Class 8 (Week 4, T): Sideways interfaces III, getting evidence

To do

□ Read **Zhang**, **Lai & Sailor 2011** for Thursday.

Homework due a week from Thurs (Oct. 29)

Overview: How can we find out what generalizations are real to the speaker? How can we find out whether some generalizations are "better" than others (from a learner/speaker's perspective)?

1. Descriptive adequacy

- A <u>descriptively adequate grammar</u> of a language captures the psychologically real generalizations of that language
- So how do we know which generalizations are real?
- Example: English plurals

cat	kæt	kæts	реа	pi
sack	sæk	sæks	cow	kau
dog	dag	dagz	man	mæn
grub	дıлb	gındz	foot	fot
dish	dı∫	dı∫iz	wife	waif
fudge	fræ	fʌʤɨz	whiff	wıf

Figure 1. The plural allomorph in /-z/.

Berko's English-speaking adults (all highly educated) consistently gave the following plurals when presented with invented words (pp. 155-158):

wлg	wлgz	lлn	l∧n z
g∧tſ	g∧tſiz	nız	nız iz
kæ3	kæʒi z	kia	kıaz
toı	to.iz	tæs	tæsiz
hif	hi fs , hi vz		

(Berko 1958, p. 154)

• Conclusions we could draw about what a descriptively adequate grammar for English should look like?

- 2. Why is it hard to develop a descriptively adequate grammar in phonology?
- Words that the speaker already knows are uninformative!
 - They don't tell us anything about what generalizations the speaker has learned—she may have simply memorized that word.
- Constructing novel phonological situations to put speakers in is difficult.
 - Contrast this with syntax, where it's easy to construct sentences that—presumably—the speaker has not encountered before.
 - Discuss: phrasal phonology?
- If you took Ling 201A last year, you had guest lectures from Robert about loanword and L2 phonology
 - This seems like the perfect way to put speakers in a novel situation—like a natural wug test
 - What are some reasons it could be problematic though?

3. Limits of descriptive adequacy

- It's important to know that obstruent voicing assimilation and intersibilant epenthesis are really psychologically real (at least for /-z/ suffixation).
 - tells us something about the grammar of English
 - tells us that these processes are learnable, given the kinds of data available to English L1 learners
- But knowing that doesn't tell us anything about what learners might prefer
 - Is there any sense in which voicing *as*similation is "better" than voicing *dis*similation?
 - We might expect it to be, given that it's more widespread, and phonetically motivated.
 - But can we get evidence?

4. Explanatory adequacy

- Let a <u>linguistic theory</u> be a function that, given a finite set of utterances (the <u>learning data</u>), produces a grammar.¹
- An <u>explanatorily adequate theory</u> is one that will, given typical learning data, return a descriptively adequate grammar
- To build our linguistic theory, we need to know which generalizations people tend to extract from learning data.
 - Are some preferred to others?
 - Are there hard limits on learnability?

How can we investigate this...

5. Typology?

- Chomsky & Halle 1968 proceed more or less according to this logic:
 - Assume that languages change when members of one generation learn a slightly different grammar from the grammar that generated the data they were exposed to.
 - Further assume that these changes involve learners' constructing a more-preferred grammar than what would be strictly consistent with the learning data.
 - Therefore, if a certain phonological phenomenon is predominant cross-linguistically, it must be because learners prefer it (and therefore have introduced it into many languages).
 - Thus, we can tell what learners prefer by inspecting cross-linguistic tendencies.
- o I'm sure you can poke some holes in this—let's discuss (see (Blevins 2003), (Ohala 1992))

6. Poverty-of-the-stimulus experiments

(See Wilson 2006, White 2013 for other nice artificial-language cases; Zuraw 2007 for a real-language case.)

- Kim 2012: Teach people two alternations in an artificial language:
 - mapi + alop + a \rightarrow mapalopa ('dog's kiwi')
 - $nat + ipul + a \rightarrow nat \int ipula (`monkey's watermelon')$
- In testing phase, sneak in some items like
 - kito + ilip + a \rightarrow ?
- Discuss possible outcomes and what they'd tell us.

¹ Chomsky's definition of a linguistic theory is sometimes weaker: it need only define the set of possible grammars, independent of learning data (then the learner still needs a way to select the best grammar, given the data). This allows him to define the term **descriptively adequate theory**, which is a theory that includes, as possible grammars, a descriptively adequate grammar for every language—but does not necessarily return that grammar given learning data for that language. (If I understand Chomsky 1965, pp. 25-37, and other works correctly.)

(3)

7. Surfeit-of-the-stimulus experiments

• Recall Turkish voicing from last week:

a.	Alternating	g root-final plosive:			
	kanat	'wing'	kanad- i	'wing-Acc'	
	kanat-lar	'wing-pl'	kanad- i m	'wing-1sg.poss'	
b	. Nonalterna	ting voiceless plosi	ive:		
	sanat	'art'	sanat-i	'art-Acc'	
	sanat-lar	'art-pl'	sanat-im	'art-1sg.poss'	
c.	Nonalterna	ting voiced plosive	:		
	etüd	'etude'	etüd-ü	'etude-Acc'	
	etüd-ler	'etude-pl'	etüd-üm	'etude-1sg.poss'	(Inkelas 1995 n 3)

Becker, Ketrez & Nevins 2011:

• Turkish speakers could have learned various generalizations about whether a final obstruent alternates in voicing under suffixation.

FIGURE 1. Alternation rates in the lexicon, by single features.

٠

But which of these lexical trends have they actually learned?

(p. 89)

• Though there is a trend for the height effect, only the place and shape effects contributed significantly to the regression model.

(p. 100)

- Becker & al.'s conclusion
 - constraints like *VpV exist, and people can learn to rank/weight them highly.
 - constraints like *[V,+hi][C,-voice]V don't exist
 - Maybe too strong: see Hayes et al. 2009 for a case where "unnatural" constraints do show an effect on nonce words, just not a strong one

8. Processing of native-language rules (Zhang & Lai 2006)

- (2) Mandarin tone sandhi:
 - a. 213 → 35 / ____ 213
 xaw213-tcju213 → xaw35-tcju213 'good wine'
 tşan213-lan213 → tşan35-lan213 'exhibit'
 b. 213 → 21 / ____ {55, 35, 51}
 xaw213-su55 → xaw21-su55 'good book'

xaw213- $ian35 \rightarrow xaw21$ -ian35 'good person' xaw213- $k^han55 \rightarrow xaw21$ - k^han51 'good-looking' (Zhang & Lai p. 80)

- Various reasons to think that rule (b) should be "better" than rule (a):
 - Both rules simplify a complex contour, so that it is easier to realize in a shorter time (being nonfinal makes the first word shorter)—see (Zhang 2000).
 - But (a) also involves raising of pitch, which increases articulatory demands in a short time.
 - (b), on the other hand, involves straightforward simplification of the original tone
 - (Zhang & Lai discuss other reasons...)
- Mandarin speakers use both rules very frequently—but is (b) nevertheless "easier" than (a)?

Experiment

- Zhang & Lai presented Mandarin speakers with a variety of real and "wug" combinations.
 - Subjects hear two syllables and have to pronounce them as a single word.

- Subjects responded <u>more slowly</u>—higher log(ReactionTime) values—when applying rule (a), for all types of words (real and "wug").
 - (There are other interesting results concerning how the words were produced.)
- Zhang & Lai's conclusion: Mandarin speakers have learned both rules, but have more difficulty using the "unnatural" one.

9. Next time

- Whatever we didn't get to from today
- Plus, evidence from word choices that people make in literature, song, and normal speech

References

Becker, Michael, Nihan Ketrez & Andrew Nevins. 2011. The surfeit of the stimulus: analytic biases filter lexical statistics in Turkish laryngeal alternations. *Language* 87(1). 84–125.

Berko, Jean. 1958. The child's learning of English morphology. Word 14. 150–177.

- Blevins, Juliette. 2003. Evolutionary phonology. The emergence of sound patterns. Cambridge: Cambridge University Press.
- Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, Mass.: MIT Press.
- Hayes, Bruce, Kie Zuraw, Zsuzsa Cziráky Londe & Peter Siptár. 2009. Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85. 822–863.
- Inkelas, Sharon. 1995. The Consequences of Optimization for Underspecification. *Proceedings of the Twenty-fifth* Northeastern Linguistics Society. GLSA.
- Kim, Yun Jung. 2012. Do learners prefer transparent rule ordering? An artificial language learning study. Paper presented at the Chicago Linguistic Society.
- Ohala, John. 1992. What's cognitive, what's not, in sound change. In G. Kellerman, M. D Morrissey, G. Kellerman & M. D Morrissey (eds.), *Diachrony within Synchrony: Language History and Cognition*, 309–355. Frankfurt: Peter Lang Verlag.
- White, James. 2013. Bias in phonological learning: evidence from saltation. UCLA PhD dissertation.
- Wilson, Colin. 2006. Learning Phonology with Substantive Bias: An Experimental and Computational Study of Velar Palatalization. *Cognitive Science* 30(5). 945–982.
- Zhang, Jie. 2000. The effects of duration and sonority on contour tone distribution typological survey and formal analysis. University of California at Los Angeles.
- Zhang, Jie & Yuwen Lai. 2006. Testing the role of phonetic naturalness in Mandarin tone sandhi. Kansas Working Papers in Phonetics(28). 65–126.
- Zhang, Jie, Yuwen Lai & Craig Sailor. 2011. Modeling Taiwanese speakers' knowledge of tone sandhi in reduplication. Lingua 121. 181–206.
- Zuraw, Kie. 2007. The role of phonetic knowledge in phonological patterning: Corpus and survey evidence from Tagalog. *Language* 83. 277–316.