Class 5: Optimality Theory, part II

To do

• Topic proposal or bibliographic exercise due Thursday

Overview [after discussion of project]: Last week we talked in detail about how the theory works. This time, the focus will be on using it. Plus, target vs. process; correspondence theory.

1. Exercise: a bleeding example from English

o Translate your previous rule analysis into OT

(reminder: /z/, $\emptyset \rightarrow i/[+strid]_[+strid], [-son] \rightarrow [-voice]/[-voice]_)$

p ^h i-z	'peas'	dag-z	'dogs'	mīt-s	'mitts'	glæs- i z	'glasses'
t ^h ou-z	'toes'	læb-z	'labs'	blouk-s	'blokes'	fız- i z	'fizzes'
dal-z	'dolls'	salıd-z	'solids'	k ^h af-s	'coughs'	b.ænt∫-iz	'branches'
p ^h æn-z	'pans'	weiv-z	'waves'			bæd͡ʒ-ɨz	'badges'
		saið-z	'scythes'			WI∫- i Z	'wishes'

• Could the counterbleeding candidate *[glæs-is] win under any ranking of these constraints?

2. Very short feeding example

Catalan (Indo-European lang. from Spain, France, Andorra w/ 11.5 million speakers [Lewis 2009]; Mascaró 1976)

son	'they are'	bin	'twenty' (/bint/, cf. [bintiu] '21')
poks	'few'	pans	'breads'
som poks	'they are few'	bim pans	'twenty breads'

- Let's develop a rule analysis together.
- Give an OT analysis.
- Could the counterfeeding candidate *[bin pans] win under any ranking of these constraints?

3. Counterfeeding that we can capture

ARomance metaphony case from Walker 2005

Lena (dialect of Asturian, a language from Spain with about 100,000 speakers)

fí-a	'daughter'	fí-u	'son'
nén-a	'child (fem.)'	nín-u	'child (masc.)'
tsób-a	'wolf (fem.)'	tsúb-u	'wolf (masc.)'
gát-a	'cat (fem.)'	gét-u	'cat (masc.)'

- Develop a rule account
- What's the problem with translating this into OT (hint: [gét-u] is the problematic word)?
- Any ideas for playing with our faithfulness constraints to get this?

4. Opacity

- We now have our first empirical difference between SPE and OT: SPE straightforwardly predicts counterfeeding and counterbleeding, and OT doesn't.
 - any purported case of counterfeeding or counterbleeding is a good **term-paper topic**
- There are versions of OT that do better with opacity (e.g., Kiparsky's Stratal OT).

5. We need a better theory of faithfulness

• <u>Trick question</u>: fill in the constraint violations:

/tui/	IDENT(round)	IDENT(back)
<i>a</i> [ty]		

- In Prince & Smolensky 1993, an output candidate contains the input form—you can see what's been inserted or deleted.
 - This is retrospectively known as the containment approach (output *contains* the input).
 - Changing features gets tricky, and metathesis gets very hard.

6. The correspondence relation

McCarthy & Prince 1995 proposed replacing containment with correspondence.

- Every segment in the input bears a unique index (maybe every feature, mora, syllable... whatever the parts of a representation are).
- Units of the output also bear indices (instead of the output containing input material).
- An input segment and an output segment are *in correspondence* iff they bear identical indices.

	/t1u2i3/	IDENT(round)	IDENT(back)
a	[t ₁ y ₂]		*
b	[t1y3]	*	

• These indices define a relation between input segments and output segments:

input	output	That is, the relation =
/u/	[t]	{(/t/, [t]), (/u/, [y])}
/i/		

- $/p_{1a_2t_304k_5} \rightarrow [p_{1a_2t_304k_5}]$ means Corr($/p_1/, [p_1]$), Corr($/a_2/, [a_2]$), etc., where Corr(x, y) means "x corresponds to y".
- These are also output candidates for that input: [p5a1t402k3], [p1a1t101k1], [p6a7t809k10].
 - But they're so outrageously bad we wouldn't normally bother including them in a tableau.
- When you see a candidate in a tableau without indices, you can assume that the correspondence relation is the obvious one.
- When it's not clear what the obvious correspondence relation is, spell it out.

7. Constraints on the relation

- The purpose for adding this relation to each input-output pair is so that constraints can use it.
- Faithfulness constraints (sometimes also called *correspondence constraints*) are constraints that care about various aspects of the correspondence relation.
- Here are the most important ones proposed by McCarthy & Prince:

MAX-C	(don't delete)	Every consonant in the input must have a correspondent in the output.
		Every vowel in the input must have a correspondent in the output.
MAX-V		(<i>maximize</i> the preservation of material in the input)
DEP-C	(don't insert)	Every consonant in the output must have a correspondent in the input.
		Every vowel in the output must have a correspondent in the input.
DEP-V		(every segment in the output should <u>dep</u> end on a segment in the input.)
IDENT(F)	(don't change	If two segments are in correspondence, they must bear identical values
	feature	for feature [F].
	values)	
		This constraint doesn't care about whether segments have
		correspondents or not; only about making sure feature values match if
		two segments do correspond.

• There are also constraints against merging, splitting, and reordering segments. See McCarthy & Prince 1995 for a full list.

8. Process vs. target

We got this far

- Here's a difference between SPE and OT in typological predictions.
 - SPE might predict that similar rules (processes) should be seen across languages
 - OT predicts that a markedness constraint should trigger diverse repairs across languages.

Some terms, coined by McCarthy, that you might run into:

Homogeneity of target

= languages impose the same well-formedness conditions on outputs

Heterogeneity of process

= languages use different means to satisfy the well-formedness conditions

9. Case study, if we have time: *NC in Pater 2001; Pater 2003

- *NC is an abbreviation for *[+NASAL][-VOICE].
 - This constraint seems to have an aerodynamic basis (raising the velum after a nasal → velar leak and 'velar pumping' → prolongation of voicing)—see Hayes & Stivers 1996.
- What ways can you think of to "repair" a sequence like *ampa*?

- Let's figure out the ranking for each of the following examples.
- Japanese

present	past	gloss	
kats-u	kat-ta	'win'	
kar-u	kat-ta	'cut'	
wak-u	wai-ta	'boil'	
ne-ru	ne-ta	'sleep'	
mi-ru	mi-ta	'look'	
∫in-u	∫in-da	'die'	
∫in-u jom-u	∫in-da jon-da	'die' 'read'	

• "Puyo Pongo" Quichua

∫i ŋk i	'soot'	t∫u nt ina	'to stir the fire'
t∫u ŋg a	'ten'	i nd i	'sun'
pa mp al ^j ina	'skirt'	nuka nt∫ i	'we'
ha mb i	'poison'	pu nd3 a	'day'
wasi- t a	'house'	kan- d a	'you'
ajt∫a- t a	'meat'	atan- d a	'the frog'
puru- t a	'gourd'	wakin- d a	'others'
ali -t∫ u	'is it good?'	kan- d3 u	'you?'
lumu- t∫ u	'manioc?'	tijan- d͡ʒ u	'is there?'
mana- f∫ u	'isn't it?'	t∫arin- d͡ʒ u	'does he have?'

• Magindanaw

pəm-báŋun	'is waking up'
pən-dila	'is licking'
pəŋ-gəbá	'is destroying'
pəb-pása	'is selling'
pəd-sígup	'is smoking'
pəd-tánda	'is marking'
pəg-kúpja	'is wearing a kupia'

• Standard Malay

/məN+pilih/	məmilih	'to choose'
/məN+tulis/	mənulis	'to write'
/məN+kasih/	məŋasih	'to give'
/məN+bəli/	məmbəli	'to buy'
/məN+dapat/	məndapat	'to get, to receive'
/məN+ganti/	məŋganti	'to change'
note also in M	lalay	
	əmpat	'four'
	u nt uk	'for'
	mu ŋk in	'possible'

• Kelantan dialect of Malay—I haven't been able to track down the real data, but it should look schematically like this:

/məN+pilih/	məpilih	'to choose'
/məN+tulis/	mətulis	'to write'
/məN+kasih/	məkasih	'to give'
/məN+bəli/	məmbəli	'to buy'
/məN+dapat/	məndapat	'to get, to receive'
/məN+ganti/	məŋganti	'to change'

- Can we explain why it's always the nasal that deletes (not the following C)?
- English

1mp ^h asəbəl	'impossible'
ınt ^h ɛmpəɹət	'intemperate'
ıŋk ^h ælkjələbəl	'incalculable'
1 1	
Imb3 ^a b	'imberb'
Imb3b Indisənt	'imberb' 'indecent'

Some apparently unattested "solutions":

- Epenthesis $/np/ \rightarrow [np]$
- Devoice the nasal $/np/ \rightarrow [mp]^1$

¹ If *NC8 is really a constraint against the extra articulatory effort of spreading the vocal folds to prevent voicing, then a devoiced nasal is an even worse violation of that same constraint, so it makes sense that this is unattested.

10. If we have time: language-internal example of heterogeneity of process

Kwanyama (a.k.a. OshiKwanyama; Niger-Congo language with 421,000 speakers in Angola, and an unknown number in Namibia—again from Pater)

Loans:	sitamba pelenda oinga	'stamp' 'print' 'ink'	
Prefixes:	/e:N+pati/	e:mati	ʻribs'
	/oN+pote/	omote	'good-for-nothing'
	/oN+tana/	onana	'calf'

• What's the ranking? Let's do some tableaux

Next time: OT analysis practice session

References

Hayes, Bruce & Tanya Stivers. 1996. The phonetics of post-nasal voicing.

Lewis, M. Paul (ed.). 2009. Ethnologue: languages of the world. 16th ed. Dallas, TX: SIL International.

Mascaró, Joan. 1976. Catalan Phonology and the Phonological Cycle.. MIT.

McCarthy, John J & Alan Prince. 1995. Faithfulness and Reduplicative Identity.. In Jill Beckman, Laura Walsh Dickey, & Suzanne Urbanczyk (eds.), *University of Massachusetts Occasional Papers in Linguistics 18*, 249–384. Amherst, Mass.: GLSA Publications.

Pater, Joe. 2001. Austronesian nasal substitution revisited: What's wrong with *NC (and what's not).. In Linda Lombardi (ed.), *Segmental Phonology in Optimality Theory: Constraints and Representations*, 159–182. Cambridge: Cambridge University Press.

Pater, Joe. 2003. Balantak Metathesis and Theories of Possible Repair in Optimality Theory.

Prince, Alan & Paul Smolensky. 1993. Optimality Theory.. Blackwell.

Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917–989.