To do

- □ Read Lloret 2004 for this Thursday (Oct. 7)
- □ For Tuesday (Oct. 13), read **Pierrehumbert 2002**

_ will present Pierrehumbert's arguments and model

will discuss how Pierrehumbert's approach would apply (or not!) to some of the cases we're seeing this week (morphological-paradigm effects)

□ For next Thursday (Oct. 15), read Wagner 2012

_ will present Wagner's arguments and examples

will discuss how Wagner's approach would apply (or not!) to some of the cases we saw in weeks 0 and 1 (phrasal phonology and the like)

Overview: There are many subtopics that could fall under the heading "phonology-morphology interface". The ones we'll look at are: morphology \rightarrow phonological domains, phonology \rightarrow morpheme shape and order, and, next time, morphological paradigms.

1. Edge-driven p-words

I don't want to spend *too* much time on this, because the issues are very similar to those we saw for p-phrases.

1.1 What is a p-word for?

- Domain of footing
 - Samoan (Zuraw, Yu & Orfitelli 2014): right-aligned trochees

(móe)	'sleep'	mo(é-ŋa) 'bed'	this suffix must be included in the domain
(mái)le	'dog'		*Aí outranks foot alignment
va(?ái)	'look'	(và?a)-va(?ái)-ŋa	'looking after'

• What about this suffix, though?

(lóka) 'arrest' (lòka)-(ína) 'arrest-ergative'

- Domain of phonotactic restrictions? (Though there could also be smaller domains—root, foot (Harris 2012))
 - I'm actually not so convinced there are great examples that don't follow from footing or syllabification

- Domain of segmental processes?
 - Selkirk 1980, Classical Sanskrit nati rule—brief reminder

 $\begin{array}{c} p\text{-word} \\ n \rightarrow \dot{n} \ / \ \ ... \ \{ \dot{s}, \, r, \, \dot{r}, \, \ddot{r} \} \ [-cor]_0 \ _ \ \{ V, \, n, \, m, \, y, \, v \} ... \end{array}$

(stom suffix)	ka r ma n + ā	>	karma ņ ā
$(\text{sterm surfix})_{\omega}$	dū s + a na m	>	dūṣa ṇ am
	b r aḥma n - y aḥ	>	braḥma n yaḥ
$(\text{stem})_{\omega}(\text{stem})_{\omega}$	k ş ip - nu ḥ	>	kṣip n uḥ

 But Raffelsiefen 1999 argues that the good examples in English are all actually just the result of footing/syllabification (aspiration, glottalization, tapping)

e.g. $(im)_{\omega}([p^h]rec(se)_{\omega})$: obligatory place assimilation of *in*- can't depend on p-word structure

- Unit of speech planning (Wheeldon & Lahiri 1997; Wheeldon & Lahiri 2002; Sternberg et al. 1978)
 - Method: prepared sentence production: you see *het water* ('the water'), you hear *Wat zoek je?* ('What do you seek?''). You have a couple of seconds to prepare a full-sentence response, then you respond when you hear the signal. How long does it take you to initiate speech ("production latency")?
 - Result: time to respond depends on *number of p-words* in the sentence

2 p-words: 380 msec	(ik zoek het) $_{\omega}$ (water) $_{\omega}$	'I seek the water'
2 p-words: 380 msec	$(ik zoek)_{\omega} (water)_{\omega}$	'I seek water'
3 p-words: 394 msec	$(ik zoek)_{\omega} (vers)_{\omega} (water)_{\omega}$	'I seek fresh water'

1.2 What determines p-word boundaries?

• Very commonly: left edge of each lexical word initiates a new p-word

(Zuraw, Yu & Orfitelli 2014, p. 273)

- But there can be many wrinkles, e.g....
 - Disyllabic suffix gets to form its own p-word
 - Suffix status depends on whether it's V-initial or C-initial (Raffelsiefen)

1.3 Against p-words?

- Worst case would be as in Pak & Friesner (2006) for phrases: contradictory domains for different processes
- Schiering, Bickel & Hildebrandt (2010): a language typically needs to define 2 or 3 domains between the foot and the phonological phrase (though not necessarily contradictory)

1.4 To find out more about p-words

- Hall & Kleinhenz 1999: a collection of papers
- Website for a proseminar we did in 2006 on p-words (includes bibliography): http://www.linguistics.ucla.edu/people/zuraw/courses/prosword_2006.html
- May 2008 special issue of *Linguistics*

2. Allomorphy vs. normal phonology

• Example for discussion: English *a/an* alternation. What governs it? How should it work?

• Tranel 1996 gives first thorough OT treatment of *allomorphy*, in the sense of alternations between allomorphs that can't be explained by the regular phonology.

				71		
(2))	liaison contexts		elsewhe	type of final-
			before V	before C	re	C behavior
					(pause)	
	A. petit	"small"	peti.ț V	peti <t> . CV</t>	peti <t> //</t>	latent: (t)
	B. net	"clear"	$\begin{array}{ll} ne \underline{t}. V & \sim & ne. \underline{t} \\ V \end{array}$	neț. CV	neț //	fixed: t
	C. huit	"eight"	hui.t V	hui <t> . CV</t>	huit //	mixed: (t)-t

French final consonants: 3 types

 $\underbrace{\text{ixed: (t)-t}}_{\text{(p. 1 of ROA ms.)}}$

- Tranel's solution: /pəti(t)/, /nɛt/, {/qi(t)/, /qit /}
 - Where "(t)" is missing an X slot on the skeletal tier
- When an underlying representation provides multiple options, the output form can be in correspondence to any of them without faithfulness penalty.

• Instead of getting into the nuts and bolts of how consonants get realized or not in this analysis, let's try applying Tranel's general idea to Korean suffixes.

V		С	
k ^h i-ko	'big and'	kʌm-ko	'black and'
k ^h i-n	'big'	kлm- i n	'black'
k ^h i-mni'-ta	'big-formal'	kʌm-sɨmni-ta	'black-formal'
k [⊾] i-mj∧n	ʻif big'	kлm- i mjлn	'if black'
k ^h i-si-ta	'big-honorific'	kлm-isi-ta	'black-honorific'
kʰo-ka	'nose-nominative'	pam-i	'night-nominative'
k ^h o-nin	'nose-topic	pam- i n	'night- <i>topic</i>
kho-wa	'nose and ₁ '	pam-kwa	'night and1'
kʰo-ɾaŋ	'nose and ₂ '	pam-iraŋ	'night and ₂ '

- Idea in Prince & Smolensky (1993), McCarthy & Prince (1993): the phonological grammar is responsible for morpheme position
- Input is a bag of morphemes ({/kæt/, /z/})
 - or maybe there is morphological structure that the surface order should be faithful to (see Ryan 2010 on conflict between syntactic scope and "morphotactics")
- ALIGN constraints determine surface order
 - Let's try it for the simple case of *cats*
- This could lead to some interesting outcomes, especially if the ALIGN constraints are nonbinary—that is, they care not just whether a morpheme is at an edge, but how close it is.
 - Kashaya (Buckley 1997, data from Oswalt 1961): Pomoan, California, "several dozen" speakers (<u>http://linguistics.berkeley.edu/~survey/languages/kashaya.php</u>)

pla	in verb	pluractional I	
a)	dahqotol-i	dahqotolta-i	'fail (to do)'
b)	dit'an-i	dit'anța-i	'bruise by dropping'
c)	duhlun'-i	duhlun'ta-i	'pick (berries)'
d)	dajet∫'-i	dajet∫'ta-i	'press hand against'
e)	bilaq ^h am-i	bilaq ^h atam-i	'feed'
f)	simaq-i	simataq-i	'go to sleep'
g)	qa∫oq ^w -i	qa∫otaq ^w -i	'get well'
pla	in	pluractional II	
h)	dat∫a-i	dat∫ati	ʻgrab'
i)	qawa-i	qawa <u>t</u> -i	'chew'
j)	sis'a-i	sis'at-i	'leach'
k)	pihmi-i	pihmi <u>t</u> -i	'see in detail'
1)	p ^h anem-i	p ^h anetm-i	'punch'
m)	p ^h i?jaq-i	p ^h i?ja <u>t</u> q-i	'recognize'
n)	p ^h at͡∫'oq ^w -i	p ^h at͡∫'ot̪q ^w -i	'stab'
ado	litional info		
0)	/?usaq-wa/	[?usahwa]	'did he wash his face?'
p)	/sima:q-me?/	[sima:hme?]	'go to sleep!'
q)	/qa∫o:qw-ṯh/	[qa∫o:ht̪h]	'he isn't getting well'

- Yu (2007a, 2007b): what's wrong with this approach
 - Can't capture a case like Leti (Blevins 1999; Austronesian, Indonesia, endangered), where *-ni-* and *-i-* are infixes, though phonotactically they would make better prefixes
 - kaati 'carve' k-ni-aati 'carving' dèdma 'smoke' d-i-èdma 'smoking'
 - unless their ALIGN constraints are ranked lower than stems'?
 - Instead, an affix has a phonological subcategorization frame, such as "after a stressed syllable"
 - This could still be captured with ALIGN, but not word-edge-oriented ALIGN
- Paster (2009) goes further: morphology feeds phonology (no backtracking)
 - Morpheme order can be determined by a subcategorization frame like *ni*: [[C] __...]
 - Morphology can see the underlying phonological content of morphemes, but not the eventual surface forms
- Other good places to look for cases if you want to investigate: Wolf 2008; Myler in review

4. One last thing: phonological influences on how many times a morpheme occurs?

4.1 Multiple exponence

- Caballero 2011: Choguita Rarámuri (Uto-Aztecan, Mexico, 1000 speakers)
- Pluractionals can be marked with prefix, consonant mutation, *or both*

(3)	Singular čóni siríame	Pluractional o-čóni i-sérikame	Gloss 'become black' 'governor'	[AH 05 2:24/E1] ³ [BF 05 1:156/E1]
(4)	kapórame	kabórame	'be round'	[BF 05 1:155/E1]
	remarí	témuri	'young people'	[BF 05 1:155/E1]
(5)	kipá	i-kibá	'snow'	[SF 05 2:8/E1]
	sitákame	i-sirákame	'be red'	[BF 05 1:157/E1]
	mukí	o-mugí	'woman'	[BF 05 1:156/E1]
	ranára	a-tanára	'offspring'	[BF 05 1:156/E1]

(p. 3)

- Plus similar phenomena in applicatives (vowel mutation + suffix, or suffix + suffix), causatives (suffix + suffix).
- Caballero argues this happens when the output of the Stem 1 level (the part in [...] below) looks "less morphologically segmentable" (p. 8).
 - /bučé, ri/ \rightarrow (bučé)ri or (bučér), to avoid an unfooted syllable
 - If the post-tonic deletion option is taken, the result undergoes suffixation again at Stem 2 level (which also requires a final V)

Prosodic generalization	Examples
[' σ -C]–ti	[bučé-r]-ti-ma
	[aka-rá-r]-ti-ma
[' σ -C]–ki	[sú- n]- ki- ma
[]	[pá-s]-ki-ri
	Prosodic generalization ['σ -C]–ti ['σ -C]–ki

Table 2: Stem shape condition on derives stems with ME

4.2 Haplology

• Classic example (MacBride 2004, pp. 3-4):

	singular	plural
non-possessive	[dag]	[dag-z]
	[aks]	[aks-in]
possessive	[dag-z]	[dag-z]
	[aks-iz]	[aks-in-z]

- MacBride 2004: Maybe the reason why the same phonological material can do double duty is that plurality and possession are just morphemes that want the word to end in [z].
 - Careful, though: can we still get the plural or possessive of *maze*?
 - MacBride's constraints can refer to stem boundaries, like so PLURAL :]stem z
 - Because plural and possessive happen to be phonologically identical (and their constraints don't stipulate "novelty"), they can share a segment.
- How MacBride gets "subtractive" morphology
 - There are languages that do this more robustly, but I'll just use a small example from French that could be gaining in generality

singular	plural	
œf	Ø	'egg'
bœf	bø	'steer, ox'
ananas	anana	'pineapple' (not in Canada, probably not all speakers)
byt	by	'goal' (maybe some European speakers)

/ananas, PLURAL/	Dep	PLURAL: Segment]word	MAX-C
		where Segment] _{word} is novel	
ananas		*!	
🕝 anana			*
ananasa	*!		

(except that in French the PLURAL constraint applies only to a small set of words)

5. Next time, morphologically related groups of words: paradigm uniformity, paradigm gaps

References

- Blevins, Juliette. 1999. Untangling Leti Infixation. Oceanic Linguistics 38(2). 383-403.
- Buckley, Eugene. 1997. Explaining Kashaya infixation. In Matthew L Juge, Jeri L Moxley, Matthew L Juge & Jeri L Moxley (eds.), Proceedings of the Twenty-third Annual Meeting of the Berkeley Linguistics Society, 14–25. Berkeley, CA: Berkeley Linguistic Society.
- Caballero, Gabriela. 2011. Multiple Exponence and the phonology-morphology interface. In S Lima, Kevin Mullin & Brian Smith (eds.), *Proceedings of the North East Linguistics Society 39*. Amherst, MA: GLSA.
- Hall, T. Alan & Ursula Kleinhenz. 1999. Studies on the Phonological Word. John Benjamins Publishing.
- Harris, John. 2012. The foot as a phonotactic domain: "aw" and "wa" in English. UCL Working Papers in Linguistics 24.
- Lloret, Maria-Rosa. 2004. The phonological role of paradigms: the case of insular Catalan. *Contemporary approaches* to Romance linguistics: selected papers from the 33rd Linguistic Symposium on Romance Languages (LSRL), Bloomington, Indiana, April 2003, 275–298. John Benjamins Publishing.
- MacBride, Alex. 2004. A constraint-based approach to morphology. UCLA PhD dissertation.
- McCarthy, John J. & Alan Prince. 1993. Generalized Alignment. Yearbook of Morphology. 79-154.
- Myler, Neil. in review. Exceptions to the Mirror Principle and Morphophonological "action at a distance": The role of "word"-internal Phrasal Movement and Spell Out.
- Oswalt, Robert L. 1961. A Kashaya grammar (Southwestern Pomo).
- Pak, Marjorie & Michael Friesner. 2006. French Phrasal Phonology in a Derivational Model of PF. In Christopher Davis, Amy Rose Deal & Zabbal (eds.), *Proceedings of NELS 36*, vol. 2.
- Paster, Mary. 2009. Explaining phonological conditions on affixation: Evidence from suppletive allomorphy and affix ordering. Word Structure 2(1). 18–37. doi:10.3366/E1750124509000282.
- Pierrehumbert, Janet. 2002. Word-specific phonetics. Laboratory Phonology VII. Berlin: Mouton de Gruyter.
- Prince, Alan & Paul Smolensky. 1993. Optimality Theory. Blackwell.
- Raffelsiefen, Renate. 1999. Diagnostics for prosodic words revisited: the case of historically prefixed words in English. In T Alan Hall & Ursula Kleinhenz (eds.), *Studies on the phonological word*, 133–. John Benjamins Publishing Company.
- Ryan, Kevin M. 2010. Variable affix order: grammar and learning. Language 86(4). 758–791.
- Schiering, René, Balthasar Bickel & Kristine A. Hildebrandt. 2010. The prosodic word is not universal, but emergent. *Journal of Linguistics* 46(03). 657–709. doi:10.1017/S0022226710000216.
- Selkirk, Elisabeth. 1980. Prosodic domains in phonology: Sanskrit revisited. In Mark Aronoff, M. -L Kean, Mark Aronoff & M. -L Kean (eds.), *Juncture*, 107–129. Saratoga, CA: Anma Libri.
- Sternberg, S, S Monsell, R. L. Knoll & C. E. Wright. 1978. The latency and duration of rapid movement sequences: comparisons of speech and typewriting. In G.E. Stelmach (ed.), *Information processing in motor control and learning*, 117–152. New York: Academic Press.
- Tranel, Bernard. 1996. Exceptionality in Optimality Theory and final consonants in French. In Karen Zagona & Karen Zagona (eds.), *Grammatical Theory and Romance Languages*, 275–291. Amsterdam: John Benjamins.
- Wagner, Michael. 2012. Locality in phonology and production planning. In A McKillen & J Loughran (eds.), Proceedings of the Montreal-Ottawa-Toronto (MOT) Phonology Workshop 2011. Phonology in the 21st Century: In honour of Glyne Piggott. McGill Working Papers in Linguistics 22(1).
- Wheeldon, Linda & Aditi Lahiri. 1997. Prosodic Units in Speech Production. Journal of Memory and Language 37(3). 356–381. doi:10.1006/jmla.1997.2517.
- Wheeldon, Linda R. & Aditi Lahiri. 2002. The minimal unit of phonological encoding: prosodic or lexical word. Cognition 85(2). B31–B41. doi:10.1016/S0010-0277(02)00103-8.
- Wolf, Matthew. 2008. Optimal Interleaving: serial phonology-morphology interaction in a constraint-based model. University of Massachusetts Amherst.
- Yu, Alan C. L. 2007a. The phonology-morphology interface from the perspective of infixation. In Matti Miestamo & Bernhard Wälchli (eds.), *New challenges in typology: broadening the horizons and redefining the foundations*. Mouton de Gruyter.

Yu, Alan C. L. 2007b. A Natural History of Infixation. Oxford ; New York: Oxford University Press.

Zuraw, Kie, Kristine Mak Yu & Robyn Orfitelli. 2014. Word-level prosody in Samoan. Phonology 31(2). 271–327.