Classes 12: Lexical Phonology part I

To do
• Steriade reading questions due Tuesday, Nov. 10
• cyclicity/lexical phonology assignment due Friday, Nov. 12
• Be working on term paper: meet with me again by the end of next week

Overview: Phonological generalizations vary on many dimensions—productivity and automaticity, conscious accessibility, domain of application (e.g., word vs. phrase)—but they seem to cluster in two areas of the space. We’ll see a proposal for capturing this by dividing the phonology into two main levels, and then elaborate this structure.

1. Observation: two kinds of rules

<table>
<thead>
<tr>
<th>English “trisyllabic shortening”</th>
<th>English tapping (a.k.a. flapping)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s[ei]ne s[æ]nity</td>
<td>corro[d]e corro[r]ing</td>
</tr>
<tr>
<td>ser[i]ne ser[e]nity</td>
<td>i[d]yllic i[r]yll</td>
</tr>
</tbody>
</table>

exceptions?
sensitive to morphology?
applies across word boundaries?
creates sounds not in phoneme inventory?
characteristic of English-speakers’ L2 accents?
obvious to untrained native speaker?

2. Explanation in Lexical Phonology

<table>
<thead>
<tr>
<th>Lexicon</th>
</tr>
</thead>
</table>
| Starting with root, apply morphology and lexical grammar (rules or constraints).
| Result is, in turn, a lexical entry
| [later we’ll add more structure in here] |

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>bracket erasure: removes morpheme boundaries, syntactic information, lexical diacritics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postlexical phonology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply postlexical grammar (rules or constraints)</td>
</tr>
</tbody>
</table>
Exceptions: Lexical rules can see whether the lexical entry has information about being an exception. Postlexical rules can’t, because they just get a string of segments.

Morphological sensitivity: Once a rule goes to the postlexical phonology, all morphological labels are removed (“bracket erasure”)—so flapping can’t see them.

Word boundaries: Because lexical rules apply within the lexicon (i.e., they output a new lexical entry, not a modified phrase or sentence), they can’t “see” other words in the environment—those other words aren’t there yet.

“Structure preservation” (a rule is structure preserving if the segments it outputs are in the phoneme inventory): Because the result of applying a lexical rule has to be a legitimate lexical entry, it can’t contain anything that doesn’t belong to the phoneme inventory.

L2 accent: Although it doesn’t follow directly from the model, the idea is that because postlexical rules are automatic and can’t be turned off according to morphological or lexical information, they also don’t get turned off when speaking another language.

Intuitions: When making judgments about whether sounds are the same or different, speakers look at a lexical entry, not a surface form (that’s the theory here, anyway).

See Goldrick & Rapp 2007 for neurolinguistic evidence of a lexical-postlexical dissociation, and a literature review of other psycholinguistic investigations of the putative distinction.

3. This can also solve some opacity problems, in its OT version

Recall Yokuts counterbleeding. In classic OT, it would be tough to rule out */ili*

\[
\begin{array}{c}
\text{UR} \\
[+\text{long}] \rightarrow [-\text{high}] \\
V \rightarrow [-\text{long}] / _ '\text{arrive}' \)
(Baković 2007, p. 223; from McCarthy 1999)

But, if lowering is a lexical rule, and shortening is postlexical,\(^1\) it works:

<table>
<thead>
<tr>
<th>LEXICAL</th>
<th>*/ili: +1/</th>
<th>*[+long, +hi]</th>
<th>IDENT(long)</th>
<th>IDENT(hi)</th>
<th>*[V, +long]C#</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>?iili</td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(\sigma) b</td>
<td>?iilel</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>?iili</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>?iilel</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POST-LEXICAL</th>
<th>*/iilel/</th>
<th>*[+long, +hi]</th>
<th>*[V, +long]C#</th>
<th>IDENT(long)</th>
<th>IDENT(hi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>?iili</td>
<td>*(!)</td>
<td>*(!)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>?iilel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>?iili</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>(\sigma) h</td>
<td>?iilel</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>

Self-counterfeeding and self-counterbleeding are still not predicted in general!

\(^1\) or at least at a later level than lowering
4. The transformational cycle
Some or all of the lexical component is sometimes called the “cyclic” component. This goes back to an idea found in SPE, with syntactic antecedents:

“We assume as a general principle that the phonological rules first apply to the maximal strings that contain no [syntactic] brackets, and that after all relevant rules have applied, the innermost brackets are erased; the rules then reapply to maximal strings containing no [internal] brackets, and again innermost brackets are erased after this application; and so on, until the maximal domain of phonological processes is reached.” (SPE, p. 15)

5. Examples with the giant SPE English stress rule
Claim: pérmìt (noun) and Kérmit have different stress

- underlying: \([N_v \text{ per}=mit]_N\)
- apply the rule to \([V_v \text{ per}=mit]_V\)
- \([V_v \text{ per}=mit]_V\) (the only place the rule allows for “=” is before the target, so there’s only one vowel here that can be stressed)
- erase its brackets: \(\text{per}=mit\)
- now the maximal internal-bracketless string is \([N_v \text{ per}=mit]_N\)
- apply the rule to \([N_v \text{ per}=mit]_N\)
- \([N_v \text{ pér}=mit]_N\) (if a noun’s final morpheme is stressed, the stress goes somewhere before that morpheme;)

\[
V \rightarrow [1 \text{ stress}] / \left[X_\text{seg} \text{ C}_0 (\text{[−tense C}_0 (\text{[avoc acons } \text{−ant } \text{C}_0 [\beta \text{stress } \text{C}_0]_\text{NSPVA}, \beta = 1)} \right]
\]

...with the convention: when a V is assigned [1stress] by rule, all other nonzero stresses are increased (i.e., demoted) by 1 (p. 64).

\([N_{\text{mono}} [S_{\text{graph}}]]_S\) is similar:
- \([S_{\text{graph}}]_S\) gets stressed on the first round
- \([S_{\text{graph}}]_S\)
- erase brackets: \(\text{gráph}\)
- now we’ve got \([N_{\text{mono}} \text{ gráph }]_N\)
- \(\text{mono}\) gets penultimate stress, since its second syllable is light (and the original stress is demoted): \([N_{\text{mónogràph }}]_N\)

6. Another classic stress example

○ Draw the brackets in for the underlying forms. Can we explain this?
7. Putting cyclicity in the model

Lexicon Add some morphology Apply lexical phonology

 Syntax | bracket erasure |
Postlexical phonology Apply postlexical phonology

8. Example: Chamorro (Chung 1983; Crosswhite 1998)
Austronesian language from Guam and Northern Marianas with 62,500 speakers
Complementary distribution: mid Vs in closed, stressed syllables; high Vs elsewhere

lápis ‘pencil’ lapés + su ‘my pencil’
dæŋis ‘candle’ dæŋés + su ‘my candle’
huɣándu ‘play’ hùqandóηa ‘his playing’
mala’gu? ‘wanting’ màla’góη+mu ‘your wanting’

Secondary-stressed vowels are high in these examples

tíntágu? ‘messenger’ tíntágóη+ta ‘our (incl.) messenger’
mundógu? ‘cow stomach’ mûndungóηa ‘his cow stomach’

○ But not in these (and cf. the unstressed examples). What do you think?
éttigu ‘short’ éttígóηa ‘shorter’
inéŋŋulu? ‘peeping’ inéŋŋulóη+hu ‘my peeping’
éttimu ‘end’ òttimóηa ‘his end’

○ We also need to take care of these:
kwéntus ‘to speak’ kwéntús+i ‘to speak to’
lóókluk ‘to boil’ lóókluk + ña ‘its boiling’
sénsin ‘flesh’ sínés+ña ‘his flesh’

9. Further evidence for interleaving phonology and morphology
Raffelsiefen 1996, 1999: many English affixes are selective about what they’ll attach to

rándom rándomize salvar salvarize foréign foréignize
sísiter sisísiterize shépherd shépherdize rhythm rhythmize

corrúpt *corrúptize ápt *áptize obséne *obsénéize
firm *firmize políte *polítize ténse *tensize (1996, p. 194)

Kiparsky’s interpretation: stress rules have already applied by the time the grammar tries to attach –ize.
next time: multiple levels within lexical component
To save a couple of twigs, I’m not printing out the last page, which is just references; see online version

Mascaró, Joan. 1976. Catalan Phonology and the Phonological Cycle. MIT.