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Class 13: Model comparison 

1 Back to overfitting vs. underfitting 

• As we’ve discussed, we want to strike a balance 

� Overfitting: model closely fits observed data, but is likely to make wrong predictions 

about the next item to come along 

� Underfitting: model fails to capture important aspects of observed data, and therefore is 

also likely to make wrong predictions about new data 

• But how do we find the sweet spot in between? 

� How do we know which aspects of the observed data are important? 

� How precisely should we fit those aspects? 

2 Roadmap 

• Whether a factor/constraint can justify its presence in a model 

� Wald test (and arguments against them) 

� Likelihood ratio test 

• Whole-model comparisons: AIC/BIC 

• Machine-learning approaches 

� Empirical evaluation of over/under-fit through cross-validation 

• Stephanie Shih presents: tutorial on random forests and related issues 

3 Today’s data set: French adjectives in –esque [ɛɛɛɛsk] 

• To learn more: Plénat 1997, Plénat et al. 2002 

• Highly productive suffix (similar meaning as in English); can even attach to phrases: 

� ben-et-jerry-esque  ‘Ben and Jerry[ice cream brand]-esque’ 

� Eric-et-Ramzy-esque  ‘Eric and Ramzy[comedy duo]-esque’ 

� bonnes-resolutionesque ‘good-resolutions-esque’ 

� little-green-footballsesque ‘Little Green Footballs [blog]-esque’ 

• Creates a hiatus problem with V-final stems. 3 solutions 

� faithful:  zola-esque  ‘Zola-esque’ 

� delete V:  zol-esque 

� insert C:  zolat-esque 

• As Plénat points out, the choice is sensitive to... 

� stem length: the shorter the stem, the worse deletion is 

� stem-final V quality: higher vowels are less likely to delete—perhaps the hiatus they 

create isn’t as bad 

• Some additional phenomena we’ll ignore: 

� Final C or VC can also delete, esp. if the C is a sibilant or a velar (OCP): cervant-esque 

� Occasionally the suffix seems to be –iesque instead 

� There’s also an option –este [ɛst] sometimes used if stem contains velar: blog-este 
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• Data sources:  

� frWAC (1.6 billion word web corpus), Jožef Stefan Institute interface 
1
 

� supplemented with items from Wiktionnaire,
2
 TLFi

3
  

� 2800 potential word types ending in esque or este 

� Italian/Spanish loans omitted (grotesque, churrigueresque) 

� 294 clear cases of vowel-final stems (and no latent/liaison consonant available) 

4 Exploring the data 

• Syllable-count effect: longer words have more V-deletion, at expense of other 2 options 

 
 

• V-quality effect: higher Vs → more faithful. Perhaps [iV] hiatus is not as bad as [aV]. 
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1
 http://nl.ijs.si/noske/wacs.cgi/first_form 

2
 http://fr.wiktionary.org/wiki/-esque 

3
 http://atilf.atilf.fr/ 
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5 Do we want an interaction between syllable count and vowel quality? 

• An interaction term implies that vowel quality works differently within each syllable-count 

group (and vice versa). 

• To start, let’s have a binary model (deletion or non-deletion)—later we’ll consider the ternary 

model. 

� I’m treating syllable-count as an integer 

� We ask R to find the best values of a, b, c, d, e, f, g: 

 

Where p is probability of deletion,   
ln(p/(1-p)) =  

a*(finalV=lo) + b*(finalV=mid) + c*(finalV=hi) + d*syll_count 

 + e*(syllcount*finalV=mid) + f*(syllcount*finalV=hi) 

 

glm(formula = delete_or_not ~ final_V_height * syllable_count,  

    family = binomial(logit), data = esque) 

 

                                  Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)                        -4.5022      1.1246   -4.004  6.24e-05 *** 

final_V_height=mid                  0.9718      1.4951    0.650     0.516     

final_V_height=hi                  -0.8437      1.4967   -0.564     0.573     

syllable_count                      1.9631      0.4457    4.404  1.06e-05 *** 

final_V_height=mid:syllable_count  -0.7678      0.5637   -1.362     0.173     

final_V_height=hi:syllable_count   -0.5300      0.5583   -0.949     0.342     

 

        R’s best guesses for a-f      estimate/standard_error 

6  Wald test 

• The rightmost column in the results above asks, for each z-value... 

� in a random set of data (e.g., no difference between mid and low Vs), how often would 

we expect to see a z-value (e.g., 0.650) that far from zero or further? 

� E.g., if p=0.516, we expect that substantial a z value to occur by chance about half the 

time 

• How it does it in this case: a Z-test 

� Make a big assumption: coefficient estimates will be approximately normally distributed 

� So how far out on the tail of a normal distribution is the estimate? 

 

4
 

                                                 
4
 http://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg 

above 0.650: 25.8% 

below -0.650: 25.8% 

two-tailed probability: 0.516 
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• Something else you’ll often see: a chi-square test 

� Again, assume coefficient estimates are approximately normally distributed 

� Then the estimate squared and divided by its variance  (t-value) would approximately 

follow a chi-squared distribution, so you can just look up the value there: 

5
 

7  Something more reliable: likelihood ratio test 

• Let’s compare the model above to the same thing but without the interaction. 

• Of course, it will fit better with the interaction 

� log likelihood of full model: –136.2825 (R command: logLik(myModel)) 

� That is, the model gives the observed data a probability of 6.5 * 10
-60

 

� log likelihood of model with no interaction: –137.2806 

� Model gives observed data a probability of 2.4 * 10
-60

 
 

• But is it worth it? Does the interaction improve the model fit enough? 

• Likelihood ratio—or rather, diff. between log likelihoods: –136.2825  –  (–137.2806) =  0.9981 

� Multiply by 2: 1.9962 

� Magically, this number has a chi-squared distribution, with k (“degrees of freedom”) 

equal to the number of predictors removed (or, more technically, constrained to be zero) 

� In our case, k=2, since we removed the interaction’s two subparts 

� As you can see by inspecting the chi-squared distribution above, this will yield an 

unimpressive p-value of about 0.3. 

� We can get R to do all of this for us 

 
> anova(esque.binary12, esque.binary1times2, test="Chisq") 

Analysis of Deviance Table 

 

Model 1: delete_or_not ~ final_V_height + syllable_count 

Model 2: delete_or_not ~ final_V_height * syllable_count 

 

  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

1       290     274.56                      

2       288     272.56  2   1.9962   0.3686 

                                                 
5
 http://commons.wikimedia.org/wiki/File:Chi-square_pdf.svg 

What I named the model with the interaction 

Name of 

model 

without 

interaction 
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8 Let’s take a quick look at the model without the interaction 

glm(formula = delete_or_not ~ final_V_height + syllable_count,  

    family = binomial(logit), data = esque) 

 

                   Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)         -3.3405      0.5901   -5.661  1.51e-08 *** 

final_V_height=mid  -1.0195      0.3646   -2.796   0.00517 **  

final_V_height=hi   -2.1808      0.3812   -5.721  1.06e-08 *** 

syllable_count       1.4950      0.2094    7.138  9.48e-13 *** 

• Wald tests are very promising 

• R can do the likelihood ratio test for each submodel that’s missing one constraint: 

 
> library(car) 

> Anova(esque.binary12, type=2) 

 

               LR Chisq Df Pr(>Chisq)     

final_V_height   37.261  2  8.106e-09 *** 

syllable_count   68.214  1  < 2.2e-16 *** 

 

� So it looks like we do want both of these predictors. 

9 Getting more serious: our dependent variable should really be ternary, not binary 

• Let’s also include the penultimate sound’s type (V, C, glide), since if V-deletion just exposes 

another V, that doesn’t solve hiatus. 

• Resulting model is too wide to include on the handout, but let’s do likelihood ratio tests on 

each factor (including interactions): 

 
> Anova(esque.multinom1times2times3_prime, type=2) 

Analysis of Deviance Table (Type II tests) 

 

Response: outcome 

                                                 LR Chisq Df Pr(>Chisq)     

penultimate_coarse                                 13.631  4   0.008572 **  

final_V_height                                     40.866  4  2.865e-08 *** 

syllable_count                                     65.421  2  6.224e-15 *** 

penultimate_coarse:final_V_height                   7.084  8   0.527649     

penultimate_coarse:syllable_count                   5.184  4   0.268964     

final_V_height:syllable_count                       5.233  4   0.264187     

penultimate_coarse:final_V_height:syllable_count    6.359  8   0.607106   

 

• The interactions don’t seem to do much good. 
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10 An overall measure of model goodness: AIC/BIC 

• AIC (Akaike Information Criterion): 2k – 2 ln(L) 

� Where k is number of parameters (e.g., coefficients), L is likelihood 

� Smaller is better 

� Penalty for having more parameters, bonus for fitting data better 

o Does this remind you of anything?? 

• BIC (Bayesian Information Criterion): –2 ln(L) + k ln(n) 

� Where n is number of data points 

� Again, smaller is better 

� Penalty for having more parameters grows faster if you have more data. 

• In R, you should find both of these at the bottom of your model summary—
summary(myModel) 

 

• AIC results for models with different combinations of our 3 predictors and interactions 

between them 

� Slightly different because in doing this I kept each V separate instead of grouping the 

heights together 

smaller value = better model
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no interactions. 
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11 Cross-validation 

• In the machine learning field, researchers are generally concerned less with finding “the 

truth” (how much more do spammers use all caps as compared to real e-mailers?) and more 

concerned with building a system that works well. 

� The cost of under- or over-fitting is practical: the system will do a poor job of classifying 

new messages as spam or not. 

• Their solution: if you want to know how your model does on new data, test it on new data! 

• Or, simulate this by holding some of your data back for cross-validation 

� Designate a randomly-selected 20% of your data as the cross-validation set 

� Train your model on the remaining 80% 

� Then test it on the held-out 20% 

� Probably repeat this a bunch of times 

� The model that does the best on the cross-validation data can be said to be the best (not 

under-, not over-) fitting model. 

 

• I did this for the 14 models above. 

� The large diamonds represent fit when training and testing on all data 

� I used a crude measure of model fit: % of items assigned to correct outcome (faithful, 

C-insertion, V-deletion) 

� More-sophisticated measures would ask how far off the model was 

� Assigning 90% probability to the wrong choice is worse than 70%. 

� Assigning 90% probability to the right choice is better than 70%. 

� 10 cross-validation runs—average % correct is the large squares with Xs in between 

� Finer lines represent the 10 individual cross-validation runs, to give you an idea of how 

much they vary 
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12 One more demo: -esque in MaxEnt 

• Constraints 

� *VV   violated by zola-esque, etc. 

� *[lo]V   violated by zolaes-que, but also by bilba-esque, from Bilbao 

� *[mid]V  violated by cyrano-esque 

� *[hi]V   violated by paganini-esque, but also by sanantoni-esque, from San Antonio 

� DEP-C 

� MAX-V 

� MAX-V/1
ST

 SYLL violated by sp-esque, from spa 

� MAX-V/1
ST

-2
ND

 SYLL violated by sp-esque, Monr-esque, from Monroe 

� MAX-V/1
ST

 -3
RD

SYLL violated by sp-esque, monr-esque, figar-esque from Figaro 

� MAX-V/1
ST

- 4
TH

SYLL viol. by sp-esque, monr-esque, figar-esque, miyazak-esque from Miyazaki 

• 3 candidates per input: zola-esque, zol-esque, zolat-esque 

• Probability of each candidate is 1 or 0 

• Results with huge sigma—weights are free to get as big as they want 
*VV  (mu=0.0, sigma^2=100000.0) 9.36 

*[lo]V  (mu=0.0, sigma^2=100000.0) 2.10 

*[mid]V  (mu=0.0, sigma^2=100000.0) 1.11 

*[hi]V  (mu=0.0, sigma^2=100000.0) 0.00 

DEP-C (mu=0.0, sigma^2=100000.0) 11.95 

MAX-V (mu=0.0, sigma^2=100000.0) 0.00 

MAX-V/1ST SYLL (mu=0.0, sigma^2=100000.0) 8.42 

MAX-V/1ST-2ND SYLL (mu=0.0, sigma^2=100000.0) 2.03 

MAX-V/1ST -3RDSYLL (mu=0.0, sigma^2=100000.0) 0.50 

MAX-V/1ST- 4THSYLL (mu=0.0, sigma^2=100000.0) 9.17 

 

� 72% correct (winning candidate more probable than either of the other two) 

13 Cross-validation on MaxEnt model 

• 20% of data is held out 

• MaxEnt Grammar tool trains on remaining 80%, tests on held-out 20% 

� I didn’t have the programming time to set this up to repeat—so be warned that this isn’t very 

reliable. 

� I seem to have chosen a strange slice, where the CV data are “easier” than the training data! 

• Model comparison: what’s the best sigma
2
 (mu always 0)? 

 (see over) 
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� Bigger σ
2
 : better fit to training data 

� Medium σ
2
 : better fit to cross-validation data 

 σ
2
=100,000 σ

2
=10,000 σ

2
=1,000 σ

2
=100 σ

2
=50 σ

2
=10 σ

2
=5 σ

2
=1 σ

2
=0.1 σ

2
=0.01 σ

2
=0.001 

*VV 8.88 6.78 4.77 2.86 2.33 1.25 0.88 0.24 0.00 0.00 0.00 

*[lo]V 2.57 2.57 2.56 2.50 2.43 2.07 1.79 1.38 0.43 0.04 0.00 

*[mid]V 1.53 1.53 1.52 1.46 1.40 1.08 0.84 0.57 0.05 0.00 0.00 

*[hi]V 0.63 0.63 0.63 0.58 0.53 0.27 0.07 0.00 0.00 0.00 0.00 

DEP-C 11.89 9.79 7.78 5.81 5.21 3.79 3.17 2.18 1.01 0.22 0.03 

MAX-V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MAX-V/1
ST

  7.57 5.59 3.71 2.06 1.64 0.88 0.63 0.25 0.05 0.01 0.00 

MAX-V/1
ST

-2
ND

  1.93 1.93 1.93 1.92 1.91 1.85 1.80 1.52 0.63 0.10 0.01 

MAX-V/1
ST

 -3
RD

 0.62 0.62 0.63 0.64 0.65 0.69 0.70 0.51 0.18 0.04 0.00 

MAX-V/1
ST

- 4
TH

 9.17 7.07 5.05 3.09 2.50 1.13 0.57 0.00 0.00 0.00 0.00 

% correct on trained data 70.4% 70.4% 70.4% 70.4% 70.4% 70.0% 70.0% 69.1% 64.3% 55.2% 55.2% 

log likelihood of trained data -73.3 -73.3 -73.3 -73.4 -73.5 -74.1 -74.6 -76.4 -87.8 -104.1 -109.0 

% correct on CV data 73.4% 73.4% 73.4% 78.1% 78.1% 78.1% 78.1% 78.1% 67.2% 54.7% 54.7% 

log likelihood of CV data -17.5 -17.5 -17.5 -17.5 -17.5 -17.4 -17.4 -18.3 -23.3 -28.8 -30.3 
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14 I’ll turn it over to Stephanie for random forests 
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