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1 Introduction

It has often been argued that the (type or token) frequency of an affix in the lexicon cannot
be used to predict the degree to which that affix is productive. Affix type frequency refers
to the number of different words which contain an affix, token frequency refers to the
summed lexical frequency of those words. The observation that neither of these counts
relates straightforwardly to productivity, raises difficult questions about the source of
different degrees of productivity, making the nature of morphological productivity one
of the “central mysteries of word-formation” (Aronoff 1976:35). If productivity does not
arise as a function of frequency, then where does it come from?

This paper argues that frequency and productivity are, in fact, intimately linked. Type
and token frequency in the lexicon are not good predictors of productivity. But frequency
counts of decomposed forms in the lexicon can predict the degree to which an affix is likely
to be productive. The problem with doing a straightforward frequency count of forms
containing an affix, is that not all affixed forms contain the affix to the same degree. Some
affixed words are highly affixed, and are highly decomposable (e.g. tasteless). Other af-
fixed words appear more opaque, and tend to be characterised by whole word access,
rather than parsing (e.g. listless). We argue that the former set facilitate productivity
much more strongly than the latter set.

Decomposed forms in the lexicon arise from parsing in perception. By coming to a
clear understanding of the types of factors which tend to lead to parsing in perception,
then, we can predict the degree to which an affix is represented by decomposed forms
in the lexicon, and so (we argue), the degree to which it is likely to exhibit productiv-
ity. Thus, we argue that there is a strong relationship between parsing in perception,

1We are indebted to Andrew Carstairs-McCarthy, Wolfgang Dressler, Anke Luedeling, Janet Pierrehum-
bert, Ingo Plag and Robin Schafer, whose comments have greatly improved the quality and coherence of
this paper. Remaining errors or incoherencies are the sole responsibilities of the authors.
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and morphological productivity. Increased rates of parsing lead straightforwardly to in-
creased productivity.

One model which has posited a link between parsing and productivity is Baayen’s
(1993) dual processing race model of morphological access. In this model, there are two
routes for processing – the direct route (in which a word is accessed whole), and the pars-
ing route (in which it is accessed via its parts). Whether or not a specific morphologically
complex form is accessed via its parts is determined by the token frequency of that form
– if it is above a certain threshold of frequency, then the direct route will win, and the
word will be accessed whole. If it is below that same threshold of frequency, the parsing
route will win, and the word will be accessed via its parts. In order for an affix to remain
productive, words containing that affix must be parsed sufficiently often that the resting
activation level of that affix remains high. In this way, the model implicitly ties produc-
tivity to decomposition in perception. High rates of decomposition should ensure the
productivity of an affix. Conversely, an affix which is represented by many words which
are characterized by the direct route is unlikely to be productive.

In an attempt to explicitly model such a link between productivity and parsing, and to
provide a formal explanatory account of productivity, Baayen proposes a psychologically
motivated measure �, which is intended to approximate the resting activation level of
a given affix. This measure is the number of words containing the affix which occur
below a certain frequency threshold, each weighted by their frequency of occurrence.
This measure is distinct from other proposed productivity measures, in that it attempts
not only to measure degree of productivity, but also to explain it. The general idea behind
the approach is that low frequency types require parsing, and so protect the activation
levels of the affixes against decay. Such an approach is attractive, because it provides
the potential for a psychologically plausible account of the emergence of productivity.
Productivity emerges as a result of parsing.

The power of the statistic � is weakened, however, by its reliance on the assumption
that low frequency forms require parsing, and high frequency forms do not. Recent re-
sults have demonstrated that the absolute frequency of a derived form is not straightfor-
wardly related to parsing. More relevant is the nature of the frequency relations between
the derived form and the base.

Hay (in press) distinguishes between derived forms which are more frequent than the
bases they contain (e.g. illegible is more frequent than legible), and derived forms which
are less frequent than their bases (e.g. illiberal is less frequent than liberal). Derived forms
which are more frequent than their bases (e.g. illegible) are more prone to whole word ac-
cess, regardless of the absolute frequency of the derived form (Hay 2000, in press). Thus,
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low frequency forms may be accessed directly if their base is of even lower frequency.
And high frequency forms may be parsed if the base is higher frequency still. Relative
frequency matters.

In order to properly explore the relationship between productivity and parsing, then,
we need to find a more accurate heuristic for distinguishing between those words which
are prone to parsing, and those which are likely to be accessed whole. And this heuristic
must involve relative frequency, rather than absolute frequency.

Hay’s (in press) division between derived forms which are more frequent than the
bases they contain, and derived forms which are less frequent was a first approximation,
and is almost certainly overly simplistic. While the relative frequency of the base and the
derived form is clearly important, what is less clear is the exact location of the relevant
threshold for parsing. Exactly how frequent does the base form need to be, relative to the
derived form, in order to facilitate parsing?

This paper has two primary functions. First, it sets out to refine the notion of rela-
tive frequency as a potential heuristic for assessing parsability. What kinds of frequency
relations between affixed words and their bases tend to facilitate parsing?

Second, it uses this enhanced understanding of parsing to conduct a systematic in-
vestigation into the relationship between parsing and productivity. To what extent can
productivity in production be linked to parsing in perception? We demonstrate that there
is a strong link. The more often words containing a given affix are parsed during percep-
tion, the more productive that affix will be.

We begin, in section 2 with an investigation into affix-specific characteristics in the
lexicon. We show that the relationship between the token frequency of base forms, and
the token frequency of their related derived forms differs considerably across different
affixes. We argue that this variation is linguistically significant, and can provide insight
into degrees of decomposition of words containing different affixes in the lexicon.

In section 3 we motivate the location of an approximate “parsing line” (a threshold
in the space relating base frequency, and the frequency of corresponding derived forms),
above which an affixed form is likely to be decomposed. Having motivated such a parsing
line, we are able, for any given affix, to estimate which words containing that affix are
likely to be highly decomposable (those falling well above the line), and those which are
likely to be non-decomposable and characterised by whole word access (those falling well
below the line).

Having come to a more sophisticated understanding of the role of base form frequency
and derived form frequency in morphological decomposition, we are then able, in section
4, to turn our attention to the relationship between parsing and morphological productiv-
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ity. In this section we demonstrate that the distributional properties of words with respect
to the parsing line are statistically related to an affix’s productivity.

We conclude, in section 5, by arguing that the results, taken as a whole, provide strong
evidence of a robust link between productivity and parsing.

2 Affix-specific characteristics in the lexicon

Hay (in press) shows that for both prefixes and suffixes, the token frequency of the base
form (base frequency) and the token frequency of the derived form (derived frequency)
are significantly correlated. This is an intuitively reasonable result. Higher frequency
base words spawn higher frequency derived words. Extremely low frequency (relatively
useless) words, are less likely to spawn derived words, and are particularly unlikely to
have high frequency derivatives. Hay’s discussion collapses across a set of English affixes
– that is, she doesn’t investigate whether the observed correlation between base and de-
rived frequency holds for all affixes, or whether it holds to the same degree for all affixes.
This section describes an investigation of 80 affixes of English, in which we find that the
nature of this correlation in fact varies markedly across different affixes. We argue that
this variation is linguistically significant. Section 2.1 describes the corpus on which these
calculations are based.

2.1 The Data Set

The calculations in this paper are based on a set of words extracted from the CELEX
Lexical Database (Baayen, Piepenbrock, and Gullikers, 1995), which is based on an early
version of the Cobuild corpus (Renouf, 1987) that contained some 18 million words. The
English database in CELEX provides the morphological segmentation for a great many
complex words: all the words in the LDOCE machine-readable dictionary, as well as all
words in the Cobuild corpus down to a frequency threshold of 15 occurrences per 18
million. We will refer to this list as the segmentation list. It also provides a separate,
unanalyzed list of all character strings occurring in the Cobuild corpus, together with
their frequency of occurrence in the corpus. We will refer to this list as the string list.

We began with extracting all prefixes and suffixes that appear in the parses in the
segmentation list, and vetted each affix for its synchronic plausibility. All bimorphemic
words which contained the resultant affixes, and their corresponding monomorphemic
base word were then extracted from the segmentation list together with their frequency
of occurrence. Any affix which was not represented by at least ten such words was then
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discarded. This process resulted in a list of 54 suffixes and 26 prefixes — 80 affixes total.
We chose to work only with affixed words with monomorphemic bases, as they present

the simplest possible case. We leave the investigation of complex words with multimor-
phemic bases to future work. Such complex words may well behave differently, and their
investigation is many times more complicated because it requires grappling with the de-
gree of decomposability of the base words.2

Because a crucial part of our investigation was to involve the measurement of the
productivity of the affixes we were anxious that our materials contained representative
tokens and frequency counts. It was especially important that this was true of the lower
frequency range – the part of the word frequency distribution which dominates the cal-
culation of � (the category conditioned degree of productivity – see Baayen 1989, 1992).
The segmentation list in CELEX is unsatisfactory in this respect, because it misses an
important set of low frequency words. That is, it omits any complex word which ap-
pears in Cobuild with a frequency below 15 per 18 million, and which is not listed in
the LDOCE dictionary. A consequence of this is that, especially for the more productive
affixes, we are missing at least half of the word types that actually occur in the Cobuild
corpus. Word frequency distributions are characterised by large numbers of words with
very low frequencies of occurrence (Baayen 2001). Thus, for many affixes (and particu-
larly for productive affixes), a very large proportion of the words containing that affix are
low frequency.

In order to minimise the extent of this problem, we worked with the string list pro-
vided by CELEX, which includes all of the word-forms present in the Cobuild corpus,
including a great many misspelled words, hyphenated forms, numbers, and combina-
tions of numbers and letter sequences. We attempted to automatically extract all affixed
words from this list which did not appear in the segmentation list.

For each of the prefixes in our set, each word in the file was tested to see whether it was
a candidate prefixed form. For example, for the prefix pre-, we identified all words which
began with this string, and stripped the prefix from those words. The remaining string
was looked up in the segmentation list. If the string is listed there as a monomorphemic
word, then the entire word is included as part of our set of words prefixed with pre-

. Automatically conducting such a procedure creates the risk of spurious parses being
2E.g. understanding the behaviour of carelessness may require coming to an understanding of the role

of how the token frequency of carelessness relates to the frequency of careless, how the frequency of careless
relates to the frequency of care, whether the relationship between the frequency of carelessness and care is rel-
evant, and whether the relationship between each of these relationships plays any role. As understanding
the role of the frequency relationship of care to careless is complex enough, we begin by restricting ourselves
to monomorphemic bases, and leave these related questions for future work.
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accepted as candidate prefixed forms (e.g. if aid were listed in the string list, it might
qualify as a potential affixed word, prefixed with a-, because id is in the segmentation
list.) Spurious parses were therefore limited by the stipulation that the base word must
be at least three characters long. Of course, some spurious parses still resulted from this
process, but they formed a distinct minority of the total number of forms.

A similar process was conducted for the suffixes. For suffixes beginning in vowels, the
truncated “base” string was looked up in the segmentation list, and also the same string
with “e” added to enable identification of words such as, e.g., writer. In some cases, part
of speech was also specified. For instance, we specified that the base of “er” must not be
an adjective, in order to avoid including comparatives like bigger.

Clearly an algorithm would have to be very complicated in order to account for all
possible allomorphy, and we did not attempt to do this. Rather we found that with the
very simple heuristics outlined above, we were able to substantially increase the data-
sets for the affixes in which we were interested, and so greatly increase our confidence
in the range of forms represented in the lower frequency ranges. Thus, the statistics re-
ported throughout this paper are based on the affixed forms with monomorphemic bases
as available in the segmentation list, supplemented with the forms extracted from the
string list using the process outlined above. In cases in which CELEX includes multiple
entries for the same word, the frequency counts of these entries were summed together.

2.2 Correlating base and derived frequency

Hay (2000, in press) reports an overall significant correlation between the token frequency
of base forms and their corresponding derived forms, for both prefixes and suffixes. Does
such a correlation hold to the same degree (or at all) for individual affixes?

For each of the 80 affixes in our dataset, we performed a robust regression of base
frequency on derived frequency using least trimmed squares regression (Rousseeuw and
Leroy 1987). This is a form of regression which is particularly robust to outliers – i.e. it
attempts to find the best fit in the data (here – the nature of the relationship between base
frequency and derived frequency), without being unduly influenced by individual points
which do not conform to the pattern of the majority of the data. We chose to use robust
regression so we could be confident of the returned results, without examining each of
the 80 resultant plots in detail to check for the undue influence of outlier points.

In this regression analyses we used log frequency, rather than raw frequency. We
chose to use log frequency for two reasons. First, there is evidence that humans pro-
cess frequency information in a logarithmic manner – with differences amongst lower
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frequencies appearing more salient than equivalent differences amongst higher frequen-
cies (e.g. the difference between 10 and 20 is more important/salient than the difference
between 1010 and 1020). Second, by taking the log, we can make the distribution of fre-
quency counts more closely approximate the assumptions required for linear regression
techniques such as the one used here (Baayen 2001).

When we regress base frequency on derived frequency, we find that affixes vary con-
siderably in the nature of this relationship. Figure 1 shows example plots for four different
affixes, using the same ranges for the two axes for all panels. For three of the four affixes
(-ness, -ism, and -ment), a positive and significant correlation holds between derived fre-
quency and base frequency. For the fourth, (-ry, as in cabinetry, forestry etc.), there is no
significant correlation. The dotted lines represent � � �, the position on the graph where
base frequency and derived frequency are equivalent. The solid lines on the graphs rep-
resent the least trimmed squares regression lines.

A brief inspection of these four graphs reveals that affixes can vary in at least three
ways. They can vary in the degree of correlation between base and derived frequency,
in the steepness of the resultant slope, and in the intercept of the line (the location where
the line crosses the vertical axis). Thus, Hay’s calculation demonstrating a significant
correlation between base and derived frequency is likely to have included a fair amount
of inter-affix variability. What might we be able to learn about an affix based on such
factors?

From a production perspective, a significant correlation between base frequency and
derived frequency can be seen as a sign of productivity and of a high degree of seman-
tic regularity. If an affix is truly productive and regular, then we may expect that the
usefulness of a derived form should be directly predictable from the usefulness of the
base word. Put differently — more frequent base words will be more easily available
as bases of affixation, and so will create more frequent derived words. The less regular
and predictable the relationship is between derived words containing a particular affix,
and the base words they contain, the less predictable should be the relationship between
the frequency of the derived word and the frequency of the base. Thus, we interpret the
result in Figure 1 that -ness, -ism and -ment show a significant correlation and -ry does
not, as evidence that the former three affixes are more synchronically productive and/or
semantically regular than -ry. The affixes investigated are listed in the appendix, together
with relevant statistics. The significance level of the correlation between base and derived
frequency for each affix is given in the column labelled prob.

Interestingly, of the 80 affixes we investigated, 50� of suffixes (27/54) and 31� of pre-
fixes (8/26) show a significant correlation between base and derived frequency. This pro-
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vides evidence that suffixes tend to be more decomposable and lead to more semantically
transparent forms than prefixed forms. This difference is likely to relate to the temporal
nature of speech perception, which leads bases to be encountered before affixes for suf-
fixed words, but not prefixed words. This is likely to facilitate decomposition for suffixes,
but whole word access for prefixed words (see, e.g. Cutler, Hawkins and Gilligan 1985;
Segui and Zubizarreta 1985; Hay 2000).

From a perception perspective, the distribution of points in graphs like those shown
in Figure 1 is vital. Hay (2000, in press) has argued that derived forms which are more
frequent than the bases they contain tend to be accessed whole, whereas derived forms
which are less frequent than their bases are more likely to be parsed. This result contra-
dicts longstanding ideas regarding the primacy of the absolute frequency of the derived
form. Contrary to claims regarding the non-decomposability of high-frequency forms,
Hay argues that derived forms which are less frequent than their bases are prone to de-
composition regardless of absolute frequency. For any given affix, the more words for which
the base word is more frequent than the derived form, the more words will be decom-
posed during access.

One way to assess the proportion of types for any given affix which are prone to whole
word access, then, would be to note the proportion of types falling below the � � � line,
i.e., the proportion of types for which the derived form is more frequent than the base. The
� � � line appears as a dashed line in the graphs in Figure 1. Hay provides several types
of evidence that forms falling below such a line have different properties than those that
fall above it – namely, properties associated with non-decomposition. As an indication
of how various words are positioned relative to the x=y line, here are some examples of
words represented on the graph for the affix -ment. Words falling well above the line
for -ment include arrestment and dazzlement. Words falling well below the line include
government and pavement. Argument and assessment fall approximately on the line.

A glance at Figure 1 should make clear that different affixes have different proportions
of words which fall below this line. For example, a greater proportion of words contain-
ing -ment are more frequent than their bases (17.3�) than words containing -ness (0.6�),
indicating that a much greater proportion of -ness forms are regularly parsed and highly
decomposable than -ment forms.

The slope and the intercept of the regression between base and derived frequency
therefore become extremely important from a perception point of view. Consider -ness

and -ism, for example. Both have roughly the same intercept, but -ness has a much steeper
slope. The consequence of this is that fewer points fall below the � � � line for -ness than
for -ism. Similarly, -ness and -ment have roughly the same slope, but the intercept for -ness
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is higher. A consequence of this is that fewer points fall below the � � � line for -ness

than -ment. In sum, a higher intercept and a steeper slope are both likely to contribute to
higher rates of decomposition during speech perception.

We will return to these points in detail later in the paper, but first, we explore the
nature of the � � � line in some detail. The use of the line � � � is in fact fairly arbitrary,
an extremely approximate “parsing line” chosen in the absence of a principled manner
to determine the true location of such a line. Hay provides evidence that the relative
frequency of the derived form and the base affects the decomposability of an affixed word.
What remains unclear is the relevant threshold for this ratio. In the following section we
locate its approximate vicinity using empirical means.

3 Locating the Parsing Line

In order to ascertain the location of the parsing line defining the balance of storage and
computation for derived words given the frequency of the word itself (its derived fre-
quency) and the frequency of its base (its base frequency), we have made use of Mat-
check (Baayen, Schreuder, & Sproat, 2000; Baayen & Schreuder, 2000), a psycholinguistic
model for morphological parsing. In what follows, we first present a brief outline of how
Matcheck works. We continue with a validation study of Matcheck using experimental
data on the Dutch suffix -heid (-ness in English). Finally, we discuss how the approximate
location of the “parsing” line can be ascertained.

Matcheck is a model for morphological segmentation that implements the idea that
words and affixes in the mental lexicon compete with each other for recognition upon
presentation of a given target word. How strong a competitor is depends on its frequency
and its similarity to the target word. The competition process in Matcheck differs from the
competition process in a model such as ShortList (Norris, 1994) in that, instead of yielding
a single final representation, different segmentations of the input become available over
time. In fact, Matcheck can be seen as a tool for ranking segmentations (including the
segmentation consisting of just the derived form itself) according to their psychological
likelihood of being perceived. Baayen & Schreuder (2000) show that, at least for Dutch,
Matcheck is quite successful at ranking correct segmentations before incorrect segmenta-
tions. For instance, for the 200 randomly selected complex words of length 5-12 reported
in their study, 194 emerge with a correct segmentation at the very first timestep in the
model that a segmentation becomes available. Less than half of these parses (94 out of
200) are due to the derived form being recognized before the constituents. It is important
to realize that Matcheck does not make use of subcategorisation information of any kind.
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Figure 1: The relation between log derived frequency and log base frequency for four af-
fixes. Solid lines represent least trimmed squares regression lines (Rousseeuw and Leroy
1987). Dashed lines represent the x=y line. rs=non-parametric correlation (Spearman’s
rho)
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It is a simple purely bottom-up model that can make use of only word frequency and
form similarity. What makes Matcheck attractive for the purposes of the present study
is that it assigns to any complex word two moments in time: ��, the moment in model
time that the derived form has become available, and �� , the moment in time that the first
segmentation spanning the target word has become available. Thanks to these two times,
we can gauge the relative importance of the direct route and the parsing route for any
given target word. This property makes Matcheck a promising tool for estimating the
approximate position of the parsing line.

Section 3.2 describes how we used Matcheck to estimate the location of the parsing
line. But first, in section 3.1 we describe a short validation study of Matcheck, which
provides evidence in favour of the appropriateness of using Matcheck for this task.

3.1 Validation of Matcheck

Just how accurate is Matcheck at estimating of the points in time at which the derived
form and a correct parse become available? In order to provide some empirical valida-
tion for Matcheck’s timepoint estimates, we compared its predictions with the response
latencies obtained for roughly a hundred formations in the Dutch suffix -heid (equiva-
lent to -ness, in English). These response latencies come from a visual lexical decision
task, as reported in Bertram, Baayen, & Schreuder (1999) and Baayen, Schreuder, Bertram,
& Tweedie (1999). We used exactly the same Matcheck parameter settings as those used
in the corpus-based case study of Baayen & Schreuder (2000).

We find that for forms affixed in -heid, the “derived form time” �� and the “parse time”
�� returned by Matcheck are both highly correlated with subjects’ reaction times (RT) (de-
rived form time–RT: 0.73; parse time–RT: 0.48). The derived form time and the parse
time also emerge as highly correlated with log derived frequency and log base frequency.
As such, the correlations with the response latencies of the logarithmically transformed
frequency measures (which correlate much better with response latencies than raw fre-
quency counts) are virtually identical to the correlations of �� and �� with the response
latencies (log derived frequency–RT: -0.72; log base frequency–RT: -0.48). One may there-
fore view Matcheck as a psycholinguist’s black box accomplishing a log transform such
that the correct parsings have a high probability of being the first to become available in
model time.

The question that we now have to address is whether Matcheck is more than an alge-
braic alternative to taking the logarithm of the frequency measures.

As a first attempt to answer this question, we can consider to what extent the timestep
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at which the first segmentation becomes available, ������� �� �, predicts the actually ob-
served response times. Taking the minimum in this way amounts to assuming a morpho-
logical race model in which the first access route to win the race determines the response
time.

We also include the morphological family size of the base word in the model (the num-
ber of derived words and compounds in which that base adjective occurs as a constituent),
because there is evidence that it strongly influences response times (Schreuder & Baayen,
1997; Bertram, Baayen, & Schreuder, 1999; De Jong, Schreuder, & Baayen, 2000). So how
well does the combination of ������� �� � (the timestep of the first analysis returned by
Matcheck), and morphological family size predict actual response times to words suf-
fixed in -heid? A regression analysis suggests that both ������� �� � and the morphological
family size (henceforth abbreviated as Vf) are significant predictors of the response laten-
cies, and together account for 37% of the variance.3

We could explain more of the variance in the response latencies with a model that
integrates the two sources of information, the parse information and the derived form
information, without taking the minimum. In this way, we can account for 63% of the
variance.4

However, upon closer examination, it turns out that such a model is still not quite
correct. Let us denote the set of words for which �� � �� by F: This is the set of words for
which Matcheck predicts that the direct route is the first to deliver a complete spanning of
the input, namely, the derived form. Let us likewise denote the set of words for which the
parsing route wins by P. When we inspect the role of ��� �� , and Vf for these two subsets
separately, we find that they have different predictive properties. In the case of subset F,
only �� (or, equivalently, log derived frequency) emerges as significant.5 Turning to set P,
we find that �� and Vf, but not �� are significant.6 The same pattern of results is obtained
when subsets of the F and P sets are selected such that the correlations between family
size and derived frequency are removed. Expressed in terms of derived frequency and

3� ��� ��� � ����� � � ������ for 	
����� �� �, � ��� ��� � ����� � � ������ for Vf. The regression equation
of this model is:
�� � �����  ��� �	
����� �� �� ���� � ���Vf�
Note that this equation specifies that reaction times (RT) become longer if the moment in time at which the
first segmentation becomes available is later, and that a larger family size (Vf) leads to shorter RTs.

4The regression model:
�� � �����  ���� � ��  ��� � �� � ���� � ���Vf,
accounts for 63% of the variance (� ��� ��� � ������ � � ������ for ��, � ��� ��� � ����� � � ����� for �� ,
� ��� ��� � ���� � � ����� for Vf). Collinearity due to a high correlation of family size and base frequency (	
= 0.71) may inflate the separate roles of these two factors, however.

5� ��� ��� � ����� � � ������ for ��; � � � for �� as well as for Vf.
6� ��� ��� � ����� � � ������ for ��; � ��� ��� � ���� � � ���� for Vf; � � � for �� .
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family size, we now have the following model:

F: RT � �		 
 ���	 � ���derivedfreq�

P: RT � �	� 
 ���� � ���derivedfreq�� ���� � ���Vf�� (1)

The response latencies predicted by (1) are plotted against the observed response la-
tencies in the upper left panel of Figure 2. Words of the P set (for which the parsing route
was first to complete) are represented by solid points, and words of the F set (for which
the derived form was first to complete) by open points. The correlation of the predicted
and the observed response latencies is 0.80, we account for 64% of the variance in the
data.

Two things are surprising about this model. The first is the absence of an effect for
base frequency (or, equivalently, parse time �� ), for the P set (the words which Matcheck
predicts that the parsing route is the first to complete). And the second is the finding that
the effect of family size is restricted to the P set.

In order to understand the apparent lack of family size effect amongst the forms for
which the direct route is first to complete, it is important to realize that Matcheck simu-
lates a form-based component of visual lexical processing, and that the family size effect is
a semantic effect that can be understood in terms of activation spreading to semantically
related words along lines of morphological similarity.

Consider what happens when the direct route is the first to provide a complete span-
ning of the target word, say, snel-heid, “quickness”, i.e., “speed“. Once the derived form
has become available, the corresponding meaning is activated, apparently without acti-
vation spreading into the morphological family of its base, “snel”. In other words, fam-
ily members such as ver-snel-en (“to increase speed”) and snel-weg (“freeway”) are not
co-activated when snel-heid has been recognized by means of the direct route. A similar
observation has been made by De Jong, Feldman, Schreuder, Pastizzo, and Baayen (2001),
who report the absence of base frequency and family size effects combined with the pres-
ence of a derived frequency effect and a positional constituent token frequency effect for
Dutch and English compounds. Considered jointly, these results lead to the hypothesis
that the semantic activation for words recognized primarily by means of the direct route
is restricted predominantly to the meaning of the target word itself.

Now consider the case in which the parsing route wins the race. The present exper-
imental data on -heid suggest that in this case activation spreads into the morphological
family. This makes sense, as initially the comprehension system knows only that it is
dealing with a stem that has to be combined with some affix. By allowing the morpholog-
ical family members to become co-activated, all and only the possibly relevant candidates
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are made more available for the processes which combine the stem with the derivational
suffix and which compute the meaning of their combination.

In fact, since the derived form is one of the family members of the base, it will be ac-
tivated more quickly when the base has a large morphological family. This is because it
is embedded in a larger network of morphologically related words, and the morpholog-
ically related words spread activation to each other. This may explain why log derived
frequency remains such a strong predictor of the response latencies even for the words
in the P set. We think that derived frequency and family size may conspire to mask an
effect of the timestep itself at which the base word itself becomes available, leading to the
absence of a measurable effect of base frequency and �� .

What have we learned from this validation study of Matcheck? Firstly, we have seen
that this model does a reasonable job in predicting for which words the direct route is
the predominant access route, and for which words the parsing route is demonstrably
active. By dividing affixes into approximately these two sets (as identified by Matcheck),
and modelling them separately, we significantly increase our ability to accurately predict
subjects’ response times. For further validation for inflected words in Dutch and German,
the reader is referred to Baayen (to appear). Secondly, we have seen that the parse times
as predicted by Matcheck cannot be used as predictors of response latencies, probably
because subsequent semantic processes mask the potential effect of base frequency. But
certainly for the purposes of the present study, we can conclude that Matcheck is a useful
tool for distinguishing between words that are likely to be accessed through parsing and
subsequent semantic processes, and words that are accessed through their derived forms.

3.2 Locating the Parsing Line with Matcheck

Where in the plane spanned by log derived frequency and log base frequency can we
find the words that are prone to parsing and the words that are likely to be accessed
directly? The answer is provided by the upper right panel of Figure 2. Each point in
this figure represents a Dutch word affixed with the suffix heid. The X axis shows the
log derived frequency of the derived word, and the Y axis shows the log frequency of
the base. Filled circles represent words for which the parsing route completes first in the
Matcheck simulation (i.e, the P words). Open circles represent the F words – the words for
which the derived form completes first. Interestingly, the two sets are quite distinct, and
can be separated reasonably well by a straight line, as shown. This parsing line acts as a
discriminant and, crucially, it has a positive slope, exactly as expected given the results of
Hay (2000). It is not the absolute frequencies but the relation between derived frequency
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and base frequency that is crucial for the balance of storage and computation.
The bottom panel of Figure 2 shows the predictions of Matcheck for the bimorphemic

words in the English suffix -ness represented in our data set, using the same parameter
settings but replacing the Dutch input lexicon by an English lexicon. Note that the pars-
ing line is very similar to the one obtained for -heid. Approximately the same line also
emerged when we ran Matcheck for several different affixes in English, although the ex-
act location of the parsing line depends to some extent on the length of the suffix (see
Laudanna & Burani, 1995, and Baayen, to appear, for the relevance of affix length for
lexical processing). In what follows, we will ignore the role of affix length and use the
parsing line of -ness7 (as determined by a grid search minimizing the misclassification
rate of the F and P sets) as a first pass at a more sophisticated way of estimating the bal-
ance of storage and computation for English derivational morphology than the arbitrary
threshold � proposed by Baayen (1993), and the x=y line used by Hay (in press). We also
ignore possible differences between prefixes and suffixes, and treat them as identical for
the purposes of this paper, while acknowledging that future work may well identify dif-
ferent characteristics for parsing lines associated with prefixes than those associated with
suffixes.

Note that the parsing line identified here is somewhat higher than x=y. Thus, the
number of forms which fall below this parsing line (i.e. are prone to whole word access)
is rather higher than was predicted by the number of forms which fall below the x=y line.
This is to be expected, because the x=y division in effect weighs up the effort involved
in retrieving the base against the effort in retrieving the derived form. It does not take
into consideration the added task of retrieving the affix and any subsequent calculations
which may be associated with parsing, both of which add to the effort involved in suc-
cessfully decomposing a word into its parts. Thus, if a derived word and its base are of
equal frequency, the direct route is likely to have an advantage in terms of access time
over the parsing route. This is reflected in the fact that the parsing line located using
Matcheck is substantially higher than x=y. It appears that the derived form can be some-
what less frequent than the base word, and still have a good chance at dominating the
“race”, i.e. can still be robustly associated with whole-word access.

The remainder of the paper takes this parsing line as a given, and explores what we
can learn about different affixes, based on how words containing those affixes are dis-
tributed relative to the parsing line. However, it is important to emphasise that we do
not regard the parsing line as an absolute. That is, it is not the case that all words falling

7This parsing line has a slope of .76, and an intercept of 3.76
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above the line are definitely and fully decomposed, and all words falling below the line
are definitely and completely accessed via their derived forms. On the contrary, we re-
gard decomposition as a continuum (see Hay 2000), and assume that both parsing and
whole-word access are likely to play some role in the access of most affixed words — and
may interactively converge on the correct meaning representation (Baayen and Schreuder
2000). The parsing line provides us with a valuable tool for assessing the relative contri-

bution of parsing and direct access in the representation of words containing the affixes
we investigate. Thus, for words which fall well above the parsing line (e.g. dazzlement),
parsing is likely to play a fairly dominant role, and for words falling well below the pars-
ing line (e.g. government) direct access is likely to play a more dominant role. The closer
a word is to the line, the more equal becomes the balance between computation and stor-
age. Thus, by making a fairly crude division between words which fall above the parsing
line, and those that fall below it, we are able to approximately identify those words for
which parsing is likely to play a substantial role. Viewed differently, we can isolate those
words for which the base word is substantially and saliently present inside the derived
word.

4 Parsing and Productivity

4.1 Parsing Ratios

Given the parsing line, we can calculate, for any given affix, what proportion of words
containing this affix fall above it. These words are the words that are likely to be parsed or
for which the parsing process contributes measurably to lexical access. We will henceforth
refer to this proportion as the parsing ratio. This statistic provides information about how
robust the affix is, from the point of view of perception. Affixes which are represented
only by words which fall above the line are likely to be extremely robust. Due to the
involvement of the parser, the formal and semantic relationship between the constituents
remains transparent, and hence the syntactic and semantic functions of the affix. If one
assumes (as we do) that productivity arises as a result of decomposition in the lexicon,
then we should expect such affixes to have a high probability of being productive.

Affixes which are represented only by words which fall below the line, on the other
hand, have very little probability of gaining an independent robust representation. Words
containing such affixes are seldom decomposed during access – the whole-word access
route is dominant. We predict that such affixes are extremely unlikely to be productive,
as they are seldom needed in comprehension.
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Figure 2: Left Panel: The correlation between the model times produced by MATCHECK
and observed response latencies for the Dutch suffix -heid. Upper Right Panel: The rela-
tion between log derived frequency and log base frequency for -heid. Bottom Right Panel:
The relation between log derived frequency and log base frequency for -ness. Solid points
represent forms for which the parsing route is the first to produce a complete spanning
in MATCHECK. Open points represent forms for which the derived form is the first to
provide a complete spanning. The lines in the right panels optimally divide the words
that are parsed from those that are recognized on the basis of their derived forms.
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We can distinguish two types of parsing ratio – the type parsing ratio, and the token

parsing ratio. The type parsing ratio can be calculated by establishing, for a given affix,
what proportion of types (i.e. distinct words) containing that affix fall above the parsing
line. The token parsing ratio can be calculated by establishing what proportion of all
tokens containg that affix fall above the parsing line.

So how do the type parsing ratio and the token parsing ratio relate to morphologi-
cal productivity? Is there a tight link, as the discussion above predicts? We can test the
hypothesized link between parsing and productivity by examining the corpus of 80 En-
glish affixes described in section 2.1. How does the parsing ratio for each affix relate to its
productivity?

Productivity is multifaceted, and so can be assessed in several different ways. Baayen
(1994) proposes that productivity be assessed with respect to three different measures
which tap into different components of productivity: � , �� and � . The category con-
ditioned degree of productivity, � , assesses the likelihood, given we are encountering a
word containing a certain affix, of that word representing a new type. It is calculated by
the total number of hapaxes (forms containing the affix which are represented just once
in the corpus) as a proportion of all tokens containing the affix (	 ). �� is the hapax condi-
tioned degree of productivity. It expresses the probability that, if we are encountering an
entirely new word, that word will contain the affix in question. It is measured by calcu-
lating what proportion of all hapaxes in the corpus are associated with that affix. Finally,
in addition to these two statistics, productivity is affected by the type frequency � , which
allows us to gauge how many different words the affix in question has been responsible
for. Taken together, these three statistics assess the overall productivity of an affix.

Our calculations reveal that, of these three components of probability, parsing ratios
are best correlated with the category conditioned degree of productivity, � . Consider
Figure 3, which is based on our set of 80 affixes – every point represents an affix. The
top left panel relates the token parsing ratio to the log number of tokens representing
an affix (	 ). 	 forms the denominator in the calculation of � – that is – it is inversely
related to the level of productivity of an affix. Affixes towards the left of the graph are
represented by a small number of tokens. Affixes towards the right of the graph have
a high token frequency. The Y-axis represents the proportion of those tokens which are
parsed, i.e., which fall above the parsing line. The solid line represents a non-parametric
scatterplot smoother. The graph shows that there is a significant inverse relationship
between token frequency, and the proportion of tokens which are parsed. This inverse
relationship between the token parsing ratio and token frequency provides support for
the hypothesis that parsing and productivity are linked.
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Figure 3: The relation between log 	 (upper panels) and� (lower panels) and the propor-
tions of tokens (left) and types (right) that are parsed. Every point represents a single affix.
The lines represent a non-parametric scatterplot smoother (Cleveland, 1979) fit through
the points. rs=non-parametric correlation (Spearman’s rho)
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That such a relationship should hold between token frequency and parsing also be-
comes clear when we consider that high frequency forms are significantly more likely to
be more frequent than their bases than low frequency forms are (Hay 2000). Thus, the
more high frequency forms an affix has, the larger the number of non-parsed forms is
likely to be. The top right graph demonstrates that such a relationship holds, regardless
of whether we consider the proportion of types or the proportion of tokens which is being
parsed. This shows how token frequency is related to the type parsing ratio of an affix.
Affixes represented by high token frequency contain a smaller proportion of both types
and tokens which are actually decomposed during access. Paradoxically, this leads to the
generalization that the more often we encounter an affix in running speech, the less likely
we are to parse words containing it.

These results demonstrate that productivity cannot be construed as arising as a simple
function of the number of times one has encountered an affix. On the contrary – the more
often you encounter an affix, the less likely you are to decompose forms containing it, and
so the less productive that affix is likely to be.

The bottom panels show how parsing ratios relate to category-conditioned productiv-
ity � , itself a partial function of 	 (Baayen 1989, 1992, Baayen and Lieber 1991). It is a
measure which has met some success in measuring degree of productivity for different
affixes. If an affix is highly productive, then new forms will be constantly coined with
that affix, and so a corpus should contain many forms which are encountered just once.
For non-productive affixes, however, there is a strictly finite set of words which contain
that affix, so, for a large corpus, the chances are high that those words will have been
encountered more than once. � is calculated as the number of hapaxes (V1) containing
the affix, as a proportion of all tokens containing the affix.

For any given affix, both the proportion of tokens which are parsed (bottom left graph)
and also the proportion of types which are parsed (bottom right) are significantly related
to the log productivity of that affix.8 Productivity is related — in a statistically well-
behaved way — to parsing.

We see this relationship as causal. Productivity arises from decomposed forms in the
lexicon. And decomposed forms in the lexicon arise from parsing. Thus, we expect those
affixes which are represented by words which are likely to be parsed, to be associated
with a certain level of productivity.

We have shown figures for both proportion of types and proportion of tokens, to show
that the relationship between parsing and productivity is robust, regardless of the per-

8We take the logarithm of � because this makes the structure in the data more visible to the eye.
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spective from which it is viewed. Both types and tokens are likely to play important
roles. A certain proportion of types is required in order for generalisation to take place.
That is, if just one word containing a particular affix is likely to be parsed, then, regard-
less of how frequent that word is, speakers are unlikely to generalise on the basis of one
word, and so the affix is unlikely to become productive. So type frequency is important
(see also Pierrehumbert, 2001). Token frequency is also important, because once speakers
have generalised from a set of words and an affix has a robust representation, then words
with a high token frequency (which are nonetheless parsed), serve to regularly activate
(and so strengthen) the affix’s representation. Thus, both a high type-parsing ratio and a
high token-parsing ratio influence the degree to which an affix will be productive.

Why, of the three components of productivity, do parsing ratios best correlate with �?
Recall that � is the category conditioned degree of productivity. It tells us, given that we
are encountering a word containing a particular affix, the probability that the word has
been productively coined – i.e. the probability that the speaker or writer did not retrieve a
stored representation for that word, but produced it from its constituents. The calculation
definitionally limits the domain of comparison to a single affix, and does not compare
it, either implicitly or explicitly, to the behaviour of any other affix. The parsing ratio
does exactly the same thing — it tells us the category conditioned degree of parsing. It is
the perceptual counterpart to � . It tells us, given that a listener is encountering a word
containing a particular affix, the probability that the word will be decomposed during
access. Summing up, the results in this section demonstrate that the category conditioned
degree of parsing is a statistically reliable predictor of the category conditioned degree of
productivity.

4.2 The Intercept

When we regress base frequency on derived frequency, the intercept of the resulting line
displays a fair amount of variation across affixes. When we consider the graphs in Fig-
ure 1 for example, the intercept for -ment (i.e. the place where it crosses the Y axis) is 1.25,
and the intercept for -ism is 3.53. A consequence of this difference is that fewer points fall
below the x=y line (and also, the more empirically motivated parsing line – not shown in
figure 1) for -ism than for -ment.

From a production perspective, the intercept (regardless of the slope of the line) indi-
cates how frequent a base word needs to be before it is likely to spawn an affixed word.
Affixes with high intercepts are affixes for which the base words are fairly high frequency
relative to the derived forms. For such affixes, a base word needs to be fairly frequent
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before it is likely to produce an affixed word. A high intercept is likely to indicate that
the category of the base word is more “useful” – i.e., more frequently employed, than the
category of the derived word. Affixes with low intercepts are affixes for which the base
words tend to be of lower frequency relative to the derived words. This type of profile
might be expected for affixes for which the category created by the affix is highly useful,
and so leads to relatively frequently used words.

From a perception perspective, a high intercept reflects an overall pattern in which
base frequencies tend to be high relative to derived frequencies. That is, it reflects a dis-
tribution in which many words are prone to parsing, and very few are prone to whole
word access. A low intercept, on the other hand, would reflect a distribution in which
a larger proportion of forms fall below the parsing line. Such a distribution has a larger
proportion of forms which are prone to whole word access.

Taking the claims about production and perception together, we reach a surprising
conclusion — but one which is nonetheless borne out by the empirical facts. The less
useful an affix is (in terms of the degree of use of the words it creates – not in terms of
how many different words it could potentially create), the more likely it is to be parsed,
and so the more productive it is likely to be. Relatively useless affixes remain productive
because their derived forms remain low frequency relative to the frequency of the base
words. This leads to high rates of parsing, and so to a robust representation of the affix.

Evidence for the existence of a relationship between the intercept and productivity
can be seen in the graphs in Figure 4. These graphs are based on robust regression lines
fit through individual affixes (a small subset of which were shown in Figure 1). Each
point in the graphs in Figure 4 represents a single affix. The X-axis of the graphs shows
the intercept for robust regression lines fit through derived and base frequency for each
individual affix. Of the 80 affixes, 44� show a significant correlation between derived
frequency and base frequency. All 80 are shown here, however, as the intercept is relevant
(both from a production and a perception perspective), regardless of the significance of
the slope of the line with which it is associated. For those with a non-significant slope,
the intercept merely reflects the average base frequency.

The left panel of Figure 4 shows a significant relationship between the intercept, and
productivity as measured by � . Affixes which return high intercept values when base
frequency is regressed on derived frequency, show significantly higher levels of produc-
tivity. The right panel shows the relationship between the value of the intercept, and the
total number of tokens containing the affix. Affixes with high token frequency (towards
the top of the graph) are more likely to be represented by high frequency words, which
fall below the parsing line, and so are prone to whole word access. When we regress base
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frequency on derived frequency, large numbers of high frequency words will lower the
value of the intercept by pulling the regression line closer to the X-axis.

The results shown in Figure 4, then, further demonstrate that the relationship between
base frequency and derived frequency for a given individual affix profoundly influences
that affix’s degree of productivity.

4.3 Estimating the Activation Level

In section 4.1 we showed that there is a significant relationship between the proportion
of forms that are parsed (the parsing ratio) and the productivity of the associated affix.
When we limit the domain of analysis to individual affixes, the proportion of forms which
is parsed is an extremely good predictor of the proportion of forms which will be produc-
tively coined.

However, the proportion of forms is not necessarily the best indicator of the overall
activation level of the affix. We can more accurately compare the different degrees of
activation different affixes receive by comparing the actual number of forms for each affix
that are parsed. In terms of perception, there is a sense in which the forms which are not
parsed do little or nothing to contribute to the activation level of the affix. Rather, the
degree to which the affix is activated can be assessed by calculating the total number of
forms containing that affix which are characterized by decomposition.

When we investigate the relationship of the total number of forms parsed (i.e. falling
above the parsing line) to the various measures of productivity, we find a very interest-
ing result. This number is not a good predictor of the category conditioned degree of
productivity � . It is, however, extremely highly correlated with the other two aspects of
productivity — the type frequency � , and the hapax conditioned degree of productivity
��.

Recall that the hapax conditioned degree of productivity �� is calculated as the total
number of hapaxes representing the affix in question, as a proportion of all hapaxes in the
corpus. Because we are working with a single corpus here, the total number of hapaxes in
the corpus is a constant. The number of hapaxes representing any given affix (� �), then,
can be viewed as a measure of that affix’s hapax conditioned degree of productivity ��.

Figure 5 shows how the total number of forms parsed is related to the number of types
an affix has (� ), and the number of hapaxes that represent it (� �). Each point represents
a single affix. In the top panels, the X-axis shows the log number of types of words
represented by the affix. The Y-axis shows the log number of tokens (left panel) and types
(right panel) containing that affix which are likely to be parsed (ie. which fall above the
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Figure 5: The relation between log � (upper panels) and � � (lower panels) and the log
number of tokens (left) and types (right) that are parsed. Every point represents an affix.
The lines represent a non-parametric scatterplot smoother (Cleveland, 1979) fit through
the points. rs=non-parametric correlation (Spearman’s rho).
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parsing line). What we see is that affixes which have a large number of types associated
with them, have a larger number of both tokens (left panel) and types (right panel) which
are prone to parsing. However, the relation between the number of types, and number
of types or tokens parsed is fairly trivial. The larger the number of different words that
exist, the larger the number which is likely to be parsed.

The bottom panel shows that for any given affix, the number of tokens parsed (left)
and types parsed (right) can be predicted by the total number of hapaxes containing that
affix — i.e. the number of new words which are coined with that affix in a given period,
and a measure of the hapax conditioned degree of productivity.

In the left panel, we see a statistical relationship between the number of hapaxes, and
the log number of tokens that are parsed. This relationship is by no means trivial. Ha-
paxes contribute extremely minimally to overall token counts, and so there is no a priori
reason we should expect the number of hapaxes to correlate with the total number of
tokens which are parsed. Yet we do see this relationship, and the reason we see it (we
suggest), is because there is a causal relationship between parsing and productivity. The
larger the number of tokens that is parsed, the more activated and robust the representa-
tion of the affix is, and so the more available it becomes for the formation of new forms.

Finally, in the bottom right panel we see an extremely tight correlation between num-
ber of hapaxes and the number of types which are parsed. One long-standing puzzle in
the study of productivity is that there is no reliable correlation between the productivity
of an affix and the number of different words in which it can be found. Type frequency,
it has often been claimed, cannot be related to productivity (Dressler 1997, Anshen and
Aronoff 1999).

Apparently, a language can have in its lexicon a fairly large number of words
from which one could potentially analogize to a productive pattern without
any consequent productivity. (Anshen and Aronoff, 1999:25).

Anshen and Aronoff see this as a “formidable obstacle” to those who argue for quanti-
tative analogy over rules. It certainly appears to be the case that type frequency alone can
not predict productivity. What is crucially missing from any analysis focussing on type
frequency alone is any information about how decomposable the types are. Not all words
contribute equally to the productivity of an affix. In particular, words which tend to be
accessed directly, and for which decomposition plays no effective role, do not contribute
significantly to the productivity of the affixes they contain. By finding a principled way
of approximately identifying that subset of words, for any given affix, which are prone to
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parsing, we are able to demonstrate an astonishing level of correlation between the size
of that subset, and the frequency with which new words are likely to be formed.

The number of forms parsed, we claim, corresponds to the overall activation level of
an affix. And the activation level of an affix is directly related to that affix’s productivity
— as measured both by the overall likelihood of encountering a new word containing
that affix, and its degree of generalisability.

4.4 The significance of the slope

When we more closely examine many of the results described above, we tend to find
a marked difference in the behaviour of affixes which display a significant correlation
between base frequency and derived frequency, and those that do not. Figure 6, for ex-
ample, repeats the top left graph from Figure 3. It shows the relationship between token
frequency and the token parsing ratio — the proportion of tokens that are parsed. Each
point represents an affix. Filled points represent affixes for which there is no significant
correlation between base frequency and derived frequency. Unfilled points represent af-
fixes for which a significant correlation holds. Separate lines are fitted through each of
the two sets of affixes. These lines show that, regardless of whether there is a significant
correlation between base and derived frequency, a strong relationship holds between total
token frequency (	 ) and token parsing ratios. Affixes which have higher token frequency
have a smaller proportion of tokens which are actually parsed.

The difference between these two lines tells us something about the implications of
a significant correlation between base and derived frequency. Recall that in section 2.2
we argued that significant correlations should tend to hold for affixes which display high
rates of semantic transparency and/or are highly productive. Figure 6 shows that those
affixes with significant correlations tend to have higher parsing rates compared to affixes
with non-significant correlations with the same token frequency 	 . In other words, given
two affixes with the same token frequency, the affix with the significant correlation be-
tween base and derived frequency will display a higher parsing ratio.

What Figure 6 shows, then, is that although it is detrimental for the productivity of
an affix to have a large value of 	 , it is less detrimental when the affix has a significant
slope, i.e., when the words it occurs tend to be transparent to their base. In other words, of
two affixes with similar token parsing ratios, the one maintaining a significant correlation
between derived frequency and base frequency is used more often: Purely in terms of
intensity of use, it is the more productive affix.
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Figure 6: The relation between log 	 and the proportion of tokens that are parsed. Un-
filled points represent affixes with a significant correlation between base frequency and
derived frequency. Filled points represent affixes with no such correlation. The dotted
line represents a non-parametric scatterplot smoother for the affixes in the former set, the
solid line represents a similar smoother for affixes in the latter set.
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5 Discussion

We have identified a critical ratio of base and derived frequency above which derived
forms are likely to be parsed. This critical ratio is defined by the parsing line shown in
Figure 2. We have motivated this parsing line both theoretically and empirically, albeit
as yet only on the basis of a case study of a single affix. We have demonstrated that the
distributional properties of words with respect to this parsing line are statistically related
to an affix’s productivity.

These findings enable us to considerably refine the psychologically motivated mea-
sure� developed by Baayen (1993). Baayen proposes to set an activation level at a certain
frequency threshold — �. What � measures is the number of types of a certain category
occurring below this frequency threshold �, each weighted by their frequency. This mea-
sure is distinct from the other productivity measures he proposes, in that it attempts not
only to measure degree of productivity, but also to explain it. The general idea behind the
approach is that low frequency types require parsing, and so protect the activation levels
of the affixes against decay. The choice of the frequency threshold is not straightforward,
as Baayen himself notes. He chooses a fairly low threshold, explaining:

The low choice of � ... . . . is motivated by the constraint that only semantically
transparent complex words contribute to the activation level �. Since trans-
parency is inversely correlated with frequency, higher values of � would lead
to the inclusion of opaque and less transparent forms in the frequency counts.
In the absence of indications in the CELEX database of the (degree of) seman-
tic transparency of complex words, and in the absence of principled methods
by means of which degrees of transparency and their effect on processing can
be properly evaluated, the research strategy adopted here is to concentrate on
that frequency range where complex words are most likely to be transparent.
(Baayen 1993:203)

Recent work, however, has demonstrated that frequency by itself is not a good pre-
dictor of degree of semantic transparency (Hay in press). High frequency forms are not
significantly more likely to display signs of semantic drift than low frequency forms. The
relative frequency of the derived form and the base, however, is a good predictor, both for
prefixes and suffixes. Thus, while drawing a line at a given frequency threshold may have
been a reasonable first approximation, it does not reliably distinguish between opaque
and transparent forms, as Baayen had intended it to. Note that, in the plane spanned
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by derived frequency and base frequency, a frequency threshold such as � amounts to a
vertical parsing line at a fixed position of derived frequency for all affixes.

Conversely, the parsing line motivated in section 3, and the results in subsequent sec-
tions showing how this parsing line leads to various correlational patterns relating to
different facets of productivity, suggest that there is a strong psycholinguistic motiva-
tion for using this parsing line as critical diagnostic rather than using a simple frequency
threshold.

We have shown that it is possible to estimate the frequency with which an affix is
activated, by considering the relationship between base and derived frequency for words
containing that affix, and how this distribution relates to the parsing line. This allows
us not only to estimate which words containing a particular affix are likely to be parsed,
but also to accommodate the insight that the relation between derived frequency and base
frequency is a crucial factor in language comprehension.

This increased understanding of the nature of morphological parsing has made it pos-
sible to come to grips with various aspects of morphological productivity. Given any par-
ticular affix – the likelihood that it will be parsed during access is statistically predictive
of � , the likelihood of a word containing that affix having been productively coined. And
�� – the likelihood, given all productively coined words, that a coined word will contain
the affix of interest, is a function of the frequency of activation of that affix – as measured
by the number of forms containing the affix which tend to be accessed via parsing.

Independently of the parsing line, we have shown that the nature of the correlation
between base frequency and derived frequency varies markedly across individual affixes.
This variation is linguistically significant, and can be related to affixes’ parsability and
productivity.

Taken together, the results in this paper provide evidence of a strong link between pro-
ductivity and parsing. The frequency with which an affix is activated during processing
directly affects the degree to which it is productive.
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Appendix

The following tables list all of the affixes investigated, together with the major calcula-
tions discussed. Note that figures given here are rounded to two or three decimal places,
for ease of presentation. However the statistics described in this paper were all performed
on figures accurate to 6 decimal places.
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affix cor prob int V1 � V types-P type-PR, tokens-P token-PR
anti 0.11 0.312 7.46 48 0.082 84 61 0.73 259 0.44
be 0.19 0.078 4.50 26 0.001 91 52 0.57 1017 0.05
con 0.05 0.702 3.19 20 0.004 70 30 0.43 790 0.15
counter 0.29 0.033 7.09 29 0.054 53 43 0.81 491 0.92
cross 0.23 0.186 5.66 14 0.043 35 32 0.91 320 0.99
de -0.02 0.810 6.73 40 0.004 121 66 0.55 469 0.05
dis 0.23 0.013 4.04 15 0.001 118 52 0.44 2187 0.16
em 0.13 0.612 9.29 5 0.004 17 9 0.53 344 0.27
en 0.13 0.612 9.29 21 0.002 82 43 0.52 1350 0.12
fore 0.39 0.005 4.24 12 0.005 51 42 0.82 1683 0.75
im 0.13 0.363 4.70 6 0.001 49 23 0.47 463 0.08
in -0.09 0.206 5.75 58 0.004 192 96 0.5 1084 0.08
inter 0.10 0.475 7.81 20 0.010 52 39 0.75 617 0.30
mid 0.31 0.010 6.11 35 0.031 70 62 0.89 1065 0.94
mis 0.26 0.062 6.59 12 0.006 53 42 0.79 1791 0.84
non 0.16 0.147 6.59 56 0.071 88 82 0.93 264 0.33
out 0.11 0.299 7.80 29 0.004 85 74 0.87 2204 0.30
over 0.23 0.002 7.76 60 0.015 174 154 0.89 3283 0.82
pre 0.03 0.818 6.93 37 0.015 90 62 0.69 488 0.20
re 0.21 0.000 6.38 76 0.002 289 196 0.68 6542 0.20
self 0.04 0.803 6.05 19 0.025 50 38 0.76 393 0.52
sub -0.16 0.243 8.60 23 0.015 57 42 0.74 258 0.17
super -0.02 0.875 7.22 46 0.084 69 55 0.80 364 0.67
trans 0.08 0.754 1.24 4 0.004 18 11 0.61 733 0.7
un 0.16 0.012 5.80 61 0.005 241 131 0.54 4417 0.39
under 0.46 0.000 5.73 27 0.013 86 73 0.85 1182 0.59

Table 1: Prefixes investigated.
cor: non-parametric correlation between base and derived frequency (Spearman’s rho).
prob: significance level of the above correlation.
int: intercept returned from robust regression of base frequency on derived frequency.
V1: number of hapaxes.
� : Productivity, as measured by the number of hapaxes, as a proportion of total token
frequency.
V: number of distinct words containing the affix.
types-P: number of distinct words which fall above the parsing line.
type-PR: The type parsing ratio = the proportion of types which fall above the parsing
line.
tokens-P: The summed frequency of the words which fall above the parsing line.
token-PR: The token parsing ratio = the proportion of tokens which fall above the parsing
line.
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affix cor prob int V1 � V types-P type-PR, tokens-P token-PR
able 0.13 0.031 6.61 57 0.003 278 199 0.72 3161 0.19
age 0.09 0.287 4.71 31 0.002 136 72 0.53 1285 0.09
al 0.34 0.000 4.34 40 0.001 300 70 0.23 2430 0.04
an 0.11 0.109 2.21 47 0.003 229 60 0.26 398 0.03
ance 0.27 0.019 1.52 6 0.000 77 25 0.32 671 0.05
ant 0.14 0.159 5.46 17 0.002 102 34 0.33 816 0.09
ary 0.39 0.001 5.12 8 0.001 76 19 0.25 931 0.16
ate 0.09 0.361 2.99 15 0.003 100 31 0.31 385 0.07
ation 0.53 0.000 2.68 28 0.001 189 34 0.18 1695 0.06
dom 0.30 0.175 6.32 6 0.002 22 11 0.50 74 0.02
ee 0.04 0.761 5.58 22 0.005 68 36 0.53 207 0.05
eer 0.46 0.047 3.09 4 0.005 19 9 0.47 76 0.10
en 0.16 0.020 4.12 63 0.003 200 112 0.56 2443 0.12
ence 0.45 0.000 1.11 7 0.000 88 9 0.10 167 0.01
ent 0.17 0.119 3.39 17 0.001 85 24 0.28 354 0.01
er 0.35 1.000 4.19 251 0.003 1313 653 0.50 19872 0.21
ery 0.16 0.083 4.87 21 0.004 115 44 0.38 542 0.10
ese 0.20 0.324 2.11 4 0.002 26 7 0.27 20 0.01
ess -0.10 0.461 5.96 18 0.013 58 33 0.57 249 0.18
ette 0.05 0.788 6.44 10 0.006 36 16 0.44 80 0.05
fold 0.48 0.017 7.83 9 0.055 25 23 0.92 162 0.99
ful 0.16 0.035 6.42 43 0.002 183 112 0.61 4391 0.25
hood 0.51 0.005 8.14 8 0.004 30 24 0.80 1441 0.67
ian 0.11 0.275 3.86 29 0.006 106 28 0.26 185 0.04
ic 0.28 0.000 1.53 39 0.002 287 42 0.15 550 0.03
ier 0.39 0.102 4.56 2 0.007 19 13 0.68 184 0.64
ify 0.53 0.000 4.66 7 0.002 46 26 0.57 1701 0.38
ish 0.06 0.426 6.34 59 0.005 206 120 0.58 1286 0.10
ism 0.24 0.005 3.53 16 0.003 137 54 0.39 1540 0.27
ist 0.38 0.000 3.35 39 0.005 168 55 0.33 1001 0.13
itis -0.30 0.283 3.81 4 0.028 15 2 0.13 2 0.01
ity 0.55 0.000 1.56 33 0.001 288 48 0.17 1916 0.06
ive 0.27 0.027 4.99 19 0.003 66 28 0.42 857 0.12
ize 0.23 0.006 5.43 13 0.001 143 63 0.44 1664 0.15
less 0.32 0.000 6.23 119 0.017 340 291 0.86 5313 0.74
let 0.19 0.198 7.12 19 0.014 50 31 0.62 305 0.23
like 0.24 0.000 4.71 270 0.381 367 251 0.68 539 0.76
ling -0.21 0.358 7.75 0 0.000 21 13 0.62 110 0.10
ly 0.51 0.000 2.41 198 0.001 1158 283 0.24 16347 0.10
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affix cor prob int V1 � V types-P type-PR, tokens-P token-PR
ment 0.21 0.005 1.75 21 0.000 172 42 0.24 370 0.01
most -0.04 0.874 7.98 7 0.019 16 14 0.88 270 0.73
ness 0.42 0.000 2.98 128 0.008 483 248 0.51 3845 0.23
oid -0.16 0.556 2.83 4 0.021 16 5 0.31 21 0.11
or 0.00 0.972 6.42 62 0.004 221 85 0.38 2013 0.12
ory 0.26 0.111 3.49 8 0.002 38 15 0.40 2239 0.57
ous 0.41 0.000 2.11 16 0.001 171 28 0.16 1142 0.07
proof 0.27 0.097 5.56 14 0.055 40 32 0.80 183 0.71
ry -0.01 0.960 3.86 25 0.005 98 43 0.44 537 0.11
ship 0.06 0.615 8.54 24 0.009 69 43 0.62 1000 0.36
some 0.14 0.387 8.35 11 0.009 38 23 0.61 862 0.74
ster 0.06 0.743 4.19 12 0.004 33 20 0.61 586 0.21
th 0.53 0.003 5.96 1 0.000 30 10 0.33 1959 0.10
ward 0.38 0.014 7.16 12 0.004 42 38 0.90 2932 0.89
y 0.16 0.000 4.24 244 0.005 1032 447 0.43 6522 0.13

Table 2: Suffixes investigated.
cor: non-parametric correlation between base and derived frequency (Spearman’s rho).
prob: significance level of the above correlation.
int: intercept returned from robust regression of base frequency on derived frequency.
V1: number of hapaxes.
� : Productivity, as measured by the number of hapaxes, as a proportion of total token
frequency.
V: number of distinct words containing the affix.
types-P: number of distinct words which fall above the parsing line.
type-PR: The type parsing ratio = the proportion of types which fall above the parsing
line.
tokens-P: The summed frequency of the words which fall above the parsing line.
token-PR: The token parsing ratio = the proportion of tokens which fall above the parsing
line.
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