
University of California

Los Angeles

Generating Copies:

An investigation into structural identity in

language and grammar

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Linguistics

by

Gregory Michael Kobele

2006

c© Copyright by

Gregory Michael Kobele

2006

The dissertation of Gregory Michael Kobele is approved.

Edward L. Keenan

Marcus Kracht

Charles E. Taylor

Colin Wilson

Edward P. Stabler, Committee Chair

University of California, Los Angeles

2006

ii

To my brother, Steve, whom I love and admire.

iii

Table of Contents

1 Introduction . 1

1 Structure of the Thesis . 2

Appendices . 5

A–1 Mathematical Preliminaries . 5

2 Syntax and Semantics in Minimalist Grammars 14

1 Introducing Minimalism . 15

1.1 Syntactic Structures . 16

1.2 Features . 18

1.3 Head Movement . 24

1.4 Phrasal Movement . 32

1.5 Interim Summary . 50

2 Introducing Phases . 51

2.1 To PF Without Trees . 56

2.2 Direct Compositionality 62

2.3 Semantics in Chains . 64

2.4 Model-Theoretic Glory . 67

2.5 Quantifiers and Scope . 73

2.6 Raising and Passive . 82

2.7 Control . 86

2.8 Reflections on Control . 96

iv

3 Summary . 107

Appendices . 111

B–1 Definitions . 111

B–1.1 Minimalist Grammars on Trees 111

B–1.2 Minimalist Grammars without Trees 117

B–1.3 A Semantics for MGs . 120

B–2 Eliminating Indices . 122

B–2.1 Model-Theoretic Glory (cont’d) 124

B–2.2 A Semantics for MGs with Variable Management 125

3 Copying in Grammar . 133

1 The Copy Theory of Movement 133

1.1 Where Does Copying Take Place? 138

1.2 Internal Merge . 139

1.3 External Merge . 149

2 The Pronunciation of Copy-Chains 162

2.1 Pronounce Highest . 163

2.2 Local Nondeterminism . 172

2.3 Pronouncing Multiple Copies 182

3 Summary . 185

Appendices . 187

C–1 Two ways to copy . 187

v

C–1.1 Copying the Derived Tree 188

C–1.2 Copying the Derivation Tree 190

C–1.3 The Complexity of Derivational Copying 195

C–2 Pronunciation of Copies . 200

C–2.1 Spelling Out Only One Chain Link 201

C–2.2 Spelling Out Multiple Chain Links 209

4 Copying in Language . 213

1 Yoruba . 214

1.1 Simple Sentences . 216

1.2 Serial Verbs . 219

1.3 Relative Clauses . 229

2 Summary . 247

Appendices . 249

D–1 On the complexity of natural language 249

D–1.1 The hypothesis of the mild context-sensitivity of natural

languages . 250

D–1.2 The structure of a challenge 251

D–1.3 Copying (of copies)∗ in Yoruba 257

5 Conclusions . 263

Bibliography . 267

vi

List of Figures

1.1 σ(t1, . . . , tn) as a tree . 8

2.1 The English auxiliary system (I) 25

2.2 Head movement of auxiliaries in English 26

2.3 T-to-C movement . 27

2.4 The English auxiliary system (II) 28

2.5 An intermediate stage in the derivation of 2.27 34

2.6 The English auxiliary system (III) 36

2.7 Specifying the associations between sounds and meanings 54

2.8 Directly interpreting derivations 55

2.9 Syntactically indistinguishable expressions 56

2.10 Two accounts of the structure of the non-finite TP 62

2.11 A model for the subject-wide scope reading of sentence 2.43 . . . 65

2.12 A model for the subject-narrow scope reading of sentence 2.43 . . 65

2.13 Modes of Semantic Combination (I) 75

2.14 Modes of Semantic Combination (II) 76

2.15 Modes of Semantic Combination (III) 78

2.16 A Grammar for English A-movement 108

2.17 The semantic type of expressions of natural language 128

3.1 Explicit versus implicit representations of copies 140

3.2 A Morphological Component . 179

vii

3.3 A grammar for the language a2n
. 188

3.4 Computing m-command in the derivation tree 197

4.1 Yoruba (I) . 217

4.2 Yoruba (II) . 218

4.3 The derived structure for sentence 4.13 222

4.4 The derived structure for sentence 4.14 225

4.5 Copyable Constituents . 235

4.6 Copying at different points in the derivation 239

4.7 A grammar for a fragment of Yoruba 246

4.8 Case stacking in Old Georgian . 255

viii

Acknowledgments

This thesis owes its very existence to my mentor, committee chair, and fellow

master-brewer Ed Stabler, whom I will never be able to thank enough for his

influence on my intellectual development. Thanks also to the other members of

my committee, Ed Keenan, Marcus Kracht, Chuck Taylor, and Colin Wilson,

who have each contributed in substantive ways to my development at UCLA. I

have been here too long, and the contributions run too deep and varied to list

them all.

I have benefited from talks with nearly all of our faculty and graduate stu-

dents, although I must give a special shout out to Jason Riggle, my office mate,

friend, co-author, and traveling companion, who left too soon, leaving a yawning

chasm behind. Jeff Heinz quickly took advantage of this, settling himself in un-

abashedly behind Jason’s old desk. My gratitude to both of them, for challenging

me intellectually, and for their friendship. Also notable in the sheer magnitude

of their awesomeness are (in no particular order) Adam Anderson, Julia Berger-

Morales, Leston Buell, Howard Chen, Travis Collier, Eric Fiala, Jesús Gaytán,

Hans-Martin Gärtner, Dieter Gunkel, John Hale, Yoosook Lee, Jens Michaelis,

Mike Pan, Katya Pertsova, Elisa Pigeron, Kathryn Roberts, Manola Salustri,

Shabnam Shademan, Anna d’Souza, Luca Storto, Harold Torrence, Willemijn

Vermaat, Sarah van Wagenen, Steve Wedig, Pierre-Yves Yanni, and many more.

Special thanks are due to Selassie Ahorlu and Damola Osinulu, without whom

this thesis, and my linguistic education, would have been far poorer.

Writing this thesis took a lot of time. It was good that I took off eight hours

a week for Wing Tzun. Thanks to Sifu Michael Casey, and all of my EBMAS

friends for intense training, and great fun.

ix

Many of the above mentioned individuals have significant others who are also

quite cool; they will have to content themselves with this most indirect of shouts

out.

Finally, I am forever grateful to my loving family, in me all of whom can be

seen reflected.

x

Vita

1978 Born, Upland, California

1996 Graduated, Diamond Bar High School, Diamond Bar, Califor-

nia.

2001 B.A., Linguistics & Computer Science, and Philosophy, cum

laude, UCLA.

Publications

Gregory M. Kobele. Features Moving Madly: A Formal Perspective on Feature

Movement in the Minimalist Program. Research on Language and Computation,

3(4):391–410. 2005.

Gregory M. Kobele Formalizing Mirror Theory. Grammars, 5(3):177–221. 2002

xi

Abstract of the Dissertation

Generating Copies:

An investigation into structural identity in

language and grammar

by

Gregory Michael Kobele

Doctor of Philosophy in Linguistics

University of California, Los Angeles, 2006

Professor Edward P. Stabler, Chair

In this dissertation I provide a directly compositional semantics for minimalist

grammars, which allows us to view the derivation as the only relevant syntactic

structure, thereby eliminating all non-interface levels, and obtaining a system

similar in this respect to categorial grammar. I give an explicit account of a

fragment of English consisting of passivization, raising, control, and expletive-it,

which accounts for quantifier scope ambiguities. The system is quite minimal;

there are no trans-derivational economy conditions, no preferences for merge over

move, no numerations, no lexical sub-arrays. Instead, all operations are feature

driven, and there is a single economy condition, the Principle of Immediacy, which

simply requires that features be checked as soon as the appropriate configuration

arises.

I add copy movement to the minimalist grammar system. I implement copying

in two ways. Once with multiple dominance, treating copies as being derived only

once, and once with synchronous derivation, treating each copy as having been

xii

derived. Both approaches are strongly equivalent, and generate only languages

in P. Our semantics extends immediately to minimalist grammars with copying.

I turn next to the West African language Yoruba, which has constructions

characterized by overt copying of VPs. As Yoruba also has serial verbs, there

is no principled upper bound on the size of the copied VP. I give an explicit

account of a fragment of Yoruba consisting of serialization and relative clauses,

both over predicates (the so-called relativized predicate) and over nouns. Copying

in Yoruba relativized predicates is not a straightforward matter, with the copy

relation sometimes rendered opaque by other processes. However, our minimalist

grammars with copying account elegantly for the range of copy possibilities, and

assign natural structures to these copies, which no known mildly context sensitive

formalism is capable of doing.

xiii

CHAPTER 1

Introduction

My goal in this thesis is to investigate copy movement in the minimalist paradigm.

I ask and answer such questions as

• Is the copy-theory of movement non-compositional (as has been suggested

by Cormack and Smith [47])?

• Can the choice of which copy to pronounce be made in a way compatible

with a cyclic approach to spellout?

• More generally, can the copy-theory of movement be reconciled with phase-

theory?

• How would a theory of copying based on external merge work?

• What is the difference between copying via internal or external merge? Is

one more complex than the other? How much more? Why?

• Does the copy-theory of movement provide us with a tractable formalism

which is able to assign “natural” structures to sentences with copies [139]?

• Does the copy-theory of movement increase the expressive power of our

theory? By how much? Is such an increase warranted on empirical grounds?

In order to do this I have to provide a theory in enough detail to allow for a

serious investigation of these questions. The architectural assumptions I adopt

1

are minimal, but often particular analytical choices need to be made that are

orthogonal and irrelevant to the ultimate points I want to discuss (such as, is

control movement, is there successive cyclic movement, is there an Agr projection

between the subject and the object, is feature checking symmetric, is there covert

movement, etc). When such choices present themselves, I will adopt the simplest

option, mentioning alternatives in the literature. The investigation of copying

conducted herein is largely independent of these particular choices.

1 Structure of the Thesis

Chapter 2 introduces the particular version of minimalism used throughout

this thesis. All assumptions about the architecture of the grammar are made

fully explicit, and motivated. This is done by analyzing successively more and

more complex fragments of English, which, at the end of the first section, in-

cludes passivization, raising, and expletive constructions. In the second section,

the concept of a ‘phase’ is introduced, and it is shown how the formalism we have

developed lends itself naturally to a strong theory of phases, whereby every head

introduces a phase. Furthermore, the concept of successive cyclicity is discussed,

and we see that our formalism is also strongly successive cyclic. Next, a composi-

tional semantics for our formalism is provided, one that is both compatible with

our strong theory of phases, and which makes sense of the intuition that chains,

not chain links, are the units of interpretation. We show how our fragment sup-

ports the semantics we have just developed, and extend it further to deal with

control and quantifier scope ambiguities.

Chapter 3 introduces the copy theory of movement. Two approaches to copy-

ing are distinguished, copying the derived tree and copying the derivation tree,

2

which we identify with the distinction between internal and external merge. We

show how to extend our formalism so as to allow for each of these approaches of

copying, and discuss the relative and absolute complexity of these two approaches.

The semantics developed in chapter 2 is seen to carry over directly to both ap-

proaches, thereby proving that copying is not inherently non-compositional. We

formally reconstruct a variety of sophisticated linearization strategies in our sys-

tem, rendering them compatible with our strong theory of phases. Finally, we

extend our fragment of English with there-insertion, showing the relation between

long-distance agreement and covert movement.

Chapter 4 justifies the increase in expressive power due to the addition of a

copy operation in our grammar. Looking at the relativized predicate construction

in Yoruba, which allows for copies of unbounded size, we are able to probe into

the mechanics of the human copier, something we are unable to do when focussing

on syntactically simple copies. Interspersed amongst the full copies in Yoruba, we

find surface discontinuous, ‘opaque’ ones. Our syntactic copy mechanism, which

copies points in the derivation, provides us with just the right range of copying

opportunities, which are independently motivated, given our fully compositional

treatment of object sharing in serial verbs. Our fragment of Yoruba also includes

relative clauses, which are given a raising analysis, and a natural conjunctive

semantics. Finally, I argue against the hypothesis that natural languages are

mildly context sensitive (MCS). Current MCS formalisms are unable to assign

natural structures to sentences with copies, and the natural treatment given here

to Yoruba, which allows copies to contain copies, is not describable by these

formalisms at all.

3

Chapter 5 provides a brief synopsis of the thesis, taking a step back and

reflecting on the significance of the results obtained.

4

Appendices

These appendices make formally precise the mechanisms and ideas introduced in

the main chapters. As such, they require a bit of mathematical sophistication,

and may be skipped over on first reading. I have tried to make the notation

consistent across the main chapters and the appendices.

A–1 Mathematical Preliminaries

Sets, Relations, and Functions

N is the set {0, 1, 2, . . .} of natural numbers. The set with no elements is denoted

∅. Given two sets A and B, A is a subset of B (A ⊆ B) just in case every element

a ∈ A is also in B. The usual operations of union, intersection, difference, cross-

product, and powerset are defined below1

A ∪B := {c : c ∈ A or c ∈ B} (union)

A ∩B := {c : c ∈ A and c ∈ B} (intersection)

A−B := {c : c ∈ A and c /∈ B} (difference)

A×B := {〈a, b〉 : a ∈ A and b ∈ B} (cross-product)

2A := {C : C ⊆ A} (powerset)

Given a family of sets B ⊆ 2A, for some A, the union of B, written
⋃
B,

is the set which contains an element a iff a is a member of some B ∈ B. The

intersection of B,
⋂
B, is defined dually. B ⊆ 2A is a partition of A if and only if

(iff) the elements of B are non-empty and pairwise disjoint (i.e. for B,B′ distinct

1The object 〈a, b〉 is the ordered pair whose first projection is a and whose second projection
is b. We may take 〈a, b〉 as an abbreviation for the set {a, {a, b}}.

5

elements of B, B ∩ B′ = ∅) and
⋃
B = A. If B is a partition, its elements are

called blocks.

Relations

A binary relation on sets A and B is a subset of A×B. If R is a binary relation

and 〈a, b〉 ∈ R we sometimes write aRb. Given R ⊆ A × B and C ⊆ A, the

restriction of R to C is the relation R � C := {〈a, b〉 : a ∈ C and aRb}. The

inverse of a relation R is denoted R−1, and is defined such that aRb iff bR−1a. The

identity relation over a set A is idA := {〈a, a〉 : a ∈ A}. A relation R ⊆ A × A

may have some of the following properties, for every a, b, c ∈ A

aRa (reflexivity)

aRb implies bRa (symmetry)

aRb and bRc implies aRc (transitivity)

aRb implies not bRa unless a = b (anti-symmetry)

aRb implies not bRa (asymmetry)

An equivalence relation is one which is reflexive, symmetric and transitive. An

equivalence relation over a set A partitions A into sets of elements mutually re-

lated to each other. A partial order is a relation which is reflexive, anti-symmetric,

and transitive. A total order R ⊆ A × A is a partial order where for every two

elements a, b ∈ A, either aRb or bRa. Given a relation R ⊆ A× A, its transitive

closure is defined to be R+ :=
⋃
{Rn+1 : n ∈ N}, where

R0 := idA

Rn+1 := {〈a, c〉 : aRb and bRnc}

The reflexive transitive closure of a relation R ⊆ A × A is written R∗, and is

R+ ∪ idA.

6

Functions

A function f from A (its domain) to B (its codomain), written f : A → B, is

a relation f ⊆ A × B such that if a pair 〈a, b〉 is in f , there is no other pair

〈a, b′〉 ∈ f , where b 6= b′. In this case we write f(a) = b. f is total if for every

a ∈ A there is some b such that f(a) = b, it is partial otherwise. The set of

all total functions from A to B is denoted with [A→ B]. Given f : A → B

and g : B → C, their composition g ◦ f : A → C exists and is defined by

(g ◦ f)(a) := g(f(a)). We can view any relation R ⊂ A × B as a function

fR : A → 2B, where fR(a) := {b : aRb}, and a function f : A → B extends to a

function 2f : 2A → 2B, where 2f (X) := {f(a) : a ∈ X}. As is standard, I write

fR as R and 2f as f , when no confusion will arise.

I use the notation λx ∈ A.φ(x) to denote the function that takes elements

a ∈ A and returns φ(a). For example, λx ∈ N.x+ 3 denotes the function f such

that f(x) = x + 3. When the domain of f is understood from context, I do not

write it explicitly.

Sequences, Words and Languages

Given a set A, a sequence of length n ∈ N over A is a function α : n → A,

where n := {0, . . . , n − 1}. The unique sequence of length 0 is called the empty

sequence, and is written ε. Given sequences α and β of length m ∈ N and n ∈ N

respectively, their concatenation α_β is of length m+ n and is defined by

α_β(i) := if i < m then α(i) else β(i−m)

We often write the concatenation symbol as ·, or leave it out entirely, and repre-

sent the concatenation of α and β by simple juxtaposition.

We write a sequence α of length n as 〈a0, . . . , an−1〉, where ai = α(i). We

7

denote with A∗ the set of all finite sequences over A, and with A+ the set of

all non-empty such sequences. A function f : A → B extends to a function

f ∗ : A∗ → B∗ by setting f ∗(α) := f ◦ α.

An alphabet is a non-empty finite set Σ (of words). A sentence w ∈ Σ∗ is

a finite sequence of words, and a language L ⊆ Σ∗ is a (possibly infinite) set of

sentences. Given two languages S, T ⊆ Σ∗, we write S · T (or ST) to denote the

set {στ : σ ∈ S and τ ∈ T} of concatenations of sequences from S with sequences

from T . We set S0 := {ε}, and Sn+1 := S · Sn.

Terms and Trees

A ranked set is a pair consisting of a set Σ of function symbols and a function

arity : Σ → N assigning to each σ ∈ Σ its arity, or rank. Σn ⊆ Σ is the set of

n-ary function symbols. If σ ∈ Σn, I will sometimes indicate this by writing σ(n)

when referring to σ. The set of ground terms over Σ is the smallest set TΣ such

that

1. Σ0 ⊆ TΣ

2. if σ(n) ∈ Σ and t1, . . . , tn ∈ TΣ then σ(t1, . . . , tn) ∈ TΣ

A term σ(t1, . . . , tn) represents the tree whose root is labelled with σ and which

has subtrees t1, . . . , tn in that order (figure 1.1). A context is a tree with holes.

σ

t1 . . . tn

1

Figure 1.1: σ(t1, . . . , tn) as a tree

Given a set X of names of holes, we denote with TΣ(X) the set of terms TΣ∪X

8

over the ranked set Σ ∪ X, where elements of Σ have their usual rank, and

elements of X have rank 0. When X = ∅, TΣ(X) = TΣ. We let X = {x1, x2, . . .}

be a denumerable set of variables, and Xn = {x1, . . . , xn} the set of the first n

variables. Given a term t ∈ TΣ(Xn), and terms s1, . . . , sn ∈ TΣ(Xm), t[s1, . . . , sn]

is the term in TΣ(Xm) where each xi in t is replaced by si. Formally, we define

1. xi[s1, . . . , sn] := si, for 1 ≤ i ≤ n

2. σ(t1, . . . , tk)[s1, . . . , sn] := σ(t1[s1, . . . , sn], . . . , tk[s1, . . . , sn])

A context C ∈ TΣ(Xn) is linear just in case no x ∈ Xn occurs more than once in

C. It is complete just in case every x ∈ Xn occurs at least once in C.

Tree Transducers

Of the myriad possible functions from terms over one ranked set Σ to another

∆, some preserve more of the structure of the terms than do others. This idea

has been made precise in terms of tree transducers of various sorts, which can

deform terms in some ways, but not in others. We will be primarily concerned

with macro tree transducers (MTT), which are a generalization of top-down tree

transducers (↓ TT), which are themselves a generalization of homomorphisms.2

Tree Homomorphisms

A tree homomorphism h : TΣ → T∆ is given by a function ĥ : Σ→ T∆(X) which

assigns n-ary function symbols in Σ to n-ary contexts over ∆. We define h as

2[44, 65] are good overviews of tree automata, and tree transducers. [53] introduces regular
look-ahead, and macro tree transducers are studied in [54].

9

follows.

h(σ(0)) = ĥ(σ)

h(σ(n)(t1, . . . , tn) = ĥ(σ)[h(t1), . . . , h(tn)]

A homomorphism h is linear or complete if the range of its kernel ĥ is.

Top-down Tree Transducers

Intuitively, a top-down tree transducer is a homomorphism with a limited mem-

ory, which allows it to map the very same function symbol in Σ to different

contexts in T∆(X) depending on the contents of its memory. We formalize the

notion of memory as a finite set of states. Formally, a top-down tree transducer

is a quintuple M = 〈Q,Σ,∆,→, q0〉, where Q is a finite set of states all of rank

one, q0 ∈ Q is the initial state, Σ and ∆ are ranked sets of input and output

symbols respectively, and → is a set of productions of the form

q(σ(k)(x1, . . . , xk))→ C[q1(x1), . . . , qk(xk)]

where q, q1, . . . , qk ∈ Q, σ ∈ Σ, and C ∈ T∆(Xk). A homomorphism h is the

limiting case of a top-down transducer where Q = {q0}. M is deterministic iff no

two distinct productions have the same left-hand side, total iff for every q ∈ Q

and σ(k) ∈ Σ there is exactly one production with left-hand side q(σ(x1, . . . , xk)),

and linear iff every context in the right-hand side of a production is. Given

terms t, t′ ∈ TΣ∪∆∪Q(X), t derives t′ in one step (t ` t′) iff there is some produc-

tion q(σ(k)(x1, . . . , xk))→ C[q1(x1), . . . , qk(xk)], a context D ∈ TΣ∪∆∪Q(X1), and

terms t1, . . . , tk ∈ TΣ such that

t = D[q(σ(t1, . . . , tk)] and t′ = D[C[q1(t1), . . . , qk(tk)]]

10

Macro Tree Transducers

A macro tree transducer further generalizes the top-down tree transducer by

allowing states of any rank. The intuition is that the extra arguments to the

state beyond the first represent the results of earlier transduction, and may be

incorporated into the derived structure at any time. Formally, a macro tree

transducer is a quintuple M = 〈Q,Σ,∆,→, q0〉, where Σ and ∆ are, as before,

the input and output alphabets, but now elements of Q can be of any rank. The

start state, q0 ∈ Q is of rank one. Productions in→ are much the same as before,

except that now there may be additional trees ‘carried along’.

q(n+1)(σ(k)(x1, . . . , xk), y1, . . . , yn)→ t

The right hand side term, t, is a tree built up with output symbols, the variables

y1, . . . , yn, and contexts like q′(r)(xi, t1, . . . , tr), where 1 ≤ i ≤ k, and t1, . . . , tr

are trees built up in the same way as t.

An example of a relation computable macro tree transducer but not by a top-

down tree transducer is the relation associating terms over Σ = {f (2), a(0), b(0)}

with their yields expressed as terms over ∆ = {a(1), b(1), ε(0)}. For example,

f(a, f(b, a)) would be associated with a(b(a(ε))). Let M = 〈{q(1)
0 , q(2)},Σ,∆,→

, q0〉, where → contains

q0(x)→ q(x, ε) (1.1)

q(f(x1, x2), y)→ q(x1, q(x2, y)) (1.2)

q(a, y)→ a(y) (1.3)

q(b, y)→ b(y) (1.4)

11

On input f(a, f(b, a)), M does the following.

q0(f(a, f(b, a)))→ q(f(a, f(b, a)), ε) (by 1.1)

→ q(a, q(f(b, a), ε)) (by 1.2)

→ q(a, q(b, q(a, ε))) (by 1.2)

→ q(a, q(b, a(ε))) (by 1.3)

→ q(a, b(a(ε))) (by 1.4)

→ a(b(a(ε))) (by 1.3)

Transducers with Regular Look-ahead

Finally, we can add to a transducer the ability to query an oracle about the

subtree about to be transduced. We may imagine the transducer perched at the

top of the tree, basing its next move on the results of its query about what lies

below. We allow productions to have the form

q(σ(x1, . . . , xk), y1, . . . , yn)→ t, 〈p1, . . . , pk〉

where p1, . . . , pk are the results of querying the oracle about trees x1, . . . , xk re-

spectively. A transducer with look-ahead is deterministic iff there are no two

productions with the same left-hand sides and the same answers to the queries

but different right-hand sides. It is total iff for every symbol σ(k) ∈ Σ, every

q(n+1) ∈ Q, and every sequence p1, . . . , pk of query answers there is a production

which can be applied.

We represent our oracles as total deterministic bottom-up tree automata, and

call transducers with such oracles transducers with regular look-ahead. A total

deterministic bottom-up tree automaton is given by a triple M = 〈P,Σ,←〉,

where P is a finite set of states of rank one (the query answers), Σ is a ranked set

12

(the input alphabet), and ← is a finite set of productions such that for σ(n) ∈ Σ,

and p, p1, . . . , pn ∈ P there is exactly one production of the following form in ←.

p(σ(x1, . . . , xn))← σ(p1(x1), . . . , pn(xn))

For example, taking Σ = {f (2), a(0), b(0)}, the following bottom-up tree automaton

tells us whether a term t ∈ TΣ has an even or an odd number of a-leaves. M =

〈{e, o},Σ,←〉, where ← consists of

e(f(x1, x2))← f(e(x1), e(x2)) (1.5)

e(f(x1, x2))← f(o(x1), o(x2)) (1.6)

o(f(x1, x2))← f(o(x1), e(x2)) (1.7)

o(f(x1, x2))← f(e(x1), o(x2)) (1.8)

o(a)← a (1.9)

e(b)← b (1.10)

On input f(a, f(b, a)), M proceeds as per the following

f(a, f(b, a))→ f(a, f(b, o(a))) (by 1.9)

→ f(a, f(e(b), o(a))) (by 1.10)

→ f(a, o(f(b, a))) (by 1.8)

→ f(o(a), o(f(b, a))) (by 1.9)

→ e(f(a, f(b, a))) (by 1.6)

13

CHAPTER 2

Syntax and Semantics in Minimalist Grammars

This chapter presents a grammar for a fragment of English A-movement. The

constructions accounted for include raising, passivization, and control. Section

1 motivates our basic syntactic theory, culminating in an account of raising and

passivization, along with a novel account of expletive it, which immediately ex-

plains the ban on superraising in terms of independently motivated notions of

intervention and case assignment. Section 2 presents a directly compositional

semantics for our syntactic theory, one which maps derivations incrementally to

model-theoretic objects, making no reference to syntactic trees. We extend our

fragment with quantifiers, and show how we can derive quantifier scope ambi-

guities without a seperate operation of quantifier raising (QR). The tense clause

boundedness of QR is easily shown to be simply and directly replicable in our

system in terms of independently motivated assumptions about feature check-

ing. We extend our fragment once more to account for control, which, given our

semantic operations, is naturally implemented in terms of movement to theta

positions. This treatment of control in our system derives semantically the im-

possibility of scope reconstruction into a control complement, and syntactically

something like the minimal distance principle (MDP), both of which purely on

the basis of our independently motivated treatment of quantifiers and scope tak-

ing on the one hand and locality conditions on movement on the other. While

other movement approaches to control have been claimed both to make erroneous

14

predictions about the interaction of control predicates with passivization, as well

as to be unable to account for the grammatical (although apparently typologi-

cally marked) status of MDP-violating promise-type control verbs, we show that

our system handles both in a natural and simple way. Although we are able to

account for the existence and behaviour of promise-type control verbs without

any additional stipulations (in fact, given the grammatical decisions which came

before, there are no other analytical options), they are clearly and well-definedly

more complex than persuade-type verbs, a fact on which it seems possible to

begin to build an explanation of the acquisitional and typological markedness of

the former with respect to the latter.

1 Introducing Minimalism

In this section we detail the particular version of minimalism that we will adopt

in this dissertation. This is done in a quasi-socratic fashion, with a minimal the-

ory being developed around basic argument structural facts, and then gradually

revised and extended to deal with more, and diverse, data. Where applicable, we

mention alternative possible extensions (such as feature percolation (as in HPSG)

in lieu of movement), and motivate our theoretical decisions.

Our goal as linguists is to explain all aspects of natural language: its use, func-

tion, evolution, and acquisition. Instead of tackling all these difficult questions

at once, linguists have attempted to break them down into more or less coherent

subproblems, with the hope of eventually reconnecting the separated threads of

investigation. Here, our goal is to explain all aspects of the syntax and seman-

tics of English. As above, so below; we divide English into simplified fragments,

and attempt to construct precise and complete accounts of these fragments, with

the hope that a thorough understanding of these simplified fragments of English

15

will suggest new ways to understand other aspects of other constructions. The

fragments identified here abstract away from various complexities unearthed over

fifty years of investigation into English and other languages. As such, there re-

main a great number of questions about how these myriad complexities should

be treated, which will not be answered here. In particular, we abstract away

from the particulars of case assignment, agreement and the like, treating feature

checking as an unanalyzed operation. In other words, while we assume for sim-

plicity that features are checked in a particular, lexically determined order, we

make no assumptions about what feature checking consists in (whether unifica-

tion, matching, etc). The treatment of raising and passivization presented herein

bears obvious similarities to previous accounts. This is no surprise, as the novelty

of this account lies not in the basic ideas about the nature of passivization or

raising, but instead in their unification into a single simple yet complete account.

1.1 Syntactic Structures

We start with the intuitive picture that words (or something like them) are the

building blocks of sentences. Linguistic expressions (non-atomic ones, at least)

can be broken up into subexpressions, which can then be recombined to form

other expressions. We take as a basic syntactic operation one that combines two

expressions into a third. We will call this operation merge.

In the resultant expression, (some of) the properties of one of the arguments

are inherited, to the exclusion of those of the other. This argument is said to

be the head of the resultant expression. As an example, consider the expres-

sions [V eat] and [N sausage] (where the subscripts on the brackets indicate

the syntactic category of the expression), which merge to form the expression

[V eat sausage], which inherits the category of [V eat], and not of [N sausage].

16

In this example, [V eat] is the head of [V eat sausage]. Generative linguists

standardly represent this information in terms of tree structure; the expression

[V eat sausage] is represented as the tree

<

[V eat] [N sausage]

1

where atomic expressions (words with their syntactic properties or features) are at

the leaves, and the internal nodes are ‘labels’, indicating the head of the complex

expression (here, labels are either < or >, and indicate the head by ‘pointing’

toward it). Note that anything will do as a label, as long as it unambiguously

indicates the head of the complex expression. Labels are sometimes taken to

themselves be expressions [38], in which case the above tree would appear as

[V eat]

[V eat] [N sausage]

1

This move makes possible a ‘set-theoretic’ representation of the structure of

linguistic expressions, where the above tree is replaced with the set theoretic

object

{{[V eat]}, {[V eat], [N sausage]}}

Assuming that taking labels to be expressions allows one to unambiguously de-

termine which of the two daughter expressions serve as the head of the complex

one, it is easy to see that this set-theoretic representation is equivalent to a tree

representation, albeit one which doesn’t encode the relation of linear precedence

between the daughters, at least not straightforwardly. However, many influential

proposals take there to be a functional relationship between hierarchical struc-

ture and linear order [90], and with this assumption these three representations

are easily seen to be merely notational variants of each other (and thus it would

17

be as strange to argue that one of them is privileged in some sense with respect

to mental representation as it would be to argue that, in the context of the set

theoretic notation, the set brackets are mentally represented as being curly (‘{’

or ‘}’), and not round (‘(’ or ‘)’)).1 We will adopt the first notation (with ‘arrows’

at internal nodes) in this section, as it is easier on the eye.

1.2 Features

Consider the following sentences.

(2.1) *John will devour.

(2.2) John will devour the ointment.

Something is amiss with sentence 2.1. Somehow, speakers of English know that

when the verb devour occurs in a sentence, its semantic object (the thing de-

voured) needs to be expressed. This is in contrast to the nearly synonymous verb

1To show the equivalence of these notations we proceed as follows. Given a tree with labels
pointing at the heads (without loss of generality we take the labels to be drawn from the
set {<, >}), we first define a homomorphism f over trees, which simply ‘forgets’ the linear
ordering of the terminals. Note that the resulting trees are still ordered, but by the ‘inherits
the properties of’ (or the ‘projects over’) relation, not the standard linear precedence relation.
If we take hierarchical structure to encode linear order as in [90], then f−1 is defined (and is a
top-down delabeling, if we just want to ensure spec-head-comp order). In the following, ‘`’ is
a variable over leaves:

f([<x y]) = [f(x) f(y)]
f([>x y]) = [f(y) f(x)]

f(`) = `

We then define a bijection ·′ between set-theoretic representations and the ‘unordered’ trees
above in the following manner:

{{x}, {x, y}}′ = [x′ y′]
{{x}}′ = [x′ x′]

`′ = `

18

eat, whose semantic object needn’t be overt in the sentences in which it appears.

(2.3) John will eat.

(2.4) John will eat the ointment.

The fact that devour (but not eat) requires an overt argument is a brute one—it

does not seem to be derivable from anything else. The obvious contender, that

this fact can be derived from the semantic information associated with these

words, is made less appealing by the lack of any obvious generalization about

which of the semantic properties of words are predictive of the optionality of

semantic arguments (consume, which is a near synonym of eat, behaves like devour

in this respect), as well as by the fact that in other languages, synonyms of eat

may behave like the English devour in that they require their semantic argument

to be expressed overtly. Asante Twi (Kwa:Niger-Congo) is one such:2

*Kwasi
Kwasi

bedi.
fut.eat

“Kwasi will eat.”

Kwasi
Kwasi

bedi
fut.eat

fufu.
fufu.

“Kwasi will eat fufu.”

Consequently, any complete description of our linguistic competence will have

to record that devour requires a syntactic object. Furthermore, devour only re-

quires one object. In other words, once devour obtains a syntactic object, its

2Asante Twi has a seperate lexeme, didi, for the intransitive usage of eat. Despite the
similarity in form between di and didi, this is the only transitive-intransitive pair in the language
which can reasonably be analyzed as deriving from a single lexical item via an operation of
reduplication (which is otherwise abundantly attested in the language). Thus, their superficial
similarity notwithstanding, they are not plausibly related in a synchronic grammar of Twi.

19

requirement is fulfilled. In our present system we represent these facts by sim-

ply recording, for each word, which properties and requirements it has. This

recording is done in terms of features, which come in two polarities: a categorial

feature, say f, indicates that the lexical item has property F, and a selection

feature, =f, indicates that the lexical item requires another with property F. Two

features ‘match’ just in case one is f and the other =f, for some F. Merge then

combines expressions with matching features, and then checks, or deletes, those

features from the resulting expression. In the resulting expression, that argu-

ment projects that had the =f feature. The intuition is that the expression with

the =f feature is acting as a functor, and the expression with the f feature as

its argument. In more traditional terms, the expression with the =f feature is

the head, and the one with the f its dependent.3 There are non-trivial corre-

lations between the order of heads and dependents of various categories within

a language [67]. For example, languages in which objects precede their verbs

(dependent–head order) also tend to have nouns precede adpositions (postpo-

sitions), and sentences precede complementizers. Similarly, languages in which

objects follow their verbs (head–dependent order) tend to have nouns following

adpositions (prepositions) and sentences following complementizers. English has

head–dependent order (verbs precede objects, adpositions their nouns, etc), and

so we attempt to give this a principled explanation by stipulating that merge

combines lexical heads and dependents in that order. Thus, given lexical items

the::=n d and ointment::n, merge builds the following complex expression

3In the idiom of the day we are assuming that all syntactic features are ‘uninterpretable’ in
the sense that the only formal feature which is allowed to be present in a complete sentence is
the categorial feature of the head of that sentence. The conception of grammar that naturally
follows from this is of a resource-sensitive system [66, 143], which perspective is present also in
the categorial type-logic community [125, 144].

20

<

the:d ointment:

1

In English, if there are two dependents, the dependents flank the head. One

example is the subject-verb-object word order of English, assuming that both

subject and object are dependents of the verb. Another example is given by the

Saxon genitive construction (2.5), assuming that the marker ’s is the head of the

construction, a two-argument version of the.

(2.5) John’s ointment

Accordingly, we stipulate that merge combines non-lexical heads and depen-

dents with the dependent preceding the non-lexical head. Adding lexical items

’s::=n =d d and John::d we can derive (2.5) in two steps. First, we merge ’s and

ointment to get

<

’s:=d d ointment:

1

and then we merge the above expression with John to get

>

John: <

’s:d ointment:

1

Note that it is crucial here that the syntactic features of an expression are checked

in a paricular order—otherwise we couldn’t distinguish syntactically between

ointment’s John and the above. We call the expression first merged with a

lexical item its complement, and later merged expressions are specifiers.

To derive a simple transitive sentence like (2.6),

21

(2.6) John devoured the ointment

we add the lexical item devoured::=d =d t to our lexicon. We merge devoured with

the complex expression the ointment that we derived above to get

<

devoured:=d t <

the: ointment:

1

and then we merge the above expression with John to get

>

John: <

devoured:t <

the: ointment:

1

Now consider the following sentences

(2.7) John will devour the ointment

(2.8) John is devouring the ointment

To generate the first of these (2.7) we need to add to our lexicon the expressions

will::=v =d t and devour::=d v. Then we can merge devour with the ointment

<

devour:v <

the: ointment:

1

and then will with devour the ointment

22

<

will:=d t <

devour: <

the: ointment:

1

and finally will devour the ointment with John to get

>

John: <

will:t <

devour: <

the: ointment:

1

To generate sentence 2.8, we need to extend our lexicon again with the ex-

pressions is::=prog =d t and devouring::=d prog. Now we simply merge devouring

with the ointment

<

devouring:prog <

the: ointment:

1

and is with devouring the ointment

<

is:=d t <

devouring: <

the: ointment:

1

23

and finally is devouring the ointment with John to get

>

John: <

is:t <

devouring: <

the: ointment:

1

1.3 Head Movement

So far so good, but now consider the following paradigm of sentences

(2.9) John devours the ointment

(2.10) John devoured the ointment

(2.11) John will devour the ointment

(2.12) John has devoured the ointment

(2.13) John had devoured the ointment

(2.14) John will have devoured the ointment

(2.15) John is devouring the ointment

(2.16) John was devouring the ointment

(2.17) John will be devouring the ointment

(2.18) John has been devouring the ointment

(2.19) John had been devouring the ointment

24

(2.20) John will have been devouring the ointment

will::=v =d t has::=perf =d t is::=prog =d t devours::=d =d t

had::=perf =d t was::=prog =d t devoured::=d =d t

have::=perf v be::=prog v devour::=d v

been::=prog perf devoured::=d perf

devouring::=d prog

Figure 2.1: The English auxiliary system (I)

To describe these twelve sentences, we might postulate the existence of the

lexical items in figure 2.1. However, there seem to be regularities in the En-

glish auxiliary system that are not captured by this straightforward analysis. For

example, all expressions with an t feature have an additional =d feature, in com-

parison with their counterparts without the t feature. Furthermore, every one

of the devour lexical items has at least one =d feature (those that have more

just have one more, which is predictable given the comment above). An elegant

description of the English auxiliary system, going back to [33], has it that the

‘underlying’ structure of the system is invariant, with -en and -ing ‘starting out’

adjacent to have and be, respectively:

(will, -s, -ed) have -en be -ing V

Chomsky [33] proposed the existence of transformations that rearrange each of

the above affixes so as to be at the right of the next element in the sequence

above. The details of this analysis have been refined through the years [7, 167]

to talk about movement of heads to other heads (figure 2.2).4

4Head movement does not commit us to a morphemic morphological theory (i.e. Item
and Process or Item and Arrangement [77]). It is fully compatible with a Word and Paradigm
approach [4, 146, 165]—heads are viewed either as lexemes or as morphological features (devour

25

TP

will, {-s, -ed} PerfP

have enP

-en ProgP

be ingP

-ing VP

V

1

Figure 2.2: Head movement of auxiliaries in English

Head movement has enjoyed a rather checkered existence in the GB com-

munity, as it appears to violate standard constraints on movement (such as the

landing site of movement needing to c-command its trace) and more recently

on permissible syntactic operations in general (such as the extension condition,

which has it that all syntactic operations must target the root of the trees they

are defined over). Some have proposed to eliminate head movement from linguis-

tic theory alltogether [113]. I mean to take no position on this issue here (but see

[158] for a systematic evaluation of different approaches to head-like movement).

One advantage of having head movement is that it allows us to straightforwardly

correlate the structural position of words with their inflectional form without

interfering with other syntactic operations. An influential school of thought has

corresponding to devour and -s corresponding to 3rd person singular present tense), and
complex heads are then lexemes (which identify the paradigm) associated with various features
(which determine the cell in the paradigm).

26

it that head movement is not a seperate syntactic operation, but is rather a

phonological reflex of morphological properties of expressions [18, 29, 118]. Still,

head movement appears sensitive to syntactic boundaries, and not phonological

ones, as the actual string distance between the affix and its host is potentially

unbounded. For example, subject auxiliary inversion in questions is commonly

analyzed as head movement of the inflectional element in T0 to the comple-

mentizer position C0, and the subject, a full DP of potentially unbounded size,

intervenes between these two heads (figure 2.3). So it seems that we cannot leave

CP

C′

C0 TP

DP T′

T0 VP

1

Figure 2.3: T-to-C movement

head movement out of the domain of syntax altogether. Instead, we decide to

resolve the morphological requirements of the merged head at each merge step

(as done in [157, 160]).

An affix may either trigger raising of the head of its complement (standard

head movement), or may lower itself onto the head of its complement (affix hop-

ping) in order to satisfy its morpho-phonological dependence.5 For simplicity,

5Note that we are assuming that affixes are all structurally higher than the bases to which
they attach. This is by no means a necessary assumption, but it not only seems to hold given
our assumptions thus far about English, but also seems to be relatable to a cross-linguistic
tendency for more ‘abstract’ meanings to be expressed via bound morphemes more frequently

27

we assume that the syntactic effects of this morphological combination (whether

the base raises to the affix or the affix lowers to the base) are determined by the

affix itself. As the ‘base’ in question is always the head of the complement (i.e.

the first merged phrase) to the affix, we indicate on the complement-selecting =f

feature itself whether the lexical item bearing said feature is an affix, and, if it

is, whether it triggers raising of the head of its complement, or it lowers onto

the head of its complement. In the first case (raising), we write =>f, and in the

second (lowering), we write f=> . Using head movement, we can describe the

English auxiliary system more succinctly (figure 2.4).6 7

will::=perf =d t have::=en perf be::=ing prog devour::=d v

-s::perf=> =d t -en::=>prog en -ing::=>v ing

-ed::perf=> =d t ε::=>prog perf ε::=>v prog

Figure 2.4: The English auxiliary system (II)

We derive the sentence “John is devouring the ointment” as follows. First,

we merge devour with the phrase the ointment

than more ‘contentful’ meanings [24]. In the government and binding style perspective we
adopt here, more contentful expressions tend to occupy hierarchically subordinate positions to
the more abstract, or ‘functional’ expressions.

6Although now we generate terminal sequences like

John be -s kiss -ing Mary

which is yet another step removed from the data. Thus, the apparent elegance of this approach
needs to be evaluated in conjunction with the modifications necessary to the morphological
module implicitly appealed to.

7The ‘empty’ lexical items in figure 2.4 serve the same function as lexical redundancy rules—
they encode generalizations about predictable patterns in the lexicon; without them we would
have three entries for every (transitive) verb differing only in their categorial feature (this would
still constitute an improvement over the lexicon in figure 2.1, which requires five entries for each
verb in English).

28

<

devour:v <

the: ointment:

1

We then merge -ing with devour the ointment

<

-ing:ing <

devour: <

the: ointment:

1

and the morphological properties of the merged affix trigger morphological

readjustment—the head devour raises to the head -ing :

<

devour -ing:ing <

ε: <

the: ointment:

1

and be with devouring the ointment

<

be:prog <

devour -ing: <

ε: <

the: ointment:

1

and ε::=>prog perf with be devouring the ointment

29

<

ε:perf <

be: <

devour -ing: <

ε: <

the: ointment:

1

and again, the morphological properties of the merged affix trigger raising of the

head be to the higher head:

<

be:perf <

ε: <

devour -ing: <

ε: <

the: ointment:

1

and -s with the above phrase

<

-s:=d t <

be: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

30

and once more the morphological properties of the suffix -s trigger morphological

readjustment, this time lowering -s to the head of its complement

<

ε:=d t <

be -s: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

and finally is devouring the ointment with John

>

John: <

ε:t <

be -s: <

ε: <

devour -ing: <

ε: <

the: ointment:

1

This approach bears more than just a passing similarity to [118], where head

movement is also viewed as the result of a morphological operation (there called

‘m-merger’) which applies during the course of the derivation. Head movement

as implemented here is a representative of a ‘post-syntactic’ (really: ‘extra-

31

syntactic’) readjustment operation (as are commonplace in Distributed Morphol-

ogy [52, 72]), and serves to illustrate some interesting properties of the copy

mechanism introduced in chapter 4.

1.4 Phrasal Movement

Consider the following sentences.

(2.21) A pirate ship appeared (in the distance).

(2.22) *A pirate ship to appear (in the distance).

(2.23) A pirate ship seemed to appear (in the distance).

(2.24) *A pirate ship seemed appeared (in the distance).

It appears that non-finite clauses (sentences with to) do not license surface sub-

jects. Assuming that will and to have the same category,8 we can explain the

above data with the simple addition of the expression to::=perf t to our lexicon,

and of the sentential complement-taking verb seem::=t v. Note however that this

move makes the choice of subject independent of the choice of (lower) verb. While

it has been argued that so-called external arguments of verbs should be selected

not by the verb itself but by a structurally higher projection [98, 115, 140], this

is not as straightforward as our current theory would seem to predict.9

8Although this is not true in terms of surface distribution, as shown by the position of
negation in the examples below, it is good enough for our purposes here.

1. John will not have kissed the lizard (by daybreak).

2. It was best for John to not have kissed the lizard.

3. *John not will have kissed the lizard.

4. It was best for John not to have kissed the lizard.

9We defer a treatment of there-insertion to § 2.2.1 in chapter 3, when we investigate long-
distance agreement.

32

(2.25) There appeared a pirate ship (in the distance).

(2.26) *There sunk a pirate ship (in the distance).

(2.27) There seemed to appear a pirate ship.

(2.28) *There seemed to sink a pirate ship.

While the precise factors that license expletive-there subjects are not well

understood, it seems that the question as to whether expletive-there is licensed

is fully determined by the choice of verb (phrase) in the lower clause (appear vs

sink), and is independent of the choice of auxiliary, and of whether seem-type

verbs intervene, and, if so, of how many. Our current theory is not capable of

accounting for these ‘long-distance’ dependencies in a simple and revealing way.10

There are two basic options available to us at this point. We could either make the

information relevant to the decision about whether expletive-there is a permissible

surface subject available at the point when the surface subject is merged in its

canonical position, or we can introduce the surface subject at the point when this

information becomes available, and then ‘move’ it to its surface position. The

former option is exemplified by Generalized Phrase Structure Grammar [64] and

its decendents. These formalisms can be seen as making information about the

derivation available in a ‘store’, which can be modified through the course of the

derivation. Derivation steps can then be made contingent on properties of this

store (e.g. ‘insert there if the store contains [+there]’). Wartena [169] provides

a detailed investigation of this perspective on non-local dependencies.

10All dependencies in our current theory are handled selectionally, and with simplex cate-
gories. Thus the lexical items between the subject (or rather, the projection introducing the
subject) and the lower verb (or rather, the minimal phrase in which it is determinable whether
the expletive is introducable) need to be doubled, so as to allow for the requisite upward per-
colation of this information. However, as appropriate grammars can be written so as to avoid
duplication of contentful material, the grammar size increase is negligible (i.e. a constant).
Thus, the intuition about ‘simplicity’ is unfortunatly little more than a sound bite at this
point.

33

The pursuit of the latter option is one of the hallmarks of the transformational

tradition in generative grammar. According to this perspective, we have at some

intermediate stage of the derivation a structure in which the main clause subject

is in the lower clause (figure 2.5). We thus need to specify how the subsequent

seem ...

There to appear a pirate ship

1

Figure 2.5: An intermediate stage in the derivation of 2.27

‘movement’ of the subject occurs. As the movement seems to be to particular

positions only, and of the subject only (cf (2.29) and (2.30)),11 we conclude that

movement is not free, i.e. there are restrictions governing it.

(2.29) *Will have therei seemed ti to be a pirate ship.

(2.30) *A pirate shipi will have seemed there to be ti.

We decide to make the question of what can move, and what allows movement

to it, an idiosyncratic property of lexical items. One question to ask is whether

the features driving movement are the same as the features driving merger. To

simplify matters (by cutting down on the number and kind of interactions in

the system), we assume that movement features and merger features are drawn

from disjoint sets.12 Accordingly, we take movement features to be divided into

11The phrases with index i are intended to have been moved from the positions occupied by
the trace t with the same index.

12Relaxing this assumption (as done in [159]) might provide the foundation for a natural
account of expletive subjects (it), which have a sort of ‘last resort’ quality, in that they seem
to appear in case positions (+k in our notation), in case there is no other element which needs
case in the tree.

34

those that license movement (+f) and those that indicate a requirement to be

moved (-f). Where can things move to? One long-standing observation is that

movement is generally to a c-commanding position (2.31).

(2.31) *(It) ti hopes that Johni is raining

(John hopes that it is raining)

In other words, movement is upwards in the tree. It is commonly assumed that

movement is always to the root of the tree (a consequence of Chomsky’s [37]

‘Extension Condition’). We adopt this here. We adopt also a general principle

of ‘immediacy’, which (informally) requires that an expression move as soon as

possible. More precisely, an expression with licensee feature -x will move as

soon as the root of the tree makes available a licensor feature +x. This principle

allows us to derive something like Rizzi’s [145] Relativized Minimality. Given

our principle, we know that if a tree contains more than one expression with the

same accessible licensee feature, it is not part of a convergent derivation.13 This

means that move is a fully deterministic operation (i.e. a function)—given an

expression whose root has first feature +x, it will be in the domain of move just

in case it has exactly one proper constituent whose head has first feature -x. In

that case, that constituent moves to the specifier of the root.

Koopman and Sportiche [97] note that the same considerations that motivate

a raising analysis for seem-type clauses (that the information about what kind of

subject is permitted is present already in the embedded clause verb) suggest that

the subject is introduced below the auxiliaries as well. Let us christen the feature

that drives movement of the subject to the surface subject position ‘K’, and let

13Constraints on movement can be incorporated into the domain of the move operation.
Different constraints result in different generative power [63, 93, 120]. Thus, although we adopt
here the principle of immediacy, and thereby something like the minimal link condition, other
constraints on extraction are straightforwardly adaptable to this system.

35

us systematically substitute the feature +k for the feature =d in our auxiliaries.

Our current inflectional lexical items are shown in figure 2.6.

will::=perf +k t have::=en perf be::=ing prog

-s::perf=> +k t -en::=>prog en -ing::=>v ing

-ed::perf=> +k t ε::=>prog perf ε::=>v prog

to::=perf t

Figure 2.6: The English auxiliary system (III)

Then the sentences

(2.32) John has arrived.

(2.33) John seems to have arrived.

(2.34) John seems to seem to have arrived.
...

can be derived using the lexical items John::d -k, arrive::=d v, seem::=t v and the

auxiliaries from figure 2.6.

We derive the sentence John has arrived by first merging arrive and John,

<

arrive:v John:-k

1

merging ε::=>v prog with the above expression (with the concommittant mor-

phological readjustment)

<

arrive:prog <

ε: John:-k

1

36

merging -en with the above (and resolving the morphological requirements of the

merged affix)

<

arrive -en:en <

ε: <

ε: John:-k

1

merging have with the above

<

have:perf <

arrive -en: <

ε: <

ε: John:-k

1

merging -s with the above (and lowering onto the head of its complement)

<

ε:+k t <

have -s: <

arrive -en: <

ε: <

ε: John:-k

1

and then finally moving John in the above expression.14

14For convenience, we represent the source of phrasal movements with a λ.

37

>

John: <

ε:t <

have -s: <

arrive -en: <

ε: <

ε: λ

1

The sentence ‘John seems to have arrived’ can be derived by merging to with

the expression have arrived John derived above

<

to:t <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging seem with the above

38

<

seem:v <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging ε::=>v prog with the above expression (and raising the head of its com-

plement)

<

seem:prog <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging ε::=>prog perf with the expression above (and raising)

39

<

seem:perf <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

merging -s with the above expression (and lowering)

<

ε:+k t <

seem -s: <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

and then finally applying move to seems to have arrived John

40

>

John: <

ε:t <

seem -s: <

ε: <

ε: <

to: <

have: <

arrive -en: <

ε: <

ε: λ

1

Our current implementation of ‘raising to subject’ phenomena does not involve

successive cyclic movement (see [129] for a protracted defense of this position).

We shall see, however, that in the same sense that movement, as described here,

simply is copy movment, it is also successive cyclic in the strong sense of involving

every specifier position between it and its landing site. Thus, the lack of successive

cyclicity is only apparent.

Within the context of our treatment of the raising to subject construction,

our principle of immediacy allows for a simple account of the impossibility of

so-called super-raising in English (as in 2.37 below). As is well known, raising

sentences (such as 2.33) have non-raised counterparts (such as 2.35) in which the

subject position of the matrix clause is filled by an expletive it.

(2.35) It seems John has arrived.

41

(2.36) *It seems John to have arrived.

(2.37) *John seems it has arrived.

As tensed clauses in our grammar uniformly bear +k features, it is natural, in the

light of the sentences above, to treat expletive it as bearing a -k feature. We allow

it to be freely introduced at the v level (i.e. above the merge position of the sub-

ject, and below the +k feature of t) by means of the lexical items ε::=>v =expl v

and it::expl -k.15 A derivation for the super-raising sentence in 2.37 would go

through an intermediate form such as the below (merging ε::=>v =expl v and

then it with arrive John from above)

>

it:-k <

arrive:v <

ε: John:-k

1

which will run afoul of our principle of immediacy as soon as a tense head is

merged (in the matrix clause in 2.36, and in the embedded clause in 2.37). The

grammatical sentence 2.35 is derived by merging the expletive into the structure

after the lower clause subject has checked its -k feature (i.e. once seem has been

merged). There is then no conflict with the principle of immediacy when the

matrix tense is merged.

This treatment of expletives immediately extends to encompass ‘weather-it’,

as in 2.38 below.

15Our implementation of expletive insertion here thus differs from the common treatment in
terms of merger licensed by what is here a +k feature (with concomitant appeal to numerations
and subnumerations and preferences for merge over move). This approach is formally blocked
for us by our decision to treat movement and merger features as distinct (see the discussion in
footnote 12).

42

(2.38) It is raining.

Including the expression rain::v into our lexicon, we derive the sentence it is

raining in seven steps. We first merge ε::=>v =expl v with rain, and then continue

by merging the resulting expression with it.

>

it:-k <

rain:v ε:

1

We then merge -ing with the above expression, followed by be and then

ε::=>prog perf.

<

be:perf <

ε: <

rain -ing: >

it:-k <

ε: ε:

1

Finally we merge -s with the expression above, and then move it to subject

position.16

43

>

it: <

ε:t <

be -s: <

ε: <

ε: <

ε: <

rain -ing: >

λ <

ε: ε:

1

We will assume that having the feature sequence ‘d -k’ is constitutive of the

property of ‘being a DP’, and therefore that objects as well as subjects are in

need of being moved to a position higher than their base position. Thus “the”

has the type =n d -k. In light of this, consider now the following sentences.

(2.39) John will have been devouring the ointment.

(2.40) The ointment will have been being devoured.

(2.41) George expects the ointment to be devoured.

(2.42) The ointment is expected to be devoured.

16This analysis makes sentences like “It seems to have rained” ambiguous, as it may be
introduced in either clause. This seems to be a case of ‘spurious ambiguity’ (where there are
two or more different derivations of a sentence corresponding to the same meaning), analogous
to the situation in various deduction systems, where numerous (typically an infinite number)
proofs are derivable for any given sequent. The ideal of one proof–one meaning can be recovered
by either placing constraints on what is to count as an acceptable proof in the current system
(normalization), or by developing a novel representation that equates irrelevantly different
proofs (one example of such is given by proof nets in Linear logic and the Lambek calculus).

44

The pair 2.39 and 2.40 suggest to us that the external argument (here, the agent

John) can be dissociated from the verb, and that, in that case, the internal

argument moves to the canonical subject position to check its -k feature. In

other words, the possibility of checking a -k feature internal to the verb phrase

is dependent upon whether the external arugment is present. This is essentially

Burzio’s generalization [22]:

A verb which lacks an external argument fails to assign accusative

case.

In a basic transitive sentence like 2.39, our principle of immediacy forces us to

check the -k feature of the object before the subject is introduced (a position

familiar from [94, 97]). We assign to the lexeme “devour” the type =d V, and

recast Burzio’s generalization in our system with the lexical item ε::=>V +k =d v.

Then 2.39 can be derived by first merging the and ointment.

<

the:d -k ointment:

1

Then devour is merged with the ointment, and then ε::=>V +k =d v with the re-

sulting expression (with the appropriate morphological readjustments), followed

by movement of the ointment.

>

<

the: ointment:

<

devour:=d v <

ε: λ

1

45

We continue by merging the expression above with John, and then merging -ing

with the result, and then be with the result of that.

<

be:prog <

devour -ing: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

Next we merge -en with be devouring John the ointment (and then readjusting

morphologically), followed by merging have with the result, and finally we merge

will with have been devouring John the ointment and then move John in the

resulting expression.

46

>

John: <

will:t <

have: <

be -en: <

ε: <

devour -ing: >

λ >

<

the: ointment:

<

ε: <

ε: λ

1

Sentence 2.40, with its passive ‘be’ and its associated perfective participial

morphology, can be nicely accomodated with our existing head movement op-

eration. We add the expressions be::=pass v and -en::=>V pass to our lexicon.

Sentence 2.40 can then be derived by first merging passive -en with the expression

devour the ointment derived above followed by merging passive be with devoured

the ointment.

<

be:v <

devour -en: <

ε: <

the:-k ointment:

1

47

We then successively merge -ing, be, -en, have and will (performing the necessary

morphological operations when appropriate). Finally, we move the ointment in

the resulting expression.

>

<

the: ointment:

<

will:t <

have: <

be -en: <

ε: <

be -ing: <

ε: <

devour -en: <

ε: λ

1

To derive sentences 2.41 and 2.42 we need only add the lexical item ex-

pect::=t V. Note that, descriptively, we can have raising to object, and then pas-

sivization, and then more raising without any additional stipulations—raising

and passive feed each other. Formally, object to subject movement in passives

is motivated by the same thing that motivates raising in raising constructions.

Sentence 2.41 is derived by successively merging ε::=>v prog, ε::=>prog perf, and

to (with the appropriate morphological readjustments) with the expression be de-

voured the ointment derived above.

48

<

to:t <

be: <

ε: <

ε: <

devour -en: <

ε: <

the:-k ointment:

1

We then merge expect and then ε::=>V +k =d v with the above, followed by move-

ment of the ointment into what might be considered to be the object position of

the matrix clause (an analysis forcefully argued for in [137]).

>

<

the: ointment:

<

expect:=d v <

ε: <

to: <

be: <

ε: <

ε: <

devour -en: <

ε: λ

1

49

Next we successively merge George::d -k, ε::=>v prog, ε::=>prog perf, and -

s::perf=> +k t. Finally, we move George in the resulting expression.

>

George: <

ε:t <

expect -s: <

ε: >

λ >

<

the: ointment:

<

ε: <

ε: <

to: <

be: <

ε: <

ε: <

devour -en: <

ε: λ

1

1.5 Interim Summary

This section has motivated the particular assumptions we have made about syn-

tax by showing how natural analyses of A-movement constructions can be directly

implemented in our formal framework. For concreteness’ sake, our assumptions

regarding the architecture of the syntactic component of the grammar are the

following:

1. we have two feature-driven operations, one binary (merge) and one unary

(move)

50

2. features are checked in a particular order

3. features come in attractor-attractee pairs, and checking is symmetric

4. there are constraints on movement such as the principle of immediacy

We have not discussed many architectural options that are or have been hot

topics in the minimalist tradition. Nothing has been said about numerations,

lexical subarrays, preferences for merge over move, trans-derivational economy

constraints, covert movement, sidewards movement, adjunction, scrambling, the

EPP, or Agree.17 Also, we have not yet explored how phases fit into the picture

we have painted here. In this system, phases are admissible—nothing changes

even if every node is a phase. This will be taken up in the next section.

2 Introducing Phases

Recall that our (immediate) goal is to specify the associations between the pro-

nounced form of a sentence on the one hand and the range of interpretations that

it may have on the other. The way we have approached this task of defining a re-

lation is by defining a set of abstract objects, together with two operations, which

we may call Π and Λ, which map these abstract objects into (mental represen-

tations of) pronounced forms, and meanings respectively. In our current system,

our lexical items together with our operations of merge and move determine a

set of trees; those that can be derived starting from lexical items and repeatedly

applying merge or move. Even more abstractly, we can view a derivation as a

description of (or even: a recipe for) the process of constructing its object. So a

17Some of these have been explored within the context of the assumptions made here else-
where. In particular, Stabler [159, 160] discusses covert and sidewards movement, and Frey and
Gärtner [59] discuss adjunction and scrambling. Covert movement and Agree are discussed and
formalized in chapter 3.

51

derivation of the expression the ointment proceeds by first selecting the lexical

items the and ointment, and then merging them together. We can represent this

as a tree:

merge

the::=n d -k ointment::n

1

This derivation can be continued by merging devour with the expression the

ointment, and then by merging the active voice ε::=>V +k =d v with the expression

just derived, and then moving the ointment. We can represent this as a tree:

move

merge

ε::=>V +k =d v merge

devour::=d V merge

the::=n d -k ointment::n

1

We can define the set of all possible derivations over a particular lexicon in the

following way.

1. First, we take each lexical item to be a derivation which stands for itself

2. Second, given derivations α and β, we describe the merger of the expression

stood for by α with the expression stood for by β with the derivation

merge(α, β), or, as a tree

merge

α β

1

52

3. Finally, given a derivation α, we describe the result of applying the opera-

tion of move to the expression stood for by α by the derivation move(α),

or, as a tree

move

α

1

The set of possible derivations defined above includes those that do not stand

for any well-formed expression (e.g. move(the)). Derivations that do stand for

well-formed expressions we will call successful, or convergent. Those that do not

we will say have crashed.18 Note that a successful derivation stands for just a

single expression, so we can look at a (successful) derivation as a name of an

expression. Note also that expressions may have different names (see footnote

16).

Our conception of grammar thus far can be expressed in the following terms.

We have a derivation (Deriv) which stands for (i.e. specifies how to construct)

a tree (Tree), which itself determines a pairing of form and meaning, as given

by the maps Π (which turns the tree into a PF-legible object PF) and Λ (which

transforms the tree into an LF-legible object LF). This is schematized in figure

2.7.19 The procedural metaphor dominating much of syntax, while intuitive, has

had the effect of obscuring the distinction between derivational structure, derived

(tree) structure, and the mapping between them. Disentangling these notions,

we see that there are actually three components to our theory of syntax, the

18We could define a notion of ‘where’ an unsuccessful derivation crashes in terms of maximal
successful subderivations.

19The terms ‘PF’ and ‘LF’ are ambiguous in modern generative linguistics, sometimes being
used as a name for the process of constructing a representation that is used by non-syntactic
systems, and sometimes as a name for the representation so constructed. Here, we reserve the
terms ‘PF’ and ‘LF’ for the representations used by these interface levels (and also as a cover
term for these levels themselves), and use ‘Π’ and ‘Λ’ to refer to the process of constructing
such a representation from a syntactic object.

53

PF LF

Tree
Λ

::vvvvvvvvvΠ

ddIIIIIIIII

Deriv

OO

Figure 2.7: Specifying the associations between sounds and meanings

derivation, the derived tree, and the relation between them, and allows us to

formulate the question of whether all three components are necessary (i.e. use-

ful) in specifying the relation between form and meaning (i.e. our knowledge of

language).

Phases, from our current perspective, should be understood as constraining

the relationships between the levels in figure 2.7 above. To say that the deriva-

tion proceeds in phases says that the mappings Π and Λ can be given a recursive

bottom-up (what Chomsky [31] calls a ‘cyclic’) characterization, whereby the

mappings Π and Λ are defined such that their output on a particular subtree is

determined within a certain structural ‘window.’ The size of this window is gen-

erally taken to be defined in terms of the categorial status of the various nodes in

the tree, with at least CPs and v∗Ps (active voice phrases) specifying the upper

bounds on these windows (where the material between a v∗P and a CP may be

taken into consideration when computing an expression’s PF or LF representa-

tion, but nothing more). As pointed out in [117], given the possibility of iterated

adjunction (of, say, relative clauses, adjectives, or adverbs) and of iterated rais-

ing constructions, the window of context that the mappings to the interfaces may

take into account is unbounded in size (and thus the mappings are not guaran-

teed to be finitely specifiable—an undesirable consequence of a too unrestrictive

54

theory). If the range of possible distinctions that could be drawn were given a

principled upper bound, we could eliminate the derived tree altogether, encoding

the finitely relevant information about a subtree by parameterizing the mappings

Π and Λ (making them homomorphisms with state, or transducers). This has

the effect of eliminating both derived structure as well as the relation between

derivation and derived structure from our grammar, leaving us with a ‘directly

compositional’ picture of syntax (as shown in figure 2.8), according to which

[. . .]syntactic structure is merely the characterization of the pro-

cess of constructing a [form–meaning pair], rather than a representa-

tional level of structure that actually needs to be built[. . .] ([163],

pp xi)

PF LF

Deriv
Λ

::vvvvvvvvvΠ

ddIIIIIIIII

Figure 2.8: Directly interpreting derivations

We shall see how this project can be realized in minimalist grammars in the

remainder of this section. We first show (§ 2.1) how the mapping Π from the

derived tree to PF can be computed without needing to construct the derived

tree in the first place. We then (§ 2.2) show how to construct an LF-legible

representation directly from the derivation, modifying Heim and Kratzer’s [74]

semantic theory to this more dynamic perspective. To achieve this we make

precise a long-standing intuition that “chains and not chain-members are the

elements input to principles of interpretation” ([21], pp. 130). We end this section

by extending our grammar for A-movement to account for cases of obligatory

control, as well as for basic quantifier scope ambiguities.

55

2.1 To PF Without Trees

We begin with the observation that much of the tree structure we are represent-

ing expressions as having is functionally inert—no operation of the (syntactic)

grammar ‘cares’ about the internal structure of subtrees that have no syntactic

features. Consider the expressions in figure 2.9. These expressions are indistin-

>

John:-k >

<

the: ointment:

<

devour:v <

ε: λ

1

<

seem:v <

to: <

have: <

arrive -en: <

ε: <

ε: John:-k

1

Figure 2.9: Syntactically indistinguishable expressions

guishable syntactically—the heads of both have the feature sequence v, and both

have exactly one constituent with licensee features, the heads of which share the

same feature sequence: -k. The position within the tree-structures of the moving

constituent is not relevent in our current formalism, and so needn’t be explicitly

represented. Eliminating the syntactically superfluous information contained in

the derived structures above, we can represent these expressions in the following

manner.

(the ointment, devour, ε) : v, (John, -k)

(ε, seem, to have arrive -en) : v, (John, -k)

More generally, we can go from derived trees to these more minimal represen-

56

tations in two steps. First, we build a list of all of the constituents in the derived

tree t whose heads have a licensee feature -x, and remove these constituents from

t (in case a constituent whose head bears a licensee feature itself containts an-

other constituent with the same property, we remove this latter constituent from

the former and put it into the list). For each sub-tree s in this list, we replace it

with the pair (yield(s), δs), where δs is the feature sequence of the head of s, and

yield(s) is the interpretation of s at the PF interface (which we will represent

as a string of lexemes). Finally, for t′ the result of removing each such subtree

from t, we replace t′ with the object (edget′ , headt′ , interiort′) : δt′ , where δt′ is

the feature sequence of the head of t′, edget′ is the interpretation of the specifiers

of the head of t′ at the PF interface (the spell-out of the material in the specifiers

of the head of t′), headt′ is the interpretation at the PF interface of the head of

t′, and interiort′ is the interpretation at the PF interface of the complement of

the head of t′. Schematically,

(Spec, Head, Comp) : features, Moving sub-constituents

Lexical items like John::d -k are considered as abbreviations for representa-

tions like (ε, John, ε)::d -k.

We work through a derivation of the sentence “John devoured the ointment,”

showing at each step both the derived tree, as well as its abbreviation according

to our convention. The crucial fact of note is that the operations of merge and

move can be directly defined over these reduced expressions, rendering the derived

tree unnecessary for the computation of a PF legible representation. Precise

definitions of the generating functions are given in appendix B–1.2.

We begin by merging the::=n d -k and ointment::n to get the expression below,

which is abbreviated by the representation below it.

57

<

the:d -k ointment:

1

(ε, the, ointment) : d -k

Next we merge devour::=d V with the above expression.

<

devour:V <

the:-k ointment:

1

(ε, devour, ε) : V, (the ointment, -k)

We merge ε::=>V +k =d v with the expression above, performing the accompanying

morphological readjustment, to get the below.

<

devour:+k =d v <

ε: <

the:-k ointment:

1

(ε, devour, ε) : +k =d v, (the ointment, -k)

Move applies to the expression thus derived, to get

>

<

the: ointment:

<

devour:=d v <

ε: λ

1

(the ointment, devour, ε) : =d v

The above expression merges with John::d -k.

58

>

John:-k >

<

the: ointment:

<

devour:v <

ε: λ

1

(the ointment, devour, ε) : v, (John, -k)

Next the lexical item ε::=>v prog is merged with the above.

<

devour:prog >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

(ε, devour, the ointment) : prog, (John, -k)

Then we merge ε::=>prog perf with the expression above.

<

devour:perf <

ε: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

59

(ε, devour, the ointment) : perf, (John, -k)

Finally we merge -ed::perf=> +k t.

<

ε:+k t <

devour -ed: <

ε: >

John:-k >

<

the: ointment:

<

ε: <

ε: λ

1

(ε, ε, devour -ed the ointment) : +k t, (John, -k)

Move applies to the above expression, yielding the desired

>

John: <

ε:t <

devour -ed: <

ε: >

λ >

<

the: ointment:

<

ε: <

ε: λ

1

(John, ε, devour -ed the ointment) : t

60

2.1.1 Successive Cyclic Movement

As mentioned in § 1.4, our implementation of minimalist grammars over trees did

not involve successive cyclic movement in any obvious way. Before moving on to

the presentation of a compositional semantics for minimalist grammars (§ 2.2),

we will see how a strong version of successive cyclicity is nonetheless maintained

in our formalism.

There is near-universal agreement that non-finite TPs in English (those

headed by to) are defective in some sense, in comparison with finite TPs. In

our present system, this ‘defectivity’ is captured by the lack of a +k feature

on to (i.e. non-finite T doesn’t assign case). There is still disagreement in the

transformational-generative community over whether DPs which undergo raising

move through the non-finite T.20 This movement has a different character than

the others we have or will encounter in this thesis. Unlike our other movements

(thus far driven all by -k features), successive cyclic movement does not appear

to check features of the expressions moving—the self-same DP may raise once,

twice, or not at all.

Consider the two derived trees in figure 2.10, which represent the raising and

non-raising analysis of the same point in the derivation of the expression John

seems to have arrived, respectively. In our new notation, the same expression

represents both of the trees in figure 2.10.

(ε, to, have arrive -en) : t, (John, -k)

Thus, we could just as easily interpret moving expressions as successive cyclicly

moving to every intermediate specifier between feature-driven movement posi-

tions. The essential observation, which also holds for the copy theory of move-

20This question is currently posable as: “Does non-finite T have an EPP feature?”

61

>

John:-k <

to:t <

have: <

arrive -en: <

ε: <

ε: λ

1

<

to:t <

have: <

arrive -en: <

ε: <

ε: John:-k

1

Figure 2.10: Two accounts of the structure of the non-finite TP

ment, is that information about a moving constituent is carried along and is

therefore potentially available to every intermediate node between where it is

first introduced, and where it finally ends up.

2.2 Direct Compositionality

An adequate semantic representation, in the context of the computational theory

of mind that is the mainstay of modern cognitive science, is one over which the

appropriate inferential relations (of entailment, synonymy, etc) can be simply

defined. These relations are often given model-theoretic counterparts by means

of associating semantic representations with model-theoretic objects (e.g. sets

of models in which the representation is ‘true’). This allows us to give precise

accounts of semantic relations between sentences without committing ourselves

to a particular mode of mental symbol manipulation. Many find it desirable to

‘directly interpret’ either the derivation tree or the derived tree into some model

theoretic object. This amounts to taking the tree (derivation or derived) as the

semantic representation itself, with the ‘interface map’ just being the identity

function. This is a logical possibility, and one which, under one reading, cannot

62

help but be right—we can always compose the interface map with the map from

semantic representations to model theoretic objects. However, there is also a

sense in which this is a bold conjecture. Under this reading, the proposal is that

the derivation tree will provide the right kind of structure over which to simply21

define the rules of inference for the ‘language of thought’. (See [60, 168, 170] for

discussion, and progress on this front.)

The main idea on the syntactic side of work on the syntax-semantics interface

has been that expressions may be interpreted in places in which they do not

appear on the surface, but that those places in which they may be interpreted

are characterizable in terms of positions through which they have moved in the

course of the derivation. As we will be directly mapping our derivations into

model-theoretic objects, and will therefore not have the use of derived trees which

record the positions through which our objects have moved, we will need to

decide upon an appropriate interpretation of our objects as they move through

each of their intermediate positions. An extremely simplistic implementation of

this idea in the context of our current assumptions is to associate a semantic

value with each feature of an expression, and that as each feature is checked,

its associated semantic value interacts appropriately with the semantic value

associated with the feature of the expression that it checks/is checked by. Our

approach bears obvious (and non-coincidental) resemblances to [45], perhaps the

main difference lies in our restrictions on access to the quantifier store, which

enforce that quantificational elements can take scope only in their chain positions.

The next section discusses the basic idea underlying the model-theoretic se-

mantics for minimalist grammars detailed in § 2.4 and put to work in the domain

of quantifier scope (§ 2.5) and control (§ 2.7).

21With respect to the closure properties of the relevant transformations.

63

2.3 Semantics in Chains

Sentences like 2.43 are commonly thought to be compatible with two seemingly

different states of affairs.

(2.43) Exactly one maggot will devour more than two carcasses.

The subject wide scope reading of the above sentence has it that the set of

maggots who end up eating more than two carcasses will be a singleton set. In

such a situation, the discourse may be continued with an utterance of 2.44.

(2.44) John will too.

According to another interpretation, there are more than two carcasses which

have a single solitary maggot worming its way through them, although there

may be many more carcasses which are chock full of the little creatures, and

each maggot may well be dining upon a smörg̊asbord of dead entities. In this

situation, an utterance of 2.44 would be infelicitous.

These readings are logically distinct, in the sense that neither of them entails

the other. To see this, consider a situation in which there are an equal number

of maggots and carcasses, say three. If maggot one is eating all three of the

carcasses, maggot two is eating carcass one, and maggot three is eating carcass

three, then the subject wide scope reading of sentence 2.43 is true of this situation

(as there is exactly one maggot (one) which is eating more than two carcasses, the

others are eating just one apiece). The subject narrow scope reading is not (as

only carcass three is being eaten by just one maggot). This is depicted in figure

2.11. If, on the other hand, we imagine the same maggots and carcasses engaged

in a different pattern of feeding behaviour, where maggot one is eating carcass

one, maggot three is eating carcasses two and three (and maggot two is slowly

64

m1

m2

m3

c1

c2

c3

1

Figure 2.11: A model for the subject-wide scope reading of sentence 2.43

starving to death), the wide scope reading is false (as no maggot is eating more

than two carcasses), but the narrow scope reading is true (as all three carcasses

are being eaten by a single maggot—carcass one by maggot one, and carcasses

two and three by maggot three). This is depicted in figure 2.12.

m1

m2

m3

c1

c2

c3

1

Figure 2.12: A model for the subject-narrow scope reading of sentence 2.43

Quantified noun phrases (QNPs) are usefully thought of as making two gen-

eral meaning contributions to the clauses in which they appear. The first is the

role they play in the clause (i.e. is exactly one maggot the devourer or the de-

vouree). The second is their logical priority with respect to other elements (as

Hintikka [75] calls it). For example, the two readings of sentence 2.43 assign the

same grammatical role to the two QNPs, but invert their logical priority (with

the subject being logically prior to the object in the subject-wide reading, and

the object prior to the subject in the subject-narrow reading). This bipartite

meaning contribution is usually represented by means of variables (which serve

65

to saturate the appropriate argument position) and variable binding operators

(which demarcate the semantic scope of the quantifier).

Our expressions already record information about their future syntactic rela-

tionships in their features. For example, from the expression every carcass:d -k

we garner that every carcass will be selected by another with an appropriate fea-

ture (either =d, =>d, or d=>), and will then move to a position licensing its case

feature (where it will be pronounced). We might just as well have represented

this information in terms of the following, ‘chain’-like representation (as in [156]).

-k

<

every carcass

! d

λ

1

Given our discussion about the bipartite meaning contribution of QNPs, this

representation is suggestive, in that to the two meaning components we wish to be

expressed correspond two syntactic positions. A straightforward implementation

of this intuition is to simply associate the slot-filler component of the meaning

of this expression with the category feature, and the quantificational component

with the licensee feature.

-k

every(carcass)

! d

x

1

The intuition, then, is that to each ‘link’ in a chain we can associate that link’s

meaning contribution when incorporated into the structure. This will be a useful

intuition to cultivate, as it captures the essence of our strategy—everything else

is just details (where the devil resides).

In § 2.4 we spell out these details in all of their model-theoretic glory. While

we have no “variables in the syntax,” and more generally no levels in our syntactic

66

theory at all, we will make use of variable assignments in the sense of Tarski [166]

(and thus sentences denote sets of satisfying assignments, as in [99]). This allows

us to identify a class of model theoretic objects which act as abstraction oper-

ators, leaving us with the benefits of translation into an intermediate language

with variables and variable binders. This treatment of abstraction operators,

while implicit in the literature, is obscured by treating (at least notationally)

variable assignments as objects not on the same level as individuals, truth val-

ues, and functions between them. We follow § 2.4 with a proposal about how

to implement a direct and incremental model-theoretic translation of derivations

in § 2.5. Particular to the Principles and Parameters tradition in syntax is the

notion of a chain, and we show how quantifiers and quantifier scope is dealt with

in our system. We implement the ideas of Hornstein [79], whereby there is no

separate mechanism of Quantifier Raising (QR) by which quantifiers are moved

to their scope positions. Instead, Hornstein suggests that a QNP may reconstruct

in any of its chain positions for the purposes of taking scope. In § 2.6 we show

how our syntax-semantics mapping assigns reasonable model theoretic objects to

the raising and passive sentences from § 1.4. Finally, in § 2.7, we tackle con-

trol constructions, again adapting Hornstein’s [78, 80] proposal to treat control

as movement to a θ position. Such a proposal fits in quite naturally with the

system developed here, and allows for an elegant treatment of the syntax and

semantics of control clauses, in particular of the difference between raising and

control constructions in terms of the possibility of scope reconstruction.

2.4 Model-Theoretic Glory

Our models have the following denotation domains:

1. E is the set of entities

67

2. T = {true, false} is the set of truth values

3. G = [N→ E] is the set of assignments

Given g, h ∈ G we write gi for g(i), and g ≈i h is true just in case if g and h differ,

then only in the value they take at i (i.e. for any j, if gj 6= hj then j = i). So ≈i

is an equivalence relation, for every i ∈ N. We write [g]i for the set {h : g ≈i h}.

We write x ∈ y as an abbreviation for y(x) = true.

We will call functions in the set [G→ E] individuals, those in [G→ T] sets of

assignments, functions from individuals to sets of assignments properties, func-

tions from properties to sets of assignments generalized quantifiers, and functions

from properties to generalized quantifiers determiners. We will also call sets of

assignments nullary relations, and functions from individuals to n-ary relations

n+1-ary relations (and so properties are unary relations).

There are two kinds of individuals that are of interest to us. We will call the

constant functions names, and for each e ∈ E denote by e the function taking

each g ∈ G to e. Those individuals f that for some i ∈ N, f(g) = gi for all g ∈ G

we will call variables, and denote with xi the function taking each g ∈ G to gi.

It will be useful to have a name for the following determiners.

every(A)(B)(g) = true iff for every f ∈ [G→ E]

if g ∈ A(f) then g ∈ B(f)

some(A)(B)(g) = true iff for some f ∈ [G→ E]

g ∈ A(f) and g ∈ B(f)

68

We will also name the following families of functions (abstraction over xi and

the ‘Geach’ combinator respectively).

for each i ∈ N,

λi : [G→ T]→ [G→ E]→ G→ T

λi(H)(f)(g) = true iff there is some h ∈ H such that

h ≈i g and f(g) = hi

G : [α→ γ]→ [β → α]→ β → γ

Gxyz = x(yz)

An Arithmetical Example

Let’s begin with a simple arithmetical language, with non-logical symbols the

constant 0, and the unary function symbol ′. In addition, our language contains

the logical symbols =, &, and ¬, as well as the punctuation symbols ‘(’ and ‘)’.

The sets of terms of type τ ∈ {Num,Bool} are defined inductively to be the

smallest sets Termτ such that

1. 0 ∈ TermNum

2. t′ ∈ TermNum, if t ∈ TermNum

3. (t1 = t2) ∈ TermBool, if t1, t2 ∈ TermNum

4. ¬(φ) ∈ TermBool, if φ ∈ TermBool

5. (φ & ψ) ∈ TermBool, if φ, ψ ∈ TermBool

A model for our language is determined by a structure M = 〈E, 0, σ〉. The

69

interpretation function [[·]]M is defined inductively over terms in the following

manner (recall that G = EN and T = {true, false}).

1. [[0]]M = f : G→ E such that for any g ∈ G, f(g) = 0

2. [[t′]]M = f : G→ E such that for any g ∈ G, f(g) = σ([[t]]M(g))

3. [[(t1 = t2)]]M = {g : [[t1]]M(g) = [[t2]]M(g)}

4. [[¬(φ)]]M = G− [[φ]]M

5. [[(φ & ψ)]]M = [[φ]]M ∩ [[ψ]]M

We determine the interpretation of the formula (0′ = 0′′) ∈ TermBool as

follows.

g ∈ [[(0′ = 0′′)]]M iff [[0′]]M(g) = [[0′′]]M(g)

iff [[0′]]M(g) = σ([[0′]]M(g))

iff σ([[0]]M(g)) = σ(σ([[0]]M(g)))

iff σ(0) = σ(σ(0))

Thus, [[(0′ = 0′′)]]M is either G or ∅ depending upon whether σ(0) = σ(σ(0)) in

M or not. Note that all φ ∈ TermBool denote denote either G or ∅, and that all

t ∈ TermNum denote names (constant functions in [G→ E]).

Adding Variables and Variable Binders

Next we extend the non-logical vocabulary of our language to include a denumer-

ably infinite set of variable symbols Var = {x0, x1, x2, . . .}. We extend the logical

vocabulary with the quantifier symbol ∀. The following two cases are added to

the definition of terms.

70

6. Var ⊆ TermNum

7. (∀x)φ ∈ TermBool, if φ ∈ TermBool and x ∈ Var

The definition of [[·]]M needs to be extended to include these cases.

6. [[xi]]M = xi

7. [[(∀xi)φ]]M = every(G(E))(λi([[φ]]M))

Note that g ∈ (G(E))(f) iff f(g) ∈ E, and therefore that

g ∈ every(G(E))(λi([[φ]]M))(g)

iff for every f ∈ [G→ E] g ∈ λi([[φ]]M))(f)

iff for every f ∈ [G→ E] there is some h ∈ [[φ]]M

such that h ≈i g and f(g) = hi

To see better how this works, consider the interpretation of the sentence

(x0 = 0′′) ∈ TermBool, which we can calculate as follows.

g ∈ [[(x0 = 0′′)]]M iff [[x0]]M(g) = [[0′′]]M(g)

iff x0(g) = σ(σ(0))

iff g0 = σ(σ(0))

That is, [[(x0 = 0′′)]]M is the set of all assignments which assign the value σ(σ(0))

to the index 0. The denotation of (∀x0)(x0 = 0′′) ∈ TermBool is given as a

function of the denotation of this subformula.

g ∈ [[(∀x0)(x0 = 0′′)]]M iff for every f ∈ [G→ E] there is an h ∈ [[(x0 = 0′′)]]M

such that h ≈0 g and f(g) = h0

iff f(g) = σ(σ(0)) for every f ∈ [G→ E]

71

That is, [[(∀x0)(x0 = 0′′)]]M will be G if E = {0}, and will be ∅ otherwise. Note

that [[(∀x1)(x0 = 0′′)]]M = [[(x0 = 0′′)]]M.

Application and Abstraction

Now we add another type to our language, Num→ Bool, along with the symbol

h. The set of terms of type τ is expanded as follows.

8. (hx)φ ∈ TermNum→Bool if φ ∈ TermBool and x ∈ Var

9. (α(t)) ∈ TermBool if α ∈ TermNum→Bool and t ∈ TermNum

The interpretation function is extended in the following manner so as to be defined

over these new terms.

8. [[(hxi)φ]]M = λi([[φ]]M)

9. [[(α(t))]]M = [[α]]M([[t]]M)

The sentence (hx0)(x0 = 0′′) denotes a function which assigns to each f ∈

[G→ E] the set {g : f(g) = σ(σ(0))}. We can calculate this as follows. For any

f ∈ [G→ E],

g ∈ [[(hx0)(x0 = 0′′)]](f) iff g ∈ λ0([[(x0 = 0′′)]])(f)

iff ∃h ∈ [[(x0 = 0′′)]]. h ≈0 g and f(g) = h0

iff f(g) = σ(σ(0))

As special cases, we see that [[(hx0)(x0 = 0′′)]]M(0) = [[(0 = 0′′)]]M and that

[[(hx0)(x0 = 0′′)]]M(x1) = [[(x1 = 0′′)]]M.

We are now ready for some of the complications of natural language.

72

2.5 Quantifiers and Scope

In this section, we develop an approach to the interpretation of minimalist gram-

mars that exploits the fact that an expression may be ‘active’ for multiple steps

of a derivation (as long as it has unchecked licensee features). The particular

semantic modes of combination we explore here involve storage of semantic ob-

jects, and subsequent retrieval of these objects. In specifying the mapping from

syntax to semantics we may place restrictions both on the kinds of access one

has to the stored elements (e.g. whether it be pop and push, or enqueue and

dequeue, or random access), as well as on when one may access them. Clearly,

there are many possibilities to be explored. As regards the shape of the store,

we adopt an array-like structure (stack shaped stores are explored in [92]), as

this allows us to straightforwardly implement the widely-held belief in the close

connection between the c-command relation in syntax and the logical priority

relation in semantics. As regards access to the store, we adopt a strong position

here, permitting a single retrieval from the store during each movement step in

the derivation. This allows us to straightforwardly implement the widely-held

belief in the close connection between chain positions and scope positions. These

restrictions already provide us with a sort of ‘island effect’—no expression may

remain in storage after its window of ‘activity’ has closed.22 As this is not a

treatise on semantics, but rather a proof of concept of the possibility of directly

interpreting minimalist grammars, the reader will forgive me for not providing

new proposals with better coverage of the emprical data, but only of showing

how old ideas may be incarnated in the formal system implemented here.

22Others ([45]) have considered the addition of non-logical conditions to the storage, such
as the requirement that it be empty at various syntactically determined positions (such as at
canonical syntactic islands, for example). This provides us with another locus of variation for
our semantic theory, but this is one we shall not take advantage of.

73

The Basics

We begin by considering simple intransitive sentences like 2.45 below.

(2.45) Some abbot died.

We can treat some on a par with the, assigning to it the syntactic type =n d -k.

Abbot is, as are other common nouns, of type n, and die, like other unaccusative

verbs, is of type =d v. The derivation starts out by merging some with abbot,

which, in Heim and Kratzer’s [74] system, is interpreted as the application of the

denotation of the noun to the function denoted by the determiner. We adopt

this idea here, allowing that function application is a possible mode of semantic

combination associated with an instance of merger (see figure 2.13). To be of

the right semantic type to allow for application to some, abbot should denote a

function from individuals (type [G→ E]) to sets of assignment functions (type

[G→ T]), a predicate. Let’s call the function denoted by abbot abbot. Then

the denotation of the result of merging some with abbot is some(abbot), which

is itself a function from predicates to sets of assignments. The next step in

the derivation of sentence 2.45 is to merge die with some abbot. Die denotes a

predicate, which is of the type appropriate for application to the denotation of

some abbot. Let’s call the predicate denoted by die die. Allowing that semantic

application of the denotation of the syntactic functor to the denotation of the

syntactic argument is another possible mode of semantic combination associated

with merger (see figure 2.13), the denotation of the result of merging die with

some abbot is some(abbot)(die), which is a set of assignment functions. We

ignore the semantic contribution of tense and aspect, and, for the moment, of

movement. Thus, at the end of the derivation, we are left with the set of as-

signments some(abbot)(die). An assignment function g is in this set just in

74

case there is some individual f who is both an abbot (g ∈ abbot(f)) and died

(g ∈ die(f)).

[[merge(α, β)]]→ [[α]]([[β]]) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) (BA)

Figure 2.13: Modes of Semantic Combination (I)

Quantifiers in Object Positions

Turning now to transitive sentences like 2.46 with quantificational DPs in the

object position, we run into familiar problems.

(2.46) George shaved some abbot.

We calculate the denotation of the result of merging some and abbot as before,

but now the verb, shave, denotes not a predicate, but a function from individuals

to predicates, and thus cannot combine with the generalized quantifier denotation

of some abbot. One approach to this problem, advocated by Keenan [91], among

others, is to take the denotation of a DP to be not a function from predicates

to sets of assignments, but rather a function from n+1-ary relations to n-ary re-

lations, ‘valencey reducers’, as it were. While certainly a logical possibility, and

a workable one at that, this approach doesn’t take advantage of the particular

structure of our current syntactic theory. Instead, we adopt the ‘Quantifying-In’

approach put forth in [124], whereby a quantificational DP may make multiple

semantic contributions in a sentence—first marking its grammatical role (with

a variable), and then marking its scope (with a variable binder). Intuitively,

75

we allow a DP, when merged, to introduce a variable, storing its normal, quan-

tificational meaning for later insertion [45]. We will allow a stored meaning to

be retrieved not ad libitum, but rather only when its associated DP moves—an

incremental approach to ‘reconstruction.’

To implement this intuition, we add a final possible semantic mode of compo-

sition to the merge rule; we feed a new variable to the denotation of the syntactic

functor, and Store the quantificational meaning (as shown in figure 2.14).

Store

[[merge(α, β)]]→ [[α]]([[β]]) store(α)_store(β) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) store(α)_store(β) (BA)

[[merge(α, β)]]→ [[α]](xi) store(α)_G([[β]])(λi)
_store(β) (Store)

Figure 2.14: Modes of Semantic Combination (II)

The calculation of the interpretation of sentence 2.46 proceeds as fol-

lows. First, some and abbot are merged, denoting (via function application)

some(abbot). Next, we merge shave with some abbot. The only viable mode

of semantic combination available to us (given the respective types of the deno-

tations of these expressions) is our newly introduced storage mode. Thus the

denotation of the verb phrase shave some abbot is shave(x0) with the function

G(some(abbot))(λ0) in storage.

We next merge the active voice head ε::=>V +k =d v with our VP. We ignore

any semantic effect this may have, treating the denotation of this merger as

identical to the denotation of the merged VP (formally, the active voice head

denotes the identity function over properties). But now again we are in trouble:

76

we next have to move the phrase some abbot, which checks its case feature,

rendering it syntactically inert, but we can neither leave its stored meaning in

the store (because we then lose the connection we are trying to maintain between

an expression’s scope and its chain positions), nor combine the stored meaning

with the meaning of the expression as a whole in a straightforward way (as the

types still do not match). Intuitively, what we want is for the stored meaning

to be retrieved after the subject is merged, saturating the shave relation. Thus,

we want the phrase some abbot to move again, after the subject is introduced.

We implement this by adding a new licensing feature type, ‘Q’, and assigning

the determiner some the type =n d -k -q, and the active voice head the type

=>V +k =d +q v. Now, when we move some abbot to check its -k feature, we

leave its stored meaning untouched (and thus associated with the move operation

must be an ‘empty’ mode of semantic combination (see figure 2.15)). We next

merge George, which denotes the name g, the result of which merger denotes the

set of assignments shave(x0)(g), with stored G(some(abbot))(λ0). Now when

we move some abbot to check its -q feature, we apply the set of assignments

shave(x0)(g) to the stored G(some(abbot))(λ0) (see figure 2.15), yielding

G(some(abbot))(λ0)(shave(x0)(g))

= some(abbot)(λ0(shave(x0)(g)))

= {h : for some f ∈ [G→ E] , g shaved f(h)

and f(h) is an abbot}

Our final modes of semantic combination are as schematized in figure 2.15 (for

precision see appendix B–1.3). The Q in the figure represents the stored meaning

of the moving constituent.

Before we move on to a discussion of quantifier scope interactions, a word is

in order about the introduction of the Q licensing feature—which lexical items

77

Store

[[merge(α, β)]]→ [[α]]([[β]]) store(α)_store(β) (FA)

[[merge(α, β)]]→ [[β]]([[α]]) store(α)_store(β) (BA)

[[merge(α, β)]]→ [[α]](xi) store(α)_G([[β]])(λi)
_store(β) (Store)

[[move(α)]]→ [[α]] store(α) (Id)

[[move(α)]]→ Q([[α]]) store(α)−Q (Retrieve)

Figure 2.15: Modes of Semantic Combination (III)

have -q and +q features? In other words, is the +q feature on our active voice

head (newly of type =>V +k =d +q v) optional, or not? If we decide to make

it optional, we need some way of blocking sentences like 2.47 below, in which a

QNP in a lower clause checks its -q feature in the higher clause.

(2.47) *John thinks some abbot (that) George shaved.

This kind of movement of a DP seems to be in need of blocking anyways, as

(many) quantifiers seem to be limited in their scopal positions to their closest

c-commanding tensed head. We might correctly rule sentence 2.47 out, and

thereby implement this generalization, by requiring that our tensed lexical items

bear a +q feature (so will, -s, and -ed have the type =perf +k +q t). Given the

grammaticality of sentences without quantified DPs, such as 2.48 below, we need

to at least allow all DPs, quantificational or not, to bear a -q feature.

(2.48) John devoured George.

78

Again, we need to ensure that sentences like the ungrammatical below (2.49) are

not generated.23

(2.49) *George John devoured.

There are two possibilities that suggest themselves. We might either allow mov-

ing expressions to be pronounced in positions other than the highest through

which they move (i.e. covert movement), or we might decide that the active voice

head does, after all, have an obligatory +q feature. Were we to introduce covert

movement (à la [160]) we could stipulate that all movement driven by the Q fea-

ture is covert. This has a number of advantages, among them the possibility of a

straightforward account of inverse linking.24 As adding covert movement to our

current system is irrelevant for the syntax-semantics interface we have developed

here, we take the conservative path, and adopt the second option, that of making

the +q feature on the active voice head obligatory. (We investigate covert move-

ment in chapter 3.) This makes the -q feature on every DP obligatory (as DPs

without -q features will not be permitted in either subject or object positions).

Interleaving Chains

Hornstein [78, 80] proposes to do away with the standard quantifier raising

(QR) operation (an operation usually conceived of as being different from nor-

mal feature-driven movement), instead allowing the scope-bearing element to be

positioned by any movement. Given our new Q feature, introduced above, the

23This word order is fine, if George is topicalized. While topicalization could be driven by
the same features driving standard DP/QNP movement, here I will simply assume that it is
not.

24As in sentences like

1. Someone in every left-of-right-of-center organization is a mole.

which has a reading (arguably the most natural one) according to which the universal quantifier
every outscopes the existential quantifier some.

79

movements of the subject and object cross, which gives rise to the possibility

of inverse scope when the subject is merged without storage. We go through a

derivation of the sentence below, showing how the two interpretations arise via

our semantic rules.

(2.50) Something devoured everyone.

We take something and everyone to be typed with other DPs (and thus to

have the type d -k -q), and to denote some(G(E)) and every(G(E)) respectively,

where E is the universe of the model (ignoring the distinction between ‘something’

and ‘someone’). This sentence has the single derivation below:25

1. merge(devour::=d V, everyone::d -k -q)

2. merge(ε::=>V +k =d +q v, 1)

3. move(2)

4. merge(3, something::d -k -q)

5. move(4)

6. merge(ε::=>v prog, 5)

7. merge(ε::=>prog perf, 6)

8. merge(-ed::perf=> +k +q t, 7)

9. move(8)

25The number of readings sentences have can increase exponentially with the number of
quantifiers. Much work in computational semantics has investigated the question of how to
compactly represent this information (leading to the development of Hole Semantics [19] and
Minimal Recursion Semantics [46], among others). Here, treating with Cooper [45] the semantic
scope of DPs as (partially) independent of the syntactic derivation, our derivation tree is an
underspecified semantic representation.

80

10. move(9)

Assuming that all lexical items other than something, devour, and everyone are

semantically vacuous (i.e. denote the identity function over the appropriate type),

the subject narrow scope reading of sentence 2.50 is calculated from the derivation

above in the following manner (the notation α; β represents the denotation α

with β in storage). We simplify the notation whenever possible, writing x(yz)

for Gxyz.

1. devour(x0); G(every(G(E)))(λ0) Store

2. devour(x0); G(every(G(E)))(λ0) FA

3. devour(x0); G(every(G(E)))(λ0) Id

4. some(G(E))(devour(x0)); G(every(G(E)))(λ0) BA

5. every(G(E))(λ0(some(G(E))(devour(x0)))) Retrieve

6. every(G(E))(λ0(some(G(E))(devour(x0)))) FA

7. every(G(E))(λ0(some(G(E))(devour(x0)))) FA

8. every(G(E))(λ0(some(G(E))(devour(x0)))) FA

9. every(G(E))(λ0(some(G(E))(devour(x0)))) Id

10. every(G(E))(λ0(some(G(E))(devour(x0)))) Id

We can calculate the subject wide scope reading of sentence 2.50 in the following

way. Note that we may retrieve the stored function either in step 9 or 10.26

26We also stand in need of a way to guarantee that the variables introduced during the
Store rule are globally new/fresh. A system of explicit substitutions influenced by the λσ-
calculus [1] is developed in appendix B–2 (viewing object level substitutions as instructions to
systematically permute assignment functions).

81

1. devour(x0); G(every(G(E)))(λ0) Store

2. devour(x0); G(every(G(E)))(λ0) FA

3. devour(x0); G(every(G(E)))(λ0) Id

4. devour(x0)(x1); G(some(G(E)))(λ1), G(every(G(E)))(λ0) Store

5. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) Retrieve

6. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

7. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

8. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) FA

9. every(G(E))(λ0(devour(x0)(x1)); G(some(G(E)))(λ1) Id

10. some(G(E))(every(G(E))(λ0(devour(x0)(x1))) Retrieve

2.6 Raising and Passive

Raising

The same possibilities that exist for non-surface scopal relationships between

subjects and objects in simple transitive sentences seem to be preseved under

raising. For example, there is a reading of sentence 2.51 (2.51.ii) according to

which the object is logically prior to the raised subject.

(2.51) Something seems to be devouring everyone.

1. (it seems that) there is a particular entity (Grendel, say), such that

that entity is devouring everyone.

2. (it seems that) for each person, there is some entity or other that is

devouring him.

The existence of unraised equivalents to 2.51 in which the verb seem seems to

be acting as a sentential operator, motivates the semantic treatment of seem as

82

a function over sentence-type denotations. However, our extensional semantics

doesn’t allow for enough distinctions to be drawn between sentences to provide for

an adequate treatment of the inferential patterns involving seem. The standard

move to make is to adopt a richer set of truth-values; instead of the simple boolean

algebra 2, we move to the algebra [W → 2] of functions from an index set W (of

worlds) to truth values.27 Our useful functions (e.g. every and λi) are given the

obvious reinterpretations.

every(A)(B)(g)(w) = true iff for every f ∈ [G→ E]

if w ∈ A(f)(g) then w ∈ B(f)(g)

λi(H)(f)(g)(w) = true iff there is some h ≈i g such that

w ∈ H(h) and f(g) = hi

We can now define sentential operators (like necessarily) which quantify over

possible words.

necessarily(H)(g)(w) = true iff for every v ∈ W, v ∈ H(g)

Letting seem denote seem : [G→ W → T] → G → W → T , we can derive the

following two readings for sentence 2.51.

1. some(G(E))(λ1(seem(every(G(E))(λ0(devour(x0)(x1))))))

2. seem(every(G(E))(λ0(some(G(E))(devour(x0)))))

Although we have argued that, in a well-defined sense, movement just is suc-

cessive cyclic, clearly our current semantic modes of combination, which allow

for retrieval from storage only during feature driven movements, discriminate be-

tween feature driven and successive cyclic movements. If we wanted to allow for

27Treating possible worlds in this manner (as just a richer set of truth values) entails that
names are “rigid designators” [100] as they have no world parameter.

83

the possibility of QNPs to take scope in intermediate, successive cyclic positions

(which has been argued against in the case of A-movement [106, 129, 137]),28 we

could simply allow retrieval to apply freely throughout the derivation, making

our proposal even more similar to Cooper’s [45] original one.29 This would allow

us to generate the currently ungenerable reading iii according to which the raised

subject scopes over the object but beneath the raising predicate.

3. seem(some(G(E))(λ1(every(G(E))(λ0(devour(x0)(x1))))))

It is worth saying again what is going on here, just to allay any possible confu-

sion. Our syntax is strongly successive cyclic, as witnessed by the fact that our

semantics can be tweaked so as to make use of this.30 It is our semantics that

either takes advantage of this successive cyclicity, or ignores it. The same fact

is true of (one kind of) copying—our syntax ‘copies.’31 Whether we design our

semantics (more generally, our interface maps) to take advantage of this or not

is a separate issue.

Passive

We note that a passive sentence like 2.52 below is roughly synonymous with (the

subject narrow scope reading of) the active 2.53 with an existentially quantified

28Indeed, these same authors would prohibit QNPs from taking scope in their first merged
positions, allowing only scope taking from moved-to positions (translating into our terms). This
would be simple to implement in our system; instead of allowing the modes of store and FA/BA
to be in free variation, we force storage for moving elements (those which are introduced by
the merge3 rule in B–1.2).

29Keeping, of course, the restriction that after an element has finished its feature-driven
movements, its stored semantic contribution must have already been retrieved.

30This allows us to formulate in a notation-independent way just what ‘successive cyclicity’
means. Successive cyclicity refers to whether information about a moving object is in principle
available at a particular point in the derivation. (Copying, then, refers to how much of this
information is available.) Note that what we are here talking about as ‘syntax’ is the derivation
tree.

31We will come back to this in chapter 3.

84

subject.

(2.52) Everyone was devoured.

(2.53) Something devoured everyone.

This observation leads naturally to the idea that the passive voice head existen-

tially quantifies over the external argument of the verb. Formally, we can assign

to the passive voice head the same denotation as we assign to the QNP something.

The lack of an ‘inverse scope’ reading in 2.52 is a consequence of the fact that we

can’t store the denotation of a non-moving expression (i.e. a trivial chain).

[[-en::=>V pass]] = some(G(E))

Again, assuming the semantic vacuity of the other functional heads in our lexicon,

we assign to sentence 2.52 the denotation below.

every(G(E))(λ0(some(G(E))(devour(x0))))

As noted in § 1.4, raising and passivization feed one another, giving rise to

sentences like 2.54 below.

(2.54) Everyone is expected to devour John.

We let expect denote expect : [G→ W → T] → [G→ E] → G → W → T ,

which combines with a proposition and an individual to yield a proposition. Not

allowing for free retrieval, we generate two readings for 2.54, the subject-wide

scope (SWS) and the subject-narrow scope (SNS) readings, as shown below.

(SWS) every(G(E))(λ0(some(G(E))(expect(devour(j)(x0)))))

(SNS) some(G(E))(expect(every(G(E))(devour(j))))

85

2.7 Control

Alongside verbs like seem and expect we find the superficially similar want and

persuade, as exemplified below.

(2.55) John seemed to shave an abbot.

(2.56) John wanted to shave an abbot.

(2.57) George expected John to shave an abbot.

(2.58) George persuaded John to shave an abbot.

As is well-known, the similarities in form between these sentences conceal a struc-

tural distinction. While sentences like 2.55 and 2.57 entail the passivized lower-

clause versions 2.59 and 2.61 below, 2.56 and 2.58 do not.

(2.59) (`) an abbot seemed to be shaved.

(2.60) (6`) an abbot wanted to be shaved.

(2.61) (`) George expected an abbot to be shaved.

(2.62) (6`) George persuaded an abbot to be shaved.

Furthermore, expletive subjects are permitted in the raising clauses 2.63 and 2.65

but not in 2.64 or 2.66.

(2.63) It seemed to be raining.

(2.64) *It wanted to be raining.

(2.65) George expected it to be raining.

(2.66) *George persuaded it to be raining.

86

These two kinds of verbs then seem to form natural classes. We have already

encountered the raising class, the second is called control. Sentences with control

verbs have been analyzed as involving obligatory deletion under identity with the

controller of the lower clause subject (equi-NP deletion), as involving a relation-

ship of ‘control’ between the controller and an unpronounced unique-to-control

element in the lower clause (PRO), as well as being syntactically identical to

raising sentences, with the differences being cashed out in more semantic terms.

Despite their differences, these approaches are all implementations of a common

idea; control verbs bear the same kind of relation to their DP satellites as do

other verbs—DPs in control clauses are semantic arguments of the control verb.

Control as Movement

Recently [78, 80, 111, 114, 134], proposals have emerged which treat control as

being mediated by movement. While such a move encounters difficulties (to be

discussed shortly), it offers a simple and elegant account of a surprising range

of data, providing a new perspective on old facts. Furthermore, as we shall

soon see, treating control as movement is easy to accomodate within our directly

compositional version of minimalism.

The semantic intuition the reader was asked to cultivate in § 2.3 was illustrated

with the help of the following picture.

-k

every(carcass)

! d

x

1

In particular, the semantic force of this expression was broken up into two com-

ponents, an argument component and a quantificational component. Now, the

merge operation is always associated with argument saturation (FA, BA, and

87

Store), not because of some mystical connection between the operation of merger

and function application, but rather because we have situated the argumental

force of an expression in its categorial feature, and merge is currently the only

operation that deals with categorial features.32 Intuitively, what we will do is to

allow the same categorial feature to contribute its associated meaning again and

again. Given that control appears to be iterable without bound (2.67), we decide

to allow for asymmetric feature checking.

(2.67) George persuaded John to want to shave an abbot.

We allow categorial features to come in two flavours, f and *f, corresponding

to whether asymmetric feature checking is allowed, or not. Categorial features

like *f behave like their f brethren in all respects seen thus far. They differ,

however, in being subject to merger without checking, and movement. Since

it seems that all and only DPs are controllable, we assign these new categorial

features accordingly; a ‘DP’ is now anything with the syntactic type *d -k -q. We

need now three additional syntactic modes of combination. We need to be able to

merge something with a starred categorial feature, and not delete it. We also need

to be able to move something with a categorial feature. This control movement

comes in two varieties. First, we might check the categorial feature driving the

control movement. Second, we might not check the categorial feature, saving it

for later control movement. We will name these operations cmerge (for ‘control

merge’) and cmove1 and cmove2 (for ‘control move’). Semantically, cmerge works

as follows. First, a new variable is created, and fills the argument position our

DP is cmerged into. Then we put the quantificational meaning of the DP along

32Sometimes, such as when the subject takes narrow scope, both the argumental force and
the quantificational force of an expression are realized simultaneously. This does not affect the
point being made.

88

with a copy of the new variable into the store.

[[cmerge(α, β)]]→ [[α]](xi) store(α)_〈xi, G([[β]])(λi)〉_store(β)

Control movement saturates an argument position of a predicative expression

with the semantic variable (f) associated with the moving DP in the store. If

we do not eliminate the feature on this moving DP (*d), we leave the store

unchanged, allowing for future control movements.

[[cmove2(α)]]→ [[α]](f) store(α)

If we decide to eliminate the *d feature, ceasing the control movements, we may

either retreive the scopal information (Q) associated with our DP as well, giving

it narrow scope, or we may leave the scopal information in the store, allowing for

wider scope.

[[cmove1(α)]]→ Q([[α]](f)) store(α)− 〈f,Q〉

[[cmove1(α)]]→ [[α]](f) (store(α)− 〈f,Q〉)_Q

We work through a derivation of sentence 2.68 below, which we present in the

treeless form discussed in 2.1. After each step in the derivation, we exhibit the

denotation of the resulting expression below it. When there is a choice, we prefer

wider scope.

(2.68) Every barber promised George to be persuaded to shave an abbot.

We assign the object control verb persuade the type =t =d V, and promise the

type =d +k =t =d +q v.33 In a tree, these type assignments indicate that the

33The type assigned to promise is very nearly the composition of the standard VP type (=d V)
with the active voice type (=>V +k =d +q v). In fact, it is, with an additional =t stuck in. This is
done in part because promise doesn’t passivize well, and in part because doing otherwise would
necessitate revision and or duplication of functional lexical items. The most natural treatment
of verbs like promise in our current system is this one, which attributes the awkwardness of
passivization to grammatical factors.

89

object of persuade is introduced higher than its clausal complement, and that

the object of promise is introduced lower than its clausal complement. Assuming

the existence of an argument structure template, according to which arguments

across different verbs occupy canonical positions, this might be taken to suggest

that the DP object of persuade is of a different type than that of promise. This

typing is forced upon us by our principle of immediacy, which derives something

like the minimal distance principle (MDP) [148], which is a coding up of the

observation that control across another DP is generally not possible. Promise-

type verbs constitute counter-examples to a näıve version of the MDP, one in

which ‘across-ness’ is calculated in terms of linear order in the surface string. We

will come back to this shortly.

1. merge(a::=n *d -k -q, abbot::n)

(ε, a, abbot) : *d -k -q

some(abbot)

2. merge(shave::=d V, 1)

(ε, shave, ε) : V, (a abbot, -k -q)

shave(x0), G(some(abbot))(λ0)

3. merge(ε::=>V +k =d +q v, 2)

(ε, shave, ε) : +k =d +q v, (a abbot, -k -q)

shave(x0), G(some(abbot))(λ0)

4. move(3)

(ε, shave, ε) : =d +q v, (a abbot, -q)

shave(x0), G(some(abbot))(λ0)

90

5. merge(every::=n *d -k -q, barber::n)

(ε, every, barber) : *d -k -q

every(barber)

6. cmerge(4, 5)

(ε, shave, ε) : +q v, (a abbot, -q), (every barber, *d -k -q)

shave(x0)(x1), G(some(abbot))(λ0), 〈x1, G(every(barber))(λ1)〉

7. move(6)

(a abbot, shave, ε) : v, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

8. merge(ε::=>v prog, 7)

(ε, shave, a abbot) : prog, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

9. merge(ε::=>prog perf, 8)

(ε, shave, a abbot) : perf, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

10. merge(to::=perf t, 9)

(ε, to, shave a abbot) : perf, (every barber, *d -k -q)

some(abbot)(λ0(shave(x0)(x1)), 〈x1, G(every(barber))(λ1)〉

91

11. merge(persuade::=t =d V, 10)

(ε, persuade, to shave a abbot) : =d V, (every barber, *d -k -q)

persuade(some(abbot)(λ0(shave(x0)(x1))),

〈x1, G(every(barber))(λ1)〉

12. cmove2(11)

(ε, persuade, to shave a abbot) : V, (every barber, *d -k -q)

persuade(some(abbot)(λ0(shave(x0)(x1)))(x1),

〈x1, G(every(barber))(λ1)〉

13. merge(-en::=>V pass, 12)

(ε, persuade -en, to shave a abbot) : pass, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

14. merge(be::=pass v, 13)

(ε, be, persuade -en to shave a abbot) : v, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

92

15. merge(ε::=>v prog, 14)

(ε, be, persuade -en to shave a abbot) : prog, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

16. merge(ε::=>prog perf, 15)

(ε, be, persuade -en to shave a abbot) : perf, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

17. merge(to::=perf t, 16)

(ε, to, be persuade -en to shave a abbot) : t, (every barber, *d -k -q)

some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1)),

〈x1, G(every(barber))(λ1)〉

18. merge(promise::=d +k =t =d +q v, George::*d -k -q)

(ε, promise, ε) : +k =t =d +q v, (George, -k -q)

promise(g)

19. move(18)

(ε, promise, ε) : =t =d +q v, (George, -q)

promise(g)

93

20. merge(19, 17)

(ε, promise, to be persuade -en to shave a abbot) : =d +q v,

(George, -q), (every barber, *d -k -q)

promise(g)(H), 〈x1, G(every(barber))(λ1)〉

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

21. cmove1(20)

(ε, promise, to be persuade -en to shave a abbot) : +q v,

(George, -q), (every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

22. move(21)

(George, promise, to be persuade -en to shave a abbot) : v,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

23. merge(ε::=>v prog, 22)

(ε, promise, George to be persuade -en to shave a abbot) : prog,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

94

24. merge(ε::=>prog perf, 23)

(ε, promise, George to be persuade -en to shave a abbot) : perf,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

25. merge(-ed::perf=> +k +q t, 24)

(ε, ε, promise -ed George to be persuade -en to shave a abbot) : +k +q t,

(every barber, -k -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

26. move(25)

(ε, ε, promise -ed George to be persuade -en to shave a abbot) : +q t,

(every barber, -q)

promise(g)(H)(x1), G(every(barber))(λ1)

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

27. move(26)

(every barber, ε, promise -ed George to be persuade -en to shave a abbot) : t

every(barber)(λ1(promise(g)(H)(x1))

H = some(G(E))(persuade(some(abbot)(λ0(shave(x0)(x1)))(x1))

95

2.8 Reflections on Control

We have assigned promise the type =d +k =t =d +q v, blocking object control

by virtue of the fact that the object argument is selected for before the clausal

complement housing the controlling DP is merged (and thus we arrive at the

same broad clausal architecture suggested in Larson [104]). This aspect of the

typing (that arguments that cannot be controlled must be selected before the

introduction of the controller) is forced upon us by the architecture of our system,

in particular, by our principle of immediacy. Here we will delve into the rationale

for the rest of this type. It will turn out that this type is literally forced upon us

by our system, there being no other option given the patterns of grammaticality

and ungrammaticality in the data. Although it is widely known that subject

control verbs resist passivization (cf. 2.69, 2.70), they allow for passivization

when their clausal complement is finite (cf. 2.71, 2.72).

(2.69) George promised John to arrive on time.

(2.70) *John was promised to arrive on time.

(2.71) Mary promised John that George would arrive on time.

(2.72) John was promised that George would arrive on time.

We will show how to derive these facts. In so doing we will see that our principle

of immediacy will need to be sharpened, taking on somewhat of a counterfactual

flavour (though formally there is no counterfactuality involved; see appendix B–

1.2). To fully appreciate the analysis and the system we have developed, it is

instructive to begin by considering why we cannot assign promise the simple type

=d =t V (the ‘mirror image’ of persuade’s =t =d V).

96

The type of promise

Given that 2.69 above means that George is supposed to arrive on time, and

not John, (i.e. that the subject of the matrix clause and not the object is the

controller), our principle of immediacy forces us to make the object position of

promise inaccessible to elements within the subordinate clause (by ordering the

=d feature that introduces the object before the =t feature that introduces the

subordinate clause with all of its moving bits and pieces). We might be tempted

by the promise of an elegant account of the contrast between object control verbs

(of type =t =d V) and subject control verbs, and assign the type =d =t V to

subject control verbs. While we can clearly still derive the standard subject

control constructions (such as 2.69), we now overgenerate wildly, predicting the

existence of control through finite clauses.

1. to arrive every barber

(ε, to, arrive) : t, (every barber, *d -k -q)

arrive(x0), 〈x0, G(every(barber))(λ0)〉

2. merge(promise::=d =t V, George::*d -k -q)

(ε, promise, ε) : =t V, (George, -k -q)

promise(g)

3. merge(2, 1)

(to arrive, promise, ε) : V, (George, -k -q), (every barber, *d -k -q)

promise(g)(arrive(x0)), 〈x0, G(every(barber))(λ0)〉

97

4. merge(-en::=>V pass, 3)

(ε, promise -en, to arrive) : pass, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

5. merge(be::=pass v, 4)

(ε, be, promise -en to arrive) : v, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

6. merge(ε::=>v prog, 5)

(ε, be, promise -en to arrive) : prog, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

7. merge(ε::=>prog perf, 6)

(ε, be, promise -en to arrive) : perf, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

8. merge(will::=perf +k +q t, 7)

(ε, will, be promise -en to arrive) : +k +q t, (George, -k -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

98

9. move(8)

(ε, will, be promise -en to arrive) : +q t, (George, -q),

(every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

10. move(9)

(George, will, be promise -en to arrive) : t, (every barber, *d -k -q)

some(G(E))(promise(g)(arrive(x0))), 〈x0, G(every(barber))(λ0)〉

As the expression derived in 10 is syntactically identical to the infinitival con-

trol clause we began with (in 1), they of necessity have identical distributions.

Therefore, we predict erroneously the existence of ungrammatical form-meaning

pairings like in 2.74 alongside the grammatical 2.73.

(2.73) Every barber wanted to arrive.

every(barber)(λ0(want(arrive(x0))(x0)))

(2.74) *Every barber wanted (that) George will be promised to arrive.

every(barber)(λ0(want(some(G(E))(promise(g)(arrive(x0))))(x0)))

The problem is due to the fact that our only locality condition (the principle of

immediacy) is a relativistic one, in the sense that it doesn’t care about ‘absolute

distances’, but only about intervention. By passivizing the verb phrase in step 4,

we eliminate the subject position we want the controller to control from, thereby

allowing the controller to float up through the clause. As promise (and subject

control verbs in general) don’t passivize well, an obvious fix is to simply prohibit

99

promise from combining with the passive voice. Our type assignment to promise

is a way of requiring that promise only combine with the active voice—putting

=d =t V and =>V +k =d +q v together we get =d =t +k =d +q v, which, but for the

order of the =t and +k features, is precisely the type we have assigned. Justifying

this difference, we will discover a broader set of problems, which will lead us to

a better understanding of the principle of immediacy.

The Immediacy of Syntax

Given that our merge and cmerge rules overlap in their application, we have

no simple way to ‘force’ a non-finite clause to be either a raising, or a control

structure. Thus, to every non-finite clause, there corresponds both a raising, and

a control analysis (as in 2.75).

(2.75) to arrive every barber

raising (ε, to, arrive):t, (every barber, -k -q)

arrive(x0), G(every(barber))(λ0)

control (ε, to, arrive):t, (every barber, *d -k -q)

arrive(x0), 〈x0, G(every(barber))(λ0)〉

Likewise, there are two possibilities for combining promise with its DP object (as

in 2.76).

(2.76) promise some abbot

merge (ε, promise, ε):=t +k =d +q v, (some abbot, -k -q)

promise(x0), G(some(abbot))(λ0)

100

cmerge (ε, promise, ε):=t +k =d +q v, (some abbot, *d -k -q)

promise(x0), 〈x0, G(some(abbot))(λ0)〉

There are thus four logical possibilities for combining promise some abbot with

to arrive every barber, two of which are ruled out straightaway by our principle

of immediacy (merge + raising and cmerge + control). Of the remaining two,

the merge + control option converges, and nets us the familiar subject control

reading. However, the cmerge + raising option also converges, and yields (among

others) the following monstrosity, which has the paraphrase in 2.78.

(2.77) *Some abbot promised every barber to arrive.

some(abbot)(λ1(every(barber)(λ0(promise(x1)(arrive(x0))(x1)))))

(2.78) Some abbot promised himself that every barber would arrive.

By inverting the order of the =t and +k features in the type assignment to promise

(from =d =t +k =d +q v to =d +k =t =d +q v), we force the object of promise to

combine via standard merger, ruling out the deviant cmerge + raising possibility.

While this fixes the problem with promise, it is symptomatic of a more general

malaise. If we combine persuade with a raising infinitival complement, we can

derive a similar horror.

1. merge(persuade::=t =d V, raising)

(ε, persuade, to arrive) : =d V, (every barber, -k -q)

persuade(arrive(x0)), G(every(barber))(λ0)

2. some abbot

(ε, some, abbot) : *d -k -q

some(abbot)

101

3. cmerge(1, 2)

(ε, persuade, to arrive) : V, (every barber, -k -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),

〈x1, G(some(abbot))(λ1)〉

4. merge(ε::=>V +k =d +q v, 3)

(ε, persuade, to arrive) : +k =d +q v, (every barber, -k -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),

〈x1, G(some(abbot))(λ1)〉

5. move(4)

(ε, persuade, to arrive) : =d +q v, (every barber, -q),

(some abbot, *d -k -q)

persuade(arrive(x0))(x1),
G(every(barber))(λ0),

〈x1, G(some(abbot))(λ1)〉

6. cmove1(5)

(ε, persuade, to arrive) : +q v, (every barber, -q),

(some abbot, -k -q)

persuade(arrive(x0))(x1)(x1),
G(every(barber))(λ0),

G(some(abbot))(λ1)

102

7. move(6)

(every barber, persuade, to arrive) : v, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

8. merge(ε::=>v prog, 7)

(ε, persuade, every barber to arrive) : prog, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

9. merge(ε::=>prog perf, 8)

(ε, persuade, every barber to arrive) : perf, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

10. merge(will::=perf +k +q t, 9)

(ε, will, persuade every barber to arrive) : +k +q t, (some abbot, -k -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

103

11. move(10)

(ε, will, persuade every barber to arrive) : +q t, (some abbot, -q)

every(barber)(λ0(persuade(arrive(x0))(x1)(x1)),

G(some(abbot))(λ1)

12. move(11)

(some abbot, will, persuade every barber to arrive) : t

some(abbot)(λ1(every(barber)(λ0(persuade(arrive(x0))(x1)(x1)))

Although we cannot discriminate syntactically between raising and control in-

finitivials, we need somehow to block persuade (and promise) from merging with

a raising clause. Looking at the deviant derivations, each has a point in which

a control-merged DP (*d -k -q) coexists with a merged DP (-k -q). If we can

block such a state of affairs, we will have solved our problem. The principle of

immediacy states that a moving expression must check its features as soon as

possible. Although at step 5 of the previous derivation, the moving subexpres-

sion some abbot does not have an accessible -k feature, it would have, had it been

merged instead of cmerged. We can think of cmerging as a sort of wager—an

expression is free to be cmerged, just as long as in so doing it doesn’t end up

having lost an opportunity to check its licensee features. This allows us to give a

teleological slant to the principle of immediacy: an expression wants to check its

licensee features as soon as possible. While it cannot influence the course of the

derivation on a global scale (like, demanding that another expression be merged

or not), it can on a local scale (by choosing to be merged or cmerged). If it

makes a decision that ends up having cost it the chance to check a licensee fea-

ture, the derivation crashes. Although this way of understanding the principle of

104

immediacy has a definite ‘transderivational economy’ flavour, it is in fact locally

evaluable, and is formally of the same complexity as our previous understanding

of it.34

Now, finally, we are in a position to see that the type =d +k =t =d +q v is the

only such that we could assign to promise. The ‘uninverted’ type =d =t +k =d +q v

would make the lexical item useless; the principle of immediacy would rule out

both the bad cmerge + raising option, in addition to the good merge + control

option, as both would involve subexpressions with the same first licensee feature.

Passivization of Subject Control Verbs

Thus far we are able to derive the grammaticality patterns in 2.79 and 2.80 on

the one hand, and 2.81 and 2.82 on the other.

(2.79) John promised George to shave an abbot.

(2.80) *George was promised to shave an abbot.

(2.81) John persuaded George to shave an abbot.

(2.82) George was persuaded to shave an abbot.

However, the patterns in the below still remain unaccounted for. In particular,

subject control verbs with a single DP argument exceptionally permit passiviza-

tion, which eliminates all selected DPs in the matrix clause.

(2.83) John promised George that every barber had shaved an abbot.

34Formally, this amounts to requiring that

1. no two subexpressions may have the same first feature, and

2. no two subexpressions may have the same first licensee feature

See appendix B–1.2.

105

(2.84) George was promised that every barber had shaved an abbot.

(2.85) George hoped to shave an abbot.

(2.86) *George was hoped to shave an abbot.

(2.87) George hoped that every barber had shaved an abbot.

(2.88) It was hoped that every barber had shaved an abbot.

As we were able to account for the distinction between 2.79 and 2.80 above only

by stipulating that promise does not combine with the passive voice, it seems

unlikely that we will be able to find a simple extension to deal with the examples

2.83 and 2.84. However, it seems that subject control verbs do indeed permit

passivization, but only when their complement clause is finite. Currently, we

have no way of expressing the difference between finite and non-finite clauses in a

way that allows for the simple expression of this generalization (as currently both

finite and non-finite clauses are of category t). Accordingly, we make a categorial

distinction between finite and non-finite clauses, assigning to finite clauses the

special category s.35 As some expressions select for clausal complements, irre-

spective of their tensedness, we express that finite clauses are also clauses with

the lexical item36

that :: =s t

The only change that this requires is the substitution of the category s for the

category t in our tensed lexical items (i.e. will, -s, and -ed). We assign to promise

35This allows us now to discriminate between sentences i and ii

1. It rained.

2. *To rain.

36We might just as well have given this lexical item a phonetically null exponent. However,
its distribution coincides with the distribution of the word “that” to a fairly large degree, which
is suggestive.

106

the additional type =d =s V, the near mirror-image of the type of persuade. We

then assign to hope (and other intransitive subject control verbs like want, and

expect) the type =t =d v, which allows for the derivation of sentences 2.85 and

2.87, and correctly rules out 2.86. To allow for the ability of hope to passivize

when it takes a finite clausal complement, we assign to it the additional type

=s V (which allows for 2.88 while still correctly ruling out an ECM variant of

2.87). To intransitive raising to object verbs like expect and want, we assign the

minimally different type =t V, which allows for both ECM as well as sentences

like 2.88. Although it may seem less than maximally elegant to assign two types

to intransitive subject control verbs (such as hope and expect), the very fact

that there exist among the intransitive subject control verbs, some which allow

for object control (and passivization with non-finite complements), and the rest

which don’t (and don’t), seems to be a brute fact, underivable from anything

else. Our complete lexicon is given in figure 2.16. Although our type system is

not strong enough to premit us to derive the full range of behaviour of each word

from a single type assignment, note that it is precisely the subject control verbs

which require multiple types. Given that it is precisely subject control verbs that

children have difficulty acquiring, and that successful theories of grammatical

inference can be built around assumptions about the number of types assigned

to words [5, 88], this fact is tantalizingly suggestive!

3 Summary

In this chapter, we have introduced the version of minimalism (minimalist gram-

mars [48, 59, 63, 73, 119–121, 156–162]) we will take as our background theory in

this dissertation. We have made quite meagre assumptions, which we have tried

to justify during the course of this introduction. Perhaps the most important

107

will::=perf +k +q s have::=en perf be::=ing prog

-s::perf=> +k +q s -en::=>prog en -ing::=>v ing

-ed::perf=> +k +q s ε::=>prog perf ε::=>v prog

to::=perf t be::=pass v ε::=>V +k =d +q v

that::=s t -en::=>V pass

arrive::=d v devour::=d V

shave::=d V

seem::=t v expect::=t V expect::=t =d v

want::=t V want::=t =d v

hope::=s V hope::=t =d v

persuade::=t =d V

promise::=d =s V promise::=d +k =t =d +q v

ε::=>v =z v it::z -k -q

George::*d -k -q the::=n *d -k -q ointment::n

John::*d -k -q every::=n *d -k -q abbot::n

Mary::*d -k -q some::=n *d -k -q barber::n

Figure 2.16: A Grammar for English A-movement

such is the assumption that grammatical operations are resource sensitive, and

that the resources which drive them are structured in a simple way (as a unary

tree). This allows us to formulate a well-formedness condition we have called the

108

principle of immediacy, from which we can derive both the ban on super-raising,

as well as the minimal distance principle.

We have shown how all non-interface levels can be eliminated from syntax, and

the mappings to form and meaning incrementally computed in the course of the

derivation. We have presented a compositional semantics which takes advantage

of the fact that our syntax allows expressions to be multiply connected to others.

We have demonstrated that lexical items are to chains as the acorn is to the oak

tree, and that our syntax is inherently successive cyclic, and shown how to extend

our semantics to take advantage of this fact.

Hornstein treats reflexivization in English as an instance of control move-

ment. Clearly, as we currently block such ‘too-local’ movement (in the sense of

Grohmann [69]) by our principle of immediacy (together with our lexical type as-

signments), there is no necessary connection between treating control as mediated

by movement, and treating reflexivization as a species of control.

I have said nothing about non-obligatory control, or obligatory control out of

adjuncts. (This latter is related to the fact that I have said nothing about ad-

juncts.) Indisputably, our characterization of the competence of a native speaker

of English will not be complete until the form and interpretation of the class of

sentences referred to with the terms ‘non-obligatory control’ and ‘adjunct control’

is specified. Insofar as other approaches to control deal with more data than does

this one, they are empirically more adequate.37 As other approaches to control

are at least twenty years more established than the movement approach, it would

be surprising were this upstart not empirically deficient in comparison. We should

not require that novel approaches to a phenomenon (much less a novel ‘slicing

of the pie’) be as far reaching and as empirically adequate as the orthodoxy (see

37Insofar as ‘empirically more adequate’ just means ‘deals with more data’.

109

e.g. [56] for discussion). Nor should we be reluctant to entertain multiple (even

incompatible) perspectives on a particular range of data, as this often highlights

strengths and weaknesses of each (see [16] for an interesting comparison of CCG

and minimalist approaches to scope).

Throughout this chapter, we have been agnostic about the contents of the

positions from which movement occurs, choosing to write a ‘λ’ as something of

a ‘catch-all.’ It is generally accepted, however, that, in many cases, the source

position of movement needs to be structured, and in ways that reflect the object

that thence moved. It is common, in fact, to regard what we have been repre-

senting as λ as a copy of the moved element. In the next chapter, we explore two

perspectives on how this might be achieved, what Chomsky [32] calls (copying

via) ‘internal merge’ and ‘external merge.’ These two positions on copying can

be fruitfully viewed in terms of where they take the structure copied to be. In

particular, ‘internal merge’ takes copying to be of the derived tree, while ‘external

merge’ takes copying to be of the derivation itself. We take this up in the next

chapter.

110

Appendices

This chapter’s appendices are organized as follows. In appendix B–1 a formal

foundation for the syntactic theory appealed to in this chapter is provided. In

appendix B–1.1, grammatical operations are defined over labelled binary ordered

trees. Because the trees are binary, I have taken the liberty of defining ordered

trees so as to take advantage of this additional structure. Appendix B–1.2 gives

a precise characterization of the ‘treeless’ version of minimalist grammars used in

§ 2.1. (The control-specific operations are included here, as they are used later

in that section.) The proof that minimalist grammars over trees are equivalent

in weak generative capacity to multiple context-free grammars (MCFGs, [151])

and thus to these treeless variants is presented in [73, 119, 121], and will not

be reproduced here. Next (B–1.3) comes the formal definition of the semantic

operations appealed to in § 2.2, as well as a brief discussion of ‘direct composi-

tionality’. In appendix B–2, I set myself the problem of making the grammar do

the work of selecting appropriate variables (so as to avoid accidental capture).

This is similar to the problem of making substitutions explicit in the computer

science literature (see e.g. [1]).

B–1 Definitions

B–1.1 Minimalist Grammars on Trees

B–1.1.1 Trees

Given a structure τ = 〈Nτ ,Cτ 〉 where Nτ is a finite set and Cτ ⊆ Nτ × Nτ , we

say, for r, s ∈ Nτ , that r is a parent of s (equivalently, s is a child of r) if r Cτ s,

that r is a leaf if r has no children, and that r is a root if r has no parents. Nodes

111

r, s ∈ Nτ are siblings if they share a parent. For nodes r, s ∈ Nτ , we say that r

dominates s, if r C∗τ s, where C∗τ is the reflexive transitive closure of Cτ . τ is an

unordered tree if there is exactly one root, every node has at most one parent,

and the root dominates every node. Tree τ is binary if every parent has exactly

two children. An asymmetric relation R ⊆ Nτ × Nτ orders binary τ if for any

two nodes r, s ∈ Nτ , r and s are related by R iff they are siblings.

Operations on Ordered Trees Given two binary trees ρ, σ (such that Nρ and

Nσ are disjoint) which are ordered by R and S respectively, we denote by [T ρ σ]

the binary tree τ ordered by T , where, denoting with r and s the roots of ρ and

σ respectively,

1. Nτ = Nρ ∪Nσ ∪ {t}, where t is some object not in Nρ or Nσ

2. Cτ = Cρ ∪Cσ ∪ {〈t, r〉, 〈t, s〉}

3. T = R ∪ S ∪ {〈r, s〉}

Given a binary tree τ ordered by R, and t ∈ Nτ , we define t/Nτ := {r ∈ Nτ :

t C∗τ r} and Nτ/t := {r ∈ Nτ : ¬(t C∗τ r)} to be a partitioning of Nτ into nodes

dominated by t and nodes not dominated by t, respectively. t/τ , the subtree of

τ rooted at t, is 〈t/Nτ ,Ct/τ 〉, where Ct/τ is the restriction of Cτ to t/Nτ . t/tau is

ordered by the restriction of R to Nt/τ . The result of replacing in τ the subtree

rooted at t with a leaf ` /∈ Nτ is τ/t := 〈Nτ/t,Cτ/t〉, where Nτ/t := Nτ/t ∪ {`}

and r Cτ/t s iff either r, s ∈ Nτ/t and r Cτ s, or s = ` and r Cτ t. τ/t is ordered

by Rτ/t, where rRτ/ts iff r, s ∈ Nτ and rRs, or s = ` and rRt.

Functions over Ordered Trees Let τ be a binary tree ordered by R. We

define headR : Nτ → Nτ and yieldR : Nτ → N∗
τ as follows.

112

headR(t) :=

 t if t is a leaf

headR(r) otherwise, where tCτ r, s and rRs

yieldR(t) :=


〈t〉 if t is a leaf

yieldR(r)_yieldR(s)
otherwise, where tCτ r, s

and rRs

Given a node t ∈ Nτ , we denote by projR(t) the set of nodes that have the

same head as t with respect to R (projR(t) := {t′ : headR(t) = headR(t′)}). Note

that projR(·) induces an equivalence relation over Nτ , where each block projR(t)

is totally ordered by C∗τ . A node t ∈ Nτ is a maximal projection just in case t

is the least element of projR(t) with respect to C∗τ (i.e. the unique r ∈ projR(t),

such that for any s ∈ projR(t), r C∗τ s).

B–1.1.2 Labels

Let Σ be a finite alphabet. The set of labels for a minimalist grammar over Σ is

determined by a finite set sel of selection feature types, and a disjoint finite set

lic of licensing feature types. The set Syn of syntactic features is given by

Syn := selector ∪ selectee ∪ licensor ∪ licensee

where

licensor := {+f : f ∈ lic}

licensee := {-f : f ∈ lic}
and

selector := {=f, =>f, f=> : f ∈ sel}

selectee := {f : f ∈ sel}

Features f, f ′ ∈ Syn match just in case one of the following conditions obtain

1. for some s ∈ sel, one of f and f ′ is s and the other is one of =s, =>s, or

s=> ,

113

2. for some l ∈ lic, one of f and f ′ is -l and the other is +l.

The set of labels is Σ∗ × Syn∗. We denote with λ the label 〈ε, ε〉.

B–1.1.3 Expressions

Given a set L of labels, a minimalist expression (over L) is a five-tuple 〈N,C,≺

, <, µ〉 such that 〈N,C,≺, <〉 is a binary tree ordered by the two relations, ≺

and < (linear precedence and projection, respectively), together with a partial

function µ : N → L which assigns labels to the leaves of 〈N,C〉. An expression

is simple if its underlying tree is a single node, and is complex otherwise. The

head hd(e) of an expression e is the head< of the root of its underlying tree. An

expression e begins with feature f just in case the label of hd(e) is 〈σ, fδ〉, for

σ ∈ Σ∗ and δ ∈ Syn∗. With respect to some f ∈ Syn, an expression e is said to

be complete just in case the only syntactic feature of e is f , and no subtree of e

has any syntactic features. Given an expression e = 〈N,C,≺, <, µ〉, we say “e′

is like e except that the label of the head of e′ is `” to describe the expression

e′ = 〈N,C,≺, <, µ′〉, where

µ′(t) :=

 ` if t = hd(e)

µ(t) otherwise

We take Exp(L) to denote the set of all expressions over L.

The Linear Correspondence Axiom Kayne’s [90] linear correspondence ax-

iom (LCA) can be understood as demanding that ≺ be definable in terms of

<

∀t, t′ ∈ N. if t < t′, then t ≺ t′ iff t is a leaf (LCA)

The LCA as given above is admissible in the system of [160]. We adopt it

114

explicitly here, as it allows for a slight simplification in our statement of the gener-

ating functions. Accordingly, we suppress reference to the relation ≺ throughout

the following.

Operations on Expressions The operations on trees defined in § B–1.1.1 are

extended over expressions in the obvious manner:

• [< 〈Nc,Cc, <c, µc〉 〈Nd,Cd, <d, µd〉] is the expression consisting of the tree

[< 〈Nc,Cc, <c〉 〈Nd,Cd, <d〉] and the labeling function µ := µc ∪ µd.

• Given e = 〈Ne,Ce, <e, µe〉, for any t ∈ Ne,

– t/e is the expression consisting of the tree t/〈Ne,Ce, <e〉, and the

labeling function which is the restriction of µ to Nt/e

– e/t is the expression consisting of the tree 〈Ne,Ce, <e〉/t and the la-

beling function µe/t, where

µe/t(r) := if r = ` then λ else µ(r)

• Given an expression e = 〈Ne,Ce, <e, µe〉, the yield of e, Y ield(e), is defined

to be the concatenation of the first components of the labels of the leaves

of its underlying tree, in the order given by the linear precedence relation

≺. That is,

Y ield(e) := (π1 ◦ µe)(yield≺(〈Ne,Ce, <e〉))

where π1 is the first projection function, and π1 ◦ µe is extended over se-

quences of pairs in the obvious way.

B–1.1.4 Merge and Move

115

Merge The domain of the merge operation is the set of pairs 〈e0, e1〉, where

e0 begins with f ∈ selector, and e1 begins with matching g ∈ selectee. For

e0, e1 ∈ Dom(merge), with 〈σ0, fδ0〉 the label of the head of e0 and 〈σ1, xδ1〉 the

label of the head of e1,

merge(e0, e1) := [< e′0 e
′
1]

where e′0 and e′1 are just like e0 and e1, except that

if f = =x then the head of e′0 is 〈σ0, δ0〉 and that of e′1, 〈σ1, δ1〉

if f = =>x then the head of e′0 is 〈σ1σ0, δ0〉 and that of e′1, 〈ε, δ1〉

if f = x=> then the head of e′0 is 〈ε, δ0〉 and that of e′1, 〈σ1σ0, δ1〉

Move An expression e is in the domain of the move operation just in case e

begins with +x and there is exactly one maximal projection t ∈ Ne such that the

head of t begins with matching -x. For e ∈ Dom(move), with t ∈ Ne the unique

maximal projection such that the head of t begins with the matching licensee

feature,

move(e) := [< e0 e1]

where e0 and e1 are just like e/t and t/e respectively, except that the first feature

of each of these expressions has been deleted.

B–1.1.5 Minimalist Grammars

A minimalist grammar (MG) is a five-tuple G = 〈Σ, lic, sel, Lex, c〉, where Σ, lic,

and sel are finite sets (the alphabet, licensing feature types, and selection feature

types respectively) which together determine a set of labels L, Lex is a finite set

of simple expressions over L, and c ∈ selectee is the designated type of complete

expressions.

116

An expression e is generated by a minimalist grammar G just in case e ∈

CLn(G) for some n ∈ N, where

CL0(G) :=Lex

CLk+1(G) :=CLk(G) ∪ {move(e) : e ∈ Dom(move) ∩ CLk(G)}

∪{merge(e0, e1) : 〈e0, e1〉 ∈ Dom(merge) ∩ CLk(G)× CLk(G)}

The string language of a minimalist grammar G is

L(G) := {Y ield(e) : e ∈
⋃
n=0

CLn(G) and e is complete}

B–1.2 Minimalist Grammars without Trees

The trees of appendix B–1.1 provide for more distinctions between expressions

than are strictly necessary to determine whether a string is generated by a mini-

malist grammar (as follows from a result of Michaelis [121]). Instead of trees, it

has become standard to view minimalist expressions as sequences of categorized

strings. Given a minimalist grammar G = 〈Σ, lic, sel, Lex, c〉, where

1. Σ is a finite, non-empty set

2. lic, sel are the licensing and selection feature types, respectively, which

together determine a set Syn of syntactic features as follows.

(a) for l ∈ lic, +l, -l ∈ Syn

(b) for s ∈ sel, =s, =>s, s=> , s, *s ∈ Syn

(c) nothing else is in Syn

3. c ∈ selectee is the designated type of complete expressions

4. Lex is a finite subset of {ε} × Σ× {ε} × {::} × Syn∗

117

we define a minimalist expression to be a pair 〈i, N〉, where i ∈ I := Σ∗ × Σ∗ ×

Σ∗ × {:, ::} × Syn∗, and N ∈ N := (Σ∗ × Syn+)∗. Given an expression 〈i, N〉,

where N = n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply i. We set

E := I×N . The functions merge and move are partial functions from E×E → E

and E → E respectively. We present them here in an inference-rule format for

convenience.

merge : E×E → E is the union of the following five functions, for si, ti ∈ Σ∗

(for 1 ≤ i ≤ 3), · ∈ {:, ::}, f ∈ sel, g ∈ {f, *f}, γ, δ ∈ Syn+, and α, β ∈ N

satisfying

(IMM1) no element of α or β has *f as its first feature

(s1, s2, s3) :: =fγ (t1, t2, t3) · g, β
(s1, s2, s3t1t2t3) : γ, β

merge1

(s1, s2, s3) : =fγ, α (t1, t2, t3) · g, β
(t1t2t3s1, s2, s3) : γ, αβ

merge2

(s1, s2, s3) · =fγ, α (t1, t2, t3) : gδ, β

(s1, s2, s3) : γ, α(t1t2t3, δ)β
merge3

(s1, s2, s3) :: =>fγ (t1, t2, t3) · g, β
(s1, t2s2, s3t1t3) : γ, β

affixRaise

(s1, s2, s3) :: f=>γ (t1, t2, t3) · g, β
(s1, ε, s3t1t2s2t3) : γ, β

affixLower

As the domains of merge1, merge2, merge3, affixRaise and affixLower are all

pairwise disjoint, their union is a function.

move : E → E is the union of the following two functions, for s1, s2, s3, t ∈ Σ∗,

f ∈ lic, γ, δ ∈ Syn+, and α, β ∈ N satisfying:

118

(IMM2) no element of α or β has -f as its first licensee feature

(s1, s2, s3) : +fγ, α(t, -f)β

(ts1, s2, s3) : γ, αβ
move1

(s1, s2, s3) : +fγ, α(t, -fδ)β

(s1, s2, s3) : γ, α(t, δ)β
move2

Again, as the domains of move1 and move2 are disjoint, their union is a

function.

To deal with control we add the following three rules to our grammar, for

si, t, ti ∈ Σ∗ (for 1 ≤ i ≤ 3), · ∈ {:, ::}, f ∈ sel, γ, δ ∈ Syn+, and α, β ∈ N

satisfying

(IMM3) no element of α or β has *f as its first feature

(s1, s2, s3) · =fγ, α (t1, t2, t3) : *fδ, β

(s1, s2, s3) : γ, α(t1t2t3, *fδ)β
cmerge

(s1, s2, s3) : =fγ, α(t, *fδ)β

(s1, s2, s3) : γ, α(t, δ)β
cmove1

(s1, s2, s3) : =fγ, α(t, *fδ)β

(s1, s2, s3) : γ, α(t, *fδ)β
cmove2

The conditions ‘IMM’ implement what we have called the ‘principle of imme-

diacy’, which states that a feature of an expression must be checked as soon as

it is in principle possible to do so. The condition IMM2 on the domain of the

move operation is referred to in all other work on minimalist grammars as the

SMC, which is intended to recall Chomsky’s [39] ‘shortest move’ constraint. As

the actual shortest move constraint is different from the SMC, I have renamed it

here so as to avoid possible terminology-induced confusion.

119

We define CL(G) :=
⋃

n=0CL
n(G) to be the closure of Lex under merge,

move, and our three control operations. Then the string language generated by

a minimalist grammar G = 〈Σ, lic, sel, Lex, c〉 is defined to be

L(G) := {s1s2s3 : (s1, s2, s3) · c ∈ CL(G) for · ∈ {:, ::}}

B–1.3 A Semantics for MGs

Just as we associated a string (more generally, a term in a phonological algebra)

with a syntactic derivation in appendix B–1.2, here we show how to associate a

meaning (a term in a semantic algebra) with a derivation.

Here, we take our semantic alphabetM to contain the binary function symbols

G (interpreted as the geach combinator), F (interpreted as function application)

and for each i ∈ N, the nullary function symbols xi and λi. This is a constant

across languages. Furthermore, each of the denotations of our lexical items is a

nullary function symbol (e.g. abbot is a nullary function symbol).

As in appendix B–1.2, we present the generating functions in inference-rule

format, with arguments on top, and result on bottom. The functions below are

logically independent of the cases of merge and move presented previously. A

specification of the form-meaning pairing (or what we might more traditionally

call ‘assigning meanings to expressions’) requires us to specify which meaning gen-

erating functions can be used in tandem with which string generating functions

(in the case of ‘Free Retrieval’ we need an ‘identity’ string generating function).

Thus, our ‘actual’ generating functions are pairings 〈σ, µ〉 of string and meaning

generating functions.

On the semantic side of things, a minimalist expression is a pair 〈i, N〉, where

i ∈ I := TM × {:, ::} × Syn∗, and N ∈ N := (T ∗M × Syn+)∗. Elements of

120

T ∗M we write between angled brackets (〈, 〉), and given t, t′ ∈ T ∗M , t_t′ is the

concatenation of t and t′ in that order. Given an expression 〈i, N〉, where N =

n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply i. We set E := I×N .

We have the following three binary generating functions (which on the string

side are associated with merge). σ and τ are elements of the meaning term

algebra TM , •f ∈ {=f, =>f, f=>}, · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .38

σ · •fγ, α τ · g, β
σ(τ) : γ, αβ

FA

σ · •fγ, α τ · g, β
τ(σ) : γ, αβ

BA

σ · •fγ, α τ · gδ, β
σ(xi) : γ, α(〈G(τ, λi)〉, δ)β

store

The following four unary generating functions are associated with move on

the string side. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · +fγ, α(〈τ〉, -f)β
τ(σ) · γ, αβ

Retrieve1

σ · +fγ, α(〈τ〉_t, -fδ)β
τ(σ) · γ, α(t, δ)β

Retrieve2

σ · +fγ, α(〈〉, -f)β
σ · γ, αβ

Ignore1

σ · +fγ, α(t, -fδ)β

σ · γ, α(t, δ)β
Ignore2

The functions below are associated with thir namesakes from appendix B–1.2,

and are tailored specifically for the movement theory of control outlined in § 2.7.

σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · =fγ, α τ · *fδ, β
σ(xi) : γ, α(〈xi, Gτλi〉, *fδ)β

cmerge

38We indicate here the results of interpreting the terms we generate in the intended model.
This amounts to basically cashing out the F combinator at each step.

121

σ : =fγ, α(〈τ〉_t, *fδ)β
σ(τ) : γ, α(t, δ)β

cmove1

σ : =fγ, α(〈τ〉_t, *fδ)β
σ(τ) : γ, α(〈τ〉_t, *fδ)β

cmove2

The generating function below is intended to allow for non-feature-driven

scope-taking, or, in other words, reconstruction into landing sites of successive

cyclic movements. To achieve the intended effects, we need an identity function

on the string side, which maps each expression to itself, to be paired with this

one. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · γ, α(〈τ〉_t, δ)β
τ(σ) · γ, α(t, δ)β

FreeRetrieval

B–2 Eliminating Indices

The rule of β-conversion in the lambda calculus allows us to substitute a formula

for a variable, as shown below:

(λx.a)b := a{b/x} (β-conversion)

We must be certain, in performing this substitution, that variables in b don’t

accidentally get ‘captured’ by binders in a.39 Accordingly, one standardly assumes

that the variables in a and b are distinct—the α-conversion rule allows us to

uniformly rename all instances of a variable, which guarantees that we can always

construct appropriate a′ and b′ with distinct variables. However, this renaming

of variables during β-conversion is left at the meta-level, and thus is not part of

the calculus proper.

A similar problem arises in transformational syntax, where traces and other

objects are assumed to have indices, and the distribution of indices on objects

39This is the condition that all that matters for variables is whether they are bound (or
bindable) by the same binder or not.

122

is severely restricted. Here, we need to worry about how the index assigned to

a term is decided. While it is easy for the linguist to assign the desired indices

to structures, our utterances come out ‘correctly indexed’, and thus our theory

needs to account for this. In the GB theory [36] indices were assumed to be

freely generated, with filters (or constraints) ruling out all but a few be-indexed

structures. Rogers [147] shows that free indexation increases the complexity of

GB to the point where the emptiness problem becomes undecidable. Thus, we’d

like some way of only generating correctly indexed structures to begin with.

In our current system, we don’t have traces as syntactic objects. Moreover,

we also don’t have variables that we can refer to, to check whether an index has

been already used (the variables in our notation (and the indices on them) are

merely names for functions). For us, the problem of assigning the correct index is

the problem of deciding which of the infinite number of functions xi we select, and

must be computed on the fly, as we build up our model-theoretic interpretation.40

In our case, we want to avoid putting together two independently constructed

objects that have the same variables. How are we to do this, if we can’t see

which variables are in each object? Because our binders shadow the expressions

into which they bind, we can avoid accidental variable capture by telling the

binders to look at different indices in a systematic way. Given two assignments, g

and h, we can put them together without losing any information by forming the

new assignment g on h := 〈g0, h0, g1, h1, . . .〉, which is the result of interleaving g

and h. Now, given sets of assignments H1 and H2, we can combine them to form

H = H1 on H2, which is the pairwise interleaving of assignments in H1 with those

40The issue is somewhat more nuanced than I have presented it here. Although if we do
our computations over the model-theoretic objects, we can clearly not see indices, do we really
think that the language user computes over these (infinitely large) objects? Certainly a com-
puter program (which is still the best mental model we have) would compute over the formula
itself, where the indices are visible. However, the question needs to be raised as to how this
computation is effected. I am giving an explicit account thereof here.

123

in H2. If λ3 and λ17 are the binders shadowing H1 and H2 respectively, then λ6

will have the same effect on H that λ3 does on H1, and λ35 will have the same

effect on H had by λ17 on H2.

B–2.1 Model-Theoretic Glory (cont’d)

The signatures of our meaning algebras contain the following six function sym-

bols: nullary x, unary e and o, and binary F, R and λ. In the intended model, x

is x0. e and o are functions of type [G→ E]→ G→ E such that

e(f)(g) = f(∨g) o(f)(g) = f(∧g)

where (∨g)(i) = g(2i) and (∧g)(i) = g(2i+ 1). Note that when f is a variable xi,

e(xi)(g) = g2i o(xi)(g) = g2i+1

We can think of ∨ and ∧ as functions over G that take just the even and odd

values respectively of their argument assignments, as schematized below.

∨g = 〈g0, g2, g4, . . .〉 ∧g = 〈g1, g3, g5, . . .〉

F is interpreted as function application. R is a function of type [G→ β → γ] →

[G→ β]→ G→ γ such that

RABg = (A(∨g))(B(∧g))

Intuitively, R interprets assignment functions as encoding two others, and then

decodes and passes the encoded assignments down into its arguments.

124

λ : [G→ E]→ [G→ T]→ [G→ E]→ G→ T such that41

λ(f)(H)(f ′)(g) = true iff ∃h ∈ H. f ′(g) = f(h) and either g = h

or ∃!j. gj 6= hj ∧ gj = f(g) ∧ hj = f(h))

Informally, λ takes an object f to abstract over, a formula H to bind it in,and

returns a function that takes another object f ′, and yields the first formula with

the first object substituted by the second. In particular, λ(xi) = λi.

B–2.2 A Semantics for MGs with Variable Management

On the semantic side of things, a minimalist expression is a pair 〈i, N〉, where

i ∈ I := TM×{:, ::}×Syn∗, and N ∈ N := ((TM×TM)×Syn+)∗. Sequences over

TM × TM we write between angled brackets (〈, 〉). Given an elements f, τ ∈ TM ,

we write E(〈f, τ〉) for 〈e(f), τ〉 (similarly, O(〈f, τ〉) is 〈o(f), τ〉). E and O are

extended over sequences in the usual way. Given an expression 〈i, N〉, where

N = n1, . . . , nk, we write i, n1, . . . , nk. If k = 0, we write simply i. We set

E := I ×N .

We have the following three binary generating functions (which on the string

side are associated with merge). σ and τ are elements of the meaning term

algebra TM , •f ∈ {=f, =>f, f=>}, · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · •fγ, α τ · g, β
σ(τ) : γ, αβ

FA

σ · •fγ, α τ · g, β
τ(σ) : γ, αβ

BA

41This is a monstrous type. Logical operators like λ, ∀, ∃, and even ∧, ∨ and ¬ are standardly
not given an explicit denotation, their meaning contribution being left implicit and in the meta-
language (a notable exception is Church [41], who assigns explicit denotations to all but λ).
Once everything is made fully explicit, the type we in fact do assign to λ emerges.

125

σ · •fγ, α τ · gδ, β
R(σ)(x) : γ,E(α)(〈ox, τ〉, δ)O(β)

store

The following four unary generating functions are associated with move on

the string side. σ, τ ∈ TM , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .42

σ · +fγ, α(〈f, τ〉, -f)β
τ(λ(f)(σ)) · γ, αβ

Retrieve1

σ · +fγ, α(〈f, τ〉, -fδ)β
τ(λ(f)(σ)) · γ, α(〈〉, δ)β

Retrieve2

σ · +fγ, α(〈〉, -f)β
σ · γ, αβ

Ignore1

σ · +fγ, α(〈f, τ〉, -fδ)β
σ · γ, α(〈f, τ〉, δ)β

Ignore2

The functions below are associated with their namesakes from appendix B–

1.2, and are tailored specifically for the movement theory of control outlined in

§ 2.7. σ, τ ∈ TM , t ∈ T ∗M , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · =fγ, α τ · *fδ, β
R(σ)(x) : γ,E(α)(〈ox, τ〉, *fδ)O(β)

cmerge

σ : =fγ, α(〈f, τ〉, *fδ)β
σ(f) : γ, α(〈f, τ〉, δ)β

cmove1

σ : =fγ, α(〈f, τ〉, *fδ)β
σ(f) : γ, α(〈f, τ〉, *fδ)β

cmove2

The generating function below is intended to allow for non-feature-driven

scope-taking, or, in other words, reconstruction into landing sites of successive

cyclic movements. To achieve the intended effects, we need an identity function

42The notation here again gives the interpretation of the generated term in the intended
model. As a term, the result of Retrieval is F(τ, λ(f, σ)), which evaluates to the object which
is written.

126

on the string side, which maps each expression to itself, to be paired with this

one. σ, τ ∈ TM , · ∈ {:, ::}, γ, δ ∈ Syn+, and α, β ∈ N .

σ · γ, α(〈f, τ〉, δ)β
τ(λ(f)(σ)) · γ, αβ

FreeRetrieval

Our expressions must take as their first argument an assignment function

(given the proliferation of the combinator R). Accordingly, verbs (like shave) need

to denote functions that take (and then throw away) an assignment function.

Moreover, we will derive meaning terms like the following

R(sleep)(xi)

which, upon being supplied with an assignment function g reduces in the manner

below, where the argument to the predicate is of type E, not of type G→ E.

R(sleep)(xi)(g)

= (sleep(∨g))(xi(
∧g))

= sleep(xi(
∧g))

= sleep((∧g)(i))

= sleep(g(2i+ 1))

= sleep(g2i+1)

We therefore need to re-assign types to lexical expressions in our grammar. We

do this systematically as per figure 2.17 (Pn is an n-place predicate, CN is a

common noun, GQ is a generalized quantifier, and Det is a determiner). Note

that we are forced to assign different types to one place predicates (P1s) and

common nouns (CNs). These two grammatical categories (n and V) are usually

treated as denoting in the same domain (e → t), which fact makes puzzling

their quite different syntactic distributions—why, in language after language, do

127

P0 : G→ T

P1 : G→ E → T

P2 : G→ E → E → T
...

CN : [G→ E]→ G→ T

GQ : [[G→ E]→ G→ T]→ G→ T

Det : [[G→ E]→ G→ T]→ [[G→ E]→ G→ T]→ G→ T

Figure 2.17: The semantic type of expressions of natural language

common nouns differ syntactically from verbs, although they denote the very

same objects (sets of entities)? Having derived a semantic difference between

predicates and nouns, we are presented with an opportunity to try and explain

their observed differences based on this motivated formal one. In this case, the

formal difference allows us to maintain a strong connection between semantic

type and syntactic type: the relation between syntactic and semantic type is

one-to-one.

We work through an example. The expression every barber will shave an abbot

has the derivation below. We continue to assume for simplicity that only verbs,

determiners, and nouns have non-trivial semantic contributions to make.

1. 〈merge1, FA〉(an::=n *d -k -q, abbot::n)

(ε, an, abbot) : *d -k -q

some(abbot) : *d -k -q

2. 〈merge3, store〉(shave::=d V, 1)

(ε, shave, ε) : V, (an abbot, -k -q)

128

R(shave)(x) : V, (〈ox, some(abbot)〉, -k -q)

3. 〈affixRaise, FA〉(ε::=>V +k =d +q v, 2)

(ε, shave, ε) : +k =d +q v, (an abbot, -k -q)

R(shave)(x) : +k =d +q v, (〈ox, some(abbot)〉, -k -q)

4. 〈move2, Ignore2〉(3)

(ε, shave, ε) : =d +q v, (an abbot, -q)

R(shave)(x) : =d +q v, (〈ox, some(abbot)〉, -q)

5. 〈merge1, FA〉(every::=n *d -k -q, barber::n)

(ε, every, barber) : *d -k -q

every(barber) : *d -k -q

6. 〈merge3, store〉(4, 5)

(ε, shave, ε) : +q v, (an abbot, -q), (every barber, -k -q)

R(R(shave)(x))(x) : +q v, (〈eox, some(abbot)〉, -q),

(〈ox, every(barber)〉, -k -q)

7. 〈move1, Retrieve1〉(6)

(an abbot, shave, ε) : v, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : v,

(〈ox, every(barber)〉, -k -q)

129

8. 〈affixRaise, FA〉(ε::=>v prog, 7)

(ε, shave, an abbot) : prog, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : prog,

(〈ox, every(barber)〉, -k -q)

9. 〈affixRaise, FA〉(ε::=>prog perf, 8)

(ε, shave, an abbot) : perf, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : perf,

(〈ox, every(barber)〉, -k -q)

10. 〈merge1, FA〉(will::=perf +k +q s, 9)

(ε, will, shave an abbot) : +k +q s, (every barber, -k -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : +k +q s,

(〈ox, every(barber)〉, -k -q)

11. 〈move2, Ignore2〉(10)

(ε, will, shave an abbot) : +q s, (every barber, -q)

some(abbot)(λ(eox)(R(R(shave)(x))(x))) : +q s,

(〈ox, every(barber)〉, -q)

12. 〈move1, Retrieve1〉(11)

(every barber, will, shave an abbot) : s

every(barber)(λ(ox)(some(abbot)(λ(eox)(R(R(shave)(x))(x))))) : s

130

An assignment function g belongs to the set denoted by 12 just in case for every

f such that f(g) ∈ barber, g belongs to the set denoted by

(λ(ox)(some(abbot)(λ(eox)(R(R(shave)(x))(x)))))(f)

This happens just in case there is some assignment function g′ which differs from

g on at most the index i, such that f(g) = ox(g′), gi = ox(g), g′i = ox(g′), and

g′ belongs to the set denoted by

some(abbot)(λ(eox)(R(R(shave)(x))(x)))

Because gi = ox(g) = x(∧g) = (∧g)(0) = g(2 · 0 + 1) = g1 and g′i = ox(g′) = g′1,

since g differs from g′ if at all then only at i, either i = 1 or g = g′. Accordingly,

g ≈1 g
′. The new assignment g′ belongs to the above set just in case there is

some e such that e(g′) ∈ abbot, and g′ belongs to the set denoted by

(λ(eox)(R(R(shave)(x))(x)))(e)

This in turn obtains iff there is another assignment function h differing from g′

on at most the index j, such that e(g′) = eox(h), g′j = eox(g′), hj = eox(h),

and h belongs to the set denoted by

R(R(shave)(x))(x)

Again, g′ ≈2 h, and therefore f(g) = g′1 = h1. Also, e(g′) = eox(h) = x(∧∨h) =

131

h2. Finally, h belongs to R(R(shave)(x))(x) just in case

R(R(shave)(x))(x)(h)

=(R(shave)(x))(∨h)(x(∧h))

=(shave(∨∨h))((x)(∧∨h))(x(∧h))

=shave(x(∧∨h))(x(∧h))

=shave((∧∨h)(0))((∧h)(0))

=shave((∨h)(1))(h(1))

=shave(h(2))(h1)

=shave(h2)(h1)

Therefore, every barber will shave an abbot is true with respect to an assignment

g, just in case for every f such that f(g) ∈ barber, there is some g′, and some e

such that e(g′) ∈ abbot, and shave(e(g′))(f(g)).

132

CHAPTER 3

Copying in Grammar

The goal of this chapter is to show how minimalist grammars can be extended

with a structure copying mechanism. There are a number of logically possible

ways of doing this, however our aim is to select one that changes minimally the

structure of the formalism, in particular, its compatibility with phases, as dis-

cussed in chapter 2. Before we can do this, however, we need to get clear first on

what the structure is that we are copying. I argue that the question of whether

copying is internal or external merge is best understood as a debate about whether

copies are derived, or not. I then show how each of these perspectives can be

implemented in minimalist grammars, and (in appendix C–1.3) that these imple-

mentations are (strongly) equivalent. I then discuss the question of how copies

are to be pronounced. I go through a variety of proposals, and show how they can

be implemented in our system. I conclude with examining how extra-syntactic

filters which crash otherwise syntacticly well-formed derivations can be incorpo-

rated into our system, thereby allowing for some of the functionality of Nunes’s

[131] Optimality Theoretic approach to pronunciation of chains. We begin by

briefly rehashing the original motivation for the copy theory of movement.

1 The Copy Theory of Movement

Chomsky [39] argues that in order for the sentence in 3.1 to be interpretable,

133

(3.1) (guess) [[wh in which house] John lived t]

it needs to be converted into one of the following forms.

(3.2) 1. [which x, x a house] John lived [in x]

2. [which x] John lived [in [x house]]

There are two obvious ways of effecting this transformation. The first, recon-

struction, posits movement of the relevant fragments of the PP back into its

source position. The other option, the copy theory of movement, posits that

what have been called traces are really copies of the moved material, and that a

better approximation to the structure of a sentence like 3.1 is as in 3.3.

(3.3) (guess) [[wh in which house] John lived [wh in which house]]

Some operation particular to the LF component converts the phrases marked wh

to either 3.4a or 3.4b.

(3.4) 1. [which house] [wh in t]

2. [which] [wh in [t house]]

A general process by means of which no ‘redundant’ information may remain in

a representation usable by the CI system ensures that the duplicated material

(among the higher and lower copies) is deleted. The only interpretable outcomes

are assumed to be those which, in the higher copy, the phrase marked wh is

deleted, and in the lower copy the other phrase is deleted, as sketched below.

[[which house] [wh in t] John lived [which house] [wh in t]]

The copying analysis of pied-piping is intended to extend naturally to other,

more theoretically problematic phenomena, such as provided by the distribution

134

of anaphora, pronouns, and referring expressions. In previous incarnations of the

principles and parameters theory of which minimalism is the most recent, the

distribution of anaphora, pronouns, and referring expressions was governed by

principles A, B, and C of the Binding Theory, respectively, which made reference

to a level of representation (Surface Structure) now thought to be superfluous.

Chomsky presents examples, and sketches proposals which suggest that not only

is reference to this defunct level of representation eliminable, but that in so doing

we are left with a more descriptively adequate theory. As an example, consider

the sentence below.

(3.5) John wondered [which picture of himself] [Bill took t]

Chomsky observes that this sentence has two obvious loci of semantic indeter-

minacy; the reference of the anaphor may be identical with either the matrix or

embedded subject, and the embedded predicate “take a picture” may be inter-

preted either literally (as in “abscond with a picture”) or idiomatically (as in

“photograph”). Instead of the four logically possible readings, only two are actu-

ally available—the idiomatic interpretation of the embedded predicate is available

only if “Bill” is the antecedent of the anaphor. This fact is puzzling under the

previous theory, according to which the antecedent of the anaphor is determined

independently of and prior to the resolution of the interpretation of the embedded

predicate. Under the copy theory outlined above, however, there is a natural way

to link these together. The wh-phrase is, at LF, converted to one of the following

representations.

(3.6) 1. [which] [t picture of himself]

2. [which picture of himself] t

135

The sentence 3.5 has then the following two possible structural descriptions at

LF.

(3.7) 1. John wondered [which] [t picture of himself] [Bill took [which] [t

picture of himself]]

2. John wondered [which picture of himself] t [Bill took [which picture

of himself] t]

3.7a has the anaphor in the appropriate configuration for “Bill” to serve as its an-

tecedent, and the one in 3.7b for “John.” When coupled with the theory of idiom

interpretation standard in the Principles and Parameters tradition, namely, that

all pieces of the idiom must be structurally adjacent for the idiomatic interpreta-

tion to obtain, only 3.7a is predicted to allow for the idiomatic interpretation of

“take a picture,” thus deriving the correlation between the choice of antecedent

for the reflexive and the availability of the idiomatic interpretation of the embed-

ded predicate.

1.0.1 Visible Reflexes of Copying

The widespread acceptance of the copy-theory of movement has led to the dis-

covery and popularization of cases where copying and deletion pave the way

for an alternative analysis of the phonological form of sentences. Fanselow and

Čavar [55] analyze discontinuous nominal phrases (as in 3.8a below) as stemming

from deletion of parts of copies (as schematized in 3.8c). Compare 3.8a with the

continuous (and synonymous) 3.8b.

(3.8) 1. Was
What

hast
have

du
you

für
for

Filme
movies

gesehen?
seen

“What kind of movies have you seen?”

136

2. Was für Filme hast du gesehen?

3. [Was für Filme] hast du [was für Filme] gesehen

Nunes [131] argues that the copy theory of movement provides us with a neat

analysis of the Germanic wh-copy strategy for question formation, exemplified in

3.9 below, which exists alongside the more familiar wh-movement strategy (3.10).

(3.9) Mit
with

wem
whom

glaubst
believe

du
you

mit
with

wem
whom

Hans
Hans

spricht?
speaks

“Who do you believe Hans is talking to?”

(3.10) Mit wem glaubst du dass Hans spricht?

A standard assumption in the principles and parameters tradition is that long

distance dependencies (such as obtain between a wh-word and its base position)

are mediated via local movement steps. Representing source positions of move-

ment as copies, the standardly hypothesized structure for 3.9 is as in 3.11.

(3.11) [CP [PP Mit wem] [IP glaubst du [CP [PP mit wem] [IP Hans [PP mit wem]

spricht]]]]

Assuming traces are actually full copies of expressions allows for a simple ac-

count of these phenomena. In chapter 4 we delve more deeply into the question

of whether a syntactic copying mechanism is warranted. For now, we simply as-

sume that one such is. The rest of this chapter is devoted to carefully considering

what exactly ‘syntactic copying’ is, and how it might be reasonably effected in a

grammatical formalism.

137

1.1 Where Does Copying Take Place?

Although we have been speaking loosely of traces as being ‘structurally identical’

to their antecedents, a moment’s reflection should reveal that it is not clear ex-

actly what this should be taken to mean. There are two aspects of structure that

might be relevant to us here—the first is the derived structure, what Chomsky [39]

calls the structural description of an expression, and the second is what we might

call the derivational structure, the derivational process itself. Clearly, ‘copying’

the derivational structure guarantees identity of derived structure.1 However,

the question of what it means to copy the derived structure without copying the

derivational structure needs some additional thought. If, as seems reasonable, we

view the derivation of a sentence as an abstract description of the process of pars-

ing it (or better: as what the process of parsing it and the process of generating

it have in common),2 then copying just the derived structure would entail that,

in recognizing a particular sentence, the processor would parse just one copy, and

would re-recognize the other copy as a single Gestalt. Chomsky [32] discusses two

interpretations of the copy theory of movement. According to the interpretation

he prefers, which he refers to as internal merge, there is only one object, which

appears in the derived tree at multiple positions. According to the interpreta-

1This holds only if the structure building operations are functions, as they are in our for-
malism. If to each derivation there corresponded possibly multiple derived structures, then
copying derivational structure would allow for ‘mismatches’ between the derived structures of
the two ‘copies.’ This isn’t an empirically decidable matter, however, unless there are indepen-
dent grounds for the determination of whether a particular structure building operation is one
operation, or two, as any relation can be viewed as the union of functions.

2I take this to be the natural, ‘levels’, interpretation of the competence–performance dis-
tinction in generative linguistic theory. (For discussion of this perspective in cognitive science
see e.g. [116, 141].) It is not obvious, however, that this is the interpretation that Chomsky
[28, 31, 33, 34, 35] intends. According to Fodor [58], Chomsky conceives of linguistic compe-
tence as propositional in nature, and of performance as consisting of mechanisms that “put
what you know into action.” I do not understand this interpretation well enough to be able to
say what the distinction between copying the derivation tree or the derived tree might amount
to in it.

138

tion he refers to as external merge, copies are assembled as they are needed, and

merged at various points of the derivation. These two interpretations seem best

made sense of if we identify them with the two perspectives on what structure

is copied as discussed above. Accordingly, the internal merge interpretation is

copying at the level of the derived tree, and the external merge interpretation is

copying at the level of the derivation tree. We discuss each of these two interpre-

tations of the copy theory of movement further in the next sections. We first ask

the question of how we can implement an operation of structure copying (§ 1.2

and § 1.3) before concerning ourselves with how the structures now generated are

to be dealt with in terms of pronunciation and interpretation (§ 2).

Whichever approach we adopt, we need to make sure that the syntactic fea-

tures that drive the derivation don’t get duplicated—in our system, this would

run afoul of the principle of immediacy immediately. Nunes [131] has suggested

that allowing feature duplication might give a principled way to decide which copy

to pronounce (see § 2.2 for a different account), but the changes to the grammar

that must be instituted so as to allow us to distinguish between derivations that

crash because formal features are unchecked, and those that do not crash despite

having potentially the same unchecked formal features are left unstated.

As a final constraint on our developing theory, we want our theory of copy-

ing to be compatible with a theory of phases, which postulates the incremental

destruction of the very structure that we want to be copied.

1.2 Internal Merge

Our reconstruction of the ‘internal merge’ approach to structure copying takes

the structure copied to be the derived tree. Orthogonal to the afore mentioned

distinction between copying as internal and external merge commented on by

139

Chomsky, there are different approaches to the implementation of the internal

merge approach to copying, which center around whether copies should be ex-

plictly or implicitly (via structure sharing—see [61] for an excellent presentation

of minimalism in these terms) represented in our derived structures (see figure

3.1).3 The implicit representation camp uses multiple dominance structures to

allow for multiple copies of the same expression to be represented by additional

edges. In the limit, this allows for a substantial savings in ink. Note that there is

>

<

the: ointment:

<

ε:t <

be -ed: <

ε: <

ε: <

devour -en: <

ε: <

the: ointment:

1

>

<

ε:t <

be -ed: <

ε: <

ε: <

devour -en: <

ε:

<

the: ointment:

1

Figure 3.1: Explicit versus implicit representations of copies

a question as to what counts as ‘the same expression.’ Minimalist multiple dom-

inance approaches take all and only common structure amongst members of the

3Unless we are realists about our notation, it serves merely as a vehicle within which to
couch our thoughts, and equivalent notations allow for expression of the same ideas. This is
not to deny that some notations may be much more concise, or better suited for the task at
hand, than others (just think of multiplication by two in binary, versus decimal, notation). But
this is another matter entirely.

As for the realists among us, I suspect that the distinction between levels of description is
being blurred. It is extremely useful to be able to specify which function is being computed
independently of the many possible algorithms which effect its computation. This is the level
at which the program of generative linguistics has been conducted since at least [33]. At lower
levels, when we worry about how the relation we have formally specified at the higher levels
could feasably be computed, space optimization strategies such as multiple domination may
be relevant. (For a proposal about the relationship between recursive definitions of functions,
algorithms, and their implementations see [126, 127].)

140

same chain to be so compressed. Thus multiple dominance approaches explicitly

represent which subtrees are related via movement (i.e. which belong to the same

chain). It is this fact, not the ‘structure sharing’, that has proven so useful.

Any theory of copying structure is going to need to deal with the potential

problem of unwanted featural duplication. Note that the shared structure repre-

sentation of copies neutralizes the distinction between a number of different (but

equivalent) explicit representations. One natural way to circumvent the problem

of featural duplication with an explicit representation of copies is to simply not

copy features. With this approach, conditions on movement (like our principle of

immediacy) may be carried over from the non-copy theory unchanged. Another

option, if we take the copied structure to include the features, is to reformulate

our feature checking operations so as to apply to all chain members whenever

any one of them enters into the appropriate configuration. There is a host of te-

dious bookkeeping, such as deciding which chain link will be copied in the move

operation. We might wish to revise our principle of immediacy as well, so as to

require only that no two expressions from different chains may have the same

first licensee feature.

Given the obvious simplicity of the structure sharing representation over

other, equivalent, representations, it seems almost perverse to use any of these

others. We will show how this view of copying can be reconciled with our phase-

based elimination of syntactic levels of representation shortly. First, let’s get a

feel for how it should work.

Recall from chapter 2 the ‘chain’-like representation of phrases, which made

explicit the interface effects of each chain position.

141

-q

<

every carcass

! -k

λ

! d

λ

1

As we are now assuming that a copy of an expression appears in each of its chain

positions, the above chain should be rewritten so as to look something like the

following.

-q

<

every carcass

! -k

<

every carcass

! d

<

every carcass

1

Representing the copies implicitly, by sharing identical structure, we obtain the

below.

-q ! -k

<

every carcass

! d

1

Here’s how a derivation of every carcass will rot looks with this representation

scheme. We begin by merging every and carcass.

-q ! -k

<

every =n

! d

n

carcass

1

142

We next merge every carcass and rot together. Note the unattached rest of the

chain of every carcass in the below.

v

<

rot

<

every carcass

-k

-q

1

The derivation continues with the successive merger of ε::=>v prog, ε::=>prog

perf, and then will::=perf +k +q s. The licensor features of will can be thought

of as licensing ‘internal merger’ of a dangling chain position of an expression into

a specifier of the phrase headed by will.4 As will has two licensor features, +k

and +q, it licenses two specifier positions, which are shown in the below with the

licensing features ‘boxed in’.

4Movement is sometimes referred to as internal merger (at which point merger is called
external merger) in order to emphasize the similarity between the operations move and merge.
The hope is clearly that these two operations will be reducable to a single operation. The intent
is obvious, but is difficult to state precisely, as, trivially, the union of merge and move is itself
a function, but we would not want to count this as a successful reduction.

143

s

>

+q >

+k <

will <

rot <

ε <

ε

<

every carcass

-k

-q

1

In the next step the dangling -k chain position of every carcass is internally

merged into the appropriate specifier of the phrase headed by will.

s

>

+q >

<

will <

rot <

ε <

ε
<

every carcass

-q

1

The final step in the derivation of this expression is to internally merge the last

dangling chain position (-q) of every carcass into the +q specifier of will ’s phrase.

144

s

>

>

<

will <

rot <

ε <

ε
<

every carcass

1

Note again that this is the very same expression as the one below. The

difference between the representations is that the three copies of every carcass

are explicitly represented in the below, while implicitly represented in the above.

s

>

<

every carcass

>

<

every carcass

<

will <

rot <

ε <

ε <

every carcass

1

145

1.2.1 Phases

We have seen already that, in the context of our present system, neither movement

nor reconstruction requires us to work with expressions any more structured than

sequences of syntactically categorized interface objects. In other words, while

trees may be quite useful to the linguist, this is a fact about linguists, not about

language. At least, this is so provided that none of the operations we need to

describe language require a richer representation. At first blush, an operation of

structure copying would seem to require us to provide for the existence of the

structure copied. However, consider what we want the structure in the copies to

do

We can think of the [derived tree] as a complex of instructions for

these performance systems, providing information relevant to their

functions. ([39], pg. 168)

In fact, we might ask, since the shape of the derived tree of the moving (i.e. copied)

expression is unchanging, why not simply send it to be interpreted at the various

interfaces once, and copy that interpreted material? It turns out that a minimal

adjustment to our tree-less notation from chapter 2 suffices to implement this

idea. We go through a derivation of every carcass will rot using our tree-less

notation.

In the first step, we merge every and carcass together, interpreting the result

immediately at both interfaces (only the phonological interpretation is shown

below—our semantics as developed in chapter 2 carries over unchanged to this

present system).

1. merge(every::=n d -k -q, carcass::n)

(ε, every, carcass) : d -k -q

146

Next we merge rot with every carcass. A copy of the phonological interpretation

of every carcass is combined with the phonological interpretation of rot. Another

copy of the phonological interpretation of every carcass is put into storage, along

with its syntactic features (of which there is but one copy).

2. merge(rot::=d v, 1)

(ε, rot, every carcass) : v, (every carcass, -k -q)

Next we merge ε::=>v prog, ε::=>prog perf, and then will::=perf +k +q s with

the expression rot every carcass.

3. merge(ε::=>v prog, 2)

(ε, rot, every carcass) : prog, (every carcass, -k -q)

4. merge(ε::=>prog perf, 3)

(ε, rot, every carcass) : perf, (every carcass, -k -q)

5. merge(will::=perf +k +q s, 4)

(ε, will, rot every carcass) : +k +q s, (every carcass, -k -q)

We next internally merge every carcass into a +k-licensed specifier of will—this

amounts to combining a copy of the phonological interpretation of every carcass

with the rest of the phrase, and checking the feature pair (+k, -k).

6. move(5)

(every carcass, will, rot every carcass) : +q s, (every carcass, -q)

147

Finally we internally merge every carcass a last time, satisfying all of its syn-

tactic requirements. There is no need to make another copy of the phonological

interpretation of every carcass—as one sits already in storage, we use that.

7. move(6)

(every carcass every carcass, will, rot every carcass) : s

A bevy of particulars bear pointing out. First, to allay any unease, the sen-

tence we have just derived is not grammatical in any variety of English of which I

have ever heard tell. Matters will not be left at this—the subject of pronunciation

of copies will be taken up in § 2, after we deal with the second possible approach

to syntactic copying in § 1.3. Second, what of the claim we made in chapter 2

to the effect that movement was strongly successive cyclic—clearly, here we have

only three copies of every carcass, not the six we would expect if every carcass

were indeed moving to each intermediate specifier position. Note that we have

relegated copying to the phonological component of the grammar—we are thus

seeing that our phonological interface is not currently taking advantage of the

successive cyclicity of our system, just as our semantics was not, earlier. By

virtue of keeping track of which expressions have unchecked features, our syntax

makes them available at any point in the derivation (until their features have

been all checked, at which point they are no longer treated seperately syntac-

tically). It would be a fact about our interface maps (if true) that they only

deal with feature checking steps (and thus not with non-feature driven successive

cyclic movements), not about our syntax. Finally, note that we did not need to

revise our semantic interface to deal with the addition of derived tree copying to

our system; currently only our phonological interface is taking advantage of the

copying inherent to our syntax.5

5See footnote 30 in chapter 2 for discussion.

148

1.3 External Merge

The derivational process imposes a particular structure upon an object indepen-

dently of any derived structure we may or may not choose to assign to that object

in the course of its derivation. Although we may try to eliminate derived struc-

ture, its derivation is an intrisic property of an expression, and for this reason is

a natural (arguably, the most natural) referent of the term ‘syntactic structure’.

But how are we to determine whether two processes culminating in the same

thing are themselves identical? One option is to encode a description of (the

relevant aspects of) the process itself in the thing derived. Pursuing this option

lands us back in the ‘identity of derived structure’ camp we discussed a section

ago. The other option, which we shall explore here, is not to wait until the

processes are complete to compare them, but instead to run them in parallel,

and to check at each step whether they are performing the same action. We

return to this intuition in a moment.

Chomsky [32] correctly notes that

[External merge] requires some [. . .] device to distinguish copies from

unrelated occurrences.

I shall call this ‘Chomsky’s problem’. Certainly, we can have identically derived

subexpressions that we do not wish to treat as ‘copies.’ Consider the following

sentence, in which the fact that the subject and object are derivationally identical

is not a grammatically interesting one.

(3.12) An ex-girlfriend of mine bumped into an ex-girlfriend of mine.

We make the pre-theoretical judgement that, in a particular sentence, derivational

identity is ‘accidental’, and thus not grammatically relevant based on the same

149

considerations that lead us to identify sentences as belonging to a ‘NP V NP’

construction, but not to a ‘NP V Mary’ construction: there are no significant

generalizations to be made about the ‘NP V Mary’ construction that are not

consequences of the ‘NP V NP’ construction. Similarly, the ‘NP V CopyNP’

construction is not usefully isolable by the analyst (at least not in English—

Lee [108] argues that San Lucas Quiavińı Zapotec uses a construction like ‘NP

V CopyNP’ to express what English speakers would by means of a reflexive

pronoun). As such, this embodies an empirical hypothesis about the proper

regimentation of natural languages into construction types.

Returning now to our intuition above, of checking at each step whether two

processes were doing the same thing, this provides us with a natural solution

to Chomsky’s problem; identically derived objects are non-accidentally so just

in case their derivational processes proceeded in tandem. We implement this

by adapting an idea from the Tree-Adjoining Grammar (TAG) tradition [152–

155] into our system. We allow ourselves to look at multiple expressions at the

same time, and to perform the same grammatical operation on each of them.

This ensures that, if we start out with identical expressions, we end up with

(larger) identical expressions. Thus we are able to reduce the operation of copying

arbitrarily large derivations to an operation copying lexical items, and operations

which perform the same action on multiple expressions at once.

Let’s see how this can be made to work. Imagine that we wanted three copies

of the expression rotting carcass (for what deviant purpose we will discuss in

a bit). Since rotting::=n n is a trivial chain, we must select rotting from the

lexicon three times at once, forming the single, composite, object below. The

composite object itself can be thought of as a kind of workspace, tying together

(or synchronizing) multiple (in this case, three) independent processes.

150

n

<

rotting =n

n

<

rotting =n

n

<

rotting =n

1

We perform the same thrice-selection of carcass, and then merge these two com-

posite objects together. Since we are operating with the synchronization of multi-

ple processes, the natural choice for how to interpret the merger of two composite

objects is as merging each expression in the first with its counterpart in the sec-

ond.

n

<

rotting =n

n

<

rotting =n

n

<

rotting =n

n

carcass

n

carcass

n

carcass

1

Now, returning to the question of why anyone would ever want three copies

of the expression rotting carcass, consider the fact that the lexical item every has

three chain positions, each of which selects for a noun phrase.

-q

<

every =n

! -k

<

every =n

! d

<

every =n

1

To derive the phrase every rotting carcass, we need to combine the expression ev-

ery with three copies of rotting carcass—one copy for each chain position of every.

151

That is, non-trivial chains combine with composite expressions, which represent

the synchronization of the derivations of multiple independent expressions.

-q

<

every =n

! -k

<

every =n

! d

<

every =n

n

<

rotting carcass

n

<

rotting carcass

n

<

rotting carcass

1

The major difference between our system and the synchronous TAG formalism

developed by Shieber and his colleagues, which derives sets of composite expres-

sions, is that we allow composite expressions to be reintegrated into a single

expression, which then has multiple ‘copies’ of the expressions whose derivations

were synchronized.

We show an example derivation of the expression every rotting carcass arrived.

First, we merge together three synchronized derivations of rotting::=n n with three

synchronized derivations of carcass::n, as shown above. Next, we merge together

a single derivation of every::=n d -k -q with the three synchronized derivations

of rotting carcass,

152

-q

<

every =n

! -k

<

every =n

! d

<

every =n

n

<

rotting carcass

n

<

rotting carcass

n

<

rotting carcass

1

which results in the single derivation of every rotting carcass shown below.

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

! d

<

every <

rotting carcass

1

Next we merge the above expression and a single derivation of arrive::=d v,

v

<

arrive =d

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

! d

<

every <

rotting carcass

1

which results in the single derivation with the -k and -q chain links of every

rotting carcass in storage.

153

v

<

arrive <

every <

rotting carcass

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

We next merge together the above single derivation with a single derivation of

ε::=>v prog,

prog

<

ε =>v

v

<

arrive <

every <

rotting carcass

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

1

and then with a single derivation of ε::=>prog perf.

154

perf

<

ε =>prog

prog

<

arrive <

ε <

every <

rotting carcass

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

1

Next we merge a single derivation of -ed::perf=> +k +q s with the single derivation

above,

155

s

>

+q >

+k <

-ed perf=>

perf

<

arrive <

ε <

ε <

every <

rotting carcass

-q

<

every <

rotting carcass

! -k

<

every <

rotting carcass

1

which, after head movement, yields the below expression.

156

s

>

+q >

+k <

ε <

arrive -ed <

ε <

ε <

every <

rotting carcass

-q

<

every <

rotting carcass

-k

<

every <

rotting carcass

1

We next move the next link in the chain of every rotting carcass into the available

+k specifier position. If there were multiple synchronized processes, move would

apply to each of them.

s

>

+q >

<

every <

rotting carcass

<

ε <

arrive -ed <

ε <

ε <

every <

rotting carcass

-q

<

every <

rotting carcass

1

157

Finally, we fill the +q specifier with the last link in the chain of every rotting

carcass. Thus, we end with a workspace consisting of just one expression, with

no dangling chains.

s

>

<

every <

rotting carcass

>

<

every <

rotting carcass

<

ε <

arrive -ed <

ε <

ε <

every <

rotting carcass

1

1.3.1 Phases

We can employ a similar abbreviatory convention as used previously to eliminate

the tree structure of our expressions. We still need, however, to represent syn-

chronization of derivations, as we have no access to copying operations. We write

each component of a composite expression within curly brackets, and indicate

that they comprise the composite expression by enclosing them in round brack-

ets. The intended meaning of the notation is best understood by comparing each

step in the derivation below with its counterpart above.

First we select three copies of rotting and carcass from the lexicon.

158

1. select(select(select(rotting::=n n)))
{rotting :: =n n}

{rotting :: =n n}

{rotting :: =n n}


2. select(select(select(carcass::n)))

{carcass :: n}

{carcass :: n}

{carcass :: n}


Next we merge these two composite expressions together, yielding the more com-

plex composite expression with three component parts shown below.

3. merge(1, 2) 
{(ε, rotting, carcass) : n}

{(ε, rotting, carcass) : n}

{(ε, rotting, carcass) : n}


We next select a single copy of every. Note that we represent each chain link

of every, and that these three links together form a single, simple, expression

(i.e. are enclosed within a single pair of curly brackets).

4. select(every::=n d -k -q) 


every :: =n -q

every :: =n -k

every :: =n d




We then merge every with the three copies of rotting carcass derived earlier. All

three copies of rotting carcass are combined into the single copy of the three-link

chain every.

159

5. merge(4, 3) 


(ε, every, rotting carcass) : -q

(ε, every, rotting carcass) : -k

(ε, every, rotting carcass) : d




We select one copy of arrive, which is a trivial chain.

6. select(arrive::=d v) ({
arrive :: =d v

})
When we merge arrive with every rotting carcass, we need to keep track of the

fact that there are two copies of this latter chain left. We enclose these two copies

within square brackets.

7. merge(6, 5)


(ε, arrive, every rotting carcass) : v, (every rotting carcass, -q)

(every rotting carcass, -k)





We successively select and merge one copy each of our aspectual heads ε::=>v

prog and ε::=>prog perf.

8. merge(select(ε::=>prog perf), merge(select(ε::=>v prog), 7))


(ε, arrive, every rotting carcass) : perf, (every rotting carcass, -q)

(every rotting carcass, -k)





The derivation enters into the last stretch with the selection and merger of -

ed::perf=> +k +q s.

160

9. merge(select(-ed::perf=> +k +q s), 8)


(ε, ε, arrive -ed every rotting carcass) : +k +q s, (every rotting carcass, -q)

(every rotting carcass, -k)





We now move the two copies of every rotting carcass.

10. move(9) (every rotting carcass, ε, arrive -ed every rotting carcass) : +q s,[
(every rotting carcass, -q)

]



11. move(10)

({(every rotting carcass every rotting carcass, ε, arrive -ed every rotting carcass):s})

1.3.2 Remarks on Derivational Copying

This approach to copying treats copying as fundamentally syntactic in nature,

as opposed to the internal-merge approach which pushes the copying operation

from the syntax into the various domains with which it interfaces. That is,

this approach to copying treats the copies as syntactic resources—if a copy is

needed, it must be constructed. This differs fundamentally from the ‘internal

merge’ perspective on copying, according to which the operation of copying is

not a resource sensitive operation, and has for this reason a completely different

character from the rest of our syntactic operations.

We have talked a great deal about successive cyclic movement, claiming that

even though such movement is not ‘overtly’ represented as occuring in minimalist

grammars, this is more a fact about our interface operations than our syntax. I

have tied this claim to a general notion of successive cyclicity, which was defined

161

to be whether, in principle, information about an expression is available at various

points in the derivation. In our copying-as-synchronization paradigm we see that

feature-driven movements are treated quite differently from non-feature driven

(i.e. successive cyclic) movements. Here we treat feature-driven movements as

the ‘external merger’ of identically derived material. Certainly, there is no suc-

cessive cyclic external merger of identically derived material. However, complete

information about ‘moving’ expressions is still potentially available at every step

of the derivation from those expressions’ first merge positions to their last-move

positions. Therefore in this derivational copying system, too, there exists strict

successive cyclicity.

2 The Pronunciation of Copy-Chains

Now that we have seen two ways of conceiving of structure copying, and an

implementation of each, we turn next to patch a glaring hole in our idealization—

we don’t generally pronounce all the copies that we are led to postulate given

our movement-filled analyses of language. In this section we explore various

increasingly refined strategies of pronouncing structures with copies.

What we have done in the previous section has been to increase the power of

our syntactic formalism, so as to allow it to represent copying. What our goal

is here is to show how we can harness this otherwise indiscriminate increase in

power, and employ it in a controlled fashion.

Although unable to allow for constructions involving copying, our previous,

pre-copy approach to grammar had quite a bit going for it. In particular, it ac-

counted for the apparent facts that generally only one copy of an expression is

ever pronounced, and that generally the higher the chain link, the more likely it

162

will be pronounced. Insofar as we want to be able to describe copying, or spell-

out of non-highest chain links, our previous approach cannot be right. However,

it performs remarkably well on a wide array of cases, and so, ideally, we would

rather augment it than replace it. Here we will see how to do just that. We begin

by discussing how to recover our pre-copying pronunciation regimen, according

to which only the ‘top-most’ chain link is pronounced, and show that our system

generates the ‘right’ results even in tricky cases of remnant movement (i.e. of

copies within copies). We then introduce local non-determinism into the deter-

mination of which copies are pronounced, which allows us to state disjunctive

conditions on spellout (e.g. if there are strong heads, pronounce the copy adja-

cent to the highest strong head, otherwise pronounce the lowest copy). With this

perspective on the relation between pronunciation and movement, we see that

‘agree’ as a grammatical operation is simply movement with particular interface

effects. We show how adding local indeterminacy allows us to interface our syn-

tax with morphological filters that rule out certain combinations of morphemes,

resulting in different copies being pronounced. Finally we show how to require

that multiple copies be pronounced.

2.1 Pronounce Highest

The notion of the ‘highest’ chain link, although simple to define over derived trees

in normal cases (the highest c-commanding link), becomes quite complex once we

allow copies to occur within copies (e.g. in the case of remnant movement). We

redefine the notion of height as ‘derivationally last’, and show that this simple

definition coincides not only with our c-command based definition in normal

cases, but also with our intuition in cases of remnant movement. Moreover,

we can ‘inline’ this derivational pronunciation regimen into the derivation of an

163

expression, rendering this pronounce-highest scheme compatible with our strong

theory of phases.

In our purely derivational system, it is easy to determine whether a given link

is ‘derivationally last’—if a merged or moved expression has no more features, it is

the derivationally last link in its chain, and must therefore be pronounced. Other

merge or move steps are followed by later, derivationally higher, ones, and thus

cannot host pronounced material. This is effected slightly differently according

to how we understand copying.

If we adopt an internal merge perspective on copying, then since what is

copied is the interpreted phonological content of the moving expression, ‘not

pronouncing’ a copy simply means not copying. Consider that copying the derived

tree just means copying non-syntactic representations (adopting a strong theory

of phases)—syntax has but one chance to affect the shape of these non-syntactic

representations; it cannot choose to copy them, and then later delete them. As

such, we see that the internal merge approach to copying with the pronounce-

highest scheme just is our previous formalism.

Adopting an external merge perspective on copying on the other hand, we

must still derive all copies, but we may choose whether or not to incorporate the

phonological interpretation of each at the point it is inserted into its chain posi-

tion. Pronounce highest is then just the special case where a link’s phonological

interpretation is incorporated into a containing expression just in case that link

is the highest in its chain.

Regardless of the perspective on copying, we distinguish between pronounced

and unpronounced material as just shown. We show the derivation of the sentence

John will rot below with a pronounce-highest regimen both with an internal

merge, and an external merge perspective on copying.

164

(3.13) John will rot.

We begin by merging together (a single copy each of) rot and John. As John is

not a trivial chain (i.e. it has features left to be satisfied), the newly merged chain

position is not (or rather, will not be) highest in its chain. Therefore, according

to our pronounce highest regimen, we do not pronounce it (which is marked by

being struck through).

1. merge(rot::=d v, John::d -k -q)

(ε, rot, John) : v, (John, -k -q)

2. merge(select(rot::=d v), select(John::d -k -q))(ε, rot, John) : v,

 (John, -q)

(John, -k)




At the next step, we merge (one copy of) ε::=>v prog with the expression above.

Since the expression above is the highest link in its (admittedly trivial) chain, it

is pronounced.

1. merge(ε::=>v prog, 1a)

(ε, rot, John) : prog, (John, -k -q)

2. merge(select(ε::=>v prog), 1b)(ε, rot, John) : prog,

 (John, -q)

(John, -k)




The expression above is again highest in its chain, and is pronounced upon merger

with (a single copy of) ε::=>prog perf.

165

1. merge(ε::=>prog perf, 2a)

(ε, rot, John) : perf, (John, -k -q)

2. merge(select(ε::=>prog perf), 2b)(ε, rot, John) : perf,

 (John, -q)

(John, -k)




Again, because the expression above is a trivial chain, it is highest in its chain,

and is thus pronounced in its merge position with will in the below.

1. merge(will::=perf +k +q s, 3a)

(ε, will, rot John) : +k +q s, (John, -k -q)

2. merge(select(will::=perf +k +q s), 3b)(ε, will, rot John) : +k +q s,

 (John, -q)

(John, -k)




The +k feature on the head of the above expression triggers the move operation,

determining the position of the next link of the chain of John. Because the -k

link is not highest, it is not pronounced.

1. move(4a)

(John, will, rot John) : +q s, (John, -q)

2. move(4b) ({
(John, will, rot John) : +q s,

[
(John, -q)

]})
Finally, the highest link of John is positioned in the expression, and pronounced.

166

1. move(5a)

(John John, will, rot John) : s

2. move(5b)

({(John John, will, rot John) : s})

2.1.1 Remnant Movement

Now what of copies within copies? The problem, under any theory, is that they

are not part of the same chain as the thing they are a copy within a copy of.

Consider the VP topicalized sentence in 3.14 below, which is ‘underlyingly’ as

in 3.15 (each ‘copy’ in which is annotated with the feature determining its chain

link).

(3.14) (. . . and) rot John will.

(3.15) [rot Johnd]-top John-q John-k will [rot Johnd]v.

For concreteness’ sake, let us assume that VP-topicalized sentences are derived by

means of the lexical items ε::=>v v -top, which gives any vP a -top feature, and

ε::=s +top s, which provides tensed clauses with positions in which subexpressions

can check a -top feature. We work through a derivation of sentence 3.14 in the

context of our external merge approach to copying, as it forces us to be explicit

about a number of otherwise ignorable points.

As we will need two copies of the vP rot John, we select two copies of rot, and

two copies of the chain John from the lexicon, merging them together. Since the

merged link of the chain John is not the highest one in its chain, its phonological

features are not incorporated into the derived expression.

167

1. merge(select(select(rot::=d v)), select(select(John::d -k -q)))

(ε, rot, John) : v,

 (John, -q)

(John, -k)


(ε, rot, John) : v,

 (John, -q)

(John, -k)




Note that there are currently six tokens (deleted or not) of the string “John” in

the expression above, but only four tokens in the expression 3.15 above. We next

select a single copy of the topicalization feature introducing lexical item ε::=>v v

-top, and merge it with the expression above.

2. merge(select(ε::=>v v -top), 1)



(ε, rot, John) : -top,

 (John, -q)

(John, -k)



(ε, rot, John) : v,

 (John, -q)

(John, -k)






We next select and merge one copy of the lexical item ε::=>v prog from the lexi-

con. We are at this point confronted with the fact that the cases of merge that

we considered earlier were not exhaustive—now the chain links of the merged ex-

pression themselves contain moving subconstituents! Consider the expression we

would have at this point had we been using instead the internal merge approach

to copying.

(ε, rot, John) : prog, (rot John, -top), (John, -k -q)

168

This expression is the internal merge version of the external merge variant below.(ε, rot, John) : prog,
[

(rot John, -top)
]
,

 (John, -q)

(John, -k)




The road from the representation in 2 to this one is straightforward, and can be

used as the definition of the behaviour of merge in the case where chain links

contain moving expressions:6

When a chain link is put into storage, all of its moving subexpressions

are eliminated.

This is not as arbitrary as it might at first appear. Instead of being ‘eliminated’,

we might instead think of the (identical!) moving subexpressions of each chain

link as being prepared for across-the-board (ATB) movement. In a derivational

system like the one developed here, ATB movement is most naturally thought of

as consisting of two steps; the first involves collapsing distinct tokens of identical

material, and the second step is simply our normal movement operation. The

question of how to determine whether the material in question is collapsable

(i.e. identical) is, at least in the case of remnant movement under consideration

here, immediately resolved: all moving subexpressions across chain links of the

same chain are by virtue of our synchronization operations identical. We have,

therefore, the below.

6On the semantic side, the elimination of the moving subexpressions should coincide with
lambda abstraction over the resulting unbound variables in some predetermined order. This can
be done purely mechanically, as unbound variables in the semantic representation are shadowed
by their binders in storage. We may have to enrich our representation of stored semantic values
somewhat (i.e. instead of G(Q)(λi) we can store the pair 〈Q, λi〉).

In the case of vP topicalization, we want to make sure that the subject DP is interpreted
high, so as to result in a property, and not a proposition, being topicalized (also capturing the
fact that inverse scope is not generally possible in such constructions). There are numerous
ways of ensuring this in (extensions to) our formal system; I will not consider them here.

169

3. merge(select(ε::=>v prog), 2)(ε, rot, John) : prog,
[

(rot John, -top)
]
,

 (John, -q)

(John, -k)




We continue by selecting and merging a single copy each of our remaining tense

and aspect lexical items.

4. merge(select(ε::=>prog perf), 3)(ε, rot, John) : perf,
[

(rot John, -top)
]
,

 (John, -q)

(John, -k)




5. merge(select(will::=perf +k +q s), 4)(ε, will, rot John) : +k +q s,
[

(rot John, -top)
]
,

 (John, -q)

(John, -k)




We continue by positioning the final links of the chain John.

6. move(5)({
(John, will, rot John) : +q s,

[
(rot John, -top)

]
,
[

(John, -q)
]})

7. move(6) ({
(John John, will, rot John) : s,

[
(rot John, -top)

]})
We next select and merge one copy of the lexical item ε::=s +top s, which provides

a +top specifier.

8. merge(select(ε::=s +top s), 7)({
(ε, ε, John John will rot John) : +top s,

[
(rot John, -top)

]})

170

Finally, we move the vP in the above, checking all outstanding features.

9. move(8)

({(rot John, ε, John John will rot John) : s})

As we can see, so long as the pronunciation of chain links within copies obeys

the simple rule of “all chain links within a copy are pronounced just as the

corresponding chain link within another copy is pronounced,” copies within copies

(within copies. . .) give us no difficulty. This is not particular to our pronounce

highest scheme, holding more generally for all of the more complex pronunciation

schemes we will introduce in this chapter.

2.1.2 Variations on a Theme

To ensure that the highest chain link was pronounced, we computed in the course

of the derivation whether a particular chain link was ‘last,’ pronouncing it just in

that case. It is straightforward to formulate variations of pronounce highest, such

as ‘pronounce lowest’, as well as ‘pronounce second-highest’, ‘pronounce second-

lowest’ etc. We might alternatively wrest control of the pronunciation scheme

from the grammar by marking the feature of the chain link to be pronounced with

some diacritic (perhaps -f̂ or f̂). A lexicon is a ‘pronounce highest’ lexicon just

in case all and only the last feature in a lexical item’s feature bundle is so marked,

etc.7 This makes the pronunciation scheme a locus of linguistic variation, with

some languages employing one, and some another. Additionally, we can formulate

‘mixed’ pronunciation schemes, with some lexical items being pronounced highest

in their chains, and others second-highest, etc. In essence, each chain determins

7Were we to relax the requirement that feature bundles be totally ordered, pronounce highest
and variants would no longer be representable in these terms. It would then become an empirical
question which pronunciation scheme (derivational or lexical) were most enlightening.

171

its own pronunciation regimen.

2.2 Local Nondeterminism

Bošković [20] discusses a class of exceptions uniform across the Slavic languages

to the robust generalization that wh-phrases in these languages may not remain

in-situ. Examples 3.16 and 3.17 are illustrative of the general pattern of multiple

wh-movement in Serbo-Croatian—all wh-words must be fronted.

(3.16) Ko
who

šta
what

kupuje?
buys

‘Who buys what?’

(3.17) ?*Ko kupuje šta?

However, as the examples below show, this is not always the case. Examples 3.18

and 3.19 show exactly the opposite pattern of judgements from the above.

(3.18) ?*Šta šta uslovjava?

(3.19) Šta
what

uslovjava
conditions

šta?
what

If an adverb intervenes between the wh-phrases, then the ‘expected’ pattern of

judgements reemerges.

(3.20) Šta
what

neprestano
constantly

šta
what

uslovjava?
conditions

‘What constantly conditions what?’

(3.21) ?*Šta neprestano uslovjava šta?

The generalization seems to be that an object wh-word may surface in-situ just

in case if it had surfaced in its moved position, it would have been adjacent to

172

an identical wh-word. With a somewhat teleological spin, this can be rephrased

in terms of the object wh-word avoiding an undesirable phonological outcome by

surfacing in a non-standard position. One natural implementation of this idea

(pursued by Bošković) is to claim that sentences like 3.19 have the same gross

syntactic structure as their multiple wh-fronted brethren 3.20 and 3.16, and that

the difference in surface form stems from a different chain link being pronounced.

Pronounce highest (and variations thereupon) has a local character in that

the choice of which chain link to pronounce can be lexicalized—all the relevant

information is present already in the lexical item itself. However, (Bošković’s [20]

analysis of) the Serbo-Croatian data above suggest the need for a more ‘global’

determination of which chain link to pronounce, one which takes into account the

derived environment of each link in the chain.8 We begin with a simple kind of

derived environmental consideration, whether or not a chain link is in the pro-

jection of a head with a particular property P , and show how we can pronounce

the link which is in the highest such position (‘pronounce highest P ’), without

abandoning our strong approach to phases which disallows the construction of a

derived tree. Our solution to this problem provides an insight into the relation

between the grammatical operations of move and the more recent agree [29, 30]—

agree is simulable by the move operation, if we adopt the ‘pronounce highest EPP’

spellout regimen we introduce below. The mechanism we adopt for implement-

ing the phase-compatible ‘pronounce highest P ’ spellout regimen fits naturally

with interface constraints such as a ban on adjacent identical morphemes (such

as seems to be necessary for a description of the Serbo-Croation data above), and

8We could of course encode (some finite amount of) information about syntactic environment
into syntactic features, and stick with some member of the pronounce-highest family. However
in extreme cases this would result in an explosive increase in the size of the lexicon, as each
lexical item would need to encode how it would be pronounced in each possible syntactic
environ.

173

allows for the implementation of a Serbo-Croatian-style pronunciation scheme.

2.2.1 Agree and Pronounce Highest EPP

Let’s imagine that our selector and licensor features came in two varieties; the

‘normal’ variety (=f, =>f, f=>, +f) and the ‘EPP’ variety (=f̂, =>f̂, f̂=>, +f̂). Let’s

assume further that the EPP variety behaves the same as the normal variety from

a syntactic perspective (e.g. +f and +f̂ both check the same feature -f). The

difference between the two kinds of feature lies only in their very indirect effects

on the pronounced form of the generated expression: a chain is pronounced in

the highest of its links that is checked by an EPP feature (and in its lowest link if

none are checked by an EPP feature). In order to determine where a chain should

be pronounced without having to first construct a tree, we need to keep track of

whether a chain has already been pronounced (a single bit of information); if it

has, then it must not encounter another EPP feature, if it hasn’t, then it must!

We enrich our representation of moving subconstituents by associating with

each a boolean value (‘◦’ indicates that the subconstituent in question has not

been pronounced, ‘•’ indicates that it has). An intermediate stage in the deriva-

tion of a carcass was devoured looks like the following, under this augmentation

of the internal merge approach to copying.

(ε, devour -en, a carcass) : pass, (a carcass ◦ -k -q) (3.22)

Our grammar also generates the following expression, which differs from the

above only in that the moving subconstituent has been spellt-out in its first

merge position.

(ε, devour -en, a carcass) : pass, (a carcass • -k -q) (3.23)

Let’s assume that case features (+k) are uniformly EPP marked (a generalization

174

of the idea that finite T bears an EPP feature in English), and that scope fea-

tures (+q) are uniformly not (in accord with the ‘covert’ perspective on quantifier

movement). Then on this assumption, of the two expressions above only the

former can converge, as when a carcass tries to check its -k feature against its

EPP-marked counterpart, the derivation will crash if it turns out that a carcass

has been spellt-out in a non-highest EPP chain-link.

The utility of such a pronunciation scheme lies in the simple account we may

give to cases of long-distance agreement, as exemplified by the sentences below.

(3.24) There was/∗were devoured a rotting carcass.

(3.25) There ∗was/were devoured three rotting carcasses.

(3.26) There seems/∗seem to have been devoured a rotting carcass.

(3.27) There ∗seems/seem to have been devoured three rotting carcasses.

The conditions licensing expletive-there (the nature of the predicative element,

as well as the restrictions on the associated DP) are quite complex, and will

not be done justice here. Instead, we concentrate our attention exclusively on

expletive-there in passive sentences, and ignore the role the associated DP plays

in licensing expletive-there. As it is the long-distance agreement rather than the

expletive itself that interests us here, we simply introduce a rule that inserts there

into passive sentences, and ignore the particulars of the features that there has.

We write

there::@(pass,k)

to indicate that, whatever the structure and nature of the feature bundle associ-

ated with there is, it has the function of merging with a passive participle, and

175

becoming associated with the case of an element with both a -k and at least

one additional feature, which transfers the -k feature from that element to it.

Accordingly, there-insertion acts on the expressions above to yield the below.

1. there-insertion(3.22, there::@(pass,k))

(ε, devour -en, a carcass) : pass, (a carcass ◦ -q), (there ◦ -k)

2. there-insertion(3.23, there::@(pass,k))

(ε, devour -en, a carcass) : pass, (a carcass • -q), (there ◦ -k)

We continue with the derivation as usual, merging be, and then our empty aspec-

tual heads, followed by -ed.

1. merge(be::=pass v, 1a)

(ε, be, devour -en a carcass) : v, (a carcass ◦ -q), (there ◦ -k)

2. merge(be::=pass v, 1b)

(ε, be, devour -en a carcass) : v, (a carcass • -q), (there ◦ -k)

1. merge(ε::=>v prog, 2a)

(ε, be, devour -en a carcass) : prog, (a carcass ◦ -q), (there ◦ -k)

2. merge(ε::=>v prog, 2b)

(ε, be, devour -en a carcass) : prog, (a carcass • -q), (there ◦ -k)

1. merge(ε::=>prog perf, 3a)

(ε, be, devour -en a carcass) : perf, (a carcass ◦ -q), (there ◦ -k)

176

2. merge(ε::=>prog perf, 3b)

(ε, be, devour -en a carcass) : perf, (a carcass • -q), (there ◦ -k)

1. merge(-ed::perf=> +k̂ +q s, 4a)

(ε, ε, be -ed devour -en a carcass) : +k̂ +q s, (a carcass ◦ -q), (there ◦ -k)

2. merge(-ed::perf=> +k̂ +q s, 4b)

(ε, ε, be -ed devour -en a carcass) : +k̂ +q s, (a carcass • -q), (there ◦ -k)

Now we check the EPP-marked +k feature on the head of the expressions above

against the -k feature of there. As there was not pronounced earlier in either

expression (indicated by the ◦), it may be pronounced in this EPP position (and

indeed must be, as this is the highest position it will be in).

1. move(5a)

(there, ε, be -ed devour -en a carcass) : +q s, (a carcass ◦ -q)

2. move(5b)

(there, ε, be -ed devour -en a carcass) : +q s, (a carcass • -q)

The last step in the derivation is to check the non-EPP-marked +q feature of the

tense head. Because it does not bear an EPP diacritic, it does not license the

pronunciation of a moved element, and so only elements may be attracted to it

that are not in need of being pronounced there. Thus expression 6a crashes at

this step, as a carcass has not been pronounced (◦), and, as the -q feature is its

last, must be now.

177

1. move(6a)

Crash!!!

2. move(6b)

(there, ε, be -ed devour -en a carcass) : s

As the object DP a carcass, although pronounced in situ, stands in a feature-

checking relationship with the inflected verb, the stage is set for a more articulated

theory of features and feature checking to explain the long-distance agreement

facts. The relationship between this pronounce-highest EPP scheme and the

agree-based syntax developed in [29, 30] is straight-forward; move as portrayed

here just is agree.

2.2.2 Morphological Filters

Returning to the Serbo-Croatian data, it seems here that it is not some syntactic

feature which determines the pronounced position of the wh-words, but rather a

morpho-phonological ban on adjacent identical wh-words. In other words, non-

syntactic properties seem to be playing the role of the EPP diacritics we explored

above. Here we will sketch how this might be effected without compromising our

view of convergence as an intrinsic property of syntactic derivations, determined

without reference to other derivations. We will assume a more articulated PF

branch, with a layer of ‘morphology’ (MF) between the output of syntax and

the sequences of phonemes we have come to know and love (see figure 3.2). We

shift the determination of which chain link to pronounce from our syntax to the

morphology. Our syntax should generate therefore both the grammatical 3.16

and 3.19 as well as the ungrammatical 3.17 and 3.18 (repeated below).

178

PF

MF

π

OO

LF

Deriv
Λ

::vvvvvvvvv
µ

ddIIIIIIIII

Figure 3.2: A Morphological Component

(3.16) Ko
who

šta
what

kupuje?
buys

‘Who buys what?’

(3.17) ?*Ko kupuje šta?

(3.18) ?*Šta šta uslovjava?

(3.19) Šta
what

uslovjava
conditions

šta?
what

A simple ban on adjacent homophonous wh-words will suffice to rule out 3.18,

but 3.17 is incorrectly let through to PF. What we want is a way to ensure that

if a wh-word is pronounced in a non-highest position, all higher positions involve

otherwise adjacent homophonous wh-words. This information is present already

in our syntax, we need simply to hand it to MF. This we do by allowing syntax to

insert ‘anti-morphemes’ in chain positions, which indicate that a particular mor-

pheme would have appeared in a certain position, had it not been pronounced

earlier. Anti-morphemes (m−1) delete under string adjacency with the corre-

sponding morpheme (m). MF, then, refuses to let through to PF any object with

anti-morphemes (or equivalently, PF cannot interpret anti-morphemes). In the

case of Serbo-Croatian (and apparently the other slavic and slavic-influenced lan-

guages) we need to say that an anti-morpheme is inserted in every chain position

179

higher than the one chosen as the pronounced link. If this were a general property

of languages (that anti-phrases were introduced in all (EPP marked) chain posi-

tions higher than the pronounced link), we would have, due to a general lack of

homophony, a justification for (something like) our original ‘pronounce highest’

pronunciation scheme—anti-morphemes cannot in general be eliminated, thus

causing all derivations but the one in which the highest link is pronounced to

crash. As this is a relatively simple (and principled) approach to anti-morpheme

insertion, we will adopt it here.

Now we can sketch an analysis of the Serbo-Croatian data along the lines of

Bošković [20]. We have located the source of the ungrammaticality of 3.17 and

3.18 in the MF component of grammar. Accordingly, we give the morphological

form of sentences 3.16–3.19 below as 3.28–3.31.

(3.28) Ko šta kupuje?

(3.29) ?*Ko šta−1 kupuje šta?

(3.30) ?*Šta šta uslovjava?

(3.31) Šta šta−1 uslovjava šta?

Sentence 3.29 is ungrammatical because of the general prohibition of anti-

morphemes at PF. This contrasts with 3.31, in which the anti-morpheme can

be deleted under adjacency with its positive counterpart within the morphologi-

cal component before being sent to PF. Sentence 3.30, on the other hand, is ruled

out by the language particular ban against adjacent homophonous wh-words.

What remains to be determined is whether the lower instance of šta in ex-

ample 3.19 is the object, or the subject, of the verb uslovjava. This question can

be answered only if there are canonical ‘subject’ and ‘object’ properties that we

180

can identify, and then determine the lower copy of šta to have. For example, if

there were canonical subject or object positions that were identifiable in terms of

their position in the string relative to other material (adverbs, say), we could ask

whether the lower copy of šta could only be in the canonical subject or object

positions relative to this other material. If it could appear in both canonical sub-

ject and object positions, this would suggest that either šta could be pronounced

in situ—something our current system predicts. Sentence 3.32 depicts the mor-

phological form of a subject in situ variant of 3.19, and 3.33 the morphological

form of an ungrammatical sentence (as neither anti-morpheme can be deleted),

with both wh-words in situ.

(3.32) Šta−1 šta uslovjava šta?

(3.33) *Šta−1 šta−1 uslovjava šta šta?

However, Bošković [20] analyzes the lower šta as the object, noting that there is

a strong tendency in Serbo-Croatian to interpret syntactically ambiguous pairs of

noun phrases with the linearly first noun phrase as the subject, and the second as

the object. As we have just seen, our current approach to anti-morphology does

not allow us to discriminate between the in-situ derivations of the subject and the

object. Accepting Bošković’s analysis, we are led to a slightly richer view of (anti-

)morphology, with anti-morphemes specifying the direction they are looking for

their correspondants. Accordingly, we have two kinds of anti-morphemes, withmr

wanting to be to the right, and m` to the left, of its corresponding morpheme m.

We may stipulate that natural languages (or at least Serbo-Croatian) make use

only of right anti-morphemes (mr). Now only the object in situ sentence is deriv-

able; the subject in situ sentence contains an undeletable right anti-morpheme

štar.

181

2.3 Pronouncing Multiple Copies

In Yoruba, as in many other West African languages, when predicates are clefted,

two copies appear: one in the canonical left-peripheral cleft position (where it is

nominalized), and one in the standard in situ predicate position. Given a simple

intransitive sentence like 3.34, the accompanying predicate clefted sentence is as

in 3.35.

(3.34) Tolu
Tolu

ku.
die

“Tolu died”

(3.35) Kiku
Dying

ni
ni

Tolu
Tolu

ku.
die

“Tolu DIED (not something else).”

In chapter 4 we investigate in detail the properties of this construction, arguing

that it (and similar constructions in unrelated languages) provides persuasive

evidence for the necessity of an operation which copies arbitrarily large swathes

of structure. For now, and for concreteness, we pretend that English has a con-

struction along the lines of examples 3.34 and 3.35, such that in VP topicalization

constructions both copies of the VP are pronounced (cf. 3.36).

(3.36) Rot John will rot.

The question we now turn to is how, given our current lexical items, we can

generate sentences like 3.36.

Adopting the variant of the pronounce highest scheme according to which

pronunciation is determined by a featural diacritic, we may simply mark multiple

features with this diacritic. Accordingly, the lexical item which introduces the

-top feature has exceptionally two such featural diacritics: ε::=>v v̂ - ^top.

182

A different, less intrinsically determined, approach to the pronunciation of

multiple copies is to locate the diacritic demanding pronunciation of a chain link

not internal to the chain, but on a feature (+f̂, =f̂, =>f̂, or f̂=>) of a different

expression. This basic approach is in line with Koopman [95], who argues that

heads can sometimes require pronounced material in their specifiers, and with

Nunes [131], who appeals to an operation of ‘reanalysis’, which essentially en-

sures that the phonological features of a particular phrase will be pronounced.

Incorporating into our pronounce highest regimen the possibility of heads requir-

ing that their specifiers host pronounced material, we mark on the lexical items

which select v that they force pronunciation of this constituent: ε::=>v̂ perf and

-ing::=>v̂ perf. Under this approach, we might expect that only some v-selecting

heads will permit reanalysis, so that alongside 3.36 we could have 3.37 as well (in

case -ing did not require reanalysis).9

(3.37) Rot John is doing.

Adding instead a mechanism of reanalysis to a pronouce highest P regimen, we

obtain a system similar to Nunes’s, according to which reanalysis ‘removes’ a

chain link from consideration of the pronounce highest pronunciation scheme.

In other words, Nunes [131] provides a ‘pronounce highest non-reanalyzed link’

spellout regimen. Accordingly, we may locate the reanalysis diacritic either on the

v-selecting heads, or on the feature licensing the -top constituent: ε::=s + ^top s.

Adopting this latter approach, we derive sentence 3.36 as per the following.

1. merge(ε::=>v v -top, merge(rot::=d v, John::d -k -q))

(ε, rot, John) : v -top, (John ◦ -k -q)

9Do-support is easy enough to hack into the system, but I do not have (nor do I know of)
a principled account of this or similar phenomena.

183

If, at this next step, we do not pronounce the chain of rot John, hoping that

there will be a later, higher, non-reanalyzed position, the derivation will crash

once this is determined not to be the case.

2. merge(ε::=>v prog, 1)

(ε, rot, John) : prog, (rot John • -top), (John ◦ -k -q)

We continue with the derivation as shown below.

3. move(move(merge(will::=perf +k +q s, merge(ε::=>prog perf, 2))))

(John John, will, rot John) : s, (rot John • -top)

We next add a topic-licensing position to the expression above.

4. merge(ε::=s + ^top s, 3)

(ε, ε, John John will rot John) : + ^top s, (rot John • -top)

Finally, we check the -top feature of the vP, which triggers reanalysis of the

moving phrase.

5. move(4)

(rot John, ε, John John will rot John) : s

Had we not pronounced the vP in its base position in step 2, then at step

4 we would have had the following expression, which cannot be derived further,

as the moving constituent ‘gambled’ incorrectly that there would be a later non-

reanalyzing chain link.

4. merge(ε::=s + ^top s, 3′)

(ε, ε, John John will rot John) : + ^top s, (rot John ◦ -top)

184

3 Summary

In this chapter we have explored two perspectives on copying structure, both of

which are compatible with our elimination of all syntactic levels of representation,

and consequently with a strong theory of phases. Although they take copying to

be of different structures (the internal merge approach takes copying to be of PF

(or MF) representations, while the external merge approach takes copying to be

of the derivation), both approaches to copying structure we have developed here

are equivalent in their expressive power. Additionally, even with copying, mini-

malist grammars are efficiently parsable. (These issues and others are taken up in

the appendices to this chapter.) We have seen how sophisticated pronunciation

strategies can be defined without making reference to derived trees, much less

competition between derivations, interacting violable constraints, or other pow-

erful and ill-understood formal mechanisms. Indeed, our derivational approach

to pronunciation of copies gives us a simple and elegant treatment of remnant

movement constructions, which have proven quite tricky to deal with at the level

of the derived tree [62, 131, 132]. A treatment of long-distance agreement was

proposed, and our fragment of English extended to deal with a well-defined sub-

class of there-insertion phenomena. Considering exceptions to the generalization

that all wh-words front in Serbo-Croatian multiple wh-sentences, we have seen

that making the choice of which chain link to pronounce dependent on morpho-

phonological factors can be done in a morphological component, without sacri-

ficing the ‘one-pass’ approach to grammar we have developed here. Indeed, in so

doing we have arrived at a possible explanation for the overwhelming tendency

for just a single link in each chain to be pronounced.

Although the phrase ‘linearization of syntactic objects’ occurs only this once

in this chapter, and, indeed, no mention at all is made of complicated algorithms

185

for determining how to pronounce derived multiple-dominance structures, this is

one of the main topics of this chapter. While the sophisticated pronunciation

strategies we have developed could very well be re-stated over structures with

copies, the relative elegance and simplicity of the derivational treatment given

here speaks for itself.

186

Appendices

C–1 Two ways to copy

What seems to be the standard perspective on the ‘meaning’ of syntactic structure

in the generative community is that the derived tree structures associated with

expressions are best understood as representing actual syntactic objects, and

that two such objects are identical only if their tree structures are. Copying then

targets subparts of this structure, creating a new structure which has subparts

which are identical. In a strict theory of phases, where interface instructions

are interpreted as they are built, this amounts to copying the objects of the

domains interfacing with syntax (minimally semantics and phonology) but over

syntactically defined phrases. Thus, there is no copying of anything syntactic—

copying is moved from the domain of syntax into the domain of phonology (and

perhaps also of semantics).

Another perspective we might take is explicit in the categorial grammar com-

munity:

[. . .]syntactic structure is merely the characterization of the pro-

cess of constructing a logical form, rather than a representational level

of structure that actually needs to be built[. . .] [pg. xi in 163]

According to this view, the structure copied is merely a record of the derivation

of a syntactic object, and not an explicitly represented property of that object

itself. Two syntactic objects would then have the same structure just in case they

were derived in the same way. Copying structure thus becomes enforcing identity

of derivation. In other words, we guarantee that two constituents have the same

structure not by copying some complex object, but by building these constituents

187

up in the same way. This allows us to factor the operation of copying arbitrarily

large swathes of syntactic material into a series of atomic (or at least boundedly

large) steps in the following manner. Regardless of how large two expressions are,

if we are assured that they are identical, then applying any polynomial function

of one variable to them is guaranteed to preserve their identity.10

C–1.1 Copying the Derived Tree

Copying the derived tree is obtained by an immediate extension of the generat-

ing functions from our previous chapter. Instead of pronouncing the merged or

moved expression just in case the current step involves its last syntactic feature

(merge1, merge2, move1, affixRaise and affixLower), all feature checking results

in pronunciation of the expression merged or moved.

The resulting system is no longer equivalent to MCFGs (which are equivalent

to minimalist grammars without copying), as the former, but not the latter, can

easily generate the language a2n
(using the three lexical items in figure 3.3), which

is not even semilinear. Below is a derivation using the lexicon of figure 3.3. At

a::s ε::=s x -y

ε::=x +y s

Figure 3.3: A grammar for the language a2n

steps 3, 6 and 9 we have sentences (expressions of type s) of length 2, 4, and

8, resepctively. Clearly, no sentences are derivable with length between 2 and 8

other than these.

10A unary function f is said to preserve a relation R just in case for every x and y in the
domain of f , xRy → fxRfy

188

1. merge(ε::=s x -y, a::s)

(ε, ε, a) : x -y

2. merge(ε::=x +y s, 1)

(ε, a, ε) : +y s, (a, -y)

3. move(2)

(a, a, ε) : s

4. merge(ε::=s x -y, 3)

(ε, ε, aa) : x -y

5. merge(ε::=x +y s, 4)

(ε, aa, ε) : +y s, (aa, -y)

6. move(5)

(aa, aa, ε) : s

7. merge(ε::=s x -y, 6)

(ε, ε, aaaa) : x -y

8. merge(ε::=x +y s, 7)

(ε, aaaa, ε) : +y s, (aaaa, -y)

9. move(8)

(aaaa, aaaa, ε) : s

The languages generated by minimalist grammars which copy the derived tree are

easily shown to be parallel MCFLs [151];11 the proof of [121] showing the inclusion

11Parallel MCFLs are a proper subclass of P, the languages recognizable in polynomial time
on a deterministic turing machine. P is the intersection closure of the class PMCFL (see [112]
for details).

189

of the minimalist languages in the MCFLs needs only minor and uninteresting

modifications to show the inclusion of the minimalist languages with copying in

the parallel MCFLs.

Although the copying itself can be done efficiently, it is possible to have such

a complex way of determining which copies should be spellt out that the re-

sulting family of languages is no longer contained in the PMCFLs, or even in

P.12 As long as the information relevant to pronunciation in our expressions is

finitely bounded, the containment proof will be able to go through. Indeed, this

has been behind our insistence on the treeless presentation of our MG modifi-

cations. All of the pronunciation schemes explored in this chapter are efficient

in this sense of not taking us outside the expressive power of PMCFGs. The

only even mildly interesting one such from the perspective of Michaelis’s [121]

proof is the ‘pronounce highest P ’ family, which require us to record whether a

moving constituent has been pronounced or not, and which results in multiplying

the number of non-terminal symbols in the simulating PMCFG (due to the fact

that each possible combination of such booleans on moving constituents must be

represented by a separate non-terminal).

C–1.2 Copying the Derivation Tree

To implement copying of the derivation in minimalist grammars (without explic-

itly representing the derivation as a syntactic object in its own right), we need

to expand our ontology of expressions to include syntactic composites of ‘simple’

expressions. A composite ~e = 〈e1, . . . en〉 will be understood as indicating that

each ei and ej, for 1 ≤ i, j ≤ n, are copies of each other. For the move opera-

tion, our intended interpretation of these composite expressions leads us to the

12Or even in the class of recursively enumerable languages, if we choose our pronunciation
scheme unwisely.

190

following identity, which we shall see later how to implement:

move(~e) = 〈move(e1), . . . ,move(en)〉 (3.38)

The intended interpretation of these composites suggests that something like the

following equation should be true of the merge operation (although we shall have

cause to revise this later):

merge(~d,~e) = 〈merge(d1, e1), . . . ,merge(dn, en)〉 (3.39)

While these schema are sufficient to generate syntactic composites all of whose

parts are copies, we still lack a way to insert these copies into a single expression.13

To do this, we want merge to do something like the following:

merge(d, 〈e1, . . . , en〉) = f (3.40)

In equation 3.40, the intended interpretation of the composite ~e is that it is a

chain—a single expression which is in multiple positions at once. Ex hypothesi,

this chain is a movement chain, and thus the distribution of its parts should

be left up to the move operation. Note that this is quite different from the

previous interpretation assigned to these syntactic composites, namely, that of

being identical copies, the relative distribution of which not even coming into

question. We shall soon see that these interpretative differences will be reflected

in our ontology. Let us begin then by examining the notion of a movement chain.

In a (non-trivial) movement chain, each position past the first (i.e., bottom-most)

contains the result of moving (here, copying) the contents of the previous position.

Thus the elements comprising a movement chain are not necessarily identical, in

so far as they may be moving to satisfy different requirements. In the context

13For some purposes (e.g. translation or interpretation [2, 130]) this may be sufficient.

191

of the minimalist grammar system, they may have distinct selectee or licensee

features. Given a lexical item ` = s :: γ x -w1 · · · -wn, we create the copy chain14

~̀ :=



s :: γ -wn
...

s :: γ -w1

s :: γ x


We will call a copy chain non-trivial just in case it contains at least two links.

Note that all and only lexical items with licensee features give rise to non-trivial

copy chains.

Recall that a standard minimalist expression is a pair 〈φ0,N〉, where N is a

sequence 〈φ1, . . . , φk〉 of moving expressions, the distribution of which is deter-

mined by the move operation. In order to allow the links of copy chains to be

positioned by movement (i.e. in order to assure that copy chains are movement

chains) we intutively identify each φi with a copy chain (although these we write

within square brackets (‘[’ and ‘]’, and no longer keep track of the phonological

features of the head seperately). Thus, a non-composite expression has the form:

〈φ0, 〈φ1, . . . , φk〉〉

where φ0 ∈ Σ∗ × Σ∗ × Σ∗ × {::, :} × Syn∗, and for 1 ≤ i ≤ k, φi ∈ (Σ∗ × Syn)+.

Move is defined over simple expressions as per the following two subcases, and

then extended pointwise over copy chains, and then again over sequences of copy

14We adopt here without further ado the notational convention of writing sequences
〈a1, . . . , ak〉 ‘vertically’ as 〈 ak

...
a1

〉

The choice of brackets, while technically irrelevant for the formalism, will be used to indicate
‘type’, with curly brackets (‘{’, ‘}’) being reserved for copy chains, and parentheses for sequences
thereof.

192

chains:

(s1, s2, s3) : +xγ, α
[

(t, -x)
]
β

(ts1, s2, s3) : γ, αβ
move1

(s1, s2, s3) : +xγ, α


...

(t′, χ)

(t, -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′, χ)

 β
move2

In the case where its first argument is simple, merge takes a copy chain as its

second argument, and is defined as per the following cases (merge1–4, affixRaise1–

2, and affixLower):

(s1, s2, s3) :: =xγ, α
{

(t1, t2, t3) · x, β
}

(s1, s2, s3t1t2t3) : γ, αβ
merge1

(s1, s2, s3) :: =>xγ, α
{

(t1, t2, t3) · x, β
}

(s1, t2s2, s3t1t3) : γ, αβ
affixRaise1

(s1, s2, s3) :: x=> γ, α
{

(t1, t2, t3) · x, β
}

(s1, ε, s3t1t2s2t3) : γ, αβ
affixLower

(s1, s2, s3) : =xγ, α
{

(t1, t2, t3) · x, β
}

(t1t2t3s1, s2, s3) : γ, α, β
merge2

(s1, s2, s3) :: =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(s1, s2, s3t1t2t3) : γ, α

 ...

(t′1t
′
2t
′
3, χ)

 β
merge3

193

(s1, s2, s3) :: =>xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(s1, t2s2, s3t1t3) : γ, α

 ...

(t′1t
′
2t
′
3, χ)

 β
affixRaise2

(s1, s2, s3) : =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(t1t2t3s1, s2, s3) : γ, α

 ...

(t′1t
′
2t
′
3, χ)

 β
merge4

When the first argument to merge is a copy chain, the second argument is a

sequence of copy chains, the length of which is equal to that of the first, and

merge(


ek

...

e1

 ,


∆k

...

∆1

) :=


merge(ek,∆k)

...

merge(e1,∆1)


And finally when both arguments to merge are sequences of copy chains,

merge(


Γk

...

Γ1

 ,


∆`

...

∆1

) :=



merge(Γk,


∆`

...

∆1+Σk−1
i=1 |Γi|

)

...

merge(Γ1,


∆|Γ1|

...

∆1

)



194

None of our rules above require that the components of the sequences used are

identical. To ensure this, we introduce a new operation, select, which copies lexi-

cal items (thereby reducing copying of arbitrarily complex derivations to copying

of atomic derivations). The domain of select is the disjoint union of lexical items

(expressions in Σ×Σ×Σ×{::}×Syn∗) and the set of sequences of copy chains.

For ` a lexical item, c` its associated copy chain, and c1, . . . , ck copy chains, k ∈ N,

select(`) =
(
c`

)

select(


ck
...

c1

) =


ck
...

c1

c1


A synchronous minimalist grammar is completely determined by an arbitrary

finite subset Lex of the lexical items, its lexicon. The expressions generated by a

synchronous minimalist grammar are defined in the standard way, as the closure

of its lexicon under the generating functions. The (string) language generated by

a synchronous minimalist grammar G = 〈Σ, lic, sel, Lex, c〉 is

L(G) := {w ∈ Σ∗ : G `
({

w · c
})
}

C–1.3 The Complexity of Derivational Copying

Given a synchronous minimalist grammar Gsyn = 〈Σ, lic, sel, Lex, c〉, it is pos-

sible to construct a weakly equivalent minimalist grammar with copying, Gcopy.

Indeed, Gcopy = Gsyn. Furthermore, there is a clear sense in which the two gram-

mars are strongly equivalent as well: there are structure preserving bijections

from derivations in one grammar to those in the other, such that derivations of

complete expressions of category c in one grammar are mapped to derivations

195

of complete expressions of category c in the other, and moreover the expressions

are ‘identical but for the bracketing’, so that given dsyn and dcopy derivations of

complete expressions esyn and ecopy of category c in Gsyn and Gcopy respectively

that are mapped to each other by these structure preserving expressions,

esyn :=
({

(t, u, v) : c
})

ecopy := (t, u, v) : c

But what structure is preserved? Intuitively, derivations in Gsyn just are deriva-

tions in Gcopy to which have been added various numbers of unary branching

internal nodes over the leaves labelled by select. And so we can obtain the corre-

sponding Gcopy derivation from any Gsyn derivation just by deleting these select

branches. We can model this via a homomorphism, h.

h(select(α)) = h(α)

h(move(α)) = move(h(α))

h(merge(α, β)) = merge(h(α), h(β))

Going the other way, from derivations in Gcopy to derivations in Gsyn, the claim

is that there exists a function inverse to h above. This by itself is uninteresting,

as between any two equinumerous sets there exist functions which preserve any

invariant you desire.15 The interesting question is how difficult it is to compute

this function. We can think of the synchronous derivation as computing numerical

relationships between lexical items: the number of copies of each that is required.

The numerical relationship is simple to understand. We say that a leaf `1 in the

derivation tree m-commands a leaf `2 just in case `1 is the left-most leaf of some

node dominating both `1 and `2, and `1 is not `2. `1 immediately m-commands

`2 just in case `1 is the left-most leaf of the first node dominating `2 that `2

is not the left-most leaf of. In figure 3.4, `1 m-commands all other leaves, `2
15Adopting a (relatively standard) non-constructive account of functions.

196

!1

!2 !3
!4 !5

!6

!7

1

Figure 3.4: Computing m-command in the derivation tree

m-commands just `3, `4 m-commands `5 and `6, and `3, `5, `6 and `7 don’t

m-command anything. Now, each lexical item in a synchronous derivation tree

needs to be selected as many times as the product of the number of categorial

(f) and licensee (-f) features of each lexical item m-commanding it, unless it

is the left-most leaf of the root, in which case it must be selected exactly once.

We can give an inductive characterization of this relation in terms of immediate

m-command as follows. We let n` be the number of select branches dominating

leaf `, and f` the sum of the number of categorial and licensee features of `. Then

n` =



1 if ` is the left-most

leaf of the root

n`′ × f`′ otherwise, for `′ the immediate

m-commander of `

We can compute this function in two steps. Each step is computed by a total

deterministic macro tree transducer. In the first step we perform the necessary

multiplications, representing numbers as trees with leaves the symbol ?. This

representation allows us to perform multiplication by i without any additional

computation; we simply introduce an i-ary branching node δi, and as its children

we put i copies of our original number qua tree. We indicate that n copies of ` are

required by replacing the leaf ` with the tree τ(`, x), where x is the representation

197

of n as described above.

Formally, we defineM1 = 〈Q,P,Σ,Λ,→, q, δ〉 to be a linear total deterministic

2-macro tree transducer with regular look-ahead, where

• 〈P,Σ,←〉 is a total deterministic bottom-up tree automaton,

– P = {pi : i = f`, some ` ∈ Lex} is the set of states

– Σ is the input alphabet, defined below

– ← is a finite set of productions consisting of

pf`
(`)← `

pi(move(x))← move(pi(x))

pi(merge(x1, x2))← merge(pi(x1), pj(x2))

• Q = {q(1), q
(2)
i : i = f`, some ` ∈ Lex} is the ranked set of states,

• Σ = {merge(2),move(1), `(0) : ` ∈ Lex} is the ranked input alphabet,

• Λ = {merge(2),move(1), `(0), τ (2), δ
(i)
i , ?(0) : ` ∈ Lex and i = f`} is the out-

put alphabet,

• → is a finite set of productions consisting of

q(x)→ qi(x, ?), 〈pi〉

qi(`, y)→ τ(`, y)

qi(move(x), y)→ move(qi(x, y))

qi(merge(x1, x2), y)→ merge(qi(x1, y), qj(x2, δi(y, . . . , y))), 〈pi, pj〉

198

In the second step, we are engaged in transforming representations. Given the

correct computation of the numerical relations from the first step, we next trans-

form the tree-based representation of numbers into the list-based representation

we need. Upon encountering a tree τ(α, β), we know that α is some lexical item,

and β is a tree representing the number of select branches that must dominate

α. We traverse the tree β, putting one select branch over α for each ? leaf we

encounter.

Formally, we define M2 = 〈R,Λ,∆, , r〉 to be a linear total deterministic

two-state 2-macro tree transducer, where

• R = {r(1), s(2)} is the ranked set of states,

• Λ, as defined above for M1, is the ranked input alphabet

• ∆ = {merge(2),move(1), select(1), `(0) : ` ∈ Lex} is the ranked output al-

phabet,

• is a finite set of productions, such that

r(merge(x1, x2)) merge(r(x1), r(x2))

r(move(x)) move(r(x))

r(`) `

r(τ(x1, x2)) s(x2, r(x1))

s(δi(x1, . . . , xi), y) s(x1, s(. . . , s(xi, y) . . .))

s(?, y) select(y)

We can compute h−1 by composing M1 and M2. We are now in a position to give

a formal reconstruction of Chomsky’s [32] claim that

199

It has sometimes been suggested that [the internal merge approach to

copying] should be eliminated in favor of [the external merge approach

to copying]. [. . .] It [. . .] requires some other device to distinguish

copies from unrelated occurrences. And it involves additional com-

putation when a phrase that would otherwise be internally merged

(moved) has to be generated independently before merger, then some-

how identified as a copy [. . .]

We have already seen how to distinguish accidental from grammatically relevant

copies. How much ‘additional computation’ is required to generate the right

number of copies? We have shown that we need at most a total deterministic

macro tree transducer working on the output of another.16

C–2 Pronunciation of Copies

The synchronization of minimalist grammars presented in the previous section

allows us to implement the copy theory of movement, whereby a structural copy of

an element is in each of its chain positions. However, the copy theory of movement

makes more complex the mapping from derived structure, which is now populated

with copies, to the pronounced form of a sentence (as well as its meaning), which

still usually isn’t. There are two problems here, which will be taken up in § C–2.1.

First, that given the structures assigned to sentences, there is an overwhelming

trend to pronounce only the structurally highest copy of a given expression, if

multiple such exist. There are a number of proposals regarding how this is best

formalized, and we shall see how our generating functions provide us with the

16Engelfriet and Vogler [54] show that any total deterministic macro tree transducer with
regular look-ahead is equivalent to one without. Their construction requires |P | − 1 additional
states (P is the set of look-ahead states), each of rank 3. They also show that total deterministic
macro tree transducers are not closed under composition.

200

right distinctions to allow us to immediately implement these ideas in a natural

and simple fashion. There are cases, however, which have been persuasively

argued to involve the pronunciation of a lower copy instead of the default highest

one. In § C–2.1.1 I will review proposals which make the choice of which copy

to pronounce dependent on which copies of other chains are spellt-out, and will

show how to implement these ideas in our current formalism. I then explore two

ways to effect multiple spell-out of chains, based on ideas of Koopman [95] and

of Nunes [131].

C–2.1 Spelling Out Only One Chain Link

There are a number of proposals as to how best to nullify at the PF-side the

duplicative effect of the copy theory of movement—essentially, how to recover the

pronunciation properties of the trace theory of movement. All of the proposals

agree as to which copy should be pronounced (the structurally highest, although

with the possibility of remnant movement a simple statement of this becomes

challenging), however only Nunes [131] attempts to justify this in terms of more

basic principles. Nunes envisions a theory of copying which copies not only the

gross syntactic structure of the target phrase, but also the features contained in

it. This has the consequence that higher copies have no more unchecked features

than lower copies, and, when the movement is driven by unvalued features, may

have fewer. Assuming that only a single member of a chain may be pronounced,

Nunes derives the observation that it is the highest link by appeal to a more

general dispreference for unchecked features at the interfaces.

In the context of (synchronous) minimalist grammars, a chain link is highest

just in case it has no more licensee or selectee features to check. Thus, we recover

the standard ‘trace theory’ of movement by incorporating the phonetic matrix of

201

the moved or merged phrase only in the case of move1 and merge1 and merge2

(which fact enables us to collapse the definitions of merge3 and merge4).17

(s1, s2, s3) : +xγ, α
[

(t, -x)
]
β

(ts1, s2, s3) : γ, αβ
move1

(s1, s2, s3) : +xγ, α


...

(t′, χ)

(t, -x)

 β

(t/s1, s2, s3) : γ, α

 ...

(t′, χ)

 β
move2

(s1, s2, s3) :: =xγ, α
{

(t1, t2, t3) · x, β
}

(s1, s2, s3t1t2t3) : γ, αβ
merge1

(s1, s2, s3) : =xγ, α
{

(t1, t2, t3) · x, β
}

(t1t2t3s1, s2, s3) : γ, αβ
merge2

(s1, s2, s3) :: =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(s1, s2, s3t1t2t3///////) : γ, α

 ...

(t′1t
′
2t
′
3, χ)

 β
merge3

(s1, s2, s3) : =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(t1t2t3///////s1, s2, s3) : γ, α

 ...

(t′1t
′
2t
′
3, χ)

 β
merge4

17affixLower and affixRaise1 are carried over from the above unchanged. affixRaise2, if we
want to recover our old strategy, should be left out.

202

Note that this derivational formulation of the conditions on chain pronun-

ciation correctly derives the distribution of overt copies within remnant moved

constituents, a non-trivial (see [62]) feat.18

C–2.1.1 Allowing Chains to Interact

The pronunciation proposal articulated above assumes that, for each chain, the

choice of which of its links to pronounce proceeds independently of the remainder

of the chains in a structure. There have been a number of proposals that the

choice of chain link to pronounce might be made dependent not only on syntactic

properties, but also on the chain link’s immediate phonological neighborhood

(which can vary along with the choice of pronunciation for other chains). Recall

the case of multiple wh-movement in Serbo-Croatian (repeated below). Examples

3.16 and 3.17 are illustrative of the general pattern of multiple wh-movement in

Serbo-Croatian—wh-words must be fronted.

(3.16) Ko
who

šta
what

kupuje?
buys

‘Who buys what?’

(3.17) ?*Ko kupuje šta?

However, as the examples below show, this is not always the case. Examples 3.18

and 3.19 show exactly the opposite pattern of judgements from the above.

(3.18) ?*Šta šta uslovjava?

18To see this, observe that ‘remnant movement’ describes cases in which a phrase α is at one
point in the derivation a sister to a phrase β, both of which move independently later. In our
system, α would be part of a non-trivial copy chain when attracted to β, and thus wouldn’t
leave any phonological residue, as only those cases of the generating functions affix phonological
material to the head phrase which involve trivial copy chains.

203

(3.19) Šta
what

uslovjava
conditions

šta?
what

Interestingly, if an adverb can intervene between the wh-phrases, then the ‘ex-

pected’ pattern of judgements is restored.

(3.20) Šta
what

neprestano
constantly

šta
what

uslovjava?
conditions

‘What constantly conditions what?’

(3.21) ?*Šta neprestano uslovjava šta?

These examples have indicated to some the existence of a constraint militating

against adjacent tokens of the same morpheme. The ‘flipped’ judgements of 3.18

and 3.19 are accounted for in terms of this constraint, violations of which can be

avoided by pronouncing a lower copy of the wh-word (3.19). That this is a ‘last

resort’ is appealed to in order to rule out 3.17 and 3.21.

In the context of (synchronous) minimalist grammars, we can mimic certain

aspects of this kind of behaviour without enriching our representational scheme

(much). We begin by defining a system that permits any chain link to be pro-

nounced, so long as exactly one is. First, we re-define non-initial chains to include

a boolean value the interpretation of which is that of recording whether the sur-

face position of that particular non-initial chain has been reached (i.e. whether

that non-initial chain has been pronounced (•) or not (◦)), so for φi a non-initial

chain, φi ∈ (Σ∗ × {◦, •} × F)+. Instead of re-presenting all of the cases of merge

and move, I concentrate instead on the cases of move; the extensions needed to

the others to implement this kind of phonological sensitivity should become ob-

vious. Move2 is factored into two cases. In the first, the moved chain link is not

pronounced, and so it doesn’t matter whether or not some representative of its

copy chain already has been (⊕ ∈ {◦, •}).

204

(s1, s2, s3) : +xγ, α


...

(t′ ⊕ χ)

(t⊕ -x)

 β

(t/s1, s2, s3) : γ, α

 ...

(t′ ⊕ χ)

 β
move2a

In the second case, the moved chain link is pronounced, and so no other link

may have been pronounced before (◦), and all remaining links in its copy chain

are marked as having already been pronounced (•).19

(s1, s2, s3) : +xγ, α


...

(t′ ◦ χ)

(t ◦ -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′ • χ)

 β
move2b

To ensure that at least one link has been pronounced, move1 is broken into cases

as follows. In the first case, the moving chain has already been pronounced in a

previous link (•), and thus shouldn’t be again.

(s1, s2, s3) : +xγ, α
[

(t • -x)
]
β

(t/s1, s2, s3) : γ, αβ
move1a

In the second case, the moving chain has not yet been pronounced (◦). As

this is the last chain link, and thus the last opportunity for pronunciation, it is

pronounced.

(s1, s2, s3) : +xγ, α
[

(t ◦ -x)
]
β

(ts1, s2, s3) : γ, αβ
move1b

19Strictly speaking, move is no longer a function, as the functions move2a and move2b overlap
in their domains.

205

This extension to (synchronous) mgs allows for a simple definition of the

candidate sets used in analyses of the data above—the members of a particular

candidate set will have isomorphic derivation trees.20 So as to avoid reifying

candidate sets as grammatical objects, we will need to find a way to rule out

‘bad’ candidates without reference to the other candidates in their set. Assume

for the sake of concreteness a single constraint which rules out adjacent tokens

of identical morphemes. It is not possible in general to recover the ‘as good as

it gets’ behaviour of a classical OT system, in which some alternative will be

chosen even if there is no way to avoid sequences of identical morpheme tokens.

In (obvious extensions to) the present system, derivations which position any

identical tokens adjacent to one another will crash, and thus in the imagined case

no derivation will converge. Although in principle possible to come up with such

examples as would decide between these different behaviours, Serbo-Croatian

marks case on dative objects, making it difficult to concoct examples in which

the initial wh-cluster contains three adjacent mono-morphemic wh-words.

We might implement a ban on adjacent copies of a particular morpheme in

a number of ways. First, we could do it post-syntactically, by means of a filter

on generated sentences, prohibiting any which violate the ban. Another alter-

native is to crash a derivation as soon as it attempts to concatenate two strings

together which have tokens of the same morpheme at the edges which are being

concatenated together. In the general case, this amounts to applying a filter at

each step in the derivation. However, many kinds of phonology-syntax interac-

tions seem to be sensitive not just to adjacency, but also to surface constituency

20Recall that ‘move’ and ‘merge’, as the unions of the functions move1a, move1b, etc., are
no longer functions, as these cases out of which they are composed overlap. Another way to
state the canditate set given a derivation d is as h−1(h(d)), where h maps the functions out of
which move is composed to the symbol v, and the functions out of which merge is composed to
the symbol r.

206

(or perhaps just to phonological phrasing). If this were a general property of

phonology-syntax interactions, we would expect the adjacency of a deeply em-

bedded wh-word with one structurally very distant not to force the pronunciation

of a lower copy in the Serbo-Croatian cases.

To ensure that lower copies are pronounced only as a last resort, we need

to be able to check whether or not higher positions would have been adjacent

to pronounced identical morphemes. A simple way of doing this is to interpret

the output of our syntax as a term in a more complicated structure than a free

monoid. If we take a structure with directional inverses, we can introduce the

term xrx in every chain position higher than the pronounced position. This term

‘looks to the left’ for an x; upon finding one, both the leftmost x and the xr are

cancelled out, leaving just the rightmost x behind. If there is no x on the left to be

found, the term, we will decide, is uninterpretable by some necessary system on

the PF branch of the derivation. Pregroups, as developed by Lambek [101, 102]

(see also [23]), are elegant algebraic structures with right (and left) inverses, and

will serve as the objects which, on the PF side, syntactic derivations are mapped

into.21 A free pregroup is given by a set of basic types BasTyp and a partial

order over those types, which indicates the ‘is-a’ relation (e.g. a transitive verb

is-a verb). For our purposes, we are interested in the rewriting system given by

21A pregroup is a structure (G,≤, ·, l, r, 1) such that (G, ·, 1) is a monoid satisfying (for all
a, b, c ∈ G)

if a ≤ b, then ca ≤ cb and ac ≤ bc

and l, r are unary operations over G satisfying (for all a ∈ G)

ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara

207

the following rules:

xaary → xy (CON-r)

xalay → xy (CON-l)

We take as our set BasTyp of basic types the string components of our lexical

items.

We need modify only the move family of operations. In the case of a moving

element which has already been pronounced, we insert the term wrw.

(s1, s2, s3) : +xγ, α
[

(t • -x)
]
β

(trts1, s2, s3) : γ, αβ
move1a

(s1, s2, s3) : +xγ, α


...

(t′ • χ)

(t • -x)

 β

(trts1, s2, s3) : γ, α

 ...

(t′ • χ)

 β
move2a

In the case where the moving chain has not yet been pronounced (◦), we may

either choose to pronounce it (move1b and move2b), or to do nothing (move2c).

(s1, s2, s3) : +xγ, α
[

(t ◦ -x)
]
β

(ts1, s2, s3) : γ, αβ
move1b

(s1, s2, s3) : +xγ, α


...

(t′ ◦ χ)

(t ◦ -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′ • χ)

 β
move2b

208

(s1, s2, s3) : +xγ, α


...

(t′ ◦ χ)

(t ◦ -x)

 β

(s1, s2, s3) : γ, α

 ...

(t′ ◦ χ)

 β
move2c

C–2.2 Spelling Out Multiple Chain Links

Koopman [95] introduces ‘complexity filters,’ which, stated over trees, require

that pronounced material be within a certain distance from the root. She allows

heads to be lexically associated with possibly different filters, which are satisfied

in the course of a derivation just in case a subtree satisfying the filter is in the

specifier of the head associated with it. A minor variant of this perspective views

heads as able to require the spellout of their specifiers. In the present system, we

allow for multiple spell-out by means of featural diacritics on selector (=x̂) and

licensor (+x̂) features (which we can say ‘require the spellout’ of the link they

license). For each case in the definitions of merge and move, we ‘shadow’ it with

a parallel case involving a selector or licensor feature with the diacritic. The cases

of move2 are given below.

(s1, s2, s3) : +xγ, α


...

(t′, χ)

(t, -x)

 β

(t/s1, s2, s3) : γ, α

 ...

(t′, χ)

 β
move2

209

(s1, s2, s3) : +x̂γ, α


...

(t′, χ)

(t, -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′, χ)

 β
move2r

Nunes [131] examines a number of cases of what are commonly analyzed as

the spell-out of multiple chain links. Having developed a theory which forbids

more than one link being phonetically realized, Nunes postulates the existence of

an operation which exceptionally allows a particular link to be realized without

‘counting’ as having been realized for the purposes of the rest of the chain. He

dubs this operation ‘reanalysis’, and hypothesizes that it may have something

to do with morphology, as in the cases involving multiple spell-out which he

examines, there is an asymmetry between morphologically complex items, which

cannot be multiply realized, and morphologically simple items, which can. To

implement this, we keep the diacritics on the selector and licensor features that

we introduced above, with the interpretation that the material in a diacritic

licensed chain link must be spellt out. We also adopt the chain-interaction system

using the markers • and ◦ to indicate whether a chain has been pronounced.

However, we now reinterpret these booleans so as to indicate whether a chain

has been pronounced in a non-diacritic marked position. As Nunes assumes that

chains are pronounced in their highest non-diacritic marked link, we formulate

our operations so as to enforce this.

The cases of move1 are as before, with the addition of move1r, which requires

that the moving link’s chain already have been spellt out, as the highest link will

210

be in a diacritic marked position.

(s1, s2, s3) : +xγ, α
[

(t • -x)
]
β

(t/s1, s2, s3) : γ, αβ
move1a

(s1, s2, s3) : +xγ, α
[

(t ◦ -x)
]
β

(ts1, s2, s3) : γ, αβ
move1b

(s1, s2, s3) : +x̂γ, α
[

(t • -x)
]
β

(ts1, s2, s3) : γ, αβ
move1r

The cases of move2 are the same as before, with the addition of move2r.

Move2r is exactly like move2a, but for the diacritic on the licensor feature. A

moment’s thought will convince us that this is as desired. As (non-final) reanal-

ysis does not affect where a chain should be spellt out, it should apply regardless

of whether the chain already has been or not.

(s1, s2, s3) : +xγ, α


...

(t′ ⊕ χ)

(t⊕ -x)

 β

(t/s1, s2, s3) : γ, α

 ...

(t′ ⊕ χ)

 β
move2a

(s1, s2, s3) : +xγ, α


...

(t′ ◦ χ)

(t ◦ -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′ • χ)

 β
move2b

211

(s1, s2, s3) : +x̂γ, α


...

(t′ ⊕ χ)

(t⊕ -x)

 β

(ts1, s2, s3) : γ, α

 ...

(t′ ⊕ χ)

 β
move2r

Merge1 and merge2 are unchanged, and the cases merge1r and merge2r are

similarly uninteresting (differing from merge1 and merge2 just in the reanalysis

diacritic on the licensor feature). Merge3 and merge4, along with their reanalysis

variant merge3r, are shown below. There is no merge4r.

(s1, s2, s3) :: =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(s1, s2, s3t1t2t3///////) : γ, α

 ...

(t′1t
′
2t
′
3 ◦ χ)

 β
merge3

(s1, s2, s3) :: =x̂γ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(s1, s2, s3t1t2t3) : γ, α

 ...

(t′1t
′
2t
′
3 ◦ χ)

 β
merge3r

(s1, s2, s3) : =xγ, α


...

(t′1, t
′
2, t

′
3) · χ, β′

(t1, t2, t3) · x, β


(t1t2t3///////s1, s2, s3) : γ, α

 ...

(t′1t
′
2t
′
3 • χ)

 β
merge4

212

CHAPTER 4

Copying in Language

There have been a number of natural language constructions that immediately

suggest to linguists a description in terms of copying, ranging from yes-no ques-

tions in Mandarin Chinese [81], to free relatives in languages as diverse as Mala-

gasy, Bambara [49], and various dialects of Italian [70], to the more exotic X-or-

no-X construction in the less exotic English. While linguists seem generally to be

in favour of adopting some form of copy mechanism (though there are (justified)

reservations), the particular nature of ours treats copying as of ‘things that once

were’—our copying is of objects at earlier stages of their derivation. As such, we

allow for a certain kind of opaque relation between copies—our copies are not

necessarily ‘surface true’. In this section, we will exhibit and analyze data from

the West African language Yoruba which our derivational approach to copying

can give an elegant account of. Yoruba provides an ideal testing ground for the-

ories of the mechanisms underlying copying, as, unlike the better known cases

of copying in which just a single word (or morpheme) is copied, in Yoruba the

copies are of syntactically complex expressions. In the appendices, we take a step

back from any particular theory of grammar, and argue that natural languages,

while still possibly polynomially parsable, are not of ‘constant growth’, and thus

that the hypothesis of the mild context-sensitivity of natural language is false as

stated.

213

1 Yoruba

One of the major languages of Nigeria, Yoruba (Niger-Congo:Benue-Kwa) is the

mother tongue of nearly nineteen million nigerians.1 Yoruba is an SVO language,

which, with English, exhibits a number of head initial properties, such as verbs

preceding their objects, complementizers preceding their sentences, and adposi-

tions preceding their nouns. Yoruba also has nouns preceding adjectives, and

possessors being preceded by the things possessed.

In this chapter, we will focus on a particular construction in Yoruba, the

relativized predicate construction, as shown in 4.2 and 4.3.

(4.1) Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

“Jimo. bought a chicken”

(4.2) Rira
buying

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

“the fact/way that Jimo. bought a chicken”

(4.3) Rira
buying

adie.
chicken

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

(same)

The obvious generalization (and the one made uniformly by those linguists work-

ing on this and related constructions in this and related languages) is that in

1Once classified as a Kwa language, Yoruba has been argued to be better situated in its
own Yoruboid branch of the Benue-Congo phylum. There is some disagreement present in the
literature. Yoruba orthography is similar to that of English, with the exception that the char-
acter ‘p’ represents the diphone /kp/ (the voiced version of which is written ‘gb’). The letters
‘o. ’, ‘e.’, and ‘s.’ represent /O/, /E/ and /S/ respectively. Although tone in Yoruba is phonemic
(there are three level tones, written h́, m, l̀), I will not mark tone in the examples. ‘Yoruba’ is
a broad cover term for a number of dialects, some more, some less mutually intelligible. The
judgements reported herein, unless otherwise indicated, reflect those of my consultant, Damola
Osinulu, a native speaker of the dialect spoken in Lagos (called ‘standard Yoruba’).

214

expressions like 4.2 and 4.3, the material to the left of ti is a copy of either the

verb, or the verb phrase to the right of ti.

In Yoruba, as is the case with many of its neighbors, multiple verbs can be

strung together in a single sentence (as in 4.4 and 4.5), to express a sequence of

related events.2

(4.4) Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

“Jimo. bought the chicken to cook”

(4.5) Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

“Jimo. bought the chicken to cook and eat”

Such sentences give rise to a surprising diversity of relativized predicates. Ex-

amples 4.7 and 4.6 show the copied verb phrase and copied verb we might have

expected given our previous examples. Example 4.8 on the other hand, appears

to violate our intuitive generalization.

(4.6) Rira
buying

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

“the fact/way that Jimo. bought the chicken to cook”

(4.7) Rira
buying

adie.
chicken

se
cook

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

(4.8) Rira
buying

se
cook

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

Clearly, the part to the left of ti in example 4.8 is a copy of something, but what?

Our copying mechanism as developed in chapter 3 allows us to elegantly describe

2Not just any sequence of verbs makes for an acceptable sentence. The conditions under
which this obtains are complex, and poorly understood. I will not attempt to remedy this
situation here.

215

the relation between the two ‘copies’ in 4.8 as one of copying, rendered opaque by

further derivation. We will see that the relation between copies in 4.8 is as simple

and natural to describe using our derivational copy mechanism as are those in 4.6

and 4.7; there is no additional complexity in example 4.8, all three examples are

derived in exactly the same way. To see this, however, we need first to develop a

theory of the grammar of Yoruba, to which task we now turn.

1.1 Simple Sentences

Intransitive sentences in Yoruba have subject-verb order, as in 4.9. Between

the full DP subject and the verb there appears a high tone syllable (HTS) that

surfaces as a copy of the final, low-toned, coda of the subject, or as a high tone

on the final, non-low-toned, coda of the subject, which we identify with the

non-future tense (following [17]), and represent uniformly as a copy of the final

syllable.3

(4.9) Akin
Akin

in
hts

s.ubu
fall

“Akin fell”

In a transitive sentence, the object follows the verb.

(4.10) Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

“Jimo. pushed Akin”

3There is disagreement as to the categorial identity as well as the semantic contribution of
the HTS. The HTS does not occur with morphemes such as the future marker yóò and the
sentential negator kò, or when the subject is a pronoun, but may occur with the word máa,
which is similar in meaning to yóò, as well as various other aspect markers (see e.g. [135]). It also
occurs in infinitival clauses (see [6] for a historical perspective). We will largely ignore these
subtleties here, and will populate our fragment with sentences lacking tense/aspect markers
other than the HTS.

216

Both of these sentences can be accomodated if we assign types to lexical items

as in figure 4.1.4

Jimo. ::d V::=v =d t s.ubu::v

Akin::d ti::=d v

Figure 4.1: Yoruba (I)

Although there is in general no passive operation in Yoruba, a class of verbs

appears in both transitive and intransitive frames (the causative-inchoative al-

ternation). Bode [17] suggests identifying this class with the class of causative

predicates the logical subjects of which are not necessarily agentive.

(4.11) Jimo.
Jimo.

o.
hts

fo
break

igo
bottle

“Jimo. broke the bottle”

(4.12) Igo
bottle

o
hts

fo
break

“The bottle broke”

The existence of such an alternation (limited though it may be) provides us with a

language internal motivation for postulating that, as in our grammar for English,

Yoruba DPs are merged (d) in positions which may be different from where they

ultimately are pronounced (-k).5 As now Yoruba DPs are non-trivial chains, it

seems natural to carry over to Yoruba the semantics developed for English in

chapter 2. Accordingly, we need to assign another licensee feature (-q) to DPs,

so as to be able to interpret them without type raising. To capture the fact that

4We must also assume that the HTS (here represented as a high-toned abstract vowel ‘V’, is
interpreted appropriately by the phonological component as a copy of a preceeding low toned
coda, or as a simple high tone on a non-low coda.

5Another construction which might lead to similar conclusions is the ‘object raising’ OV
complement clause construction examined in [138].

217

only some verbs participate in the causative-inchoative alternation, we assign

these verbs the category inch, and take their semantic denotation to be that of

their transitive version. The causative alternant is then derived with the lexical

item ε::=>inch V, which is interpreted as the identity function. We derive the

inchoative alternant by means of the lexical item ε::=>inch v, which we interpret

as we did the English passive.6

[[ε :: =>inch v]] = some

Again, we assume that Yoruba DPs all have the same type, irrespective of

whether they are syntactic subjects or objects. This entails, among other things,

that even those verbs which are not of category inch must move around their

objects so as to precede them in the sentence. Our new lexicon is as in figure 4.2.

Jimo. ::d -k -q V::=perf +k +q s s.ubu::=d v

Akin::d -k -q ε::=>v perf ti::=d V

igo::d -k -q ε::=>V +k =d +q v fo::=d inch

ε::=>inch v

ε::=>inch V

Figure 4.2: Yoruba (II)

6This treatment of the alternation is almost certainly incorrect, as it assumes that we con-
ceptualize all breaking as having a cause (and thus disallows spontaneous breakage). A natural
approach would allow variables to range over events, and to take the inchoative meaning as the
basic one. Then the causative lexical item could be interpreted as follows

[[ε :: =>inch V]] = λV.λx.λe.∃e′.cause(e, e′) ∧ V (e′) ∧ agent(e) = x

Our semantics supports such an extension to a two-sorted ontology, and indeed to any finite
number of sorts. Assignment functions become pairs (or more generally, finite tuples) of infinite
sequences over objects of each sort (which we can code up as a single assignment function, as in
appendix B–2). Events might prove useful as well in capturing more accurately the entailments
of serial verb sentences (see footnote 10).

218

We interpret Jimo. (and, more generally, all individual denoting expressions)

as the generalized quantifier Jimo. , where, for j the constant function from as-

signments to Jimo. ,

Jimo. = λP.P (j)

1.2 Serial Verbs

If we take sentences 4.9 and 4.10, we can ‘put them together’ as in 4.13.

(4.13) Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

s.ubu
fall

“Jimo. pushed Akin down”

In sentence 4.13, the DP Akin is ‘shared’ among the two verbs, playing a dual

role as the logical object of ti, and the logical subject of s.ubu. This has been

analyzed in two basic ways. First, Baker [8] and others (e.g. [107, 110]) have

argued that there is a single syntactic occurance of the shared DP, and that

the predicates ti and s.ubu form a single ‘complex’ predicate for the purposes

of licensing this DP. Collins [42, 43] and others (e.g. [3, 105, 164]) have argued

that each predicate selects its own argument, and that the selected arguments

are later ‘linked’ syntactically.7

As we have already developed, for the analysis of control in English, a mech-

anism which allows for DPs to be shared by predicates, our minimalist bent

7Although this basic analytical distinction seems clear enough (‘are there two syntactic argu-
ment positions, or just one?’), it is actually not straightforward to discern potential substantive
differences from betwixt the non-essential differences in notation. (What does it mean for an
obligatorially bound and never pronounced semantic argument to be realized syntactically?)
It seems to me that the differences between analyses in either of these two camps all come
down to which mechanisms are being co-opted by the analyst (i.e. which phenomena serial
verbs are being attempted to be unified with). Thus a tighter typology of serial verb analyses
would avoid the apparently artifical distinction articulated above about argument positions,
and instead indicate with which other phenomena serial verbs are taken to have something in
common.

219

pushes us toward this latter analytical option.8 Accordingly, we need to combine

the expression below

(ε, s.ubu, ε) : v, (Akin, *d -k)

with the verb ti. We want to combine the expression above with ti, and then to

control move Akin to satisfy the selectional requirements of the verb ti. We thus

assign the type =v =d V to ti. However, now we have perpetuated a widespread

lexical ambiguity, as two types (=d V and =v =d V) are assigned to every transitive

verb (at least, to every transitive verb participating in a resultative serial verb

construction, which is quite a few of them). Our existing grammatical operations

and type system are powerful enough to allow us to describe this situation in the

object language of our theory, simplifying our lexicon in the process. We assign

to transitive verbs the type tv, and with the empty lexical items ε::=>tv =d V

and ε::=>tv =v =d V we state that each transitive verb may optionally select a vP

complement. Semantically, these lexical items are interpreted as sketched below.9

8There are two basic methodological options. The first, of which the minimalist program is
the linguistic embodiement, urges against the reckless proliferation of mechanisms, encouraging
reuse of already developed analytical tools whenever possible. This makes unification of diverse
phenomena a methodological imperative. The other option, which has not been as clearly
articulated, but which seems to be behind various criticisms of the principles and parameters
approach to grammar, is to describe each construction as completely as possible, availing oneself
of whatever and as many mechanisms as make for simple and elegant descriptions.

Practitioners of this first option sometimes motivate it on the basis of learning, claiming
that if the analytical resources are limited, the learner’s options at each point in time will be
small in number, thereby presenting it with a more manageable situation. Practitioners of the
second option sometimes motivate it on the basis of learning, claiming that allowing the learner
more analytical options permits it to state simpler, more surface true generalizations, thereby
presenting it with a more manageable situation. Both positions seem reasonable, as far as they
go. To advance discussion it seems necessary to propose specific learning algorithms.

9The function and is intended to be the natural extension of the sentential connective of
the same name to higher types. It has type [α→ β]→ [α→ β]→ α→ β, where β ‘ends in T ’
(a type α ends in T just in case either α = T or α = β → γ and γ ends in T). We define and
recursively as follows.

if X, Y are of type α→ T and a is of type α, then

(and(X)(Y))(a) = true iff X(a) = Y (a) = true

220

10

[[ε :: =>tv =d V]] = id

[[ε :: =>tv =v =d V]] = λR.λΦ.λx.λy.and(R(x)(y))(Φ)

We derive sentence 4.13 in the following way, with a derived tree structure as in

figure 4.3.

1. cmerge(s.ubu::=d v, Akin::*d -k -q)

(ε, s.ubu, ε) : v, (Akin, *d -k -q)

fall(x0), 〈x0, G(Akin)(λ0)〉

2. merge(ε::=>tv =v =d V, ti::tv)

(ε, ti, ε) : =v =d V

λΦ.λx.λy.and(push(x)(y))(Φ)))

3. merge(2, 1)

(ε, ti, s.ubu) : =d V, (Akin, *d -k -q)

λx.λy.and(push(x)(y))(fall(x0)), 〈x0, G(Akin)(λ0)〉

4. cmove1(3)

(ε, ti, s.ubu) : V, (Akin, -k -q)

λy.and(push(x0)(y))(fall(x0)), G(Akin)(λ0)

otherwise for X, Y of type α→ β (where β ends in T) and a of type α,

(and(X)(Y))(a) = and(X(a))(Y (a))

10This treats serial verb sentences as semantic conjunctions of their component verb phrases.
This is not quite right, as in sentences like 4.13 Akin’s falling is asserted to be a direct result
of his having been pushed by Jimo. One way to capture this aspect of the meaning of such
sentences is to enrich our semantic ontology to include events and a relation of direct causation.

221

>

Jimo. : >

λ <

V:s <

ti: >

Akin: >

λ >

λ <

ε: >

λ >

<

s.ubu: λ

<

ε: ε:

1

Figure 4.3: The derived structure for sentence 4.13

5. merge(ε::=>V +k =d +q v, 4)

(ε, ti, s.ubu) : +k =d +q v, (Akin, -k -q)

λy.and(push(x0)(y))(fall(x0)), G(Akin)(λ0)

6. move(5)

(ε, ti, s.ubu) : =d +q v, (Akin, -q)

λy.and(push(x0)(y))(fall(x0)), G(Akin)(λ0)

7. merge(6, Jimo. ::*d -k -q)

(ε, ti, s.ubu) : +q v, (Akin, -q), (Jimo. , -k -q)

222

and(push(x0)(x1))(fall(x0)), G(Akin)(λ0), G(Jimo.)(λ1)

8. move(7)

(Akin, ti, s.ubu) : v, (Jimo. , -k -q)

Akin(λ0(and(push(x0)(x1))(fall(x0)))), G(Jimo.)(λ1)

9. merge(ε::=>v perf, 8)

(ε, ti, Akin s.ubu) : perf, (Jimo. , -k -q)

Akin(λ0(and(push(x0)(x1))(fall(x0)))), G(Jimo.)(λ1)

10. merge(V::=perf +k +q s, 9)

(ε, V, ti Akin s.ubu) : +k +q s, (Jimo. , -k -q)

Akin(λ0(and(push(x0)(x1))(fall(x0)))), G(Jimo.)(λ1)

11. move(10)

(ε, V, ti Akin s.ubu) : +q s, (Jimo. , -q)

Akin(λ0(and(push(x0)(x1))(fall(x0)))), G(Jimo.)(λ1)

12. move(11)

(Jimo. , V, ti Akin s.ubu) : s

Jimo. (λ1(Akin(λ0(and(push(x0)(x1))(fall(x0))))))

223

The meaning representation in 12 can be rewritten more perspicuously as11

Jimo. (λ1(Akin(λ0(and(push(x0)(x1))(fall(x0))))))

= (λ1(Akin(λ0(and(push(x0)(x1))(fall(x0))))))(j)

= Akin(λ0(and(push(x0)(j))(fall(x0))))

= (λ0(and(push(x0)(j))(fall(x0))))(a)

= and(push(a)(j))(fall(a))

= push(a)(j) ∩ fall(a)

Although the second verb in the examples we have looked at thus far has

been intransitive, this is not a necessary property of serial verb constructions in

Yoruba, as examples like 4.14 show.

(4.14) Jimo.
Jimo.

o.
hts

jaa
fight

Akin
Akin

ti
push

“Jimo. fought with Akin and pushed him”

Sentences like 4.14 above pose a problem for us, as the two transitive verbs jaa and

ti share both subject and object. We have mediated the object sharing in the case

of ‘resultative’ serial verb constructions as in 4.13 via control movement. However,

our argument introducing heads require the object to check its case before the

subject is introduced, which prohibits both subject and object sharing to be

mediated by control. Even with a different approach to argument introduction,

given our principle of immediacy, we cannot have both subject and object in

storage for the purposes of control simultaneously. Therefore, we must mediate

11To allay a potential source of confusion, I am not using β-conversion here. I cannot, as
our meaning representations are not lambda-terms. Instead, I am asserting the equivalence of
each of the objects denoted by their respective meaning terms. Sometimes, as with and, this
follows directly from the definition of the function. In other cases, such as when an individual is
substituted for a variable ‘bound’ by a lambda, this is a less direct consequence of the definition
of the λi function. It is nonetheless straightforward; an example is given in § 2.4 of chapter 2.

224

at least one sharing relationship by some means other than our familiar control

movement operation. We add the lexical item ε::=>tv =V =d V, and interpret it

as shown below.

[[ε :: =>tv =V =d V]] = λR.λP.λx.and(R(x))(P)

We derive sentence 4.14 as follows, with the derived structure as shown in figure

4.4.

>

Jimo. : >

λ <

V:s <

jaa: >

Akin: >

λ >

λ <

ε: >

λ >

>

λ <

ti: ε:

<

ε: ε:

1

Figure 4.4: The derived structure for sentence 4.14

1. merge(ε::=>tv =d V, ti::tv)

(ε, ti, ε) : =d V

225

push

2. cmerge(1, Akin::*d -k -q)

(ε, ti, ε) : V, (Akin, *d -k -q)

push(x0), 〈x0, G(Akin)(λ0)〉

3. merge(ε::=>tv =V =d V, jaa::tv)

(ε, jaa, ε) : =V =d V

λP.λx.and(fight(x))(P)

4. merge(3, 2)

(ε, jaa, ti) : =d V, (Akin, *d -k -q)

λx.and(fight(x))(push(x0)), 〈x0, G(Akin)(λ0)〉

5. cmove1(4)

(ε, jaa, ti) : V, (Akin, -k -q)

and(fight(x0))(push(x0)), G(Akin)(λ0)

6. merge(ε::=>V +k =d +q v, 5)

(ε, jaa, ti) : +k =d +q v, (Akin, -k -q)

and(fight(x0))(push(x0)), G(Akin)(λ0)

7. move(6)

(ε, jaa, ti) : =d +q v, (Akin, -q)

and(fight(x0))(push(x0)), G(Akin)(λ0)

226

8. merge(7, Jimo. ::*d -k -q)

(ε, jaa, ti) : =d +q v, (Akin, -q), (Jimo. , -k -q)

(and(fight(x0))(push(x0)))(x1), G(Akin)(λ0), G(Jimo.)(λ1)

9. move(8)

(Akin, jaa, ti) : v, (Jimo. , -k -q)

Akin(λ0((and(fight(x0))(push(x0)))(x1))), G(Jimo.)(λ1)

10. merge(ε::=>v perf, 9)

(ε, jaa, Akin ti) : perf, (Jimo. , -k -q)

Akin(λ0((and(fight(x0))(push(x0)))(x1))), G(Jimo.)(λ1)

11. merge(V::=perf +k +q s, 10)

(ε, V, jaa Akin ti) : +k +q s, (Jimo. , -k -q)

Akin(λ0((and(fight(x0))(push(x0)))(x1))), G(Jimo.)(λ1)

12. move(11)

(ε, V, jaa Akin ti) : +q s, (Jimo. , -q)

Akin(λ0((and(fight(x0))(push(x0)))(x1))), G(Jimo.)(λ1)

13. move(12)

(Jimo. , V, jaa Akin ti) : s

Jimo. (λ1(Akin(λ0((and(fight(x0))(push(x0)))(x1)))))

227

Again, a more perspicuous representation of the denotation in 13 can be derived

as follows.

Jimo. (λ1(Akin(λ0((and(fight(x0))(push(x0)))(x1)))))

= (λ1(Akin(λ0((and(fight(x0))(push(x0)))(x1)))))(j)

= Akin(λ0((and(fight(x0))(push(x0)))(j)))

= (λ0((and(fight(x0))(push(x0)))(j)))(a)

= (and(fight(a))(push(a)))(j)

= and(fight(a)(j))(push(a)(j))

= fight(a)(j) ∩ push(a)(j)

The number of transitive verbs sharing an object in a serial verb construction

does not seem to have a principled upper bound (4.15). Furthermore, intransitives

and transitives may be mixed without apparent bound as well (4.16).

(4.15) Jimo.
Jimo.

o.
hts

wa
look for

as.o.
clothes

ri
find

ji
steal

wo.
wear

“Jimo. looked for clothes, found some, and stole them to wear”

(4.16) Jimo.
Jimo.

o.
hts

jaa
fight

Akin
Akin

ti
push

s.ubu
fall

“Jimo. fought with Akin and pushed him down”

These facts are predicted by our current lexical type assignments. Consider the

derivation of sentence 4.13 (Jimo. o. ti Akin s.ubu) above. At step 4, if, instead of

applying cmove1, we apply cmove2, we obtain the expression below.

(ε, ti, s.ubu) : V, (Akin, *d -k -q)

As this expression has the same syntactic type as the expression in step 2 of

the derivation of sentence 4.14 (Jimo. o. jaa Akin ti), we can substitute it for the

228

expression currently there in step 2, and derive thereby sentence 4.16 above, with

the meaning below.

fight(a)(j) ∩ push(a)(j) ∩ fall(a)

1.3 Relative Clauses

Relative clauses in Yoruba are formed by placing a particle ti in front of a clause

containing a gap (in the case of relativization of an object) or a resumptive

pronoun (in the case of relativization of a subject or a possessor). Example 4.17

illustrates relativization of an object, and 4.18 of a subject.

(4.17) Adie.
chicken

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

“The chicken that Jimo. bought”

(4.18) Eni
person

ti
ti

o
3s

ra
buy

adie.
chicken

“The person who bought a chicken”

We will concentrate on the general shape of the relative clause construction, and

ignore the difference between subject and object extraction with respect to the

occurance of the resumptive pronoun.12 We take nouns to have the type n, and

to then be coerced into DPs by means of the lexical item ε::=n *d -k -q, or to be

readied for use in a relative clause by the lexical item ε::=n *d -k -q -f.13 To the

particle ti we assign the type =s +f n, and interpret it as the identity function.

12Subject pronouns in Yoruba (resumptive or otherwise) behave differently from full DPs. In
addition to varying their shape when adjacent to the sentential negator kò, they do not co-occur
with the HTS.

13Yoruba ‘bare’ nouns are translated as English definite or indefinite nouns depending on
the context. In other words, a bare noun in Yoruba is ambiguous as to whether it is definite
or indefinite. The Yoruba word náà is sometimes translated as the, but plays a role in the
language much different from the simple definite in English (see e.g. [149] for discussion).

229

The lexical item ε::=n *d -k -q -f we interpret as the function and. We herewith

adopt a version of the raising analysis of relative clauses, recently resurrected by

Kayne [90], and championed by [12, 14, 51].

With this in hand, we derive the noun phrase in 4.17 in the following manner.

1. merge(ε::=>tv =d V, ra::tv)

(ε, ra, ε) : =d V

buy

2. merge(ε::=n *d -k -q -f, adie.::n)

(ε, ε, adie.) : *d -k -q -f

and(chicken)

3. merge(1, 2)

(ε, ra, ε) : V, (adie., -k -q -f)

buy(x0), G(and(chicken))(λ0)

4. merge(ε::=>V +k =d +q v, 3)

(ε, ra, ε) : +k =d +q v, (adie., -k -q -f)

buy(x0), G(and(chicken))(λ0)

5. move(4)

(ε, ra, ε) : =d +q v, (adie., -q -f)

buy(x0), G(and(chicken))(λ0)

230

6. merge(5, Jimo. ::*d -k -q)

(ε, ra, ε) : +q v, (adie., -q -f), (Jimo. , -k -q)

buy(x0)(x1), G(and(chicken))(λ0), G(Jimo.)(λ1)

7. move(6)

(ε, ra, ε) : v, (adie., -f), (Jimo. , -k -q)

buy(x0)(x1), G(and(chicken))(λ0), G(Jimo.)(λ1)

8. merge(ε::=>v perf, 7)

(ε, ra, ε) : perf, (adie., -f), (Jimo. , -k -q)

buy(x0)(x1), G(and(chicken))(λ0), G(Jimo.)(λ1)

9. merge(V::=perf +k +q s, 8)

(ε, V, ra) : +k +q s, (adie., -f), (Jimo. , -k -q)

buy(x0)(x1), G(and(chicken))(λ0), G(Jimo.)(λ1)

10. move(9)

(ε, V, ra) : +q s, (adie., -f), (Jimo. , -q)

buy(x0)(x1), G(and(chicken))(λ0), G(Jimo.)(λ1)

11. move(10)

(Jimo. , V, ra) : s, (adie., -f)

Jimo. (λ1(buy(x0)(x1))), G(and(chicken))(λ0)

12. merge(ti::=s +f n, 11)

(ε, ti, Jimo. V ra) : +f n, (adie., -f)

Jimo. (λ1(buy(x0)(x1))), G(and(chicken))(λ0)

231

13. move(12)

(adie., ti, Jimo. V ra) : n

and(chicken)(λ0(Jimo. (λ1(buy(x0)(x1)))))

Again, the representation in 13 has the more transparent form below. For f :

[G→ E],

(and(chicken)(λ0(Jimo. (λ1(buy(x0)(x1))))))(f)

= and(chicken(f))(λ0(Jimo. (λ1(buy(x0)(x1))))(f))

= chicken(f) ∩ λ0(Jimo. (λ1(buy(x0)(x1))))(f)

= chicken(f) ∩ Jimo. (λ1(buy(f)(x1)))

= chicken(f) ∩ (λ1(buy(f)(x1)))(j)

= chicken(f) ∩ buy(f)(j)

Note that since a noun-plus-relative clause has the same type as a bare noun

(n), we can stack relative clauses ad infinitum, as exemplified for the case of two

in 4.19.

(4.19) Adie.
chicken

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

ti
ti

o
3s

tobi
be big

“The big chicken that Jimo. bought”

We thus have a syntactic analysis of stacked relative clauses similar to that of

Bianchi [14], in which later relative clauses scope over earlier ones (as opposed to

a ‘flat’ syntactic structure), which can be schematzed in the following manner.

[. . . [[N RC1] RC2] . . .RCn]

The nested syntactic structure we assign to stacked relative clauses notwithstand-

ing, our simple conjunctive semantics has the desired effect of yielding a seman-

tically ‘flat’ representation. Our semantics yields the following interpretation for

232

example 4.19 above (treating tobi as a simple intransitive verb).

chicken(f) ∩ buy(f)(j) ∩ big(f)

1.3.1 The Relativized Predicate

Verb phrases may appear in constructions very much like the relative clauses

discussed above. When they do, the resulting phrase has the distribution of a(n

abstract) noun. Of particular interest to us is the relation between the verb

(phrase) which acts as head of the relative clause, and the verb (phrase) that is

inside the relative clause. Consider the following examples.

(4.20) Rira
buying

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

“The fact/way Jimo. bought a chicken”

(4.21) *Jije
eating

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

(4.22) Rira
buying

adie.
chicken

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

“The fact/way Jimo. bought a chicken”

(4.23) *Rira
buying

nkan
something

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

(4.24) *Rira
buying

adie.
chicken

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

nkan
something

The obvious generalization (and the one made uniformly by linguists working on

Yoruba and other West African languages) is that in a verbal relative clause the

element to the left of ti is a copy of the predicate to the right of the ti.14 We

14The relativized predicate has only recently come into focus (Bùl̀ı [76], Krio [133], and
Yoruba [9, 10] are some of the few languages to have been subject to such scrutiny) in the

233

will concentrate here on the relation between the relativized predicate and the

predicate in its relative clause, ignoring the fact that the relativized predicate

bears nominal morphology (the gerundive prefix Cı́- which is quite productive in

combining with verb phrases in the language). We go through a derivation of

the verb phrase ra adie. (from the sentence Jimo. o. ra adie.) immediately below,

in order to determine which phrases exist and can be copied.

1. merge(ε::=>tv =d V, ra::tv)

(ε, ra, ε) : =d V

2. merge(ε::=n *d -k -q, adie.::n)

(ε, ε, adie.) : *d -k -q

3. merge(1, 2)

(ε, ra, ε) : V, (adie., -k -q)

4. merge(ε::=>V +k =d +q v, 3)

(ε, ra, ε) : +k =d +q v, (adie., -k -q)

5. move(4)

(ε, ra, ε) : =d +q v, (adie., -q)

languages of West Africa. However, the relativized predicate in Yoruba looks quite similar to the
much more widely investigated predicate cleft construction, for which there is a not insubstantial
body of cross-linguistic data. In many languages with this construction (Twi, Nupe [89], Bùl̀ı
[76]), the predicate clefted has been nominalized (in Twi this is evident particularly when the
predicate clefted is defective in its paradigm, like tea mu “shout”). Kandybowicz [89] accounts
for the nominalization by claiming that the scope of the nominalization is the entire clause. The
merits of such an approach to Nupe predicate clefts notwithstanding, it does not fit well with the
simple fact that the relativized predicate in Yoruba is in the normal gerundive nominalized form
that occurs abundantly elsewhere in the language. In short, we would like to treat the nominal
morphology on gerunds as identical to the nominal morphology on relativized predicates. I do
not know how to do this elegantly.

234

6. merge(5, Jimo. ::*d -k -q)

(ε, ra, ε) : +q v, (adie., -q), (Jimo. , -k -q)

7. move(6)

(adie., ra, ε) : v, (Jimo. , -k -q)

As we can see, there are two stages in the derivation above at which just the verb

ra is copyable, and a single point at which the verb plus its object is copyable

(shown in figure 4.5). In order to account for the verb phrase copying in 4.22, we

verb copying verb phrase copying

ra::tv (adie., ra, ε):v, (Jimo. , -k -q)

(ε, ra, ε):V, (adie., -k -q)

Figure 4.5: Copyable Constituents

add the lexical item ε::=>v v -f, which will combine with the expression in step

7 to yield

8. merge(ε::=>v v -f, 7)

(ε, ra, adie.) : v -f, (Jimo. , -k -q)

The derivation continues as in the relative clause example above.

9. merge(ε::=>v perf, 8)

(ε, ε, ε) : perf, (ra adie., -f), (Jimo. , -k -q)

10. merge(V::=perf +k +q s, 9)

(ε, V, ε) : +k +q s, (ra adie., -f), (Jimo. , -k -q)

235

11. move(10)

(ε, V, ε) : +q s, (ra adie., -f), (Jimo. , -q)

12. move(11)

(Jimo. , V, ε) : s, (ra adie., -f)

13. merge(ti::=s +f n, 12)

(ε, ti, Jimo. V) : +f n, (ra adie., -f)

14. move(13)

(ra adie., ti, Jimo. V) : n

Notice, of course, that the vP is by default moved, and not copied. Something

thus must be said to change this default behaviour. In chapter 3 we explored

two strategies for the pronunciation of multiple copies. One, based on Nunes’

optimality theoretic framework, uses reanalysis to force pronunciation of a chain

link, while simultaneously removing it from consideration when evaluating which

(remaining) chain link should have the distinction of being pronounced. The

other, based loosely on Koopman’s complexity filters, simply forces pronuncia-

tion of a chain link, without otherwise affecting its enclosing chain. Adopting

the Koopmanian approach, we are led to put a ‘reanalysis’ diacritic on the =>v

feature of the perfective head (which becomes ε::=>v̂ perf). This diacritic forces

pronounciation of the lower copy of ra adie. in step 9, yielding

9. merge(ε::=>v̂ perf, 8)

(ε, ra, adie.) : perf, (ra adie., -f), (Jimo. , -k -q)

236

10. merge(V::=perf +k +q s, 9′)

(ε, V, ra adie.) : +k +q s, (ra adie., -f), (Jimo. , -k -q)

11. move(10′)

(ε, V, ra adie.) : +q s, (ra adie., -f), (Jimo. , -q)

12. move(11′)

(Jimo. , V, ra adie.) : s, (ra adie., -f)

13. merge(ti::=s +f n, 12′)

(ε, ti, Jimo. V ra adie.) : +f n, (ra adie., -f)

14. move(13′)

(ra adie., ti, Jimo. V ra adie.) : n

Note that, if we were to treat the higher copy of the predicate as having been

reanalyzed in Nunes’ sense (i.e. the +f feature on ti has the reanalysis diacritic),

we could no longer maintain the formal connection between the relativized predi-

cate construction and the relative clause construction (i.e. the ti in the relativized

predicate construction would be different from the ti in the relative clause con-

struction), as otherwise we would erroneously predict copying in all relative con-

structions.

Turning now to the derivation of the verb copying in example 4.20, we are

confronted with a choice—which of the two stages of the derivation which would

give rise to the correct form for the relativized predicate in 4.20 should we decide

to copy? Relativizing at the tv level could be achieved with the lexical item

ε::=>tv tv -f, and at the V level with the lexical item ε::=>V V -f. Copying at

237

these levels requires all tv respectively V selecting features to be marked with the

reanalysis diacritic. We will need both of these lexical items, as we shall now see.

Sentences like 4.13 (repeated below) have not only the relativized predicative

forms as in 4.25 and 4.27, where just the verb or the verb phrase are copied

respectively, but also as shown in 4.26, where what is copied is a discontinuous

surface string.15

(4.13) Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

s.ubu
fall

“Jimo. pushed Akin down”

(4.25) Titi
pushing

ti
ti

Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

s.ubu
fall

(4.26) Titi
pushing

s.ubu
fall

ti
ti

Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

s.ubu
fall

(4.27) Titi
pushing

Akin
Akin

s.ubu
fall

ti
ti

Jimo.
Jimo.

o.
hts

ti
push

Akin
Akin

s.ubu
fall

We step through a derivation of each of these expressions (derivation a is for 4.25,

b is for 4.26, and c is for 4.27). The derivations proceed identically at first, up to

the point when split the copying targets different stages, and then are continued

identically thereafter. We copy at steps 2a, 5b, and 9c respectively. Figure 4.6

shows the derivation of the basic sentence 4.13. The points at which we may

copy, and the shape of the copy at that point are indicated with arrows. We

begin by control merging Akin and s.ubu.

1. cmerge(s.ubu::=d v, Akin::*d -k -q)

(ε, s.ubu, ε) : v, (Akin, *d -k -q)

15Which, incidentally, makes any attempt to analyze the copying in the Yoruba relativized
predicate construction as post-syntactic (phonological) reduplication (as, for instance, has been
argued for Bengali [57]) that much more difficult.

238

move

merge

ti::=s +f n move

move

merge

V::=perf +k +q s merge

ε::=>v̂ perf move

merge

move

merge

ε::=>V̂ +k =d +q v cmove1

merge

merge

ε::=>t̂v =v̂ =d V ti::tv

cmerge

s.ubu::=d v Akin::*d -k -q

Jimo. ::*d -k -q

ti Akin s.ubu

ti s.ubu

ti

1

Figure 4.6: Copying at different points in the derivation

2. cmerge(s.ubu::=d v, Akin::*d -k -q)

(ε, s.ubu, ε) : v, (Akin, *d -k -q)

3. cmerge(s.ubu::=d v, Akin::*d -k -q)

(ε, s.ubu, ε) : v, (Akin, *d -k -q)

Next we prepare to copy the verb ti in derivation a, while in derivations b and c

we ready ti to be in a serial verb construction.

239

1. merge(ε::=>t̂v tv -f, ti::tv)

(ε, ti, ε) : tv -f

2. merge(ε::=>t̂v =v̂ =d V, ti::tv)

(ε, ti, ε) : =v =d V

3. merge(ε::=>t̂v =v̂ =d V, ti::tv)

(ε, ti, ε) : =v =d V

Derivation a is now one step behind derivations b and c, which now merge the

vP s.ubu Akin with ti.

1. merge(ε::=>t̂v =v̂ =d V, 2a)

(ε, ti, ε) : =v =d V, (ti, -f)

2. merge(2b, 1b)

(ε, ti, s.ubu) : =d V, (Akin, *d -k -q)

3. merge(2c, 1c)

(ε, ti, s.ubu) : =d V, (Akin, *d -k -q)

Derivation a sets up ti and s.ubu Akin in a serial verb construction, and b and c

control move Akin.

1. merge(3a, 1a)

(ε, ti, s.ubu) : =d V, (ti, -f), (Akin, *d -k -q)

240

2. cmove1(3b)

(ε, ti, s.ubu) : V, (Akin, -k -q)

3. cmove1(3c)

(ε, ti, s.ubu) : V, (Akin, -k -q)

Derivation a has caught up with b, which is preparing to copy the VP ti s.ubu.

Derivation c continues building the vP.

1. cmove1(4a)

(ε, ti, s.ubu) : V, (ti, -f), (Akin, -k -q)

2. merge(ε::=>V̂ V -f, 4b)

(ε, ti, s.ubu) : V -f, (Akin, -k -q)

3. merge(ε::=>V̂ +k =d +q v, 4c)

(ε, ti, s.ubu) : +k =d +q v, (Akin, -k -q)

Derivations a and b are a step behind derivation c, which checks the case of Akin.

1. merge(ε::=>V̂ +k =d +q v, 5a)

(ε, ti, s.ubu) : +k =d +q v, (ti, -f), (Akin, -k -q)

2. merge(ε::=>V̂ +k =d +q v, 5b)

(ε, ti, s.ubu) : +k =d +q v, (ti s.ubu, -f), (Akin, -k -q)

3. move(5c)

(ε, ti, s.ubu) : =d +q v, (Akin, -q)

241

Derivations a and b check Akin’s case, and derivation c introduces the subject

Jimo. .

1. move(6a)

(ε, ti, s.ubu) : =d +q v, (ti, -f), (Akin, -q)

2. move(6b)

(ε, ti, s.ubu) : =d +q v, (ti s.ubu, -f), (Akin, -q)

3. merge(6c, Jimo. ::*d -k -q)

(ε, ti, s.ubu) : +q v, (Akin, -q), (Jimo. , -k -q)

Derivations a and b introduce Jimo. , and c checks the last feature of the object

Akin. Note that derivation c has derived a vP.

1. merge(7a, Jimo. ::*d -k -q)

(ε, ti, s.ubu) : +q v, (ti, -f), (Akin, -q), (Jimo. , -k -q)

2. merge(7b, Jimo. ::*d -k -q)

(ε, ti, s.ubu) : +q v, (ti s.ubu, -f), (Akin, -q), (Jimo. , -k -q)

3. move(7c)

(Akin, ti, s.ubu) : v, (Jimo. , -k -q)

Derivations a and b catch up with c, which is preparing to copy its newly con-

structed vP.

1. move(8a)

(Akin, ti, s.ubu) : v, (ti, -f), (Jimo. , -k -q)

242

2. move(8b)

(Akin, ti, s.ubu) : v, (ti s.ubu, -f), (Jimo. , -k -q)

3. merge(ε::=>v̂ v -f, 8c)

(ε, ti, Akin s.ubu) : v -f, (Jimo. , -k -q)

The copying done, derivations a, b, and c proceed in tandem from here on out.

1. move(move(merge(V::=perf +k +q s, merge(ε::=>v̂ perf, 9a))))

(Jimo. , V, ti Akin s.ubu) : s, (ti, -f)

2. move(move(merge(V::=perf +k +q s, merge(ε::=>v̂ perf, 9b))))

(Jimo. , V, ti Akin s.ubu) : s, (ti s.ubu, -f)

3. move(move(merge(V::=perf +k +q s, merge(ε::=>v̂ perf, 9c))))

(Jimo. , V, ti Akin s.ubu) : s, (ti Akin s.ubu, -f)

Having constructed expressions of type s, each with a single moving constituent

of type -f, we merge the relative pronoun ti.

1. merge(ti::=s +f n, 10a)

(ε, ti, Jimo. V ti Akin s.ubu) : +f n, (ti, -f)

2. merge(ti::=s +f n, 10b)

(ε, ti, Jimo. V ti Akin s.ubu) : +f n, (ti s.ubu, -f)

243

3. merge(ti::=s +f n, 10c)

(ε, ti, Jimo. V ti Akin s.ubu) : +f n, (ti Akin s.ubu, -f)

Finally, we move the -f marked verbal copies to the specifier of ti. Note that

there is no need to differentiate between the sizes of the copies at this point, such

having been done already at an earlier stage of the derivation.

1. move(11a)

(ti, ti, Jimo. V ti Akin s.ubu) : n

2. move(11b)

(ti s.ubu, ti, Jimo. V ti Akin s.ubu) : n

3. move(11c)

(ti Akin s.ubu, ti, Jimo. V ti Akin s.ubu) : n

Given a sentence with multiple verbs as in 4.5 (repeated below), we predict

(correctly) that the first verb in the series (ra) may be copied (4.28), that the

entire vP may be copied (4.30), that the entire sequence ra-se-je may be copied

(4.29), but that the first two verbs may not be copied to the exclusion of the last

(4.31).16

16We also predict, incorrectly, that just se, just je. , or the sequence se-je. can be copied.
These have the flavour of an A-over-A violation, which is naturally expressed in our framework
in terms of preferentially copying at the highest point possible (given a particular category
copied—tv, V, or v). Though this smacks of transderivational economy, it can be implemented
within our present system in much the same way we have dealt with other ‘tricky’ cases of
putative competition between derivations. We might add a (finite valued) parameter to our
moving copied predicates, which records their category, and prohibits them to move past any
head of the same category. This is not equivalent to the more general transderivational economy
condition requiring, for a particular category, the highest possible copy of it, as our mechanism,
unlike the transderivational economy condition, builds in a window of applicability (as long as
the copied predicate is moving), which correctly allows for copies within copies.

A more serious problem is that we predict that the first verb plus object (ra adie.) is not
a copyable predicate. However, it seems to be. Interestingly, it seems to have something in

244

(4.5) Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

“Jimo. bought the chicken to cook and eat”

(4.28) Rira
buying

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

(4.29) Rira
buying

se
cook

je.
eat

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

(4.30) Rira
buying

adie.
chicken

se
cook

je.
eat

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

(4.31) *Rira
buying

se
cook

ti
ti

Jimo.
Jimo.

o.
hts

ra
buy

adie.
chicken

se
cook

je.
eat

We rule out 4.31 because ra se is never a constituent to the exclusion of je. .

Our treatment of object sharing serialization builds vPs up from right to left.

Accordingly, ra combines with a vP contianing se and je. , but not with one

containing just se.

Our complete lexicon is given in figure 4.7. Clearly, there are similarities

between this lexicon and the one in chapter 2 for English, in particular among the

functional lexical items. Some of these similarities are due to the way we have set

up our semantics, and some are due to our principle of immediacy.17 However, we

did not set out to make our grammar of Yoruba resemble our grammar of English.

Indeed, we required Yoruba-internal evidence for DP movement (which we found,

common with the other problem we have let lie: the fact that the copied predicate is nomi-
nalized. Both facts seem to be amenable to description in terms of (very restricted) sideward
movement [131, 159]. If we allow the object Akin to control move to ti, merging its containing
vP only after Akin has checked its licensee features, we have an appropriate-sized constituent
for this non-standard copy. Similarly, if we allow the copied predicate to move sidewards into
the complement position of the gerundive prefix Ci-, we can state the generalization that the
prefix on the copied predicate is the gerundive prefix it so resembles. Needless to say, this
remains a pipe dream (and a serious problem) until it is worked out.

17Others are possibly an artifact of a too constrained data set. I set these aside here, and
focus instead on what it would mean, were the similarities to be real.

245

Jimo. ::*d -k -q

Akin::*d -k -q

igi::n ε::=n *d -k -q

adie.::n ε::=n *d -k -q -f

s.ubu::=d v tobi::=d v

fo::inch ε::=>inch =d v

ε::=>inch tv

ti::tv ra::tv

jaa::tv se::tv

je.::tv

ε::=>t̂v =d V ε::=>t̂v tv -f

ε::=>t̂v =V̂ =d V ε::=>V̂ V -f

ε::=>t̂v =v̂ =d V ε::=>v̂ v -f

ε::=>V̂ +k =d +q v

ε::=>v̂ perf

V::=perf +k +q s ti::=s +f s

Figure 4.7: A grammar for a fragment of Yoruba

based on the causative-inchoative alternation). A major research question asks

what the range of variation in human languages is. By working with minimalist

246

grammars (with copying), we already place a limit on the definable structures. As

our semantics does not rule out any syntactically definable structure, it remains

an open question why our descriptions of these languages look similar. One

natural idea is to wonder whether the requirement that a particular language be

able to express a particular range of semantic values forces minimalist grammars

for those languages to look similar. Suppose that something like this is on the

right track.18 This amounts to formally reconstructing an extra-grammatical

influence on language, and attributing to it the existence of certain ‘language

universals.’

2 Summary

Theories of the mechanisms underlying copying, such as developed in chapter

3, begin to diverge once confronted with data involving syntactically complex

copies, such as presented herein, from Yoruba. The sometimes opaque relation

between the two copies in the relativized predicate construction receives an ele-

gant and unified description from our derivational copy mechanism, and renders

untenable an alternative, post-syntactic mechanism of phonological reduplication

(as has been suggested for phrasal copying in Bengali [57]). Along the way, we

have developed an account of object sharing in serial verb constructions, and of

relativization, both over DPs, as well as over predicates. Our account of object

sharing in serial verb constructions treats this phenomenon as a species of control

(with [43]), which unifies object sharing in serial verb constructions in Yoruba

with control in English. Re-using mechanisms in this way allows us to pinpoint

‘the difference’ between Yoruba and English by virtue of which the former, and

18Indeed, in the context of our formalization of the syntax-semantics interface, we can even
begin to fruitfully address this question!

247

not the latter, allows for serial verb constructions. A glance at our lexicon re-

veals the ‘serial verb construction parameter’ [164] to consist of the lexical items

ε::=>t̂v =v̂ =d V and ε::=>t̂v =V̂ =d V, which allow transitive verbs in Yoruba to

optionally select verb phrase (vP or VP) complements. Again and again, we have

seen that the verbal categories (v, V, and tv) behave similarly in our grammar;

they are each potential sites of relativization, all and only these verbal categories

bear ‘reanalysis’ diacritics, and v and V are ‘serializable’ in the sense described

above. Formally, we see that if there is a lexical item that selects one of these

verbal categories, there is often another, otherwise identical one that selects an-

other. This fact calls to mind Grimshaw’s [68] notion of an extended projection,

which our current system, with its unstructured categories, does not do justice

to. Our analysis of relative clauses is of the raising variety, which has enjoyed a

reinvigoration with the advent of [90]. Most interesting from this perspective is

the straightforward analysis we have been able to give of stacked relative clauses.

Although we view stacked relative clauses as hierarchically structured in the syn-

tax (similarly to [14]), with later relatives modifying the head noun plus previous

relatives (e.g. [[N RC1] RC2]), our simple treatment of the semantics of relative

clauses derives elegantly a ‘flat’ conjunctive interpretation in cases of multiple

relativization.

248

Appendices

D–1 On the complexity of natural language

In this section we step back from any particular analysis of Yoruba, and focus

rather on the shape and complexity of its constructions, in particular its rel-

ativized predicate construction. Examining the pattern of copying present in

Yoruba, we will conclude that any satisfactory grammar for Yoruba must be ca-

pable of copying copies (of copies. . .), and thus also of generating non-semi-linear

languages like a2n
.

This conclusion is a momentous one, contradicting (if not in letter then in

spirit) the widely held hypothesis of the mild context sensitivity of natural lan-

guage, which we recount in § D–1.1. As a practical consequence, it means that

many of our grammatical theories are too weak to describe natural languages,

predicting of things that do in fact exist, that they couldn’t possibly.19

These conclusions have been argued for before, based on Suffixaufnahme (case

stacking) in Old Georgian [122], and on scrambling in German [11]. What is

different in the present context is that not only are we showing that, under a

natural description, a particular phenomenon is not capturable by mildly context-

sensitive formalisms, but we are also offering a slightly stronger formalism which

is able to naturally describe this phenomenon in just the way people want to be

able to.

19We can really only assess this for those theories that have been made explicit. Of these, two
of the most widely used, Combinatory Categorial Grammar and Tree Adjoining Grammar in
any of its incarnations (except those, such as [26], which add an operation of syntactic copying),
are too weak. Head-Driven Phrase Structure Grammar, another popular theory, is untouched
by this result, as the formalism makes no non-trivial predictions about natural language [85].

249

D–1.1 The hypothesis of the mild context-sensitivity of natural lan-

guages

The hypothesis of mild context sensitivity, first articulated in [86], is a claim

that all human languages share certain characteristic properties, and that, more-

over, these properties are non-accidental from a grammatical perspective. In

other words, our theories of language should predict that only languages that

are mildly context-sensitive exist. Like claims that natural language is regular

or context-free, the claim that natural languages are mildly context-sensitive is

statable independently of any particular grammar formalism, which fact makes

its empirical content crystal clear.

Mild context-sensitivity can be given a bipartite characterization, as a list

of conditions that a language must meet.20 The first condition is that the lan-

guage be among those whose strings are recognizable by a deterministic turing

machine in polynomial time. This is often called efficient recognizability. Al-

though it contains the words ‘efficient’ and ‘recognize’, this criterion is emphat-

ically not related to ideas about human language processing. We might just

as well have characterized this property as definability in first order logic with

a least fixed point operator (see e.g. [83]). The essence of this criterion is to

circumscribe a class of patterns of reasonable complexity. It is a non-trivial

property. Copying (ww), reversal (wwr), and exponential (a2n
) patterns are

efficiently recognizable, whereas primacy ({ap : p is prime}) and theorem-hood

({ag : g a gödel number of a theorem of FOL}) are not. The second condition

is that the language be of constant growth.21 A language is of constant growth

20A third condition is often added to this list. This third condition requires that there be
a limited number of cross-serial dependencies. This intuition has been notoriously difficult to
pin down in a meaningful, grammar independent, way. As it is not clear what it should mean,
I will leave it out of my characterization of mild context-sensitivity.

21A stronger condition, more in keeping with the intent of the ‘constant growth’ criterion,

250

just in case the size of its strings doesn’t grow ‘too quickly’. Intuitively, the idea

is that at each step in the derivation of a sentence, the rules add only a fixed

amount of new material. The language a2n
is not of constant growth. Constant

growth says nothing about how the words within a sentence are arranged, and is

therefore independent of the criterion of efficient recognizability.22

D–1.2 The structure of a challenge

At first blush it seems easy enough to mount a challenge to the MCS hypothesis.

We might try and look for a natural language that had too many crossing depen-

dencies, or wasn’t recognizable in polynomial time, or wasn’t of constant growth.

We might sit down with a consultant, and, after a month’s work of sleepless elici-

tation, we might, our beards grown long and hair disheveled, jump one moment to

our feet, our right pointer finger a lightening rod to the heavens, “Eureka” on our

lips. We might run to the nearest watering hole, approach the obligatory compu-

tational linguist, and, pallid faces beaming, present our nicely typeset elicitation

notes, containing thousands of example sentences, for his perusal. His haughty

sneer would break our hearts, and our nights would forevermore be haunted with

the words “This finite data set isn’t even worth writing a regular grammar for.”

In a less dramatic way, what went wrong is that there is no way to challenge

the MCS hypothesis on the basis of a corpus of data. The MCS hypothesis rules

is semilinearity. Whereas constant growth requires that the lengths of sentences not grow too
fast, semilinearity requires this of the numbers of the individual words in a sentence. The
language a2n

b∗ (the language which has an exponential number of as followed by any number
of bs) is of constant growth, but is not semilinear.

22Although the language of primes, ap is not efficiently recognizable, and thus neither is the
language apb∗ (the language with a prime number of as followed by any number of bs), this
latter is of constant growth. In other words, we can ‘pad out’ a set of strings of non-constant
growth with dummy symbols to satisfy the constant growth property. The stronger property,
semilinearity, is also independent of efficient recognizability, with apb∗ + b∗a∗ (the language in
which as precede bs if there are a prime number of them, and follow the bs otherwise) being
semilinear, but not efficiently recognizable.

251

out only certain infinite sets of sentences. Corpora are of necessity finite. In order

to challenge the MCS hypothesis, we need to first generalize from the observed

data to an infinite set of potential data, of which the observed data is but a small

sample. Then we can decide whether or not our generalization is compatible with

the MCS hypothesis.

A good challenge will have the following two attributes. First, the generaliza-

tion argued for is a reasonable one, in the sense that it is an instance of an already

established type. That is, for the proposal to be empirically secure, we expect it

to be parsimonious, compatible with and even supported by other independently

motivated assumptions about language mechanisms. Second, there aren’t alter-

native reasonable generalizations compatible with the data that are compatible

with the MCS hypothesis. Accordingly, a response to a good challenge takes the

form of coming up with a novel reasonable generalization compatible with both

the data and the MCS hypothesis.

D–1.2.1 Scrambling in German

Becker et al. [11] challenge the MCS hypothesis on the basis of scrambling in

German. In German, the order of major constituents is relatively free. Example

4.32 is a subordinate clause with five major non-predicative constituents, any

permutation of which is said to preserve grammaticality.23

(4.32) . . . dass
. . . that

[eine hiesige Firma]
a local company (nom)

[meinem Onkel]
my uncle (dat)

[die Möbel]
the furniture (acc)

[vor drei Tagen]
three days ago

[ohne Voranmeldung]
without notice

zugestellt
delivered

hat
has

“. . . that a local company delivered the furniture to my uncle three days
ago without advance warning”

23All examples are from [11].

252

The generalization argued for is that DPs can be fronted in any order not only

within their clause, but also across clauses. Motivating this generalization, they

present the following data. Examples 4.33 and 4.34 illustrate that arguments of

a lower clause can scramble to a higher clause.

(4.33) . . . dass
. . . that

bisher
so far

noch
still

niemand
no one (nom)

[den Kühlschrank
the refrigerator (acc)

zu
to

reparieren]
repair

versprochen
promised

hat
has

“. . . that, thus far, still no one has promised to repair the refrigerator”

(4.34) . . . dass
. . . that

[den Kühlschrank]i
the refrigerator (acc)

bisher
so far

noch
still

niemand
no one (nom)

[ti zu
to

reparieren]
repair

versprochen
promised

hat
has

From example 4.35 we infer that there is no bound on the number of clauses a

DP may scramble out of.

(4.35) . . . dass
. . . that

[den Kühlschrank]i
the refrigerator (acc)

bisher
so far

noch
still

niemand
no one (nom)

[[ti zu
to

reparieren]
repair

zu
to

versuchen]
try

versprochen
promised

hat
has

“. . . that so far no one has promised to try to repair the refrigerator”

Finally, scrambling of one element does not block the scrambling of another, even

if these elements are embedded in infinitival clauses (4.36).

(4.36) . . . dass
. . . that

[dem Kunden]i
the client (dat)

[den Kühlschrank]j
the refrigerator (acc)

bisher
so far

noch
still

niemand
no one (nom)

ti [[tj zu
to

reparieren]
repair

zu
to

versuchen]
try

versprochen
promised

hat
has

“. . . that so far no one has promised the client to try to repair the
refrigerator”

Becker et al. articulate their generalization in the following manner.

253

• There is no bound on the distance over which each element can scramble.

• There is no bound on the number of unbounded dependencies that can

occur in each sentence.

Under the assumption that each element is introduced in the clause immediately

containing the verb that assigns it case, Becker et al. show that no MCFG

(and, by extension, none of the other equivalent MCS formalisms)24 can define a

language meeting these conditions.

Does this challenge satisfy our criteria above? The first criterion, that the

generalization be natural, and be of an already established type, is met; scram-

bling as a phenomenon is abundantly attested, and has been the subject of much

theoretical scrutiny. The generalization drawn is common currency in the field,

and is thus hardly assailable on these grounds. Consequently, at the time of writ-

ing, the second criterion, that there be no alternative, weaker but still natural

analyses, was met as well.

Joshi, Becker, and Rambow’s Response Joshi et al. [87] note that speak-

ers tend not to be able to comprehend (and thus judge) sentences in which a

scrambled element is assigned case by a deeply embedded verb. They observe

that (tree-local) MC-LTAGs, which generate the same string sets as standard

(L)TAGs, assign structural descriptions to scrambled sentences which accord with

our intuitions regarding which verbs introduce which arguments. However, MC-

LTAGs can only derive sentences in which no element has scrambled out of more

than two containing clauses. In effect, Joshi et al. argue that the standard ac-

24Even though the equivalence proofs establish that the formalisms generate the same (string)
languages, they typically do this by showing how to construct a weakly equivalent grammar in
the target formalism given one in the source as input. These constructions typically preserve a
great deal of the derivational structure of expressions.

254

count of scrambling is correct, but that there is a principled upper bound of two

on the number of clauses scrambling can move out of.

D–1.2.2 Case Stacking in Old Georgian

Michaelis and Kracht [122] present a challenge to the MCS hypothesis centered

around the phenomenon of case stacking in Old Georgian.25

(4.37) govel-i
all-nom

igi
art.nom

sisxl-i
blood-nom

saxl-isa-j
house-gen-nom

m-is
art-gen

Saul-is-isa-j
Saul-gen-gen-nom

“all the blood of the house of Saul”

The generalization Michaelis and Kracht argue for is roughly the following.

Within a DP, the exponent of the case assigned to the head noun ‘trickles down’

to the DPs governed by the first. Thus, a rough structural characterization of 4.37

is as in figure 4.8. A DP will be marked with the sequence of cases determined

nom

blood gen

house gen

Saul

1

Figure 4.8: Case stacking in Old Georgian

by traversing the tree from the DP in question to the root. Thus, Saul is marked

with the sequence gen-gen-nom, house with gen-nom, and blood with just

nom. More generally, complex nominative DPs with k stacked genitive DPs have

25Examples are from [122].

255

the abstract form below.

N1-nom N2-gen-nom N3-gen2-nom . . . Nk-genk−1-nom

Notice that according to this generalization, if we have a complex nominative

DP with k stacked genitive DPs and we add one more genitive DP, we get k

extra genitive case markers. Adding one more results in k+ 1 extra genitive case

markers. Michaelis and Kracht prove that the increase in case markers grows too

quickly to be semilinear.

Is this a good challenge, according to our criteria? Although the generalization

Michaelis and Kracht draw is an unusual one, it is not entirely without precedent.

The collection [136] assembles data on a variety of languages, all of which exhibit

the phenomenon of Suffixaufnahme, whereby an affix of a governor is inherited

by a governee. Suffixaufnahme has not, unfortunately, been subjected to rigorous

theoretical analysis, and thus Michaelis and Kracht’s generalization enjoys only

the grossest of pre-theoretical support. This blade is double-edged, however, and

the lack of theoretical attention has resulted in a paucity of available alternative

analyses of this phenomenon.

Bhatt and Joshi’s Response Bhatt and Joshi [13] attack the generalization

drawn by Michaelis and Kracht [122], arguing that upon closer inspection of the

data a different, mildly context-sensitive, pattern emerges. They argue that only

the last, most deeply embedded, genitive noun has copies of all its ancestors’

affixes, and that non-deepest genitives bear copies just of the nominative affix.

N1-nom N2-gen-nom . . . Ni-gen-nom . . . Nk-genk−1-nom

This generalization and the one made by Michaelis and Kracht agree for k ≤ 3.

For k = 4, Bhatt and Joshi predict the following, which has one less genitive

256

suffix than predicted by Michaelis and Kracht.

N1-nom N2-gen-nom N3-gen-nom N4-gen-gen-gen-nom

And for k = 5, Bhatt and Joshi predict the following, which has three fewer

genitive suffixes.

N1-nom N2-gen-nom N3-gen-nom N4-gen-nom N5-gen-gen-gen-gen-nom

Although Bhatt and Joshi eliminate the challenge posed directly by Old Geor-

gian to the hypothesis of mild context-sensitivity, they have given no mechanism

for the generation of stacked cases, or of Suffixaufnahme in general. It is not

clear how to account for cases of Suffixaufnahme without appeal to a mechanism

of copying, which, as we will see next, can very quickly lead to non-semilinear

patterns.

D–1.3 Copying (of copies)∗ in Yoruba

Here I will present another challenge to the MCS hypothesis, based on the ver-

bal relative clause construction in Yoruba. I will argue that Yoruba relativized

predicates can themselves contain relativized predicates (which in turn contain

relativized predicates etc.). This means that copies can be of copies. In other

words, copying operations can apply iteratively. Although the set of sentences

of Yoruba does not cause trouble for the MCS hypothesis, the mechanisms that

we require to describe these sentences elegantly do. The claim is, then, that as

soon as we are able to give a natural account of languages like Yoruba, we are

also able to describe non-MCS languages using the very same mechanisms in the

very same way. Therefore, while it may be true that all attested languages are

semilinear, this fact, like the fact that wwr is not an attested language, does not

receive a syntactic explanation.

257

My argument is simple and can be summarized as follows. I have already

argued that the relativized predicate construction in Yoruba involves copying.

Now I will argue that relative clauses can be copied in the relativized predicate

construction (D–1.3.1). As relative clauses are clauses, and can contain arguments

beyond the one abstracted over, we must countentance relativized predicates

being copied in the relativized predicate construction, from which the broader

conclusion follows.

D–1.3.1 On the size of the copied object

The examples below show that although the relative clause can appear either just

in the lower copy 4.39, just in the higher copy 4.40, or in both 4.41, if there are

relative clauses in both higher and lower VPs, they must be identical 4.42. This

shows that although relative clauses are not required to be copied, the grammar

of Yoruba allows them to be.

(4.38) Olu
Olu

ra
buy

adie.
chicken

ti
ti

o
3s

go.
dumb

“Olu bought the stupid chicken.”

(4.39) Rira
buying

adie.
chicken

ti
ti

Olu
Olu

ra
buy

adie.
chicken

ti
ti

o
3s

go.
dumb

ko
not

da
good

(4.40) Rira
buying

adie.
chicken

ti
ti

o
3s

go.
dumb

ti
ti

Olu
Olu

ra
buy

adie.
chicken

ko
not

da
good

(4.41) Rira
buying

adie.
chicken

ti
ti

o
3s

go.
dumb

ti
ti

Olu
Olu

ra
buy

adie.
chicken

ti
ti

o
3s

go.
dumb

ko
not

da
good

258

(4.42) *Rira
buying

adie.
chicken

ti
ti

o
3s

go.
dumb

ti
ti

Olu
Olu

ra
buy

adie.
chicken

ti
ti

o
3s

kere
small

ko
not

da
good

The sentences below illustrate the similar behaviour of adjectives, suggesting

that the restriction on relative clauses above is a general feature of copying DP

constituents, and is not parochial to the relative clause construction. These

examples show that although it is permissable for an adjective to appear only

in one of the two copies (4.44), if adjectives are in both copies, the adjectives of

the higher copy must be included in the lower copy (4.45 vs 4.46). Sentence 4.43

is a simple sentence, with two adjectives modifying adie. . In 4.46, the adjective

nla surfaces only in the lower clause. In the ungrammatical 4.45, which is the

adjectival counterpart to 4.42, both copies have adjectives (which is fine), but

the adjectives are different (which is not).

(4.43) O
3s

ra
buy

adie.
chicken

dudu
black

nla
big

“He bought the big black chicken.”

(4.44) Rira
buying

adie.
chicken

dudu
black

ti
ti

o
3s

ra
buy

adie.
chicken

ko
not

da
good

“His having bought the black chicken isn’t good.”

(4.45) *Rira
buying

adie.
chicken

dudu
black

ti
ti

o
3s

ra
buy

adie.
chicken

nla
big

ko
not

da
good

(4.46) Rira
buying

adie.
chicken

dudu
black

ti
ti

o
3s

ra
buy

adie.
chicken

dudu
black

nla
big

ko
not

da
good

“His having bought the big black chicken isn’t good.”

In the examples above we have seen that complex DPs with modifying relative

clauses or adjectives can be copied. Example 4.48 shows that the copied relative

259

clause can itself contain a relative clause. From this fact we conclude that the

size of the copied predicate does not have a principled upper bound, and thus we

must have a mechanism that can copy arbitrarily large things.

(4.47) Ade
Ade

ra
buy

aja
dog

nla
big

ti
ti

o
3s

ge
bite

obinrin
woman

ti
ti

mo
I

feran
like

je.
eat

“Ade bought the big dog that bit the woman that I love.”

(4.48) Rira
buying

Φ ti
ti

Ade
Ade

ra
buy

Φ ko
not

da
good

“The fact that Ade bought the big dog that bit the woman that I love is
not good.”

where Φ =“aja nla ti o ge obinrin ti mo feran je.”

D–1.3.2 Assessing the challenge

The challenge to the MCS hypothesis is that given that Yoruba has constructions

which involve copying of arbitrarily large structures which may itself contain

copied structures, we need to have on hand a mechanism that is able to copy

copies. Once we have such a mechanism in our grammar, we are able to generate

languages that are not of constant growth.

Our challenge is a strong one. Not only is the generalization we have argued

for the obvious one, it is robustly attested in numerous West African (influenced)

languages. Bùl̀ı (Gur) [76], Krio (Creole) [133], Twi (Kwa), Vata (Kru) [96],

Wolof (Atlantic) and many others have relativized predicate constructions, in

which a copy of a verbal constitutent appears both as the head of the relative

clause, and internally to the clause. These languages differ with respect to the

size of the copied constituent, with Twi on one end of the spectrum allowing only

a single verb root to be copied (4.50), Wolof permitting verbal complexes to be

260

copied (4.52), and Yoruba on the other end allowing full VPs to be copied.26

(4.49) me-ma
1s-give

Kofi
Kofi

sika
money

“I give Kofi money.”

(4.50) me-kyiri
1s-hate

ma
give

a
rel

me-ma
1s-give

Kofi
Kofi

sika
money

“I hate that I give Kofi money.”

(4.51) gaaw-na-ñu
quick-c-3p

a
a

door
hit

Isaa
Isaa

“They hit Isaa quickly.”

(4.52) gaaw
quick

a
a

door
hit

bi
cl.c

ñu
3p

gaaw
quick

a
a

door
hit

Isaa
Isaa

moo-ma
3s-3p

jaaxal
surprise

“The fact that they hit Isaa quickly surprised me.”

Moreover, analyses appealing to mechanisms like ours abound in the literature.

Copying of some sort has been assumed to underlie ellipsis [40, 128, 150], A-not-A

questions in Mandarin Chinese [82, 142], predicate clefts in languages as diverse

as Hebrew [103] and Korean [27], and free relatives in languages as diverse as

Bambara [49] and Italian [70], not to mention the plethora of analyses of non-

surface-copying phenomena using the copy theory of movement in the minimalist

program.

Copying is big trouble for current MCS formalisms—they can do it to a limited

extent, but only by encoding the string component of a lexical item in its category.

This makes the structures assigned to copies very unnatural, and therefore the

same syntactic generalization needs to be stated twice: once over non-copies, and

then once over copies, making the resulting grammars unnecessarily complex (a

26The Twi data is from my consultant, Selassie Ahorlu, a native speaker of the Asante dialect.
Thanks to Harold Torrence for the Wolof data, amassed during countless hours of painstaking
elicitation.

261

point made nicely by Pullum [139]). The natural and obvious generalizations

I have drawn about Yoruba, where there exist copies with copies (of copies. . .)

contained in them, is impossible to be stated in these formalisms.

262

CHAPTER 5

Conclusions

Copying exists. There are constructions in natural language that require reference

to identity of subparts of expressions for their description. This much, at least, is

uncontroversial. What is controversial is the proper locus of explanation of these

facts; whether copying should be considered syntactic, phonological, semantic, or

extra-grammatical. This is not something that can be decided a priori. What

we need are explicit theories of copying at syntactic, phonological, semantic, and

extra-grammatical levels, which can then be compared with each other, the victor

being the one that results in the simplest overall theory of language, and mind.

This work contributes to this task by providing two fully explicit theories of

copying at the syntactic level. Although framed in the context of a particular

formal theory of syntax, minimalist grammars, the basic ideas are simple, and

can be reimplemented in other syntactic frameworks. They can be succinctly

presented as follows. Copying may be of intermediate stages in a derivation, or

of the derivation itself. In minimalist grammars, these two perspectives coincide.

Empirically, what they require of analyses of a given language is that there be

enough derivational constituents to support the range of copies available for a

given sentence. It is a nice feature of our grammatical framework that the same

derivation provides us with all (and only) the necessary constituents in a wide

range of cases.

There are two basic syntactic questions that can be asked as regards copies in

263

language. The first, investigated by the vast majority of linguists working within

the chomskyian community, regards the distribution of copies: their relationship

to each other, and to other formatives in the sentence. This kind of question has

proven extremely fruitful in the past (e.g. the generalizations about the distribu-

tion of wh-words and their traces), and I see no reason to doubt its continued

fecundity. The second question, investigated here, regards the construction of

copies: how they are internally constituted, and the relation they bear to the

constitution of the objects of which they are copies. In short; how copies get

there to be distributed throughout the sentence in the first place. Clearly, any

complete theory of our linguistic competence must contain answers to both of

these questions.

Although we are conducting our investigations of language at the level of lin-

guistic competence (the description of the relation between form and meaning

that is computed during comprehension and production), it is natural to think

of essential aspects of our descriptions of this relation as having some sort of

psychological reality. A particularly intuitive perspective is that the derivation

(i.e. the structure assigned to expressions by the competence grammar) is at

least implicitly computed during parsing and generation. Adopting this perspec-

tive, our derivation-synchronization approach to copying does not commit us to

a particular method of computing similarly derived copies during production or

recognition. Indeed, a natural view to hold is that our derivational copy mecha-

nism is simply a constraint on which portions of the derivation can be recognized

as identical during parsing (in our case, subtrees). It will be an interesting ex-

ercise to construct an efficient glc parser for languages derived by synchronous

minimalist grammars. A natural idea is that copies serve to ‘narrow the beam’;

that upon beginning to recognize a similar structure, the parser ‘retries’ that

which worked before.

264

A constant question throughout this dissertation was what kinds of structures

are needed to mediate the relation between form and meaning. I have tried to

show that the two-level approach to syntax practiced by many (where the deriva-

tion exists alongside the derived tree) is unnecessary in a large number of cases,

and that, moreover, the simpler structures provided by the derivation actually

allow for a more elegant statement of the interface operations. In particular, re-

construction and quantifier scope, phenomena which have been thought to require

a derived tree, have been shown to be easily capturable derivationally; instead of

putting ‘the meaning’ of an expression in the wrong place, and then readjusting

it later, we can simply do it right from the get-go.

The transformational approach to the description of the relation between

form and meaning has resulted in a peculiar kind of syntactic object: the chain.

Expressions are typically related to multiple positions in a sentence, with their

meaning contribution being naturally expressed as similarly discontinuous. Al-

though chains in this sense are the natural locus of semantic interpretation, it

has not been known how to accomodate them in a simple semantic calculus.

The semantics given in chapter 2 not only assigns easily manipulable semantic

terms to expressions, but also permits us to view the derivation of an expression

as an underspecified semantic representation in its own right. Our semantics is

compositional in the well-defined (and completely standard) sense of there being

a transduction (a top-down one, with regular look-ahead, in our case) mapping

derivation trees to semantic terms (which are then mappable homomorphically

into the intended model).

Most fundamentally, I have tried to show that natural descriptions of natural

language phenomena involving copying allow for generation of patterns exhibiting

exponential growth. This would contradict the influential hypothesis of the mild

265

context-sensitivity of natural language, which places severe limitations on the

kinds of constructions we expect to find in human languages. The most impor-

tant aspect of this hypothesis is its independence from any particular theory of

language. Parochial to none, it is applicable to all. I have argued, in essence, that

natural languages require more computational power for their description than

can be provided by mildly context-sensitive mechanisms. My challenge to this

hypothesis can be met either by constructing a similarly elegant formal theory

of syntax which allows for copying but which does not permit copies to contain

copies, or by reanalyzing the Yoruba data. I hope to have made this latter option

difficult. Until such time as my challenge is met, the formal complexity of natural

language is far from unconstrained. Indeed, one of the conditions on mild context-

sensitivity (efficient recognizability) continues to hold. More than this, natural

language phenomena seem all amenable to description by mechanisms equivalent

in expressive power to parallel multiple context-free grammars, or to synchronous

minimalist grammars; both of which generate patterns properly contained in P.

266

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.

Journal of Functional Programming, 1(4):375–416, 1991.

[2] A. Abeillé. Synchronous TAGs and French pronomial clitics. In Proceedings

of the 14th International Conference on Computational Linguistics (COL-

ING), volume 1, pages 60–66, 1992.

[3] P. Agbedor. Verb serialization in Ewe. Nordic Journal of African Studies,

3(1):115–135, 1994.

[4] S. R. Anderson. A-Morphous Morphology. Cambridge University Press,

1992.

[5] D. Angluin. Inference of reversible languages. Journal of the Association

for Computing Machinery, 29:741–765, 1982.

[6] Y. Awoyale. On the development of the verb infinitive phrase in Yoruba.

Studies in African Linguistics, 14(1):71–102, April 1983.

[7] M. Baker. Incorporation: a theory of grammatical function changing. MIT

Press, Cambridge, Massachusetts, 1988.

[8] M. Baker. Object sharing and projection in serial verb constructions. Lin-

guistic Inquiry, 20(4):513–553, Fall 1989.

[9] A. Bámgbós.é. Relative clauses and nominalized sentences in Yoruba. In

Proceedings of the Sixth Conference on African Linguistics, volume 20 of

Ohio State University Working Papers in Linguistics, pages 202–209, 1975.

267

[10] A. Bámgbós.é. Relativization or nominalization?: A case of structure versus

meaning. Research in Yoruba Language and Literature, 3:87–109, November

1992.

[11] T. Becker, O. Rambow, and M. Niv. The derivational generative power of

formal systems, or, scrambling is beyond LCFRS. Technical Report IRCS-

92-38, Institute for Research in Cognitive Science, University of Pennsyl-

vania, 1992.

[12] R. Bhatt. The raising analysis of relative clauses: Evidence from adjectival

modification. Natural Language Semantics, 10(1):43–90, 2002.

[13] R. Bhatt and A. Joshi. Semilinearity is a syntactic invariant: A reply to

Michaelis and Kracht (1997). Linguistic Inquiry, 35(4):683–692, Fall 2004.

[14] V. Bianchi. The raising analysis of relative clauses: A reply to Borsley.

Linguistic Inquiry, 31(1):123–140, Winter 2000.

[15] P. Blache, E. Stabler, J. Busquets, and R. Moot, editors. Logical Aspects

of Computational Linguistics, volume 3492 of Lecture Notes in Computer

Science, Berlin, 2005. Springer.

[16] J. Blaszczak and H.-M. Gärtner. Intonational phrasing, discontinuity, and

the scope of negation. Syntax, 8(1):1–22, April 2005.

[17] O. G. Bode. Yoruba Clause Structure. PhD thesis, University of Iowa, 2000.

[18] C. Boeckx and S. Stjepanović. Head-ing toward PF. Linguistic Inquiry, 32

(2):345–355, Spring 2001.

[19] J. Bos. Predicate logic unplugged. In P. Dekker and M. Stokhof, editors,

268

Proceedings of the Tenth Amsterdam Colloquium, pages 133–143, Amster-

dam, 1996.

[20] Ž. Bošković. On multiple Wh-fronting. Linguistic Inquiry, 33(3):351–383,

Summer 2002.

[21] M. Brody. Lexico-Logical Form: A Radically Minimalist Theory. MIT

Press, Cambridge, Massachusetts, 1995.

[22] L. Burzio. Italian syntax: A Government-Binding approach. D. Reidel,

Dordrecht, 1986.

[23] W. Buszkowski. Lambek grammars based on pregroups. In de Groote et al.

[50], pages 95–109.

[24] J. L. Bybee. Morphology: A study of the relation between meaning and

form. Benjamins, Philadelphia, 1985.

[25] V. Carstens and F. Parkinson, editors. Advances in African Linguistics,

volume 4 of Trends in African Linguistics. Africa World Press, Trenton,

NJ, 2000.

[26] J. Chen-Main. On the generation and linearization of multi-dominance

structures. PhD thesis, Johns Hopkins, 2006.

[27] E. Cho and K. Nishiyama. Yoruba predicate clefts from a comparative

perspective. In Carstens and Parkinson [25], pages 37–49.

[28] N. Chomsky. New Horizons in the Study of Language and Mind. Cambridge

University Press, NY, 2000.

[29] N. Chomsky. Minimalist inquiries: The framework. In R. Martin,

D. Michaels, and J. Uriagereka, editors, Step by Step: Essays on Minimalist

269

Syntax in Honor of Howard Lasnik, pages 89–155. MIT Press, Cambridge,

Massachusetts, 2000.

[30] N. Chomsky. Derivation by phase. In M. Kenstowicz, editor, Ken Hale: A

Life in Language, pages 1–52. MIT Press, Cambridge, Massachusetts, 2001.

[31] N. Chomsky. Three factors in language design. Linguistic Inquiry, 36(1):

1–22, Winter 2005.

[32] N. Chomsky. On phases. ms., MIT, 2005.

[33] N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

[34] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge,

Massachusetts, 1965.

[35] N. Chomsky. Reflections on Language. Pantheon, NY, 1975.

[36] N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, 1981.

[37] N. Chomsky. A minimalist program for linguistic theory. In Hale and

Keyser [71].

[38] N. Chomsky. Bare phrase structure. In G. Webelhuth, editor, Govern-

ment and Binding Theory and the Minimalist Program, pages 383–439.

MIT Press, Cambridge, Massachusetts, 1995.

[39] N. Chomsky. The Minimalist Program. MIT Press, Cambridge, Mas-

sachusetts, 1995.

[40] S. Chung, W. A. Ladusaw, and J. McCloskey. Sluicing and logical form.

Natural Language Semantics, 3(3):239–282, 1995.

270

[41] A. Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5(2):56–68, June 1940.

[42] C. Collins. Topics in Ewe Syntax. PhD thesis, Massachusetts Institute of

Technology, 1993.

[43] C. Collins. Argument sharing in serial verb constructions. Linguistic In-

quiry, 28(3):461–497, Summer 1997.

[44] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available

at http://www.grappa.univ-lille3.fr/tata, 2002.

[45] R. Cooper. Quantification and Syntactic Theory. D. Reidel, Dordrecht,

1983.

[46] A. Copestake, D. Flickinger, C. Pollard, and I. A. Sag. Minimal recursion

semantics: An introduction. Research on Language and Computation, 3(4):

281–332, December 2005.

[47] A. Cormack and N. Smith. Compositionality, copy theory, and control. In

A. Neeleman and R. Vermeulen, editors, University College London Work-

ing Papers in Linguistics, volume 14, pages 355–373. University College

London, 2002.

[48] T. Cornell. Derivational and representational views of minimalist trans-

formational grammar. In A. Lecomte, F. Lamarche, and G. Perrier, ed-

itors, Logical Aspects of Computational Linguistics, volume 1582 of Lec-

ture Notes in Computer Science, pages 92–111, Berlin Heidelberg, 1999.

Springer-Verlag.

271

[49] C. Culy. The complexity of the vocabulary of Bambara. Linguistics and

Philosophy, 8(3):345–352, 1985.

[50] P. de Groote, G. F. Morrill, and C. Retoré, editors. Logical Aspects of

Computational Linguistics, volume 2099 of Lecture Notes in Artificial In-

telligence, Berlin, 2001. Springer Verlag.

[51] M. de Vries. The Syntax of Relativization. PhD thesis, Universiteit van

Amsterdam, 2002.

[52] D. Embick and R. Noyer. Movement operations after syntax. Linguistic

Inquiry, 32(4):555–595, 2001.

[53] J. Engelfriet. Top-down tree transducers with regular look-ahead. Mathe-

matical Systems Theory, 10:289–303, 1977.

[54] J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer

and System Sciences, 31:71–146, 1985.

[55] G. Fanselow and D. Čavar. Distributed deletion. In A. Alexiadou, editor,

Theoretical Approaches to Universals, pages 67–107. Benjamins, Amster-

dam, 2002.

[56] P. K. Feyerabend. How to be a good empiricist—a plea for tolerance in mat-

ters epistemological. In P. H. Nidditch, editor, The Philosophy of Science,

Oxford Readings in Philosophy, chapter 1, pages 12–39. Oxford University

Press, 1968.

[57] J. Fitzpatrick-Cole. Reduplication meets the phonological phrase in Ben-

gali. The Linguistic Review, 13:305–356, 1996.

272

[58] J. A. Fodor. The Modularity of Mind. MIT Press, Cambridge, Mas-

sachusetts, 1983.

[59] W. Frey and H.-M. Gärtner. Scrambling and adjunction in minimalist

grammars. In G. Jäger, P. Monachesi, G. Penn, and S. Wintner, editors,

Proceedings of Formal Grammar 2002, pages 41–52, 2002.

[60] Y. Fyodorov, Y. Winter, and N. Francez. Order-based inference in natural

logic. Logic Journal of the IGPL, 11(4):385–416, 2003.

[61] H.-M. Gärtner. Generalized Transformations and Beyond: Reflections on

Minimalist Syntax. Akademie Verlag, Berlin, 2002.

[62] H.-M. Gärtner. Review of the copy theory of movement and linearization of

chains in the minimalist program. GLOT International, 8(3):16–20, 1998.

[63] H.-M. Gärtner and J. Michaelis. A note on the complexity of constraint

interaction: Locality conditions and minimalist grammars. In Blache et al.

[15], pages 114–130.

[64] G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Structure

Grammar. Harvard University Press, Cambridge, MA, 1985.

[65] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest,

1984.

[66] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[67] J. H. Greenberg, editor. Universals of Language. MIT Press, Cambridge,

Massachusetts, 1963.

[68] J. Grimshaw. Words and Structure. CSLI Publications, Stanford, 2005.

273

[69] K. K. Grohmann. Prolific Peripheries: A Radical View From The Left.

PhD thesis, University of Maryland, 2000.

[70] A. Gull̀ı. Phrasal Reduplication in Syntax. PhD thesis, The City University

of New York, 2003.

[71] K. Hale and S. J. Keyser, editors. The View from Building 20. MIT Press,

Cambridge, Massachusetts, 1993.

[72] M. Halle and A. Marantz. Distributed morphology and the pieces of inflec-

tion. In Hale and Keyser [71], pages 111–176.

[73] H. Harkema. A characterization of minimalist grammars. In de Groote

et al. [50].

[74] I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell

Publishers, 1998.

[75] J. Hintikka. No scope for scope? Linguistics and Philosophy, 20:515–544,

1997.

[76] K. Hiraiwa. Dimensions of Symmetry in Syntax: Agreement and Clausal

Architecture. PhD thesis, Massachusetts Institute of Technology, 2005.

[77] C. F. Hockett. Two models of grammatical description. Word, 10:210–231,

1954.

[78] N. Hornstein. Move! A Minimalist Theory of Construal. Blackwell, 2001.

[79] N. Hornstein. Logical Form: From GB to Minimalism. Blackwell, Cam-

bridge, Massachusetts, 1995.

[80] N. Hornstein. Movement and control. Linguistic Inquiry, 30(1):69–96,

Winter 1999.

274

[81] C.-T. J. Huang. Logical relations in Chinese and the theory of grammar.

PhD thesis, MIT, 1982.

[82] C.-T. J. Huang. Modularity and Chinese A-not-A questions. In C. Geor-

gopoulos and R. Ishihara, editors, Interdisciplinary Approaches to Lan-

guage, Essays in Honor of S.-Y. Kuroda, pages 305–332. Kluwer, Dordrecht,

1991.

[83] N. Immerman. Descriptive complexity: a logician’s approach to compu-

tation. Notices of the American Mathematical Society, 42(10):1127–1133,

1995.

[84] G. Jäger, P. Monachesi, G. Penn, J. Rogers, and S. Wintner, editors. Pro-

ceedings of the 10th conference on Formal Grammar and the 9th Meeting

on Mathematics of Language, Edinburgh, August 2005.

[85] M. Johnson. Attribute Value Logic and The Theory of Grammar. Num-

ber 16 in CSLI Lecture Notes Series. Chicago University Press, Chicago,

1988.

[86] A. Joshi. How much context-sensitivity is necessary for characterizing struc-

tural descriptions. In D. Dowty, L. Karttunen, and A. Zwicky, editors,

Natural Language Processing: Theoretical, Computational and Psychologi-

cal Perspectives, pages 206–250. Cambridge University Press, NY, 1985.

[87] A. K. Joshi, T. Becker, and O. Rambow. Complexity of scrambling: A

new twist to the competence-performence distinction. In A. Abeillé and

O. Rambow, editors, Tree Adjoining Grammars: Formalisms, Linguistic

Analysis and Processing. CSLI Publications, Stanford, 2000.

275

[88] M. Kanazawa. Learnable Classes of Categorial Grammars. CSLI Publica-

tions, Stanford University., 1998.

[89] J. Kandybowicz. Conditions on Multiple Copy Spell-Out and the Syntax-

Phonology Interface. PhD thesis, UCLA, 2006.

[90] R. Kayne. The Antisymmetry of Syntax. MIT Press, Cambridge, Mas-

sachusetts, 1994.

[91] E. L. Keenan. Beyond the Frege boundary. Linguistics and Philosophy, 15:

199–221, 1992.

[92] W. R. Keller. Nested cooper storage: The proper treatment of quantifica-

tion in ordinary noun phrases. In U. Reyle and C. Rohrer, editors, Natural

Language Parsing and Linguistic Theories, number 35 in Studies in Lin-

guistics and Philosophy, pages 432–447. D. Reidel, Dordrecht, 1988.

[93] G. M. Kobele and J. Michaelis. Two type 0-variants of minimalist gram-

mars. In Jäger et al. [84].

[94] M. Koizumi. Phrase Structure In Minimalist Syntax. PhD thesis, MIT,

1995.

[95] H. Koopman. Derivations and complexity filters. In A. Alexiadou,

E. Anagnostopoulou, S. Barbiers, and H.-M. Gärtner, editors, Dimensions

of Movement: From features to remnants, number 48 in Linguistik Ak-

tuell/Linguistics Today, chapter 8, pages 151–188. John Benjamins, 2002.

[96] H. Koopman. The Syntax of Verbs: From Verb Movement Rules in the Kru

Languages to Universal Grammar. Foris, Dordrecht, 1983.

276

[97] H. Koopman and D. Sportiche. The position of subjects. Lingua, 85:211–

258, 1991. Reprinted in Dominique Sportiche, Partitions and Atoms of

Clause Structure: Subjects, agreement, case and clitics. NY: Routledge.

[98] A. Kratzer. Severing the external argument from its verb. In J. Rooryck

and L. Zaring, editors, Phrase Structure and the Lexicon, pages 109–137.

Kluwer, Dordrecht, 1996.

[99] G. Kreisel and J.-L. Krivine. Elements of Mathematical Logic (Model The-

ory). North-Holland, Amsterdam, 1967.

[100] S. Kripke. Naming and Necessity. Harvard University Press, 1980.

[101] J. Lambek. Type grammars as pregroups. Grammars, 4(1):21–35, 2001.

[102] J. Lambek. Type grammars revisited. In A. Lecomte, F. Lamarche, and

G. Perrier, editors, Logical Aspects of Computational Linguistics, volume

1582 of Lecture Notes in Artificial Intelligence, pages 1–27. Springer, New

York, 1999.

[103] I. Landau. Chain resolution in Hebrew V(P)-fronting. Syntax, 9(1):32–66,

April 2006.

[104] R. K. Larson. Promise and the theory of control. Linguistic Inquiry, 22

(1):103–139, Winter 1991.

[105] R. K. Larson. Some issues in verb serialization. In Lefebvre [109], pages

185–210.

[106] H. Lasnik. Chains of arguments. In S. D. Epstein and N. Hornstein, ed-

itors, Working Minimalism, number 32 in Current Studies in Linguistics,

chapter 8, pages 189–215. MIT Press, Cambridge, Massachusetts, 1999.

277

[107] N. S. Lawal. Serial verbs in Yoruba as adjunct phrases. Lingua, 91:185–200,

1993.

[108] F. Lee. Anaphoric R-expressions as bound variables. Syntax, 6(1):84–114,

2003.

[109] C. Lefebvre, editor. Serial Verbs: Grammatical, Comparative and Cognitive

Approaches, volume 8 of Studies in the Sciences of Language Series. John

Benjamins, Amsterdam/Philadelphia, 1991.

[110] C. Lefebvre. Take serial verb constructions in Fon. In Serial Verbs: Gram-

matical, Comparative and Cognitive Approaches Lefebvre [109], pages 37–

78.

[111] J. Lidz and W. J. Idsardi. Chains and phono-logical form. In A. Dimitriadis,

H. Lee, C. Moisset, and A. Williams, editors, University of Pennsylvania

Working Papers in Linguistics, volume 8, pages 109–125, 1998.

[112] P. Ljunglöf. A polynomial time extension of parallel multiple context-free

grammar. In Blache et al. [15], pages 177–188.

[113] A. Mahajan. Eliminating head movement. In The 23rd Generative Lin-

guistics in the Old World Colloquium, 2000.

[114] M. R. Manzini and A. Roussou. A minimalist theory of A-movement and

control. Lingua, 110(6):409–447, 2000.

[115] A. Marantz. On the Nature of Grammatical Relations. MIT Press, Cam-

bridge, Massachusetts, 1984.

[116] D. Marr. Vision. W. H. Freeman and Company, New York, 1982.

278

[117] O. Matushansky. Going through a phase. In M. McGinnis and N. Richards,

editors, Perspectives on Phases, number 49 in MIT Working Papers in

Linguistics, Cambridge, Massachusetts, 2005.

[118] O. Matushansky. Head movement in linguistic theory. Linguistic Inquiry,

37(1):69–109, Winter 2006.

[119] J. Michaelis. Transforming linear context-free rewriting systems into mini-

malist grammars. In de Groote et al. [50].

[120] J. Michaelis. An additional observation on strict derivational minimalism.

In Jäger et al. [84].

[121] J. Michaelis. Derivational minimalism is mildly context-sensitive. In

M. Moortgat, editor, Logical Aspects of Computational Linguistics, (LACL

’98), volume 2014 of Lecture Notes in Artificial Intelligence. Springer Ver-

lag, Berlin, Heidelberg, Germany, 1998.

[122] J. Michaelis and M. Kracht. Semilinearity as a syntactic invariant. In

C. Retoré, editor, Logical Aspects of Computational Linguistics, pages 37–

40, NY, 1997. Springer-Verlag (Lecture Notes in Computer Science 1328).

[123] P. Monachesi, G. Penn, G. Satta, and S. Wintner, editors. Proceedings of

the 11th conference on Formal Grammar, July 2006. CSLI.

[124] R. Montague. Formal Philosophy: Selected Papers of Richard Montague.

Yale University Press, New Haven, 1974. edited and with an introduction

by R. Thomason.

[125] M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen,

editors, Handbook of Logic and Language. Elsevier, Amsterdam, 1996.

279

[126] Y. N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid,

editors, Mathematics unlimited – 2001 and beyond, pages 919–936, Berlin,

2001. Springer Verlag.

[127] Y. N. Moschovakis. On founding the theory of algorithms. In H. G. Dales

and G. Oliveri, editors, Truth in mathematics, pages 71–104. Oxford Uni-

versity Press, 1998.

[128] E. Murgúıa. Syntactic Identity and Locality Restrictions on Verbal Ellipsis.

PhD thesis, University of Maryland, 2004.

[129] N. Nasu. Aspects of the syntax of A-movement: A study of English infiniti-

val constructions and related phenomena. PhD thesis, University of Essex,

2002.

[130] R. Nesson and S. Shieber. Simpler TAG semantics through synchronization.

In Monachesi et al. [123], pages 103–117.

[131] J. Nunes. Linearization of Chains and Sideward Movement, volume 43

of Linguistic Inquiry Monographs. MIT Press, Cambridge, Massachusetts,

2004.

[132] J. Nunes. The copy theory of movement and linearization of chains in the

Minimalist Program. PhD thesis, University of Maryland, College Park,

1995.

[133] D. K. Nylander. Factivity, presupposition and the relativised predicate in

Krio. Studies in African Linguistics, 16(3):323–336, December 1985.

[134] J. H. O’Neil III. Means of Control: Deriving the Properties of PRO in the

Minimalist Program. PhD thesis, Harvard, 1997.

280

[135] O. . O. Oyelaran. The category aux in the Yoruba phrase structure. Research

in Yoruba Language and Literature, 3:59–86, November 1992.

[136] F. Plank, editor. Double Case: Agreement by Suffixaufnahme. Oxford

University Press, 1995.

[137] P. Postal. On Raising: One Rule of English Grammar and its Theoretical

Implications. MIT Press, Cambridge, Massachusetts, 1974.

[138] M. Przezdziecki. Object raising in Yorùbá. In Carstens and Parkinson [25],

pages 77–90.

[139] G. K. Pullum. Render unto syntax the things which are

syntax. handout of talk, September 2006. Available at

http://www.phon.ucl.ac.uk/research/pullum.pdf.

[140] L. Pylkkänen. Introducing Arguments. PhD thesis, Massachusetts Institute

of Technology, 2002.

[141] Z. W. Pylyshyn. Computation and Cognition: Toward a Foundation for

Cognitive Science. Bradford Books. MIT Press, Cambridge, Massachusetts,

1984.

[142] D. Radzinski. Unbounded syntactic copying in Mandarin Chinese. Linguis-

tics and Philosophy, 13(1):113–127, 1990.

[143] G. Restall. An Introduction to Substructural Logics. Routledge, 2000.

[144] C. Retoré and E. P. Stabler. Resource logics and minimalist grammars.

Research on Language and Computation, 2(1):3–25, 2004.

[145] L. Rizzi. Relativized Minimality. MIT Press, Cambridge, Massachusetts,

1990.

281

[146] R. H. Robins. In defense of WP. Transactions of the Philological Society,

pages 116–144, 1959. Reprinted in Transactions of the Philological Society

99(2):171–200.

[147] J. Rogers. A Descriptive Approach to Language-Theoretic Complexity. CSLI

Publications, 1998.

[148] P. S. Rosenbaum. The grammar of English predicate complement construc-

tions. MIT Press, Cambridge, Massachusetts, 1967.

[149] E. C. Rowlands. Yoruba (Teach Yourself). NTC Publishing Group, Lin-

colnwood, IL, 1969.

[150] I. A. Sag. Deletion and Logical Form. PhD thesis, Massachusetts Institute

of Technology, Cambridge, Massachusetts, 1976.

[151] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free

grammars. Theoretical Computer Science, 88:191–229, 1991.

[152] S. M. Shieber. Synchronous grammars as tree transducers. In Proceedings

of the Seventh International Workshop on Tree Adjoining Grammar and

Related Formalisms (TAG+7), pages 88–95, Vancouver, 2004.

[153] S. M. Shieber. Unifying synchronous tree-adjoining grammars and tree

transducers via bimorphisms. In Proceedings of the 11th Conference of

the European Chapter of the Association for Computational Linguistics

(EACL-2006), pages 377–384, Trento, 2006.

[154] S. M. Shieber. Restricting the weak-generative capacity of synchronous tree-

adjoining grammars. Computational Intelligence, 10(4):371–385, November

1994.

282

[155] S. M. Shieber and Y. Schabes. Synchronous tree-adjoining grammars. In

Proceedings of the 13th International Conference on Computational Lin-

guistics (COLING), volume 3, pages 253–258, Helsinki,Finland, 1990.

[156] E. P. Stabler. Minimalist grammars and recognition. In C. Rohrer, A. Ross-

deutscher, and H. Kamp, editors, Linguistic Form and its Computation,

pages 327–352. CSLI Publications, 2001.

[157] E. P. Stabler. Recognizing head movement. In de Groote et al. [50], pages

254–260.

[158] E. P. Stabler. Comparing 3 perspectives on head movement. In A. Ma-

hajan, editor, Syntax at Sunset 3: Head Movement and Syntactic Theory,

volume 10 of UCLA/Potsdam Working Papers in Linguistics, pages 178–

198, May 2003.

[159] E. P. Stabler. Sidewards without copying. In Monachesi et al. [123], pages

133–146.

[160] E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects

of Computational Linguistics, volume 1328 of Lecture Notes in Computer

Science, pages 68–95. Springer-Verlag, Berlin, 1997.

[161] E. P. Stabler. Remnant movement and complexity. In G. Bouma, E. Hin-

richs, G.-J. M. Kruijff, and R. T. Oehrle, editors, Constraints and Resources

in Natural Language Syntax and Semantics, chapter 16, pages 299–326.

CSLI Publications, Stanford, CA, 1999.

[162] E. P. Stabler and E. L. Keenan. Structural similarity within and among

languages. Theoretical Computer Science, 293:345–363, 2003.

[163] M. Steedman. The Syntactic Process. MIT Press, 2000.

283

[164] O. T. Stewart. The serial verb construction parameter. PhD thesis, McGill

University, 1998.

[165] G. T. Stump. Inflectional Morphology: A Theory of Paradigm Structure.

Cambridge University Press, 2001.

[166] A. Tarski. The concept of truth in formalized languages. In J. Corco-

ran, editor, Logic, Semantics, Metamathematics, chapter 8, pages 152–278.

Hackett Publishing Company, Indianapolis, 1983.

[167] L. Travis. Parameters and effects of word order variation. PhD thesis,

Massachussets Institute of Technology, Cambridge, Massachusetts, 1984.

[168] J. van Benthem. Meaning: Intrpretation and inference. Synthese, 73:451–

470, 1987.

[169] C. Wartena. Storage Structures and Conditions on Movement in Natural

Language Syntax. PhD thesis, Universität Potsdam, 1999.

[170] A. Zamansky, N. Francez, and Y. Winter. A ‘Natural Logic’ inference

system using the Lambek calculus. Journal of Logic, Language and Infor-

mation, 15(3):273–295, October 2006.

284

