1. **Reminder: what the whole idea is**

 • **Maybe phonological rules can be made very simple**
 - \(\{t,d\} \rightarrow \emptyset / V(\text{x}) _ \# V \)
 - no reference to prosodic domains, no reference to syntax
 - (we need the \# here because unlike the within-word rule, the following V doesn’t have to be unstressed; maybe we could get rid of it if we adopt an ambisyllabic analysis (Kahn 1976), and syllabify words both before and after they’re put into phrases)
 - apparent prosodic/syntactic effects are the extra-grammatical effect of processing
 - if we don’t get know whether the following word starts with a V, then we don’t (yet) have \(V(\text{x}) _ \# V \), so the rule can’t apply

2. **See table starting on next page**

3. **Then come back here: plan**

 • Thursday (12 Oct.) reminder
 - Kie presents overview
 - **Goldrick 2014**: prepare a comment about how something in it relates to the paper you presented
 - **Buchwald 2014**: likewise

 • next Tuesday (17 Oct.)
 - Let’s all read two more overview-type articles [that might be enough, then we move on to OCP]
 - **Keating & Shattuck-Hufnagel 2002**—this one is long! Pp. 112-127 pages are crucial overview of “consensus” model; 127-137 discuss where it needs to be changed/expanded; 137-151 is their proposal.
 - **Wheeldon, Meyer & Smith 2006 plus Wheeldon 2013** (the 2006 is a brief encyclopedia entry—use it as preparation for the 2010)
 - We can decide Thursday, after we see how it goes with Goldrick and Buchwald, whether we want to stick with the same task or try something different
<table>
<thead>
<tr>
<th>source</th>
<th>phonem.</th>
<th>speech rate</th>
<th>W1 freq., prob.</th>
<th>W2 freq., prob.</th>
<th>planning proxy (MacKenzie’s coinage?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagner 2012</td>
<td>Eng. –ing/in’</td>
<td>not tested</td>
<td>not tested</td>
<td>irrelevant (always a or the)</td>
<td>Word2 duration & Word1 duration: longer → less tapping</td>
</tr>
<tr>
<td>Kilbourn-Ceron, Wagner & Clayards 2016, experiment</td>
<td>Eng. tapping</td>
<td>not tested</td>
<td>irrelevant (Word1 is always made-up)</td>
<td>not tested</td>
<td>clause boundary: boundary → less tapping</td>
</tr>
<tr>
<td>K-C & al. 2016, Buckeye corpus</td>
<td></td>
<td>not tested</td>
<td>no effect</td>
<td>hi freq → more tapping</td>
<td>pause duration: longer pause → less tapping</td>
</tr>
<tr>
<td>Kilbourn-Ceron & Sonderegger 2018</td>
<td>Jp. devoicing</td>
<td>faster (for speaker overall) → more devoicing</td>
<td>not significant</td>
<td>not tested</td>
<td>treated as two different rules: {i,u} → [-voice]/[-voice] {i,u} → [-voice]/[-voice] phrase intonational break type: bigger break → less devoicing pause duration: longer pause → less devoicing within phrase (following [-voice] less accessible), more devoicing at end of phrase (is more phrase-final) end-of-Word1 relative duration: longer → less devoicing</td>
</tr>
<tr>
<td>Kilbourn-Ceron 2017b</td>
<td>Fr. liaison</td>
<td>not significant</td>
<td>hi freq → more liaison, A N only – but turns out to be only an interaction of W1 freq : W2 freq</td>
<td>hi freq → more liaison (both Npl Apl and A N)</td>
<td>none</td>
</tr>
<tr>
<td>Study</td>
<td>Language</td>
<td>Task</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner, Sonderegger & Wagner 2015, 2017</td>
<td>Eng. t/d deletion</td>
<td>faster → more deletion __V and __C (but not __{t,d})</td>
<td>hi freq → more deletion __V and __C (but not __{t,d}) close to ceiling</td>
<td>hi prob → possibly greater differentiation of following context</td>
<td>pause duration: longer pause → less deletion __C and __{t,d} (near ceiling)</td>
</tr>
<tr>
<td>Tamminga 2015</td>
<td>Eng. t/d deletion</td>
<td>faster → more deletion</td>
<td>hi freq → more deletion</td>
<td>not tested</td>
<td>clause boundary: clause boundary intervening → foll. V has weaker ability to suppress deletion</td>
</tr>
<tr>
<td>Gahl & Garnsey 2004</td>
<td>not significant (but also didn’t vary much: reading-aloud task)</td>
<td>hi freq → marginally more deletion (but small range of W1 frequencies)</td>
<td>not tested, and would be hard to test (same noun in both members of sentence pair)</td>
<td>(they don’t present it this way! they tentatively favor “speaker control,” choosing to use clearer articulation when info is unpredictable) whether verb is followed by type of complement it prefers (NP vs. clause) preferred (“bias-matching”) complement for that verb → more deletion</td>
<td></td>
</tr>
<tr>
<td>MacKenzie 2012, ch. 5</td>
<td>Eng. is/’s, has/’s, will/’ll</td>
<td>ch. 4: faster → more contraction</td>
<td>not tested, but: ch. 4: for pronouns, frequency of bigram (it is, you had) has no significant effect</td>
<td>not really testable (is always is, has, will)</td>
<td>not so much a planning proxy but rather a factor that could be explained by planning size of subject NP (Word1’s whole phrase) more orthographic words in subject → less is, has contraction more prosodic words in subject → less will contraction</td>
</tr>
<tr>
<td>MacKenzie 2016</td>
<td>Eng. is/’s</td>
<td>not tested</td>
<td>not tested</td>
<td>irrelevant (always is)</td>
<td>duration of Word2 (is): longer W2 duration → less contraction but no interaction with W2 syntactic category—i.e., effect of W2 syntactic category doesn’t get weaker as W2 gets longer</td>
</tr>
<tr>
<td>Lamontagne & Torreira 2017</td>
<td>Sp. V deletion</td>
<td>not significant</td>
<td>hi freq → ? hi prob → more deletion #, but not #</td>
<td>hi freq, hi prob → more deletion __#</td>
<td></td>
</tr>
</tbody>
</table>

3
References

Kahn, Daniel. 1976. Syllable-based Generalizations in English Phonology. MIT.

Tamminga, Meredith. 2015. Modulation of the following segment effect on coronal stop deletion [slides]. Toronto.

