To do for next time

- Prince & Smolensky study questions due Tuesday (get reading from CCLE; get study questions from course web page, to be found at my own web page)
- I'll post a homework problem (probably Palauan) tonight. Due Fri., Jan 16.

Overview: The less-common expansion conventions from Chomsky & Halle (1968). Making theoretical choices. The dawn of constraints. (Sorry, still only one chunk of real data.)

1. Super- and subscripts

- \succ X^{*m*}_{*n*} means from *n* to *m* Xs
 - C_n : "*n* or more Cs" (most common is C_0)
 - V^m : "up to m Vs"
 - C_n^m : "anywhere from *n* to *m* Cs"

$$C \rightarrow \emptyset/_C_0 \# = \dots$$

$$C \rightarrow \emptyset/_CCCC \#$$

$$C \rightarrow \emptyset/_CCC \#$$

$$C \rightarrow \emptyset/_CC \#$$

$$C \rightarrow \emptyset/_CC \#$$

$$C \rightarrow \emptyset/_C \#$$

$$C \rightarrow \emptyset/_H$$

- The tricky thing is that we apply the *longest* rule whose structural description matches (**disjunctive** ordering again).
- How would the schema above apply to /tabskt/?

2. Parentheses with star (but see discussion in Week 3 Anderson reading)

 \succ (...)* means that the material in parentheses can occur zero or more times.

 $V \rightarrow [+stress] / #C(VCVC)*$ _____ expands to

$$V \rightarrow [+stress] / \#C _$$

$$V \rightarrow [+stress] / \#CVCVC _$$

$$V \rightarrow [+stress] / \#CVCVCVCVC _ etc.$$

- With ()*, there is yet a third type of ordering: **simultaneous**—identify targets of any subrule and change them simultaneously
- How would the stress rule above apply to /badupidome/?
- How would $C \rightarrow \emptyset / _C^{*\#}$ apply to /tabskt/?

3. Angled brackets—we'll just skim this part, because they're rarely used

- > Like parentheses, but when the optional information is in more than one place.
 - A schema with angle brackets expands into two (disjunctively ordered) rules: the rule with the information in the angle brackets and the rule without that information.

 $C \rightarrow \emptyset / V < C > < C > V$ (silly example) expands to

$$\begin{array}{ll} C \rightarrow \emptyset \, / \, VC_CV & both \\ C \rightarrow \emptyset \, / \, V_V & neither \end{array}$$

• An exercise for later if you like: expand the following schema and apply it to *putod*, *luged*, and *fesil*.

$$\begin{bmatrix} +syll \\ -s+back \end{bmatrix} \rightarrow \begin{bmatrix} -hi \end{bmatrix} / _ C < \begin{bmatrix} +syll \\ +back \\ -hi \end{bmatrix} C > \#$$

• You can also subscript angle brackets to show which ones go together:

$$C \rightarrow \emptyset / V <_1C>_1 \leq_2s>_2 <_1C>_1 V <_2h>_2 \#$$
 (even sillier rule) expands to

$C \rightarrow \emptyset / VC_sCVh\#$	both the 1s and the 2s
$C \rightarrow O / V_sVh\#$	just the 2s
$C \rightarrow \emptyset / V\overline{C} CV \#$	just the 1s
$C \rightarrow \emptyset / V V V $	neither

- 4. Not an expansion convention, an extension of the theory's power: Transformational rules
- Useful for metathesis, coalescence...anything where more than one segment is affected at once.
- In SPE, these were given in two parts:

Structural description: $\begin{bmatrix} +syll \\ +low \end{bmatrix}$, $\begin{bmatrix} +syll \\ +hi \\ around \end{bmatrix}$ $1 \qquad 2$ Structural change: $1 \ 2 \rightarrow \begin{bmatrix} 1 \\ -lo \\ +long \\ around \\ aback \end{bmatrix}$, $\begin{bmatrix} 2 \\ \emptyset \end{bmatrix}$

- What does this rule do?
- It may seem arbitrary to say that 1 changes and 2 deletes rather than the reverse. Try writing the rule the other way too.

• You'll often see a simplified notation instead that collapses the structural description and structural change:

• What's wrong with just saying this (same rule without the numerical indices):

		-lo
$\begin{bmatrix} +syll \\ +low \end{bmatrix} \begin{bmatrix} +syll \\ +hi \\ around \end{bmatrix}$		+long
	$ $ ⁺ III \rightarrow	around
	Larouna	$L\alpha back \ \ $

- Say you want to write a metathesis rule that changes *s*-stop into stop-*s*. What's wrong with writing $\begin{bmatrix} -\text{sonorant} \\ -\text{continuant} \end{bmatrix} \rightarrow \begin{bmatrix} -\text{sonorant} \\ -\text{continuant} \end{bmatrix} s$?
- o Re-write the defective rule with transformational notation.

5. How does the learner choose a grammar?

- SPE proposed that if more than one grammar can generate the observed linguistic data, the learner must have some *evaluation metric* for choosing one.
- The evaluation metric tentatively proposed in SPE is brevity: learner chooses the grammar with the fewest symbols. (What about ties?)
- If that's right, and if we've got the notation right too, then you can tell which grammar, out of some set of candidate grammars, the learner would choose.
- More plausibly, we want to find independent evidence as to which grammar is right, and then make sure our theory explains how/why the learner chose that one—this is a lot harder!

• By the logic above, a theoretical innovation is held, in SPE, to be a good one if it allows <u>more-concise descriptions of attested/common phenomena</u> than of unattested/uncommon phenomena.

		obstruent- or nasal-initial	liquid-initial	vowel-initial	glide-initial
		/garson/ 'boy'	/livr/ 'book'	/enfant/ 'child'	/wazo/ 'bird'
obstruent- or nasal-final	/pəti t / 'small'	pəti_ garsõ	pəti_ livr	pəti t ãfã	pəti t wazo
liquid-final	/ʃɛ r / 'dear'	∫ε r garsõ	∫ε r livr	∫ε r ãfã	∫ε r wazo
vowel-final	/lə/ 'the'	l ə garsõ	l ə livr	l_ ãfã	l_ wazo
glide-final	/parej/ 'similar'	parej garsõ	parej livr	parej ãfã	parej wazo

For the sake of reconstructing the argument, use the archaic feature [vocalic] and the stillcurrent feature [consonantal]:

	vocalic	consonantal
obstruents and nasals	_	+
liquids	+	+
glides	_	_
vowels	+	_

- Propose rules to account for the C- and V- deletions, without using Greek-letter variables.
- o Combine the rules into a schema, using Greek-letter variables

• Greek-letter variables don't allow us to compress these two rules:

 $\begin{bmatrix} +voc \\ +lo \end{bmatrix} \rightarrow \emptyset / _ \# [+voc]$ "low vowels delete before a vowel or glide" $\begin{bmatrix} +voc \\ +cons \end{bmatrix} \rightarrow \emptyset / _ \# [+cons]$ "liquids delete before a non-glide consonant"

With that in mind, how should the typology guide us in deciding whether to allow the same Greek-letter variable to apply to different features within a rule?

- 7. (*skip if no time*) Reasoning above relies on assumptions about linguistic typology:
- Assume a rule is cross-linguistically common only if it's favored by learners—i.e., learners tend to mislearn, in the direction of a more-favored grammar.
- Assume that learners favor short/simple/whatever rules.
- Therefore, rules that are cross-linguistically common should tend to be short.
- Therefore, our theory of rules, which determines what type of notation length is calculated on, should make common rules shorter than uncommon ones.
- Therefore, a theoretical innovation is good if it makes common rules shorter than uncommon ones.

=> We're not really using "short" (or "simple") in any fixed sense. Rather, we're tailoring the notation to make the rules that we think learners favor appear short. [And of course, that first assumption is questionable...]

This leads us into slippery territory in deciding whether shortness is the right criterion:

- Are learners innately endowed with a certain notation, which they use to calculate grammar length? (i.e., shortness really is the evaluation criterion)
- Or is it the case that learners employ some other evaluation metric entirely, but we've created a system of notation that makes goodness according to the real evaluation metric translate into shortness in our notation?

Something for you to think about, though no answers will be forthcoming: We've seen how to evaluate a particular description or even a theoretical innovation, given a framework like SPE.

• But how do you evaluate the framework itself—in particular, how can we evaluate a principle such as "if more than one grammar can generate the observed linguistic data, the learner chooses the grammar with the fewest symbols"?

8. Shortening the (previously) unshortenable: constraints

- Kisseberth (1970) introduced the following problem, using Yawelmani Yokuts as a case study.
- These rules can't be collapsed into a schema:
- And yet, they seem to have something in common—can you guess what? It will help to invent a form that each rule can apply to and see what that rule does.

• Cases like this became known as *conspiracies*, and their widespread existence as the *conspiracy problem*.

9. Constraints as rule blockers

• Kisseberth proposes using a constraint to make the rules of Yawelmani Yokuts simpler:

Instead of $V \rightarrow \emptyset / V C$ [-long] C V

use

 $V \rightarrow \emptyset / C$ ______ C subject to the constraint *CCC (or *{C,#}C{C,#})

- The constraint can *block* the rule: the rule applies **unless** the result violates the constraint.
- Let's try to lay out, step by step, what an algorithm would have to do to implement the rule and its blocking constraint.

10. Constraints as rule triggers

- Kisseberth also proposes that constraints can *trigger* rules: a rule applies **only if** it gets rid of a constraint violation.
- What happens if the rule $\emptyset \rightarrow i$ (context-free) applies only when triggered by the constraint *CC? Let's try to break this down into simple steps too.

11. Why is this good?

• In a system without constraints, these two grammars have equal length and should be equally plausible:

Yokutsimaginary and implausible $C \rightarrow \emptyset / CC + _$ $C \rightarrow \emptyset / CV + _$ $\emptyset \rightarrow i / C _ CC$ $\emptyset \rightarrow i / V _ CC$ $V \rightarrow \emptyset / VC _ CC$ $V \rightarrow \emptyset / VC _ CC$ $V \rightarrow \emptyset / VC _ [-long]$ C V

• But in Kisseberth's system the Yokuts grammar is shorter than the "implausible" grammar

Yokuts	imaginary and implausible	
$C \rightarrow \emptyset / + _$	$C \rightarrow \emptyset / CV + _$	
$\varnothing \rightarrow i$	$\varnothing \rightarrow i / V _ CC$	
$V \rightarrow \emptyset / C $ C	$V \rightarrow \emptyset / V C$ C C	
[-long]	[-long]	
*{C,#}C{C,#}		

• If we're right that the language on the right is less plausible than Yokuts, Kisseberth's theory is better because it captures that difference.

12. Rule+constraint theories

- Many more conspiracies were identified, giving rise to more constraints.
- People liked constraints, because they solved the conspiracy problem and also gave theoretical status to the idea of "markedness", which had been floating around.
 - Everyone knew languages don't "like" CCC sequences (they are "marked"), but this was not directly encoded in grammars until constraints like *CCC (or a syllable-based equivalent) came along.
- On the other hand, using constraints introduces some problems into the theory—I invite you to invent cases!
 - What if there's more than one rule (or more than one way of applying a single rule) that could fix a constraint violation?
 - What if one rules makes a constraint violation worse, but feeds another rule that makes it better?
 - What if one constraint wants to trigger a rule, but a different constraint wants to block it?

Next time: Deep into OT and how it deals with the above problems.

References

Chomsky, Noam & Morris Halle. 1968. *The Sound Pattern of English*. Harper & Row. Kisseberth, Charles. 1970. On the functional unity of phonological rules. *Linguistic Inquiry* 1. 291–306.