Bien & al. 2005, *PNAS*

Frequency effects in compound production

(1) What predicts how fast you can say *handbag*? Some candidates...
- left constituent family size: how many compounds start with *hand*?
- right constituent family size: how many compounds end with *bag*?
- left positional frequency: summed frequency of all compounds starting with *hand*
- right “ “ “
- left positional entropy: how evenly distributed are the token frequencies of compounds that start with *hand*?
- right “ “ “
- complement frequency: summed frequency of all other complex words containing *hand*
- derivational entropy: how even distributed are the frequencies of all the complex words that contain *hand*?
- lemma frequency: summed frequency of *hand, hands* (and any other inflected form)
- compound frequency: lemma frequency of compound (*handbag, handbags*)

(2) Experiments (Dutch)—comparisons
- Exp. 1: high vs. low head noun frequency: *luchtbrug* ‘airlift’ & *luchtbuks* ‘airgun
- Exp. 2: high vs. low modifier noun frequency
- Exp. 3: both constituents high vs. low frequency
- Exp. 4: high vs. low compound frequency

(3) Experiments—method
- Learn to associate each member of a pair of compounds with a different position on the screen by hearing them over headphones and seeing a loudspeaker icon at the position
 - e.g., in Exp. 1, *luchtbuks* and *broodkruim*: both have low-frequency second member; “minimal phonological overlap, no obvious semantic relation, and [...] similar compound frequencies” (p. 17877)
- A couple of practice trials where you have to click on the correct loudspeaker icon.
- Test phase: icon appears and you have to say the compound; computer records response time
- interspersed with distractor task: digit naming
(4) Experiments—results

Table 1. Mean latencies for Exps. 1–4

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Frequency</th>
<th>Mean, ms (%)</th>
<th>LH, ms</th>
<th>HL, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High</td>
<td>457 ± 111 (3)</td>
<td>437</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>471 ± 116 (2)</td>
<td>458</td>
<td>482</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>443 ± 118 (5)</td>
<td>439</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>468 ± 129 (5)</td>
<td>487</td>
<td>450</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>414 ± 105 (6)</td>
<td>405</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>441 ± 115 (5)</td>
<td>445</td>
<td>437</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>442 ± 108 (4)</td>
<td>430</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>434 ± 104 (4)</td>
<td>433</td>
<td>435</td>
</tr>
</tbody>
</table>

Values are for the main effect of frequency ± standard deviation (with error percentages in parentheses) and for the block orders low–high (LH) and high–low (HL).

- Exp. 1: higher right-const. frequency → faster
 - This is a little surprising: means you don’t just get started on uttering the left constituent and worry about the second const. when you come to it.
 - Either the right const. has to get activated before you can start speaking...
 - ...or the resting activation of the whole compound depends on right-const frequency (let’s think about whether that’s plausible)
- Exp. 2: higher left-const. frequency → faster
 - Suggests synthetic access (at least sometimes)
- Exp. 3: both constituents more frequent → faster
 - even though freq. of whole compound matched within pairs
- Exp. 4: higher compound frequency doesn’t make responses faster! (not fully significant though)

(5) What about other measures of productivity?

- Giant stepwise regression analysis.
- What’s with “plosive”? The idea was that initial consonant type could affect the equipment’s ability to pick up the response right away.
- This model does significantly better than one that has just the nonfrequency predictors (neighborhood density and consonant type) plus left and right const. cumulative root frequencies
 - interpreted as: there are effects here that a strict decomposition model doesn’t capture
(6) **Summary/discussion**

- Frequency effects on production from compound’s constituents (and not from whole compound)
 - not just full listing
- Frequency of second constituent matters too
 - “Speakers apparently plan the articulation of the first constituent with an eye on what is to be produced next” (p. 17881)
 - or at least, speakers don’t start implementing production of the first constituent until access of the second succeeds (whether or not the way the first const. gets produced is affected)
- Contextual frequency measures: why should the number of compounds that begin with *hand* matter, as opposed to just the type or token frequency of any words containing *hand*?
 - Speculate that maybe this is because *hand* is pronounced differently when it’s the modifier noun in a compound than elsewhere
- Positional entropy effects
 - Interpretation unclear.
- Inhibitory effect of right complement frequency
 - Could be problematic for right constituent to be getting activated while you’re still trying to plan the left constituent.