Stochastic Relaxation and the Innatist Approach to Language Acquisition

Proponents of innatist theories often emphasize the intuition that learners need a highly
constrained hypothesis space. This by no means implies that such a space is small. For
example, in the Principle and Parameters (P&P) framework, a set of N binary parameters
implies a set of 2V binary vectors. In Optimality Theory (OT), a set of N constraints
lead to N! total ordering of constraints. The exponentially large hypothesis space makes
researchers go beyond brute-force enumeration, and propose a number of learning strategies
based on local searches. For P&P, the most well-known local search strategy is trigger-based
learning (TLA) (Gibson and Wexler, 1994), which updates the hypothesis by flipping a
single parameter. Another example of a local search strategy is the constraint demotion
(CD) algorithm of (Tesar and Smolensky, 2000) in the OT literature. Both TLA and CD
have been criticized as not robust with regard to noise and incapable of modeling gradience.
In addition, TLA suffers from its sensitivity to the structure of the hypothesis space (Berwick
and Niyogi, 1996), but this problem is smaller for CD, since it has access to a much larger
hypothesis space; the set of stratified grammars, which admits a natural partial ordering.

Stochastic relaxation is a strategy that replaces the discrete target hypothesis space
(Hy) of the learner with a continuous one (H.), where continuous parameters in H. can be
related to probability distributions. In the present work, we argue that stochastic relaxation
provides a unifying perspective between two separate lines of inquiry, which improve on CD
and TLA, respectively. In the Stochastic OT model (Boersma and Hayes, 2001) improving
on CD, the original space H, is the set of constraint permutations, with cardinality N!, while
in the new hypothesis space, each of the N — 1 constraints is parameterized by a ranking
value, which is the mean of a normal distribution of selection points. This continuous
space H. can be represented as RV ~!. Improving on TLA, the variational P&P framework
of (Yang, 2000) proposes replacing each binary parameter with a binomial probability,
thus effectively replacing the discrete hypothesis space Hy; = {0,1}"V with a continuous
space H. = [0,1]V. For both Stochastic OT and variational P& P, each hypothesis in the
continuous space H. determines a probability distribution in the discrete space Hy, and this
probability distribution is responsible for noise/gradience observed in the data (see Figure
1). This type of hierarchical architecture makes it possible to learn probabilistic models
based on innatist theories from empirical data.

One advantage of this unifying perspective is that the Bayesian inference algorithm
in (Lin, 2005), originally proposed for learning Stochatic OT models, can be generalized
and applied to any hierarchical model like Figure 1. In particular, a major problem in the
parameter-setting literature — the ambiguity of evidence, can be overcome since the Bayesian
inference algorithm does not rely on heuristics for local searches. A general outline of such
a learner is given in Table 1.

This discussion also sheds light on the debate between formal and statistical approaches
to language acquisition. The recent work in context-free grammar induction (Klein, 2005)
has left the impression that adopting a statistical approach implies abandoning innatist
theoretical frameworks altogether. By showing that (i) both P&P and OT can be enriched
with statistics and (ii) algorithms based on the perspective of stochastic relaxation provide
solutions to the learning problems within these theories, we argue that statistics v.s. UG is
a false dichotomy, and that statistics is better seen as a methodology for fitting linguistic
models.
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Figure 1: Stochastic OT and variational P&P recaptured as hierarchical models

e Let ¢ < 0 and set the initial hypothesis in the continuous space h(?) € H,
e [terate until convergence:

— Draw a set of grammars from the discrete space Hy

x Draw evidence according to its frequency in the observed data

+ From the distribution governed by h(*), draw a discrete hypothesis from Hy
that is consistent with the evidence

— Update the R+ by drawing from the appropriate posterior distribution in H,,
based on the grammars obtained above.

— Let t — t+ 1.
Table 1: Generalized learning algorithm for hierarchical linguistic models
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