
1 
 

Computing assignment: Maximum Entropy grammar 

due Thursday, 12 Oct. 2015 

Overview and goals 

• Develop an analysis of variable data. 

• Learn how to use the MaxEnt grammar tool to fit weights to data. 

• Play with custom μ and σ values for different constraints. 

Step-by-step instructions 

Download and test the MaxEnt Grammar Tool 

1. Follow the instructions at http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/  

2. Read the manual (it’s short) and step through running the sample files with it. 

 

Develop an analysis of Shona  

3. Take a look at these data, from Uffmann 2007. 

Shona has 5 vowels: /a,e,i,o,u/, and the following consonant inventory (Uffmann, p. 46), FYI: 

 labials alveolars labio-alveolars post-alveolars velars (& 1 glottal) 

stops p  b̤ t  d̤   k  ɡ̈ 
implosives ɓ ɗ    
affricates pf  bv ̤ ts  dz ̤ tɸ͡s  dβAz ̤ tʃ dʒ̈  
nasals m  m̤ n  n̤  ɲ  ɲ̈ ŋ  ŋ̈ 
prenasalized stops mb  mb̤ nd  nd̤  ndʒ ŋɡ 
fricatives f  v ̤ s  z ̤ ɸ͡s  βAz ̤ ʃ  ʒ̈ ɦ̤ 
prenasalized fricatives mv nz nβAz   
liquids  r  r̤    
glides w    ʋ   j  
 

 Shona requires every consonant to be following by a vowel (or sometimes [w]), leading to lots of 

epenthesis. Uffmann analyzes epenthetic vowel quality as predictable from other factors. Here are the 

rates that he found. Categories are grouped together (/i,e,a,o/), if there was no difference between the 

sub-categories. 



2 
 

Vowels inserted C__# 

preceding V preceding C 

# of i 

inserted # u  # e # o # a total example 

i labial 40 13 0 4 4 61 timu ‘team’ 

e,a,o,u labial 17 134 1 14 14 180 tʃitofu ‘stove’ 

u 

coronal  

(=alv. or post-alv) 52 25 0 0 0 77 b̤uʃi ‘bush’ 

i,e,a,o coronal  895 2 25 8 27 957 ejiti ‘eight’ 

i,e dorsal 92 0 6 2 8 108 hwiki ‘wick’ 

a dorsal 30 2 0 0 7 39 maɡ̈i ‘mug’ 

o dorsal 3 4 0 23 1 31 koko ‘cork’ 

u dorsal 1 7 0 0 1 9 b̤uuku ‘book’ 

i liquid 22 2 0 5 6 35 vi̤ri ‘wheel’ 

e liquid 15 0 12 19 22 68 ve̤ri ‘veil’ 

a liquid 21 8 4 0 8 41 minarari ‘mineral’ 

o liquid 1 0 0 44 4 49 horo ‘hall’ 

u liquid 1 29 1 21 4 56 furu ‘fool’ 

 

Vowels inserted C__C 

preceding C following C foll. V 

# of i 

inserted # u  # e # o # a total example 

anything 

obstruent  

or nasal anything 129 0 0 0 0 129 sipeja 'spare' 

labial liquid i 20 13 0 0 1 34 firidʒ̈i 'fridge' 

labial liquid o 0 12 0 6 0 18 porofiti ~ purofiti 'profit' 

labial liquid e,a,u 1 86 0 0 0 87 pureʃa 'pressure' 

coronal  liquid anything 43 11 1 1 1 57 d̤iriŋɡi 'drink' 

dorsal liquid i,e,a 51 0 0 0 1 52 ɡ̈irini 'green' 

dorsal liquid o 9 0 0 6 0 15 ɡ̈irovṳ ~ ɡ̈orov̤u 'glove' 

dorsal liquid u 0 3 0 0 0 3 ɡ̈uruu 'glue' 

 

4. Devise DEP-V constraints of varying levels of specificity to capture these patterns. E.g., DEP-i, DEP-

i/[labial]__, DEP-i/[+round][labial]__, DEP-i/[+round]__, etc. You’ll have quite a lot of these. Feel 

free to throw in markedness constraints too if you like. 

Fit a MaxEnt model 

 
5. Construct an OTSoft-formatted tableaux file with your constraints for each of the 21 cases 

above. Each input should have 5 output candidates (one for each vowel). Be sure to save your 

file as tab-separated text (.txt), not Excel (.xls). 



3 
 

6. Run the tool on your tableaux file (don’t forget to specify an output file too). By default, the 

learner has basically no smoothing term (i.e., huge σ), so it will find weights that fit the data as 

closely as possible. If the fit to the data is poor, consider adding more constraints. 

7. Play with penalizing constraints for being complex. To do so, make a file modeled after 

SampleConstraintFile.txt in the MaxentGrammarTool folder that you downloaded. Each line is 

for one constraint; it has the constraint name, the constraint’s value of μ, and the constraint’s 

value of σ. μ is the constraint’s “preferred” weight (zero by default); σ (huge by default) 

determines how willing the constraint is to depart from that preferred weight. A smaller value of 

σ means the constraint requires more evidence to depart from its preferred weight. Play around 

with different σ values for the constraints, to implement the idea of favoring simplicity. Think 

about whether certain constraints should have stricter σs than others. Make sure you’re 

choosing σs small enough so that your results are appreciably different from what you got in the 

previous step. The fit to the data will be worse than in the previous step—smoothing always has 

that effect. 

What to turn in 

• Your write-up should say what constraints you used and why. 

• It should include the results of your initial run with default σs: what constraint weights were 

learned, and what probabilities does the resulting grammar predict for the candidates? (This 

info is best presented in table form.)  Discuss any places where the fit to the data is poor (any 

ideas why, or just uncapturable noise?). It would be nice to use Excel or R or the like to plot the 

frequencies you fed in vs. the probabilities that the grammar learns. 

• Do the same for your custom-σs grammar. What σ did you give to each constraint, and why? 

What weights were learned? What probabilities predicted? Discuss the differences between the 

two grammars. Where did smoothing end up hurting the fit the most? 

• I’ll also provide a spot on CCLE where you can upload your four files (tableaux file, constraints 

file for the custom-σs grammar, one output file for each of the two grammars). 

• But do your best to ensure that I won’t look at those files: your write-up should have all the 

information I’d want. 

 

References 

Uffmann, Christian. 2007. Vowel epenthesis in loanword adaptation. Tubingen: Max Niemayer Verlag. 
 


