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Class 6: Optimality Theory, part I 

To do 

• Work on Korean rules+constraints homework (due Friday) 

• Take a look on the course webpage at the project instructions and examples, and start being 

open to a topic coming to you. We’ll get serious about looking for topics next week. 

0. A couple of things to discuss about the Palauan homework 

• underlying schwas and stress 

• C0V0 notation 

• CC-initial stems 

• the data at the end 

1. Recall the “conceptual crisis” (Prince & Smolensky 2004, p. 1) 

• On the one hand, we want constraints in our theory 

• On the other hand, we can’t decide exactly how they’re supposed to work.  

2. Prince & Smolensky’s solution: Optimality Theory 

rule-based grammar with constraints OT grammar 

start with UR/input (from mental lexicon, maybe after morphology) 

apply rules in sequence—intermediate 

representation is known at all times 

apply all possible rules, producing a (large!) set of 

candidate outputs 

constraints may block or trigger rules constraints pick the best candidate 

look-ahead: nonexistent or sketchy candidate outputs are (potential) surface forms => 

full look-ahead to end of each possible derivation 

interaction of constraints: nonexistent or 

sketchy 

constraints interact through strict domination 

similarity to UR results from not applying too 

many rules, not having too many constraints 

similarity to UR is enforced by faithfulness 

constraints 

end with SR/output (send it to the phonetic system) 

3. Gen(): function that creates set of candidate outputs from input 

• One way to think of it:1 apply all possible rules to the input, any number of times (deletion, 

insertion, feature changing, maybe changing order). 

 

Gen(/ab/) = {[ab], [a], [b], [ba], [], [ta], [at], [ae], …}  
   /ab/ 

 

ab a  b  ba tab  atb abt eab aeb abe  ib ob  ap  am… 
 

Ø   ta   at ae  ea  i  o …  

                                                 
1 This is what P&S call ‘anharmonic serialism,’ but with a set of rules broad enough to get “all possible variants”.  
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o Why is the resulting set of candidates infinite (assuming a finite alphabet of symbols)? 

 

 

 

 

4. Constraints 

• In standard OT, a markedness constraint can be a function from a candidate output to a 

natural number (the number of violations). A lower number means greater harmony 

(goodness): 

 NOCODA([bak]) = 1   NOCODA([tik.pad]) = 2 

 

• Similarly, a faithfulness constraint can be a function from input-output pair to natural 

number: 

 DON’TDELETE(/bak/, [ba]) = 1 DON’TDELETE(/bak/, [bak]) = 0 

 

• More generally, a constraint Ci is a function that imposes a strict partial order ≻i (“is more 

harmonic than with respect to Ci”) on a set of candidates... 

� Transitive: if a ≻i b and b ≻i c, then a ≻i c. 

� Irreflexive: a ⊁i a.  

� Asymmetric: if a ≻i b, then b ⊁i a         

o Show that asymmetry follows from the other two properties.  

 

 

 

 

 

o Show that irreflexivity follows from asymmetry. 

 

 

 

 

 

• ...with these additional properties: 

� “Stratified”:2 if a ⊁i b and b ⊁i a, then for any x≻i a, x ≻i b too; and for any y such 

that a≻iy, b ≻i y too. (In other words, if a ⊁ b and b ⊁a, then a and b are of 

equivalent harmony.) 

(In Wilson 2001, the stratification requirement is relaxed.) 

 

                                                 
2 I don’t know if there’s a real math term for this. Samek-Lodovici & Prince 1999 use this term, following Tesar 
1995, who uses it to describe partial orderings of constraints rather than of candidates. 
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� Bounded from above: There exists some a such that there is no x≻ia. (I.e., even in an 

infinite set of candidates, one or more are the most harmonic; there’s not necessarily a 

set of least-harmonic candidate, though.) 

 

NOCODA:  ta.da  bo ba.du.pi  

 

   tak.do  i.tek o.tek.lao 

 

   tak.kat  bad.ku.pit sik.lep.bu 

            … 

o Let’s verify that assigning a (non-unique) natural number (0, 1, 2, …) to each candidate 

meets all these ordering requirements. 

 

 

 

 

 

 

 

o Why are there no least-harmonic candidates for NOCODA? 

 

 

 

 

 

 

 

o Can you recall a case from P&S where numbers of violations weren’t used? 
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5. Eval() 

• Eval() is a function 
� arguments of the function: input, 3  set of output candidates, ordered list (Con) of 

constraints 
� output of function: subset of the candidates that is optimal 

 

• Typically we use it this way: 
� Eval(input, Gen(/input/),Con) = {[output]} 

• But Eval() also can work on a smaller set of candidates:  
� Eval(/bak/, {[bak],[ba]}, <NOCODA, DON’TDELETE>) = {[ba]} 

• And, the output set can have a tie: 
� Eval(/bak/, {[bak],[ba], [bo]}, <NOCODA, DON’TDELETE>) = {[ba], [bo]} 

  

• Eval() takes the orderings imposed by the various constraints and assembles them into one 

giant ordering (with the same properties: transitive, irreflexive, asymmetric, stratified, 

bounded above).  
 

• We can think of many ways this could be done…strict ranking is the mechanism used in 

standard OT for adjudicating harmony disagreements among constraints. 

                                                 
3 In the original P&S manuscript, the output candidate always contains all the information about the input, so we 
don’t need to include the input as an argument to Eval(). 
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6. Alphabetization as strict ranking 

 axiom  axiate  tab  axicle  caba  banana  azalea  axolotl  zabaglione baa 

 

• Constraints impose partly conflicting orderings on words (I know the last column isn’t fully visible—wouldn’t fit): 

HAVELOW1STLETTER HAVELOW2NDLTTR LO3RDLTR HAVELO4THLETTER LO5LTR LO6THLTTR HAVELOW7THLETTER HAVELOW

axiom axiate axicle azalea axolotl 

 

banana baa 

 

caba 

 

tab 

 

zabaglione 

tab caba banana zabaglione baa 

 

axiom axiate axicle axolotl 

 

azalea 

baa azalea 

 

tab caba zabaglione 

 

axiom axiate axicle 

 

banana 

 

axolotl 

tab baa 

 

axiate caba banana zabaglione 

 

axicle 

 

azalea axolotl 

 

axiom 

tab baa caba 

azalea 

zabaglione 

axicle 

axiom 

banana 

axolotl 

axiate 

tab baa caba axiom 

 

banana azalea 

 

axiate axicle 

 

zabaglione 

 

axolotl 

 

 

axiom axiate tab axicle caba banana azalea  baa  

 

zabaglione 

 

axolotl 

 

axiom axiate tab axicle ca

zab

 

We reconcile the orderings by adding only pairwise orderings that don’t contradict what we have so far: 

axiom axiate axicle azalea axolotl 

 

banana baa 

 

caba 

 

tab 

 

zabaglione 

axiom axiate axicle axolotl 

azalea  

baa 

banana  

caba 

tab 

zabaglione 

axiom axiate axicle  

axolotl 

azalea  

baa 

banana  

caba 

tab 

zabaglione 

axiate  

axicle  

axiom  

axolotl 

azalea  

baa 

banana  

caba 

tab 

zabaglione 

no further 

changes 

possible 
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7. How about finding just the first word? 

� find the members that have the earliest first letter—and discard the rest 

� from the new, smaller set, pick the members that have the earliest second letter, etc.  

 

• Once a word is ruled out, it can’t redeem itself by, e.g., having lots of as later on. 

 

o Can we imagine some other ways that constraints could conceivably interact? 

 

 

 

 

 

8. Eval() works the same way 

• To find just the winners, if you have n constraints… 

� Find the candidates that tie for being ‘best’ on the top-ranked constraint C1; discard the rest. 

� Of the remaining candidates, find those the next constraint, C2, deems best; discard the rest. 

� Repeat for C3,…,Cn. 

� Whatever candidates are still left at the end are tied for being the winner (if you have enough 

constraints, there is normally just one winner). 

 

Q: How can that be computable? Wouldn’t you have to go through an infinite list of candidates 

just to do the first step? 

 

A: For that reason, most computational implementations of OT (Albro 2005, Eisner 1997, 

Ellison 1994, Riggle 2004) represent the candidate set as a regular expression, which is a finite 

way to represent a certain class of infinite sets. For example, ab*a is the set {aa, aba, abba, 

abbba, abbbba, …}. These expressions can then be manipulated algorithmically, either in a 

fairly literal translation of the above (as in Eisner 1997) or by other means. 

 

� More declaratively, a candidate a is optimal iff, for any b and Cj such that b ≻j a, there exists 

some Ci such that i < j (i.e., Ci is higher ranked than Cj) and a ≻i b. 

� In words, for a to be optimal, any candidate that does better than a on some constraint must do 

worse than a on another, higher-ranked constraint. 

9. Two types of constraint 

• In pre-OT approaches to constraints, constraints were all markedness constraints: they penalized 

certain surface structures, such as CCC clusters.  
 

• So, on first hearing about OT, many people’s second reaction (the first was worrying about 

infinity) was to wonder why, if it’s all about constraints, every word isn’t maximally unmarked. 
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o In rule theories, what prevents every word from coming out [baba] (or whatever the least marked 
word is)? 

 
 
 
o How do P&S prevent every word from coming out [baba]? 
 
 
 

 

• Markedness constraints look at the surface representation. 

� The simplest ones can be defined by the structural description that they ban: *[+voice]#,  *C]σ. 

� Typical markedness constraints reflect articulatory ease, or perceptual clarity, rhythmic 

organization, or other “natural” drives.4 
 

� You can (and should!) give a constraint a helpful mnemonic name, like NOCODA for *C]σ, as 

long as you precisely define the constraint somewhere.  

� A good constraint definition should make it clear not just what is banned, but how the number 

of violations is assessed. 
 

o What are some different ways that NOCODA might count violations? 
 
 
 
 
 

• Faithfulness constraints look at the relationship between the underlying and surface representations 

(the standard ones require similarity but we can imagine other possibilities).  
  

� P&S’s PARSE (≈ don’t delete) and FILL (≈ don’t insert), were quickly superseded by McCarthy 

& Prince’s correspondence constraints (the theory behind which we’ll see next time), so let’s 

start using the newer names now: 
 

MAX-X: don’t delete X (e.g., MAX-C, MAX-V) 
DEP-X: don’t insert X (e.g., DEP-C, DEP-V) 
IDENT-F: don’t change a segment’s value for the feature F 
 

� People often have a hard time at first with IDENT-F.  

� The most common confusion is thinking it means “don’t delete a segment that is +F”.  

� The next most common mistake is thinking it means “don’t alter a segment that is +F (e.g., 

by changing its values for some other feature G)”. 

                                                 
4 Or maybe they are just arbitrary and learned by speakers in response to whatever cards history has dealt them. Or, maybe 

both natural and unnatural constraints are possible, but learners treat them differently. See Moreton 2008. 



  

Ling 200A, Phonological Theory I, Fall 2016, Zuraw  8 

10. Exposition: the tableau 

• Someday, we’ll all check our analyses with software that evaluates the infinite candidate set.5  

� In the meantime, we illustrate an analysis with a tableau6 showing a finite subset of candidates 

that have been chosen to demonstrate aspects of the constraint ranking.  

� (The danger here is obvious—what if you didn’t think of some important candidate?) 
 

• This tableau shows a ranking argument:  

� NOCODA prefers a (the winner), whereas DEP-V prefers b.  

� If that’s the only difference between the candidates—no other constraint not known to be 

ranked below DEP-V prefers a over b—then NOCODA must outrank (>>) DEP-V. 
 

 /at+ka/ NOCODA DEP-V 

� a [a.tə.ka]  * 

b [at.ka] *!  

 
Parts of the tableau: 

• input  

• output candidates (not all structure shown) 

• constraints (highest-ranked on left) 

• asterisks 

• exclamation marks 

• shading       

• pointing finger (you can use an arrow) 

11. How do I know which candidates and constraints to include in my tableaux? 

This procedure works reasonably well: 

• Start with the winning candidate and the fully faithful candidate. 

• If the winning candidate ≠ the fully faithful candidate… 
� Add the markedness constraint(s) that rule out the fully faithful candidate. 
� Add the faithfulness constraints that the winning candidate violates. 
� Think of other ways to satisfy the markedness constraints that rule out the fully faithful 

candidate. Add those candidates, and the faithfulness and markedness constraints that rule them 
out. How far to take this step is a matter of judgment . 

• If the winning candidate = the fully faithful candidate, then you are probably including this 
example only to show how faithfulness prevents satisfaction of a markedness constraint that, in 
other cases, causes deviation from the underlying form.  
� Add that markedness constraint. 
� Add one or more candidates that satisfy that markedness constraint. 
� Add the faithfulness constraints that rule out those candidates. 

 

                                                 
5 See Jason Riggle’s page for some software along these lines: http://hum.uchicago.edu/~jriggle/riggleDiss.html 
6 French for ‘table’. The singular tableau is pronounced [tabló] in French; a typical English adaptation is [tʰæblóʊ]. The 

plural tableaux is also pronounced [tabló] in French, [tʰæblóʊ] or [tʰæblóʊz] in English. 

These three don’t add any new 
information, but are there for the 
convenience of the reader. 
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o Let’s try it for /atka/ → [at�ka]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
o One of the candidates below is unnecessary in arguing for the constraint ranking. Why? plickers: A, 

B, or C 
 

 /at+ka/ *CC DEP-V 

� a [atəka]  * 

b [atka] *!  

c [atəkəa]  **! 

 

• A candidate is harmonically bounded if it could not win under any constraint ranking. 
 
o Here’s a subtler case of harmonic bounding—explain: 
 

 /at+kap+so/ *CC DEP-V 

a atkapso *!*  

b atkapəso *! * 

�c atəkapəso  ** 

 

12. Comparative tableaux 

• An innovation of Alan Prince. They convey the same information, but in a different form 
 

 /at+ka/ → [atəka] *CC DEP-V 

 a [atəka] vs. [atka] W L 

b [atəka] vs. [atəkəa]  W 

 

• Comparative tableaux are nice because you can easily see if your ranking is correct: the first non-
blank cell in each row must say W.  

 

Each line compares the winner to 
one losing candidate, and shows 
whether each constraint prefers 

the winner (W) or the loser (L) 
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o We also see easily why [atəkəa] is irrelevant to the ranking—explain. 

 
 
 
 
 
 
 
o Draw a comparative tableau for /at+kap+so/ too. Then try to make one where b wins. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Next time: Practice with OT; correspondence theory; targets vs. processes 
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