Classes 11 & 12: Process interaction

To do

- Woleaian assignment is due Friday
- Project: turn in primary-vs-secondary-source report, or just a progress report, Thursday.
- Next week's reading: Hayes 1995 study questions due next Tuesday

Overview

Last week we saw how a process can interact with itself. In what ways can processes interact with each other? Which types of interaction are easy to capture in each theory?

0. First, we review Harmonic Serialism

Typology of OT-related theories—note distinction between small-h, -s and capital-H, S:

			constraint	weighting
		strict domination	winner has best weighted sum of violations	probability proportional to exponentiated weighted sum
parallel evaluation		classical OT	Harmonic Grammar	MaxEnt
harmonic serialism (mentioned as	one iteration at a time	Harmonic Serialism (McCarthy 2006; McCarthy 2008)	HS + HG (Pater 2011)	logically possible
possibility in Prince & Smolensky 2004)	a candidate is a derivation	candidate chains (OT-CC) (McCarthy 2007a)	logically possible	logically possible

Difference #1

Classic OT Gen(/input/) = {all results of applying all rules to input, in any order, repetition OK}

 $Gen(/ab/) = \{ab, b, a, tab, abi, tabi, tabii, tabii, \emptyset, ba, qo, ...\}$ (infinite set)

Harmonic Ser. Gen(/input/) = {all results of applying just one minimal change to input}

 $Gen(/ab/) = \{ab, b, a, tab, abi, eb, ab, ãb, ap, am, ...\}$ (finite set)

One way to define **minimal**: A change is minimal iff it incurs just one faithfulness violation (so, constraint inventory matters).

Difference #2

In Harmonic Serialism, keep applying grammar to its own output until the result stops changing.

Dakota from Elfner (to appear)—orig. Shaw 1985 (Siouan lang., U.S. & Canada, 15,400 speakers)

I simplified some constraints—see Elfner for real story.

1. Start with underlying form:

/čap/	WordMust	NoCoda	Don'tAdd	FEETARE	DEP-V	Don'tDelete	Max-V
	HAVESTRESS		STRESS	IAMBIC		STRESS	
a čap	*!	*					
ℱb (čáp)		*	*				
c ča.pa	*!				*		

2. Feed output (čáp) into grammar:

	## (* ##) ### &	,					
(čáp)	WordMust	NoCoda	Don'tAdd	FEETARE	Dep-V	DON'TDELETE	Max-V
	HAVESTRESS		STRESS	IAMBIC		STRESS	
d čap	*!	*				*	
e (čáp)		*!					
ℱf (čá.pa)				*	*		

3. Feed output (čá.pa) into grammar:

3.100	a carp	at (ca.pa) 111to E	granina.					
(čá.	pa)	WORDMUST	NoCoda	Don'tAdd	FEETARE	Dep-V	Don'tDelete	Max-V
		HAVESTRESS		STRESS	IAMBIC		STRESS	
g ča.p	oa	*!					*	
☞h (čá.	pa)				*			
i (čá)	(pá)			*!				
j (čáp)		*!					*

- 4. Input=output, so stop iterating.
- o What does this grammar predict for input like /cite/1
- O Why can't we get *(ča.pá) in Harmonic Serialism?
- What happens if we switch the ranking of WORDMUSTHAVESTRESS and NoCoda?
- ⇒ One advantage of Harmonic Serialism is it can sometimes get either bleeding or counterbleeding, depending on ranking (Elfner to appear).

-

¹ hypothetical—real examples have clusters that muddy the issue

1. The classic interaction typology, for reference

interaction	definition	schematic deriv	ration	result
R1 feeds R2	R1 creates		/bind/	transparent:
	environment for	$d \rightarrow \emptyset / \underline{\hspace{1cm}} \#$	bin	• no [d#] on the surface
	R2 to apply to	$n \rightarrow \emptyset / _\#$	bi	• no [n#] on the surface
			[bi]	2 3
R1 counterfeeds R2	R1 applies too		/bind/	opacity—underapplication:
	late to create	$n \rightarrow \emptyset / \underline{\hspace{1cm}} \#$		• [n#] on surface, despite
	environment for	$d \rightarrow \emptyset / \underline{\hspace{1cm}} \#$	bin	rule targeting n#
	R2		[bin]	
R1 bleeds R2	R1 destroys		/bind/	transparent:
	environment for	$d \rightarrow \emptyset / \underline{\hspace{1cm}} \#$	bin	• no [d#] on the surface
	R2 to apply to	$\emptyset \rightarrow i/C_C\#$		• no [i] inserted, because
			[bin]	no surrounding <i>CC#</i>
R1 counterbleeds R2	R1 applies too		/bind/	opacity—overapplication:
	late to destroy	$\emptyset \rightarrow i/C_C\#$	binid	• [i] inserted, despite lack
	environment for	$d \rightarrow \emptyset / \underline{\hspace{1cm}} \#$	bini	of surrounding <i>CC#</i>
	R2		[bini]	_

- A rule *underapplies* if there are surface instances of its structural description.
- A rule *overapplies* if there are instances in which it has applied, although the non-affected part of the structural description (the environment) is no longer present.

(The terms *underapplication* and *overapplication* come from Wilbur's (1973) discussion of reduplication. McCarthy 1999 adapts them for discussing opacity.)

2. Baković 2007, Baković 2011: dissociating opacity-vs-transparency from interaction type

Baković shows that the typology is **not**...

	transparency	underapplication opacity	overapplication opacity
feeding	✓		
bleeding	✓		
counter-feeding		✓	
counter-bleeding			✓

...but rather (at least)...

	transparency	underapplication opacity	overapplication opacity
feeding	✓	✓	✓
bleeding	✓		
counter-feeding	✓	✓	
counter-bleeding	✓		✓
other	✓	✓	

...so process-interaction types actually don't account for opacity vs. transparency.

Let's go through Baković's typology:

3. Counterfeeding-on-environment² \rightarrow underapplication

Bedouin Arabic

UR badw
$$a \rightarrow i / _ \sigma$$
 $n/a = \mathbb{P}$ $G \rightarrow V / C _ \#$ badu $= \mathbb{Q}$ badu 'Bedouin' (Baković 2007, p. 222; from McCarthy 1999)

• What would be the transparent outcome?

4. Counterfeeding-on-focus → underapplication

Bedouin Arabic again

UR katab
$$i \rightarrow \emptyset / _ \sigma$$
 $n/a = \mathbb{P}$
 $a \rightarrow i / _ \sigma$ kitab = \mathbb{Q}
SR kitab 'he wrote' (Baković 2007, p. 222; from McCarthy 1999)

- o What would be the transparent outcome?
- o Both of these counterfeedings are hard for OT (why?). But counterfeeding-on-focus is fairly salvageable. Let's discuss some options...

5. "Surface-true counterfeeding" \rightarrow transparency!

Educated Singapore English: Baković 2011 p. 16; from Mohanan 1992, Anttila et al. 2008

- o In an SPE analysis, what rule order do we need to get [lɪs]? Why does B. call this result "transparent"?
- o OT analysis?

² Term from McCarthy 1999.

6. Underapplication without counterfeeding (Baković to appear p. 8ff.)

"Disjunctive blocking" (p. 8)

o How would this rule schema apply to these words: $V \rightarrow [+stress] / __(C_2V)C_0 \# ?$

/badupil/ /pikomsak/

Remember how expansion conventions work—abbreviates two rules, disjunctively ordered.

o In what sense does underapplication result?

<u>Nonderived-environment blocking</u>—roughly, when when a rule can't apply if its structural description was already met in the underlying form (before morphology):

e.g.
$$a \rightarrow i /$$
_ C# /likat/ fails to apply /noka/+/l/ \rightarrow [nokil]

Restriction to certain morphological classes (Estonian final V deletion in nominative singular only)

Optionality (French schwas may or may not delete)

<u>Lexical exceptions</u> (English *obesity* fails to undergo 'trisyllabic shortening')

7. "Fed counterfeeding" on environment \rightarrow underapplication

Lardil

Glosses: (9a) 'rock cod', (9b) 'oyster species', (9c) 'boomerang' (Baković to appear, p. 6; from Hale 1973)

- o Why "fed counterfeeding" here?
- o Ways to do this in OT?

-

 $^{^3}$ Baković gets the term from Kavitskaya & Staroverov 2009

8. Fed counterfeeding on focus = "Duke of York" derivations⁴→ underapplication Nootka

Labialization:

$$[+dors] \longrightarrow [+rnd] \; / \; [+rnd] \; \underline{\hspace{1cm}} \qquad q^w \qquad \qquad q^w$$

Delabialization:

$$[+dors] \longrightarrow [-rnd] \; / \; \underline{\hspace{1cm}}]_{\sigma} \qquad \qquad q \qquad \qquad k \\ [mu: q \;] \qquad [\hbar aju+q^wi] \qquad [\!\! 4a; k + \!\! \int \!\! i \widehat{t^4} \!\!]$$

Glosses: (11a) 'throwing off sparks', (11b) 'ten on top', (11c) 'to take pity on' (Baković to appear, p. 7; from Sapir & Swadesh 1978, McCarthy 1999, 2003, 2007a, 2007b)

- o Why "fed counterfeeding"?
- o Ways to do this in OT?

9. Counterbleeding \rightarrow overapplication

Yokuts

UR
$$?ili:+1$$
 $[+long] \rightarrow [-high]$ $?ile:1 = \mathbb{P}$ cf. $/?ili:+hin/ \rightarrow [?ile:hin]$ 'fans'
 $V \rightarrow [-long] / _ C\#$ $?ile1 = \mathbb{Q}$ cf. $/pana:+1/ \rightarrow [panal]$ 'might SR $?ile1$ 'might fan' arrive'
(Baković 2007, p. 223; from McCarthy 1999)

- What would be the transparent outcome?
- o Any ideas for how to do this in OT?

⁴ Term from Pullum 1976

10. Counterbleeding by mutual bleeding → transparent!

Lardil

- o In what sense is this mutual bleeding?
- o OT analysis?

11. "Self-destructive feeding"→ overapplication!

Turkish

- o What would be the transparent outcome?
- o Any ideas for how to do it in OT?

12. "Non-gratuitous feeding" → overapplication

Classical Arabic

UR ktub
$$\emptyset \rightarrow V_i / \# _CCV_i \quad uktub = \mathbb{P}$$

$$\emptyset \rightarrow \mathbb{P} / \# _V \quad \text{Puktub} = \mathbb{Q} \quad \text{cf. /al-walad-u/} \rightarrow \text{[Palwaladu]}$$
 SR Puktub 'write (MASC SG)!' 'the boy (NOM)' (Baković 2007, p. 231; from McCarthy 2007b)

- o What would be the transparent outcome?
- o Ideas for how to do this in OT?

13. "Cross-derivational feeding" \rightarrow overapplication, in a sense

Lithuanian: Baković 2007, p. 234ff.; see there for references prefix obstruents assimilate in voicing and palatalization: 'to climb up' 'to slander' at-ko:p^jt^ji ap-kal^jb^jet^ji ad-gaut^ji 'to get back' ab-gaut^ji 'to deceive' at^j-pi^jaut^ji 'to cut off' ap^j-t^jem^jd^ji:t^ji 'to obscure' ad^j-b^jek^jt^ji ab^j-g^ji:d^ji:t^ji 'to run up' 'to cure (to some extent)' (p. 234)epenthesis between stops of the same place (also palatalization before [i]): 'to make fit well' at^ji-taik^ji:t^ji ap^ji-put^ji 'to grow rotten' 'to spill something on' at^ji-t^jeis^jt^ji 'to adjudicate' ap^ji-p^ji:l^jt^ji 'to give back' ap^ji-bar^jt^ji 'to scold a little bit' at^ji-duot^ji atⁱi-dⁱetⁱi 'to delay' ap^ji-b^jer^jt^ji 'to strew all over' (234)

- Baković 2005 argues that the right analysis here (and in English epenthesis before /-d/ and /-z/) should capture the idea that epenthesis occurs where a geminate *would have occurred* (because of assimilation).
 - Assimilation <u>would have fed</u> epenthesis (which in Baković's analysis is only triggered between identical segments), but assimilation doesn't end up needing to apply (bleeding).
- He's proposing a typological prediction:
 - assume OCP constraints are strict: they penalize only perfect identity, not near-identity
 - So, there's no reason for epenthesis to break up near-identical clusters...
 - ...unless an independently occurring assimilation process would have made them identical.
- o Let's try to reconstruct Baković's OT analysis.
- o Any ideas for how to capture Baković's idea in SPE? Are we stuck with an epenthesis rule that recapitulates the assimilation facts?

14. Paper-topics recap

Here's a summary of areas we've seen so far where theories make different predictions:

- (self-)feeding vs. (self-)counterfeeding—but there are many sub-types
- (self-)bleeding vs. (self-)counterbleeding—but there are many sub-types
- iterative vs. non-iterative rule application
- interaction (or not) of multiple rule targets
- directional rule application
- optionality: global vs. local vs. unique-target; iterative vs. all-or-nothing

coming up

- look-ahead: myopic vs. fell-swoop/global-power/peeking derivations (cf. "sour grapes" phenomena)
- conspiracies vs. constraint-specific repairs
- saltation
- exchange rules: e.g., [α voice] \rightarrow [$-\alpha$ voice] / __#
- rule-ordering paradoxes

15. Global power

- Can a rule "see" anything other than its immediate input? (see Lithuanian)
- In SPE, rules aren't supposed to have *global power* (term from Lakoff (1970); cf. Hill 1970 for a proposal that Cupeño has a "peeking rule" that can look ahead in the derivation.
- But global power follows naturally in OT: every candidate is the very end of a derivation. So now we have a type of phenomenon that OT can handle easily but SPE can't. So how robust are the claimed cases?

16. Case of global power in Walker 2010

• Basic metaphony rule again, as seen in many Romance "dialects":

basic rule:
$$\{\acute{e},\acute{o}\} \rightarrow [+high] / _C_0 + C_0 \begin{bmatrix} +syll \\ +high \end{bmatrix}$$

• Venetan version (inventory: $[i,e,\varepsilon,a,u,o,o]$)—more info than we saw last time

tense Vs raise	kals-ét-o móv-o	kals-ít-i m ú v-i	'sock (m. sg/pl)' 'move (1 sg/2 sg)'
lax or low Vs don't	gát-o	g á t-i	'cat (m sg/pl)'
[hi] can spread <u>through</u> unstr. V	órden-o	ú rd i n-i	'order (1 sg/2 sg)'
unless that V is /a/	lavór-a-v-a	lav ó r- a -v-i	'work (1 sg [3sg?] perf/2 sg impf)'
no spreading unless [+hi] will get all the way to the stressed V	ángol-o pérseg-o	ángol-i p é rseg-i	'angel (m sg/pl)' 'peach (m sg/pl)'

- Spreading shows "look-ahead"—it sees all the way to the end of its iterative application (hypothetical *[ángul-i], *[pérsig-i], where stressed V is still not high)
 - if the result doesn't solve the fundamental problem of the unraised stressed vowel, then no spreading is done at all ("sour grapes")
- o Let's sketch a rule analysis to see why this is problematic.
- o Let's develop an OT analysis.
- See (Kaplan 2011) for a seemingly contrasting case of *non*-lookahead or "**myopia**" in Chamorro.

17. Classic look-ahead: (Hill 1970)'s "peeking" rule in Cupeño

Uto-Aztecan language from Southern California with no known speakers today [(Lewis 2009)].

• Read the derivations from left to right:

Figure 1. Application of Rules to Examples (1)-(13) of Section 1	Figure 1. A	pplication of	of Rules to	Examples ((I)- $(I3)$) of Section 1.
--	-------------	---------------	-------------	------------	-------------	-----------------

	Underlying	Α	В	C	D	\mathbf{E}	Final	
	Forms	Vowel	-ine, yaxe	a-Reduction	HAB	7 In-	Form	
		Deletion	Reduction			sertion	ı	
(1)	cí, HAB	cí, HAB			cí	cí ^{>}	cí ²	
(2)	hú, HAB	hú, HAB			hú	hú>	hú?	
(3)	yélice-ine, HAB	yélic-in, HAB	yélic-i, HAB		yélic-i		yélici	
(4)	céle-ine, HAB	cél-in, HAB	cél-i, HAB		cél-i		céli	
(5)	k™áwe-yaxe, HAB	k™áw-yax, HAB	kwáw-ya, HAB	k™áw-ye, HAB	kwáw-ye		kwáwye	
(6)	qá ⁷ aye-yaxe, HAB	qá ³ ay-yax, HAB	qá ² ay-ya, HAB	qa ³ ay-ye, HAB	qá ² ay-ye		qá ⁷ aye	
(7)	píne ⁷ wexe, HAB	píne ⁷ wex, HAB			píne ² wex		píne ⁾ wex	
(8)	cáșpele, HAB	cáșpel, HAB			cáspe ⁷ el		cáșpe ² el	
(9)	pácike, HAB	pácik, HAB			páci ⁷ ik		páci ⁷ ik	
(10)	qáwe, HAB	qáw, HAB			qá ⁷ a ⁷ aw		qá ² a ² aw	
(11)	cále, HAB	cál, HAB			cá ² a ² al		cá?a?al	
(12)	tĕwĕ, HAB	téw, HAB*			té ² e ² ew		té ² e ² ew	
(13)	hel ^y épe, HAB	hel ^y ép, HAB			hel ^y é ^{>} e ^{>} ep		helyé ^y e ^y ep	(Hill p. 536)

- Step D, Habilitative Formation, adds glottal stop(s) and copied vowel(s) only if the word ends in a consonant at this point in the derivation.
 - o Let's practice transformation rule notation by writing the basic rule.
- The key is that Habilitative copying applies to the extent needed to provide two syllables following the stressed syllable.
- o So what's the look-ahead issue? Let's step through the derivation for (13) and think about the first application of copying.
- Hill points out that of course we *can* write rules that will do this without look-ahead, but they seem to miss the point about word shape.

18. Constraint-specific repair

• Latin American varieties of Spanish, rather abstract analysis (Harris 1983?):

o Let's try an OT translation. What issues do we encounter? Note /rej/ \rightarrow [rej], /karakol+es/ \rightarrow [karakoles]

19. Saltation

- Term coined by Bruce Hayes, as far as I know, but related to use by (Lass 1997).
- White (2012), investigating the learnability of these cases, gathers as many real ones as he can find. There are not many! But here's one, from Campidanian Sardinian (Indo-European lang. from Italy with 345,000 speakers):

$$/p/ \rightarrow [\beta] / V_{_}$$
, but [b] undergoes no change (and similarly for other stops) $/\underline{d_{!!} p_{ayu} s:u binu}/ \rightarrow [\underline{d_{!!} \beta_{ayu} s:u b\tilde{u}}]$ (Bolognesi 1998) p. 30

o Why is this problematic in OT? Let's fill in the tableaux to see.

/d̞:i paɣu/	
a d;i payu	
b d;i bayu	
с d:i фауи	
<i>[∞]d</i> d;i βaγu	

/s:u	binu/	
a siu	pĩu	
ℱb siu	bĩu	
c siu	φĩu	
d siu	βĩu	

20. Exchange rules

- These are common in tone sandhi. Here's a case from Zhang, Lai & Sailor (2006), Taiwanese (i.e. Southern Min; Sino-Tibetan language from Taiwan and China with 47 million speakers)
- Taiwanese has 5 "unchecked" tones (tones that occur in sonorant-final or open syllables).
- When non-XP-final, they all change:
 - (3) Taiwanese "tone circle" for non-checked syllables:

(Zhang & al. 2nd page)

- o Why is this problematic in OT? (See Mortensen 2006 for a framework).
- See Moreton (1996) for extensive OT discussion of exchange rules and some other types of case.

21. If we have time: an example of a rule-ordering paradox

• Example from Icelandic (Indo-European language from Iceland with 250,000 speakers). Anderson 1974, ch. 10

syncope, roughly: certain unstressed
$$Vs \rightarrow \emptyset / C$$
 {1,r,n,ŏ,s}+V u-unlaut: $a \rightarrow \ddot{o} / C_0 u$ (where "u" usu. = [Y], " \ddot{o} " = [α])

barn	'child'	b ö rn+um	'child-dat.pl.'
svangt	'hungry-neut.nom.sg.'	sv ö ng+u	'hungry-neut.dat.sg.'
kalla	'[I] call'	k ö ll+um	'[we] call'
/1	1 1 1 1		

(lax, unstressed vowels delete __V)

ham a r	'hammer'	hamr+i	'hammer-dat.sg.'
fifill	'dandelion'	fifl+i	'dandelion-dat.sg.'
morgunn	'morning'	morgn+i	'morning-dat.sg.'
(ll. nn stand f	or long <i>l</i> s and <i>n</i> : syncor	pe is meant to be applic	cable)

- o If syncope precedes umlaut, what kind of process interaction results for the UR /katil+um/ 'kettle-dat.pl'? For /jak+ul+e/ 'glacier-dat.sg.'?
- What about umlaut before syncope for /katil+um/? /jak+ul+e/?
- → Whether a rule ordering is feeding, bleeding, etc. depends on the particular forms involved!

$+r/\mathcal{O}$			+um	
/katil/	ketil+l	'kettle'	k ö tl+um	'kettle-dat.pl'
/ragin/	regin	'gods'	r ö gn+um	'gods-dat.pl'
/alen/	alin	'ell of cloth'	ö ln+um	'ell of cloth-dat.pl'

+ul+r			+ul+e, +ul+an		
/bagg/	bögg+ul+l	'parcel'	b ö gg+l+i	'parcel-dat.sg.'	
/jak/	jök+ul+l	'glacier'	j ö k+l+i	'glacier-dat.sg.'	
/þag/	þög+ul+l	'taciturn'	þ ö g+l+an	'taciturn-masc.acc.sg.'	

- If the rules are right, we have an ordering paradox!
- See (Kiparsky 1984) for a solution in Lexical Phonology.
- I don't think rule-ordering paradoxes form a unified phenomenon. But as a search term, "ordering paradox" will turn up some interesting puzzles worth reinvestigating.

References

Anderson, Stephen R. 1974. The Organization of Phonology. New York: Academic Press.

Anttila, Arto, Vivienne Fong, Štefan Beňuš & Jennifer Nycz. 2008. Variation and opacity in Singapore English consonant clusters. *Phonology* 25(02). 181–216. doi:10.1017/S0952675708001462.

Baković, Eric. 2005. Antigemination, assimilation and the determination of identity. *Phonology* 22. 279–315.

Baković, Eric. 2011. Opacity deconstructed. The Blackwell companion to phonology. Blackwell.

Bolognesi, Roberto. 1998. The phonology of Campidanian Sardinian: a unitary account of a self-organizing structure. Holland Academic Graphics.

Elfner, Emily. to appear. Stress-epenthesis interactions in Harmonic Serialism. In John J McCarthy & Joe Pater (eds.), *Harmonic Grammar and Harmonic Serialism*. Equinox Press.

Hale, Kenneth. 1973. Deep-surface canonical disparities in relation to analysis and change: An Australian example. In Thomas Sebeok (ed.), *Current Trends in Linguistics*, vol. 9: Diachronic, Areal and Typological Linguistics, 401–458. The Hague: Mouton.

Harris, James. 1983. Syllable Structure And Stress in Spanish: a Nonlinear Analysis. Cambridge, Mass.: MIT Press.

Hill, Jane. 1970. A peeking rule in Cupeño. *Linguistic Inquiry* 1. 534–539.

Kaplan, Aaron F. 2011. Harmonic Improvement without Candidate Chains in Chamorro. *Linguistic Inquiry* 42(4). 631–650. doi:10.1162/LING a 00063.

Kavitskaya, Darya & Peter Staroverov. 2009. Fed counterfeeding and positional reference: re-solving opacity. manuscript.

Kenstowicz, Michael & Charles Kisseberth. 1979. *Generative Phonology: Description and Theory*. New York: Academic Press.

Kiparsky, Paul. 1984. On the lexical phonology of Icelandic. In C. C Elert, I. Johansson, E. Stangert, C. C Elert, I. Johansson & E. Stangert (eds.), *Nordic prosody III*, 135–164. Ume? University of Ume? Lakoff, George. 1970. Global Rules. *Language* 46(3). 627–639.

Lass, Roger. 1997. Historical linguistics and language change. Cambridge University Press.

Lewis, M. Paul (ed.). 2009. Ethnologue: languages of the world. 16th ed. Dallas, TX: SIL International.

Lloret, Maria-Rosa & Joan Mascaró. 2007. Depalatalization in Spanish revisited. In Fernando Martínez-Gil & Sonia Colina (eds.), *Optimality-Theoretic Studies in Spanish Phonology*, 74–98. John Benjamins Publishing Company.

McCarthy, John J. 1999. Sympathy and phonological opacity. *Phonology* 16. 331–399.

McCarthy, John J. 2003. Sympathy, cumulativity, and the Duke-of-York gambit. In Caroline Féry & Ruben van de Vijver (eds.), *The Syllable in Optimality Theory*, 23–76. Cambridge: Cambridge University Press.

McCarthy, John J. 2006. Restraint of Analysis. *Wondering at the Natural Fecundity of Things: Essays in Honor of Alan Prince*. Linguistics Research Center. http://repositories.cdlib.org/lrc/prince/10.

McCarthy, John J. 2007a. *Hidden generalizations: phonological opacity in Optimality Theory*. London: Equinox.

- McCarthy, John J. 2007b. Derivations and levels of representation. In Paul de Lacy (ed.), *The Cambridge handbook of phonology*. Cambridge: Cambridge University Press.
- McCarthy, John J. 2007c. *Hidden Generalizations: Phonological Opacity in Optimality Theory*. London: Equinox.
- McCarthy, John J. 2008. The Gradual Path to Cluster Simplification. *Phonology* 25(02). 271–319. doi:10.1017/S0952675708001486.
- Mohanan, K.P. 1992. Describing the phonology of non-native varieties of a language. *World Englishes*. 111–128.
- Moreton, Elliott. 1996. Non-computable functions in Optimality Theory. Amherst, Mass.
- Mortensen, David. 2006. Logical and substantive scales in phonology. University of California, Berkeley Ph.D. dissertation.
- Pater, Joe. 2011. Serial Harmonic Grammar and Berber syllabification. *Prosody matters: essays in honor of Elisabeth O. Selkirk.* London: Equinox Press.
- Prince, Alan & Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar*. Malden, Mass., and Oxford, UK: Blackwell.
- Pullum, Geoffrey. 1976. The Duke of York gambit. Journal of Linguistics 12. 83–102.
- Sapir, Edward & Morris Swadesh. 1978. *Nootka texts: Tales and ethnological narratives, with grammatical notes and lexical material*. New York: AMS Press.
- Shaw, Patricia. 1985. Modularism and substantive constraints in Dakota lexical phonology. *Phonology yearbook* 2, 173–202.
- Sprouse, Ronald. 1997. A case for enriched inputs. Berkeley, CA.
- Walker, Rachel. 2010. Nonmyopic Harmony and the Nature of Derivations. *Linguistic Inquiry* 41(1). 169–179. doi:10.1162/ling.2010.41.1.169 (25 October, 2010).
- White, James. 2012. Evidence for a learning bias against "saltatory" phonological alternations in artificial language learning. Paper presented at the Linguistic Society of America Annual Meeting, Portland, OR
- Wilbur, Ronnie Bring. 1973. The phonology of reduplication. Indiana University Linguistics Club.
- Zhang, Jie, Yuwen Lai & Craig Sailor. 2006. Wug-testing the "tone circle" in Taiwanese. In Donald Baumer, David Montero & Michael Scanlon (eds.), *Proceedings of the 25th West Coast Conference on Linguistics*. Somerville, MA: Cascadilla Proceedings Project.