinguish between voiced consonants and vowels of varying degrees of constriction? Replication of Mittal et al. (2014) with more degrees of constriction and vowels
3. How do these differences correlate with standard notions of sonority?
4. Does voicing also change during a segmental constriction? If so, how?

II. Method

- 13 participants (6 M; 7 F): trained phoneticians, fluent/highly proficient English speakers (8 AmE speakers) – one F excluded from section IV due to lack of voicing in stops
- 5 out of 6 segments from Mittal et al. (2014), plus 16 others (total = 21):
 - 14 Consonants: 3 reps. [Ca]:
 - Approximants: [i, u, i, a]
 - Trill & Tap: [r, r]
 - Nasal: [n]
 - Fricatives: [θ, y, x, z]
 - Affricates & Stop: [d, g, v, d]
 - Front unrounded: [i, e, a]
 - Front rounded: [y, ø]
 - Back rounded: [o, u]
 - Collapsed together in Figs. 1-2
- Measures (VoiceSource: Shue et al., 2011; EggWorks: Tehran, 2015):
 - Contact quotient (CQ): Prop. of vibratory cycle where vocal fold contact is higher than specified threshold – here, CQ_H (Hybrid method)
 - Decontacting moment: begins at the negative peak in the iDEGG signal
 - Contacting moment: ends when the EGG signal crosses a 37% threshold.
 - This version of CQ_H best reflects differences in phonation in phonation-to-breathy range (Kuang, 2011; Kuang & Keating, 2012)

- Signal filtered with zero frequency resonators (ZFR)
- Slope of negative-going ZFR signal = relative amplitude of impulse-like excitation
- Depends on both source and filter; no equivalent EGG measure

III. Results: Mean CQ (left) and SoE (right)

1. CQ (LEFT, FIG. 1):
 - Voiced fricatives in general have the lowest CQ, (lower than voiced stops)
 - Most-breathy voicing
 - Independently expected: vocal folds in fricatives are sometimes spread to maintain continued airflow needed for fricative noise (e.g. Keyser & Stevens, 2006)
 - Voiced stops have lower CQ than nasals, liquids, glides and vowels
 - Vowels as a whole have highest CQ
 - Least breathy voicing/most glottal contact

2. SoE (RIGHT, FIG 2):
 - Voiced fricatives > Voiced stops
 - Stronger voicing energy, despite breathier voicing
 - Vowels have highest SoE
 - Strongest voicing
 - Voiced stops have lowest SoE
 - Weakest voicing

IV. Results: Timecourse of voicing (SoE)

1. Does voicing differ across different segment types? Yes!
2. How do source-filter interaction distinguish between voiced consonants and vowels?
 - In general, in accord with previous work and predictions (e.g. Bickley & Stevens, 1987): the tighter the constriction, the breathier the voicing (CQ_H).
 - Also: the tighter the constriction, the weaker the voicing (SoE)
3. How do these differences correlate with standard notions of sonority?
 - At the broadest level: Vowels > approximants > obstruents
 - However, a number of reversals within each class (e.g. liquids have lower SoE than nasals)
4. Does voicing change during a segmental constriction? Yes! How?
 - Trill: Strength of voicing oscillates with changing oral constriction
 - Stops: Voicing becomes weaker before extinguishing

V. Summary

Acknowledgments

We would like to thank students of the Winter 2015 Speech Production graduate course at UCLA for participating in the design and execution of the study, as well as Joo-Jin Park for implementing the SoE measure in VoiceSource. Thank you also to members of the UCLA Phonetics Lab, the audience at the 2014 CLAPH Phonology Forum, and four anonymous reviewers for LabPhon 2016 for comments and discussion.

On the link between glottal vibration and sonority
Megan Risdal, Ann Aly, Adam J. Chong, Patricia Keating & Jesse Zymet
Dept. of Linguistics, University of California, Los Angeles

Figure 1. Tor: Scaled CQ across all consonants, collapsing vowels into one category. (left) == increasing constriction degree.

Figure 2. Two dimensional space of Scaled CQ by Scaled SoE, across all consonants, collapsing vowels into one category (right).

Figure 3. Two dimensional space of Scaled SoE by Scaled CQ, by segment of symbol indicates standard deviation.

Figure 4. Scaled SoE across time by speaker and token for trills.

Figure 5. Scaled SoE across time by speaker and token for stops.

Figure 6. Scaled SoE across time by speaker and token for nasals.
Information about Strength of Excitation (SoE)

Epoch: the instant of significant, impulse-like excitation of the vocal-tract system during speech production (Murty & Yegnanarayana 2008); also defined as moment of glottal closure.

- Takes place during closing phase of the glottal cycle, due to abrupt closure of vocal folds
- Groundtruth for epochs (or actual epochs) is taken to be \(d \text{EGG} \) closing peak, or positive-to-negative zero-crossings of the ZFR signal (signal filtered with zero-frequency resonators – see (b) below)

Strength of Excitation (SoE) (Mittal et al. 2014): the relative amplitude of impulse-like excitation at an epoch (Murty & Yegnanarayana, 2008; Yegnanarayana & Murty 2009). See (c) below.

- Measured as the slope of the ZFR signal around the epoch
- Related to closing peak in \(d \text{EGG} \), except SoE reflects changes in both source and vocal-tract system characteristics (as shown by differences across segment types)
- Mittal et al. show values for a low vowel of .5 - .83, and for consonants as low as .06

![Diagram](image)

References

