Class 20 (Week 10, R) Loose ends and course wrap-up

To do

□ Work on your project, due Friday, Dec. 11 (hard copy preferred, PDF by e-mail is OK) I have office hours today (Thurs., Dec. 4) 5:00-7:00 PM, plus next week Monday (Dec. 7) 4:00-5:00 and Wednesday (Dec. 9) 2:00-3:00.

Overview: A bit more on inducing features. Then some Evolutionary Phonology. Then course wrap-up.

1. Flemming (2005): putting features into the grammar

• Discuss: In OT, there is no phoneme inventory. What work was the phoneme inventory supposed to do in rule theories, and how does an OT grammar accomplish that work?

- In a similar move, Flemming proposes getting rid of the feature set, and shifting its responsibilities to the constraint inventory.
- An issue Flemming raises for natural classes: Suppose you have a vowel inventory /i,e,a,o,u/ and you want a rule-based grammar that deletes /i,a,u/ before V. What could you do? (<u>no curly brackets</u> allowed)
- Then if there are no such rule-based languages, how do we rule them out?
- How would we analyze the language in OT?

- Flemming's proposal: if we want to rule out this language, it has to by disallowing the constraints needed to capture it.
 - It won't suffice to just say that constraints can only refer to natural classes (why not?)
 - For example, "[i]f labials and coronals never pattern together as a natural class [*e.g., in post-nasal voicing*], it must be because there are no constraints that render them [*but not, say, velars*] marked in the same context." (p. 12 of ms. version)
- Suppose you have approximants, fricatives, and nasals looking like a class:

(17)	Lithuanian (Kenstowicz, 1972: 12)								
(a	(a) No deletion of /n/ before stops.								
	sá:ndora	'covenant' cf	f.	dorà	'virtue'				
	sá:ntaka	'confluence'		teké:ti	'to flow'				
	sá:mbu:ris	'assembly'		bu:rî:s	'crowd'				
	sá:mpilas	'stock, store'		pìlnas	'full'				
	sá:mbú:ris	'assembly'		bu:rî:s	'crowd'				
	sá:ŋkaba	'coupling, clamp'		kã:be:	'hook'				
(b) Deletion of /n/ before glides, fricatives, liquids and nasals.									
	sá:juŋga	'union' et	f.	jùŋgas	'yoke'				
	sá:voka	'idea'		vó:kti	'understand'				
	sá:skambis	'harmony'		skambé:ti	'ring'				
	sá:∫lavos	'sweepings'		∫lúoti	'sweep'				
	sá:3ine:	'conscience'		3inó:ti	'know'				
	sá:li:tis	'clash, contact'		lí:ti	'to rain'				
	sá:ra∫as	'list, register		ra∫í:ti	'to write'				
	sá:mokslas	'conspiracy'		mó:kslas	'skill'				
	sámarins	'joint'		narī:s	'link'				

(p. 16)

• Can we capture this with features? E.g., can we write a single n-deletion rule?

- If there are good reasons for three separate constraints to exists, *NAS-APPROX, *NAS-FRIC, *GEMINATE_NASAL, then it will seem as though {approximants, fricatives, nasals} is acting as a class
 - Flemming goes through typological data to justify the three constraints (plus *NAS-[h])
 - i.e., there are languages with one of the constraints high-ranked, but not the others
 - General principle: "sounds can pattern together as a natural class if they violate markedness constraints in the same environment, so given constraints *XA and *XB, A and B can form a natural class" (p. 2)
- "Classhood" is contingent
 - {approximants, fricatives, nasals} can pattern together—after nasals—because of the constraint set
 - But we don't expect them to pattern together in any other environment necessarily
 - Compare this to how features are supposed to work, including, I think, in Mielke's system where the learner induces the features from the observed pattern.
- How to get "subtraction"
 - First, recall what subtraction is (e.g., as used by Mielke)
 - Pharyngealization ([+RetractedTongueRoot]) spread in Palestinian Arabic
 - Spreads in both directions
 - But rightward spread is blocked by a high front vowel, a front glide, or a palato-alveolar C
 - all of those are [+high, -back] (well, in some feature systems)

(33)	a.	<u>t^suubak</u>	'your blocks'	<u>t^swaal</u>	'long (pl.)'	
		<u>ballaas</u> ²	'thief'	<u>?absat</u> ²	'simpler'	
	b.	<u>t</u> ^s iinak	'your mud'	<u>s^sajj</u> ad	'hunter'	
		<u>ſαt</u> °∫aan	'thirsty'	<u>ð^sa</u> dd3aat	'type of noise (pl.)'	
	_					(p. 34)

- What's the class of sounds that pharyngealization spreads to?
- How could we capture that in OT? Like Flemming, let's use McCarthy's idea that the constraint responsible for stopping pharyngeal spread is *[+RTR, +hi, -back].

• In sum, we get subtraction when Markedness1 >> Markedness2

2. Evolutionary phonology (Blevins 2003 and others)

- Of all the topics we didn't cover in this course, this is probably the #1 one that we should at least have a look at so you know what the issues are
- When we say that, e.g., complex onsets are marked, what does that mean?
 - The idea predates generative linguistics, and seems to have varying interpretations:
 - 1. a structure is marked if it's rare cross-linguistically, or if its presence in a language implies the presence of an (unmarked) alternative
 - e.g., if a language allows complex onsets, it also allows simple onsets
 - 2. and/or a structure is marked if children acquire it later
 - e.g., children acquire simple onsets first, then complex
 - 3. and/or language learners and users actually disprefer the structure
 - not something we can observe directly
 - Controversies
 - Do 1 & 2 go together? If so, does 2 cause 1?
 - Is 3 responsible for 1 and/or 2? How can we test 3?
- Blevins's main point is that typological evidence (1) doesn't imply learner preference (3)
- Relatedly, Moreton (2008) talks about *analytic bias* (learner preferences) vs. *channel bias* (mind-external effects on what learning data children end up being exposed to)

3. Articulatory example: *NC

((Pater 1996; Pater 1999; Pater 2001); cf. (Archangeli, Moll & Ohno 1998))

- Some languages don't allow a sequence like *[ampa], though they do allow [amba] and [apa].
- Phonetic basis: (Hayes & Stivers 1996) (aerodynamic model simulations and experiments with English speakers): velar pumping and nasal leak
 - To have voicing, you need higher air pressure below the glottis than above (so that air flows), and the vocal folds in the right position.
 - What range counts as "the right position" depends on the pressure difference.
 - Schematically, with apologies to phoneticians:

• To stop voicing, you must move out of the zone.

- In a transition from [m] to [p], velum raises.
- The percept of nasality ends before velum actually makes closure → air is leaking out the nose, maintaining air pressure difference across the glottis → voicing is encouraged
- After velum does make closure, it tends to keep rising → "velar pumping": further encourages airflow across glottis by expanding oral cavity

Ling 219, Phonological Theory III. Fall 2015, Zuraw

- Analytic bias theory: humans are predisposed towards grammar that includes *NC
- *Channel bias theory (following* (Blevins 2003) Evolutionary Phonology): Output of parents' phonology is [ampa], but often sounds a bit like [amba], so children may mistakenly induce *NC.

4. Perceptual example: IDENT(place)/__V ((Steriade 2001))

- Why do so many languages have $/an+pa/ \rightarrow [ampa]$ but not $/an+pa/ \rightarrow [anta], /ap+na/ \rightarrow [apma]?$
- Steriadean approach: in /an+pa/, /p/'s place is well cued (release burst, outgoing formant transition), while /n/'s isn't.
 - Learners apprehend this, and prefer to be faithful to the better-cued contrast (i.e., learners prefer rankings that respect the _____).
- Let's sketch how a channel-bias explanation would work instead. (See (Hayes & Steriade 2004) for a formulation and counter-argument)

5. The "too-many-solutions" problem

- Some markedness constraints have a variety of "solutions"
 - *NC (see references above)
 - OCP-labial in various Western Austronesian languages ((Zuraw & Lu 2009))
 - *{1,0} in Romance metaphony ((Walker 2005))
 - *INITIALGEMINATE (Kennedy 2005)

 \Rightarrow This is what we expect in general in OT

- But some don't—the fact that these cases exist is the too-many-solutions problem for OT:
 - *CC deletes C₁, not C₂ in VC₁C₂V ((Wilson 2000; Wilson 2001))
 - *[-son +voice] # causes final devoicing, but not deletion, epenthesis, etc.

⇒ predicted, if P-map imposes difficult-to-overturn ranking: MAX-C, DEP-V >> IDENT(voice)/__#

• I think a channel-bias account helps here too—discuss.

- Also to discuss (or just ponder, if we're running out of time): how does channel bias work in the many-solutions cases below?
 - **OCP-labial**: suppose having similar consonants nearby causes difficulties for motor planning (see (Frisch 1996; Frisch, Pierrehumbert & Broe 2004), (Walker, Nacopian & Taki 2002)).

Attested changes:

- a. change place of stem: /p-um-.../ \rightarrow [k-um...]; violates IDENT(place)/stem
- b. change place of infix: $/p-m-.../ \rightarrow [k-n...]$; violates IDENT(place)/affix
- c. change consonantality of infix: $/C-m-...p.../ \rightarrow [C-w...p...]$; violates IDENT(cons)
- d. fuse stem and infix consonants: /p-um-.../ \rightarrow [m...]; violates UNIFORMITY
- e. move infix out of constraint's domain of application: /p-um-.../ \rightarrow [mu-p...]; LINEARITY
- f. delete the infix: /p-m-.../ \rightarrow [p...]; violates MAX, REALIZEMORPH
- g. paradigm gap: /p-m-.../ \rightarrow unpronounceable; violates MPARSE ("pronounce the input")
- *{I,U}: perhaps motivation is insufficient perceptual distance from [e,o], [i,u] (see (Flemming 1996))

Attested ways to handle $*{_{I,U}}$ in Romance metaphony when raising ϵ, σ' ((Walker 2005)):

- h. $(\varepsilon, \mathfrak{I})$ raise to [i,u] (rather than expect [I,U]); violates IDENT(tense)
- i. (ϵ, \mathfrak{I}) fail to raise; violates LICENSE(high)
- j. (ϵ, \mathfrak{I}) raise to [e, 0]; violates LICENSE(high)
- k. /ɛ,ɔ/ raise to [ie,uo] or [iɛ, uɛ]; violates INTEGRITY (no splitting)
- ***INITIALGEMINATE:** This one's harder...

Kennedy 2005:

- In various Micronesian languages, initial geminate Cs were created by reduplication followed by vowel deletion (*pek > pepek > ppek*).
- Word-initial position is a tough place to maintain a C-length distinction, especially for stops, because you need to perceive when the consonant begins ([pa] vs. [ppa], as opposed to [apa] vs. [appa])

Pohnpeian	*ppek	>	mpek	IDENT(nasal)		
Marshallese—Ratak	*kkan	>	kekan	DEP-V/C_C		
Marshallese—Ralik	*kkan	>	yekkan	DEP-V/#C		
Pingelapese	*ttil	>	iitil	IDENT(syllabic)		
Woleaian	*kkaše	>	kkaše			
	*kaše	>	xaše	IDENT(continuant)		

- The roles of channel and analytic bias remain controversial and under investigation.
 - You'll read many papers arguing that their data bear on the debate.

6. Course wrap-up

- Since I have a feeling we won't have much time left, I thought it would be fun to see how interrelated the readings ended up being.
- Any other themes, ideas, tools, you can think of that kept coming up?

citation	recap	syntactic domains?	paradigms	phono vs. lexicon	phono vs. processing	getting evidence	serialism	variation	learning algorithms	phonologization	inducing constraints
Kaisse 1985, ch. 7	syntactic conditions for sandhi	main						✓	0		
Pak & Friesner 2006	conflicting domains for French accent and liaison	main			~	~		~			
Lloret 2004	optimal paradigms in insular Catalan		main								
Pierrehumbert 2002	exemplar models of production (English VV vs. V?V)		~	main	~	~		~		~	
Wagner 2012	speech planning and rule domains (English -ing/-in')	~			main	~		~		~	
Zhang, Lai & Sailor 2011	analytic bias in Taiwanese tone sandhi				~	main		~	~		
Tessier & Jesney 2014	phonotactic learning in Harmonic Serialism (Punu vowels)						main		~		
Moore-Cantwell & Pater submitted	learning type & token variation together (Dutch devoicing)			~				main	~		
Jarosz submitted	expectation-driven learning of hidden structure, including URs							~	main		
Kirby 2013	phonologization of phonetic cues (Korean tonogenesis)				~	~		~		main	
Hayes & Wilson 2006	phonotactic learning in MaxEnt					✓		✓	~		main

7. Where can you go from here?

- PhonoFest next Tuesday: see what the 200A class has been up to.
- Phonology seminar—feel free to drop in even if not enrolled.
- Keep eye out for proseminars; currently I don't think there are any more ph ones this year
- Intonation in the spring—a very phonological area of phonetics

References

- Archangeli, Diana, Laura Moll & Kazutoshi Ohno. 1998. Why not *NC. In M. Catherine Gruber, Derrick Higgins, Kenneth S Olson & Tamra Wysocki (eds.), *CLS 34, Part 1: The Main Session*, 1–26. Chicago: Chicago Linguistic Society.
- Blevins, Juliette. 2003. Evolutionary phonology. The emergence of sound patterns. Cambridge: Cambridge University Press.
- Flemming, Edward. 1996. Evidence for Constraints on Contrast: The Dispersion Theory of Contrast. UCLA Working Papers in Phonology 1. 86–106.
- Flemming, Edward. 2005. Deriving natural classes in phonology. *Lingua* 115(3). 287–309.
- Frisch, Stefan A. 1996. Similarity and Frequency in Phonology. Northwestern University.
- Frisch, Stefan A, Janet B Pierrehumbert & Michael B Broe. 2004. Similarity Avoidance and the OCP. *Natural Language & Linguistic Theory* 22(1). 179–228.
- Hayes, Bruce & Donca Steriade. 2004. Introduction: the phonetic basis of phonological markedness. In Robert Kirchner, Donca Steriade & Bruce Hayes (eds.), *Phonetically based phonology*. Cambridge University Press.
- Hayes, Bruce & Tanya Stivers. 1996. The phonetics of post-nasal voicing.
- Hayes, Bruce & Colin Wilson. 2006. A Maximum Entropy Model of Phonotactics and Phonotactic Learning.
- Jarosz, Gaja. submitted. Expectation driven learning of phonology. UMass, ms.
- Kaisse, Ellen M. 1985. Connected Speech: The Interaction of Syntax and Phonology. San Diego: Academic Press.
- Kennedy, Bob. 2005. Reflexes of initial gemination in Western Micronesian languages. *Austronesian Formal Linguistics Association*. UCLA, Los Angeles, CA.
- Kirby, James. 2013. The role of probabilistic enhancement in phonologization. In Alan C. L. Yu (ed.), *Origins of sound change*, 228–246. Oxford: Oxford University Press.
- Lloret, Maria-Rosa. 2004. The phonological role of paradigms: the case of insular Catalan. *Contemporary approaches to Romance linguistics:* selected papers from the 33rd Linguistic Symposium on Romance Languages (LSRL), Bloomington, Indiana, April 2003, 275–298. John Benjamins Publishing.
- Moore-Cantwell, Claire & Joe Pater. submitted. Gradient exceptionality in Maximum Entropy Grammar with lexically specific constraints. Moreton, Elliott. 2008. Analytic Bias and Phonological Typology. *Phonology* 25(01). 83–127.
- Pak, Marjorie & Michael Friesner. 2006. French Phrasal Phonology in a Derivational Model of PF. In Christopher Davis, Amy Rose Deal & Zabbal (eds.), *Proceedings of NELS 36*, vol. 2.
- Pater, Joe. 1996. *NC. In Jill Beckman (ed.), *Proceedings of the North East Linguistics Society* 26, vol. 26, 227–239. Amherst, Mass.: GLSA Publications.
- Pater, Joe. 1999. Austronesian nasal substitution and other NC effects. In René Kager, Harry van der Hulst & Wim Zonneveld (eds.), *The Prosody-Morphology Interface*, 310–343. Cambridge: Cambridge University Press.
- Pater, Joe. 2001. Austronesian nasal substitution revisited: What's wrong with *NC (and what's not). In Linda Lombardi (ed.), *Segmental Phonology in Optimality Theory: Constraints and Representations*, 159–182. Cambridge: Cambridge University Press.
- Pierrehumbert, Janet. 2002. Word-specific phonetics. Laboratory Phonology VII. Berlin: Mouton de Gruyter.
- Steriade, Donca. 2001. Directional asymmetries in place assimilation: a perceptual account. In Elizabeth Hume & Keith Johnson (eds.), *The Role of Speech Perception in Phonology*. San Diego: Academic Press.
- Tessier, Anne-Michelle & Karen Jesney. 2014. Learning in Harmonic Serialism and the necessity of a richer base. *Phonology* 31(01). 155–178.
- Wagner, Michael. 2012. Locality in phonology and production planning. In A McKillen & J Loughran (eds.), Proceedings of the Montreal-Ottawa-Toronto (MOT) Phonology Workshop 2011. Phonology in the 21st Century: In honour of Glyne Piggott. McGill Working Papers in Linguistics 22(1).
- Walker, Rachel. 2005. Weak Triggers in Vowel Harmony. Natural Language & Linguistic Theory 23(4). 917–989.
- Walker, Rachel, Narineh Nacopian & Mariko Taki. 2002. Nasal consonant speech errors: implications for "similarity" and nasal harmony at a distance. *Collected papers: First Pan-American/Iberian Meeting on Acoustics*. Mexican Institute of Acoustics.
- Wilson, Colin. 2000. Targeted Constraints: An Approach to Contextual Neutralization in Optimality Theory. Johns Hopkins University.
- Wilson, Colin. 2001. Consonant Cluster Neutralisation and Targeted Constraints. *Phonology* 18(1). 147–197.
- Zhang, Jie, Yuwen Lai & Craig Sailor. 2011. Modeling Taiwanese speakers' knowledge of tone sandhi in reduplication. Lingua 121. 181–206.

Zuraw, Kie & Yu-An Lu. 2009. Diverse repairs for multiple labial consonants. Natural Language and Linguistic Theory 72. 197–224.