Class 14: Lexical Phonology part III; Too-many-solutions problem

To do

- HW due Thursday or up until Tuesday in class: lexical phonology in Malayalam
- **Project**: meet with me again by the end of next week (syllabus says this week). Be reading
- up on the original data and writing out how OT and SPE analyses succeed or fail

0. Administrative matters

• Proposed HW schedule for rest of quarter

week	dates	topic	HW due
	Nov 1	Interaction between phonological	
6	Nov 3	and morphological processes: the	
0		cycle; Lexical Phonology and	Fri: HW on Week 5 material was due (Hakha Lai)
		Morphology	THE HW ON WEEK 5 material was due (Hakha Ear)
	Nov 8	Conspiracies revisited: the too-	
7		many-solutions problem	
	Nov 10	Autosegmental representations I	
8 Nov 15 Autosegmental representations II		Autosegmental representations II	Tues: HW on Week 6 material due (Malayalam)
8	Nov 17	Metrical stress theory: the grid	
0	Nov 22	Metrical stress theory: feet	Tues: HW on Week 7-8 material due (autosegmentalism)
9	Nov 24	Thanksgiving holiday—no class	
	Nov 29	Metrical stress theory: weight	
10	Dec. 1	Synthesis and prospect	Fri: HW on Week 9 material due (stress)

• Let's talk about having mini-conference in exam week. Or maybe, just think about your travel and exam schedule and be ready to discuss on Thursday.

Overview of today: As you read in Steriade, for many markedness constraints Classic OT seems to over-predict the typology of repairs.

1. Heterogeneity of process (McCarthy 2001)

- There can be impressive cross-linguistic exuberance in solving markedness problems.
- \circ Write down some candidates for the input /pumili/ that satisfy the constraint *[labial](V)[labial]

- Some actual Western Austronesian solutions to this problem (Zuraw & Lu 2009)
 - a. change place of stem: $/p-um-ili/ \rightarrow [k-um-ili]$
 - b. change place of infix: /p-m-ili/ \rightarrow [k-**n**-ili]
 - c. change consonantality of infix: /d-m-iim/ \rightarrow [d-w-iim] or [d-u-iim]
 - d. fuse stem and infix consonants: $/p-um-ili/ \rightarrow [mili]$
 - e. move infix out of constraint's domain of application: $/p-um-ili/ \rightarrow [mu-pili]$
 - f. delete the infix: $/p-m-ili/ \rightarrow [pili]$
 - g. paradigm gap: $/p-m-ili/ \rightarrow unpronounceable$
- Frivolous question: which one reminds you of something? A, B, C, D?
- Different solutions to *NC (Pater 1999; Pater 2001).
 - $/mp/ \rightarrow ...$
 - [mb]
 - [bp]
 - [m]
 - [p]
- Different ways to handle $*{1,0}$ in Romance metaphony when raising $\epsilon, 3/$ (Walker 2005)
 - In a raising environment, /ε,ɔ/...
 - raise to [i,u]
 - fail to raise at all
 - raise to [e,o]
 - raise to [ie,uo] or [iɛ, uɛ]

2. Limits on heterogeneity

- Two prominent examples of non-exuberance:
 - No language consistently deletes C₂ in VC₁C₂V sequences to solve a NoCoDA or *CC problem (Wilson 2000; Wilson 2001).
 - Many languages devoice to obey * [-son +voice] #, but none delete, epenthesize, etc. (Lombardi 2001).

3. Loan adaptation: Shibatani on Japanese

• URs can end in consonants. Here are some verbs:¹

UR	present	pres. polite	negative	past	
/ma t /	mats-u	mat͡∫-imasu	mat-anai	ma t -ta	'wait'
/ka k /	kak-u	kak-imasu	kak-anai	kai-ta	'write'
/aru k /	aruk-u	aruk-imasu	aruk-anai	arui-ta	'walk'
/jo b /	job-u	job-imasu	job-anai	jo n -da	'call'

¹ Not the only analysis out there, but I think it's close to what Shibatani has in mind. I don't remember where I originally got these data, but I checked them at www.japaneseverbconjugator.com.

/aso b /	asob-u	asob-imasu	asob-anai	aso n -da	ʻplay'
/iso g /	isog-u	isog-imasu	isog-anai	isoi-da	'hurry'
/hana s /	hanas-u	hana∫-imasu	hanas-anai	hana∫-ita	'speak'
/no m /	nom-u	nom-imasu	nom-anai	no n -da	'drink'
/kae r /	kaer-u	kaer-imasu	kaer-anai	kae t -ta	'return'
/gamba r /	gambar-u	gambar-imasu	gambar-anai	gamba t -ta	'hang in there'
/gamba r / /tabe/	gambar-u tabe-ru	gambar-imasu tabe-masu	gambar-anai tabe-nai	gamba t -ta tabe-ta	'hang in there' 'eat'
/gamba r / /tabe/ /mise/	gambar-u tabe-ru mise-ru	gambar-imasu tabe-masu mise-masu	gambar-anai tabe-nai mise-nai	gamba t -ta tabe-ta mise-ta	'hang in there' 'eat' 'show'
/gamba r / /tabe/ /mise/ /mi/	gambar-u tabe-ru mise-ru mi-ru	gambar-imasu tabe-masu mise-masu mi-masu	gambar-anai tabe-nai mise-nai mi-nai	gamba t -ta tabe-ta mise-ta mi-ta	'hang in there' 'eat' 'show' 'see'

• What generalizations can we make about allowable non-prevocalic (i.e., syllable-final) Cs (**bold**) on the surface?

- Some loanwords of the past century:²
 'dress' doresu
 'script' sukuriputo
 'pen' peN (uvular-ish is the default place of articulation for a final nasal)
- How can we explain this in rule terms?
- Shibatani argues that there was no prior basis for a V-insertion rule in Japanese—but there was a basis for a surface constraint on non-prevocalic Cs.
- In OT terms, I think we can explain why learners (even without seeing the loans) would arrive at a grammar that rules out *[dres], *[skript]. But how do they choose between MAX-C and DEP-V? How do they choose which vowel to insert? Looking ahead, what would Steriade say?

² We could also look at old loans from Chinese, maybe with a different result for final Cs.

4. Loan adaptation remarks

- Not only must we explain why languages often agree on a repair; we also have to explain how speakers of the same language often agree on a repair when new items enter the language.
- Shibatani 1973, writing in favor of surface constraints (as opposed to constraints on underlying forms, or no role for constraints at all):
 - "It is the SPCs [surface phonetic constraints] of his language which intrude into the pronunciation of a foreign language when an adult learner speaks. The SPCs are acquired in an early stage of mother-tongue acquisition, and they are deeply rooted in the competence of a native speaker." (p. 99)

5. Loan adaptation: Shibatani on Korean

- Before Chinese (\neq modern Mandarin!) loans came in:
- On the surface, no word-initial liquids \rightarrow surface constraint *#1 (and its allophone [r])
- But also no morpheme-initial liquids underlyingly \rightarrow could just as well have MSCs *#1
- These loans don't tell us if it's a surface constraint or an MSC (why not?):

nok-	'green' < Ch. lok
nam-	'blue' < Ch. lam
namp ^h u	'lamp' < Jp. rampu ³

• Solve the following miniature phonology problem. These morphemes are all loans from Chinese. It is significant that only the first three rows have [j].

j∧n-kɨm	'pension'	nε-nj∧n	'next year'
年 金	year+money	來 年	coming+year
jʌn-sɨp	'practice'	kjo-lj∧n	'military drill'
練 習	practice+practice	教 鍊	teach+practice
jʌn-ki	'performance'	tco-j∧n	'supporting role'
演 技	perform+skill	助 演	assist+perform
no-in	'old person	teo-lo	'premature old age'
老 人	old +person	早 老	early+old
nak-wʌn	ʻparadise'	k ^h wε-lak	'enjoyment'
樂 園	pleasant+park	快 樂	refreshing+pleasant
nam-p ^h ʌn	'husband'	mi-nam	ʻgood-looking man'
男 便	man+side	美 男	beautiful+man

³ must be somewhat archaic—Naver online dictionary (krdic.naver.com) instead has direct-from-English [remp^hi].

4

- Based on your solution, does the constraint *#l apply to (A) surface forms or (B) underlying forms?
- Like Japanese, Korean is displaying an 'extra' rule here that wasn't previously needed/attested.
- OT explanation for where this came from?

6. Answer #1: P-map (Steriade 2008)

- As you read, Steriade proposes that...
- a. Speakers have a "P-map", implicit knowledge of perceptual distance between pairs of sounds (potentially tagged for their contexts): e.g., Δ(d/V_#, Ø/V_#) > Δ(d/V_#, t/V_#) [Δ for difference]
- b. Faithfulness constraints can refer to details of their target and their surface context:
 - not just DEP-V, but DEP-i, DEP-a, DEP-a
 - not just DEP-V, but DEP-V/s_t, DEP-V/t_r
- c. Faithfulness constraints get their default rankings from the P-map: constraints penalizing big changes should outrank constraints penalizing small changes.
 - o (A) MAX-d/V_#>> IDENT(voice)/V_# or (B) IDENT(voice)/V_#>> MAX-d/V_#?
- Presumably these default rankings can be overturned by the learner in response to contradictory data, but they will be a persistent influence on language change.
- Let's review how this plays out in final devoicing (simplest cases)

$I \rightarrow O$	faith. violated	perceptual comparison	distance between comparanda
			(arbitrary units, fake values)
$/rad/ \rightarrow [rat]$	IDENT(voice)/V_#	d/V#, t/V#	4
$/rad/ \rightarrow [ra]$	MAX-C	d/V#, Ø/V#	8
$/rad/ \rightarrow [ran]$	IDENT(nasal)	d/V#, n/V#	6
$/rad/ \rightarrow [ratə]$	Dep-ə	Ø/C#, ə/C#	9

• What default constraint ranking does this imply?

-							
	/rad/	$*\begin{bmatrix}-\text{son}\\+\text{voice}\end{bmatrix}$ #	Dep-ə	MAX-C	IDENT(nasal)	IDENT(voice)/V_#	
а	[rad]						
b	[rat]						
С	[ra]						
d	[ran]						
е	[ratə]						

• Fill in tableau to see winner under the following ranking

• Keeping the default ranking fixed, possible winners in some language are:

A: any of the six candidates B: a, b, or c C: a or b D: other

- Personally, I find the traditional faithfulness constraints unwieldy in a P-map theory
- I prefer (Zuraw 2007, Zuraw 2013) to use constraints that directly penalize mappings, which you can then look up in the P-map:
 - e.g., *MAP($^{V}d^{\#}, ^{V}t^{\#}$)
 - See Löfstedt 2010 for application to paradigm gaps; White 2013 for application to "saltation", a type of underapplication opacity.

7. Some things to ponder about the P-map

- Exactly what is being compared when a faithfulness constraint gets its default ranking?
 - Output vs. input?
 - That's kind of funny because the input isn't a pronounced form, so its perceptual properties are hypothetical.
 - Output vs. faithful output (candidate *a* in the above)?
 - Output vs. related output? E.g., [rat] vs. plural [rad-im].
 - Those are both real, pronounced forms, but it's tricky because the target segments are in different contexts. Do we measure Δ(d/V_V,t/V_#)?
- How well connected is the P-map?
 - Can $\Delta(X,Y)$ be measured for absolutely any X,Y? Or only for close-enough pairs?

- 8. Answer #2: targeted constraints (Wilson 2000; Wilson 2001 Baković & Wilson 2000)
- We won't have time to cover this fully, but the idea relies on relaxing some assumptions about the <u>ordering</u> relation that a constraint imposes on candidates. *See discussion on next handout!*

9. Answer #3: Evolutionary Phonology (Blevins 2003)

- Blevins gives a very important caution about using typological data:
 - Does final devoicing prevail because learners prefer it?
 - Or simply because it tends to arise diachronically?
- Moreton 2008 refers to this distinction as <u>analytic bias</u> vs. <u>channel bias</u>.
- Assume the same perception facts that Steriade does, except assume that speakers don't internalize perceptual facts, and instead simply misperceive.
 - Suppose there is a language that tolerates final voiced obstruents: $/rad/ \rightarrow [rad]$.
 - Suppose that the most common misperception of [rad] is as [rat].
 - Then learners will think they're hearing a certain amount of alternation like [rad-im] ~
 [rat], and not much, e.g., [rad-im] ~ [rad-] or [rad-im] ~ [ran].
 - If this happens enough and catches hold, the language will eventually acquire final devoicing (rather than epenthesis after final voiced obstruents), but not because learners prefer it.
- What can we do then to understand what analytic bias, if any, exists?
 - A popular approach is to put speakers in a position where their behavior is not constrained by their language-specific learning (see lit reviews in Moreton 2008, Zuraw 2007, Hayes et al. 2009, Moreton & Pater 2012 for examples).

10. Another example of heterogeneity of process (if time)

- Kennedy 2005:
 - In various Micronesian languages, initial geminate consonants were created by CV-reduplication followed by deletion of the reduplicant's V.
 - Word-initial position is a tough place to maintain a C-length distinction, especially for stops, because you need to perceive when the consonant begins ([pa] vs. [ppa], as opposed to [apa] vs. [appa])
 - If a diachronic change were to happen, we'd expect it to just be degemination.
 - But the changes turn out to be diverse.

Pohnpeian	*ppek	>	mpek	IDENT(nasal)
Marshallese—Ratak	*kkan	>	kekan	DEP-V/C_C
Marshallese—Ralik	*kkan	>	yekkan	Dep-V/#C
Pingelapese	*ttil	>	iitil	IDENT(syllabic)
Woleaian	*kkaše	>	kkaše	
	*kaše	>	xaše	IDENT(continuant)

11. So what makes some repairs homogeneous and others heterogeneous?

- Who knows, but here are some speculations (from Zuraw & Lu 2009):
- The origin of the markedness constraint
 - Is it driven by articulatory considerations?
 - by perceptual difficulties?
 - by motor planning difficulties?
- The formal complexity of the markedness constraint:
 - How long a string must be inspected to determine if there is a violation?
 - Is the constraint sensitive to morphological information or other hidden structure?
 - How many features are involved?
- The nature of the changes available—is there one that can count as "smallest change"?
 - Is one change perceptually closer to the original than the others?
 - If so, does it achieve the status of "only solution" by falling below some threshold of perceptual distance?
 - Or must the difference between the closest change and the next-closest fall above some threshold?
 - Does one change affect fewer segments, fewer features, or less-important features?
 - If each change is formulated as a rule, does one change have a simpler structural description?

Next time: Rethinking how features are represented—what if they're entities instead of properties?

References

- Baković, Eric & Colin Wilson. 2000. Transparency, strict locality, and targeted constraints. In Roger Billerey & Brook Danielle Lillehaugen (eds.), *Proceedings of the 19th West Coast Conference on Formal Linguistics*, 43–56. Somerville, Mass.: Cascadilla Press.
- Blevins, Juliette. 2003. Evolutionary phonology. The emergence of sound patterns. Cambridge: Cambridge University Press.
- Hayes, Bruce, Kie Zuraw, Zsuzsa Cziráky Londe & Peter Siptár. 2009. Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85. 822–863.
- Kennedy, Bob. 2005. Reflexes of initial gemination in Western Micronesian languages. *Austronesian Formal Linguistics Association*. UCLA, Los Angeles, CA.
- Löfstedt, Ingvar. 2010. Phonetic Effects in Swedish Phonology: Allomorphy and Paradigms. UCLA Ph.D. Dissertation.
- Lombardi, Linda. 2001. Why Place and Voice are Different: Constraint-Specific Alternations and Optimality Theory. In Linda Lombardi (ed.), Segmental Phonology in Optimality Theory: Constraints and Representations, 13–45. Cambridge: Cambridge University Press.
- McCarthy, John J. 2001. A Thematic Guide to Optimality Theory. Cambridge: Cambridge University Press.
- Moreton, Elliott. 2008. Analytic bias and phonological typology. *Phonology* 25(1). 83–127.
- Moreton, Elliott & Joe Pater. 2012. Structure and substance in artificial-phonology learning. Language and Linguistics Compass 6(11). 686–701, 702–718.

- Pater, Joe. 1999. Austronesian Nasal Substitution and Other *N\textbackslashtextsubringC Effects. In René Kager, Harry van der Hulst & Wim Zonneveld (eds.), *The Prosody–Morphology Interface*. Cambridge: Cambridge University Press.
- Pater, Joe. 2001. Austronesian nasal substitution revisited: What's wrong with *NC (and what's not). In Linda Lombardi (ed.), Segmental Phonology in Optimality Theory: Constraints and Representations, 159–182. Cambridge: Cambridge University Press.

Shibatani, Masayoshi. 1973. The role of surface phonetic constraints in generative phonology. Language 49. 87-106.

Steriade, Donca. 2008. The phonology of perceptibility effects: the P-map and its consequences for constraint organization. In Kristin Hanson & Sharon Inkelas (eds.), *The nature of the word: studies in honor of Paul Kiparsky*, 151–180. MIT Press.

Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917-989.

- White, James. 2013. Bias in phonological learning: evidence from saltation. UCLA PhD dissertation.
- Wilson, Colin. 2000. Targeted Constraints: An Approach to Contextual Neutralization in Optimality Theory. Johns Hopkins University.
- Wilson, Colin. 2001. Consonant Cluster Neutralisation and Targeted Constraints. Phonology 18(1). 147–197.
- Zuraw, Kie. 2007. The role of phonetic knowledge in phonological patterning: Corpus and survey evidence from Tagalog. *Language* 83. 277–316.
- Zuraw, Kie. 2013. *MAP constraints. Manuscript. UCLA, ms. http://www.linguistics.ucla.edu/people/zuraw/dnldpprs/star_map.pdf.
- Zuraw, Kie & Yu-An Lu. 2009. Diverse repairs for multiple labial consonants. *Natural Language and Linguistic Theory* 72. 197–224.