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ABSTRACT OF THE DISSERTATION 

 

The Evolving Lexicon 

 

by 

 

Andrew Thomas Martin 

Doctor of Philosophy in Linguistics 
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Professor Kie Zuraw, Chair 

 

Although gradient phonotactics, phonological generalizations that are statistical rather 

than categorical, are a ubiquitous feature of human languages, current models of 

gradient phonotactics do not address the typological or diachronic aspects of these 

generalizations—why some phonotactic patterns are more common than others, and 

how and why these patterns change over time. In this dissertation I propose that the 

statistical properties of the lexicon are shaped in part by unconscious phonotactic 

preferences on the part of language users—biases that affect a word’s chance of 

becoming established among a community of speakers, or remaining in use once 

established. 

 The dissertation is devoted to establishing two main claims: first, that 

phonotactic preferences are real, and second, that the mechanism that drives these 



 xiv 

preferences consists of competitions among words during speech production. In 

support of the first, empirical, claim, I present three main examples of phonotactic 

preferences: (1) a bias in favor of /b/ over /d/ in the development of Latin into French, 

which is motivated by articulatory ease, (2) a gradient OCP effect in English, 

motivated by processing ease, and (3) a correlation between tautomorphemic and 

heteromorphemic phonotactics in several languages, which I argue is motivated by 

the structure of the human phonotactic learning algorithm. 

 In support of the second, theoretical claim, that phonotactic preferences can 

result from competitions among synonyms, I present a spreading activation model of 

speech production (Dell 1986) which consists of a network in which lexical items 

which match concepts the speaker wishes to express are activated by those concepts, 

and then in turn activate their constituent phonological subparts. Synonyms, words 

that represent the same concept, are simultaneously activated and race to reach an 

activation threshold—the winner of this race is selected and used by the speaker to 

express the concept. Properties that allow a word to be accessed more quickly thus 

confer an advantage to words that have those properties. Words with phonotactic 

patterns that facilitate lexical access will tend to be used more than words without 

those patterns, leading over time to a lexicon in which these “good” patterns 

predominate.  

 

 





 1 

1. Lexical competition and evolution 

Licuit semperque licebit  [Men ever had, and ever will have, leave  
signatum praesente nota producere nomen. To coin new words well suited to the age, 
Ut silvae foliis pronos mutantur in annos, Words are like leaves, some wither ev’ry year, 
prima cadunt, ita verborum vetus interit aetas, And ev’ry year a younger race succeeds.] 
et iuvenum ritu florent modo nata vigentque.  
 
—Horace, Ars Poetica  [tr. Earl of Roscommon] 
 
 
 Perhaps the most obvious type of historical language change, readily apparent 

to anyone who uses language, is the birth and death of words. In every language, 

some words “wither ev’ry year,” a phenomenon that most people can observe 

happening within their lifetimes. This is perhaps an inevitable Malthusian 

consequence of the ubiquitous human impulse to “coin new words well suited to the 

age.” The vocabulary of a language, limited by the memories and lifespans of its 

individual speakers, cannot expand indefinitely. As Charles Darwin (1871) put it, 

“We see variability in every tongue, and new words are continually cropping up; but 

as there is a limit to the powers of the memory, single words, like whole languages, 

gradually become extinct” (58). 

 As the quote from Horace demonstrates, interest in the life cycles of words 

has a long history. Despite this, however, the subject has played little role in modern 

linguistic theory, remaining the domain of lexicographers and amateur observers of 

language.1 This dissertation represents an attempt to rectify this situation. In what 

follows I hope to show that studying the creation and survival of words in a speech 

                                                 
1 Recent popular treatments of the subject include McFedries 2004, Kelz Sperling 2005, Crystal 2006, 
and Steinmetz and Kipfer 2006. 
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community offers important insights into historical language change, the nature of 

speech production, and the biases that humans bring to the task of learning a language.  

 

1.1. The proposal 

 Modern linguistic theory concerns itself with two fundamental questions: the 

learning problem—how do humans learn language?—and the typology problem—

why do the world’s languages exhibit some properties and not others? These two 

questions represent two different, albeit complementary, approaches to understanding 

how the language faculty is structured. Although there is disagreement regarding how 

related learning and typology are, there is a consensus that a complete theory of 

human language should account for the facts in both domains. 

 Until recently, most research on these two problems has been confined to the 

categorical generalizations present in linguistic data. In recent years, however, a 

growing body of research has focused on gradient phonotactics, statistical rather than 

categorical sound patterns that hold over the lexicon. Although this work has been a 

welcome corrective to the categorical bias in the field, it has been largely restricted to 

answering the learning problem—determining the extent to which humans can learn 

statistical phonological patterns (e.g., Coleman and Pierrehumbert 1997, 

Dankovi�ová et al. 1998, Frisch, Pisoni, and Large, 2000, Treiman et al. 2000, Bailey 

and Hahn 2001, Frisch and Zawaydeh 2001, Hay et al. 2003). Much less work has 

been devoted to the typology problem—understanding why languages exhibit the 

patterns they do, or indeed why they have gradient phonotactics at all. This is the 
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question I will attempt to answer in this dissertation—what forces shape the statistical 

properties of a language’s lexicon? 

 In every language that has been studied quantitatively, sounds exhibit a wide 

range of frequencies.2 The distribution of consonants in English, shown in (1), has a 

typical shape—although English has 25 consonant phonemes, the five most frequent 

sounds, /t/, /s/, /n/, /r/, and /l/, together account for more than half of all the 

consonants occurring in English words (the bottom five, in contrast, make up just 

over 3% of all consonants). The distribution is thus not only non-uniform, but heavily 

skewed.3 

                                                 
2 The frequencies reported throughout this section are type frequencies, i.e., the frequencies of 
segments in the lexicon, here represented by a lemmatized word list. 
3 Tambovtsev and Martindale (2007) argue, using data from 95 languages, that phoneme frequencies 
are best modeled with the Yule distribution (Yule 1924), of which the more famous Zipf distribution is 
a special case. The Yule distribution, they claim, is characteristic of discrete distributions over 
relatively small numbers of elements, such as the frequencies of phonemes in a language, while 
Zipfian distributions are more likely to occur with large numbers of elements, such as the frequencies 
of words in a language. 
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(1) Consonant type frequencies in English 
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Source: CELEX lexical database (Baayen et al. 1993) 

Similarly shaped distributions can be found in every language, not only for individual 

phonemes, but for cooccurrence frequencies among phonemes.  

 The fact that not all phonemes are created equal, although a striking linguistic 

universal, is by no means a logical necessity. Huffman (1952) showed that the 

average information content of a set of phonemes is maximized when they are all of 

equal probability, meaning that favoring some sounds over others results in a less 

efficient coding system. Why, then, are phoneme frequencies so skewed? 

 The answer proposed in this chapter is that lexicons with uniform phoneme 

distributions are diachronically unstable. I will argue that words that contain more 

frequent phonemes are more likely to enter the lexicon, thereby making these 

frequent sounds even more frequent, in a “rich get richer” feedback loop. Any slight 
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deviations from uniformity will thus become exaggerated over time, ultimately 

resulting in a skewed distribution. 

 This mechanism, however, does not explain why certain sounds are 

consistently more frequent across languages, or across different historical stages of 

the same language. Markedness theory (Trubetzkoy 1931, Andrews 1990, Battistella 

1990, de Lacy 2006) has generated a large literature devoted to establishing why 

languages seem to “prefer” some sounds over others—I will draw on this work, 

demonstrating the effects of several types of markedness on lexical frequency by 

means of a series of case studies. In chapter 2, for example, I present examples in 

which the articulatory ease of individual sounds is correlated with type frequency. In 

chapter 3 I argue that processing constraints on sound sequencing affects the 

frequency of certain sequences. In chapter 4 I focus on morphological word formation, 

and show that language-specific phonotactic generalizations also play a role in 

shaping the lexicon. 

 The dissertation will also present a theory of how these differences among 

sounds are translated into lexical frequencies. I will consider two possible 

mechanisms. The first involves historical sound change. If individual sounds change 

over time, and this change is biased towards creating certain sounds over others, the 

result would be a lexicon skewed as in (1) (Zipf 1935). If sound changes in English 

tend to create /t/ more often than /d/, for example, it would explain why /t/ is more 

frequent than /d/ in the current lexicon. 
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 Although sound change undoubtedly has a hand in shaping the lexicon, I will 

argue that phonotactic preferences on the part of language users, which act as biases 

on the creation or retention of words, also play a role. On this theory, speakers of 

English prefer to retain (or borrow, or coin) words that contain /t/ over words that 

contain /d/, and these preferences over time have resulted in a lexicon skewed 

towards /t/. In other words, lexical items are afforded a better chance of spreading 

throughout a speech community, and of surviving across subsequent generations of 

speakers, if they contain certain sounds or combinations of sounds. These phonotactic 

preferences shape the statistical properties of the lexicon even in the absence of sound 

change. This idea is not new—it has been mentioned by Sevald and Dell (1994), Berg 

(1998), Boersma (1998), Frisch et al. (2004), Coetzee and Pater (2005), McClelland 

and Vander Wyck (2006), and Hansson (2007), and is the subject of recent work by 

Boersma (2007). What is lacking, however, and what I hope to provide, is a concrete 

theory of the mechanism underlying phonotactic preferences and its connection to 

language processing and phonotactic learning. 

 Understanding this mechanism will allow us to predict not only which kinds 

of statistical change are more likely than others, but also how statistical patterns can 

remain stable over time. For an illustration of the issues involved, it is instructive to 

compare the frequencies of consonants in Old English (spoken from the fifth to the 

twelfth century AD) to those in Modern English. The two distributions are shown 

below in (2), with black bars representing Old English frequencies and gray bars 

representing Modern English. 



 7 

(2) Consonant type frequencies in Old English and Modern English 
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 Sources: (OE) Bosworth and Toller 1898; (MnE) CELEX lexical database (Baayen et al. 1993) 

 There are several differences between the two distributions, reflecting the 

roughly 1,000 years between the two stages of English. The phoneme /j/, for example, 

is much more frequent relative to other consonants in Old English than Modern 

English. This is largely due to the common Old English verbal prefix ge-, pronounced 

/je/, which was later lost, depriving the language of many instances of /j/. Another 

difference can be seen in the ratios of voiced to voiceless obstruents. The obstruents 

/p/, /t/, /k/, and /s/ all increase greatly in frequency between the two stages of English. 

This is largely due to the disappearance of a rule of intervocalic voicing—in Old 

English, these obstruents could only occur in a limited set of contexts, which kept 

their frequency down. In Modern English, which has lost this rule, voiceless 

obstruents occur in a greater range of environments, and have concomitantly greater 

frequencies. 
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 What is perhaps more surprising than the differences between the distributions 

in Old and Modern English, however, is how similar they are. It is well-known that 

between these two stages of English, most of the lexicon was replaced—roughly 85% 

of the Old English vocabulary is no longer in use (Baugh and Cable 1993), and more 

than 80% of the Modern English vocabulary consists of words borrowed from other 

languages (Stockwell and Minkova 2001). Given this large turnover in lexical items, 

the frequency distribution of consonants in both languages is surprisingly similar in a 

number of ways—for example, alveolar consonants are clustered at the top, while 

interdental fricatives are near the bottom.  

 This similarity can be quantified by means of the Kullback-Leibler (KL) 

divergence, which is a measure of the difference between two probability 

distributions over the same space.4 Identical distributions have a KL number of zero, 

while higher numbers indicate larger differences between the distributions. If we 

restrict the set of consonants to those shared by both languages (a total of 23), the 

resulting KL divergence between Old English and Modern English is 0.26. This is 

significantly lower (p<.001 by Monte Carlo) than the average KL divergence of 1.01 

obtained when the rank order of the Modern English consonants is randomly shuffled 

10,000 times.5 The degree of similarity between the two distributions is thus unlikely 

to be due to chance. 

                                                 
4 The Kullback-Leibler divergence for two probability distributions p and q is defined as 

�=
x xq

xp
xpqpD

)(
)(

log)()||( . Note that KL divergence is not a symmetric property; D(p||q) does not 

necessarily equal D(q||p). The values reported here are calculated from Old English (p) to Modern 
English (q), although similar results are obtained if the calculation is done the other way. 
5 This Monte Carlo test of significance is described in detail in §3.2.1. 
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 A frequency distribution can thus remain relatively stable over time even as 

the specific contents of the lexicon instantiating that distribution are replaced, a 

property of languages that Lahiri (2002) has called pertinacity. Given the high rate at 

which words are created and become obsolete, a lack of statistical change requires 

explanation just as much as cases of change do. The theory advanced in this 

dissertation, therefore, is as much a theory of language stasis as of language change. 

 My strategy throughout will be to model these phenomena with a minimum of 

new machinery. That is, I will show that the existence and nature of phonotactic 

preferences is largely predicted by cognitive models that have been argued for on 

independent grounds. At every step I hope to show that the model I develop is 

justified not just because it accounts for the data I present here, but because it also 

accords with evidence from other sources, such as speech errors or data collected in 

experimental settings. 

 

1.2. Natural selection in language 

 
 The theory of lexicon change I propose has striking parallels with 

evolutionary theory. Just as organisms compete to survive and reproduce, words 

compete to be used by speakers of a language. This research thus joins a long list of 

attempts to make sense of linguistic data within the framework of Darwinian natural 

selection.6 Recent examples of this approach include Lass 1990, McMahon 1994, 

                                                 
6 There is a long debate over the question of whether the theory of natural selection can be properly 
applied to anything other than biological organisms (e.g., Dawkins 1976, Hull 1988, Dennett 1995, 
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Niyogi and Berwick 1997, Haspelmath 1999, Croft 2000, Pulleyblank and Turkel 

2000, Kirby and Hurford 2001, Nowak and Komarova 2001, Redford and 

Miikkulainen 2001, the papers in Briscoe 2002, Blevins 2004, Ritt 2004, Wedel 2006, 

and Niyogi 2006.  

 Although these accounts differ widely in their theoretical background and 

assumptions, they share the postulate that linguistic units or patterns are Darwinian 

replicators—their survival depends on their ability to be copied, that is, internalized 

by other speakers of the language. “A linguistic regularity survives because it has 

properties that make its faithful replication easy,” as Brighton et al. (2005) put it. 

Darwin himself subscribed to this view—in Descent of Man (1871) he writes that 

“[t]he survival or preservation of certain favoured words in the struggle for existence 

is natural selection” (58-59). 

 For a replicator to evolve, two mechanisms are necessary: variation and 

selection (Dennett 1995). The properties of a population of replicators must vary, and 

some properties must be correlated with a higher chance of replication than others. 

Within a population of replicators for which these two conditions hold, over time the 

more successful variants will come to outnumber, or completely replace, the less 

successful variants. 

 The accounts of linguistic evolution cited above differ in the types of 

replicator, and types of variation among replicators, they consider; for example, 

                                                                                                                                           
Plotkin 1995, Blackmore 2000, Richardson and Boyd 2004, Croft 2006, Andersen 2006, Mesoudi et al. 
2006). My point in this section is not that the parallels between language and biology are exact, but 
simply that applying the tools of evolutionary biology to language change can produce insight 
unobtainable through traditional linguistic theory. 
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phonetic variation among outputs for a single lexical item (Blevins 2004), or variation 

in parameter settings among competing grammars (Niyogi 2006). My account of 

phonotactic preferences will consider lexical items to be replicators, and variation to 

mean variation across lexical items—in short, words compete with other words. In the 

next section, I examine the forces that drive the competition among these replicators. 

 

1.3. Lexical competition 

 The operation of natural selection is predicated on the limited availability of 

resources. If there are not enough resources to support every organism in an 

environment, some will die without reproducing; those that are better able to obtain 

resources are more likely to be among those that survive and reproduce. In the case of 

competing lexical items, I will argue that the resource in question is the concepts to 

which words refer.  

 Competition between words is driven by a pressure, both within speech 

communities and within individuals, to express each concept with a single word; that 

is, a pressure to avoid exact synonymy. As Baronchelli et al. (2006) put it, lexical 

innovation is typically marked by “a period in which novelty spreads and different 

words compete, followed by a dramatic transition after which almost everyone uses 

the same word.” This tendency, also noted by Lass (1997), has been called the “First 

Law of Propagation” by Croft (2000), which he describes as the “natural human 

tendency for a community to select one alternative as the conventional signal for a 
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recurrent coordination problem” (176). I will refer to this tendency as vocabulary 

convergence. 

 An example of vocabulary convergence comes from Davis and McDavid’s 

(1949) work on English dialect geography. Their paper focuses on the word shivaree, 

a word referring to “a noisy burlesque serenade used chiefly as a means of teasing 

newly married couples” (249), which was borrowed into English from French 

charivari some time in the eighteenth century (the earliest citation in the OED occurs 

in 1805; presumably the word came into common use at some point prior to that).  

 Davis and McDavid find that although shivaree is used throughout Canada 

and most of the United States, there are areas on the American eastern seaboard in 

which the same folk ritual is referred to by a host of other terms, including belling, 

tinpanning, serenade, and callathump; they summarize the distribution of the 

competing words in a map, reproduced here in (3). 
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 (3) Shivaree and its competitors7 

 

 Davis and McDavid point out that the greatest variety is found in the areas of 

the U.S. that have been longest settled by English speakers. In these regions, 

relatively stable populations allowed multiple words to each acquire and retain a 

foothold in various communities. West of the Mississippi, however, where 

populations were made up of settlers from many different areas, all with different 

vocabularies, no one term had the advantage of tradition or entrenchment among a 

large number of users. One word, shivaree, was able to dominate the usage of this 

large and heterogeneous group of speakers. 

                                                 
7 From Davis and McDavid 1949.  
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 Although this seems a plausible explanation of how one word came to 

dominate its potential competitors, it does not explain why it was shivaree in 

particular that emerged as the ultimate winner in this competition. Of course, many 

factors determine whether a word will successfully outcompete its rivals. The existing 

literature on this topic has primarily addressed the social factors—how the properties 

of a word’s users (social status, age, gender, etc.) affect the word’s success 

(Weinreich et al. 1968, Milroy 1987, Labov 1973, 2001). Croft (2000, 2006), in fact, 

argues that these are the only factors that play a role in the selection of linguistic 

variants. The purpose of this dissertation is to examine the extent to which the 

inherent properties of the word itself—more specifically, its phonotactic properties—

contribute to its entrenchment in a speech community. 

 In a comment on the Davis and McDavid paper, Bolinger (1950) addresses the 

question of shivaree’s success, suggesting that the word’s phonological properties 

gave it an advantage. The final stressed [i:] in shivaree, he argues, although unusual 

for English, is characteristic of words like jamboree, jubilee, spree, and whoopee, 

which have in common a festive connotation that is shared by the meaning that 

shivaree was competing to express.  

 I will have more to say about exactly how the final vowel in shivaree could 

have increased its likelihood of success in §1.7. For present purposes, this example is 

intended to demonstrate both that there is pressure towards the use of a single word 

for each concept within a community, and also that the competition fostered by this 

pressure can be biased by the phonological properties of the word.  



 15 

1.4. Deriving convergence 

 In the previous section I claimed that a speech community will tend to 

converge on a single term for a single concept, and that this tendency drives 

competition among words. In this section I show that vocabulary convergence is a 

predicted outcome if we assume that lexical selection—the choice of a word from 

among a set of synonyms—is governed by the structure of the speech production 

system. 

 Most current models of language production (e.g., Stemberger 1985, Dell 

1986, Levelt et al. 1999) assume that the process of producing an utterance involves 

the selection of lexical items that correspond to the concepts the speaker wishes to 

express. These models typically consist of an associative network of linked nodes, 

each of which has an activation level, represented by a numerical value. Nodes 

become more active when the nodes they are connected to are active, allowing 

activation to spread through the network. A schematic example of such a network is 

shown in (4). 

(4) Feedforward speech production network 
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In this example, the concept CAT is first activated, representing the speaker’s desire to 

express that concept. Activation spreads from the concept to the lexical entry �cat�, 

whose semantic features match those of the concept—this is the stage at which a 

lexical item appropriate to the concept is selected. The lexical entry is in turn linked 

to the phonemes that make up its phonological representation, and so activation 

spreads to /k/, /�/, and /t/—the selected lexical item is thereby phonologically 

encoded in preparation for speech. 

 Most such models simplify by assuming that there is a single lexical entry 

corresponding to the active concept. The point of these models is to determine how 

the correct item is selected out of the entire set of lexical entries, or in the case of 

speech errors, how an incorrect lexical item is selected instead. What happens, though, 

when there is more then one correct lexical entry—i.e., a set of synonyms—for the 

intended concept?8 In such a case, the network would resemble the one in (5). 

                                                 
8 I have not defined precisely what qualifies two words to be synonyms. This will depend on the nature 
of semantic representations. If they consist of sets of semantic features, then it is likely that synonymy 
is a gradient property; the more features shared by two lexical items, the greater the chance that they 
will be activated simultaneously, and thus compete. Atomic lexical concepts, on the other hand, should 
result in categorical synonymy—two lexical items would be either synonymous or not. The theory of 
lexical competition I advance here does not require a commitment to the exact nature of synonymy, 
however. 
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(5) Activating synonyms 

 

Because both synonyms presumably match the semantic features of the active 

concept, the spreading activation model predicts that both are simultaneously 

activated. Evidence for this multiple activation comes from speech errors known as 

blends, in which two words are conflated into one (e.g., frowl from frown and scowl). 

These errors, which are typically formed from synonyms or near-synonyms (Wells 

1951, Fromkin 1971, Poulisse 1999), could occur when two lexemes are equally 

activated—their respective phonological plans also become equally activated, and if 

one does not emerge as a clear winner, the production system may conflate them. 

 In the absence of a speech error, however, only one word will eventually be 

selected and pronounced. What decides which synonym is chosen? One way to model 

the selection process is as a kind of race, in which the first lexical entry whose 

activation reaches a certain threshold is selected. This is the model assumed in most 

accounts of speech errors—the intended lexical entry is usually activated first, but 

occasionally, because of noise in the system, an extraneous lexical entry may win the 

race and be pronounced instead (Dell 1986, Levelt 1989). In the case of synonyms, 
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choosing one over the other is considered a lexical choice rather than an error, but, I 

am suggesting, the mechanism is the same. This claim is at the center of the 

dissertation—in a set of synonyms, those words that can be accessed most quickly 

will be used most often. Where there is independent evidence that some property of 

words contributes to faster lexical access, the theory thus predicts that words with 

those properties should be more frequent than synonyms without them.9 

 Looking at one such property, word frequency, will provide an answer to the 

question asked at the beginning of this section—why speech communities converge 

on a single lexical item for a given concept. Reaction time data from picture naming 

and lexical decision tasks suggests that more frequent words are accessed more 

quickly (Oldfield and Wingfield 1965, Jescheniak and Levelt 1994). Evidence from 

word-substitution speech errors also supports the view that higher frequency results in 

faster lexical access: errors are more likely to occur on low-frequency items 

(Stemberger 1984, Harley and MacAndrew 1992, 1995, Vitevitch 1997, 2002), and 

intended targets are more likely to be replaced with higher-frequency than lower-

frequency words (Del Viso et al. 1991, Vitevitch 1997). In the network model of 

speech production, this can be modeled by assigning each lexical node a resting 

activation, and assuming that this resting activation increases each time that node is 

selected during production. Words with higher resting activations will reach the 

activation threshold more quickly, and thus have an advantage over synonyms with 

lower resting activations. 

                                                 
9 Note that the theory predicts only that speed of access will correlate with the relative frequency of 
synonyms—it says nothing about the relative frequencies of unrelated words. 
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 In this model, having a high frequency will increase a word’s resting 

activation, which will further increase its frequency, in turn increasing its resting 

activation, and so on. This feedback loop results in a “rich get richer” effect in which 

any word with a slightly higher resting activation than other synonyms will eventually 

come to be exclusively used by the speaker to express the concept. A state in which a 

speaker knows several synonyms for a single concept and uses all of them with equal 

frequency is thus inherently unstable—any difference in the resting activations of the 

synonyms will be magnified until only one is used (or alternatively, some of the 

synonyms could have their meaning altered so that they are not exact synonyms). The 

process, which is schematically illustrated in (6), can be thought of as vocabulary 

convergence within a single speaker.10 

(6) Within-speaker convergence (bars represent resting activations for synonyms A, B, C) 

   

 This model can explain why exact synonyms do not tend to occur in the 

lexicons of individuals, but does not account for how an entire speech community 

comes to converge on a single lexical item. Why does this tendency towards 
                                                 
10 This within-speaker convergence could alternatively be driven by an explicit cognitive bias against 
exact synonyms. It is well established that when learning new words, children typically assume that a 
new word will not have exactly the same meaning as a word they already know (Clark 1993, Pinker 
1984, Chomsky and Lasnik 1977, Markman 1984). This bias could be responsible for convergence, but 
it could also be seen as an evolved response to convergence. If the rarity of exact synonyms is a 
ubiquitous emergent property of languages, a learning strategy which assumes that no words are exact 
synonyms would reduce the semantic hypothesis space at a relatively low cost in terms of errors. 
Which came first—the absence of synonyms or a bias against synonyms—is a chicken-and-egg 
problem that I will not attempt to resolve here. 
 

B B B 
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vocabulary convergence exist? Croft (2000) argues that it results from the desire of 

speakers to identify with a given social group. But recent research suggests that 

vocabulary convergence is a naturally emergent property even in very simple 

populations of communicating agents in which social identity plays no role. 

  Steels et al. (2000), for example, describe a simulation in which large numbers 

of agents interact with each other by playing a “naming game” in which agents take 

turn “pointing to” objects in the simulated world and describing them to other agents 

using words from their lexicons. Although there is no explicit pressure against 

synonymy built into the simulation, for each object one word eventually comes to 

dominate the population. More recent work has explored the precise mathematical 

conditions under which this convergence occurs (Baronchelli et al. 2005, Wang et al. 

2006). 

 The convergence process is best illustrated with a simple simulation of a 

speech community consisting of N agents. Each agent is equipped with a 

“concepticon” consisting of a single lexical concept that it must communicate to the 

other agents, and a lexicon consisting of N words that each express this same concept. 

All agents have the same concept and same set of synonyms, instantiated in a 

spreading activation speech production network as in (7) (the phoneme level is not 

implemented in this simulation). 
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(7) Convergence simulation network 

 

Each agent’s network is implemented using the model proposed in Dell 1986: lexical 

selection (i.e., the selection by a speaker of an appropriate lexical item for the 

intended concept) is simulated by giving the intended concept an arbitrary activation 

level of 100, and then allowing activation to spread through the network in a series of 

discrete time steps. After a specified number of time steps, the lexical node with the 

highest activation is selected. During each time step ti, the activation level of node j, 

A(j, ti), is calculated with the equation in (8). 

(8) Calculating activation (modified from Dell 1986) 
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where c1, c2… cn are all of the nodes connected to j, p1, p2… pn are the weights of the 

connections, and q is the decay rate.11 The noise added to the activation level is a 

value sampled from a Gaussian distribution with a mean of 0 and a standard deviation 

equal to 0.05 times the node’s previous activation level A(j, ti-1). 

 Where the implementation of the network differs from that of Dell 1986 is in 

the addition of weights for each node, which is intended to simulate differing resting 

activations. The weight of node j (indicated by wj in (8)) acts as a multiplier on the 
                                                 
11 In all of the simulations reported in this chapter, p was set to 0.3 for all connections, and q was set to 
0.6. 
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activation Aj at each time step; nodes with higher weights will have a higher 

probability of being selected. Because of the noise in the calculation of activation, 

however, even nodes with lower weights may be selected—the set of lexical node 

weights thus determines a probability distribution over the set of synonyms. The 

simulation begins with all weights set to 1.0 for all agents. 

 The simulation proceeds as follows: during each round of the simulation, the 

agents are paired randomly, and each agent tells its partner a word from its lexicon, 

using its current network to determine which synonym to choose. Once an agent has 

produced a given word, the node for that word has its weight WS increased according 

to the formula in (9). The agent’s partner, who has just heard the word, has the node’s 

weight WL increased according to the formula in (10). 

(9) Speaker weight adjustment 

 )( SW
SS eWW −+← α  

(10) Listener weight adjustment 

 )( LW
LL eWW −+← β  

The amount added to each weight is a function of the current weight; as the weight 

increases, the amount added each time decreases. At the end of each round of the 

simulation, when all the agents have interacted with their partners, all weights are 

multiplied by 0.99—weights of nodes that do not get used therefore steadily decay 

over the course of the simulation. 

 Words which an agent either uses or hears being used are strengthened, and 

thus have a higher probability of being used in the future. The values of the 
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parameters � and � determine the relative contributions of speaking and hearing to 

this strengthening. When these parameters have the same value, agents modify their 

activations equally regardless of whether they have used the word or heard it from 

another agent. If � is equal to or greater than �, agents will value their own usage over 

that of others—I will call these selfish agents. If � is sufficiently greater than �, 

agents will be more affected by others’ usage than their own—I will refer to these as 

cooperative agents. 

 The diagram in (11) shows what happens when 20 selfish agents interact for 

34 rounds. Each row in the diagram represents a single round, while each square 

represents one of the agents. The color of each square indicates which word the agent 

used during that round. 
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(11) Set of selfish agents (� > �): each agent settles on a different word 

 

 
It is clear from the diagram that although each agent converges on its own single 

word from among the 20 synonyms, there is no systematic agreement across agents. 

This is a consequence of the fact that once an agent converges on its own word, it will 

use that word every round, further strengthening its activation. Because the agent is 

paired with a randomly chosen agent each round, it will hear a variety of other words, 

but each only a fraction of the time it uses its own favored word. The result is 

Ti
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“selfish” behavior in which each agent settles on its own preferred synonym 

independently of the rest of the community. 

 Selfish behavior also results when � is equal to �, for the same reasons—an 

agent will always use its own word more often than it hears any other individual word. 

If � is set to a value sufficiently higher than �, however, a different behavior emerges. 

The diagram in (12) shows the results of a simulation with 20 such cooperative agents 

(in this simulation, � is 1.0 and � is 3.0). 

(12) Set of cooperative agents (� > �): agents come to agree on a single word 
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When � is greater than �, agents pay more attention to what they hear than what they 

say. When this is the case, the entire population eventually converges on one word, 

although which word is ultimately successful is a matter of chance. Convergence is 

thus predicted to emerge as long as the probability of a speaker using a given word is 

a function of how often the speaker hears others using the word.12 Evidence from the 

sociolinguistic literature suggests that speakers do in fact accommodate many features 

of their speech, including lexical choice, to match their interlocutors (Giles and Smith 

1979).  

 If vocabulary convergence is a near-inevitability, we might wonder how 

dialectal difference is maintained at all. Why didn’t shivaree, for example, come to 

dominate the entire United States? Stable dialects can be modeled by slightly 

modifying the simulation—if a spatial dimension is added, and agents’ interactions are 

limited to “nearby” agents, multiple dialect areas can emerge, each converging on a 

different word (Livingstone and Fyfe 1999, Livingstone 2002).  

 In this version of the simulation, agents are organized in a circle, with each 

agent having two neighbors, one on either side. Each round, every agent chooses at 

random to interact with either the neighbor on its left or right; the simulation otherwise 

proceeds as described above. When agent interaction is limited in this way, 

convergence to a single word is not guaranteed. Rather, different subgroups of agents 

can converge to different words, as shown in (13) (note that the leftmost agent is 

                                                 
12 Note that in my simulation communication between agents is assumed to be perfect—there is no 
chance that one agent will misunderstand another. These results therefore suggest that convergence is 
not necessarily the result of a pressure to communicate effectively. 
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considered to by adjacent to the rightmost, so that each agent has exactly two 

neighbors). 

(13) Set of cooperative agents (� > �) who talk only to neighbors: dialects emerge 

 

 
These results suggest that dialect areas are stable when speaker interaction is 

relatively local, whether spatially or socioeconomically. In such a case, a lexical item 

may be protected from a competitor by the network of speakers that use the item, and 

who thus continually reinforce each others’ lexical entries for the established word. 

When speakers from many different dialect areas mingle, however, as happened in 
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the settlement of the western United States, the stage is set for one lexical item to 

eliminate its synonymous competitors. Just such a scenario seems plausible in the 

shivaree case. 

 The simulations described in this section show that vocabulary convergence 

can emerge in a community of speakers provided that two conditions hold. First, 

hearing a word must have some effect on the probability of using that word in the 

future—speakers cannot, for example, have entirely separate perception and 

production lexicons. Second, the probability that a speaker will use a word must 

depend more strongly on the usage of others than on the speaker’s own usage. Given 

these conditions, and a speech production system that is structured as I have described 

it here, vocabulary convergence is an expected consequence. 

 

1.5. The role of feedback in lexical selection 

 Nothing in the model so far predicts that the sounds that make up a word 

contribute to its being selected over other synonyms. Such a prediction is only made 

if the strictly serial character of the model is relaxed, and feedback is permitted from 

later levels to earlier levels. In interactive models of speech production, activation 

spreads not only “downstream,” from concept to lexical entry to phonemes, but also 

spreads back from the phoneme level to the lexical level, as depicted in (14).13 

                                                 
13 The extent to which feedback is a necessary part of the model is a subject of intense debate in the 
speech production literature. For a concise overview of the range of possible positions, see Rapp and 
Goldrick (2000).   
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(14) Network with feedback 

 

If we assume that phoneme nodes, like lexical entries, have differing resting 

activations, then some phonemes will reach threshold more quickly than others. 

These “better” phonemes will feed activation back to their lexical entries, giving 

those words an advantage in reaching threshold more quickly than others.14 

 There is substantial evidence that feedback of this kind is a characteristic of 

the speech production system. In speech errors involving word substitution, for 

example, the word actually produced tends to be phonologically similar to the 

intended target (e.g., saying button for butter; Fromkin 1971, Martin et al. 1996). This 

suggests that the lexical entry for the intended target activates the phonemes 

contained in the word, and that those phonemes in turn activate all of the lexical 

entries that contain them. Thus, a word which contains many of the same phonemes 

as the target and matches some of its semantic features (thus receiving activation 

                                                 
14 Throughout this section, I will assume that phoneme nodes each refer to a single segment, but of 
course in an actual speech production network they may refer to more complex units such as syllables 
(Levelt and Wheeldon 1994) or simpler units such as phonological features (Dell 1986). 
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from the concept node) has the highest chance of being mistakenly selected (although 

see Levelt et al. 1999 for an alternative, feedforward account of these effects).  

 Peterson and Savoy (1998) also report on an experiment in which subjects are 

shown a picture, and then presented with a word which they are asked to pronounce. 

When shown a picture of a couch, subjects are faster at producing both couch and its 

synonym sofa. However, production of both count and soda following the same 

picture is also speeded, demonstrating not only that both synonyms are selected, but 

that both activate phonologically similar lexical entries. This is explained in the 

feedback model as lexical entries activating each other via the phonemes they have in 

common. Jescheniak and Schriefers (1998) achieved results consistent with this in an 

experiment in which subjects heard a distractor word, and then named a picture—the 

distractor soda was shown to interfere with the naming of a picture of a couch, even 

when the subjects used the word couch to describe the picture. 

 In another experiment, Ferreira and Griffin (2003) found that subjects in a 

picture-naming task, when shown a picture of a priest, would sometimes mistakenly 

produce nun as a description of the picture when the picture was preceded with 

presentation of a sentence containing the semantically unrelated but homophonous 

word none. On the basis of these results they argue that “semantic factors and 

phonological factors can affect lexical selection jointly” (90). 

 Several studies by Vitevitch (1997, 2002) and Vitevitch and Sommers (2003) 

have shown, using evidence from speech errors, picture naming, and tip-of-the-

tongue states, that words are produced more quickly and accurately by English 
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speakers if they have many phonological neighbors. Dell and Gordon (2003) show 

that these effects are predicted in a network equipped with feedback from the 

phoneme to the lexical level. When the concept CAT activates the lexical entry �cat�, 

for example, neighbors such as �hat� and �cap� are activated via the phonemes they 

share with the target. These neighbors are unlikely to be selected themselves, as they 

receive no activation from the concept level, but they do send activation back to their 

constituent phonemes, which in turn send more activation back to the target entry 

�cat�. In other words, phonemes that are connected to many lexical entries exert more 

influence, because of the activation they receive from these entries, than phonemes 

connected to few lexical entries.15 

 These and other similar studies are part of a growing body of evidence that 

speakers access phonological characteristics of candidate words at an early stage of 

lexical selection (contra the strictly serial model of Levelt et al. 1999, in which 

phonological characteristics are only accessed once a single lexical entry has been 

selected). 

 Given this model, it is clear how shivaree could have benefited from the 

existence of words that were both phonologically similar (in having a final stressed 

[i:]) and semantically similar (in referring to festive, boisterous events). Once the 

SHIVAREE concept is activated, words like jamboree and whoopee would also be 
                                                 
15 In recent work, Vitevitch and Stamer (2006) have found the opposite effect in Spanish: words with 
fewer neighbors are produced more quickly. They speculate that this is due to the highly inflectional 
nature of Spanish as opposed to English, one consequence of which is the fact that the neighbors of a 
Spanish word are more likely to be morphologically related to it than would be true for an English 
word. As Vitevitch and Stamer point out, it is unclear whether these effects can be accounted for by a 
spreading activation model of speech production. More research on this issue, involving a wider range 
of languages, is clearly called for. 
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somewhat activated due to the semantic features they have in common with the 

concept. They in turn would activate their constituent phonemes, which would then 

boost the activation of shivaree, giving it an advantage relative to other words that 

lack such allies. 

 This process could be responsible for the existence of phonesthemes (Firth 

1930, Magnus 2001), seemingly arbitrary sound-meaning pairings across groups of 

words, of which the final stressed [i:] in shivaree is an example.16 An initial, 

accidental correspondence between sound and meaning among a few words might 

serve as an attractor that could bias future lexical competitions in favor of words that 

share the correspondence. Hock and Joseph (1996) call this phonesthematic attraction, 

and cite as an example the case of Early Modern English sacke changing to Modern 

English sag due to attraction from drag, flag, and lag.  

 This processing-based theory of phonesthemes makes the prediction that 

among words with the same number of phonological neighbors, those words that have 

a greater number of semantically related neighbors will be accessed more quickly. 

Further research would be required to test this hypothesis, and distinguish it from 

other possible theories of phonesthemes, for example, one that views phonesthemes 

as pseudo-morphemes.  

 

                                                 
16 Other phonesthemes in English include initial gl-, in words like glisten, glow, glimmer, glitter, and 
glance, all having to do with light or vision, and initial sn-, in words like snout, snarl, snot, snort, and 
snore, having meanings related to the nose (Bloomfield 1933). 



 33 

1.6. The evolution of frequency distributions 

 At the beginning of this chapter, I asked why it is that phoneme frequencies in 

a language tend to exhibit a skewed frequency distribution, with a small handful of 

phonemes accounting for most of the segments in the lexicon. We can now answer 

that question using the speech production model described above, by considering 

what would happen if a hypothetical language had its phonemes uniformly distributed. 

The remainder of this section describes the results of a simulation which demonstrates 

that given this model of speech production, a uniform distribution is unstable; over 

time, it will evolve into a more skewed distribution.  

 Having established in the previous section that a community of agents 

equipped with speech production networks will converge on a single word for each 

concept, this simulation will model a single speaker in lieu of a group of interacting 

agents, on the assumption that the results will scale up to an entire community of 

speakers. The simulation involves a hypothetical language with five phonemes 

(arbitrarily labeled a, b, c, d, e) in which all words are five segments long. The 

lexicon of this language consists of 10 words, each representing a different concept—

in the initial state, all words have the same form, abcde, guaranteeing that all of the 

phonemes are equally frequent. Each concept, lexical entry, and phoneme is 

represented by a node in a spreading activation network, organized as in (15). 
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(15) Network initial state 

 

Each line in the graph represents a bidirectional connection between two nodes along 

which activation may spread; for each phoneme in a word, there is a connection from 

the word’s lexical node to the node for that phoneme.17 Each lexical node is also 

connected to the node for its corresponding concept.  

 The simulation is intended to model the evolution of a lexicon over time. In 

each “generation,” each of the words in the current lexicon in turn is confronted with 

a randomly generated synonym (made up of five phonemes drawn from a uniform 

distribution over the phoneme inventory). Both the existing word and the synonym 

are connected to the same concept node, and the network is used to determine which 

word is selected—activation is allowed to spread for a fixed number of time steps, 

after which the lexical node with the highest activation is selected. The activation for 

                                                 
17 Note that in this simulation, phoneme sequence is irrelevant; each word is essentially treated as an 
unordered set of phonemes. See chapter 3 for a discussion of the role of sequencing in the model. 
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each node at each time step is calculated as in (8), with the difference that weights for 

all nodes are set at 1.0 (resting activations are not modeled). 

 If the existing word wins, the newcomer is discarded, but if the newcomer 

wins, it replaces the existing word in the lexicon. The lexicon thus remains the same 

size, but after the first generation it is populated only by words that have won every 

competition in previous generations. Any property that gives words an advantage in 

this competition will thus come to dominate the lexicon. 

 I let the simulation run for 1,000 generations, and allowed activation to spread 

for five time steps, which is enough time for the type frequency effects discussed by 

Dell and Gordon (2003) to affect the lexical nodes. Words with phonemes that are 

themselves contained in many words thus have an advantage. If any phoneme 

becomes sufficiently more frequent than the others (a virtual inevitability given the 

stochastic nature of the simulation), words containing that phoneme have a higher 

probability of entering the lexicon, which in turn increases the phoneme’s frequency, 

and so on, in a feedback loop that magnifies the inequality over time. This can be 

seen in the final state of the network for one sample run, shown in (16), in which a 

represents 80% of all phonemes. 
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(16) Network final state (after 1,000 generations) 

 

The evolution of the frequency distribution over time is depicted in (17), with each 

line representing a different phoneme. 
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(17) Phoneme type frequencies over time 
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 The uniform distribution that the simulation starts out with is thus unstable, 

and tends to evolve into a highly skewed but stable distribution. Barabási and Albert 

(1999), following work by Simon (1955), have shown that this is a general property 

of networks: the distribution of connections in any graph will tend to become skewed 

towards a small number of highly connected nodes18 as long as two conditions are 

met: (1) new nodes are continually added, and (2) connections from new nodes to 

existing nodes exhibit preferential attachment —that is, new nodes prefer to attach to 

nodes that already have many connections. Both of these conditions hold in the 

simulation: several new nodes are introduced each generation, and new words that are 

                                                 
18 More technically: the number of connections per node will be distributed according to a power law. 
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connected to phoneme nodes that themselves have many connections are more likely 

to be retained, due to the extra activation received from these nodes.  

 This model also suggests how statistical patterns could persist across time 

even as the lexicon changes. If we compare the lexicon in the simulation after 200 

generations to the lexicon after 1,000 generations, we find only 2 of the 10 words in 

common; despite this, the frequency distributions at the two stages are quite similar, 

with a representing roughly 80% of the phonemes at both points. This is reminiscent 

of the differences between the Old English and Modern English lexicons discussed in 

§1.1, which exhibit similar phoneme frequency distributions despite sharing less than 

20% of their lexicons. In this model this is a natural consequence of the pressure for 

new words to contain phonemes that are frequent in the existing lexicon. 

 One way in which the simulation results differ from the distributions seen in 

natural languages, however, is the degree of skew—the final state in the simulation is 

heavily dominated by a single phoneme. One reason for this is simply the extreme 

simplicity of the model—a word’s ability to enter the lexicon is solely a function of 

its phonotactic properties. The model does not take into account social factors, for 

example, which might benefit words that contain low-frequency phonemes. 

Incorporating these factors, which I will assume are largely independent of 

phonotactics, into the model allows us to fine tune the extent of the skew seen in the 

stable distribution, as I show below. 

 I modified the simulation to account for non-phonotactic factors by simply 

assigning the lexical nodes random weights. The weight for each word represents that 
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word’s “goodness” according to all factors other than phonotactics. A word’s weight 

is determined by choosing a random number from a Gaussian distribution with mean 

1 and standard deviation � (the minimum weight is 0; the weight of a given word does 

not change over the course of the simulation).19 Each word’s weight is determined 

once, and remains the same for that word for the duration of the simulation; the 

weights of new words are drawn from the same distribution as existing words, so that 

new words have neither an advantage or disadvantage over words already in the 

lexicon. Words with higher weights will have a correspondingly higher probability of 

being selected, independent of what phonemes they contain. 

 The charts in (18) show the resulting frequency distributions after 1,000 

generations for different values of �. As a way of quantifying the degree of skewness, 

the Shannon entropy is also given for each distribution.20 The entropy can be thought 

of as a measure of how close a probability distribution is to uniform; entropy is 

maximized when the distribution is uniform, and gets smaller as the distribution 

becomes skewed towards a subset of its values. 

                                                 
19 Only weights for lexical nodes are given random weights. All other nodes (those for concepts and 
phonemes) have weights of 1.0. 
20 The Shannon entropy H of a probability distribution X over the values {x1…xn} is calculated as 

follows: )(log)()(
1

2 i

n

i
i xpxpXH �

=
−= . It is measured in bits. 
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(18) Final phoneme type frequencies 
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(d) � = 0.7
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 The chart in (18a) represents the case where � = 0, and thus w for all words is 

1.0. This is identical to the earlier version of the model without lexical node weights, 

and as before results in a highly skewed, low-entropy distribution. As the standard 

deviation for weights increases, the final distribution approaches uniformity, nearing 

the maximum possible entropy of 2.32 bits. In other words, as the standard deviation 

and thus potential size of w increases, the importance of non-phonotactic factors 

increases with respect to phonotactic factors, and the distribution begins to resemble 

the flat distribution we would expect if the phonemes played no role at all in a word’s 

success. It is likely that phoneme frequencies in natural languages occupy a middle 

ground between the extremely skewed distribution in (18a) and the near-uniform 

(a) � = 0 

Entropy: 0.68 
 

Entropy: 1.31 
 

Entropy: 2.12 
 

Entropy: 2.29 
 

(b) � = 0.3 

(c) � = 0.5 (d) � = 0.7 
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distribution in (18d), suggesting that both phonotactic and non-phonotactic factors 

play non-negligible roles in synonym competition.21 

 An illustration of this interplay between phonotactics and other factors can be 

seen in the popularity of American given names over time. Using data on the most 

common names for Americans born in each decade of the twentieth century,22 we can 

observe how the frequency distribution of phonemes in names changes over time. As 

shown in (19), the frequency distribution over the initial consonants in these names 

underwent a gradual decrease in entropy, corresponding to an increase in skew, over 

the course of the century.23  

(19) Decreasing entropy in distribution of name-initial consonants 
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21 Of course, other phonotactic factors, such as constraints on sequencing, surely play a role in shaping 
phoneme frequencies. If identical phonemes are prevented from occurring next to each other, for 
example, no single phoneme will be able to achieve a frequency as high as 80%, which will contribute 
to de-skewing the final distribution. 
22 The data comes from the United States Social Security Administration, and consists of the 1,000 
most popular names each for boys and girls in each decade. It is available at 
http://www.ssa.gov/OACT/babynames/. 
23 Because the data consists only of orthographic representations, I used the Carnegie Mellon 
Pronouncing Dictionary (Weide 1998) to supply phonetic transcriptions for most names (roughly 90%). 
For those names not listed in the dictionary, I decided what the most likely initial sound was. 

Entropy of English  
word-initial consonant 
distribution 
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The increase in skew seen here corresponds in my model to a decrease in �, 

which itself represents a decreased role played by non-phonotactic factors. 

Comparison with the horizontal dashed line, which indicates the entropy of the 

distribution of initial consonants in the entire English lexicon,24 shows that the 

distribution of name-initial consonants began the century less skewed than English, 

and ended up more skewed, with more of the probability mass concentrated in fewer 

consonants. This suggests that American culture underwent a shift in naming 

practices during the twentieth century in which influences that might have competed 

with phonotactic forces became less important. It is plausible, for example, that in the 

early part of the century tradition played a greater role in naming—children were 

often named after relatives or famous figures, or given biblical names. Today, parents 

are more free to simply invent a completely novel name. Pharr (1993), for example, 

found that the percentage of African-American high school students with “coined or 

freely invented” names increased steadily from 1.3% for those born in the 1920s to 

46.6% for those born in the early 1980s (401). The result of these gradually loosening 

cultural restrictions is a greater role for phonotactics—choosing a name based almost 

entirely on its sound. 

 This is somewhat counterintuitive—as cultural restrictions on naming were 

relaxed, to the point that today many complain that “anything goes” when it comes to 

naming children, the phonotactic properties of names became more regular and 

predictable. This makes sense, however, if the process of name (or word) selection is 

                                                 
24 The distribution described here is based on the initial consonants in all non-prefixed words found in 
CELEX (Baayen et al. 1993). 
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seen as a competition between rival forces; weakening one such force can strengthen 

another. 

A similar effect can be seen in Grant Smith’s (1996, 1998) work on the 

influence of the phonotactics of names on the electability of candidates for political 

office. Smith found that the phonotactics of a candidate’s last name can to a certain 

extent predict his or her success in an election,25 but that phonotactics is a better 

predictor when voters know little about the candidates’ positions on issues (Smith 

2007). As in the shivaree case discussed earlier, phonotactic preferences make 

themselves felt most strongly when other factors are absent or weakened. 

 

1.7. Summary of the model 

 We are now in a position to make explicit what it means for two lexical items 

to compete. When multiple words are completely synonymous, all of them will 

always be simultaneously activated by the same concept. In general, a word with a 

phonotactic advantage, such as having phonemes with high resting activations or 

phonemes that belong to many other words, will tend to win the race to be selected 

more often due to the feedback it receives from the phoneme level, and consequently 

end up being used more than the other synonyms. This greater usage will have the 

effect of raising the resting activation of the lexical entry throughout the speech 

community. As shown in §1.4, over time the community will converge on a single 

synonym, while usage of the other synonyms drops to a point at which new learners 

                                                 
25 Examples of phonotactic properties that correlate with success include having two syllables with 
trochaic stress, ending in a nasal, and beginning with a liquid (Smith 2007). 
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of the language are unlikely to acquire them. The ultimate result of many such 

competitions will be a lexicon biased towards those phonemes (or other phonological 

units that are encoded by the system) that confer a processing advantage. 

 My goal in this chapter has been to show that current models of speech 

production are compatible with the existence of phonotactic preferences, which we 

can now understand as biases in the speech production network towards the selection 

of lexical entries that contain certain phonemes over others. This is not to suggest that 

this is the only way that phonotactic preferences could be manifested. For example, 

word learning could also be biased by phonotactics, such that words containing 

certain sounds are easier to learn or recall (Gathercole et al 1999, Storkel and Rogers 

2000). My point is merely to show that it would be at least unsurprising, given what 

we know about language production, for lexical selection to be biased by 

phonotactics. It remains to be shown that such biases in fact exist. The next section 

discusses how the theory can be tested empirically. 

 

1.8. Empirical consequences of the model 

 The model I have outlined here makes a number of predictions regarding how 

sounds can influence the lexical selection process. On the assumption that repeated 

activation of a node raises its resting activation (which appears to be the case for 

lexical nodes), phonemes with a high token frequency should give words a selection 

advantage. In addition, phonemes with a high type frequency (i.e., those that occur in 
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many words) should also confer an advantage, for the reasons given by Dell and 

Gordon (2003). 

 Other biases will result depending on the content of the phoneme nodes. If, for 

example, entire syllables have their own nodes, as Levelt and Wheeldon (1994) argue, 

then words with high-frequency syllables, and not just high-frequency sounds, should 

be preferred. Dell’s (1986) model of speech production incorporates units encoding 

syllables, rimes, clusters of phonemes, and features, meaning that all of these 

elements can be accompanied by frequency effects. 

 The intrinsic properties of the sounds encoded by the phoneme nodes could 

also play a role. I will argue in chapter 2 that phonemes corresponding to sounds that 

are easy to articulate have higher resting activations regardless of their frequency. 

Another possible factor is the relative difficulty of sequencing successive phonemes 

due to their content. Extensive psycholinguistic evidence suggests that sequences of 

highly similar phonemes are difficult to sequence (see Frisch 2004 for a summary)—

in chapter 3 I show that these kinds of sequences are indeed avoided by English 

speakers. 

 The case of shivaree versus callathump described in this chapter is merely a 

single (albeit colorful) anecdote, and by itself is evidence of nothing. In the case of a 

single example of lexical competition it is perhaps impossible to determine the exact 

contributions of phonotactic and sociolinguistic factors. My strategy will therefore be 

to look at the patterns that emerge in a large number of such cases. If, for example, 

we compare all of the neologisms that enter a language over a period of time—all 
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presumably winners of their respective competitions—to the words that fall out of use 

over the same time period—all losers—a consistent, significant phonotactic 

difference between the two groups is evidence of selection pressure.  

 The remainder of the dissertation is devoted to case studies of this type. In 

chapter 2 I present evidence confirming Boersma’s (1998) proposal that a sound 

change resulted in an unnatural statistical pattern in the lexicon of Latin, and that 

phonotactic preferences operated over time to “repair” this gap in Latin’s modern 

descendent languages. From this case I conclude that phonotactic biases have a 

component which is derived from the physical facts of articulation, and is thus not 

solely an effect of frequency. 

 In chapter 3 I turn to sequences of sounds, and show that sequences of 

identical liquids in English are statistically underrepresented. I present evidence from 

American baby names and neologisms that illustrate how a lexical bias may be 

maintained even as the contents of the lexicon are replaced. Finally, in chapter 4 I use 

evidence from English, Turkish, and Navajo to argue that learning biases can also 

create phonotactic preferences, and discuss the role of the grammar in the processing 

model outlined above. 

 



 47 

2. Markedness and lexical change 

2.1. Introduction 

 In the previous chapter I argued for a model of speech production in which 

synonyms expressing a single concept compete with each other to be used to express 

that concept. As I described it, the network that instantiates the speech production 

system does not contain any a priori biases in favor of any type of phonological 

node—in fact, the actual content of the nodes is irrelevant. Those nodes that are 

connected to many words, or to high-frequency words, have more influence on lexical 

selection, regardless of what sounds they happen to represent. This means that wholly 

arbitrary phonotactic patterns may become entrenched in the lexicon and persist 

despite changes in the vocabulary. In this chapter I will present evidence that this 

model is inadequate, and that some phonotactic preferences are triggered by universal 

biases. A word containing a rare but unmarked sound may be preferred over a word 

containing a frequent but marked sound.26 

 The evidence I will present to support this view comes from Boersma’s (1998) 

observation of the historical consequences of a sound change in Proto-Indo-European, 

the ancestor language of all Indo-European languages. By tracing the development of 

several Romance languages following this change, I will show that Boersma’s 

proposed analysis of the historical facts is essentially correct: certain sounds can be 

                                                 
26 The term markedness is problematic, as Haspelmath (2006) has pointed out, as it has been used to 
describe many different things: a sound’s formal representation, phonetic properties, or frequency, to 
take just a few examples. In discussing the case study described in this chapter, I will use the word as 
shorthand for ease of articulation—marked sounds are more effortful than unmarked sounds. It is 
certainly possible that phonotactic preferences are also driven by other forms of markedness, such as 
ease of perception, but establishing this would require evidence beyond the single case study in this 
chapter. 
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preferred despite their low frequency, and these frequency-insensitive preferences are 

responsible for some typological tendencies as well as the ability of languages to 

“repair” accidental gaps in their lexicons. 

 

2.2. Word-initial clusters in English (Berg 1998) 

 Berg (1998) gives an example of phonotactic preferences that appear to be 

driven by markedness from the history of English. The consonant clusters /kn/, /gn/, 

and /wr/ were legal as word onsets in Old and Middle English, but are no longer legal 

in Modern English. The clusters were each simplified by deleting the first consonant, 

as can be seen by the pronunciations of modern words like knight, gnaw, and wren. 

Berg uses this simplification as evidence that these clusters are marked when 

compared to unsimplified clusters like /kr/ and /sn/. He then looks for evidence that 

fewer words with the problematic clusters have survived into the modern language 

than words with less marked clusters.27 His results, taken from the Oxford English 

Dictionary, are reproduced here in (20). The height of each bar indicates what 

percentage of words beginning with each cluster have survived into Modern English. 

                                                 
27 As Berg points out, there is not necessarily a single markedness principle that is responsible for the 
undesirability of all three clusters. The point of his analysis is not to pinpoint the precise factors that 
cause these clusters in particular to be bad, but simply to show that whatever these factors are, they are 
reflected both in historical sound change (i.e., cluster simplification) and in the survival rates of entire 
words. 
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(20) Word retention by cluster type28 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

kr sn kn gn wr

P
er

ce
n

t 
su

rv
iv

ed

 
Words with illegal clusters are significantly less likely to have survived than words 

with legal clusters. These results confirm that there is a correlation between a 

categorical phonological process by which certain clusters are simplified and the 

fitness of words containing those clusters. Berg attributes this correlation to what I am 

calling phonotactic preferences: “speakers may resort to a radical means of solving 

phonological problems: they circumvent these problems by simply not using the 

words in which they crop up” (233). 

  For present purposes, what is important about the English onset clusters case 

is that the relative fitness of the clusters in (20) is not arbitrary, but follows from well-

established sonority-based constraints on syllable structure—the tendency for 

complex onsets to rise in sonority, which militates against /wr/, and the cross-

linguistic preference for complex onsets in which the consonants differ maximally in 

                                                 
28 This chart was constructed from the data in Berg’s (1998) Table 25 (232). 

    Legal in MnE 

    Illegal in MnE 
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sonority, which makes /kn/ and /gn/ less than ideal29 (Clements 1990). In the 

remainder of this chapter, I will examine a similar case from the history of French, in 

which I will argue not only that phonotactic preferences have acted to shape the 

lexicon, but that these preferences are rooted in differences in articulatory difficulty. 

 

2.3. Voiced stops and place of articulation 

 Voicing is difficult to maintain during a stop closure owing to the increase in 

pressure in the oral cavity, which reduces the pressure differential across the glottis 

needed for voicing (Westbury and Keating 1986, Ohala 1997). Ohala and Riordan 

(1979) demonstrate that, although this is true in general of voiced stops, place of 

articulation also plays a role in determining how long voicing can be maintained. 

Voicing can be maintained longer in stops in which the closure is farther forward—

labial stops, for example, are easier to voice than coronal stops, which are easier to 

voice than dorsal stops. As Ohala and Riordan point out, this ease of articulation 

hierarchy correlates with the crosslinguistic distribution of phoneme inventories. 

There are many more languages with /b/ but not /d/ than languages with /d/ but not /b/ 

(Sherman 1975, Maddieson 1984).30 

 The place hierarchy among voiced stops also correlates with lexical type 

frequencies within a single language—/b/-initial words outnumber /d/-initial words in 

the lexicons of many languages. The two charts in (21) show that this is the case in 

                                                 
29 The legal cluster /sn/ would seem to be worse than /kn/ along the dimension of sonority distance, but 
/s/-initial clusters are well-known for their ability to violate otherwise robust sonority-based 
generalizations (Selkirk 1982). 
30 I will deal only with the asymmetry between /b/ and /d/, ignoring /g/. 
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several unrelated languages. Each bar in the chart on the left, (21a), represents a ratio 

between the numbers of words that begin with /b/ or /d/ in each language (the darker 

vertical line indicates 50%). Data on /p/- and /t/-initial words are given in (21b) for 

comparison. 
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(21) Lexical counts of word-initial stops in several languages31,32 
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The figures in (21a) suggest that there is a crosslinguistic preference for /b/ over /d/ as 

a word-initial consonant. The /p/-/t/ ratios in (21b) demonstrate that the bias towards 

/b/-initial words is independent of any labial-coronal bias in the voiceless stops; in 

other words, regardless of whether /p/ outnumbers /t/ or /t/ outnumbers /p/ in a given 

language, /b/ always outnumbers /d/. This is consistent with the articulatory facts 

discussed earlier. 

                                                 
31 Data sources: French: TLF (Imbs 1994); Ik: Heine 1999; Basque: Aulestia 1989; Japanese: Breen 
2000; Hungarian: Magay and Országh 1990; Burmese: Stevenson and Eveleth 1953; Malagasy: 
Richardson 1967; Thai: McFarland 1944; Bole: wordlist compiled by Russell Schuh (p.c.); Turkish: 
TELL (Inkelas et al. 2000). 
32 Languages were included in this sample according to the following criteria: each language must 
allow /b/, /d/, /p/, and /t/ word-initially, must not have prefixes that begin with /b/, /d/, /p/, or /t/ (all 
prefixed words have been omitted from the French data), must have voicing during the closure in 
voiced stops (i.e., voiced stops must typically have a negative VOT), and must not be in the same 
family as another language in the sample. The languages listed in (21) represent all of the languages 
that fit these criteria and for which I have so far been able to obtain information on the lexical statistics. 
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 How and why do languages maintain this lexical bias? In chapter 1, I 

mentioned two possible theories. One is that individual sounds change over time, and 

this change is biased towards creating sounds that are easy to produce (Zipf 1935). If, 

for example, initial /d/ changes to /t/ more often than initial /b/ changes to /p/, over 

time the result would be a lexicon skewed towards /b/. This could happen, as 

suggested by Ohala (1981) and Blevins (2004), through misperception on the part of 

learners, abetted by the smaller amount of voicing produced by speakers during /d/. 

 Another possibility is that phonotactic preferences are responsible: speakers of 

a language prefer to retain (or borrow, or coin) words that start with /b/ over words 

that start with /d/. Over time, this gradient preference leads to a statistical bias 

towards /b/ even from an initial state in which the sounds were equally frequent. I will 

argue that there is such a preference and that it can produce the frequency 

asymmetries seen in (21a). Furthermore, I will show that this preference must be 

innate, in that it cannot be derived from the properties of the current lexicon. 

 In this chapter I focus on one of the languages depicted in (21)—French.  

Boersma (1998) points out that Proto-Indo-European (PIE), from which French is 

ultimately descended, had very few if any words containing the labial voiced stop *b 

(Grimm 1819/1837, Pederson 1951, Matasovi� 1994). The reasons for this gap are 

controversial, but some have argued that what have traditionally been reconstructed 

as voiced stops in PIE were originally glottalized stops (Gamkrelidze and Ivanov 

1972, Hopper 1973)—this would explain the rarity of *b (actually *p’ on this theory), 
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since languages with glottalized stops are often missing the labial member of the 

series. A sound change converted these sounds to voiced stops in many daughter 

languages, including Latin; these languages thus inherited a voiced stop series, but 

also a lexicon that reflected the earlier state of the system. 

 Boersma (1998) uses dictionary counts to show that the lexical gap inherited 

from PIE has been repaired in modern French. He argues that one way this could have 

happened is that “French borrowed /b/ to a larger extent than the other voiced 

plosives; this active de-skewing would presumably involve phonologically-

determined choices between synonyms in the lexicon” (Boermsa 1998: 382); in other 

words, through the action of what I am calling phonotactic preferences. As he admits, 

dictionary counts alone cannot establish the truth of this claim; an increase in the 

frequency of /b/-initial words could have come about through sound change as well. 

The remainder of this chapter represents an attempt to test the validity of Boersma’s 

hypothesis and further explore its consequences—is there evidence that phonotactic 

preferences have shaped the French lexicon over time, and if so, how are these 

preferences manifested? 

 

2.4. The evolution of the French lexicon 

 The diachronic analysis of French will proceed in three stages. In §2.4.1, I 

look at classical Latin, a language intermediate between PIE and modern French, and 

show that Latin speakers borrowed /b/-initial words heavily despite the rarity of the 

sound in native words. Next, in §2.4.2, I turn to how Latin evolved into French, and 
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the roles played by sound change and phonotactic preference. Finally, in §2.4.3, I 

examine other sources of French vocabulary such as borrowing and morphological 

derivation. 

2.4.1. From Proto-Indo-European to Latin 

 Glancing at any Latin dictionary reveals that Latin, unlike Proto-Indo-

European, had a fair number of /b/-initial words. Where did all the instances of /b/ in 

Latin come from? There were two main sources. Some were the result of a sound 

change in early Latin in which PIE *dw became /b/ (e.g., early Latin duellum > 

classical bellum ‘war’). Most of the remaining /b/-initial words in Latin were 

borrowed from other languages, Greek being the largest donor. Looking at the 

numbers of these words, however, reveals an asymmetry. In Ernout and Meillet 

(1959), an etymological dictionary of Latin, 35 of the /b/-initial words are listed as 

having been borrowed from Greek (e.g., Gr. �������	 > L. barbarus ‘barbarous, 

foreign’), compared to only 15 /d/-initial words (e.g., Gr. �
��	 > L. delphinus 

‘dolphin’). If these numbers are representative, it suggests that Latin speakers 

preferred to borrow words with /b/ over those with /d/.  

 This bias in favor of borrowing /b/-initial words is surprising for two reasons. 

First, Latin had fewer /b/-initial words than /d/-initial words overall (see §3.2 below 

for details). We might thus expect that speakers of Latin would, if anything, tend to 

avoid borrowing words containing the rarer sound. Second, Greek also had fewer 

instances of /b/ than /d/ (due, as with Latin, to the gap in the PIE stop system). One 

large Greek dictionary (Liddell et al. 1940) lists 3,090 /b/-initial words and 8,860 /d/-
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initial words. Assuming that this ratio is representative of the Greek words that a 

typical Latin speaker would have been exposed to, and thus would have been 

available for borrowing, this means that Latin speakers heard more /d/-initial than /b/-

initial Greek words, yet chose to borrow more /b/-initial words. 

If neither the lexical statistics of Latin nor those of Greek can explain the 

influx of /b/-initial words into Latin, what can? One possibility is the articulatory 

facts discussed in §2. If people are biased in favor of accepting words that contain 

sounds that are easier to articulate, then the place asymmetry in the ease with which 

stops are voiced can be used to explain the borrowing asymmetry in Latin. This 

preference must be innate, since it contravenes the frequency asymmetry (i.e., /d/ is 

more common than /b/) in both the donor and recipient languages.33 

Note that this theory says nothing about sound change. Over time, a lexicon 

may come to be skewed in this way without any change in individual sounds. Of 

course, sound change may also contribute to the frequency of a given sound, as in the 

*dw > b change in early Latin, but it is not the only relevant process. This supports 

Boersma’s (1998) proposal that correlations between frequency and phonetic ease are 

driven by a combination of change in individual sounds and the preferential selection 

of entire words by the members of a speech community. The next section presents 

further evidence for this claim from the evolution of Latin into French. 

 

                                                 
33 The possible senses in which this preference could be innate are discussed in §2.5. 
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2.4.2. From Latin to French 

 We have seen that by the time of classical Latin, the gap inherited from Proto-

Indo-European had been partially filled, but despite this, coronal voiced stops still 

outnumbered labial voiced stops. As noted above, this bias was reversed in favor of 

the labials by the time Latin had evolved into modern French. The two languages are 

compared in (22) below (labels indicate the number of words in each category). 

 

(22) /b/- and /d/-initial words in Latin and French34,35 

866

338

1022

205

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Latin Modern French

/d/-initial
/b/-initial

 

                                                 
34 French data source: Le Trésor de la Langue Française (Imbs 1994). The data represents every tenth 
word from the b and d sections of the dictionary (not including prefixed words, as explained in 
footnote 35). Latin data source: Lewis and Short 1879. The data represents all words from the b and d 
sections of the dictionary, not including proper names or prefixed words. 
35 Boersma (1998) points out that the presence of the productive prefixes d�- and dis- in Latin and dé- 
and dés- in French skews the distribution towards /d/ in both languages. It seems likely that 
morphological productivity may interfere with phonotactics (e.g., a highly productive /d/-initial prefix 
may override a phonotactic preference that disfavors /d/), so in what follows I follow him in 
considering only non-prefixed words in both languages. For the Latin data, I simply removed from the 
data all words that began with the strings d�- and dis-, as well as d�- and dif- (allomorphs of dis-). This 
method removes any words that begin with these strings, even those that are not prefixed. This is the 
most conservative way of eliminating prefixed forms, since a more accurate method would increase the 
count of /d/-initial words, and thus increase the magnitude of the asymmetry I discuss here. For the 
French data, I rely on the morphological parse supplied in the entry for each word in the dictionary 
(Imbs 1994); each word that was indicated as having a prefix was removed. 
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How did this happen? One way to answer this question involves examining the Latin 

vocabulary to determine which words survived into the modern language. 

 Each Latin word could have had one of three fates, summarized in (23): 

(23) Possible fates of Latin words 

 (a) survived into French with  e.g.,  L. diurnum > Fr.  jour ‘day’ 
  initial sound changed 

 (b) survived into French with  e.g., L. basiare > Fr. baiser ‘kiss’ 
  initial sound unchanged  L. dubitare > Fr. douter ‘doubt’ 

 (c) failed to survive  e.g.,  L. balanus ‘acorn’ 
       L. docere ‘teach’ 
 
Of the 1,888 /b/- and /d/-initial words listed in Lewis and Short 1879, only two fall 

into category (a): L. diurnum > Fr.  jour ‘day’, and L. deorsum ‘below’ > Fr. jusant 

‘ebb tide,’ both cases of /d/ palatalizing before a front vowel. Sound change is thus 

responsible for only a tiny fraction of the statistical shift from Latin to French. 
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 A larger role is played by the differing rates at which the two types of word 

survived. Although surprisingly few Latin words left direct descendents in French, 

/b/-initial words had a greater chance of surviving (5.3%) than /d/-initial words 

(3.9%). This was true not only for French, but for several Romance languages, as 

shown in (24). 

(24) /b/- and /d/-initial survival rates in modern Romance languages36 
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 It is likely that the similar behavior exhibited by these languages is partly due 

to the fact that they are closely related. Many of the words that failed to survive into 

Spanish and Portuguese, for example, may have died before West Iberian Romance, 

their common ancestor, split into its daughter languages. Indeed, there is a high 

degree of overlap between the sets of words that survived into these two languages: of 

the 123 words that survived into either Spanish or Portuguese, 93 survived into both. 

                                                 
36 Etymological data for all Romance languages comes from Meyer-Lübke 1935. An asterisk indicates 
that the difference between survival rates of /b/- and /d/-initial words in that language is significant by 
Fisher’s Exact Test (two-tailed p<.05).  

* 
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One might thus object that the similarities across languages depicted in (24) are all 

simply reflections of something that happened early in the development of Romance. 

But the degree of overlap is much smaller for other language pairs: 74 common words 

out of 157 for French and Spanish, and only 34 out of 144 for French and Romanian, 

for example. In other words, different languages retained largely different sets of 

words; what was common to all was the tendency to retain /b/-initial words more than 

/d/-initial words. 

 Another possible explanation for the biases in (24) involves token frequencies. 

If for some accidental reason /b/-initial words tended to be more frequent than /d/-

initial words, and more frequent words had a higher chance of surviving (as is surely 

true), this would account for the asymmetry without making reference to the 

properties of the sounds themselves. This, however, is not the case. The average 

frequency of /b/-initial words in Latin was not significantly different than that of /d/-

initial words (p>.5 by Wilcoxon rank sum test).37 Furthermore, the median log 

frequency in Latin of those /b/-initial words that survived into French (0.79) was 

significantly lower than the median log frequency of /d/-initial survivors (2.47) 

(p<.01 by Wilcoxon rank sum test). It appears that /b/-initial words were 

preferentially retained despite, and not because of, their frequency.  

 Latin words beginning with /b/ were both fewer in number and less frequent 

in running text than /d/. Despite this, /b/-initial words tended to outlive /d/-initial 

                                                 
37 The frequencies cited in this section are taken from a 3.4 million token corpus of classical texts 
stored at the Perseus Digital Library (http://www.perseus.tufts.edu/). Each figure represents the log of 
the raw number of instances of each word in the corpus. To avoid taking the log of zero, 0.5 was added 
to each number. 



 61 

words; some property of the labial stop allows words containing it a better chance at 

remaining in use. This therefore constitutes another piece of evidence for a 

phonotactic preference motivated by articulatory ease. In the next section I examine 

how this preference could have led to biases in the rest of the modern French 

vocabulary. 

 

2.4.3. Sources of French vocabulary 

 In the previous section I examined how the initial segment of a Latin word 

influenced its ability to survive into Latin’s modern descendents—to do this, I 

examined individual Latin words and followed their progress forward in time, as 

Latin evolved into French and the other Romance languages. In this section I do the 

reverse—look at a sample of the Modern French vocabulary and go backwards in 

time to determine how each word entered the French lexicon. Doing so sheds light on 

other ways besides survival from Latin that the bias for /b/ over /d/ has shaped the 

vocabulary of French. 

 Although French is a Romance language, most of the vocabulary of the 

modern language comes from other sources besides direct descent from Latin. Several 

of these sources are described in (25).38 

                                                 
38 Etymological categories not included in (25) include onomatopoeia, acronyms, and words whose 
etymology is listed as unknown in Imbs 1994. These excluded words account for less than 5% of the 
data (22 out of 543 words). 
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(25) Main sources of French vocabulary 

Source Examples 

(a) inherited from Latin L. basiare > Fr. baiser ‘kiss’ 
L. dubitare > Fr. douter ‘doubt’ 

(b) re-borrowed from Latin 
L. bapisterium > Fr. baptistère ‘baptistry’ 
L. destinatio > Fr. destination 
‘destination’ 

(c) borrowed from another language It. bravura > Fr. bravoure ‘bravery’ 
Trk. dervis > Fr. derviche ‘dervish’ 

(d) derived from existing French word39 bêcher ‘dig’ > bêche ‘spade’ 
dur ‘hard’ + -eté > dureté ‘hardness’ 

 
As with the inherited words discussed in the previous section, sound change played 

little if any role in affecting the /b/-to-/d/ ratio. In my French dictionary sample, only 

one word showed a historical change in the initial segment: L. unde > Fr. dont ‘of 

which.’ 

 The table in (26) lists how many /b/- and /d/-initial words each of the sources 

in (25) contributed to the French vocabulary (the numbers listed represent every tenth 

word from Imbs 1994). 

(26) Breakdown of French words by origin (no prefixed forms) 

   /b/-initial 
words 

/d/-initial 
words 

(a) inherited from Latin B � D 14 15 

(b) re-borrowed from Latin D > B 31 77 

(c) borrowed from  
another language B > D 64 31 

(d) derived from existing 
French word B > D 212 77 

 

                                                 
39 Recall that the data excludes prefixed words, so that the derived words category is made up mostly 
of compounds, suffixed words, and deverbal nouns. 
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 The fact that roughly the same number of /b/- and /d/-initial words were 

inherited from Latin (category (a)) is consistent with what we saw in the previous 

section—there were more /d/- than /b/-initial words in Latin, but /b/-initial words 

were more likely to survive, meaning that the absolute number of both word types 

surviving into French is about the same.  

 Although few words in French were directly inherited from Latin, many 

words were re-borrowed from Latin after the two languages had become distinct 

(category (b)). Most of these were used as technical religious or scientific vocabulary. 

As the table in (26) shows, many more /d/-initial words were borrowed in this way 

than /b/-initial words, by a factor of about 2.5 to 1. This might appear to be evidence 

that a phonotactic preference for /b/ was not active in these cases, but it must be 

remembered that /d/-initial words outnumbered /b/-initial words by 3 to 1 in Latin (if 

prefixed forms are included). These numbers are thus consistent with a slight 

preference for /b/. Without a larger sample of words from French, however, we 

cannot determine whether this difference is significant.  

 Likewise, although the words borrowed from other languages (category (c)) 

appear to be biased in favor of /b/, we cannot conclude anything from this without 

knowing the lexical statistics of the donor languages. This bias may simply be the 

result of the fact that French speakers have been exposed to more /b/-initial than /d/-

initial words, and so had more chances to borrow the former.  

 The largest difference between /b/ and /d/ is to be found in the words derived 

via French morphological processes (category (d)).  Words starting with /b/ are 
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derived in French over two and a half times more often than words starting with /d/. 

In non-derived words, on the other hand, /d/-initial words are slightly more common 

(123 words) than /b/-initial words (109 words). Thus, it appears that morphological 

processes themselves are biased by a preference for /b/. The large size of this 

difference may be the result of a feedback loop due to the recursive nature of 

morphological operations—a slight preference for forming /b/-initial words will lead 

to more /b/-initial words, which will thereby increase the number of /b/-initial bases 

for further derivation, and so on. 

 

2.5. Modifying the model 

 In this chapter I have presented evidence that when one sound is easier to 

articulate than another, words containing the easier sound are given an advantage in 

the lexical selection process. How can articulatory ease be integrated into the model 

of speech production I outlined in chapter 1? The simplest way would be to extend 

the production network to include not only nodes that correspond to phonological 

elements such as phonemes and features, but also nodes corresponding to articulatory 

elements such as individual gestures or gestural scores.  

 I will further assume that at the articulatory level, a principle of least effort 

applies, serving to strengthen nodes that represent articulations that require the least 

amount of energy expenditure (cf. the LAZY constraint in Kirchner 2001). Thanks to 

this principle, once a person has had a certain amount of experience producing sounds, 

the nodes responsible for producing a /b/, for example, will overall have higher 
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resting activations (weights, in my model) than those responsible for /d/. Assuming 

that articulatory nodes feed activation back to phonemic nodes, such a network would 

predict that phonemes which are easier to articulate, and therefore words that contain 

such phonemes, have an advantage over their competitors in lexical selection. The 

structure of such a network is shown in (27). Nodes with higher weights are 

represented with darker symbols. 

(27) Network with gestural nodes 

 

 Some support for this architecture comes from Goldrick (2003), who found in 

an experiment designed to elicit speech errors that English-speaking subjects made 

/s/�/t/ errors more often than /t/�/s/ errors, despite the fact that /s/ is more common 

than /t/ in English. This finding is at odds with extensive evidence that in general 

speech errors tend to result in more frequent sounds replacing less frequent ones—for 
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Dell et al. 2000). Goldrick argues that the /t/-/s/ anomaly is due to the fact that 

fricatives are more difficult to articulate than stops.40,41  

 In my model, this result would be explained as the effects of the stronger (i.e., 

higher resting activation) articulatory nodes associated with /t/, which makes the 

phoneme node /t/ more likely to be accidentally selected during speech planning. 

These markedness effects can be modeled with the simulation described in §1.6. First, 

let us consider what the simulation without markedness predicts will happen if a new 

phoneme is added to the inventory. To do this, I started the simulation with a lexicon 

of ten words and five phonemes and set it to run for 1,000 generations, as described in 

§1.6.42 After the first 500 generations, I added a sixth phoneme, f,  to the inventory, 

simulating a sound change like that postulated by the Glottalic Theory in PIE. This 

new phoneme was not instantiated in any existing words, and so was unable to 

increase in frequency, as the graph in (28) shows. Each gray line represents the type 

frequency of one of the original phonemes over time; the thick black line represents 

the newly introduced phoneme. 

                                                 
40 Fricatives are generally held to require more effort to produce than stops due to the greater precision 
of the gesture involved in making a fricative (e.g., Kirchner 2001, 41-42); as Boersma (1997) puts it, 
“it is easier to run into a wall than to suddenly halt one inch in front of it” (12). 
41 Some studies have failed to find any markedness bias in phoneme errors of this type, but see section 
3 of Goldrick 2002 for an extensive methodological criticism of these studies. 
42 The model parameters were set as follows: p=0.3 for all connections, q=0.6, �=0.1. 
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(28) Introduction of new phoneme: no markedness 
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 In order to model the effects of markedness, I assigned weights to each 

phoneme node, just as I did with the lexical nodes in the simulation in §1.6. I ran the 

simulation again, but this time gave the node representing the new phoneme f a 

weight of 1.5 (all other phoneme nodes had weights of 1.0). Remember that a node’s 

weight is used as a multiplier when the node’s activation is calculated, so the higher 

weight gives words containing the new phoneme an advantage. This represents the 

node’s connections to a set of gestures that are easier to articulate. The equation used 

to compute activation is repeated in (29). 

(29) Calculating activation with weights 
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 When markedness is implemented in this way, the new phoneme increases in 

frequency despite its initial rarity, as shown in (30).43 

(30) Introduction of new phoneme: with markedness 
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Of course, this does not mean that the frequencies of all sounds are strictly 

determined by markedness. For two phonemes with roughly equal weights, it will be 

essentially random which one is more frequent in a given language—this could be the 

case for /p/ and /t/, as was shown in (21). 

 

                                                 
43 To confirm that the difference between the two simulations in (28) and (30) was not a fluke, I ran the 
simulation 10 times under each set of conditions. Without markedness, the new phoneme was never 
the most frequent phoneme at any point in any of the 10 simulation runs; with markedness, the new 
phoneme ended the simulation as the most frequent phoneme all 10 times. 
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2.6. Conclusion 

 In tracing the history of a subset of the French vocabulary, I have shown that 

Boermsa’s (1998) conjecture is correct: a phonotactic preference for sounds that are 

easier to articulate has resulted in a statistical bias towards initial /b/ over initial /d/ in 

the lexicon of modern French. Because for most of the history of the language, /b/ has 

been less frequent than /d/, this preference cannot simply be derived from the lexical 

statistics; the hypothesis that speakers simply prefer words that are similar to the 

words they already know, as is predicted by a markedness-free model of speech 

production, cannot account for the consistent bias towards /b/ that is observed in the 

history of Latin and French. 

 I have also shown that this preference for unmarked sounds can be modeled 

using a speech production network in which nodes representing unmarked sounds are 

given higher weights than those representing marked sounds. When phonemic nodes 

are weighted in this way, the model predicts that mismatches between frequency and 

markedness, which can arise due to “blind” sound change, will be gradually repaired 

over time, just as has apparently happened in the history of the Romance languages. 
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3. Phoneme cooccurrence and lexical bias 

 
 In the model of speech production and lexical competition I have developed 

so far, a word’s success depends on its phonotactic properties because its lexical node 

is connected to nodes representing phonological units such as phonemes or syllables. 

In this chapter, I will present evidence that long-distance dependencies between 

segments also play a role in competitions among words—specifically, that words 

having highly similar consonants in close proximity are at a disadvantage.  

 The chapter is organized as follows. I begin in §3.1 by establishing that a 

gradient similarity avoidance constraint is present in many languages, including 

English. In §3.2 and §3.3 I present evidence from English words and American first 

names that shed light on the effect this constraint has in the evolution of the lexicon. 

In §3.4 I discuss the role played by processing in similarity avoidance, and finally in 

§3.5 I show how the speech production model established in chapter 1 can be 

modified to account for the data presented here. 

 

3.1. Gradient OCP effects in English 

 Frisch et al. (2004) showed that in Arabic triliteral verbal roots, similar 

consonants tend not to occur in adjacent positions—this restriction is categorical 

when the consonants are identical (e.g., there are no roots of the form /d d m/), but 

gradiently holds when the consonants are merely similar (e.g., roots like /d s m/, 

whose first two consonants are both coronal, are attested, but statistically 

underrepresented). The same similarity avoidance tendency has been found in the 
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lexicons of many languages: Ngbaka (Broe 1995), Javanese (Mester 1986), Russian 

(Padgett 1995), Muna (Coetzee and Pater 2005), Japanese (Kawahara et al. 2005), 

and Bengali (Khan to appear), to take but a few examples. Berkley (1994, 2000) 

found that the same is true of English: words like king or mop, in which two sounds 

with the same place of articulation are separated by a vowel, are underrepresented 

when compared to words with heterorganic consonants like sing and mat.  

 In the remainder of this chapter I will consider how this gradient OCP 

phonotactic constraint has shaped the lexicon of English. Instead of examining the 

cooccurrence frequencies of all English consonants, I will focus on just two, the 

liquids /l/ and /r/, for two reasons. First, unlike most other consonants, the 

cooccurrence frequency of the liquids is relatively unaffected by stress (Frisch 1996), 

so using these phonemes allows me to ignore this factor. The other reason is practical: 

much of the data I will analyze in this chapter is in orthographic form. In rhotic 

varieties of English, the graphemes l and r have the advantage of a nearly one-to-one 

mapping with the phonemes /l/ and /r/ respectively—orthographic data can therefore 

accurately represent the occurrence of liquids when phonetic transcriptions are not 

available.  

 

3.2. Liquid cooccurrence in English neologisms 

 Data from the lexical database CELEX (Baayen et al. 1993) confirms 

Berkley’s (2000) finding that sequences of identical liquids separated by a vowel are 

underrepresented. In Modern English, /r/ and /l/ are of roughly equal frequency, with 
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/r/ having a slight advantage: of all the words containing exactly one liquid in CELEX 

(where cooccurrence with another liquid is not a factor), 43.3% (10,650 out of 

24,598) contain /l/ and 56.7% (13,948 out of 24,598) contain /r/. Given these 

frequencies for the individual segments, we would expect that in words containing 

exactly two liquids, the liquids will be identical about half of the time (50.9% to be 

exact44).  

 In fact, identical liquids cooccur much less often than this, particularly when 

they are in close proximity in the word. Of the 1,739 words in CELEX which contain 

exactly two liquids separated by a vowel,45 the liquids are identical in only 355 words, 

for an identity rate of 23.5%. It is clear that this is below the average expected rate of 

50.9%, but it is not clear whether the difference is significant. In order to determine 

significance, I will use a Monte Carlo procedure (Kessler 2001) to approximate the 

distribution of the expected rate. The procedure is described in detail in the following 

section. 

 

                                                 
44 The expected value is calculated as the probability that both liquids are /l/ added to the probability 
that both are /r/: .4432 + .5672 = .509. 
45 Because the phonetic transcriptions in CELEX represent a non-rhotic variety of British English, 
these calculations are based on the orthographic representations of the words (this also makes it easier 
to compare this data to the data sets presented later in the chapter, for which transcriptions were not 
available). This list therefore represents all words spelled with two liquids (the double letters ll and rr 
were treated as single letters) in which the string intervening between the two liquids consists only of 
one or more of the English vowel letters (a, e, i, o, u, y), or any vowel letter followed by w or y. Using 
orthography in this way results in a small amount of noise in the data, as in words like liar, where the 
two liquids are separated by more than a single vowel phoneme, but because the strength of the OCP 
lessens with distance, this noise is likely to make the OCP effects discussed in this chapter appear 
weaker than they actually are. 
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3.2.1. The Monte Carlo test for significance 

 The Monte Carlo test is performed as follows. First, a list of the words in 

question is compiled, and then converted into two lists, one consisting of the first 

liquid in each word, and another consisting of the second liquid in each word. The 

process is illustrated in (31), using the first 10 two-liquid words in the CELEX list as 

an example. 

(31) Preparing a word list for Monte Carlo test 

Word  Liquid 1 Liquid 2 
accelerando  l r 
accelerate  l r 
acceleration  l r 
acrylic  r l 

admiral →→→→ r l 

admiralty  r l 
admirer  r r 
adorer  r r 
advalorem  l r 
adventurer  r r 

 
Once these parallel lists of cooccurring liquids have been compiled, the liquids can be 

recombined at random—this is most simply done by fixing the order of the liquids in 

the Liquid 1 list, and placing the liquids in the Liquid 2 list in a randomly determined 

order. After each such shuffling, the number of identical liquid pairs can be calculated, 

and the entire process repeated as many times as necessary. The process is illustrated 

in (32), with identical liquid pairs indicated by shading. 
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(32) Performing the Monte Carlo test 

Initial state  First shuffle  Second shuffle  
Liquid 1 Liquid 2  Liquid 1 Liquid 2  Liquid 1 Liquid 2  

l r  l r  l l  
l r  l l  l r  
l r  l r  l r  
r l  r r  r l  
r l →→→→ r r →→→→ r r ... 
r l  r r  r r  
r r  r l  r l  
r r  r l  r r  
l r  l r  l r  
r r  r r  r r  

 
If the shuffling is repeated sufficiently many times, the result will be a reliable 

estimate not only of the average expected number of identical liquids that would 

occur by chance, but of the entire distribution of this expected value. With this 

information, we can determine exactly how likely the actual value is. The histogram 

in (33) presents the results of the Monte Carlo procedure on the entire list of 1,739 

words in CELEX which contain exactly two liquids separated by a vowel. The x-axis 

represents the percent of liquid pairs in which the liquids were identical, and the y-

axis represents the number of shuffles (out of 10,000 total46) in which a given identity 

rate occurred.  

 

                                                 
46 All of the Monte Carlo tests reported in this dissertation were performed using 10,000 iterations. 
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(33) Results of Monte Carlo test on CELEX two-liquid words 

 
 The histogram shows that the values generated in the Monte Carlo test are 

approximately normally distributed around the median value of 50.5%. The 

horizontal I-shaped bar indicates the 95% confidence interval around this median 

value—the range in which 95% of the values lie. The actual percentage of identical 

liquids in the CELEX data, 23.5%, is not only well below this interval, but is lower 

than even the lowest value generated in any of the 10,000 iterations of the Monte 

Carlo procedure. From this we can conclude that the actual identity rate is 

significantly (p<0.0001) below the identity rate that would be expected by chance. 

46%           48%                50%                52%                54% 

95% confidence interval 
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 The results of the Monte Carlo test can be more succinctly summarized by 

omitting the histogram and simply reporting the confidence interval and actual value. 

This is done in the chart in (34), which represents the same test reported in (33). In 

this chart, the gray square indicates the actual fraction of two-liquid words with 

identical liquids, while the horizontal bar represents the 95% confidence interval 

derived from the Monte Carlo test.  

(34) Comparing attested CELEX liquid pairs to Monte Carlo results 

 

 
Percent identical liquids: Modern English 

(Data source: Baayen et al. 1993) 
 
All of the Monte Carlo results in this and the following chapter will be reported using 

similar graphs. 

 

3.2.2. The OCP in several stages of English 

 This OCP effect is not merely an accidental property of current English; the 

charts in (35) and (36) show that the same bias is found in two older stages of the 

language: Old English (450-1100 AD) and Middle English (1100-1500 AD). 

(35) Sequences of identical liquids are underrepresented in Old English 

 
Percent identical liquids: Old English 

(Data source: Bosworth & Toller 1898) 
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0%             20%                  40%                   60%                  80%                 100% 

percent attested in data   95% confidence interval for chance 
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(36) Sequences of identical liquids are underrepresented in Middle English 

 
Percent identical liquids: Middle English 

(Data source: Lewis 2000) 
 

Words with identical liquids have been underrepresented in the lexicon of English 

throughout the history of the language, despite the fact that in Modern English retains 

only 10-15% of the vocabulary of Old English (Stockwell and Minkova 2001).  

 The underrepresentation in Modern English might be attributed to the large 

number of Latinate words in the current language—Latin had a rule of liquid 

dissimilation that is reflected in a number of Modern English words (e.g., annu-al, 

but lun-ar, not *lun-al). The fact that Old English exhibits the same OCP effect, 

however, shows that the effect is not solely due to the influence of Latin, as the 

number of Latin words borrowed into Old English was quite small: less than 3% of 

the Old English vocabulary consisted of loanwords from any language (Culpeper 

2005).  

 This consistent underrepresentation could be the result of sound change. If 

there were a tendency to misperceive or mispronounce /l/ as /r/, for example, when 

followed by another /l/, this could over time result in a lexicon skewed away from 

/l…l/ sequences. In order to examine this possibility, I collected a list of recent 

neologisms from the Oxford English Dictionary that first entered the language over 

the period of a century, from 1890 to 1989 (i.e., words whose earliest cited quotation 

falls between those years). Words that are entirely new to the language are much less 

0%             20%                  40%                  60%                  80%                 100% 
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likely to have had time to accumulate sound change—thus, if sound change alone is 

responsible for the OCP effect in English, we would expect liquids in these novel 

words to cooccur relatively freely.  

 For each of the 38,232 neologisms from this time period listed in the OED, I 

considered only those words containing two liquids separated by a vowel (there were 

a total of 1,363 words fitting this description). The chart in (37) gives the percent of 

this subset of words in which the liquids are identical (as well as the corresponding 

chance confidence interval), divided by decade. 

(37) OED neologisms by decade: liquid identity rates 

 

0%         20%                 40%                   60%                  80%                100% 
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As is clear from the chart, identical liquids are underrepresented in neologisms just as 

strongly as in older words. This strongly suggests that it is phonotactic preferences, 

and not sound change, that is driving OCP effects in the English lexicon.  

 Of course, many of these neologisms could be borrowed from languages 

which themselves underrepresent identical liquid pairs. A closer examination of the 

data as well as information on the lexical statistics of the languages English borrowed 

from during this period would be necessary to determine the degree to which the 

underrepresentation results from biases in English speakers. In the next section I 

examine data from baby names that demonstrates that English speakers are in fact 

biased by phonotactic preferences, and sheds further light on how a gradient 

phonotactic like the OCP can be maintained in an ever-changing lexicon. 

 

3.3. Liquid cooccurrence in American baby names 

 American given names tend to be characterized by the same phonotactic 

restrictions that hold for English words—no common names begin with [�] or end 

with [h], for example, and Bnick is as unlikely to catch on as a first name as it is to 

become an English word.47 In this section I will show that names also conform to 

gradient phonotactics; in particular, the OCP constraint that is the focus of this 

chapter. 

                                                 
47 Of course, not all Americans are native English speakers, and so the analogy between American 
names and words of English is not perfect, but I will assume that the most popular names are at the 
very least heavily influenced by the phonotactic intuitions of the 82% of Americans that are 
monolingual English speakers (2000 US Census data; available at http://factfinder.census.gov). 
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 The data I will describe on American first names comes from the U.S. Social 

Security Administration, consisting of the 1,000 most common names each for boys 

and girls for every decade in the twentieth century.48 One advantage of this data is the 

degree of precision with which it allows us to examine naming trends, a precision that 

is often unavailable in lexicographic studies of other kinds of words. With the name 

data, we can pinpoint to within a year or so not only when a certain name became 

popular, but also when it fell out of use as a baby name. As I show below, this level 

of detail will allow us to ask questions about how lexical biases change that could not 

be posed with traditional dictionary or corpus data. 

 I used the Social Security Administration data to examine the effects of the 

OCP in English—just as words like rare or lull are underrepresented compared to 

words like lair or real, names like Gerard or Leila are less frequent than would be 

predicted by chance.49 The chart of observed/expected values in (38), calculated over 

all names containing exactly two liquids separated by a vowel, shows that the same is 

true for every decade in the twentieth century.  

                                                 
48 Available at http://www.ssa.gov/OACT/babynames/. 
49 The name data presented throughout this chapter assumes a rhotic dialect of English which is 
commonly spoken in the United States. Note that the theory makes different predictions for a non-
rhotic dialect such as British English—names like Gerard, in which the second orthographic r is 
unpronounced, should be more common than names like Leila or Rory. I have not yet collected 
sufficient data on British names to test this prediction. 
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(38) Liquid pairs in popular names by decade 

 

The OCP bias in names has remained remarkably stable50 despite large changes in the 

actual names that were popular—a comparison of the top-1,000 lists for the first and 

last decades of the century shows that they only have 36% of the names in common. 

 Using the name data, we can also examine the role played by the OCP in 

whether a name made it into, or fell out of, the top-1,000 list. To do this, I divided the 

two-liquid names into two groups: “winners,” names that appear in one decade but 

did not appear in the previous decade, and “losers,” names that appear in one decade 

but do not appear in the following decade (a name may be both a winner and loser). 

Among the winners, the two liquids are identical only 11.8% (17/144) of the time, 

                                                 
50 Note the downward trend in the occurrence of identical liquids over the first half of the twentieth 
century. This is consistent with the theory advanced in §1.6 that phonotactic factors came to play a 
larger and larger role in naming choice as the century progressed. 

0%       20%                40%                60%                80%               100% 
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while the losers have a higher identity rate of 19.4% (35/180). This difference is 

significant (one-tailed p<0.05 by Fisher’s Exact Test), and indicates that a name with 

two identical liquids has a lower chance of becoming popular, and once popular, a 

higher chance of falling out of popularity. 

 The OCP is not just a feature of common names, which, it could be argued, 

are chosen from a pool of existing names which itself may have been shaped by 

sound change in the past. The same effect can be seen in newly coined names, which 

presumably have not had time to undergo sound change. The charts below show that 

identical liquids are underrepresented in drug brand names (39), a list of names 

invented for a fantasy role-playing game (41), and a list of “unusual, made-up” baby 

names (43). Examples from each data set are given in (40), (42), and (44), 

respectively. 

(39) Identical liquids are underrepresented in drug brand names 

 
Percent identical liquids: Drug brand names 

(Data source: http://www.exoticanimal.net/drugbook/BookInformation/DrugName.html) 

 
(40) Examples of two-liquid drug brand names (N = 88) 

l..r r..l r..r l..l 
Choloromycetin Droleptan  Dalalone 
Inteflora Demerol none Imazalil 
Seleron Oralet  Hemicelulose 
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(41) Identical liquids are underrepresented in names for fantasy role-playing game 
characters 

 
Percent identical liquids: Fantasy RPG names 

(Data source: http://www.angelfire.com/tx/afira/six.html) 

 
(42) Examples of two-liquid role-playing game character names (N = 82) 

l..r r..l r..r l..l 
Balor Cynoril Adraeran Laeli 
Falyrias Xarolith Aurora Loili 
Larn Imril Azhrarn Lylas 
  
(43) Identical liquids are underrepresented in unusual baby names 

 
Percent identical liquids: “Unusual, made-up” names 

(Data source: http://www.angelfire.com/id2/heathersnamepage/made_up_names.html) 

 
(44) Examples of two-liquid unusual baby names (N = 20) 

l..r r..l r..r l..l 
Alera CamBrel   
Clarendy Raleda none none 
Islara Veralidaine   
 
These results suggest that the OCP bias in English does not only affect a word’s 

ability to spread throughout the speech community; rather, it appears to directly affect 

the creation of new words (or names). 

 

3.4. Processing and the OCP 

 Dell et al. (1997) propose a spreading activation model of speech which can 

sequence units of speech. The model uses three mechanisms to insure that phonemes 

0%            20%                  40%                   60%                  80%                 100% 
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(or other phonological units) are activated in the correct sequence: one which 

activates the unit presently being prepared, a second which deactivates the units that 

have already been produced (so they are not confused with the current unit), and a 

third which primes (i.e., starts to activate) the units that will be produced after the 

current unit. Together these three mechanisms ensure that at any point during an 

utterance, the phoneme being produced is the most active node.51 Given this model, 

there are several possible theories regarding how sequences of identical or similar 

sounds could interfere with processing. Below I summarize three such theories, and 

discuss their implications for my model. 

 

3.4.1. Refractory period 

 One way that sequences of similar or identical segments could impede 

processing involves the mechanism responsible for deactivating past nodes—what 

Dell et al. (1997) call the turn-off function. Imagine, for example, that someone is 

attempting to produce the word lull. This involves first activating the phoneme node 

for /l/, then the node for the vowel /�/, and then the node for /l/ again. When /l/ is 

activated the second time, however, it has just been deactivated by the turn-off 

function—if we assume either that there is a refractory period during which a 

deactivated node cannot be activated again (or that the deactivation and activation 

functions may overlap, causing them to interfere with one another), using the same 
                                                 
51 The question of how the production system represents temporal sequences, such that it knows which 
phonemes to activate in which order, has spawned several theories in the literature. Some models 
invoke associations between successive phonemes (Elman 1990), other posit frames into which 
phonemes are slotted (Dell 1986), and yet others propose a time-varying control signal to encode serial 
order (Vousden et al. 2000). This issue is orthogonal to my concerns in this chapter. 
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phoneme twice in a row will take more time than using two different phonemes 

(MacKay 1970, Frisch 2004). The second /l/ in a word like lull will be activated more 

slowly than the first. This will have two consequences—first, it will put lull at a 

disadvantage in the competition to be selected when compared to synonyms that do 

not contain sequences of identical consonants. Second, it will make it more probable 

that another phoneme will reach activation first, resulting in a speech error. 

Experimental and corpus studies of speech errors have confirmed this prediction—a 

sequence of identical consonants increases the chance of making an error on that 

sequence (Shattuck-Hufnagel 1979, Dell 1986, Stemberger 1990, Wilshire 1999). 

 Assuming that nodes for features or gestures also have refractory periods, 

sequences of consonants that share many features will also lead to processing 

difficulties. This account thus predicts that the type frequency of a given sequence of 

consonants in the lexicon should be inversely correlated with the similarity of the 

consonants. Identical consonant pairs should be most strongly underrepresented, 

followed by pairs of highly similar consonants. Although this is true for the English 

liquids, as well as consonants in Hawaiian and Croatian (MacKay 1970), a different 

pattern is found in other languages. In Ngbaka (Broe 1995), Muna (Coetzee and Pater 

2005), and Japanese (Kawahara et al. 2005), as well as many other languages, 

identical consonants cooccur freely—highly similar consonant pairs are 

underrepresented, but identity serves as an “escape hatch” that permits violations of 

the OCP (MacEachern 1999 also lists categorical constraints of this type from 

languages with laryngeal cooccurrence constraints). 
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 English, in fact, exhibits the same identity effect for certain segments in 

certain contexts—identical segments cooccur more frequently in stressed syllables, 

and less sonorous identical segments cooccur more freely than more sonorous 

segments (Frisch 1996, Berkley 2000). Frisch and Zawaydeh (2001) also found 

experimental evidence for the special status of identical consonants—native Arabic 

speakers rated nonwords with sequences of identical consonants as more well-formed 

than nonwords with sequences of similar but nonidentical consonants, judgments that 

are in the opposite direction of the lexical statistics of Arabic, where identical 

consonant pairs are rarer than similar consonant pairs. 

 The refractory period hypothesis cannot explain the special status of identical 

segments, which it predicts should cause the greatest processing difficulty. In the next 

section I examine another hypothesis, which can explain why identity is sometimes 

better than near-identity. 

 

3.4.2. Confusability 

 Another source of difficulty for production can be located in the effects of 

noise on the mechanisms proposed by Dell et al. (1997), which can result in speech 

errors. Perseveratory errors (e.g. walk the beak for walk the beach) result when an 

already-produced unit is not deactivated quickly enough and is mistaken for the 

current unit; anticipatory errors (e.g., cuff of coffee for cup of coffee) occur when 

future units are primed too quickly and are accidentally chosen instead of the current 

unit. 
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 As with the refractory period theory, this confusability theory predicts a 

correlation between similarity and error rate: consonants similar to the target segment 

will be more highly activated (because they are connected to many of the same 

feature nodes as the target) and thus more likely to be selected instead of the target. 

Sequences of highly similar consonants are therefore more likely to result in errors, as 

can be seen by the preponderance of such sequences in tongue twisters (e.g., She sells 

seashells by the seashore). Identical consonants, however, are a special case—

substituting one segment for an identical segment has no perceptible effect, and 

would not be categorized as an error. If underrepresentation results from a mechanism 

which avoids words that are likely to cause errors, words like sash should be 

underrepresented, but not words like sass.  

 

3.4.3. Repetition blindness 

 Another possibility is that repetition causes problems for perception. Evidence 

from both visual and auditory processing indicates that two identical stimuli 

presented in rapid succession are often perceptually fused, causing subjects to report 

that they perceive only a single instance of the stimulus. This phenomenon, known as 

repetition blindness (Kanwisher 1987, Bavelier 1994), could make it difficult to 

perceive identical or similar consonants as distinct. Boersma (1998) proposes that this 

perceptual bias is the basis of a phonological constraint on adjacent identical elements. 

Frisch (2004) further argues that repetition blindness could also be the cause of the 
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long-distance OCP effects described in this chapter—sequences of identical 

consonants are avoided because they are difficult to perceive. 

 This hypothesis makes the same prediction as the refractory period theory: 

completely identical segments are the most likely to be perceptually fused, and so 

should be the most strongly underrepresented. The token frequency of consonant 

sequences should thus be inversely correlated with similarity. Just as with the 

refractory period theory, the repetition blindness theory can account for liquid 

cooccurrence in English, but cannot explain cases in which pairs of identical 

segments occur with greater frequency than pairs of highly similar segments. 

 

3.4.4. Why is repetition difficult? 

 This survey of theories that attempt to explain the burden imposed on 

processing by repetition leaves us with a conundrum. Two theories predict that 

identical segments should be the worst combination, while one predicts that they 

should be the best. The problem is that both predictions are true for different 

languages, and even for different contexts within the same language. 

 One possible solution to this puzzle is suggested by Zuraw’s (2002) theory of 

Aggressive Reduplication. She uses extensive evidence from the active phonology of 

Tagalog to argue for a family of Optimality Theoretic markedness constraints, IDENT-

��, which enforce identity between different substrings within the same word.52 

Zuraw uses this framework to discuss an identity escape clause in a laryngeal 

                                                 
52 A separate set of constraints is responsible for determining which substrings are in correspondence 
(coupled, in her terminology) with each other; for details, see Zuraw 2002. 
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cooccurrence restriction in Peruvian Aymara reported by MacEachern (1999): a 

morpheme may not contain more than one ejective consonant, unless the ejectives are 

identical (a parallel restriction holds for aspirated consonants). Zuraw argues that this 

is plausibly the result of Aggressive Reduplication—in words with multiple identical 

ejectives, the vowels following the ejectives are more likely to be identical than 

chance would predict. Thus, the special status of identical consonants in Aymara 

appears to be part of a more general phenomenon involving a pressure towards 

identity of entire strings. Zuraw speculates that Aggressive Reduplication constraints 

could play a role in lexical learning, causing learners to mislearn words in such a way 

as to inflate the numbers of words with identical subparts (as is evidenced in errors 

made by English speakers like orangutan � orangutang). However, the same 

constraints could also act to bias lexical competitions, leading speakers to prefer 

words that contain identical substrings. 

 Because the effects of Aggressive Reduplication constraints are dependent on 

their language-specific ranking, it is not surprising that languages vary in the 

statistical representation of identical segments. It is not only the treatment of identity, 

however, that differs across languages— Coetzee and Pater (2005) and Khan (to 

appear) propose that different languages give different weights to various 

phonological features when computing the similarity of two segments, so that what 

counts as similar is also in part language-specific. How these differences arise, and 

whether they are learned, or somehow derived from other properties of a language’s 
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phonological system, remains unclear; I leave a comprehensive study of these issues 

to future research.  

 

3.5. Extending the model 

 The fact that different languages (or as in English, different contexts within 

the same language) treat identical consonant pairs differently makes it difficult to 

construct a language-independent model of speech production that can account for 

lexical OCP effects. For this reason, rather than implementing a single concrete 

model of lexical selection, I will discuss more generally how the processing 

difficulties predicted by each of the three theories described in the previous section 

place constraints on such a model. 

 Together, the three theories predict two different types of processing 

difficulty: processing slowdown, and errors in production or perception. The first, 

processing slowdown, is predicted only by the refractory period hypothesis. If it is 

difficult to activate the same phoneme node twice in rapid succession, then words 

containing sequences of identical (or similar) consonants will take longer to activate, 

putting them at a disadvantage in the race to be selected over other synonyms. This 

can be straighforwardly handled in the speech production model I proposed in chapter 

1, in which a word’s fitness is a direct result of how quickly it can be activated. 

 The second type of difficulty, production or perception errors, is predicted by 

all three theories, although for different reasons. Under the refractory period theory, 

the slower activation of the second consonant in a series allows nodes for other 
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consonants to become active and thereby misselected. The confusability theory 

predicts that sequences of similar consonants are more susceptible to errors because 

of their many shared features. The repetition blindness theory predicts that such 

sequences have a higher chance of being misperceived due to imperfections in the 

part of the perceptual system responsible for deciding how many events constitute a 

given stimulus. 

 The issue of how error patterns end up being reflected in lexical statistics is 

more complex. It could be that some persistent speech or perception errors cause 

sound changes within individual lexical items, but much of the data in this chapter 

has shown that not all OCP biases can be the result of sound change. Another 

possibility is that errors affect the resting activations of lexical nodes. Normally, 

when a lexical item is used or heard, its resting activation (and thus the probability 

that it will be selected in the future) increases. Perhaps when an error (in production 

or perception) occurs, the resting activation is not increased, or is decreased. This 

error-driven feedback would eventually result in difficult-to-process words becoming 

underrepresented, as they are replaced by less problematic synonyms. 

 The problem with this story is that it does not predict any generalization on 

the part of speakers or hearers. Experiments such as those performed with Arabic 

speakers by Frisch and Zawaydeh (2001) show that speakers dislike nonce words that 

contain difficult-to-process sequences, even though they have had no chance to make 

errors using those words. It is therefore more plausible that speakers’ avoidance of 

difficult words is a consequence of generalized knowledge—speakers know, not just 
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which words tend to result in errors, but which sequences tend to result in errors, and 

avoid words containing those sequences. This knowledge could either be an innate 

component of Universal Grammar, or be constructed by language users from their 

experience in making and hearing errors. 

 How specifically could the model of speech production I have developed in 

this dissertation be modified to incorporate this knowledge of error patterns? The 

answer to this question depends on how lexical selection and sequencing interact. If 

lexical selection is completed before sequencing begins—that is, if one lexeme is 

definitively chosen out of a set of synonyms, and only then is sequenced, then 

difficulties in sequencing should not affect selection. If the processes overlap, 

however, and sequencing is begun on multiple synonyms in parallel before one is 

chosen over the others, then long-distance OCP violations will have an opportunity to 

influence the selection process. This parallel sequencing process is illustrated 

schematically in (45); in this example, the two lexemes couch and sofa are competing 

to express a single concept. Note that this diagram does not represent a spreading-

activation network—it merely represents the linear sequencing of phonemes, with 

arrows indicating temporal order. 
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(45) Sequencing synonyms in parallel: on the (couch/sofa) 

 

 Evidence that synonyms are sequenced in parallel comes from blend speech 

errors, in which parts of two words are combined into one (e.g., frowl from frown and 

scowl). These errors are usually formed from synonyms, or words that are closely 

related semantically (Wells 1951, Fromkin 1971, Poulisse 1999), and preserve the 

linear order of segments in both words. It is thus likely that such errors originate 

during sequencing, but before either synonym has been definitively selected.  

 How does the speaker’s knowledge of error patterns impinge on lexical 

selection in this model? One possibility is suggested by theories of self-monitoring in 

speech production. These models assume that speakers are able to monitor their 

“inner speech”—the words that have been phonologically encoded and sequenced, 

but not yet spoken—in order to detect speech errors as quickly as possible. Levelt 

(1983) concludes from a study of a corpus of self-repairs that this monitor can notice 

errors in a word even before articulation of the word has begun.  

One can imagine that the duties of this self-monitor include not only spotting 

errors that have already occurred, but also noticing and avoiding potential trouble 

Time 

k a� � 

s o� f � 
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spots in the course of processing that are likely to lead to errors. When this happens, 

the monitor can suppress the activation of the offending lexical item. If there is a 

synonym available that doesn’t violate the OCP (or violates it less severely), that 

synonym will have a higher probability of being selected. Over time, this bias will 

lead to the underrepresentation of identical or similar consonant sequences. 

 Some support for this picture comes from the fact that similarity avoidance 

constraints are strongest at the beginning of the word (Frisch 1996, 2000). This 

follows if we assume that the overlap between lexical selection and sequencing is 

partial rather than total. In other words, even if sequencing begins on multiple 

synonyms before one is chosen, selection may occur before sequencing is completed. 

Thus, a word-initial sequence of similar consonants will almost always play a role in 

selection, but the same sequence at the end of a longer word will have little influence, 

because by the time the sequencer reaches that point, a winner in the synonym 

competition will have already emerged. In other words, an /lVl/ sequence at the end 

of the word is just as hard to process as one at the beginning of the word, but the 

word-final sequence simply occurs too late to affect selection, and consequently has 

less impact on the shape of the lexicon. 
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4. Morphologically driven phonotactic preferences 

  

 In this chapter I examine a type of phonotactic preference that is governed not 

by universal facts of articulatory or processing ease, but by language-specific 

phonotactic patterns. I will show that phonotactic restrictions that hold categorically 

within morphemes tend to “leak” into larger domains, resulting in weaker, gradient 

versions of the same restrictions across morpheme boundaries. I will argue that this is 

the result of a kind of phonotactic preference—speakers prefer to form complex 

words that obey stem-internal phonotactics. 

 I will present evidence for this from three languages, English, Navajo, and 

Turkish. In all of these languages, compounds that violate a stem phonotactic are 

attested, but are rarer than compounds that obey the phonotactic. In Navajo, for 

example, compounds are permitted to violate a sibilant harmony constraint that is 

unviolated in stems, but disharmonic compounds are statistically underrepresented. I 

show that this can be modeled as a side effect of generalizations formed during early 

phonotactic learning. 

 

4.1. The proposal 

 I propose that the low type frequency of these compounds in each language is 

the result of their being assigned intermediate well-formedness by the phonotactic 

grammar. This in turn, I argue, is the result of multiple, overlapping generalizations 

formed by learners in the process of acquiring a language’s phonotactics. I focus on 
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the interaction between two types of generalization: one that takes into account 

morphological structure, structure-sensitive, and another that ignores morphological 

structure, structure-blind. Crucially, both types of generalization, although they may 

make conflicting predictions, are combined by the grammar when assigning a 

probability to a potential output. This is why a complex word, which may be perfect 

according to structure-sensitive generalizations, may be nonetheless penalized by a 

structure-blind generalization. 

 I formalize this as a grammar consisting of weighted constraints, coupled with 

a learning algorithm which uses the principle of Maximum Entropy (Goldwater and 

Johnson 2003, Hayes and Wilson to appear) and a smoothing term that penalizes 

complex grammars. Maximum Entropy grammars can account for both categorical 

and gradient generalizations, and are thus ideally suited to explain the data discussed 

here, in which some configurations are banned outright within morphemes, but only 

gradiently dispreferred across morpheme boundaries. I show that such a learner, if 

equipped with both types of constraints described above, automatically produces a 

bias against complex words that violate morpheme-internal phonotactics, even when 

no such bias exists in the learning data; the model thus predicts the correlation 

between tautomorphemic and heteromorphemic phonotactics observed in the three 

case studies presented here. 

 The chapter is organized as follows. In §4.2.1, §4.3, and §4.4 I describe the 

English, Navajo, and Turkish data respectively. In §4.5 I discuss the theoretical 

consequences of the data for a learning model. In §4.6 I informally describe the 
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leaning model, which is then formally presented in §4.7 and §4.8. Finally, in §4.9 and 

§4.10 I show how the phonotactic learner can be integrated with the speech 

production model, and speculate on how these lexical biases are maintained over time.  

 

4.2. English consonant clusters 

 The phonotactic grammar of English places restrictions on the consonant 

clusters that may occur within a morpheme—no English morpheme, for example, 

contains the sequence /pf/. These restrictions typically do not apply across morpheme 

boundaries: the sequence /pf/ is perfectly acceptable if it occurs in a compound like 

grapefruit. I will argue, however, that the same constraints that block certain 

tautomorphemic clusters do in fact apply to heteromorphemic clusters, albeit in a 

gradient rather than categorical form. 

 In order to determine which clusters are legal within morphemes, I used the 

CELEX-derived list of monomorphemes compiled by Hay et al. (2003).53 I define a 

tautomorphemically legal cluster as one which occurs word-medially in at least one 

word in this list. The chart in (46) shows which clusters are considered legal 

according to these criteria (attested clusters are indicated with a check mark). 

                                                 
53 I am grateful to Janet Pierrehumbert for supplying me with this list. 
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(46) Legal word-medial CC clusters in English monomorphemes54 
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 In order to compare this set of tautomorphemically attested consonant clusters, 

I extracted all of the words marked as noun-noun compounds from the lemmatized 

version of the CELEX database (Baayen et al. 1993), a total of 4,758 words, and 

compiled a list of the consonant clusters created in each compound (i.e., the final 

segment of the first compound member followed by the initial sound of the second 

member). Each such cluster was then designated as legal or illegal, depending on 

                                                 
54 The low number of attested clusters with /r/ as the first consonant is a consequence of the fact that 
CELEX, the database from which this chart was constructed, uses transcriptions based on a non-rhotic 
British dialect of English. 
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whether it occurred in any of the monomorphemes described in (46); 1,945 of the 

4,758 compounds (40.9%) contain tautomorphemically illegal clusters. Finally, I 

performed a Monte Carlo test (see §3.1) on the set of compound clusters to determine 

the expected number of illegal clusters predicted by chance. The results, presented in 

(47), show that consonant clusters that are illegal within morphemes are 

underrepresented in compounds. Tautomorphemically legal clusters, on the other 

hand, are overrepresented, as shown in (48). 

(47) Illegal non-geminate clusters are underrepresented in compounds 

 

 
Illegal CC clusters in English N-N compounds 

(Data source: Baayen et al. 1993) 
 
(48) Legal clusters are overrepresented in compounds 

 

 
Legal CC clusters in English N-N compounds 

(Data source: Baayen et al. 1993) 
 
 This correlation is evidence that the categorical phonotactic restrictions that 

hold within morphemes also hold gradiently across morpheme boundaries. This could 

result from a tendency for speakers to avoid forming compounds that would create 

illegal consonant clusters, or from the tendency of such compounds, once formed, to 

be replaced by competing synonyms. 
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 However, there are problems with determining which clusters are legal by 

examining a corpus as I have—some clusters may occur in words that did not happen 

to appear in the corpus, for example. It also seems probable that the set of illegal 

clusters is a category with fuzzy boundaries—what, for example, is the status of 

clusters that occur in only one or two low-frequency words? For these reasons, in the 

remainder of this chapter, rather than consider the entire set of illegal consonant 

clusters, I will restrict my discussion of English to a subset of illegal clusters for 

which native speaker intuitions are clear: geminate consonants. 

 

4.2.1. Geminates in English 

 Geminate consonants in English are permitted only across morpheme 

boundaries (Hammond 1999, Ladefoged 2001, Kaye 2005). Words like unknown, 

solely, and bookcase are typically pronounced with geminates that have been created 

by combining morphemes that end and begin with the same consonant. These 

morphologically-created geminates are often called “false geminates” to differentiate 

them from morpheme-internal long consonants—the two types of geminate often 

exhibit different phonological behavior. Minimal pairs differing only in consonant 

length, as in the compounds carpool and carp pool, may be found in multimorphemic 

words; in monomorphemic words, no such minimal pairs exist—the hypothetical 

word  [h'ppi], which would form a minimal pair with existing happy [h'�&], is not a 

possible monomorpheme of English. In the following sections, I show that just as 

with illegal consonant clusters in general, geminate consonants created by 
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morphological concatenation are statistically underrepresented in the lexicon of 

English. The results are discussed separately for compounds and affixed forms in 

§4.2.2 and §4.2.3 respectively.  

 

4.2.2. Compounds with geminates 

 The data discussed here utilize the same 4,758 noun-noun CELEX compounds 

described in §4.2. Of these, 141 (3.0%) words contain false geminates—e.g., bus stop, 

hat trick, penknife, bookkeeper. The results of a Monte Carlo test on the CELEX 

compounds are shown in (34).  

(49) Geminates are underrepresented in English compounds 

 

 
Geminates in English N-N compounds 

(Data source: Baayen et al. 1993) 

 
As the chart makes clear, the number of geminates found in the actual compounds, 

141 (3.0%), is significantly lower than expected (p<.001). 

 In a corpus-based study of how English compounds are spelled, Sepp (2006) 

found that whether or not a word has a geminate affects the way it is spelled. 

Compounds in English can be spelled one of three ways: open, with a space between 

the compound members (e.g., sand dune), hyphenated (e.g., roller-skate), or closed 

(e.g., joystick). The chart in (50) shows that compounds with geminates are more 

likely to be spelled hyphenated or open than closed (this chart depicts the same set of 

 140              160                   180                   200                    220                   240 
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words from CELEX described in (34), divided according to how they are spelled in 

the CELEX entry).55 

(50) Geminates are underrepresented in compounds spelled closed 

 
Geminates in English N-N compounds, by spelling 

(Data source: Baayen et al. 1993) 

 

 This difference in spelling suggests a possible source for the 

underrepresentation of geminates seen in (34). If the parsing algorithm used to 

identify compounds in CELEX failed to identify some open compounds as 

compounds (which is more likely than failing to identify a closed compound), then 

the underrepresentation of geminates could be an artifact of the parsing process, 

combined with people’s tendency to spell compounds according to their junctural 

phonotactics. To show that this is not the case, I ran the same Monte Carlo test on the 

list of compounds compiled by Sepp (2006) from a 14-million-word corpus of 

American English (for details of the construction of this corpus, see Sepp 2006). Sepp 

used a part-of-speech tagger and computational parser to extract all potential noun-

                                                 
55 Although the same compound can be spelled different ways by different writers, each compound is 
listed with a single spelling in CELEX. It is unclear how this spelling was determined. My intuition is 
that nearly all of the words spelled with hyphens in CELEX would be most often spelled open by 
native speakers (e.g., space-vehicle, rabbit-hutch, slot-machine), a suspicion that is strengthened by the 
nearly indistinguishable behavior of hyphenated and open compounds in (50). This accords with 
Sepp’s findings that less than 5% of the noun-noun compounds in her corpus are spelled with a hyphen 
more often than either open or closed (many of those are either dvandva compounds (Clinton-Gore, 
hip-hop), or involve abbreviations(op-ed)).  
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noun compounds, and then further filtered the list by hand, removing all non-

compounds. Because every compound was checked by hand, the likelihood of 

undercounting open compounds is much lower than it would be if all parsing were 

done by algorithm. 

 Of the 708 compounds with a frequency of 35 or more in Sepp’s corpus 

(including both those with open and closed spellings), 24 (3.4%) contain false 

geminates. The results of a Monte Carlo test on these compounds, shown in (51), 

demonstrate that, just as with the CELEX compounds, the actual number of 

geminates is significantly lower (p<.05) than the mean expected number of 35.9 

(5.5%).  

(51) Geminates are underrepresented in compounds in Sepp corpus 

 

 
Geminates in English N-N compounds 

(Data source: Sepp 2006) 

 
Thus, even when the risk of a counting bias is minimized by careful hand-checking, 

geminates are still underrepresented in compounds overall. This suggests that any 

orthographic bias that people may have is in addition to a general bias against 

forming compounds that create geminates. 

 

4.2.3. Suffixed words with geminates 

 Geminates are underrepresented not only in compounds, but in affixed forms 

as well. As noted above, false geminates may be created at the boundary between a 
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stem and a level 2 affix, as in solely [so�lli] (potential geminates created at level 1 

morpheme boundaries, as in innate [�ne�t], are repaired through degemination). In this 

section I present evidence that words suffixed with -ness, -ly, and -less contain fewer 

geminates than expected. 

 The suffix -ness attaches to adjectives to form nouns, as in random � 

randomness. In order to determine how many geminates were created in words with 

this suffix, I first extracted all adjectives (i.e., potential bases) from the CELEX 

database. I removed all suffixed words56 so as to avoid complications induced by 

suffixes interacting with each other (proper names and words spelled with a space 

were also omitted), leaving a total of 1,736 adjectives. I then searched CELEX for all 

words consisting of one of these adjectives suffixed with -ness, resulting in a total of 

281 suffixed forms (e.g., roughness, vagueness, alertness). Of these 281 words, 18 

(6.4%) contain geminates (e.g., cleanness, openness). This does not differ from 

chance, although this is likely due to the small sample size. I therefore considered -

ness suffixed words that contain any tautomorphically illegal cluster (a total of 46 

words).  

 To determine the number of illegal clusters predicted by chance, I performed a 

Monte Carlo test by choosing 281 words (the number of suffixed words) at random 

from the set of 1,736 adjectives (the number of potentially suffixed words), and 

determining how many illegal clusters would be created if these words were suffixed 

                                                 
56 The morphological parsing given for each word in the CELEX database (EML.CD) was used to 
determine which words were suffixed. In addition, words ending in the orthographic strings -ing, -ed, 
and -en were removed, as CELEX does not parse out these inflectional suffixes. 
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with -ness. The results of performing this Monte Carlo test 10,000 times are given in 

(52). 

(52) Illegal consonant clusters are underrepresented in -ness suffixed words 

 

 
Illegal CC clusters in words with -ness 

(Data source: Baayen et al. 1993) 

 
As the chart shows, suffixed words with illegal clusters are underrepresented, just as 

in compounds. 

 I performed similar tests, using the same method, for adjectives suffixed with 

-ly (e.g., quickly) and nouns suffixed with -less (e.g., hopeless); in these cases larger 

numbers allowed me to consider the creation of geminates specifically, rather than all 

illegal clusters. The results of these tests are shown in (53) and (54). 

(53) Geminates are underrepresented in -ly suffixed words 

 

 
Geminates in words with -ly 

(Data source: Baayen et al. 1993) 
 
(54) Geminates are underrepresented in -less suffixed words 

 

 
Geminates in words with -less 

(Data source: Baayen et al. 1993) 
 
For these two suffixes, as with compounds, geminates are underrepresented. 
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4.2.4. Summary of English data 

 In this section I have presented evidence that geminates created by level 2 

morphology are underrepresented in the English lexicon. This is true for both 

compounds and for the suffixes -ness, -ly, and -less. Interestingly, no corresponding 

effect was found for the prefix un-, despite its being roughly as productive as the 

suffixes described above—the number of geminates in prefixed forms was at chance. 

The lack of an effect at a prefix-stem boundary may be the result of the well-known 

tendency for prefixes to be prosodically more loosely affiliated with their bases than 

suffixes (Peperkamp 1997), although more research would be required to confirm this 

hypothesis. 

 

4.3. Navajo sibilant harmony 

 All sibilants in a Navajo root must agree in their specification for the 

[anterior] feature; thus, a single root can only contain sibilants that are either all 

anterior or all posterior (Sapir and Hojier 1967, Kari 1976, McDonough 1991, 2003, 

Fountain 1998). The two sets of consonants are summarized in the chart below. 

 (55) Navajo sibilant classes 

[+anterior] [-anterior] 
s � 
z 	 

tsh t�h 
ts t� 
ts’ t�’ 
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Thus, for example, roots like /t�’o�/ ‘worm’ or /ts’ózí/ ‘slender’ are attested, but */so�/ 

is not a possible Navajo root. 

This is not only a cooccurrence restriction on roots—sibilants in affixes must 

also agree in anteriority with sibilants in the root, resulting in alternations in sibilant-

bearing affixes (Sapir and Hojier 1967). The examples in (56) demonstrate the 

alternations in prefixed forms (sibilants are in bold).  

(56) Examples of sibilant harmony (Fountain 1998)57 
 (a) /ji-s-léé�/ � [ji-�-t
éé�]   ‘it was painted’  
 (b) /ji-s-tiz/ � [ji-s-tiz]   ‘it was spun’   
 
Typically, assimilation proceeds from the root to the prefixes.  

 In compounds, however, which contain multiple roots, sibilant harmony does 

not necessarily apply, meaning that such words can contain disagreeing sibilants:58 

(57)  Exceptions to sibilant harmony in compounds (Young and Morgan 1987) 
  
 (a) t�éí- ts’iin   ‘rib cage’ 
 heart       bone 
 
 (b) tshé- t�éé�   ‘amber’ 
 stone      resin 
 
In the next section, I will show that just as English compounds may violate the 

constraint against geminates but tend not to, compounds in Navajo, although they 

may violate sibilant harmony, tend to combine roots whose sibilants already agree. 

                                                 
57 A note on transcriptions: Navajo examples are given in IPA, with acute accents marking high tones 
(low tones are unmarked). In order to accommodate accent marks, nasal vowels are indicated with a 
hook below the relevant symbol (e.g., [(] for IPA [ã]). 
58 A handful of compounds do undergo sibilant harmony, such as tsaa-nééz ‘mule’, from /t�aa/ ‘ear’ + 
/nééz/ ‘long’ (Sapir and Hojier 1967). I suspect that these words undergo harmony because they have 
been stored as single units by speakers due to their semantic opacity, but I have included them in the 
analysis in their underlying (i.e., disagreeing) form, on the assumption that the sibilants disagreed 
when the compound was originally formed.  
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4.3.1. Navajo compounds 

 The data described here are taken from Young and Morgan 1987, the largest 

existent dictionary of Navajo. From this dictionary a list of all compounds containing 

exactly two sibilants, each sibilant in a different root, was constructed, a total of 140 

words—this represents all the words that could violate sibilant harmony. The effect of 

sibilant harmony in compounds is sensitive to distance (A. Martin 2005); the data 

discussed here are thus limited to the subset of these words in which the sibilants are 

in adjacent syllables (there were no cases in which sibilants were in the same syllable, 

but different roots),59 a total of 97 words. Representative examples are given in (58) 

(roots are underlined).  

(58) Examples of compounds with two sibilants in adjacent syllables (one per root) 
 
 (a) tshee- ts’iin   ‘tailbone’ 
 tail       bone 
 

 (b) k’ii�-   �in- ii   ‘blue beech’ 
  alder  black one 
 
 (c) tshé- zéí  ‘gravel’ 
 rock crumbs 
 
 Of these 97 words, 29 (29.9%) contain disagreeing sibilants, violating the 

stem-internal phonotactic. A Monte Carlo test confirms that this is significantly below 

chance (p<0.001), as illustrated in (59). 

                                                 
59 Navajo syllables are maximally CVC. 
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(59) Disharmonic compounds are underrepresented in Navajo 

 

 
Disharmonic Navajo compounds 

(Data source: Young and Morgan 1987) 

 
Although the phonotactic constraint in Navajo is entirely different than that in English, 

both languages are the same in that the stem-internal phonotactic is obeyed, albeit 

more weakly, across morpheme boundaries. 

 The gradient harmony constraint in Navajo compounds is unlikely to be the 

result of language-independent performance factors—due to the gradient OCP effects 

discussed in chapter 3, we would expect most languages to avoid sequences of similar 

sibilants. This is the case, for example, in English; /s..�/ sequences are 

overrepresented compared to /s..s/ sequences, the opposite of the pattern seen in 

Navajo compounds (Berkley 2000). From this I conclude that the pattern in Navajo is 

learned, and should be modeled as part of Navajo speakers’ grammatical competence. 

  

4.4. Turkish vowel harmony 

 In Turkish, just as in English and Navajo, compound words are biased towards 

obeying a phonotactic that holds within stems. In the case of Turkish, the phonotactic 

is vowel harmony. Vowels in a Turkish word must agree in backness; this 

requirement can cause backness features to spread from the root onto following 
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suffixes (Lewis 1967). The chart in (60) lists the vowels of Turkish; each vowel is 

given in Turkish orthography, accompanied by the IPA equivalent in brackets. 

(60) Turkish vowel system 
Front Back 

i [i] ü [y] ı [�] u [u] 
e [e] ö []  o [o] 

  a [a]  
 
 Unlike the English and Navajo cases, the vowel harmony phonotactic in 

Turkish stems is not exceptionless; native words with disagreeing vowels like dahi 

‘also’ are attested (Clements and Sezer 1982). Harrison et al. (2002) report that fully 

25% of Turkish stems (including borrowings) are disharmonic. Despite these 

exceptions, however, the phonotactic is still somewhat productive—although 

disharmonic loanwords are tolerated, like Fr. microbe > T. mikrop, some are repaired, 

for example It. medaglia ‘medal’ > T. madalya, or Ar. mumkin ‘possible’ > T. 

mümkün (Lewis 1967). Below I will show that this phonotactic, despite its gradient 

nature, influences the formation of compounds. 

 

4.4.1. Turkish compounds 

 Noun-noun compounds in Turkish can be divided into two types—izafet 

compounds, and “single-word” constructions (Lewis 1967, Birtürk and Fong 2001). 

Izafet compounds involve a concatenation of two nouns followed by the third-person 

singular possessive suffix, as in the following examples:60 

                                                 
60 I refer here only to what are called indefinite izafet; I do not discuss definite izafet constructions, 
which involve a genitive suffix on the first member and are much closer to syntactic phrases. 
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(61) Izafet compounds61 
 
 (a) ba� + a�rı + sı � ba�a�rısı  ‘headache’ 
 head    pain     POSS 
 
 (b) balık + a� + ı � balıka�ı  ‘fishing net’ 
  fish net    POSS 
 
 (c) deniz + kız + ı � denizkızı  ‘mermaid’ 
  sea  girl    POSS 
 
Izafet compounding is highly productive and tends to be semantically transparent 

(Birtürk and Fong 2001). 

 Single-word compounds also concatenate two nouns, but lack the possessive 

suffix, as shown in (62). 

(62) Single-word compounds 
 
 (a) ba� + bakan � ba�bakan  ‘prime minister’ 
  head    minister 
 
 (b) orta + okul � ortaokul  ‘middle school’ 
  middle  school 
 
 (c) ön + ayak � önayak  ‘pioneer’ 
  front   foot 
 
Single-word compounding is not productive, according to Birtürk and Fong (2001), 

and single-word compounds often have non-compositional meaning. Note also that 

vowel harmony does not apply within compounds; in (62c), front and back vowels are 

permitted to coexist in the same word.  

 I compiled a list of single-word compounds by the following procedure: I 

began with a list of nouns taken from a large machine-readable list of Turkish words 

originally designed for use by spell-checking software (Solak and Oflazer 1993). I 
                                                 
61 Turkish words are given in native orthography; �ı� represents a back high unrounded vowel (IPA 
[�]), and �ö� and �ü� front rounded vowels (IPA [] and [y] respectively). 
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then extracted all potential noun-noun compounds from this list; that is, all words that 

could be parsed as a concatenation of two other nouns. I then looked up each potential 

compound in the Oxford Turkish-English dictionary (Hony and �z 1992) to determine 

whether it was in fact a compound (the dictionary uses a diacritic to represent 

compound boundaries). This resulted in a total of 326 compounds.  

 Because some of the stems used in the compounds are disaharmonic, I 

examined only the final vowel of the first member and the initial vowel of the second 

member, on the assumption that any phonotactic effect would be strongest in the 

closest pair of vowels. Out of the 326 compounds, only 130 (39.9%) violate the 

harmony constraint across the boundary. The chart in (63) shows that this is 

significantly below chance (p<.001).  

(63) Disharmonic stems are underrepresented in Turkish single-word compounds 

 

 
Disharmonic single-word compounds 

(Data sources: Solak and Oflazer 1993, Hony and �z 1992) 

 
Thus, despite the fact that the stem-internal vowel harmony phonotactic is itself 

gradient in Turkish, speakers prefer not to violate it when forming compounds 

(although the effect is weaker across morpheme boundaries). 

 A different pattern is found in the more productive izafet compounding 

process. The chart in (64) shows that in a list of 1,121 izafet compounds (taken from 

Solak and Oflazer’s (1993) spell-checking word list), disharmonic compounds are 

overrepresented. 
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(64) Disharmonic stems are overrepresented in Turkish izafet compounds 

 

 
Disharmonic izafet compounds 

(Data source: Solak and Oflazer 1993) 

 
It is not surprising that izafet compounds fail to exhibit the same pattern of 

disharmony avoidance as single-word compounds—given that izafet compounding is 

highly productive and semantically transparent, such compounds are unlikely to be 

stored in the lexicon. Single-word compounds may, in fact, be izafet compounds that 

have been lexicalized over time, losing their possessive marker and semantic 

transparency. This would explain the overrepresentation of disharmonic vowel 

sequences in current izafet compounds, if we think of the space of possible 

compounds as being divided between the two compound types.62 Because 

disharmonic stem combinations tend not to be lexicalized as single-word compounds, 

speakers wishing to express these combinations must form izafet compounds, leading 

to the overrepresentation of these compounds in corpus data. 

 

4.5. Discussion 

 The phonotactics in English, Navajo, and Turkish discussed above all obey 

the same generalization: some phonotactic constraint holds within morphemes, and a 

                                                 
62 This assumes that there is a blocking effect; i.e., speakers do not tend to form a izafet compound 
from two stems if there is already an available single-word compound formed from the same stems. 
This seems plausible, and is supported in my data by the fact that there is no overlap between the two 
lists—no combination of stems appears in both the single-word and izafet lists.  
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weaker version of the same constraint holds across morpheme boundaries. Morpheme 

boundaries, in other words, are like semi-permeable membranes: they license 

violations of phonotactic constraints, but only up to a point. In terms of the model 

developed so far in this dissertation, this means that complex words that obey stem-

internal phonotactics have more of an advantage in competitions with rival synonyms 

than words that violate phonotactics.  

 One way to model the English case that will not work would be to posit 

individual nodes that represent consonant clusters—the lexical node for carpool, for 

example, would be connected to the node for /rp/, while carp pool would be linked 

additionally to the /pp/ node. The tautomorphemically legal /rp/ node, because it is 

connected to lexical nodes for both monomorphemes and multimorphemic words, 

will be connected to more words than the node for illegal /pp/. Words containing /rp/ 

will thus receive more feedback from that node than words containing /pp/. 

 This simple extension of the model, however, will not work, because carp 

pool contains both /rp/ and /pp/—it contains a superset of the consonant clusters 

present in carpool, and so in a spreading activation model should always receive 

more activation, and thus be fitter, than carpool. This is shown in (65), in which the 

amount of feedback sent from the cluster nodes to the lexical nodes is represented by 

numbers next to the dashed arcs; in this example, /pp/ sends back a smaller amount of 

activation because of the fewer words it is connected to. 
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(65) Network with consonant cluster nodes 

 

If a node’s activation is simply the sum of all inputs, carp pool (with 15 units of 

incoming activation) should have an advantage over carpool (10 units).  

 To avoid this problem, we could change how activation spreads in the model. 

If, for example, a node’s activation is determined by averaging the activations from 

neighboring nodes, instead of summing them, then a low-probability consonant 

cluster (i.e., a node connected to few words) could penalize a word containing it by 

lowering the average incoming activation to that word’s lexical node. In the example 

in (65), carp pool has an average incoming activation of 7.5 (the average of 10 and 5), 

while carpool has an average of 10. 

 This model has at least two major problems. First, it would not be able to 

account for the ill-formedness of monomorphemes with geminates. The hypothetical 

monomorphemic word carppool, with a geminate /p/, would receive just as much 

activation as the compound carppool. In reality, it is extremely unlikely that native 

English speakers would accept carppool as a word unless it were parsed into two 

units, carp and pool. The system simply cannot encode the effects of morphology on 

phonotactics.  

�carpool� �carp pool� 
 

rp pp 

10 

10 

5 
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 We could attempt to get around this by augmenting the nodes to refer to 

morpheme boundaries. In this model, carp pool would be linked to an /rp/ node and a 

/p+p/ node, and monomorpheme carppool would only be linked to an /rp/ node—

there would be no /pp/ node due to the absence of words containing this sequence 

morpheme-internally. If a node’s activation is determined by averaging its inputs, 

however, this would predict that carppool, with the morpheme-internal geminate, 

would have higher fitness than carp pool. The only way to get this model to work 

would be to posit a /pp/ node with negative weight, which strongly inhibited words 

containing this sequence. It is unclear, however, why the system responsible for 

speech planning would require nodes for nonattested sequences, and I am aware of no 

independent evidence (from speech errors, for example) for the existence of such 

nodes in the speech production system. 

 The second problem involves the nature of the representations encoded by the 

nodes at the phonological level. In the Navajo and Turkish cases, the network would 

need nodes for very abstract properties: nodes representing whether two sibilants in 

the same word agree or not in Navajo and similar nodes for vowel backness 

agreement in Turkish. Even ignoring the objection that the speech production system 

would derive no obvious benefit from encoding abstract, long-distance relationships 

like this, there is simply no evidence from speech errors that the system makes use of 

such nodes.  

 These generalizations, then, must be encoded somewhere outside of the 

system responsible for directly planning and encoding speech. The obvious location 
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for these generalizations is a grammar, a mechanism which stores generalizations 

extracted from the lexicon during the course of language learning. The grammar in 

turn influences competitions among lexical items. In the remainder of this chapter, I 

will describe a phonotactic learner that constructs such grammars, and argue that the 

phonotactic effects in English, Navajo, and Turkish are the result of a tension in this 

learner between pressures for simplicity and accuracy. 

 

4.6. The phonotactic learner 

 As befits one of the core topics of phonological theory, there is an extensive 

literature on the learning of phonotactic generalizations, accompanied by a wide 

range of proposed learning algorithms (e.g., Boersma 1997, Prince and Tesar 1999, 

Hayes 2000, Pater 2005, Heinz 2007, Pater et al. 2007). Because of the gradient 

nature of the phonotactic preference in complex words, I will be concerned here with 

the subset of possible learning algorithms that can learn statistical generalizations. 

The goal will be to construct a learner which, when given a list of words as input, 

outputs a grammar which assigns probabilities to all possible words based on the 

properties of the input data. In the case of English,63 we want the final grammar to 

assign very low probabilities to words containing stem-internal geminates, high 

probabilities to words containing only legal clusters, and intermediate probabilities to 

words containing geminates across morpheme boundaries.  

                                                 
63 Throughout the rest of the chapter, I will use the English case to illustrate how the theory works; the 
Navajo and Turkish cases can be assumed to be analyzable in the same way. 
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 Some learners of this type generalize beyond the training data by directly 

assigning probabilities not to whole words, but to subparts of words. The grammar 

can then compute the probabilities to completely novel words, as long as they are 

composed of subparts that are attested in the training data, by computing the joint 

probability of their subparts. Words containing high-frequency subparts will be rated 

as more probable than words containing low-frequency subparts. Where these 

learners differ is in how they analyze words into subparts—whether frequencies are 

computed over phonemes, strings of phonemes, syllables, bundles of features, or 

some combination of these. 

 The simplest possible learner of this type is an n-gram learner. This class of 

learners, when presented with data in the form of strings of symbols, simply tabulates 

the frequency of each substring of length n that occurs in the data (Jurasfky and 

Martin 2000). A novel word is given a probability equivalent to the joint probability 

of all of its n-grams. A unigram learner over phonemes, for example, would simply 

count the frequency of all the phonemes in the training data—the word /kabe/ would 

have a probability P(/kabe/) equal to P(/k/) × P(/a/) × P(/b/) × P(/e/). A bigram learner 

would assign the same word a probability P(/kabe/) = P(/#k/) × P(/ka/) × P(/ab/) × 

P(/be/) × P(/e#/).  

 Could an n-gram learner learn the English phonotactics? Let us consider how 

such a learner would handle a simple, toy language designed to emulate the English 

facts. This language, which I will call the p-t language, has only two segments, [p] 

and [t]. All words in this language consist of a string of two segments which may or 
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may not have an intervening morpheme boundary (indicated by a “+”). All of the 

logically possible words in this language are listed in (66). 

(66) Logically possible words in the p-t language 
 pt tp pp tt 
 p+t t+p p+p t+t 
 
“Words” without a morpheme boundary are considered to be morpheme-internal 

clusters (words written without the “+” symbol therefore do not contain a boundary). 

Because this language is designed to resemble English, I will stipulate that the words 

pp and tt are unattested in this language. The set of actual words in the p-t language 

is given in (67). 

(67) Attested words in the p-t language 
 pt tp 
 p+t t+p p+p t+t 
 
 Let us now construct a lexicon for the p-t language. The first lexicon I 

consider will resemble English in that “compounds” with geminates are legal, but 

underrepresented—I will call this the biased lexicon. Because of the small number of 

possible words, I will represent type frequencies as token frequencies—if the lexicon 

contains 2,000 tokens of pt, it should be interpreted to mean that there are 2,000 

words with morpheme-internal non-geminate clusters, not that there are 2,000 tokens 

of the same word (another way to think of it is that the data described here consists 

only of the word-medial consonant clusters taken from all the words in the lexicon). 

The structure of the biased lexicon is shown in (68). 
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(68) Biased lexicon for p-t language 

Word Type Number 
pt monomorpheme 1,000 
tp monomorpheme 1,000 
pp monomorpheme 0 
tt monomorpheme 0 
p+t compound 1,000 
t+p compound 1,000 
p+p compound 800 
t+t compound 800 

 
The frequencies have been chosen to very roughly mirror the three-way 

wellformedness distinction apparent in the English lexicon: compounds without 

geminates are more frequent than compounds with geminates, which are much more 

frequent than monomorphemes with geminates. 

 A trigram learner confronted with this lexicon (assuming the morpheme 

boundary is simply treated as a symbol) would assign frequencies commensurate with 

the frequencies in (68), and would assign probabilities to all eight logically possible 

words as in (69). 

(69) Probabilities assigned to biased lexicon 

Word Type P(word) 
pt monomorpheme 0.18 
tp monomorpheme 0.18 
pp monomorpheme 0.00 
tt monomorpheme 0.00 
p+t compound 0.18 
t+p compound 0.18 
p+p compound 0.14 
t+t compound 0.14 

 

This simple statistical learner, not surprisingly, correctly learns the pattern in the 

lexicon. If we assume that these probabilities bias lexical competitions, then 
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compounds with geminates will be less fit than those with legal clusters, and the 

result will be an underrepresentation of geminates in the lexicon. 

 The problem with this learner as a model of what humans do is that it is too 

good at tracking frequencies. As I showed above, a simple trigram learner can learn a 

lexical bias against geminates, but it could learn the lack of a bias just as well. The 

chart in (70) shows that if the lexicon is unbiased with respect to heteromorphemic 

geminates, the resultant grammar will also be unbiased. 

(70) Probabilities assigned to unbiased lexicon 

Word Type Number P(word) 
pt monomorpheme 1,000 0.167 
tp monomorpheme 1,000 0.167 
pp monomorpheme 0 0.00 
tt monomorpheme 0 0.00 
p+t compound 1,000 0.167 
t+p compound 1,000 0.167 
p+p compound 1,000 0.167 
t+t compound 1,000 0.167 

 
If the learner is able to learn any kind of lexicon, why do actual lexicons tend to be 

biased? This simple learner fail to explain the apparent connection between 

tautomorphemic and heteromorphemic phonotactics observed in the English, Navajo, 

and Turkish cases. Some additional mechanism would have to be invoked to account 

for the fact that weaker versions of stem-internal phonotactics occur 

heteromorphemically. 

This is because the learner computes tautomorphemic and heteromorphemic 

phonotactics independently. As far as the trigram learner is concerned, a pp sequence 

and a p+p sequence are entirely unrelated; a given cluster can only be counted as one 
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or the other, not both. I will call generalizations like these, which take morphological 

structure into account, structure-sensitive. In order to model the correlation between 

the two, I will argue that learners also form structure-blind generalizations, which 

ignore morphological structure. If, for example, the learner were to compare the 

frequencies of p(+)t and p(+)p (i.e., clusters regardless of whether they have an 

intervening boundary), it would find that geminates are less frequent than non-

geminate clusters, even in an unbiased lexicon, simply as a result of the fact that 

geminates cannot occur within morphemes (see (71)). 

(71) Structure-sensitive vs. structure-blind frequency counts: unbiased lexicon 

 Word Number 
pt 1,000 
tp 1,000 
pp 0 
tt 0 
p+t 1,000 
t+p 1,000 
p+p 1,000 

st
ru

ct
ur

e-
se

ns
iti

ve
 

t+t 1,000 
p(+)t 2,000 
t(+)p 2,000 
p(+)p 1,000 

st
ru

ct
ur

e-
bl

in
d 

t(+)t 1,000 
 
  The learner I will propose makes use of both types of generalization, 

combining them in a single grammar. Because the probabilities of structure-blind and 

structure-sensitive sequences are not independent, however, the grammar cannot 

simply multiply the probabilities of a word’s sequences to obtain the probability of 

the word. In order to deal with the probabilities of overlapping categories, a more 

apparent bias if morphological 
structure is ignored 
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sophisticated mathematical approach is required. In the next section I show that the 

Maximum Entropy framework will allow us to combine structure-blind and structure-

sensitive generalizations, and that with a grammar of this type, the phonotactic biases 

described in English, Navajo, and Turkish emerge as a natural consequence, even 

from a beginning state with no such bias.  

 

4.7. Maximum Entropy 

 The Maximum Entropy (“maxent”) formalism has long been a staple of the 

machine learning literature, and has recently been applied to problems of 

phonological learning (Berger et al. 1996, Della Pietra et al. 1997, Goldwater and 

Johnson 2003, Jäger 2004, Wilson 2006, Hayes and Wilson to appear). A maxent 

learning algorithm learns a probability distribution over the members of some set 

given a sample drawn from that distribution. Crucially for our purposes, the algorithm 

has a principled way of calculating probabilities involving overlapping categories. 

 A maxent grammar consists of a set of numerically weighted constraints. 

These constraints ban structures in the output (e.g., *pp “no geminates within a 

morpheme”), and are equivalent to the markedness constraints used in Optimality 

Theory (Prince and Smolensky 1993/2004). The grammar defines a probability 

distribution over constraint violations, so that the set of constraints determines the 

units whose frequency is counted—if the algorithm is given only constraints against 

n-grams, for example, it will behave as an n-gram learner. 
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 Each constraint has a weight, represented by a nonzero real number, which 

represents the “strength” of the relevant constraint. The set of constraints and their 

weights (which together constitute the grammar) determine a probability for every 

possible candidate output, which is a function of the set of constraints violated by the 

output and their weights. Specifically, a word’s probability is a function of its score64 

�, which is calculated by simply summing the (weight × number of violations) for 

every constraint in the grammar, as shown in (72).  

(72) Definition of score 
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where 
 M: number of constraints 
 w1, w2,…, wM: constraint weights 
 x: representation of candidate 
 Ci (x): number of violations assigned to x by constraint Ci 

For a grammar with three constraints, C1 (weight 1.0), C2 (weight 2.0), and C3 

(weight 3.0), an output form x violating C1 twice and C3 once would be assigned a 

score of �(x) = (1.0 × 2) + (2.0 × 0) + (3.0 × 1) = 2.0 + 0 + 3.0 = 5.0. 

 A word’s probability is an exponential function of its score; it is given by the 

equation in (73), where Z is a normalizing term defined as the sum of e-�(x) for all 

possible words.  

(73) Determining candidate probability 
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64 This terminology, as well as the specific implementation of the maximum entropy learning algorithm 
discussed here, is taken from Hayes and Wilson (to appear). 
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Throughout the rest of this chapter, because I will be comparing words for which the 

denominator in (73) is the same, I will simply refer to the value of the numerator, 

which Hayes and Wilson (to appear) call the maxent harmony (h(x) = e-�(x)), rather 

than the actual probability of a given word. This value represents the share of the total 

probability apportioned to a given word. 

 Given a set of constraints and a set of training data, the learning algorithm 

adjusts the constraint weights so as to maximize the probability of the data—the 

algorithm thus represents an example of maximum likelihood learning. The 

probability of the data is calculated by simply multiplying the probabilities of all of 

the words in the data to arrive at their joint probability. The learner maximizes the log 

of this probability, which is equivalently stated as the sum of the log probabilities of 

each word, as in (74). 

(74) Probability of training data 

 �
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If the algorithm is simply asked to maximize this function, however, there is a 

danger of overfitting the data. Because the learner is given a finite sample of data 

drawn from an infinite language, a pure maximum likelihood learner will tend to 

overestimate the probability of items that are in the sample, and underestimate the 

probability of items that didn’t happen to occur in the sample (many low-probability 

items, for example, will not occur and thus be assigned probabilities of zero). In other 

words, the probability distribution learned from finite sample will be too strongly 

skewed in the direction of the observed data.  
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 The standard way to avoid overfitting is to introduce a smoothing term into 

the learning function (S.C. Martin et al. 1999). The smoothing term penalizes skewed 

distributions and causes the learner to favor more uniform distributions, which 

ameliorates the tendency to overfit. Many smoothing methods have been developed 

for maxent learning algorithms; I will use a Gaussian prior over the constraint 

weights (see Chen and Rosenfeld 2000 for arguments in favor of this smoothing 

technique compared to others). The prior term is subtracted from the likelihood term, 

resulting in the learning function in (75). 

(75) Maxent learning function 
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 The Gaussian prior assesses a penalty for constraint weights that deviate from 

their ideal weights, represented by �j. In the implementation of the algorithm I will 

use, � is set to zero for all constraints, so that the prior penalizes any nonzero weight, 

with the size of the penalty increasing with the square of the weight. This pressure 

towards low constraint weights translates in a bias against highly skewed 

distributions—because the prior term increases with the square of each constraint 

weight, it prefers grammars with many low-weighted constraints over grammars with 

a few high-weighted constraints. This means that if multiple constraints are each 

capable of explaining a given property of the data, the learner will assign all of the 

constraints low weights rather than choose one and assign it a high weight. This 

property of the prior will prove crucial in modeling the English, Navajo, and Turkish 

data. 
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 The learning function thus embodies a trade-off between a pressure to model 

the data as accurately as possible (the likelihood term) and a pressure to have as 

simple (i.e., uniform) a grammar as possible. The value of the free parameter �2 

determines the relative importance of each of these factors. As we will see in the next 

section, modeling the connection between tautomorphemic and heteromorphemic 

phonotactics will rely crucially on this trade-off. 

 

4.8. Testing the maxent learner on the p-t language 

 The phonotactic “leakage” seen in English, Navajo, and Turkish can be 

modeled as the effects of two crucial components: the existence of structure-blind 

constraints in the grammar, and a bias against high constraint weights (represented in 

the maxent learner as a Gaussian prior). Below I will first show that given these two 

components, the maxent learner learns a bias against violating stem-internal 

phonotactics even from an unbiased lexicon. Then I will demonstrate that both 

components are necessary by showing that the learner fails to learn a bias in the 

absence of either. 

 The training data I will use for all the demonstrations of the learner is given in 

(76). The numbers of each word type were chosen so that there would be an equal 

number of monomorphemes and compounds, and an equal number of compounds 

with geminates and compounds without geminates. 
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(76) Training data (unbiased) 

Cluster Structure Number of 
examples 

pt monomorpheme 2,000 
tp monomorpheme 2,000 
p+t compound 1,000 
t+p compound 1,000 
p+p compound 1,000 
t+t compound 1,000 

 
The constraints the learner will start with are given in (77). Note that a plus sign in 

parentheses indicates an optional morpheme boundary, while the absence of a plus 

sign (as in *pp) indicates that no morpheme boundary intervenes between the 

consonants. 

(77) Constraints 

Structure-blind 
*p(+)p no geminates  
*t(+)p no non-geminate consonant clusters 

  
Structure-sensitive 

*pp no geminates within a morpheme 
*tp no non-geminate consonant clusters within a morpheme 

  
*p+p no geminates across a morpheme boundary 
*t+p no non-geminate clusters across a morpheme boundary 

 
 When the maxent learning algorithm (with the smoothing term) is given these 

constraints, and exposed to the data in (76), it arrives at the grammar in (78). 
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(78) Final grammar, all constraints 

Constraint Weight 

*p(+)p 0.04 
*t(+)p 0.00 

*pp 4.01 
*tp 0.13 

*p+p 0.00 
*t+p 0.00 

 
The algorithm assigns a high weight to *pp, which is unsurprising due to the lack of 

pp sequences in the training data. More surprising is the fact that *p(+)p also receives 

a small but nonzero weight. This is the effect of the prior term in the learning function, 

which is optimized by making the distribution of weights as uniform as possible. 

Assigning a weight to *p(+)p lowers the probability of pp sequences, which allows 

the weight on *pp to be lower. The price of this more uniform distribution is accuracy 

in modeling the data—the weight on *p(+)p also lowers the probability of p+p 

sequences.65 

 The table in (79) shows that compounds with geminates (p+p) are evaluated 

as less probable (i.e., have a lower maxent harmony) than compounds without 

geminates (t+p). 

                                                 
65 Note that the learner also assigns a nonzero weight to *tp, despite such words being plentiful in the 
training data. This is a byproduct of the simplified nature of the example—the software that 
implements the learning algorithm is designed to expect words up to a maximum length equal to the 
longest word encountered in the training data. Because words of length 3 are encountered (e.g., t+p; 
the morpheme boundary is counted as a symbol), the learner expects to see all possible words of this 
length, including words like tpt or ppp. Since these words do not occur, the learner slightly increases 
the weights on both *pp and *tp (the weight on *tp cannot be increased very much, because words like 
tp are attested). Because this is an artifact of the way the algorithm has been implemented, and not a 
fundamental property of the algorithm itself, the weight given to *tp can be safely ignored. 
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(79) Example outputs as evaluated by grammar, all constraints 

 constraints   
x 

(potential output) 
*pp 

(w 4.01) 
*tp 

(w 0.13) 
*p(+)p 
(w 0.03) 

*t(+)p 
(w 0) 

�(x) 
(score) 

h(x) 
(maxent harmony) 

(a) pp 4.01  0.03  4.04 0.02 
(b) tp  0.13  0 0.13 0.87 
(c) p+p   0.03  0.04 0.96 
(d) t+p    0 0 1.00 

 
 This bias against compounds with geminates disappears if the structure-blind 

constraints are removed from the constraint set, and the learner constructs a grammar 

using only structure-sensitive constraints when given the same training data. The 

results of this structure-sensitive-only learning are shown in (80). 

(80) Final grammar, structure-sensitive constraints only 

Constraint Weight 

*pp 4.02 
*tp 0.13 

*p+p 0.00 
*t+p 0.00 

 
Note that the weight for *pp is 4.02, as compared to the weight of 4.01 that was 

assigned to the same constraint by the learner using the structure-blind constraints. 

This shows that a constraint’s weight is dependent not just on the properties of the 

data, but on the other constraints that are present in the grammar. In this case, *pp 

gets a higher weight when there is no other constraint that could also explain the 

absence of pp in the data. When the structure-blind constraints are included in the 

grammar, this generalization is split between two constraints, *pp and *p(+)p, which 

allows the weight on *pp to be slightly lower. 
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 The table in (81) shows that when the structure-blind constraints are removed, 

the grammar learned by the algorithm evaluates compounds with and without 

geminates as equally probable.  

(81) Example outputs as evaluated by grammar, structure-sensitive constraints only 

 constraints   
x 

(potential output) 
*pp 

(w 4.02) 
*tp 

(w 0.12) 
*p+p 
(w 0) 

*t+p 
(w 0) 

�(x) 
(score) 

h(x) 
(maxent harmony) 

(a) pp 4.02    4.02 0.02 
(b) tp  0.12   0.12 0.89 
(c) p+p   0  0 1.00 
(d) t+p    0 0 1.00 

 
 The bias also disappears if the structure-blind constraints are included, but the 

�
2 parameter is increased, making the prior less important. The graph in (82) shows 

how the predicted ratio of geminates to non-geminates in compounds changes as a 

function of �2. This chart represents grammars containing both structure-sensitive and 

structure-blind constraints. 

(82) Effect of �2 on geminate ratio in compounds 
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For very low values of �2, the prior is so strong that the weights of all the structure-

blind constraints are forced to zero, and no bias is apparent; when �2 is very high, the 

prior is essentially turned off, and again the learner has no bias against geminates in 

compounds. For values in the middle, however, the prior is strong enough to put 

weights onto the structure-blind constraints against geminates, but not so strong that 

the distribution of weights is completely flat, and the result is a bias against geminates 

in compounds. Crucially, for no value of �2 is there a reverse bias in which geminates 

are preferred to non-geminates. 

 For human learners, of course, the value of �2 has presumably been set by 

natural selection. Values that are too low would result in learners that are incapable of 

learning, and simply prefer a uniform distribution no matter what the data looks like. 

Values that are too high would result in overfitting, and a failure to generalize beyond 

the specific data the learner is exposed to. It is likely that the human phonotactic 

learner represents an optimal compromise between these two extremes—a learner that 

can generalize, but is still able to acquire language-specific patterns. The cost of this 

compromise is a learner for whom phonotactics in different domains are entangled 

rather than independent. 

 

 I have shown that if structure-blind constraints are present, the learner will 

automatically be biased against sequences that do not occur within morphemes. But 

why would speakers make use of structure-blind constraints? One possibility is that 

learners come with an innate bias for simpler constraints. Just as the Gaussian prior 
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causes the learner to prefer simpler grammars, this bias could cause learners to posit 

constraints that are maximally simple, even if those constraints lead to a less accurate 

characterization of the data. 

 Another possible explanation is that structure-blind constraints represent a 

holdover from an early stage of phonotactic learning. There is substantial evidence 

for the fact that children learn a fair amount about the phonotactic patterns in their 

language before they are able to parse the speech stream into morphemes or even 

words (Peters 1983, Jusczyk 1997). Generalizations formed at this stage are by 

necessity structure-blind, and may themselves be used to discover morphological 

structure. Of course, once they master morphology, children are able to construct 

structure-sensitive constraints, but it is plausible that the structure-blind constraints 

they used at the earlier stage remain in the grammar, and make their presence felt, in 

the form of phonotactic preferences, into adulthood. 

 

4.9. The nature of the learning bias 

 I have shown that given an unbiased lexicon, the maxent learner, equipped 

with a bias against constraint weights and structure-blind constraints, automatically 

learns a bias against complex words that violate stem-internal phonotactics. In this 

section I look at how the learner performs on biased lexicons—if geminates are 

overrepresented in compounds, for example, will the learner still construct a grammar 

that is biased against them? 
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 The graph in (83) compares the learner with structure-blind constraints to the 

learner with only structure-sensitive constraints on a range of training data. In each 

case, the number of compounds in the data was held constant at 4,000, but the ratio of 

geminates to non-geminates in compounds was varied from all geminates to all non-

geminates. The x-axis in (83) represents the percentage of compounds that contained 

geminates; for example, the 30% geminates data set consisted of 1,200 compounds 

with geminates and 2,800 compounds without geminates (all of the training data sets 

included 4,000 monomorphemes, none of which contained geminates). The y-axis 

represents the ratio of geminates predicted by the final grammar. For comparison, a 

hypothetical perfectly accurate learner that always predicts the exact ratio of 

geminates that is present in the training data is represented by the thin line that passes 

through the origin. 
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(83) The learning bias with different lexicons66 
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 The graph reveals that when only structure-sensitive constraints are used (the 

black line), the only learning bias is the one introduced by the prior. It produces a 

predicted ratio that is closer to uniform than is supported by the data—in other words, 

it underpredicts the number of words of whichever type is overrepresented in the data. 

The learner that also incorporates structure-blind constraints (the gray line) also has 

this bias, but also has a slight additional bias towards underrepresenting geminates. 

 The bias towards extending stem-internal phonotactics to apply across 

morpheme boundaries is therefore a “soft” bias—the learner can acquire a grammar 

with the opposite bias, if given data that is sufficiently biased in that way, but ceteris 

paribus it will prefer grammars that underpredict the number of words that violate 

stem phonotactics. 
                                                 
66 The free parameter �2 is set to 0.01 for the learning depicted in this chart, so that the differences 
between the two learners are large enough to be clearly visible. Larger values of �2 result in differences 
that are quantitatively smaller but qualitatively identical (until �2 gets very large, at which point the 
learners behave identically). 

structure-sensitive 
constraints only 

all constraints 
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4.10. Consequences for the model 

 What does this mean for my model of phonotactic preferences? The output of 

the phonotactic grammar could be used to influence a word’s fitness by simply 

making each lexical node’s weight (which, recall, acts as a multiplier of any incoming 

activation) partially a function of the probability output by the grammar for the word 

represented by that node, in addition to other factors such as token frequency or 

sociolinguistic associations. Words with higher probabilities, like compounds without 

geminates, would overall be more successful than words with lower probabilities, like 

compounds with geminates. 

 In terms of historical change, this means that if learners are using structure-

blind constraints, a lexicon with no bias in compounds will not be stable. Such 

learners would prefer compounds without geminates (to use English as an example), 

and over time compounds with geminates would come to be underrepresented. As I 

showed in chapter 1, the eventual stable ratio of geminates to non-geminates that the 

system settles on is a function of how large a role phonotactics play in lexical 

selection as compared to other factors—the more emphasis speakers put on 

phonotactics, the more the lexicon will be dominated by the fittest forms. 
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5. Conclusion 

5.1. Summary of findings 

 In this dissertation I have striven to paint a picture of the lexicon that is more 

nuanced than the traditional view that sees the lexicon as little more than a “trash 

heap”—a repository of unpredictable facts that the language learner has no choice but 

to simply memorize. The lexicon is the result of unconscious choices made by 

generations of speakers and listeners, and to the extent that these choices are biased, 

the lexicon itself will be biased. I have argued that these biases, which I call 

phonotactic preferences, can and do skew the lexicon through the adoption or 

retention of words, even in the absence of sound change. 

 In chapter 2, I presented evidence to support Boersma’s (1998) conjecture that 

phonotactic preferences can be based on articulatory ease. In early Latin, a sound 

change turned a highly marked Proto-Indo-European sound (possibly /p’/) into the 

less-marked /b/, resulting in a cross-linguistically unusual distribution in which /b/ 

was less frequent than /d/. Over time, words beginning with /b/ were more likely to be 

formed and retained, resulting in /b/-initial words eventually coming to outnumber 

/d/-initial words in the modern Romance languages. This demonstrates both that 

sound change is not the only mechanism that shapes the phonological makeup of the 

lexicon, and that phonotactic preferences can be driven by factors such as articulatory 

ease, and not solely by a language’s current lexical statistics. 

 In chapter 3, I showed that a long-distance consonant cooccurrence restriction 

in English also acts to bias the creation and survival of words. English words 
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containing two identical liquids, such as rare or lull, are underrepresented when 

compared to words with different liquids, such as lair or real. Using data on novel 

words in the Oxford English Dictionary and trends in American baby names, I 

showed that this represents a true phonotactic preference (as opposed to diachronic 

sound change or a phonological process of dissimilation), and argued that this 

preference is motivated by an avoidance of sequences that are difficult to process. 

 Finally, in chapter 4 I demonstrated that tautomorphemic phonotactic 

restrictions are accompanied by weaker, gradient versions of the same restrictions that 

hold across morpheme boundaries, using data from the unrelated languages English, 

Navajo, and Turkish. In Navajo, for example, sibilants that are separated by a 

morpheme boundary in compounds gradiently obey a sibilant harmony constraint that 

holds categorically within stems. I presented a phonotactic learning algorithm from 

which these effects follow—learners overgeneralize due to a pressure to learn the 

simplest possible grammar. 

 

5.2. Summary of the model 

 To account for the existence and nature of phonotactic preferences, I have 

proposed a model of speech production in which lexical items compete with 

synonymous items to be produced—the result over time is a lexicon largely 

consisting of words whose properties make them good at winning these competitions. 

The model draws on existing proposals that the speech production system consists of 

a network of nodes, representing concepts, lexemes, and pieces of phonological 
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structure, in which activation spreads among connected nodes, allowing concepts to 

activate appropriate words, which in turn activate their constituent phonemes. In this 

model, competitions among lexical items can be interpreted as a race to become 

activated most quickly, with the first lexeme to reach a critical threshold selected and 

eventually produced as part of the intended utterance. 

 Extensive evidence from speech errors and experimental data indicates that 

the production network incorporates feedback from lower to higher levels (e.g., from 

phonemes to lexical lemmas), meaning that these competitions may be biased by a 

word’s phonological properties—phonemes, for example, that become activated more 

quickly than others will boost the activation of words containing those phonemes, 

giving them an advantage over words containing “slower” phonemes. 

 Although I have referred to competitions among words throughout this 

dissertation, there is no need to limit the theory to individual words, or even 

individual lexical items. In the process of attempting to construct an utterance that 

communicates the speaker’s intended message, the production system may well 

generate a wide variety of words, phrases, and clauses, all of which compete to be 

part of the final utterance. In such a system, a word may compete with a phrase to 

express the same concept. If the phrase wins often enough, for enough speakers, the 

word will fall out of use, and the concept will thenceforth be expressed 

periphrastically. When the opposite occurs (i.e., a word coming to replace a phrase), 

the result will be the birth of a new word, as what was once described periphrastically 

is now expressed with a single lexical item. Extending the model in this way could 
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explain how lexical biases develop even if it turns out that competitions among 

individual synonymous words are relatively rare. 

 Another potential source of bias that I have not mentioned is the process by 

which new words (or larger linguistic structures) are created. It is clear how existing 

words compete—they already have lexical entries which are integrated into the 

network. But where do truly novel words (or phrases) come from? I have treated this 

generation process as akin to mutation in biological evolution, a neutral source of 

variation on which natural selection works. However, in the case of language it is 

possible that the formation of new lexical entries is itself biased. A complete theory 

of phonotactic preferences will have to take these biases into consideration, and 

determine how they differ from the biases introduced by competition. 

  

5.3. Directions for future research 

 As I pointed out in chapter 1, the study of how lexical statistics change over 

time has played almost no role in modern linguistic theory. Because of this, a single 

dissertation cannot hope to answer, or even address, all of the many questions raised 

by the topic. This chapter discusses some of the remaining issues and problems, and 

how they could be further explored. 

 

5.3.1. Data collection 

 The first step in pursuing a complete theory of phonotactic preferences 

involves increasing the amount of available data. The great majority of the data used 
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in this dissertation comes from a small subset of the world’s languages. In order to do 

the kind of detailed statistical analyses that are required to test my theory, large, 

annotated dictionaries and corpora are necessary. Unfortunately, such resources 

currently exist for only a small handful of languages, most of them European.  

 Before a serious theory of the diachrony and typology of lexical statistics can 

be begun, therefore, more data must be collected and collated, with an emphasis on 

providing coverage of a wide range of unrelated languages. This will of course 

require collaboration on a large scale, but it is the only way progress can be made on 

the study of lexical statistics from a typological and historical perspective. 

 

5.3.2. Correlations between historical change and processing ease 

 The thesis I have argued for here makes novel predictions concerning 

correlations between historical lexical change and the effects of phonotactic 

properties on processing tasks. For example, I claim that the lexicon is shaped by the 

accumulation of many competitions among synonyms, and that these competitions 

take the form of a race during speech production, in which lexical entries that are 

accessed and encoded quickly have an advantage. From this it follows that sounds 

that are historically favored should be those that contribute to faster lexical access, 

which can be measured by means of speech error data or reaction times in 

experimental production tasks.  

 This means that, for example, words containing marked sounds should be 

more prone to lexical substitution speech errors (i.e., those in which an entire word is 
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replaced with another word, as in detector � protector), and should tend to be 

replaced by words containing less marked sounds. Apart from Harley and 

MacAndrew’s (2001) finding that longer words are more likely to undergo a 

substitution error, I know of no data in the existing literature that bears on this 

prediction. Studies using speech error corpora or experimental error elicitation 

techniques could test predictions like this, and the results could be compared to the 

statistical patterns that are stable across languages or across time within a language. 

 

5.3.3. Experimental tests of phonotactic preferences 

 The evidence I have presented for the existence of phonotactic preferences has 

been limited to data from lexical statistics. This kind of evidence is not only indirect, 

but relies on dictionaries and corpora, which are at best approximations of the actual 

lexicons internalized by an entire population of speakers. The theory would receive 

stronger support if phonotactic preferences could be demonstrated experimentally. 

 Such an experiment could take the form of an artificial language learning task. 

Subjects would be shown a series of words containing a gradient phonotactic that 

does not exist in their native language. They would then be given pictures of objects 

and asked to choose new words in the artificial language for these objects from a 

range of options. Their choices could be analyzed to see how they are biased by the 

subjects’ native phonotactics and the phonotactics of the artificial language. The task 

could be modified to address other issues—for example, subjects could be asked to 

borrow some of the artificial words into their own language to look at the effects of 
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phonotactics on borrowing. Correlations between the results of experiments like these 

and actual historical trends would lend support to the theory. 

 

5.3.4. The interaction of phonotactics and morphology 

 In chapter 2, when discussing French and Latin, I discussed only unprefixed 

words, because of the existence of highly productive prefixes containing marked 

sounds. Is morphological productivity affected at all by phonotactic considerations? 

What determines how productive a given affix is? This question can be seen as 

parallel to the larger question asked in this dissertation—what makes a word 

successful?—and so using some of the techniques I have employed here may prove 

enlightening. 

 

5.3.5. Avoidance in children 

 Phonotactic preferences in adult speaker represent a form of avoidance of less 

well-formed words. Children are often known to exhibit a much stronger version of 

this, completely avoiding words which contain sounds they find difficult (Ferguson 

and Farwell 1975, Leonard et al. 1981, Schwartz and Leonard 1982). In my model, 

this could be explained by very strong markedness biases (implemented as feedback 

from the phoneme or articulatory level), coupled with a small lexicon. In adults, 

markedness may cause a word to lose out to a synonym or paraphrase, but in children 

a synonym may not be available, and the result is that no winner emerges and the 

concept simply cannot be expressed.  
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5.3.6. The interaction of phonotactics and sociolinguistic variables 

In chapter 1, I presented evidence that the effects of phonotactics on lexical 

selection are strongest when the influence of social factors is weakest. I represented 

these social factors in my model with a single parameter—the reality is obviously 

much more complex. Working out how these variables interact in determining a 

word’s success represents a fertile area for future study, one which would benefit 

from collaboration between sociolinguists and generative linguists. Incorporating 

phonotactic preferences into existing quantitative sociolinguistic models could give 

them greater predictive power, and would shed light on how speakers achieve 

compromise among conflicting pressures when deciding what to say and how to say it. 
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