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Class 16 (Week 8, T) 

Learning Models III: numerical learning algorithms for constraint grammars 

 

 

 

  

(Kirby 2013) 

 

 

 

 

Overview: We know how a grammar works once we have a ranking or set of weights, but how 

does the learner arrive at that ranking/set of weights? Last week we looked at ranking (no numbers) 

and hidden structure. Now we look at learning numerical weights. 

1. MaxEnt review 

• The learner’s job is to maximize 
� log probability that grammar assigns to observed data – penalty for non-default weights 
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I hope I got all the negative signs right! 

 

2. But how does the computer find the best weights? 

(The good news: this part is really not relevant for us—the computer does it all.) 

• Some form of gradient ascent/descent 

• Simple Excel example: two constraints (I’ll show this on the screen) 

 sigmas: 2 2 

 mus: 0 0 

/rad/ observed prob. Ident(voice) *FinalVoicedObstruent 

[rad] 2 0 1 

[rat] 98 1 0 

 

To do 

� Read  Kirby (2013) for Thursday (Nov. 19) 

� presenters, if you e-mail me your handout as a PDF by noon Thurs., I can print 

� Prepare at least one question or point for discussion on the reading 

� Computing homework using OTSoft is due Tuesday (Nov. 24). Turn in write-up on paper; 

I will enable file upload on CCLE for output files. 
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� A plot of the objective function, for various values of the two weights: 

� (Excel quirk: because I limited the z-axis to -30 through 0, for all areas that fall below -

30, it shows -30 rather than just showing nothing) 

 
� The learner doesn’t have access to this full landscape 

� But, it can start somewhere, and figure out the local gradient (slope) 

� How? A whole bunch of linear algebra.  

� Some methods move in just one dimension at a time (i.e., change one weight), while 

others can move in any direction. 

� See Shewchuk (1994) for a tutorial on one method (still difficult for me, despite title) 

� Then, the learner just has to take a small step uphill, check the gradient again, and repeat. 

� Terminology: people talk about gradient descent when they want to minimize something, 

like error, and gradient ascent when they want to maximize something, like probability. 

• The important thing is that in MaxEnt, we are guaranteed that the surface is convex 

� As long as we keep going uphill, we’ll get to the peak (global optimum). 

� We don’t have to worry about getting stuck at a local optimum. 

3. Noisy Harmonic Grammar review 

o Draw a Harmonic Grammar tableau for the schematic example above. Pick weights that make 

[rat] the winner. 
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o How do you make Harmonic Grammar “noisy”? 

 

 

 

 

 

4. A way to find HG weights: the Gradual Learning Algorithm 

• The Gradual Learning Algorithm is error-driven. 

o What makes a learning algorithm error-driven? 

 

 

 

 

• How it works for Noisy Harmonic Grammar 

� Hear an utterance 

� Will usually be [rat], but sometimes will be [rad] 

� Use the current grammar to choose a candidate (flip coin to break tie) 

o With starting weights as shown, what will happen? 

 

weight 0 0 

/rad/ IDENT(voice) *FINALVOICEDOBSTRUENT 

[rad] (2%)  * 

[rat] (98%) *  

 

� If the chosen candidate doesn’t match what you heard... 

� slightly increase the weight of any constraints that prefer the winner 

� slightly decrease the weight of any constraints that prefer the loser 

o Compare and contrast with Error-Driven Constraint Demotion 

 

 

 

 

 

 

� Repeat. 

 

• There’s no point when the learner knows it’s done 

� If adult data is variable, then the grammar can never completely stop making errors 

� A typical strategy is to keep lowering the increment/decrement value until it’s zero. 

� Another possibility is just to stop running the learner after a certain number of iterations. 

� You could also do both—lower the increment/decrement, but stop before it hits zero. 
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5. Stochastic OT (Boersma 1998, Boersma & Hayes 2001 for a more tutorial presentation) 

• We’re now in a good position to go over another model of variation in constraint grammar, 

which you read about in Jarosz (submitted) 

• It works a lot like Noisy HG, in that... 

� Each constraint has a number 

� called “ranking value” rather than “weight” 

� Each time you want to talk, you add a little noise, drawn from a normal distribution 

 

ranking value 37.0 40.0 

noise on this occasion   0.7 -1.2 

ranking value + noise 

(“selection point”) 37.7 38.8 

/rad/ IDENT(voice) *FINALVOICEDOBSTRUENT 

[rad]  * 

[rat] *  

 

• The difference is that instead of adding up harmony to find the best candidate... 

� You just rank the constraints according to their selection points 

� And apply strict-ranking OT in the usual way 

• Also, it’s fine for ranking values to be negative, since the absolute numbers don’t matter, only 

the relative ranking that results. 

 

• As with Noisy HG, the easiest way to get candidate probabilities from ranking values is to 

simulate them (e.g., run the grammar 10,000 times) 

� But you can also do numerical integration 

• As with Noisy HG, the most popular learner is the Gradual Learning Algorithm 

 

6. Problems with the Gradual Learning Algorithm 

• Unlike MaxEnt, it’s not guaranteed to work. 

• The GLA can fail to converge, e.g., demoting one constraint ever more 

• If the GLA does converge, we have no guarantee that the ranking values it finds are the “best” 

� e.g., these are the ranking values that produce the lowest error rate, or that maximize the 

probability of the observed data 

• If you want to know more: Boersma & Pater 2013; Pater 2008; Magri 2012 

7. Partial Ordering OT 

• A Stochastic OT grammar defines a probability distribution over strict-ranking OT grammars 

� E.g., 50% A>>B, 50% B>>A 

� or 10% A>>B, 90% B>> A 

o How would the difference between these two grammars be represented? 
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• Not just any distribution, though—it has to be capturable with ranking values 

� impossible: 80% A>>B>>C, 20% C>>A>>B, 0% for the rest 

o Why impossible? 

 

 

 

 

 

 

• Anttila (1997) proposes an even more restricted theory of probability distributions over strict 

rankings 

� Define a strict partial order over constraints 

o Anyone who’s taken Math Ling: remind us what the crucial properties of a strict partial 

order are. 

 

 

o Draw any strict partial order of 5 constraints, A, B, C, D, E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� Enumerate all the total orderings consistent with that partial order 

� Each of those total orderings is equally probable 

o I.e., if there are n such total orderings, then each one’s probability is _______________. 

 

• As far as I know no learning algorithm has been proposed for this theory. 

� But you can sort of fake it with Stochastic OT and the Gradual Learning Algorithm: 

� Set the learning increment/decrement to be huge for the whole learning period, e.g., 20 

� The result is that the constraints effectively sort themselves into strata 

� This can’t capture a non-stratified partial order, though 
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8. Grammar models roundup 

 

model name typical learning algorithms 

easiest way to 

get candidate 

probabilities 

probability 

distribution over 

strict rankings 

Classic OT (trivially) Error-Driven Constraint Demotion 

Recursive Constraint Demotion 

inspect tableau 

Stochastic OT Gradual Learning Algorithm simulate 

Partial Ordering OT ? enumerate linear 

rankings 

Pairwise Ranking 

Grammar 

Expectation Maximization simulate 

constraint 

weighting 

Harmonic Grammar Gradual Learning Algorithm simulate 

MaxEnt Gradient descent/ascent calculate directly 

from grammar 

 

9. Learner roundup 

• Some of our algorithms are guaranteed to work (at least on their own terms), others not 

 

o We’ve seen that some of our learners were batch and others on-line—discuss the difference, 

pros and cons 

 

 

 

 

 

10. Back to the question of smoothing/regularization (and other priors) 

 

o Recall: the purpose of smoothing is _____________________________ 

 

o Smoothing will always result in a _______________ fit to the training data. 

• So how do we know whether we’re over- or under-fitting? 

• Ideally, we would be able to test different grammars, say against wug-test data. 

� The one that best predicts the wug test data (after training on existing data) is the one that 

was the right fit. 

• This is similar to the machine-learning perspective: 

� The right fit is the one that does the best job of predicting new data 

• But what if we don’t have new data? 

11. Cross-validation 

• Randomly divide your data into two sets. 

• One set is the training data 

� Fit various models to it 
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• The other1 is the cross-validation set 

� See how well each model does at predicting these “new” data 

(Another common approach: divide the data in tenths, and do the whole procedure 10 times, each 

time using a different tenth as the cross-validation set.) 

 

I tried it on Shona 

• Randomly selected 20% of tokens to hold back2 

• Fitted a series of a series of MaxEnt grammars to the other 80% of the data 

� All have the same constraints 

� For simplicity of cross-validation, just two kinds 

� DEP-X (5 of them, one for each vowel): always giant σ2 of 100,000 

� DEP-X/C__T (5), DEP-X/NearestVIsY (25), DEP-X/PrecedingCIsY (20): σ varies 

• Test each grammar on the 20% 

• Check the fit (log likelihood—the first term of the objective function) 

� log likelihood of test data under the grammar 

� log likelihood of training data under the grammar (divided by 4 for easier graphical 

comparison) 

o Discuss the results: 

 

 

σ
2 for 

complex 

constraints 

log 

likelihood 

of test 

data 

log 

likelihood 

of training 

data 

(log 

likelihood 

of training 

data)/4 

100000 -239.54 -873.41 -218.35 

10000 -237.81 -873.43 -218.36 

1000 -235.88 -873.57 -218.39 

100 -234.19 -874.55 -218.64 

65 -233.98 -875.05 -218.76 

50 -233.89 -875.46 -218.86 

20 -233.94 -877.80 -219.45 

10 -234.66 -881.21 -220.30 

1 -245.23 -917.93 -229.48 

0.1 -282.18 -1061.32 -265.33 

                                                 
1 Usually there’s yet a third set, the testing data, used for getting an estimate of model performance on new data, once 

the cross-validation set has been used to tweak the parameters. You can think about the following: why can’t you just 

use the cross-validation set for this purpose? 
2 Used the rbinom() function in R. 
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12. Coming up 

• Phonologization: How do learners end up turning phonetics into phonology? 
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