# Class 7: Optimality Theory, part II

# To do

- Korean HW (last week's material) due tomorrow.
- Reading questions on K&K ch. 8 excerpt, Anderson 1984 ch. 9, Kaplan 2008 excerpt due Monday
- **Bibliographic exercise** due any time next week
- I'll post an assignment on this week's material; due *next* Friday.

**Overview**: Last time we talked in detail about how the theory works. This time, the focus will be on practicing using it. Plus, target vs. process; correspondence theory.

## 1. Warm-ups

• Which candidate wins? *plickers* 

|   | CONSTR1 | CONSTR2 | CONSTR3 | CONSTR4 |
|---|---------|---------|---------|---------|
| а | *       | *       |         |         |
| b | *       |         | *       |         |
| С | *       |         |         | *       |

|   | CONSTR1 | CONSTR2 | CONSTR3 |
|---|---------|---------|---------|
| a | *       | **      |         |
| b |         | **      |         |
| С |         | ***     |         |

- $\circ$  Try the tableau recipe (repeated below) for /bid/  $\rightarrow$  [bit]
- Start with the <u>winning candidate</u> and the <u>fully faithful candidate</u>.
  - If the winning candidate  $\neq$  the fully faithful candidate...
    - Add <u>the markedness constraint(s)</u> that rule out the fully faithful candidate.
    - Add the <u>faithfulness constraints</u> that the winning candidate violates.
    - Think of <u>other ways to satisfy the markedness constraints</u> that rule out the fully faithful candidate. Add those candidates, and the faithfulness and markedness constraints that rule them out. How far to take this step is a matter of judgment.
- If the winning candidate = the fully faithful candidate...
  - ...then you are probably including this example only to show how faithfulness prevents satisfaction of a markedness constraint that.
    - Add that markedness constraint.
    - Add one or more candidates that satisfy that markedness constraint.
    - Add the faithfulness constraints that rule out those candidates.

#### 2. Comparative tableaux

• An innovation of Alan Prince. They convey the same information, but in a different form

| /at+ka/ → [atəka]      | *CC | Dep-V |
|------------------------|-----|-------|
| a [atəka] vs. [atka]   | W   | L     |
| b [atəka] vs. [atəkəa] |     | W     |

Each line compares the winner to one losing candidate, and shows whether each constraint prefers the winner (W) or the loser (L)

- Comparative tableaux are nice because you can easily see if your ranking is correct: the first non-blank cell in each row must say *W*.
- We also see easily why [atəkəa] is irrelevant to the ranking—explain.

## 3. Exercise: Metaphony (just the two easy cases—we might do hard ones later)

- Walker 2005 discusses Romance dialects/"dialects" in which suffix vowels spread their [+high] feature to the stem's stressed vowel.
- Develop OT accounts of these two metaphony systems (they can have different rankings, since they're different languages).

Foggiano/Pugliese (Ethnologue classifies as dialect of Italian). Vowel inventory: [ i,e,ɛ,a,u,o,ɔ]

| pét-e   | 'foot'        | pít-i   | 'feet'         |
|---------|---------------|---------|----------------|
| mó∬-a   | 'soft (fem.)' | mú∬-u   | 'soft (masc.)' |
| kjén-a  | 'full (fem.)' | kjín-u  | 'full (masc.)' |
| gróss-a | 'big (fem.)'  | grúss-u | 'big (masc.)'  |

Veneto (~ 6 million speakers in Italy/Slovenia/Croatia and Brazil) Same vowel inventory.

| véd-o  | 'I see'                 | te víd-i | 'you see'               |
|--------|-------------------------|----------|-------------------------|
| kór-o  | 'I run'                 | te kúr-i | 'you run'               |
| prét-e | 'priest'                | prét-i   | 'priests'               |
| bél-o  | 'beautiful (masc. sg.)' | bél-i    | 'beautiful (masc. pl.)' |
| mód-o  | 'way'                   | mód-i    | 'ways'                  |
| gát-o  | 'cat'                   | gát-i    | 'cats'                  |

• When you're done, we'll talk about triggering and blocking.

this page intentionally left blank for you to work on your metaphony analyses

## 4. Exercise: our bleeding example from English

• Translate our previous rule analysis into OT

(reminder: /-z/,  $\emptyset \rightarrow i$  / [+strid]\_[+strid], [-son]  $\rightarrow$  [-voice] / [-voice] \_)

| p <sup>h</sup> i-z  | 'peas'  | dag-z   | 'dogs'    | mīt-s               | 'mitts'  | glæs- <del>i</del> z   | 'glasses'  |
|---------------------|---------|---------|-----------|---------------------|----------|------------------------|------------|
| t <sup>h</sup> ou-z | 'toes'  | læb-z   | 'labs'    | blouk-s             | 'blokes' | fız- <del>i</del> z    | 'fizzes'   |
| dal-z               | 'dolls' | salıd-z | 'solids'  | k <sup>h</sup> af-s | 'coughs' | b.ænt∫- <del>i</del> z | 'branches' |
| p <sup>h</sup> æn-z | 'pans'  | weiv-z  | 'waves'   |                     |          | bæd3-iz                | 'badges'   |
|                     |         | saið-z  | 'scythes' |                     |          | wı∫- <del>i</del> z    | 'wishes'   |

• Could the counterbleeding candidate \*[glæs-is] win under any ranking of these constraints?

## 5. Very short feeding example

Catalan (Indo-European lang. from Spain, France, Andorra w/ 11.5 million speakers [Lewis 2009]; Mascaró 1976)

| $/\text{son}/ \rightarrow [\text{son}]$ | 'they are'     | $/bint/ \rightarrow [bin]^1$ | 'twenty'        |
|-----------------------------------------|----------------|------------------------------|-----------------|
| /pok-s/                                 | 'few'          | /pan-s/                      | 'breads'        |
| [som poks]                              | 'they are few' | [bim pans]                   | 'twenty breads' |

- $\circ$  First, develop an analysis with rules (no cheating by asking Gemma  $\odot$ ).
- Give an OT analysis.
- Could the counterfeeding candidate \*[bin pans] win under any ranking of these constraints?

<sup>&</sup>lt;sup>1</sup> How do we know the underlying form has a final /t/? Because it shows up when it can be syllabified as an onset, as in /bint+i+un/ $\rightarrow$  bin.ti.u 'twenty-one'.

#### 6. If we have time: counterfeeding that we can capture

Another Romance metaphony case from Walker 2005

Lena (dialect of Asturian, a language from Spain with about 100,000 speakers)

| fí-a   | 'daughter'     | fí-u   | 'son'           |
|--------|----------------|--------|-----------------|
| nén-a  | 'child (fem.)' | nín-u  | 'child (masc.)' |
| tsób-a | 'wolf (fem.)'  | tsúb-u | 'wolf (masc.)'  |
| gát-a  | 'cat (fem.)'   | gét-u  | 'cat (masc.)'   |

- Develop a rule account
- What's the problem with translating this into OT (hint: [gét-u] is the problematic word)?
- Any ideas for playing with our faithfulness constraints to get this?

#### 7. Opacity [more on this in Week 5!]

- We now have our first empirical difference between SPE and OT: SPE straightforwardly predicts counterfeeding and counterbleeding, and OT doesn't.
  - any purported case of counterfeeding or counterbleeding is a good term-paper topic
- In Week 6 we'll see a version of OT that does better with opacity (Kiparsky's Stratal OT).

#### 8. We need a better theory of faithfulness

• <u>Trick question</u>: fill in the constraint violations:

|   | /tui/ | IDENT(round) | IDENT(back) |
|---|-------|--------------|-------------|
| a | [ty]  |              |             |

- In Prince & Smolensky 1993, an output candidate *contains* the input form—you can see what's been inserted or deleted.
  - This is retrospectively known as the containment approach.
  - Changing features gets tricky, and metathesis gets very hard.

### 9. The correspondence relation

McCarthy & Prince 1995 proposed replacing containment with correspondence.

- Every segment in the input bears a unique index (maybe every feature, mora, syllable...).
- Units of the output also bear indices (instead of the output containing input material).
- An input segment and an output segment are *in correspondence* iff they bear identical indices.

|   | /t1u2i3/   | IDENT(round) | IDENT(back) |
|---|------------|--------------|-------------|
| a | $[t_1y_2]$ |              | *           |
| b | $[t_1y_3]$ | *            |             |

• These indices define a relation between input segments and output segments:



- $/p_{1}a_{2}t_{3}o_{4}k_{5}/ \rightarrow [p_{1}a_{2}t_{3}o_{4}k_{5}]$  means Corr( $/p_{1}/, [p_{1}]$ ), Corr( $/a_{2}/, [a_{2}]$ ), etc., where Corr(x, y) means "x corresponds to y".
- These are also output candidates for that input:  $[p_{5a_1}t_{402}k_3]$ ,  $[p_{1a_1}t_{101}k_1]$ ,  $[p_{6a_7}t_{809}k_{10}]$ .
  - Try drawing them in the connection-lines format

But they're so outrageously bad we wouldn't normally bother including them in a tableau.

- When you see a candidate in a tableau without indices, you can assume that the correspondence relation is the obvious one.
- Sometimes it's not clear what the obvious correspondence relation is; in that case, spell it out with subscripts.

## **10.** Constraints on the relation

- Faithfulness constraints (sometimes also called *correspondence constraints*) are constraints that care about various aspects of the correspondence relation.
- Here are the most important ones proposed by McCarthy & Prince:

| MAX-C    | (don't delete) | Every consonant in the input must have a correspondent in the output.             |
|----------|----------------|-----------------------------------------------------------------------------------|
|          |                | Every vowel in the input must have a correspondent in the output.                 |
| MAX-V    |                | ( <i>maximize</i> the preservation of material in the input)                      |
| DEP-C    | (don't insert) | Every consonant in the output must have a correspondent in the input.             |
|          |                | Every vowel in the output must have a correspondent in the input.                 |
| DEP-V    |                | (every segment in the output should <u>dep</u> end on a segment in the input.)    |
| IDENT(F) | (don't change  | If two segments are in correspondence, they must bear identical values for        |
|          | feature        | feature [F].                                                                      |
|          | values)        |                                                                                   |
|          |                | This constraint doesn't care about <i>whether</i> segments have correspondents or |
|          |                | not; only about making sure values for that specific feature match if two         |
|          |                | segments do correspond.                                                           |

• There are also constraints against merging, splitting, and reordering segments. See McCarthy & Prince 1995 for a full list.

### Next time:

- What happens when there are multiple places within a form where a rule could apply or a constraint is violated?
- What if applying a rule (satisfying a constraint) creates a new environment for the same rule to apply (creates a new violation of the same constraint)?
- We'll look at how this should play out in SPE (not always clear) and OT (clear, but are the typological predictions correct?)

#### References

Hayes, Bruce & Tanya Stivers. 1996. The phonetics of post-nasal voicing.

Lewis, M. Paul (ed.). 2009. Ethnologue: languages of the world. 16th ed. Dallas, TX: SIL International.

Mascaró, Joan. 1976. Catalan Phonology and the Phonological Cycle.. MIT.

- McCarthy, John J & Alan Prince. 1995. Faithfulness and Reduplicative Identity.. In Jill Beckman, Laura Walsh Dickey, & Suzanne Urbanczyk (eds.), *University of Massachusetts Occasional Papers in Linguistics 18*, 249–384. Amherst, Mass.: GLSA Publications.
- Pater, Joe. 2001. Austronesian nasal substitution revisited: What's wrong with \*NC (and what's not).. In Linda Lombardi (ed.), *Segmental Phonology in Optimality Theory: Constraints and Representations*, 159–182. Cambridge: Cambridge University Press.

Pater, Joe. 2003. Balantak Metathesis and Theories of Possible Repair in Optimality Theory.

Prince, Alan & Paul Smolensky. 1993. Optimality Theory.. Blackwell.

Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917–989.