# Class 5: Rule+constraint theories; more big-picture stuff

#### To do

- Study questions for Monday: Prince & Smolensky excerpt
- Assignment on last week's material is due tomorrow to my mailbox in Campbell 3125, which closes at 5 PM.
- Assignment on this week's material will be posted by tonight—due next Friday

**Overview**: We'll try to make the framework for rule/constraint interaction more explicit (and find more problems in so doing).

# 1. Implementing triggering: Sommerstein's (1974) proposal (underlining is mine)

Simple example of triggering, as a reminder:

# $\emptyset \rightarrow i$ (rule) only when required by \*CC (constraint)

- "A P-rule R is <u>positively motivated</u> with respect to a phonotactic constraint C just in case the input to R contains a matrix or matrices violating C AND the set of violations of C found in the output of R is null or is a proper subset of the set of such violations in the input to R." (p. 74)
  - Note that this has to be checked on a case-by-case basis (the "input to R" and the "output of R" differ depending on what form we're working on)
- "A rule [...] positively motivated by phonotactic constraint C does not apply unless its application will <u>remove or alleviate a violation</u> or violations of C." (p. 75)
  - Later modified: "a rule applies if its application will remove or alleviate a violation of AT LEAST ONE of its motivating constraints" (p. 87)
- What is "alleviate"?
  - Imagine an underlying form /abstro/
  - $\operatorname{Can} \emptyset \to \operatorname{i} \operatorname{help} \operatorname{with} *\operatorname{CC}?$
- Sommerstein's definition (p. 76):
  - "The DEGREE OF VIOLATION V<sub>M,C</sub> to which a matrix M violates a phonotactic constraint C is equal to the **cost** of the minimal structural change necessary to turn M into a matrix satisfying C.
  - "The application to a matrix M of operation A ALLEVIATES a violation in M of phonotactic constraint C just in case the output M' of such application is such that  $0 < V_{M',C} < V_{M,C}$ ."

### 2. Latin example (Sommerstein p. 87; slightly re-formatted)

| genitive sg. | nominative sg. | UR     |         |
|--------------|----------------|--------|---------|
| lakt-is      | lak            | /lakt/ | 'milk'  |
| kord-is      | kor            | /kord/ | 'heart' |

- deletion  $\begin{bmatrix} -\text{continuant} \\ <-\text{voice} \end{bmatrix} \rightarrow \emptyset / \begin{bmatrix} +\text{consonantal} \\ <-\text{sonorant} \\ -\text{continuant} \end{bmatrix} \#^1$ 
  - positively motivated by constraints that are surface-true in the language:<sup>2</sup>
- *no final voiced in cluster* \* [+consonantal] [+consonantal] +voice ]# (p. 82)
- final obst. restrictions if  $\begin{bmatrix} -\text{sonorant} \\ <-\text{continuant} \end{bmatrix}$   $\begin{bmatrix} -\text{sonorant} \end{bmatrix}$  # then 2 is  $\begin{bmatrix} +\text{coronal} \\ <+\text{continuant} \end{bmatrix}$  (p. 82) 1 2
  - i.e., [st], [ps], [ks] are OK
- With those constraints, try to simplify the deletion rule

• A derivation might look like this:

*violates* no final voiced in cluster? *violates* final obstruent cluster restrictions? *if so, tentatively apply* deletion

is the violation alleviated/eliminated?

*if so, accept the change (else don't)* 



<sup>&</sup>lt;sup>1</sup> Kaeli Ward pointed out that this rule schema doesn't exactly do what we want: if a voiceless word-final C fails to be preceded by a stop, it can still delete under the shorter version, which deletes any word-final stop that's after another consonant.

<sup>&</sup>lt;sup>2</sup> Actually, Sommerstein refers to a different constraint (16 on p. 79), but that seems to be the wrong one for /lakt/.

### **3.** Multiple available repairs

- Imagine a Roman, Caecilius, who for some reason ends up with this rule too:
  [] → [-voice]
- How does our derivation change (assuming Caecilius sounds the same as other Romans)? Do we need to add more information to his grammar?

• Imagine Caecilius's spouse, Metella, who for some reason has this rule (plus the normal Latin rule):

 $[] \rightarrow [+continuant]$ 

• How does our derivation change (again, assuming Metella sounds like everyone else)? Do we need to add more information to her grammar?

### 4. Partial violation, violation alleviation

- As we saw, for Sommerstein a constraint doesn't have to be surface-true to be part of the grammar
  - You could have a constraint whose violations are only ever alleviated, not eliminated
- Can we invent another case or two where a violation could be alleviated without being eliminated? (it's hard to think of non-silly cases; Sommerstein himself introduces this idea just to keep the possibility open, not because he has any data that require it.)

Simple example of blocking, as a reminder:

 $V \rightarrow \emptyset$  (rule) unless prohibited by \*CC (constraint)

- A P-rule R is negatively motivated with respect to a phonotactic constraint C just in case the tentative output of R contains a matrix or matrices violating C AND the set of violations of C found in the input to R is null or is a proper subset of the set of such violations in the tentative output of R.
- A rule that is negatively motivated by phonotactic constraint C does not apply if its ٠ application will create or worsen a violation or violations of C.
- The application to a matrix M of operation A worsens a violation in M of phonotactic ٠ constraint C just in case the output M' of such application is such that  $V_{M,C} > V_{M,C}$

# 6. What a derivation might look like

- $V \rightarrow \emptyset / C C$ •
- syncope rule  $V \rightarrow \emptyset / C_{C}$ cluster constraint  $* \begin{cases} \# \\ C \end{cases} C \begin{cases} \# \\ C \end{cases}$

|                                                       | /abito/        | /ildoku/           | /uda/       | /brodu/ |
|-------------------------------------------------------|----------------|--------------------|-------------|---------|
| tentatively apply syncope                             | (abto)         | (ildku)            | NA          |         |
| does this create/worsen violation of cluster constr.? | no             | yes                | NA          |         |
| if not, accept the change (otherwise reject)          | abto<br>[abto] | ildoku<br>[ildoku] | NA<br>[uda] |         |

# 7. Blocking vs. triggering: Myers's (1991) persistent rules

Zulu: prenasalized affricates, but no prenasalized fricatives. We might propose a constraint:<sup>3</sup> ٠

\* +continuant +nasal

Here is a prefix that creates prenasalized consonants (p. 329): ٠

| singular                             | plural                               |            |
|--------------------------------------|--------------------------------------|------------|
| uː-ba <sup>m</sup> bo                | izi- <sup>m</sup> ba <sup>m</sup> bo | ʻrib'      |
| uː-pʰapʰe                            | izi- <sup>m</sup> pap <sup>h</sup> e | 'feather'  |
| ama-t <sup>h</sup> at <sup>h</sup> u | ezi- <sup>n</sup> tat <sup>h</sup> u | 'three'    |
| uː-kʰuni                             | izi- <sup>ŋ</sup> kuni               | 'firewood' |

<sup>&</sup>lt;sup>3</sup> Myers actually uses autosegmental representations, which we'll learn about in the final third of the course.

- Assume the underlying form of the prefix is /izin/. Formulate a prenasalization rule.
- Here's what happens when the prefix attaches to a fricative-initial stem: ٠

| singular  | plural                    |                      |
|-----------|---------------------------|----------------------|
| eli-∫a    | e- <sup>n</sup> t∫a       | 'new'                |
| uː-fudu   | izi- <sup>m</sup> pfudu   | 'tortoise'           |
| uː-sizi   | izi- <sup>n</sup> tsizi   | 'sorrow'             |
| u:-zwa    | izi- <sup>n</sup> dzwa    | 'abyss'              |
| uː-zime   | izi- <sup>n</sup> dzime   | 'walking staff'      |
| uː-Էubu   | izi- <sup>n</sup> dtubu   | 'groundnut'          |
| uː-ʃikisi | izi- <sup>n</sup> t∫ikisi | 'quarrelsome person' |

What would happen if prenasalization were subject to blocking by the constraint above? 0

Myers proposes instead a "persistent rule"—it tries to apply at every point in the derivation, ٠ so that any time its structural description is created, it immediately gets changed.

| +nasal      |               | [+delayed release] |  |
|-------------|---------------|--------------------|--|
| +continuant | $\rightarrow$ |                    |  |

i.e., nasal fricative  $\rightarrow$  affricate

• Let's spell out what the derivation would look like.

• Can we recast this as a simpler rule that is triggered by the constraint?

5

### 8. Summary

- We've tried to make a rules+constraints theory work, really spelling out the details.
- You should now feel uncomfortable about ignoring conspiracies, yet also uncomfortable about exactly how constraints are supposed to work.
  - Now you know how many phonologists felt through the 1970s and 1980s.

### The "conceptual crisis" ((Prince & Smolensky 2004), p. 1)

- Since Kisseberth 1970, constraints were taking on a bigger and bigger role. But as we saw there were open questions...
  - Why aren't constraints always obeyed?
    - Korean avoids VV and CC through allomorph selection (narrow-ish transcription):

| plain              | nominative            |          |
|--------------------|-----------------------|----------|
| ton                | ton-i                 | 'money'  |
| saram              | saram-i               | 'person' |
| koŋ                | koŋ-i                 | 'ball'   |
| namu               | namu-ga               | 'tree'   |
| p <sup>h</sup> ari | p <sup>h</sup> ari-ga | 'fly'    |
| k <sup>h</sup> o   | k <sup>h</sup> o-ga   | 'nose'   |
| 6*i                | €*i-ga                | 'seed'   |

• And yet, CC and VV occur in the language

| plain            | locative               |
|------------------|------------------------|
| namu             | namu-e                 |
| k <sup>h</sup> o | kho-e                  |
|                  | plural                 |
| saram            | saram-d <del>i</del> l |
| koŋ              | koŋ-dɨl                |

• What happens if there's more than one way to satisfy a constraint? (discussed last time)

grammar: \*CC,  $C \rightarrow \emptyset$ ,  $\emptyset \rightarrow i$ • What happens to /absko/??

- Maybe we need to prioritize the rules that could be triggered (e.g., through ordering).
- Can different constraints prioritize rules differently?
- If the grammar is actually {\*CC, \*C#,  $C \rightarrow \emptyset$ ,  $\emptyset \rightarrow i$ }, what happens to /ubt/??

- Relatedly, what happens when constraints conflict?
  - What if one constraint wants to trigger a rule, but another wants to block it?

grammar:  $\{*VV, *?\begin{bmatrix} V\\ -stress \end{bmatrix}, \emptyset \rightarrow ?\}$ (based on Dutch; data from Booij 1995 via Smith 2005)

- What happens to /aórta/?? /xáos/??
- Must the grammar prioritize constraints?
- Should a rule be allowed to look ahead in the derivation to see if applying alleviates a constraint violation? (how far?) grammar: {\*C#, C → [-voice], [-voice] → Ø}
  - What happens to /tab/??
  - Or does the alleviation have to be immediate?
- Relatedly, is a rule allowed to make things *worse* if a later rule will make them better? grammar: {\*CCC,  $\emptyset \rightarrow p / m_s$ ,  $\begin{array}{ccc} C & C & C \\ 1 & 2 & 3 & 4 \end{array} \rightarrow 3$ }
  - What happens to /almso/??

• Can a constraint prohibit a certain type of <u>change</u>, rather than a certain structure?

# **Coming up:**

- Your next reading is excerpts from Prince & Smolensky's 1993 manuscript introducing Optimality Theory (OT), an all-constraint theory.
- Next week we'll cover the basics of OT.
- Then the middle third of the course will explore the differing predictions that SPE, OT, and their variants make about phonologies.

#### References

Booij, Geert. 1995. The phonology of Dutch. Oxford: Clarendon Press.

Myers, Scott. 1991. Persistent rules. Linguistic Inquiry 22. 315-344.

Prince, Alan & Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar*. Malden, Mass., and Oxford, UK: Blackwell.

Smith, Jennifer L. 2005. *Phonological Augmentation in Prominent Positions*. 1 edition. New York: Routledge. Sommerstein, Alan. 1974. On phonotactically motivated rules. *Journal of Linguistics* 10. 71–94.