To do

• Friday: Hakha Lai **assignment** is due (after that, you have a week off from problem sets) *Project*

- Meet with me to discuss term paper by end of this week
- Work on checking that your paper hasn't **already been written**
- Order any books you might want from Interlibrary Loan, or SRLF; or recall if checked out

A. Report from AMP—traits seen in talks this weekend $(n = 19)^1$

- 84% of talks used OT
- though only 63% had actual tableaux
- 58% presented variation data
- 32% presented a grammar model of variation
- 37% included a human experiment
- 37% used corpus data
- 21% used acoustic analysis

B. Tips on presenting an OT analysis

Minor points I want to touch on

- Definition shortcut for off-the-shelf faithfulness constraints
- Paragraph > Keep with next

Important point

- The brick principle
 - interleaving
 - just-in-time presentation

C. Chilean Spanish discussion

Points I want to touch on

- Shading review
- Constraint atomicity

Overview: Should processes be able to look forward into the derivation? How far? We'll contrast SPE, OT, and a major variant of classic OT, OT with harmonic serialism. Then we'll start to revisit the typology of opaque process interaction and what each theory predicts.

1. Global power

- Can a rule "see" anything other than its immediate input? Can it look further ahead?
- In SPE, rules aren't supposed to have *global power* (term from Lakoff 1970).
- But global power follows naturally in OT: every candidate is the very end of a derivation.
 - Now we have something that OT can handle easily but SPE can't.
 - So how robust are the claimed cases?

¹ Some codings were a judgment call and of course I may have made errors—I was concentrating on the talks!

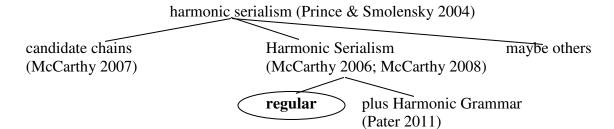
2. Case of global power in Walker 2010

• Basic metaphony rule again, as seen in many Romance "dialects":

basic rule:
$$\{\acute{e},\acute{o}\} \rightarrow [+high] / _C_0 + C_0 \begin{vmatrix} +syll \\ +high \end{vmatrix}$$

• <u>Venetan version</u> (inventory: [i,e,ɛ,a,u,o,ɔ])—more info than we saw last time

tense Vs raise	kals-ét-o móv-o	kals- í t-i m ú v-i	'sock (m. sg/pl)' 'move (1 sg/2 sg)'
lax or low Vs don't	gát-o	g á t-i	'cat (m sg/pl)'
[hi] can spread <u>through</u> unstr. V	órden-o	ú rd i n-i	'order (1 sg/2 sg)'
unless that V is /a/	lavór-a-v-a	lav ó r- a -v-i	'work (1 sg [3sg?] perf/2 sg impf)'
no spreading unless [+hi] will get all the way to the stressed V	ángol-o pérseg-o	á ng o l-i p é rs e g-i	'angel (m sg/pl)' 'peach (m sg/pl)'


- Spreading shows "look-ahead"—it sees all the way to the end of its iterative application (hypothetical *[ángul-i], *[pérsig-i], where stressed V is still not high)
 - if the result doesn't solve the fundamental problem of the unraised stressed vowel, then no spreading is done at all (**"sour grapes"**)
- Let's sketch a rule analysis to see why this is problematic.

• Let's develop an OT analysis.

• See (Kaplan 2011) for a seemingly contrasting case of *non*-lookahead or "**myopia**" in Chamorro.

3. A major variant of OT: Harmonic Serialism

• Distinction between small-*h*, small-*s* and capital-*H*, capital-*S*:

• Difference #1: Gen()

 $\frac{\text{Classic OT}}{\text{Gen}(/\text{input})} = \{\text{all results of applying all rules to input, in any order, repetition OK} \}$ $\frac{\text{Gen}(/\text{ab})}{\text{Gen}(/\text{ab})} = \{\text{ab, b, a, tab, abi, tabi, tabii, tabiii, }\emptyset, \text{ ba, qo, ...}\} \text{ (infinite set)}$

<u>Harmonic Ser</u>. Gen(/input/) = {all results of applying just one <u>minimal change</u> to input} Gen(/ab/) = {ab, b, a, tab, abi, eb, ab, ãb, ap, am, ... }(finite set)

• A change is minimal iff it incurs just one faithfulness violation (so, <u>constraint inventory</u> <u>matters</u>).

• Difference #2: Overall architecture

• In Harmonic Serialism, <u>keep applying grammar to its own output</u> until the result stops changing.

Dakota, from (Elfner 2016)—data orig. (Shaw 1985) (Siouan lang., U.S. & Canada, 15,400 speakers [(Lewis 2009)])

ſ		/čap/	WORDMUST	NoCoda	Don'tAdd	STRESSIS	Dep-V	DON'TDELETE	MAX-V
		-	HAVESTRESS		STRESS	FINAL ²		STRESS	
	а	čap	*!	*					
	☞ b	čáp		*	*				
	С	ča.pa	*!				*		

• Why is [ča.pá] not a candidate?

feed *čáp* into grammar—again, [ča.pá] is not a candidate (why not?)

čáp	WORDMUST	NoCoda	DON'TADD	STRESSIS	Dep-V	DON'TDELETE	MAX-V
	HAVESTRESS		STRESS	FINAL		STRESS	
d čap	*!	*				*	
<i>e</i> čáp		*!					
<i>☞f</i> čá.pa				*	*		

² Not the real constraint—see Elfner, who uses feet.

feed *čá.pa* into grammar:

čá.pa	WORDMUST	NoCoda	DON'TADD	STRESSIS	Dep-V	DON'TDELETE	MAX-V
	HAVESTRESS		STRESS	Final		STRESS	
g ča.pa	*!					*	
<i>☞ h</i> čá.pa				*			
<i>i</i> čá.pá			*!				
j čáp		*!					*

Input=output, so stop iterating.

 \circ What does this grammar predict for input like /čite/?³

• Why can't we get *[ča.pá] in this Harmonic Serialism grammar?

• What happens if we switch the ranking of WORDMUSTHAVESTRESS and NOCODA?

• What happens if we try to analyze Veneto in Harmonic Serialism?

³ hypothetical—real examples have clusters that muddy the issue

4. Classic look-ahead: (Hill 1970)'s "peeking" rule in Cupeño

Uto-Aztecan language from Southern California with no known speakers today [(Lewis 2009)].

• Read the derivations from left to right:

\mathbf{C} Underlying в А D Е Final Forms Vowel -ine, yaxe a-Reduction HAB ? In-Form Deletion Reduction sertion (1) cí, HAB cí, HAB cí cí? cí (2) hú, HAB hú, HAB hú? hú? hú (3) yélice-ine, HAB yélic-in, HAB yélic-i, HAB yélic-i yélici (4) céle-ine, HAB cél-in, HAB cél-i, HAB cél-i céli (5) k[™]áwe-yaxe, HAB k™áw-yax, HAB k™áw-ya, HAB k™áw-ye, HAB k‴áw-ye k^wáwye (6) qá'aye-yaxe, HAB qá'ay-yax, HAB qá'ay-ya, HAB qá'ay-ye, HAB qá²ay-ye qá?aye (7) pine²wexe, HAB pine⁷wex, HAB pine⁷wex pine?wex (8) cáspele, HAB cáspel, HAB cáspe?el cáșpe²el (9) pácike, HAB pácik, HAB páci²ik páci?ik (10) qáwe, HAB qáw, HAB qá?a?aw qá²a²aw (11) cále, HAB cál, HAB cá?a?al cá?a?al (12) těwě, HAB téw, HAB* té²ev té?e?ew hel^yé²e²ep (13) hel^yépe, HAB helvép, HAB helyé²e²ep (Hill p. 536)

Figure 1. Application of Rules to Examples (1)-(13) of Section 1.1

- Step D, Habilitative Formation, adds glottal stop(s) and copied vowel(s) only if the word ends in a consonant at this point in the derivation.
 - Let's practice transformation rule notation by writing the basic rule (say, for (8)).
- The key is that Habilitative copying applies as many times as needed to provide two syllables following the stressed syllable.
- So what's the look-ahead issue? Let's step through the derivation for (13) and think about the first application of copying.

• Hill points out that of course we *can* write complicated rules that will do this without look-ahead, but they seem to miss the point about word shape.

	feeding	bleeding	counterfeeding	counterbleeding
examples so far	 Guinaang Kalinga syncope/assimilation Tshiluba nasalization (self-) 	 English plurals Klamath glottalized Cs (self-) Eastern Ojibwa glide formation (self-) French schwa deletion 	 Palauan vowel reduction Tundra Nenets V deletion (self-) Morphological truncation (self-) 	 Polish vowel raising and devoicing Southern Kikuyu spirantization (self-)
OT	ОК	ОК	no, except in some cases (scales)	no, except in some cases (fusion)
SPE	ОК	ОК	ОК	ОК

5. Back to process interaction types: (counter){f,bl}eeding

- In the rest of today we'll look at what some SPE variants predict
- Thursday we'll complicate the typology

6. If time: the special cases

• Another Romance metaphony case from (Walker 2005)

Lena (dialect of Asturian, a language from Spain with about 100,000 speakers)

fí-a	'daughter'	fí-u	'son'
nén-a	'child (fem.)'	nín-u	'child (masc.)'
tsób-a	'wolf (fem.)'	tsúb-u	'wolf (masc.)'
gát-a	'cat (fem.)'	gét-u	'cat (masc.)'

- Account for this with two rules
- What type of rule interaction is this? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding
- What's the problem with translating this into OT (hint: [gét-u])?

• Any ideas for playing with our faithfulness constraints to get this?

• A Bedouin Hijazi Arabic case from Al-Mozainy 1981, via Hauser & Hughto 2016 (variety of Arabic spoken by rural population in Western Saudi Arabia)

	/∫aribat/	/ħaːkim/	/ħaːkim-in/	(H&H p. 1)
Palatalization		ħaːk ^j im	ħaːk ^j imin	
Deletion	∫arbat		ħaːk ^j min	
	[∫arbat]	[ħaːkʲim]	[ħaːkʲmin]	

- What type of rule interaction is this? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding
- What's the problem for OT?
- Let's try a fusion analysis

7. How about variants of SPE that you read about?

- SPE assumes that a language can impose any order it wants on rules. Many researchers have proposed that this is not the case—that at least sometimes, rules are *intrinsically* ordered.
- Let's see ways to do that...

8. Koutsoudas, Sanders, & Noll 1974: Simultaneous repeated application (review)

- = all rules apply simultaneously to the UR, then again to the result, and again until no more application is possible. This results in *maximal application* (feeding rather than counterfeeding, counterbleeding rather than bleeding).
- Let's try a simple example, /panipa/ with $V \rightarrow \emptyset / VC_CV$ and nasal place assimilation

Plus an additional principle, "proper inclusion precedence"

• Latin American varieties of Spanish, rather abstract analysis (Harris 1983?):

	/akeʎ/	/ake [^] +os/	
$1. \Lambda \rightarrow 1 / _ #$	akel		
2.		akej+os	
	'that'	'those'	(but see Lloret & Mascaró 2007)

- What kind of rule ordering is this? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding
- \circ Try to apply these rules simultaneously and repeatedly to /ake Λ /—what's the issue?
- Koutsoudas & al. propose (p. 9): "For any representation R, which meets the structural descriptions of each of two rules A and B, A takes applicational precedence over B with respect to R if and only if the structural description of A properly includes the structural description of B."

the structural description (SD) of A properly includes the SD of B = you can match B's SD up with part of A's SD that it is nondistinct from, and still have part of A's SD left over.

- How does the definition apply to the two Spanish rules? *plicker*: Is $\Lambda \rightarrow 1 / _$ # Rule A or Rule B?
- <u>Aside</u>: if we adopt the analysis above I think it's a bit of a problem for OT. Why is the problematic $/\delta$ / resolved by changing place in one instance, and manner in the other?

/ake	٨٤ *٨	*⁄л#	×۸۷	IDENT(place)	IDENT(manner)	*j#	*lV
<i>a</i> ake	λ *(!)	*(!)					
$\otimes b$ ake	1			*!			
$\mathbf{e}^{\mathbf{K}}c$ ake	j		1		*	*	

	/ake&+os/	λ^*	*\#	*\langle V	IDENT(place)	IDENT(manner)	*j#	*lV
а	akeʎos	*(!)		*(!)				
b	akelos				*!			*
©₽°C	akejos					*		

- The constraints at the bottom can't be ranked any higher, because of forms like *cielo* and (rarer) *ley*.
- Such "constraint-specific repairs" are predicted in SPE or in some versions of rules+constraints, but not in OT.
- I'm not saying OT can't capture the Spanish data—it just can't directly translate the analysis with $\Lambda \rightarrow 1/_$ # and $\Lambda \rightarrow j$.

9. Bleeding: example originally from Kiparsky (1968?)

• Schaffhausen dialect of Swiss German:

	/bogə/	/bodə/	/bogə+PL/	/bodə+PL/
1. V \rightarrow [-back] / complicated 'umlaut' context,			bøgə	bødə
including plurals				
[+cons]				
2. $o \rightarrow o / _ \begin{bmatrix} +cons \\ +cor \\ -lat \end{bmatrix}^4$		bədə		
L−lat 」				

- Why is this ordering crucial?
- What happens if we use the Koutsoudas & al. approach?
- K & al. propose that in all apparent cases of bleeding (and counterfeeding?), the rules need to be revised. In this case, they propose a context-free rule œ → ø (remember Myers's persistent rules, which apply everywhere in the derivation that they can).
- Apply this solution to /bodə+PL/.
- What additional fact needs to be true in Schaffhausen for this to work?

10. Another intrinsic ordering idea: the Elsewhere Condition (Anderson 1969, Kiparsky 1973...)

• Recall once more disjunctive ordering of the rules that a schema expands into:

 $V \rightarrow [+stress] / _ C_0(VC_0) \# \implies V \rightarrow [+stress] / _ C_0VC_0 \#$ else V $\rightarrow [+stress] / _ C_0 \#$

• Kiparsky argues that disjunctive ordering doesn't really have anything to do with expansion conventions. He proposes that what really drives disjunctive ordering is...

⁴ In the original it's not [+cor] but [–grave]. *Grave* is an acoustic feature (roughly, lower frequencies are stronger for [+grave] segments), not much used these days. Labials and velars are [+grave]; dentals and alveolars are [–grave] (a.k.a. *acute*).

- Elsewhere Condition (revised in later Kiparsky works)
- (p. 94) "Two adjacent [in the ordering] rules of the form

$$A \rightarrow B/P _ Q$$

 $C \rightarrow D/R = S$

- (a) the set of strings that fit [are nondistinct from] PAQ is a subset of the set of strings that fit RCS, and
- (b) the structural changes of the two rules are either identical or incompatible"
 - We also need to define 'incompatible'-probably it means that the results of applying • the two rules are *distinct*, in our technical sense.
- What does the Elsewhere Condition say about the pair of stress rules above?
- How does the Elsewhere Condition compare to proper inclusion precedence? Are there cases where the two conditions apply differently? (Let's try Spanish)

11. Anderson 1974 ch. 10: natural order-skip if no time, since you read about it!

- Example from Icelandic (Indo-European language from Iceland with 250,000 speakers) •
 - syncope, roughly: certain unstressed $Vs \rightarrow \emptyset / C _ \{l,r,n,\delta,s\}+V$

•	u- <i>umlaut</i> :	$a \rightarrow \ddot{o} / _ C_0 u$	(where "u" usu. = $[Y]$, "ö" = $[\alpha]$)
---	--------------------	-------------------------------------	--

barn svangt kalla (<i>lax, unstresse</i>	<pre>'child' 'hungry-neut.nom.sg.' '[I] call' d vowels deleteV)</pre>	b ö rn+um sv ö ng+u k ö ll+um	'child-dat.pl.' 'hungry-neut.dat.sg.' '[we] call'
ham a r	'hammer'	hamr+i	'hammer-dat.sg.'
fíf i ll	'dandelion'	fífl+i	'dandelion-dat.sg.'
morgunn	'morning'	morgn+i	'morning-dat.sg.'

(*ll*, *nn* stand for long *l*s and *n*; syncope is meant to be applicable)

- o If syncope precedes umlaut, what kind of process interaction results for the UR /katil+um/ 'kettledat.pl'? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding
- For /jak+ul+e/ 'glacier-dat.sg.'? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding

- What about umlaut before syncope for /katil+um/? *A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding*
- o /jak+ul+e/ (see data below)? A: feeding, B: counterfeeding, C: bleeding, D: counterbleeding

→ Whether a rule ordering is feeding, bleeding, etc. depends on the particular forms involved

/katil/ /ragin/ /alen/	+ <i>r/Ø</i> ketil+l regin alin	'kettle' 'gods' 'ell of cloth'	+ <i>um</i> kötl+um rögn+um öln+um	'kettle-dat.pl' 'gods-dat.pl' 'ell of cloth-dat.pl'
/bagg/ /jak/ /þag/	+ <i>ul+r</i> bögg+ul+l jök+ul+l þög+ul+l	'parcel' 'glacier' 'taciturn'	+ <i>ul+e</i> , + <i>ul+an</i> b ö gg+l+i j ö k+l+i þ ö g+l+an	'parcel-dat.sg.' 'glacier-dat.sg.' 'taciturn-masc.acc.sg.'

- If the rules are right, we have an ordering paradox!
- Here's how Anderson resolves it:
 - <u>Some pairs of rules</u> are left unordered by a language's grammar and so apply in their **natural order** in each case.
 - Other rules are ordered, but only pairwise (so ordering is not transitive, for instance).

"where only one of the two possible orders for a given pair of rules is <u>feeding</u>, the feeding order is the natural one; and that where only one of the two possible orders is bleeding, the other order [i.e. <u>counterbleeding</u>] is the natural one. In all other cases [...] no natural order is (yet) defined." (p. 147)

 $\circ~$ Is this different from the Koutsoudas & al. proposal? (Let's apply their theory to the crucial forms.)

• If a grammar consists of a list of rules and some statements about their orderings, what does a diachronic change from, say, counterfeeding to feeding involve? (Notice the extension of the evaluation metric to rule orderings, and not just the rules themselves.)

• See (Kiparsky 1984) for a totally different analysis of Icelandic in Lexical Phonology.

12. Summary: now we have three main theories...

- Classic OT. All candidates are considered: powerful Gen(), Eval() runs just once
- **OT with Harmonic Serialism**. Only "close" candidates are considered: restricted Gen(), Eval() applies repeatedly to its own output
- **SPE**. Fixed sequence of operations (each applied simultaneously to all targets): deterministic Gen(), trivial Eval() (because there is only one candidate)
- ...Plus some **SPE variants**, not so well developed
 - All rules are iterative (apply to their own output till it stops changing).
 - or rules can be tagged as either iterative or not
 - Rules can apply left-to-right or right-to-left
 - maybe this has to be learned for each rule, or maybe it follows somehow from the form of the rule.
 - No rule ordering: all rules apply simultaneously to the underlying form
 - No rule ordering: all rules apply simultaneously to the underlying form; repeat this until no more changes
 - Rules apply in order, but the order needn't be learned, because it follows from the content or potential interaction of the rules themselves
 - This can mean that rules apply in a different order to different underlying forms

Next time: Looking more carefully at the typology of process interaction—how do the main theories fare?

References

- Al-Mozainy, Hamza Q. 1981. Vowel Alternations in a Bedouin Hijazi Arabic Dialect: Abstractness and Stress. University of Texas, Austin.
- Anderson, Stephen R. 1969. West Scandinavian vowels systems and the ordering of phonological rules. MIT dissertation.
- Anderson, Stephen R. 1974. The Organization of Phonology. New York: Academic Press.

Elfner, Emily. 2016. Stress-epenthesis interactions in Harmonic Serialism. In John J McCarthy & Joe Pater (eds.), *Harmonic Grammar and Harmonic Serialism*, 261–300. Sheffield: Equinox Press.

Harris, James. 1983. Syllable Structure And Stress in Spanish: a Nonlinear Analysis. Cambridge, Mass.: MIT Press.

- Hauser, Ivy & Coral Hughto. 2016. Faithfulness-based opacity in Harmonic Serialism. Paper presented at the Annual Meeting on Phonology, University of Southern California.
- Hill, Jane. 1970. A peeking rule in Cupeño. Linguistic Inquiry 1. 534–539.
- Kaplan, Aaron F. 2011. Harmonic Improvement without Candidate Chains in Chamorro. *Linguistic Inquiry* 42(4). 631–650. doi:10.1162/LING_a_00063.
- Kiparsky, Paul. 1968. Linguistic universals and linguistic change. In Emmon Bach, Robert Harms, Emmon Bach & Robert Harms (eds.), *Universals in Linguistic Theory*, 170–202. New York: Holt, Rinehart and Winston.
- Kiparsky, Paul. 1973. "Elsewhere" in phonology. In Stephen R Anderson & Paul Kiparsky (eds.), A Festschrift for Morris Halle, 93–106. New York: Holt, Rinehart and Winston.
- Kiparsky, Paul. 1984. On the lexical phonology of Icelandic. In C. C Elert, I. Johansson, E. Stangert, C. C Elert, I. Johansson & E. Stangert (eds.), *Nordic prosody III*, 135–164. Ume? University of Ume?
- Koutsoudas, Andreas, Gerald Sanders & Craig Noll. 1974. The application of phonological rules. Language 50. 1–28.

Lakoff, George. 1970. Global Rules. Language 46(3). 627-639.

Lewis, M. Paul (ed.). 2009. Ethnologue: languages of the world. 16th ed. Dallas, TX: SIL International.

- Lloret, Maria-Rosa & Joan Mascaró. 2007. Depalatalization in Spanish revisited. In Fernando Martínez-Gil & Sonia Colina (eds.), *Optimality-Theoretic Studies in Spanish Phonology*, 74–98. John Benjamins Publishing Company.
- McCarthy, John J. 2006. Restraint of Analysis. *Wondering at the Natural Fecundity of Things: Essays in Honor of Alan Prince*. Linguistics Research Center. http://repositories.cdlib.org/lrc/prince/10.

McCarthy, John J. 2007. Hidden generalizations: phonological opacity in Optimality Theory. London: Equinox.

- McCarthy, John J. 2008. The Gradual Path to Cluster Simplification. *Phonology* 25(2). 271–319. doi:10.1017/S0952675708001486.
- Pater, Joe. 2011. Serial Harmonic Grammar and Berber syllabification. *Prosody matters: essays in honor of Elisabeth O. Selkirk.* London: Equinox Press.
- Prince, Alan & Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar*. Malden, Mass., and Oxford, UK: Blackwell.
- Shaw, Patricia. 1985. Modularism and substantive constraints in Dakota lexical phonology. *Phonology yearbook* 2, 173–202.
- Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917-989.
- Walker, Rachel. 2010. Nonmyopic Harmony and the Nature of Derivations. *Linguistic Inquiry* 41(1). 169–179. doi:10.1162/ling.2010.41.1.169.