
Grammar in Performance and Acquisition:

recognition

E Stabler, UCLA

ENS Paris • 2008 • day 3

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

setup
Goals
Recognition: Preliminaries

Q1 How are utterances interpreted ‘incrementally’?

Q2 How is that ability acquired, from available evidence?

Q3 Why are some constituent orders unattested across languages?

Q4 What kind of grammar makes copying a natural option?

we don’t need to start from zero (start from grammar!)

frame explanations supported by convergent evidence

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

setup
Goals
Recognition: Preliminaries

(Chambers et al., 2004)

‘Pour the egg in the bowl over the flour’

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

setup
Goals
Recognition: Preliminaries

Recognition: sequences → {true, false}

Parsing: sequences → Trees ∪ {false}

How to design a recognition/parsing strategy:

Understand what you are parsing!

separate grammar definition from procedural issues
in parser, stay as close to grammar mechanisms as possible
consider time+memory after finding sound+complete algorithm

Lessons from well-understood problems, esp. CFG parsing:

6 ∃algorithm ⇒ separate representations of each derivation
(We can maybe exclude grammars with infinite ambiguity
. . . But in human languages, as in CFLs, the number of
derivations/string not bounded by polynomial)
Two main strategies (can both be used at once!):
• Store all trees built, sharing structure (‘chart’,‘packed forest’)
• Carefully select steps that look like they’re building the

desired trees, backtracking and reanalyzing when necessary

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

review

0 Pierre::D who::D -wh 4

1 Marie::D ǫ::=V +wh C 5

2 praises::=D =D V and::=C =C C 6

3 ǫ::=V C

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

review: steps 1,2,3

merge(2,4)= 7

<

praises:=D V who:-wh

merge(7,1)= 8

>

Marie <

praises:V who:-wh

merge(5,8)= 9

<

ǫ:+wh C >

Marie <

praises who:-wh

V’

V

praises

DP

D’

D

who

VP

DP

D’

D

Marie

V’

V

praises

DP

D’

D

who

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

D’

D

who

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

step 3: what do derived structures represent?

<

ǫ:+wh C >

Marie <

praises who:-wh

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

D’

D

who

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

[< [ǫ:+wh C] [>[Marie] [<[praises] [who:-wh]]]]

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

[< [ǫ:+wh C] [>[Marie] [<[praises] [who:-wh]]]]
[< [ǫ:+wh C] [>Marie [<praises (who:-wh)]]]

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

[< [ǫ:+wh C] [>[Marie] [<[praises] [who:-wh]]]]
[< [ǫ:+wh C] [>Marie [<praises (who:-wh)]]]
[< [ǫ:+wh C] [>Marie praises (who:-wh)]]

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

[< [ǫ:+wh C] [>[Marie] [<[praises] [who:-wh]]]]
[< [ǫ:+wh C] [>Marie [<praises (who:-wh)]]]
[< [ǫ:+wh C] [>Marie praises (who:-wh)]]
[< (ǫ:+wh C) Marie praises (who:-wh)]

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

trees and labeled bracketing

<

ǫ:+wh C >

Marie <

praises who:-wh

[< [ǫ:+wh C] [>[Marie] [<[praises] [who:-wh]]]]
[< [ǫ:+wh C] [>Marie [<praises (who:-wh)]]]
[< [ǫ:+wh C] [>Marie praises (who:-wh)]]
[< (ǫ:+wh C) Marie praises (who:-wh)]
((Marie praises:+wh C),(who:-wh))

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

EM: two different cases

praises::=D =D V + Pierre::D ⇒ <

praises:=D V Pierre

praises::=D =D V + who::D -wh ⇒ <

praises:=D V who:-wh

unlike Pierre, the DP who is a mover

so second result has 2 active ‘chains’

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

what the syntax must see
<

praises:=D V Pierre ≡ praises Pierre:=D V

<

praises:=D V who:-wh ≡ praises:=D V, who:-wh

<

ǫ:+wh C >

Marie <

praises who:-wh ≡ Marie praises:+wh C, who:-wh

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

example:

1 Marie::D who::D -wh 4

2 praises::=D =D V ǫ::=V +wh C 5

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

example:

1 Marie::D who::D -wh 4

2 praises::=D =D V ǫ::=V +wh C 5

merge(2 , 4)=praises:=D V, who:-wh A

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

example:

1 Marie::D who::D -wh 4

2 praises::=D =D V ǫ::=V +wh C 5

merge(2 , 4)=praises:=D V, who:-wh A

merge(A , 1)=Marie praises:V, who:-wh B

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

example:

1 Marie::D who::D -wh 4

2 praises::=D =D V ǫ::=V +wh C 5

merge(2 , 4)=praises:=D V, who:-wh A

merge(A , 1)=Marie praises:V, who:-wh B

merge(5 , B)=Marie praises:+wh C, who:-wh C

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

example:

1 Marie::D who::D -wh 4

2 praises::=D =D V ǫ::=V +wh C 5

merge(2 , 4)=praises:=D V, who:-wh A

merge(A , 1)=Marie praises:V, who:-wh B

merge(5 , B)=Marie praises:+wh C, who:-wh C

move(C)=who Marie praises:C

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

derived structures and derivation trees

CP

DP0

D’

D

who

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

t0

>

who <

ǫ:C >

Marie <

praises

who Marie praises:C

Marie praises:+wh C,who:-wh

ǫ::=V +wh C Marie praises:V,who:-wh

praises:=D V,who:-wh

praises::=D =D V who::D -wh

Marie::D

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

derived structures and derivation trees

CP

DP0

D’

D

who

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

t0

>

who <

ǫ:C >

Marie <

praises

◦

•

ǫ::=V +wh C •

•

praises::=D =D V who::D -wh

Marie::D

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

minimalist grammar G=〈Lex ,F〉 reformulated

vocabulary Σ = {every,some,student,...}

types T ={::, :} “lexical” and “derived”

syntactic features F :

C, T, D, N, V, P,... (selected categories)
=C, =T, =D, =N, =V, =P,... (selector features)
+wh, +case, +focus,... (licensors)
-wh, -case, -focus,... (licensees)

Chains C = Σ∗ × T × F ∗

expressions E = C+

lexicon Lex ⊆ C+, a finite subset of Σ∗ × {::} × F ∗

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

derived structures and derivation trees

CP

DP0

D’

D

who

C’

C VP

DP

D’

D

Marie

V’

V

praises

DP

t0

>

who <

ǫ:C >

Marie <

praises

who Marie praises:C

Marie praises:+wh C,who:-wh

ǫ::=V +wh C Marie praises:V,who:-wh

praises:=D V,who:-wh

praises::=D =D V who::D -wh

Marie::D

(remember why this reformulation is being considered now: we need to decompose derivations to share structure)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

em: (E × E) → E is the union of the following 3 functions,
for · ∈ {:, ::}, γ ∈ F ∗, δ ∈ F+

s :: =f γ t · f , α1, . . . , αk
em1: lexical item selects non-mover

st : γ, α1, . . . , αk

s : =f γ, α1, . . . , αk t · f , ι1, . . . , ιl
em2: non-lex selects non-mover

ts : γ, α1, . . . , αk , ι1, . . . , ιl

s · =f γ, α1, . . . , αk t · f δ, ι1, . . . , ιl
em3: any item selects mover

s : γ, α1, . . . , αk , t : δ, ι1, . . . , ιl

(Here, α1, . . . , αk , ι1, . . . , ιl (0 ≤ k, l) are any chains)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

im: E → E is the union of the following 2 functions,
for γ ∈ F ∗, δ ∈ F+,

s : +f γ, α1, . . . , αi−1, t : −f , αi+1, . . . , αk
im1: final move

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

s : +f γ, α1, . . . , αi−1, t : −f δ, αi+1, . . . , αk
im2: nonfinal move

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

(SMC) none of the chains α1, . . . , αi−1, αi+1, . . . , αk has −f as its
first feature,

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Given a minimalist grammar G , how can we tell if string s ∈ L(G)?
0. Represent input by a finite state machine, with all possible
empty elements:

0

C
Cwh

1
who

C
Cwh

2
Marie

C
Cwh

3
praises

Cwh
C

(0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::who (1,2)::Marie (2,3)::praises

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

1. Replace each lexical item by its features, in a matrix m(input).

(0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

2. Close m(input) with respect to merge,
where each string is given now by the matrix indices,
(enforcing adjacency reqs for em1,em2,im1; none for em3,im2)

3. Success if (0, |input|) · Start

With the ‘deductive parsing’ implementation of Shieber, Schabes & Pereira (1994), only a small bit of code is

needed, available from the webpage. The method is called CKY because it is based on early work of Cocke,

Kasami, and Younger on parsing context free languages (Aho and Ullman, 1972; Sikkel and Nijholt, 1997).

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Example:

1. (0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

2. Now, close w.r.t merge. First, using em3:

(2,3)::=D =D V (0,1)::D -wh
(2,3):=D V , (0,1):-wh

So we add this to the matrix. . .

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Example: continuing 2. . .

(0,0)::=V C (1,1)::=V C (2,2)::=V C (3,3)::=V C
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

(2,3):=D V,(0,1):-wh

Now we can use em2:

(2,3):=D V , (0,1)::-wh (1,2)::D
(1,3):V , (0,1):-wh

We add this to the matrix. . .

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Example: continuing 2. . .

(0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

(2,3):=D V,(0,1):-wh
(1,3):V,(0,1):-wh

Now we can use em1:

(1,1):=V C (1,3):V,(0,1):-wh
(1,3):+wh C, (0,1):-wh

We add this to the matrix. . .

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Example: continuing 2. . .

(0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

(2,3):=D V,(0,1):-wh
(1,3):V,(0,1):-wh
(1,3):+wh C,(0,1):-wh

Now we can use im1:

(1,3):+wh C, (0,1):-wh
(0,3):C

We add this to the matrix. . .

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Example: continuing 2. . .

(0,0)::=VC (1,1)::=VC (2,2)::=VC (3,3)::=VC
(0,0)::=VC+wh (1,1)::=VC+wh (2,2)::=VC+wh (3,3)::=VC+wh
(0,1)::D-wh (1,2)::D (2,3)::=D =D V

(2,3):=D V,(0,1):-wh
(1,3):V,(0,1):-wh
(1,3):+wh C,(0,1):-wh

(0,3):C

We can now answer:
Step 3. Does the table contain (0, 3) · C? Yes

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

0 who 1 Marie 2 praises 3

0 1 2 3

0 (=V C) (D -wh)
(=V +wh C)

1 (=V C) (D)
(=V +wh C)

2 (=V C) (=D =D V)
(=V +wh C)

3 (=V C)
(=V +wh C)

(Look up how to compute closures in Cormen et al’92,§26.2, or other text on algorithms)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

0 who 1 Marie 2 praises 3

0 1 2 3

0 (=V C) (D -wh)
(=V +wh C)

1 (=V C) (D)
(=V +wh C)

2 (=V C) (=D =D V)
(=V +wh C) (=D V,(0,1):-wh)

3 (=V C)
(=V +wh C)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

0 who 1 Marie 2 praises 3

0 1 2 3

0 (=V C) (D -wh)
(=V +wh C)

1 (=V C) (D) (V,(0,1):-wh)
(=V +wh C)

2 (=V C) (=D =D V)
(=V +wh C) (=D V,(0,1):-wh)

3 (=V C)
(=V +wh C)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

0 who 1 Marie 2 praises 3

0 1 2 3

0 (=V C) (D -wh)
(=V +wh C)

1 (=V C) (D) (V,(0,1):-wh)
(=V +wh C) (+wh C,(0,1):-wh)

2 (=V C) (=D =D V)
(=V +wh C) (=D V,(0,1):-wh)

3 (=V C)
(=V +wh C)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

0 who 1 Marie 2 praises 3

0 1 2 3

0 (=V C) (D -wh) (C)
(=V +wh C)

1 (=V C) (D) (V,(0,1):-wh)
(=V +wh C) (+wh C,(0,1):-wh)

2 (=V C) (=D =D V)
(=V +wh C) (=D V,(0,1):-wh)

3 (=V C)
(=V +wh C)

(matrix guarantees a completed derivation, which we can now collect. . .)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

Soundness, completeness, complexity:

(sound) for every G, item derived only if licensed by G

(complete) for every G, if licensed by G, item derived

The number of possible entries in any cell is finitely bounded.

No more than O(n4m+4) steps (Harkema’00), m a constant
depending on the number of licensees in the grammar.

Generalizes to copying (P-MCFG translation)

Generalizes to arbitrary semi-rings (probabilities, weights)

Incremental?

This CKY-like method is bottom-up and all-paths-at-once.

Given
‘(you) pour the egg in the bowl over the flour’

when is egg or egg in the bowl related to the object position
of pour? (NB: question not clear!)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

‘Pour the | egg | in the | bowl over the flour’

(Chambers et al., 2004)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

TP

DP(6)

D’

D

(you)

T’

VP(5)

V’

V

pour

DP

t(2)

T’

T vP

vP

DP

t(6)

v’

DP(2)

D’

D

the

NP

NP

N’

N

egg

N’

PP(1)

P’

P

in

DP

t(0)

N’

DP(0)

D’

D

the

NP

N’

N

bowl

N’

N PP

t(1)

v’

v VP

t(5)

v’

PP(4)

P’

P

over

DP

t(3)

v’

DP(3)

D’

D

the

NP

N’

N

flour

v’

v PP

t(4)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

◦

◦

•

[]::=v +i +k T •

◦

◦

•

[]::=P +k +p =v v •

over::=D P -p •

the::=N D -k flour::N

•

◦

•

[]::=V +k =D v •

pour::=D V -i •

the::=N D -k •

◦

◦

•

[]::=P +k +p =N N •

in::=D P -p •

the::=N D -k bowl::N

egg::N

(you)::D -k

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

◦

◦

•

[]::=v +i +k T •

◦

◦

•

[]::=P +k +p =v v •

over::=D P -p •

the::=N D -k flour::N

•

◦

•

[]::=V +k =D v •

pour::=D V -i •

the::=N D -k

x

• ⇐ 1

◦

◦

•

[]::=P +k +p =N N •

in::=D P -p •

the::=N D -k bowl::N

egg::N

(you)::D -k

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

cky
From trees to tuples
CKY: From tuples to matrices
Assessment

◦

◦

•

[]::=v +i +k T •

◦

◦

•

[]::=P +k +p =v v •

over::=D P -p •

the::=N D -k flour::N

• ⇐ 2

◦

•

[]::=V +k =D v •

pour::=D V -i •

the::=N D -k

x

• ⇐ 1

◦

◦

•

[]::=P +k +p =N N •

in::=D P -p •

the::=N D -k bowl::N

egg::N

(you)::D -k

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

td TD

TD Motivations:

CKY method not incremental(?) Lacks ‘prefix property’:

A parser has the prefix property iff it halts on any prefix of the
input that cannot be extended to a successful parse.

Marcus’80 proposes a bottom-up method to minimize local
ambiguity. He proves that even then, and even with
lookahead, backtracking cannot be avoided. He shows,

English is not LR(k) for any k.

Recently, a different idea is to build structures that are fully
connected, so that they can be interpreted incrementally.

Top-down (TD) parsing builds fully connected trees at every
point. (+proposed to explain grammatical facts, Chesi et al)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

td TD

TD Motivations:

CKY method not incremental(?) Lacks ‘prefix property’:

A parser has the prefix property iff it halts on any prefix of the
input that cannot be extended to a successful parse.

Marcus’80 proposes a bottom-up method to minimize local
ambiguity. He proves that even then, and even with
lookahead, backtracking cannot be avoided. He shows,

English is not LR(k) for any k.

Recently, a different idea is to build structures that are fully
connected, so that they can be interpreted incrementally.

Top-down (TD) parsing builds fully connected trees at every
point. (+proposed to explain grammatical facts, Chesi et al)
For CFGs, TD is non-terminating, and even when
terminating is intractable. TD for MGs has these same
problems and more. . . (discussed in Harkema’01)

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

earley EARLEY

Earley: A TD recognition strategy that works

Earley’68 showed how TD and BU methods can be combined
to avoid TD nontermination. The basic idea is simply:

Constituents are predicted TD, using chart representation
Predicted elements are completed BU, and then
new predictions are generated TD

Method extends to TAGs and MGs, with ‘prefix property’
(for MGs, see Harkema’01; for TAGs, Vijay-Shanker’87)

For incremental parsing, one idea is:
semantically analyze one TD prediction path from the chart at
a time, while completing BU and storing completed elements
as required by Earley, so that reanalysis is feasible.

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

intermission 3
References

Summary 3

So far 3

simple formalisms can model many linguistic proposals

a straightforward semantics values every constituent

Q1 What performance models allow incremental interpretation
(and remnant movement, doubling constructions)?

• CKY efficiently parses every MGC
• Earley efficiently parses every MGC,

with (factored) representation of TD derivations
• Probabilistic Earley may model TD choice
• Can we interpret TD partial constituents like [DP [V. . .]]?

Yes, but many open questions!
(Hale’08,Shieber&Johnson’94,Stabler’91,Steedman’89)

Q2 How is this ability acquired, from available evidence?

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

intermission 3
References

Aho, Alfred V. and Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation, and Compiling. Volume 1:
Parsing. Prentice-Hall, Englewood Cliffs, New Jersey.

Becker, Tilman, Owen Rambow, and Michael Niv. 1992. The derivational generative power of formal systems, or,
scrambling is beyond LCFRS. IRCS technical report 92-38, University of Pennsylvania.

Chambers, Craig G., Michael K. Tanenhaus, Kathleen M. Eberhard, Hana Filip, and Greg N. Carlson. 2004.
Actions and affordances in syntactic ambiguity resolution. Journal of Experimental Psychology: Learning, Memory
and Cognition, 30(3):687–696.

Chesi, Cristiano. 2007a. Five reasons for building phrase structures top-down from left to right. Nanzan
Linguistics, Special Issue 3,, 1:71–105.

Chesi, Cristiano. 2007b. An introduction to phase-based minimalist grammars: Why move is top-down from
left-to-right. Technical report, Centro Interdepartmentale di Studi Cognitivi sul Linguaggio.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. 1991. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts.

Goodman, Joshua. 1999. Semiring parsing. Computational Linguistics, 25(4):573–605.

Hale, John. 2003. Grammar, Uncertainty, and Sentence Processing. Ph.D. thesis, Johns Hopkins University.

Hale, John. 2006. Uncertainty about the rest of the sentence. Cognitive Science, 30(1):609–642.

Harkema, Henk. 2000. A recognizer for minimalist grammars. In Sixth International Workshop on Parsing
Technologies, IWPT’00.

Kuich, Werner and Arto Salomaa. 1986. Semirings, Automata, Languages. Springer-Verlag, NY.

Marcus, Mitchell. 1980. A Theory of Syntactic Recognition for Natural Language. MIT Press, Cambridge,
Massachusetts.

Nederhof, Mark-Jan and Giorgio Satta. 2003. Probabilistic parsing strategies. In Proceedings of the 3rd AMAST
Workshop on Algebraic Methods in Language Processing (AMiLP 2003), pages 305–314, Verona, Italy.

Rambow, Owen and Giorgio Satta. 1994. A two-dimensional hierarchy for parallel rewriting systems. IRCS
technical report 94-02, University of Pennsylvania.

Satta, Giorgio. 1994. Tree adjoining grammar parsing and boolean matrix multiplication. Computational
Linguistics, 20:173–232.

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

intermission 3
References

Shieber, Stuart and Mark Johnson. 1994. Variations on incremental interpretation. Journal of Psycholinguistic
Research, 22:287–318.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. 1993. Principles and implementation of deductive
parsing. Technical Report CRCT TR-11-94, Computer Science Department, Harvard University, Cambridge,
Massachusetts.

Sikkel, Klaas and Anton Nijholt. 1997. Parsing of context free languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, Volume 2: Linear Modeling. Springer, NY, pages 61–100.

Stabler, Edward P. 1991. Avoid the pedestrian’s paradox. In Robert C. Berwick, Steven P. Abney, and Carol
Tenny, editors, Principle-based Parsing: Computation and Psycholinguistics. Kluwer, Boston, pages 199–238.

Steedman, Mark J. 1989. Grammar, interpretation, and processing from the lexicon. In William Marslen-Wilson,
editor, Lexical Representation and Process. MIT Press, Cambridge, Massachusetts, pages 463–504.

Valiant, Leslie G. 1975. General context free recognition in less than cubic time. Journal of Computer and System
Sciences, 10:308–315.

Vijay-Shanker, K. and David Weir. 1994. Parsing some constrained grammar formalisms. Computational
Linguistics, 15:591–636.

Vijayashanker, K. 1987. A Study of Tree Adjoining Languages. Ph.D. thesis, University of Pennsylvania.

E Stabler, UCLA Grammar in Performance and Acquisition:recognition

	Setup
	Setup
	Goals
	Recognition: Preliminaries

	CKY
	cky
	From trees to tuples
	CKY: From tuples to matrices
	Assessment

	TD
	TD
	TD

	EARLEY
	EARLEY
	EARLEY

	intermission 3
	intermission 3
	Summary 3
	References 3

	References

