Class 16 (Week 8, T) Learning Models III: numerical learning algorithms for constraint grammars

To do			
	Read Kirby (2013) for Thursday (Nov. 19)		
	 presenters, if you e-mail me your handout as a PDF by noon Thurs., I can print 		
	Prepare at least one question or point for discussion on the reading		
	Computing homework using OTSoft is due Tuesday (Nov. 24). Turn in write-up on paper;		
	I will enable file upload on CCLE for output files.		

Overview: We know how a grammar works once we have a ranking or set of weights, but how does the learner arrive at that ranking/set of weights? Last week we looked at ranking (no numbers) and hidden structure. Now we look at learning numerical weights.

1. MaxEnt review

- The learner's job is to maximize
 - log probability that grammar assigns to observed data penalty for non-default weights
 - $= \sum_{j=1}^{m} \ln(p(datum_{j} | grammar)) \sum_{i=1}^{n} weightPenaltyForConstrain_{i}$ $= \sum_{j=1}^{m} \ln\left(\frac{e^{-sumOfWeightedConstrainViolations_{j}}}{total_{e}^{-sumWghtedConstrViol_{e}}ForAllCandsInTableau_{j}}\right) \sum_{i=1}^{n} \frac{(actualWeight_{i} defaultWeight_{i})^{2}}{2willingnessToChange_{i}^{2}}$ $= \sum_{j=1}^{m} \ln\left(\frac{e^{-\sum_{i=1}^{n} w_{i}C_{i}(datum_{j})}}{Z_{j}}\right) \sum_{i=1}^{n} \frac{(w_{i} \mu_{i})^{2}}{2\sigma_{i}^{2}}$ $= \sum_{j=1}^{m} (-\sum_{i=1}^{n} w_{i}C_{i}(datum_{j}) \ln(Z_{j})) \sum_{i=1}^{n} \frac{(w_{i} \mu_{i})^{2}}{2\sigma_{i}^{2}}$

I hope I got all the negative signs right!

2. But how does the computer find the best weights?

(The good news: this part is really not relevant for us—the computer does it all.)

- Some form of gradient ascent/descent
- Simple Excel example: two constraints (I'll show this on the screen)

	sigmas:	2	2
	mus:	0	0
/rad/	observed prob.	Ident(voice)	*FinalVoicedObstruent
[rad]	2	0	1
[rat]	98	1	0

- A plot of the objective function, for various values of the two weights:
 - (Excel quirk: because I limited the z-axis to -30 through 0, for all areas that fall below -30, it shows -30 rather than just showing nothing)

- The learner doesn't have access to this full landscape
- But, it can start somewhere, and figure out the local **gradient** (slope)
 - How? A whole bunch of linear algebra.
 - Some methods move in just one dimension at a time (i.e., change one weight), while others can move in any direction.
 - See Shewchuk (1994) for a tutorial on one method (still difficult for me, despite title)
- Then, the learner just has to take a small step uphill, check the gradient again, and repeat.
- Terminology: people talk about *gradient descent* when they want to minimize something, like error, and *gradient ascent* when they want to maximize something, like probability.
- The important thing is that in MaxEnt, we are guaranteed that the surface is **convex**
 - As long as we keep going uphill, we'll get to the peak (global optimum).
 - We don't have to worry about getting stuck at a local optimum.

3. Noisy Harmonic Grammar review

• Draw a Harmonic Grammar tableau for the schematic example above. Pick weights that make [rat] the winner.

17 November 2015

• How do you make Harmonic Grammar "noisy"?

4. A way to find HG weights: the Gradual Learning Algorithm

- The Gradual Learning Algorithm is *error-driven*.
 - What makes a learning algorithm error-driven?
- How it works for Noisy Harmonic Grammar
 - Hear an utterance
 - Will usually be [rat], but sometimes will be [rad]
 - Use the current grammar to choose a candidate (flip coin to break tie)
 - With starting weights as shown, what will happen?

weight	0	0
/rad/	IDENT(voice)	*FINALVOICEDOBSTRUENT
[rad] (2%)		*
[rat] (98%)	*	

- If the chosen candidate doesn't match what you heard...
 - slightly increase the weight of any constraints that prefer the winner
 - slightly decrease the weight of any constraints that prefer the loser
 - Compare and contrast with Error-Driven Constraint Demotion

- Repeat.
- There's no point when the learner knows it's done
 - If adult data is variable, then the grammar can never completely stop making errors
 - A typical strategy is to keep lowering the increment/decrement value until it's zero.
 - Another possibility is just to stop running the learner after a certain number of iterations.
 - You could also do both—lower the increment/decrement, but stop before it hits zero.

- 5. Stochastic OT (Boersma 1998, Boersma & Hayes 2001 for a more tutorial presentation)
- We're now in a good position to go over another model of variation in constraint grammar, which you read about in Jarosz (submitted)
- It works a lot like Noisy HG, in that...
 - Each constraint has a number
 - called "ranking value" rather than "weight"
 - Each time you want to talk, you add a little noise, drawn from a normal distribution

ranking value	37.0	40.0
noise on this occasion	0.7	-1.2
ranking value + noise		
("selection point")	37.7	38.8
/rad/	IDENT(voice)	*FINALVOICEDOBSTRUENT
[rad]		*
[rat]	*	

- The difference is that instead of adding up harmony to find the best candidate...
 - You just rank the constraints according to their selection points
 - And apply strict-ranking OT in the usual way
- Also, it's fine for ranking values to be negative, since the absolute numbers don't matter, only the relative ranking that results.
- As with Noisy HG, the easiest way to get candidate probabilities from ranking values is to simulate them (e.g., run the grammar 10,000 times)
 - But you can also do numerical integration
- As with Noisy HG, the most popular learner is the Gradual Learning Algorithm

6. Problems with the Gradual Learning Algorithm

- Unlike MaxEnt, it's not guaranteed to work.
- The GLA can fail to converge, e.g., demoting one constraint ever more
- If the GLA does converge, we have no guarantee that the ranking values it finds are the "best"
 - e.g., these are the ranking values that produce the lowest error rate, or that maximize the probability of the observed data
- If you want to know more: Boersma & Pater 2013; Pater 2008; Magri 2012

7. Partial Ordering OT

- A Stochastic OT grammar defines a probability distribution over strict-ranking OT grammars
 - E.g., 50% A>>B, 50% B>>A
 - or 10% A>>B, 90% B>> A
 - How would the difference between these two grammars be represented?

- Not just any distribution, though—it has to be capturable with ranking values
 - impossible: 80% A>>B>>C, 20% C>>A>>B, 0% for the rest
 - \circ Why impossible?

- Anttila (1997) proposes an even more restricted theory of probability distributions over strict rankings
 - Define a strict partial order over constraints
 - Anyone who's taken Math Ling: remind us what the crucial properties of a strict partial order are.
 - Draw any strict partial order of 5 constraints, A, B, C, D, E

- Enumerate all the total orderings consistent with that partial order
- Each of those total orderings is equally probable
 - I.e., if there are *n* such total orderings, then each one's probability is _____
- As far as I know no learning algorithm has been proposed for this theory.
 - But you can sort of fake it with Stochastic OT and the Gradual Learning Algorithm:
 - Set the learning increment/decrement to be huge for the whole learning period, e.g., 20
 - The result is that the constraints effectively sort themselves into strata
 - This can't capture a non-stratified partial order, though

8. Grammar models roundup

			easiest way to get candidate
	model name	typical learning algorithms	probabilities
	Classic OT (trivially)	Error-Driven Constraint Demotion	inspect tableau
		Recursive Constraint Demotion	
probability	Stochastic OT	Gradual Learning Algorithm	simulate
distribution over	Partial Ordering OT	?	enumerate linear
strict rankings			rankings
	Pairwise Ranking	Expectation Maximization	simulate
	Grammar		
aanstraint	Harmonic Grammar	Gradual Learning Algorithm	simulate
weighting	MaxEnt	Gradient descent/ascent	calculate directly
weighting			from grammar

9. Learner roundup

- Some of our algorithms are guaranteed to work (at least on their own terms), others not
- We've seen that some of our learners were **batch** and others **on-line**—discuss the difference, pros and cons

10. Back to the question of smoothing/regularization (and other priors)

- Recall: the purpose of smoothing is _____
- Smoothing will always result in a _____ fit to the training data.
- So how do we *know* whether we're over- or under-fitting?
- Ideally, we would be able to test different grammars, say against wug-test data.
 - The one that best predicts the wug test data (after training on existing data) is the one that was the right fit.
- This is similar to the machine-learning perspective:
 - The right fit is the one that does the best job of predicting new data
- But what if we don't have new data?

11. Cross-validation

- Randomly divide your data into two sets.
- One set is the training data
 - Fit various models to it

- The other¹ is the cross-validation set
 - See how well each model does at predicting these "new" data

(Another common approach: divide the data in tenths, and do the whole procedure 10 times, each time using a different tenth as the cross-validation set.)

I tried it on Shona

•

- Randomly selected 20% of tokens to hold back²
- Fitted a series of a series of MaxEnt grammars to the other 80% of the data
 - All have the same constraints
 - For simplicity of cross-validation, just two kinds
 - DEP-X (5 of them, one for each vowel): always giant σ^2 of 100,000
 - DEP-X/C_T (5), DEP-X/NearestVIsY (25), DEP-X/PrecedingCIsY (20): σ varies
- Test each grammar on the 20%
 - Check the fit (log likelihood—the first term of the objective function)
 - log likelihood of test data under the grammar
 - log likelihood of training data under the grammar (divided by 4 for easier graphical comparison)
- Discuss the results:

	log	log	(log
σ^2 for	likelihood	likelihood	likelihood
complex	of test	of training	of training
constraints	data	data	data)/4
100000	-239.54	-873.41	-218.35
10000	-237.81	-873.43	-218.36
1000	-235.88	-873.57	-218.39
100	-234.19	-874.55	-218.64
65	-233.98	-875.05	-218.76
50	-233.89	-875.46	-218.86
20	-233.94	-877.80	-219.45
10	-234.66	-881.21	-220.30
1	-245.23	-917.93	-229.48
0.1	-282.18	-1061.32	-265.33

¹ Usually there's yet a third set, the testing data, used for getting an estimate of model performance on new data, once the cross-validation set has been used to tweak the parameters. You can think about the following: why can't you just use the cross-validation set for this purpose?

7

² Used the rbinom() function in R.

12. Coming up

• Phonologization: How do learners end up turning phonetics into phonology?

References

- Anttila, Arto. 1997. Deriving variation from grammar. In Frans Hinskens, Roeland van Hout & W. Leo Wetzels (eds.), *Variation, Change, and Phonological Theory*, 35–68. Amsterdam: John Benjamins.
- Boersma, Paul. 1998. Functional Phonology: Formalizing the Interaction Between Articulatory and Perceptual Drives. The Hague: Holland Academic Graphics.
- Boersma, Paul & Bruce Hayes. 2001. Empirical tests of the gradual learning algorithm. *Linguistic Inquiry* 32. 45–86.
- Boersma, Paul & Joe Pater. 2013. Convergence properties of a Gradual Learning Algorithm for Harmonic Grammar. Manuscript. University of Amsterdam and University of Massachusetts, Amherst, ms.
- Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: The early stages. In René Kager, Joe Pater & Wim Zonneveld (eds.), *Constraints in Phonological Acquisition*. Cambridge: Cambridge University Press.
- Jarosz, Gaja. submitted. Expectation driven learning of phonology. UMass, ms.
- Kirby, James. 2013. The role of probabilistic enhancement in phonologization. In Alan C. L. Yu (ed.), *Origins of sound change*, 228–246. Oxford: Oxford University Press.
- Magri, Giorgio. 2012. Convergence of error-driven ranking algorithms. *Phonology* 29(02). 213–269.
- Pater, Joe. 2008. Gradual Learning and Convergence. Linguistic Inquiry.
- Prince, Alan & Bruce Tesar. 2004. Learning phonotactic distributions. In René Kager, Joe Pater & Wim Zonneveld (eds.), *Constraints in Phonological Acquisition*, 245–291. Cambridge: Cambridge University Press.
- Shewchuk, Jonathan Richard. 1994. An introduction to the Conjugate Gradient Method without the agonizing pain. Manuscript. Carnegie Mellon University, ms.
- Tesar, Bruce. 1999. Robust interpretive parsing in metrical stress theory. In Kimary N Shahin, Susan J Blake & Eun-Sook Kim (eds.), *The Proceedings of the West Coast Conference on Formal Linguistics 17*. Stanford, CA: CSLI Publications.
- Tesar, Bruce & Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge, Mass.: MIT Press.
- Tessier, Anne-Michelle & Karen Jesney. 2014. Learning in Harmonic Serialism and the necessity of a richer base. *Phonology* 31(01). 155–178.
- Zuraw, Kie, Kristine Mak Yu & Robyn Orfitelli. 2014. Word-level prosody in Samoan. *Phonology* 31(2). 271–327.