
Linguistics 251 Spring 2013 
Variation in Phonology Hayes/Zuraw 

 

Class 10, 5/2/13: More on Ratings vs. Probability  

1. Assignments etc. 

• Hand back previous exercise. 
• New exercise on Logistic Regression, due Thurs. 5/9.  Posted on web site. 

 Note:  this will be the basis as well of our last exercise, on model comparison. 
• Read:  Lofstedt (2010) Phonetic Effects in Swedish Phonology: Allomorphy and 

Paradigms, UCLA dissertation.  Read Chapter 4, “Vowel-vowel correspondence and 
*MAP”.  This extract is posted on line on the course website.  Read for Tues. 5/7.  

 
EXPLAINING THE CLASS EXERCISE 

2. Background:  the problem of “differential phonotactics” 

• The general goal is to devise a grammar that distinguishes between two populations of 
words. 

• Why would we ever want to do this?  Several examples. 
 

3. One case of differential phonotactics:  product-oriented generalizations (Bybee) 

• References for product-oriented generalizations: 
 Bybee, J. (2001). Phonology and language use. Cambridge University Press. 
 Bybee, J., & Moder, C. L. (1983). Morphological classes as natural categories. Language, 59, 

251–270. 
 Bybee, J., & Slobin, D. (1982). Rules and schemas in the development and use of the English past 

tense. Language, 58, 265–289. 

• What makes a word sound like a past tense?  
 Positive traits: 

   — ending in [ɔt] (thought, caught, wrought, bought, brought, besought,   
        sought, taught) 
   — containing [ʌ] (struck, snuck, dug, stuck, slunk, shrunk, stunk, flung, 

clung, slung, spun, wrung, sprung, strung, stung, won, swung, hung) 
   — containing [oʊ] (rode, strode, shone, smote, wrote, underwrote, dove, 

drove, strove, rose, arose, broke, woke, awoke, bore, forbore, tore, 
wore, swore, forswore, spoke, stole, wove, froze, chose, rode strode 
spoke) 

   — ending in [−voice] + t or d (this makes you sound like a regular) 
 Negative traits: 

   — ending in a voiceless fricative [f, θ, s, ʃ] (an “island of reliability” for  
        regularity in English past tenses; Albright and Hayes) 
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• This is a problem of differential phonotactics — how are past tenses different from words 
that are not past tenses? 

• Differential phonotactics plausibly could be an important part of a past tense model, but 
it cannot be all of one. 
 [vɪd] is a conceivable past tense but would have to be irregular. 

 [krəmaɪd] is a conceivable past tense but would have to be regular. 

4. Differential phonotactics for vocabulary strata 

• For the phonology of many languages, it is useful to separate the vocabulary into strata. 
• Japanese:  Yamato, Sino-Japanese, Mimetic, Foreign (Ito/Mester) 

 Only Yamato undergoes rendaku (ori-kami → origami) 
• English:  Latinate, Native 

 Compare wug words:  vennipation, vennistration, veniwation, venichation 
• See Moreton and Amano (1999) for a nice psycholinguistic experiment on the 

psychological reality of strata in Japanese1 
• Vocabulary strata are partly morphological, but partly phonotactic. 
 

5. Differential phonotactics as a way of finding rule environments 

• e.g., phonotactics of Hungarian stems that take [−nak], that take [−nɛk] would tell you 
the environment for vowel harmony 

• This is the strategy pursued by Becker and Gouskova, described by Kie last time. 
• This explains the opacity in Arto Anttila’s famous Finnish example (1995):  choice of 

genitive plural suffix depends on vowel height, but this is the vowel height of the base 
form, before coalescence processes alter it on the surface. 
 I am curious how widely this occurs — easily learnable opacity! 

 
6. Differential phonotactics is a natural problem to handle in logistic regression 

• There are two choices in parallel (the two systems of phonotactics), so we can do simple 
and easy binary logistic regression. 

• All the benefits of maxent OT accrue. 
• It’s just fine if the weights go positive or negative, since we are setting up constraints in 

both directions in any event. 
 

7. Differential phonotactics usually involves in lexical frequency 

• Searching for the environment of an exceptionless phonological pattern (e.g. vowel 
harmony for most Turkish suffixes) doesn’t need frequency, but exceptionful patterns do. 

 

                                                 
1 http://www.unc.edu/~moreton/Papers/Eurospeech1999.pdf 
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8. Bruce’s curiosity-problem:  differential phonotactics for Dr. Seuss’s coinages 

• “Dr. Seuss” was Theodore Seuss Geisel (1904-1991), a noted American author of 
children’s books. 

• His books are mostly written in anapestic tetrameter, and include a great number of 
coined words (often naming imaginary beasts, people, or places). 

 
 And SPAZZ is a letter I use to spell Spazzim 
 A beast who belongs the Nazzim of Bazzim. 
 Handy for traveling. That's why he has 'im. 
  
    — From On Beyond Zebra 
 
 From a country called Frumm comes this drum-tummied Snumm 
 Who can drum any tune that you might care to hum. 
 (Doesn’t hurt him a bit, cause his drum-tummy’s numb.) 
 
    — From If I Ran the Circus 
 
• Part of what distinguishes Seuss’s coinages is simply phonotactic marginality; e.g. in 

Snumm [ Socr.:  what is it? ] or more dramatically in Nuh [ˈnʌː]. 
• But there are also characteristic sequences (author-specific phonesthemes?) that are 

sharply overrepresented in Seuss’s coinages. 
 

9. The role of frequency 

• This is a problem that can be treated, in part, with frequency; we suppose that there are 
specifically Seussian phonesthemes that will be identifiable by having much higher 
frequency than in ordinary English. 

• … and thus that we can use logistic regression as a tool for more confidently identifying 
the author-specific phonesthemes. 

  
10. Data corpus 

• From a pile of Seuss books left over at home from my son’s childhood, I gathered 179 
nonce words and transcribed them using Carnegie-Mellon dictionary transcription: 

 
Obsk AA1 B S K Gitz G IH1 T S Nerd N ER1 D Walloo W AO2 L UW1 

Um AH1 M 

Gluppity-
Glupp 

G L AH2 P AH0 T IY0 G 
L AH1 P Nerkle 

N ER1 K AH0 
L Winkibus 

W IH1 NG K 
AH0 B AH0 S 

Umbus AH1 M B AH0 S glurk G L ER1 K Nipswich 
N IH1 P S W 
IH2 CH 

Winna-
Bango 

W IH2 N AH0 B 
AE1 NG G 
OW0 

Offt AO1 F T Glikk G L IH1 K noozer N UW1 Z ER0 Yop Y AA1 P 

Olf AO1 L F Glikker G L IH1 K ER0 o'Grunth 
OW2 G R 
AH1 N TH Yupster 

Y AH1 P S T 
ER0 

Balber B AA1 L B ER0 gleap G L IY1 P Palooski 
P AH0 L UW1 
S K IY0 Yuzz Y AH1 Z 

Bopps B AA1 P S Gractus G R AE1 K T AH0 S Pelf P EH1 L F 

Yuzz-a-
ma-Tuzz 

Y AH1 Z AH0 
M AH0 T AH2 
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Z 

Bar-ba-
loot 

B AA2 R B AH0 L UW1 
T gruvvulous 

G R AH1 V Y AH0 L 
AH0 S Preep P R IY1 P Yekk Y EH1 K 

Bazzim B AE1 Z AH0 M 

Grickle-
grass G R IH1 K AH0 L Proo P R UW1 Yekko Y EH1 K OW0 

Brigger-
ba-Root B AH0 R UW1 T Grinch G R IH1 N CH Redd-Zoff 

R EH1 D Z 
AO2 F Yerka Y ER1 K AH0 

Bustard B AH1 S T ER0 D Gootch G UW1 CH rippulous 
R IH1 P Y 
AH0 L AH0 S Yertle Y ER1 T AH0 L 

Ben-
Deezing 

B EH2 N D IY1 Z IH0 
NG Gwark G W AA1 R K 

Sala-ma-
goox 

S AE2 L AH0 
M AH0 G UH1 
K S Ying Y IH1 NG 

Biffer-
Baum B IH1 F ER0 Huffle HH AH1 F AH0 L 

Sala-ma-
Sond 

S AE2 L AH0 
M AH0 S AA1 
N D Yink Y IH1 NG K 

Biggel-
Ball B IH1 G AH0 L Humpf HH AH1 M P F 

Skeegle-
mobile 

S K IY1 G 
AH0 L 

Zomba-
ma-tant 

Z AA2 M B 
AH0 M AH0 T 
AE1 N T 

Bingle-
bug B IH1 NG G AH0 L Hiffer HH IH1 F ER0 Squitsch S K W IH1 CH Zans Z AE1 N Z 

Bip B IH1 P 

Hinkle-
Horn HH IH1 NG K AH0 L smogulous 

S M AO1 G Y 
AH0 L AH0 S zang Z AE1 NG 

Beers B IH1 R Z Itch-a-pod IH1 CH AH0 P AA2 D snop S N AA1 P Zatz Z AE1 T S 

Beezlenut B IY1 Z AH0 L Ish IH1 SH Snarp S N AA1 R P Zatz-it 
Z AE1 T S IH0 
T 

bloop B L UW1 P It-Kutch IH1 T K AH2 CH Snumm S N AH1 M Zuff Z AH1 F 

bloozer B L UW1 Z ER0 Jawks JH AO1 K S Snuvv S N AH1 V Zuk Z AH1 K 

Chugg CH AH1 G Jeers JH IH1 R Z Sneth S N EH1 TH Zumm Z AH1 M 

Dungus D AH1 NG G AH0 S Jorn JH AO1 R N Snee S N IY1 Zummzian 
Z AH1 M Z IY0 
AH0 N 

Dutter  D AH1 T ER0 Jounce JH AW1 N S Sneedle 
S N IY1 D 
AH0 L Zorn Z AO1 R N 

Dawf D AO1 F Jedd JH EH1 D Sneeden 
S N IY1 D 
AH0 N Zed Z EH1 D 

Dofft D AO1 F T 

Jill-ikka-
Jast 

JH IH2 L AH0 K AH0 JH 
AE1 S T Sneelock 

S N IY1 L AA2 
K Ziff Z IH1 F 

Dake D EY1 K Joat JH OW1 T Snookers 
S N UH1 K 
ER0 Ziffer-Zoof 

Z IH1 F ER0 Z 
UW2 F 

Didd D IH1 D 

Katta-ma-
side 

K AE2 T AH0 M AH0 S 
AY1 D Spazz S P AE1 Z Zinn-a-Zu 

Z IH1 N AH0 Z 
UW2 

Joggoon JH AA2 G UW1 N Katroo K AH0 T R UW1 Spritz S P R IH1 T S Zind Z IH1 N D 

Fotichee F AA1 T AH0 CH IY0 Keck K EH1 K Strookoo 
S T R UW1 K 
UW2 

Zinzibar-
Zanzibar 

Z IH1 N Z AH0 
B AA2 R 

Fa-Zoal F AH0 Z OW1 L clop K L AA1 P Soobrian 
S UW1 B R 
IY0 AH0 N Zeep Z IY1 P 

Fuddle F AH1 D AH0 L Klopfer K L AA1 P F ER0 

Swomee-
swans S W OW1 M IY0  

Fibbel F IH1 B AH0 L Krox K R AA1 K S 

Schloppity-
Schlopp SH L AA2 P AH0 T IY0 SH L AA1 P 

Fizza-ma-
Wizza-
ma-Dill 

F IH2 Z AH0 M AH0 W 
IH2 Z AH0 M AH0 D 
IH1 L cruffulous 

K R AH1 F Y AH0 L 
AH0 S Tobsk T AA1 B S K  

Flupp F L AH0 P Quan K W AA1 N Tudd T AH1 D   

Flunn F L AH1 N Kwong K W AO1 NG Tidder T IH1 D ER0  

Flunnel F L AH1 N AH0 L Kwigger K W IH1 G ER0 Tinkibus T IH1 NG K AH0 B AH0 S 

Floob F L UW1 B Kweet K W IY1 T Truffula T R AH1 F Y AH0 L AH0 

floop F L UW1 P 

Lass-a-
lack L AE1 S AH0 L AE2 K Thidwick TH IH1 D W IH2 K  

Frumm F R AH1 M Lorax L AO1 R AE2 K S Thnad TH N AE1 D  

Frink F R IH1 NG K Lerkim L ER1 K IH0 M Thnadner TH N AE1 D N ER0  

Far 
Foodle F UW1 D AH0 L Malber M AA1 L B ER0 Thneed TH N IY1 D  

Foon F UW1 N 

Motta-fa-
Potta-fa-

M AA2 T AH0 F AH0 P 
AA2 T AH0 F AH0 P 
EH1 L Thwerll TH W ER1 L  
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Pell 

Foona-
Lagoona F UW1 N AH0 Mupp M AH1 P Va-Vode V AH0 V OW1 D  

Gox G AA1 K S Natch N AE1 CH Van Vleck V L EH1 K  

Gack G AE1 K Nadd N AE1 D Vroom V R UW1 M  

Gump G AH1 M P Nazzim N AE1 Z AH0 M Voom V UW1 M   

Gekko G EH1 K OW0 Nuh N AH1 Wum W AH1 M   

G-r-r-
zopp G ER0 Z AA1 P Nubb N AH1 B Wumbus W AH1 M B AH0 S  

G-r-r-
zapp G ER0 Z AE1 P Nutch N AH1 CH Wump W AH1 M P  

G-r-r-zibb G ER0 Z IH1 B Nungus N AH1 NG G AH0 S Wog W AO1 G   

 
11. Camparison population of non-Seuss words 

• I used my groomed version of the CMU dictionary (used e.g. in Daland et al. (2009), 
Hayes and White (2013)), omitting suffixed and compound forms. 

 
12. Constraints 

• All target constraints are of the form, “Be a Seuss word if you have property X”. 
• I can’t think of any salient properties of non-Seuss words. 
• I did a more than this but I’m giving just three constraints for pedagogical purposes. 
• Part of SeussViolationsFile.txt, selected to show violations: 
 

Word Transcription 
IsSeus

s InitialZ
InitialTHConsonan

t TH 
Zomba-
ma-tant [ Z AA2 M B AH0 M AH0 T AE1 N T ] 1 1 0 0 
Zans [ Z AE1 N Z ] 1 1 0 0 
Zind [ Z IH1 N D ] 1 1 0 0 
Zinzibar-
Zanzibar [ Z IH1 N Z AH0 B AA2 R ] 1 1 0 0 
Zeep [ Z IY1 P ] 1 1 0 0 
Thnad [ TH N AE1 D ] 1 0 1 1 
Thnadner [ TH N AE1 D N ER0 ] 1 0 1 1 
Thneed [ TH N IY1 D ] 1 0 1 1 
Thwerll [ TH W ER1 L ] 1 0 1 1 
Thidwick [ TH IH1 D W IH2 K ] 1 0 0 1 
Obsk [ AA1 B S K ] 1 0 0 0 
Um [ AH1 M ] 1 0 0 0 
Umbus [ AH1 M B AH0 S ] 1 0 0 0 
Offt [ AO1 F T ] 1 0 0 0 

 
• However, the bulk of the file consists of thousands of real words, with IsSeuss = 0 and 

constraint violations duly assessed. 
 

13. Assessing constraint violations in Excel 

• Use the string functions. 
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• Locating words with initial [z]: 
 =if (left(A1, 1) = “Z”, 1, 0) 

• Others:  right(cell, length), mid(cell, start, maxlength2) 
• A weird one:  =if(iserror(find(“SearchString”, cell)), 0, 1) 

 This produces 1 if the cell contains the searchstring anywhere, else 0. 
• Paste the formula all the way up and down the column to get what you want. 
• Disjunction (e.g. θr, θl, θw):  make multiple columns and add them up. 
 

14. A way to locate more complicated constraint violations 

• My little Phonology Search utility 
(http://www.linguistics.ucla.edu/people/hayes/EnglishPhonologySearch/) lets you search 
on natural classes, using syllables; likewise stress patterns/vowel patterns.  Use the input 
file SeussPlusEnglish.txt, part of the package. 

• Use Excel to paste the results, gathered in “ViolationsFile.txt,” into 
SeussViolationsFile.txt. 

 
15. Starting up with R 

• Download R from http://www.r-project.org/ (all platforms) 
• Download from the course web site the zipped bundle of files.  It will unzip as a working 

folder with all relevant files. 
• Start up R. 
• On the File menu, select Change dir and navigate to the relevant folder. 
• On the File menu, select Open script and choose LogisticRegressionForSeuss.R.  It will 

pop up in another window. 

 
• Results are here                                 Script is here 
• To run any line of the script, highlight it with the mouse and hit Control R. 
• The script has lots of comment lines and tells you what to do. 

                                                 
2 You have to put in a maximum length; I use 100, which catches all cases and does no harm. 

http://www.linguistics.ucla.edu/people/hayes/EnglishPhonologySearch/
http://www.r-project.org/
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16. The R Script 

 
########################################################################## 
## Load the necessary libraries. 
########################################################################## 
 
##If your computer doesn't have these libraries, go to the Packages menu, pick 
a CRAN mirror site, then (again from Packages menu) pick Install Packages, 
find languageR and arm. 
##Once the packages are downloaded, run these commands to get them into your 
computer's memory. 
 
library(languageR) 
library(arm) 
  

17. Deal with your data file 

## You want a plain-text input file where all the columns are labeled, and the 
separator of columns is a tab.   
 
##CAUTION:  column headers should be extremely plain; it's best to use nothing        
but letters (you can also use noninitial digits.   
##CAUTION:  R is case-sensitive; always check variable names with care. 
##CAUTION:  apostrophes anywhere in your file will create chaos; remove or  
replace them before proceeding. 
  
## Here is the command to read a data file.  
## sep="t" is needed so that it will assume that tab is the column separator. 
 
MyData=read.table("SeussViolationsFile.txt", header=T, sep="\t") 
 
   ##You can look at the column names with this command: 
      colnames(MyData) 
 

18. Logistic regression 

## For linguistics, the best r function for logistic regression is probably 
bayesglm(). 
## This is because there are often exceptionless principles-- 
##   you don't want the weights to go sky high without good justification. 
##   bayesglm() employs a prior to enforce this principle 
## The reference source for bayesglm() is 
http://www.stat.columbia.edu/~gelman/research/unpublished/priors7.pdf. 
## If you want, you can leave the word "bayes" in this command and get 
classical glm instead. 
 
MyModel = bayesglm(IsSeuss ~ +   
InitialZ +   
TH +   
InitialTHConsonant, data = MyData, family = "binomial") 
 
## This command merely reports the weights that were found: 
MyModel 
 
## This one is nicer, because it also gives you a significance test for each 
weight: 
summary(MyModel) 
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## Print out the model's predictions. 
## This next line uses the actual formula for logistic regression to create 
probabilities,  
## and put the computed probabilities into a new column in MyData. 
MyData$Prediction <- exp(predict(MyModel)) / (1 + exp(predict(MyModel))) 
## Print the result out as a tab-delimited file. 
write.table(MyData, sep="\t", file = "ModelPredictions.txt") 
 
## Make a spreadsheet of the grammar. 
idx <- coef(summary(MyModel))    
idx           
MyConstraints = round(idx, digits=3) 
write.table(MyConstraints, sep="\t", file = "ConstraintsAndWeights.txt") 
 

19. Examining output files from R 

• Excel works well. 
 

20. Constraints and Weights 

 Estimate 
Std. 
Error z value Pr(>|z|) 

(Intercept) -4.699 0.08 -58.979 0
InitialZ 3.631 0.294 12.354 0
TH -0.446 0.731 -0.61 0.542
InitialTHConsonan
t 3.241 0.894 3.626 0

 
Socrates: 
• What does the big negative weight on Intercept mean? 
• What’s going on with the two constraints involving θ? 

 

21. Performance of the grammar 

• Looking at and interpreting ModelPredictions.txt 
• You can use Excel to produce simple assessments of the grammar; we’ll return to this 

later on. 
• If you sort descending on IsSeuss, Prediction, you can get the most “Seussian” Seuss 

words according to the grammar: 
 

 Word 
IsSeus
s 

Frequenc
y InitialZ TH 

InitialTHConsonan
t 

Predictio
n 

164 
Zomba-
ma-tant 1 0 1 0 0 0.255834 

165 Zans 1 0 1 0 0 0.255834 
166 zang 1 0 1 0 0 0.255834 
167 Zatz 1 0 1 0 0 0.255834 
168 Zatz-it 1 0 1 0 0 0.255834 
169 Zuff 1 0 1 0 0 0.255834 
170 Zuk 1 0 1 0 0 0.255834 
171 Zumm 1 0 1 0 0 0.255834 
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172 
Zummzia
n 1 0 1 0 0 0.255834 

173 Zorn 1 0 1 0 0 0.255834 
174 Zed 1 0 1 0 0 0.255834 
175 Ziff 1 0 1 0 0 0.255834 
176 Ziffer-Zoof 1 0 1 0 0 0.255834 
177 Zinn-a-Zu 1 0 1 0 0 0.255834 
178 Zind 1 0 1 0 0 0.255834 

179 
Zinzibar-
Zanzibar 1 0 1 0 0 0.255834 

180 Zeep 1 0 1 0 0 0.255834 
139 Thnad 1 0 0 1 1 0.129686 
140 Thnadner 1 0 0 1 1 0.129686 
141 Thneed 1 0 0 1 1 0.129686 
142 Thwerll 1 0 0 1 1 0.129686 

1 Obsk 1 0 0 0 0 0.009024 
 
• And, for that matter the most Seussian real words: 
 

4265 czar 0 24 1 0 0
0.25583

4
1695

4 tsar 0 26 1 0 0
0.25583

4
1782

2 
xenophobi
a 0 18 1 0 0

0.25583
4

1782
3 xenophobic 0 5 1 0 0

0.25583
4

1782
4 xerox 0 18 1 0 0

0.25583
4

1782
5 xylophone 0 7 1 0 0

0.25583
4

 
These get more interesting if you add more constraints; in my current best grammar the most 
Seussian Seuss words are Zomba-ma-tant, Zatz, and Zummzian; the most Seussian real 
words are xerox, snuff, snuggle, snug, snub, zoom, zoo, flux, flummox.3 

22. If time 

Take a look at the data ((10)) and conjecture a few constraints that might work well. 
 

MORE ON RATINGS DATA 

23. What are we trying to do? 

• There is pretty clearly a connection between frequency and intuitive well-formedness; 
e.g.  
 status of [dw] onsets in English vs. (say) some Bantu language where [dw] is very 

ordinary. 

                                                 
3 Flummox is actually used by Seuss as the name of a animal. 
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 ditto for [ts] in English (tsetse, tsunami, Tsongas) vs. Japanese 
 badness of [ʃɛd] as past tense of wug form [ʃɛi] (just only real example to support 

it) vs. [splʌŋ] as past test of [splɪŋ] (fling, cling, string, ring, sting, shrink, slink) 
 
 
 
• This connection is obviously non-trivial; cf. all discussion so far on the Law of 

Frequency Matching and the various types of bias that make it imperfect. 
 

24. Why should people have well-formedness judgments at all?   

• One view: 
 To speech-perceive well, you need vast amounts of information about the 

probability of what you’re likely to be hearing (this comes from all areas of 
linguistic knowledge, and some extra-linguistic ones as well) 

 People can, to varying degrees, consciously detect what their inner probability-
assigning mechanisms are saying and translate the result into a a judgment. 

 The lower ends of the scale:  **,*, ??  correspond to items that the grammar 
assigns a low probability. 

 
25. The research that has to be done 

• Acquisition model:  mimic how humans can take in a childhood’s worth of language data 
and produce a grammar that assigns probabilities to everything. 

• Judgment model:  understand how the grammatical probabilities are used in performing 
the various tasks that psycholinguistic subjects are asked to do. 

• This, in turn, gets us into the question of variation between experimental tasks … 
 

KINDS OF RATINGS DATA 

26. A listing of types of ratings data 

• Make a choice 
 Hungarian vowel harmony:  moleːb-nɔk or moleːb-nɛk? 
 English past tenses:  spling ~ splung/splang/splinged 

• Give a yes/no verdict: 
 “Is splung appropriate as the past tense of spling? 
 “Could blick be a word of English?”, “Does blick sound like a word of English?” 

etc. 
• Rate on a Likert scale 

 Please check one of the options below (1-7) for how good splung sounds as the 
past tense of spling. 

 Now do the same for splinged. 
• Binary comparisons 
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 Example from Daland et al. (2009):  “[subjects were asked to ] choose the non-
word that seemed more like a typical English word. The practice items were 
stallop vs. thmeffle, lbobbib vs. priffin, thrishal vs. ftemmick, skeppick vs. 
mzibbus, shmernal vs. dwiffert and shthokkith vs. thpellop. 

• Magnitude estimation 
 Please draw a line with the mouse that matches the goodness of check one of the 

options below (1-7) for how good splung sounds as the past tense of spling. 
 Software screen for Hayes and White (2013): 

 

 
 

 The other task in magnitude estimation is simply to type in a number. 
 

27. Binary choice vs. ratings 

• I believe that these typically give similar results. 
• One case I can remember:  Hayes and White (2013) used filler items that matched those 

of Scholes (Phonotactic Grammaticality 1965). 
 Forms:  blung, fnet, frun, glung, shlurk, shmat, shnet, shtin, skeep, smat, srun, 

stin, vkeep, vlurk, vnet, vrun, zhmat, zlurk, znet, zrun 
 Scholes:  a class of seventh graders making up-down decisions 
 Hayes/White I (not published):  a bunch of Mechanical Turkers rating on a 1-7 

Likert scale 
 Correl. = .843 
 Scatterplot: 
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28. Binary choice vs. magnitude estimation 

• Again Hayes and White, expt. 2 (published) 
• The fit is not bad and works a bit better if you take the log of the magnitude estimation 

values. 
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29. Likert scale vs. magnitude estimation 

• Here are all the Hayes/White forms, the two experiments compared. 
• It seems a bit nonlinear. 
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30. Ratings vs. comparisons 

• Daland et al. got hard-to-interpret results with Likert-scale ratings of their stimuli. 
• They then redid the experiment with comparison — every stimulus compared with every 

other, and got results that seemed more meaningful. 
• Here is a scatterplot of the same stimuli across experiments: 
 

 
 The curving at the left side means:  distinctions made in direct comparison were 

largely not made in Likert-scale rating, suggesting comparison is more sensitive. 
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 The paper says, “This fact suggests the following methodological point: in non-
word acceptability studies, head-to-head comparison is preferable to Likert rating 
whenever the stimuli of interest are concentrated at one end of the well- 
formedness scale, owing to ceiling/floor effects in Likert ratings. Similar 
conclusions have been reached by [ various researchers ]; we mention this 
methodological point here in the hope of averting unnecessary replication of 
effort in the future.” 

 
31. The controversy over magnitude estimation 

• In principle, magnitude estimation is nice: 
 scale is refined as much as the subject would like 
 scale can be instantly extended, e.g. if you hear a new words that is unprecedently 

awful or wonder 
 In uncontroversial cases “how long is this line?”, people behave reliably and 

consistently.   
• For discussion of the method, see the following: 

 Pro:  Bard, Ellen Gurman, Dan Robertson and Antonella Sorace. 1996. Magnitude 
estimation of linguistic acceptability. Language 72:32-68. 

 Pro:  Lodge, Milton. 1981. Magnitude scaling: Quantitative measurement of 
opinions. Beverly Hills/London: Sage. 

 Con:  Sprouse, John (2011) A Test of the Cognitive Assumptions of Magnitude 
Estimation: Commutativity does not Hold for Acceptability Judgments.  
Language 87.2 

32. Upshot 

• Reassuringly, different methods do seem to yield different results. 
• Actually determining what methods are most reliable is something where I would want to 

rely on expert opinion (i.e., based on extensive comparative work by experienced 
experimental psychologists). 

 
 

A FREQUENCY-BASED MODEL THAT DOESN’T USE PROBABILITY:   
ALBRIGHT AND HAYES (2003) 

33. Minimal generalization 

If you were trying to find environments where Navajo prefixes [ʃi-] instead of [si-] (this 
turns out to be sibilant harmony), you could take each case as a “microrule” and start 
generalizing: 
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If you keep going, you’ll get the final version: 
 

 
 

34. Reliability 

• The “correct” rule for English past tenses is “Add -t/d/əd”. 

• But you can do an unorthodox special rule:  “Add -t after a voiceless fricative.” 
• Unorthodox, but perfect!  All 352 voiceless fricatives in Albright/Hayes’s corpus are 

regular. 
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• And indeed, in a wug test people really like past tenses like bliffed or daced. 
 

35. The accuracy/scope tradeoff 

• People like generalizations that are really accurate. 
• Cf. voiceless fricative “island of reliability”, above. 
• ɪ → ʌ / C liquid ___ ŋ is perfect, but there are only 4 examples. 

• So Albright/Hayes use a statistical adjustment that reflects both principles; i.e. 95% 
lower confidence limit on the “batting average” of the rule. 

• This is an evaluation score for each rule. 
 

36. The “use the best rule” principle 

• To wug-test a form, for each applicable past tense type, find the applicable rule with the 
best evaluation score (ranging from zero to one). 

• That is the score assigned to the past tense candidate. 
 

37. The resulting model is not a probability model 

• Outputs are evaluated individually, not in competition. 
• Indeed, Albright/Hayes produce four categories of wug verbs: 

 regular predicted good, irregular predicted good 
  dize [daz] (doze [doz]); fro [fro] (frew [fru]); rife [raf] (rofe [rof], riff [rf]) 

 regular predicted not so good, irregular predicted good 
 fleep [flip] (flept [flpt]); gleed [glid] (gled [gld], gleed); spling [spl] (splung [spl], splang 

 [splæ]) 

 regular predicted good, irregular predicted bad 
  [brd] (broge [brodZ]); gezz [gz] (gozz [gaz]); nace [nes] (noce [nos]) 

 regular predicted not so good, irregular predicted bad 
  gude [gud] (gude); nung [n] (nang [næ]); preak [prik] (preck [prk], proke  
  [prok]) 
 

38. Models can be “probabilized” 

• Take their scores and treat them like Harmony; then do maxent. 
• This doesn’t help with Albright/Hayes; in the aggregate correlations go down. 
 
 regulars:  .714 → .500 
 irregulars:  .485 → .510 
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