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Class 12 (Week 6, T): Inner workings of the grammar III, Constraint weighting

To do
[0 Read Moore-Cantwell & Pater for Thursday (Nov. 5)
= presenters, if you e-mail me your handout as a PDF by noon Thurs., I can print
[ Prepare at least one question or point for discussion on the reading
O Computing homework on harmonic serialism in OT-Help is due Thursday (Nov. 5). Turn
in write-up on paper; I enable file upload on CCLE for your 3 text files.

Overview: Last week we experimented with revising Classic OT’s assumptions about GEN, as in
Harmonic Serialism. What if we revised Classic OT’s assumptions about EVAL?

0. Discuss Belfast English data, especially Richness of the Base

1. Review
o What is a constraint? (There could be many answers to this question!)

o What are some things you know about EVAL?

o How does strict domination work?
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2. It doesn’t have to be this way

e What if instead of a constraint ranking, we just gave each constraint a number.
o Discuss some plausible ways we could make EVAL work (fill in violations first, as warm-up—

leave rightmost column blank):

/hat, jooga/ NOGLIDE ALIGN DEP-C | *OBSTRUENT- | IDENT(nas)
INITIALSYLLABLE | (Stem,R; Syll, R) NASAL
weight: 10 weight: 8 weight: 3 weight: 2 weight: 1 harmony
hat;.j20.ga
ha.tij>0.ga

hat;.ngj>0.ga

Qo [T

hanj.ngj>0.ga

3. How Harmonic Grammar does it

A candidate’s “harmony” is the weighted sum of its violations
o Fill in the last column of the tableau above
¢ The winner is the candidate with the best harmony
* Negative signs: Some people make the weights negative, some make the violations negative,
some do neither.
= FEither way, the closer the harmony is to zero, the better the candidate is.
= Unless you can have constraints that bestow bonuses rather than penalties?

e Some key references: Legendre, Miyata & Smolensky 1990; Legendre, Sorace & Smolensky
2006; Boersma & Pater 2008; Potts et al. 2010

4. Can Harmonic Grammar ever make a candidate win that would be harmonically
bounded in Classic OT?

o Fill in violations (inspired by Woleaian—Sohn 1975)
o In OT, which candidates are harmonically bounded and which aren’t (could win under some
ranking)?
o Is there a weighting of the constraints that could make any of the harmonically bounded
candidates win under Harmonic Grammar?
= Hint: you will have to think back to high school and solve a system of inequalities!

/malamara/ *aCa IDENT(l0)
weight: weight: harmony
a malamara
b melamera
¢ melamara
d malemara
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5. Using only non-harmonically bounded candidates, can Harmonic Grammar produce a
different typology?

o Fill in violations
o What is the OT typology? (i.e., is a & ¢ a possible language? a & d? etc.)

o What is the Harmonic Grammar typology?

/bla/ *COMPLEXONSET Max-C
harmony

a bla
b ba

/spli/ *COMPLEXONSET Max-C
harmony

c spli
pli
e pi

6. How to turn this into a theory of variation: Noisy Harmonic Grammar

e  We’ve got a number for every candidate, not just the winner—can’t we use that somehow?

¢ Noisy HG’s solution (see Boersma & Pater 2008 for references)
= Don’t use those numbers directly, but add some noise to each constraint’s weight every time
o Let’s use a random-number phone app to generate a noise value for each constraint and see

what happens.
=  The random number should be drawn from a normal (bell-curve) distribution, centered
on 0.
in * ALVEOLARRHOTIC *DENTAL
grammar’s weight: 1.5 grammar’s weight: 1
noise this time: noise this time: average harmony on
weight this time: weight this time: harmony | this occasion
a tri *
b *

e To know each candidate’s probability of winning, we can either simulate (easier) or use
numerical integration (harder).
e Software
= OTSoft and Praat both support noisy HG
= including a way to learn weights (Gradual Learning Algorithm—we’ll talk about this
next week)
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7. How to turn this into a theory of variation: Maximum Entropy
¢ Instead of using noise, we turn each candidate’s harmony directly into a probability of being

chosen.

= Let’s fill it in: the last column will be the candidate’s probability

/tei/ * ALVEOLARRHOTIC *DENTAL share of total
grammar’s weight: 1.5 | grammar’s weight: 1 | harmony g harmony g harmony
a tri *
b i *
total:

o Probability is usually presented using this expression—can we pick it apart and convince
ourselves thatt it’s equivalent to what we just did?

p(w)

— l e—):iwl'ci(w)
Z

= @ is a candidate

= p(w) is that candidate’s probability of being uttered, according to the grammar

= w;is the weight of the ith constraint

=  (Ci(w) is the number of constraints that the ith constraint assigns to candidate @

= and Z =Y e TG

o Can a candidate have a probability of zero? one?

8. More on MaxEnt

Why exponentiate?

= Because it makes the math of learning weights work (see below)

Intellectual roots

= information theory: Jaynes (1957)
= cognitive science: Smolensky (1986)
= computer science: Berger, Della Pietra & Della Pietra (1996), Della Pietra, Della Pietra
& Lafferty (1997)
= as an implementation of OT’s GEN+EVAL architecture: Goldwater and Johnson (2003)
= a MaxEnt classifier is basically the same thing as a logistic regression model
except that conceptually, in a MaxEnt grammar you don’t have to decide what
category each outcome belongs to
e.g., to do a regression model, you’d have to say that [tri] and [lite-] both belong to

e Software

the category “dentalized”

= OTSoft and the MaxEnt Grammar Tool both implement MaxEnt grammars

= The MaxEnt Grammar Tool is probably more accurate, and definitely more
customizable
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9. How are weights learned in MaxEnt?

e [earning algorithm is trying to maximize predicted probability of data — penalty for weights
= This expression, which we’ll spell out below, is the objective function that the learner
is trying to adjust the weights in order to optimize.

e Predicted probability of data
=  Suppose we have observed 10 utterances, from a variety of inputs
[tei] [lita] [mite] | [lite-] [liter] [tri] [lite+] [tei] [liter] [mita-]

= Each of those utterances is a candidate in a tableau
= and our grammar assigns it a probability
[tei] [lite] [mite] | [lite-] [liter] [£tei] [lite+] [tri] [liter] [mito]

0.62 0.38 0.62 0.62 0.62 0.62 0.62 0.38 0.62 0.38

= We want to maximize the probability that the grammar assigns to the whole series of
events that we observed:
= with current weights: 0.62*0.38%0.62%0.62*0.62*0.62*0.62*0.38*0.62*0.38 = 0.0019
= That is, adjust the weights until that number gets as big as it can.

= Because these numbers get very small, let’s take the natural logarithm instead
= currently, In(0.62*...%0.38)=In(0.62)+...+In(0.38) = 7In(0.62) + 31n(0.38) = -6.24
= adjust the weights to bring this number as close to zero as possible
= (this may remind you of the definition of entropy!)

e Penalty for weights, aka the prior—we need a digression first

10. Fitting and overfitting

o Discuss: there are some differences among the words in our toy data above that prevent us from
getting a perfect fit to the data. We could achieve a perfect fit by introducing separate constraints
for tree, liter, and meter. Pros and cons?

¢ In machine learning applications, people worry about overfitting. I'll draw some pictures on
the board.
= To summarize what just happened on the board: a model that fits the existing data too well
could make worse predictions about new data.
® One response to overfitting is to do some model comparison to decide if some independent
variables (in our case, constraints) should be removed altogether.
¢ But another response is to (decide how much to) penalize weights/coefficients that are large.
=  We want to trade weight/coefficient size off against fit: in order to have a large coefficient,
a constraint/variable should do a lot of work in explaining the data.

Ling 219, Phonological Theory III. Fall 2015, Zuraw



3 November 2015 6

11.

12.

Weight penalty in MaxEnt, first and second approximations

Just add up the square of every constraint’s weight, maybe times a constant (for later
convenience, we’ll call it 1/6%) that determines how much we care about large weights.

1 &
[} _ w.
o’ ; ’
= Remember that now we’ll be subtracting this number from the predicted probability of the

data, and adjusting the weights to maximize the result
o What happens if 1/c? is really big? Really small?

What we just did penalizes every weight for deviating from zero.
We could let in some more generality, and give each constraint i its own default value y; that it
shouldn’t deviate from:

1 n
- ?Z(Wi -u)’
i=1

o Again, what happens if 1/6” is really big? Really small?

Example: White (2013) gives each *MAP(X,Y) constraint a x4 based on how perceptually
different X and Y are, according to confusion experiments.

Weight penalty in MaxEnt, for real

Rather than use a single 1/62, let each constraint i have its own o;
Zn: (W, — M4, )?
i=1 20 iz

Some constraints are pretty OK with deviating from their default value (so o is big or small?),

and some really want to stick close to it.

Example: Wilson (2006) gives each markedness constraint a o based again on confusability

This is known as a Gaussian prior, and it’s not the only choice

Supposing us of zero, what would the Gaussian prior say about these two sets of weights:
{1,1,1,99}, {25,25,25,25}?

= This choice of smoothing term prefers to spread responsibility (weight) evenly across constraints
as much as possible.

O

= If there are two constraints that could both explain the data, weight them equally rather than
just picking one.

Can you dream up a smoothing term that would have the opposite preference—prefer to pick
just one constraint and load all the weight onto it?
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13. Why is the smoothing term (aka regularization term) also called a prior?
e Bayes’ Law:
“posterior”: “likelihood”: how probable
X b}l1ow are data according to model “prior”: how probable
mp;(ci)elagis;ri \ / is model to begin with?
d %
obserdvetd prob(model | data) = prob(data | mo be;) prob(model)
ata prob(data) “evidence”: usually irrelevant, since
same for all models—just needed to
. L ensure probabilities sum to 1
posterior likelihood
e Taking the log, In p(modelldata) = In p(datalmodel) + In p(model) — In p (data)
o Compare and contrast this to our MaxEnt objective function with smoothing.
14. Summing up the smoothing bias
* Smoothing (a.k.a. regularization) is a way to avoid overfitting:
= Tell your software to find a model that compromises between fitting the data and staying
close to default parameter values (constraint weights, in our case)
® OTSoft essentially has no prior—it just fits every weight as closely as possible
= which is why you need to tell it what the maximum weight is, in case a constraint wants to
have infinite weight (default: 50)
e The MaxEnt Grammar Tool has zero for all us and a huge value for all gs by default, but you
can customize all of those values.
e This is all well and good for modeling, but do people do it when learning variation?
e That is, beyond any substantive biases (which Bruce will discuss Thurs.), do human learners
have a “smoothing bias” to keep weights small?
e Interesting studies of how smoothing itself (with plain-vanilla O us and every constraint having
the same o) may capture important aspects of learning:
= Martinian leakage (Martin 2011): how phonotactics of monomorphemes can leak into
compounds, because learners spread the responsibility for, eg., lack of geminates over both
specific ~ constraints (NOGEMINATEWITHINMORPHEME) and general constraints
(NOGEMINATEANYWHERE)
= Ryanian variationogenesis (Ryan 2010): frequencies of minor variants (in Tagalog
morpheme order) can be predicted from learning just the major variants, plus smoothing.
15. Next time

On Thursday we probably continue this handout, and have presentation on Moore-Cantwell &
Pater (submitted).
Next week: We move to a closely related topic, learning models.
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