Class 6: Optimality Theory, part I

To do: OT assignment (Yokuts, Kalinga & Ladakhi) due Friday, Oct. 15

1. The “conceptual crisis” (Prince & Smolensky p. 1)

Since Kisseberth 1970, constraints were taking on a bigger and bigger role. But as we saw…

- What happens when there’s more than one way to satisfy a constraint? Need to prioritize the rules that could be triggered. Do different constraints prioritize rules differently?
- Why aren’t constraints always obeyed?
- Relatedly, what happens when constraints conflict? What if one constraint wants to trigger a rule, but another wants to block it? Must the grammar prioritize constraints?
- Should a rule be allowed to look ahead in the derivation to see if applying alleviates a constraint violation? (how far?) Or does the alleviation have to be immediate?
- Relatedly, is a rule allowed to make things worse if a later rule will make them better?
- Can a constraint prohibit a certain type of change, rather than a certain structure?

2. Prince & Smolensky’s solution: Optimality Theory

<table>
<thead>
<tr>
<th>rule-based grammar with constraints</th>
<th>OT grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply rules in sequence—intermediate representation is known at all times</td>
<td>apply all possible rules, producing a (large!) set of candidate outputs</td>
</tr>
<tr>
<td>constraints may block or trigger rules</td>
<td>constraints pick the best candidate</td>
</tr>
<tr>
<td>look-ahead: nonexistent or sketchy</td>
<td>candidate outputs are (potential) surface forms => full look-ahead to end of each possible derivation</td>
</tr>
<tr>
<td>interaction of constraints: nonexistent or sketchy</td>
<td>constraints interact through strict domination</td>
</tr>
<tr>
<td>similarity to UR results from not applying too many rules, not having too many constraints</td>
<td>similarity to UR is enforced by faithfulness constraints</td>
</tr>
</tbody>
</table>

end with SR/output (send it to the phonetic system)

3. Gen(): function that creates set of candidate outputs from input

One way to think of it:¹ apply all possible rules to the input, any number of times (deletion, insertion, feature changing, maybe changing order).

Gen(/ab/) = {{[ab], [a], [b], [ba], [,], [ta], [at], [ae], …}

Why is the resulting set of candidates infinite (assuming a finite alphabet of symbols)?

¹ This is what P&S call ‘anharmonic serialism,’ except with a universal set of rules that’s broad enough that the result is the “all possible variants” that P&S propose.
4. Constraints

In standard OT, a constraint can be a function from a candidate output to a natural number (the number of violations). A lower number means greater **harmony** (goodness):

\[\text{NoCoda}([\text{bak}]) = 1 \quad \text{NoCoda}([\text{tik.pad}]) = 2 \]

More generally, a constraint \(C_i \) imposes a strict partial order \(\succ_i \) ("is more harmonic than with respect to \(C_i \)"") on any set of candidates...

- **Transitive**: if \(a \succ_i b \) and \(b \succ_i c \), then \(a \succ_i c \).
- **Irreflexive**: \(a \nprec_i a \).
- **Asymmetric**: if \(a \succ_i b \), then \(b \nprec_i a \)
 - Show that asymmetry follows from the other two properties. Show that irreflexivity follows from asymmetry.

...with these additional properties:

- **"Stratified"**: if \(a \nprec_i b \) and \(b \nprec_i a \), then for any \(x \succ_i a \), \(x \succ_i b \) too; and for any \(y \) such that \(a \succ_i y \), \(b \succ_i y \) too. (In other words, if \(a \nprec b \) and \(b \nprec a \), then \(a \) and \(b \) are of equivalent harmony.)

(In Colin Wilson’s targeted-constraints variant of OT, the stratification requirement is relaxed.)

- **Bounded from above**: There exists some \(a \) such that there is no \(x \succ_i a \). (I.e., even in an infinite set of candidates, one or more are the most harmonic; there’s not necessarily a <set of> least-harmonic candidate<\(s \), though.)

\[\text{NoCoda:} \quad \begin{array}{cccc}
 \text{ta.da} & \text{bo} & \text{ba.du.pi} \\
 \text{tak.do} & \text{i.tek} & \text{o.tek.lao} \\
 \text{tak.kat} & \text{bad.ku.pit} & \text{sik.lep.bu} \\
 \ldots
\end{array} \]

- Why does assigning a (non-unique) natural number (0, 1, 2, …) to each candidate meet the ordering requirements above?
- Why are there no least-harmonic candidates for NoCoda?
- Can you recall a case from P&S where numbers of violations weren’t used?

5. Eval()

Eval() is a function from a set of output candidates and an ordered list (\(Con \)) of constraints to the subset of the candidates that is optimal:

\[\text{Eval(Gen/input/),Con} = \{\text{[output]}\} \quad \text{(or, e.g., \{[out_1], [out_2]\} in the case of a two-way tie)} \]

Eval() takes the orderings imposed by the various constraints and assembles them into one giant ordering (with the same properties: transitive, irreflexive, asymmetric, stratified, bounded above).

We can think of many ways this could be done…**strict ranking** is the mechanism used in standard OT for adjudicating harmony disagreements among constraints.

6. Constraint interaction through strict ranking

Strict ranking is like alphabetization: to find the alphabetically earliest member of a set, find the members that have the earliest first letter—and discard the rest; from the new, smaller set, pick the members that have the earliest second letter, etc.

Once a word is ruled out, it can’t redeem itself by, e.g., having lots of as later on:

<table>
<thead>
<tr>
<th>axiom</th>
<th>axiate</th>
<th>tab</th>
<th>axicle</th>
<th>caba</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana</td>
<td>azalea</td>
<td>axolotl</td>
<td>zabaglione</td>
<td>baa</td>
</tr>
</tbody>
</table>

Eval works the same way. If you have \(n \) constraints…

- Find the candidates that tie for being ‘best’ on the top-ranked constraint \(C_1 \); discard the rest.
- Of the remaining candidates, find those the next constraint, \(C_2 \), deems best; discard the rest.
- Repeat for \(C_3, \ldots, C_n \).
- Whatever candidates are still left at the end are tied for being the winner (if you have enough constraints, there is normally just one winner).

Q: How can that be computable? Wouldn’t you have to go through an infinite list of candidates just to do the first step?

A: For that reason, most computational implementations of OT (Ellison, Eisner, Albro, Riggle)\(^3\) represent the candidate set as a regular expression, which is a finite way to represent a certain class of infinite sets. For example, \(ab^*a \) is the set \{aa, aba, abba, abbbba, …\}. These expressions can then be manipulated algorithmically, either in a fairly literal translation of the above (as in Eisner 1997) or by other means.

More declaratively, a candidate \(a \) is optimal iff, for any \(b \) and \(C_j \) such that \(b \succ_j a \), there exists some \(C_i \) such that \(i < j \) (i.e., \(C_i \) is higher ranked than \(C_j \)) and \(a \succ_i b \).

In words, for \(a \) to be optimal, any candidate that does better than \(a \) on some constraint must do worse than \(a \) on another, higher-ranked constraint.

- Can you imagine some other ways that constraints could conceivably interact?

7. Two types of constraint

In pre-OT approaches to constraints, constraints were all markedness constraints: they penalized certain surface structures, such as CCC clusters.

So, on first hearing about OT, many people’s second reaction (the first was worrying about infinity) was to wonder why, if it’s all about constraints, every word isn’t maximally unmarked.

- In rule+constraint theories, what prevents every word from coming out [baba] (or whatever the least marked word is)?
- How do P&S prevent every word from coming out [baba]?

Markedness constraints look at the surface representation. The simplest ones can be defined by the structural description that they ban: *+[+voice]#, *C]σ. Typical markedness constraints reflect articulatory ease, or perceptual clarity, rhythmic organization, or other “natural” drives.4

You can (and should!) give a constraint a helpful mnemonic name, like NoCODA for *C]σ, as long as you precisely define the constraint somewhere. A good constraint definition should make it clear not just what is banned, but how the number of violations is assessed.

- What are some different ways that NoCODA might count violations?

Faithfulness constraints look at the relationship between the underlying and surface representations (the standard ones require similarity but we can imagine other possibilities).

For faithfulness constraints to be evaluable, candidates must bear information about the input.

- How do P&S ensure that faithfulness constraints can be evaluated on candidates?

P&S’s PARSE (≈ don’t delete) and FILL (≈ don’t insert), were quickly superseded by McCarthy & Prince’s correspondence constraints (the theory behind which we’ll see next time), so let’s start using the newer names now:

- MAX-X: don’t delete X (e.g., MAX-C, MAX-V)
- DEP-X: don’t insert X (e.g., DEP-C, DEP-V)
- IDENT-F: don’t change a segment’s value for the feature F

People often have a hard time at first with IDENT-F. The most common confusion is thinking it means “don’t delete a segment that is +F”. The next most common mistake is thinking it means “don’t alter a segment that is +F (e.g., by changing its values for some other feature G)”.

4 Or maybe they are just arbitrary and learned by speakers in response to whatever cards history has dealt them. Or, maybe both natural and unnatural constraints are possible, but learners treat them differently. This is a matter of much current debate. See Moreton 2008.

Ling 200A, Phonological Theory I, Fall 2010, Zuraw
8. Exposition: the tableau

Someday, we’ll all check our analyses with software that evaluates the infinite candidate set. In the meantime, we illustrate an analysis with a tableau showing a finite subset of candidates that have been chosen to demonstrate aspects of the constraint ranking. (The danger here is obvious—what if you didn’t think of some important candidate?)

This tableau shows a ranking argument: NoCODA prefers a (the winner), whereas DEP-V prefers b. If that’s the only difference between the candidates—no other constraint not known to be ranked below DEP-V prefers a over b—then NoCODA must outrank (>>) DEP-V.

<table>
<thead>
<tr>
<th></th>
<th>NoCODA</th>
<th>DEP-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[a.tɔ.ka]</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>[at.ka]</td>
<td>*!</td>
</tr>
</tbody>
</table>

Parts of the tableau:
- input
- output candidates (not all structure shown)
- constraints (highest-ranked on left)
- asterisks
- exclamation marks
- shading
- pointing finger (you can use an arrow)

These three don’t add any new information, but are there for the convenience of the reader.

9. How do I know which candidates and constraints to include in my tableaux?

This procedure works reasonably well:
- Start with the winning candidate and the fully faithful candidate.
- If the winning candidate ≠ the fully faithful candidate…
 - Add the markedness constraint(s) that rule out the fully faithful candidate.
 - Add the faithfulness constraints that the winning candidate violates.
 - Think of other ways to satisfy the markedness constraints that rule out the fully faithful candidate. Add those candidates, and the faithfulness and markedness constraints that rule them out. How far to take this step is a matter of judgment.
- If the winning candidate = the fully faithful candidate, then you are probably including this example only to show how faithfulness prevents satisfaction of a markedness constraint that, in other cases, causes deviation from the underlying form.
 - Add that markedness constraint.
 - Add one or more candidates that satisfy that markedness constraint.
 - Add the faithfulness constraints that rule out those candidates.

Let’s try it for /atka/ → [atɔka].

5 See Jason Riggle’s page for some software along these lines: http://hum.uchicago.edu/~jriggle/riggleDiss.html
O One of the candidates below is unnecessary in arguing for the constraint ranking. Why?

<table>
<thead>
<tr>
<th></th>
<th>/at+ka/</th>
<th>*CC</th>
<th>DEP-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[atka]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>[atka]</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>[atkaa]</td>
<td>**!</td>
<td></td>
</tr>
</tbody>
</table>

A candidate is **harmonically bounded** if it could not win under any constraint ranking.

10. **Comparative tableaux**
An innovation of Alan Prince. They convey the same information, but in a different form

<table>
<thead>
<tr>
<th></th>
<th>/at+ka/ → [atka]</th>
<th>*CC</th>
<th>DEP-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[atka] vs. [atka]</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>[atka] vs. [atkaa]</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

Comparative tableaux are nice because you can easily see if your ranking is correct: the first non-blank cell in each row must say W.

O We also see easily why [atkaa] is irrelevant to the ranking—explain.

11. Exercise: **Metaphony (just the two easy cases)**
Walker 2005\(^7\) discusses Romance dialects/“dialects” in which suffix vowels spread their [+high] feature to the stem.

O Develop an OT account of these two metaphony systems.

Foggiano/Pugliese (Ethnologue classifies as dialect of Italian). Vowel inventory: [i,e,ɛ,a,u,o,ɔ]

- pét-e ‘foot’
- móʃʃ-a ‘soft (fem.)’
- kjén-a ‘full (fem.)’
- gráss-a ‘big (fem.)’

- pít-i ‘feet’
- múʃʃ-u ‘soft (masc.)’
- kjín-u ‘full (masc.)’
- grüss-u ‘big (masc.)’

Veneto (~ 6 million speakers in Italy/Slovenia/Croatia and Brazil) Same vowel inventory.

- véd-o ‘I see’
- kór-o ‘I run’
- prét-e ‘priest’
- bél-o ‘beautiful (masc. sg.)’
- mód-o ‘way’
- gát-o ‘cat’

- te víd-i ‘you see’
- te kúr-i ‘you run’
- prét-i ‘priests’
- bél-i ‘beautiful (masc. pl.)’
- mód-i ‘ways’
- gát-i ‘cats’
