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Professor Edward P. Stabler, Chair

In this thesis, I address the issue of learning form-meaning correspondences of

inflectional affixes in the presence of homonymy. Homonymy is ubiquitous in all

languages despite the fact that it presents a notorious problem for learning and

processing. It is a common assumption that patterns of homonymy are restricted

in some way and that these restrictions reflect something about the way people

learn languages. In this work, I attempt to flesh out this intuition using tools

from formal learning modeling.

I show some quantitative evidence that inflectional paradigms have statistical

preferences for certain types of non-arbitrary mappings between form and mean-

ing. Namely, one-to-one and “elsewhere” mappings that can be described with

defaults are preferred while all other mappings are avoided.

Interestingly, the preferred types of mappings also have a nice learning prop-

erty: more specifically, there are simple generalization methods that can be used

for learning them. The learning model I propose takes advantage of this fact,
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although it is still capable of learning ‘arbitrary’ form-meaning mapping which

are empirically attested. Overall, my learner provides a strong bias (rather than

a categorical restriction) on the types of patterns it can learn; a bias motivated

by the empirical data mentioned above.

The model of learning I propose also predicts intermediate overgeneralization

errors and subsequent corrections in the process of language acquisition. It is

unique in that, unlike most formal learning models, it relies on a non-monotonic

generalization strategy inspired by the blocking proposals in the realm of gener-

ative morphological theories.
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CHAPTER 1

Introduction

1.1 The Thesis

Children are exposed to a continuous stream of sounds as they experience the

world through their perceptual and cognitive systems. Eventually they learn

to understand messages encoded by the speech signal and to express similar

kinds of messages on their own. One of the central goals of cognitive linguistics

is to understand how children gain this ability, or how they acquire language

competence.

One way to approach this question is to explore how a computational system

might achieve the same competence in a human-like manner, i.e., in a way that

captures empirical facts about natural languages and language learning. To be

sure, a computational perspective helps us see that there are many ways of learn-

ing the same class of languages. However, in trying to understand how human

learners do it, it is instructive to pay closer attention to the fine-grain level of

empirical generalizations and to the kinds of errors/problems children experience

during language acquisition.

One type of fine-grain generalizations are strong statistical tendencies demon-

strating that, even when languages don’t have categorical limitations on the range

of certain options, they might still consistently prefer (to use somewhat vague

terms) simple or systematic patterns over more complex and arbitrary patterns.
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It is a natural hypothesis that such preferences along with other more categorical

universals arise and are maintained in languages because of a particular learning

strategy used by human learners (Stabler, forthcoming). In accordance with this

hypothesis, paying close attention to preferences and universals exhibited in lan-

guages can clue us in to what the human learning mechanism producing these

preferences must look like.

In this dissertation, I construct a learning algorithm for learning form-meaning

correspondences that is informed by such empirical considerations and that makes

further predictions with respect to language acquisition. The domain of my

inquiry is the nature of ambiguous form-meaning mappings within inflectional

paradigms. Below, I say a few more words about this domain of inquiry and

about the main achievements of my dissertation.

There are several reasons for investigating learning lexical meanings of in-

flectional morphemes. First, learning form-meaning mappings (i.e., learning the

lexicon) is fundamental to any theory of language learning since this knowledge

is a prerequisite for building meaningful expressions. Second, this domain of in-

quiry is relatively understudied, especially below the word level (for some work

in this direction see, however, Albro (1997); Carlson (2005); Adger (2006)).

Anyone who contemplates lexical learning for a few minutes will realize that

ambiguity (or deviations from the one-to-one mapping between form and mean-

ing) present a problem. Commonly, it is implicitly assumed that patterns of

ambiguity (especially homonymy/syncretism) in inflection are connected to the

properties of the human acquisition device (Williams, 1994; Wunderlich, 2004,

and others). My work is an attempt to flesh out this assumption into a formal

learning model. In pursuing this goal, I adopt the hypothesis that the learning of

form-meaning mappings involves default reasoning (introduced in the next sec-
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tion). Roughly stated, default reasoning involves default rules that apply only

when other rules fail to apply, as in the statements: if X then Y else if Z then

W else Q. This view leads me to define precisely which form-meaning mappings

are describable with defaults (without positing homonymy), and which are not.

Given this definition, and my particular definition of homonymy that takes the

learner’s point of view into consideration (see next section), I address the question

of what types of form-meaning mappings are empirically attested in languages

and to what degree. Based on a sample of verbal agreement paradigms from 30

genetically diverse languages, I find that

(1) a. Non-homonymous mappings predominate in these paradigms

b. Among homonymous mappings those that can be described with de-

faults are by far the most dominant.

In the end, I propose a formal learner that can handle any attested form-meaning

mapping, but that matches the discovered statistical tendencies by generalizing in

such a way that non-homonymous mappings are the easiest to learn, followed by

default mappings, followed by what I call “overlapping mappings” (i.e., mappings

not describable by default reasoning). Additionally, my learner learns in the pres-

ence of irrelevant features (i.e., it does not know a priori which semantic contrasts

out of all possible contrasts are grammaticalized in the target language), and it

predicts overgeneralizations at intermediate learning stages followed by subse-

quent corrections – a pattern of behavior also characteristic of human learners

(Marcus et al., 1992; Strauss and Stavy, 1982; Marchman et al., 1997).

3



1.2 Non-monotonicity

The learner I propose in this thesis is unique because it relies on a non-monotonic1

learning strategy unlike the overwhelming majority of the formal learning models.

Monotonicity is preferred in formal learning modeling because it allows the learn-

ers to generalize in a conservative fashion (without making errors) and keeps the

learning strategies and the proofs about them simple since the truth is preserved

at every intermediate step.

However, these advantages do not by themselves constitute a reason for be-

lieving that human learners are monotonic. In fact, the overgeneralization errors

reported by many researchers on language acquisition are more consistent with

the non-monotonic picture of learning.

Besides, non-monotonic reasoning appears to be natural and commonplace

in making inferences and decisions in the face of incomplete or changing infor-

mation. Such reasoning usually involves relying on a general rule of thumb that

captures typical cases and that has exceptions. For instance, consider the follow-

ing example of non-monotonic reasoning from the realm of language processing

(from Antoniou, 1997). Suppose we are reading a text that begins like this:

Smith entered the office of his boss. He was nervous.

At this point, most readers would assume that the pronoun he refers to Smith.

But the immediately following sentence (below) is inconsistent with this assump-

tion, and so will most likely lead the readers to revise their current hypothesis:

After all, he didn’t want to lose his best employee.

1A non-monotonic learner is a learner whose intermediate hypotheses don’t grow monoton-
ically. That is, such a learner may converge on a language that is smaller than the learner’s
preceding hypotheses. In simpler terms, a non-monotonic learner may overgenerate at inter-
mediate stages and later correct such overgeneralizations.
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Perhaps in the ideal world, we would have enough information (or we would

wait until we have enough information) to make our decisions, including a decision

about what “he” refers to in the above text. But in reality, we often rely on rules

of thumb that work most of the time, but that ultimately have exceptions. A

learner only beginning to learn a language is precisely in the situation in which

he or she has quite impoverished and incomplete information, and so the use of

non-monotonic reasoning is only natural (while of course not necessary, especially

if the language is restricted in such a way that it’s possible to generalize and never

be wrong2).

While formal models avoid non-monotonic reasoning, traditional descriptive

models of language relying on non-monotonic representations (and often implic-

itly assuming non-monotonic learning) are quite common in linguistics, cf. “the

Elsewhere Condition” (Panini, Kiparsky (1973)), the “Subset Principle” (Halle,

1997), the blocking rules of Aronoff (1976), aspects of the Optimality Theory

(Prince and Smolensky, 1993), etc. I will lump all such proposals under the gen-

eral rubric of blocking proposals. The essence of the blocking proposals is that

the grammar involves competition among different rules (or principles), and a

way to determine which rules “win” the competition in particular cases. The

winning rules can “block” the application of other rules which are then said to

have “default” status applying only as a last resort in a particular sub-domain.

(Notice, that there might be several default rules in a system, as they can be

nested in each other or disjoint3.)

The most prominent arguments for descriptive systems involving defaults are

based on economy considerations. In section 2.1.2.3 (chapter 2) I show that such

arguments are not convincing, especially in the domain of inflection. The learning

2For an example of such a learner in the domain of learning phonotactics see Heinz (2007).
3For more examples of cases with several defaults see figure 3.1 on page 53.
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model I present here, on the other hand, provides a stronger reason for adopting

such representations - it shows that a learner biased to use default reasoning (and

producing grammars with blocking) gives us a certain fit with frequencies of dif-

ferent form-meaning correspondences found in inflectional paradigms. Moreover,

this learner makes testable predictions with regard to language acquisition and

language change, which could potentially provide further support for this model

(or to illuminate ways in which it can be improved).

1.3 Patterns of inflectional homonymy: definitions

In this section, I go over some important definitions related to the central notion

of this thesis, homonymy, which presents a problem for learning form-meaning

mappings.

But let me first clarify some terms that are used in the subsequent definitions.

I use the term morph to refer to the phonological realization of a morpheme which

is in turn conceived of as a lexical unit having several components: a phonological

component (the morph), and the semantico-syntactic components specifying the

distribution of this morph in the language. (See next chapter for the discussion

of alternative conceptions of morphemes and morphological structure in general).

Morphology abounds with cases in which a single morpheme is used in several

different ways (in linguistic representations this happens when it occupies more

than one cell in a paradigm). Throughout this dissertation I will refer to this

phenomenon as form identity.

Certain instances of form identity are due to homonymy (or semantic am-

biguity), while others are due to the fact that some inflectional contrasts are

irrelevant in particular environments (as exemplified shortly). In morphology,

6



the term “homonymy” is used in many different ways. I will use it in a some-

what non-standard fashion relying on the neutral notion of “distribution” rather

than the notion of “lexical meaning” that imports various assumptions about the

structure of the lexicon.

Normally, one would say that two morphemes are homonymous if they sound

the same but have different lexical meanings. This assumes that we already know

which morphs are distinct despite having the same form and what their lexical

meanings are. However, since the learner does not initially know which same-

sounding morphs are distinct, the standard definition above is not suitable for

our purposes. The only thing that the learner has access to is the distribution

of morphs. There is syntactic distribution (which other morphs a given morph

can occur with, in what order it occurs, etc), and semantic distribution (what

semantic properties must be satisfied for a given morph to be licenced). Focusing

mainly on the latter notion of distribution, we can observe that if such distribution

can be correctly described with a single set of necessary and sufficient semantic

features, then it is always possible to equate this set to the morph’s content or

“meaning”4). Such a morph should not have a status of a homophone under any

standard theory since it can be assigned a single lexical meaning.

Otherwise, if a morph’s semantic distribution cannot be described with a

single set of necessary and sufficient features, something special has to be done

to capture its meaning, e.g., positing defaults and blocking, or positing separate

homonymous lexical entries, or allowing conjunction of feature sets, etc. I will

restrict the term homophone (or homonym) for this latter scenario only. So, a

homophone is a morph that can be used in several different ways and that meets

4The word “meaning” here is used to refer to the internal lexical representations in the
speakers’ mental lexicon, rather that the externalist notion of meaning argued for in the philo-
sophical literature.
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the following definition:

(2) A morph is a homophone if its distribution cannot be described in terms

of a single necessary and sufficient set of semantic values (and this is not

due to free variation).

For example, on this definition are, the present tense form of the verb to be, is

a homophone since there is no single set of semantic values that would accurately

describe its distribution. The set [BE, pres.tense, indicative] is necessary but not

sufficient since these semantic values are also compatible with forms is and am.5

An example of form identity that is not due to homonymy, but to irrelevant

contrasts, is the use of the French plural determiner les. One would typically say

that les could be used either with masculine or feminine nouns because gender

is irrelevant in the plural, and not because there are two different homonymous

determiners les. This intuition is usually captured with the notion of feature

underspecification (discussed in section 2.2.2).

In the learning chapter, I will also use the term “homonymous lexical entries”

for the situation when the learner has already acquired some portion of the lexicon

and in this lexicon several distinct lexical entries have the same pronunciation.

The definitions presented here are crucial for understanding other distinctions

and terms that will be introduced as we go along.

5It is possible to describe the distribution of are with a single lexical entry that has a
default status provided some assumptions about how such representations should be interpreted.
Alternatively, one can posit several different lexical entries for are. At this point I am not
concerned with the differences between such accounts; I’m merely illustrating my use of the
term “homonym”.
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1.4 Assumptions about prior knowledge

In this section, I present the basic assumptions regarding my learner’s capacities

and prior knowledge. Some of these capacities/knowledge are hypothesized to be

innate, while others are attributed to previously acquired information. Several of

the assumptions discussed below present simplifications which we would eventu-

ally like to relax, but which are useful in tackling a complex problem with many

interacting factors.

First, I assume that there is a finite set of universal distinctions that can be en-

coded by means of inflection. All languages draw from this universal set, but they

differ in what distinctions they end up encoding. Also, I assume that languages

are compositional; that is, the meanings of larger structures are determined from

the meanings of smaller structures together with the rules of composition.

Second, I endow my learner with some prior knowledge based on the assump-

tion that when acquiring meanings of inflectional morphemes, children do not

start from the “blank slate.” We have reasons to believe that by the time they

begin acquiring morphology, they already know quite a lot about the phonolog-

ical forms of their language and they have already developed some conceptual

representations. That is, I assume that the learner already comes to the task

of learning morphology with some knowledge about basic units of form and the

ability to “perceive” meaning. In particular, I assume that strings of phonemes

corresponding to phonological realizations of inflectional morphemes have already

been identified. Additionally, I assume that the learner has the ability to per-

ceive and infer from the environment (I use the term ‘environment’ in the broadest

sense possible) the semantic values of the universal inflectional distinctions. Both

of these (obviously, idealized) assumptions are discussed at greater length below.
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The first assumption finds some support in the fact that it is in principle possi-

ble to discover many morphs without any semantic information. Roughly speak-

ing, this can be done by looking for a minimal number of phonological chunks

that repeatedly co-occur in the speech stream and that obey certain prosodic

(and other linguistic) constraints. There are several computational algorithms

that more or less rely on this idea to find morpheme boundaries in a continu-

ous text of phonemes or graphemes (de Marcken, 1996; Brent, 1999; Goldsmith,

2001; Baroni, 2003). Most of these algorithms are based on purely statistical

and distributional information, but incorporating some linguistic biases into such

models significantly improves their performance (Cambell and Yang, 2005).

Infant studies also lend support to the idea that humans are able to use

statistical information to “jump start” the segmentation process, and as they

learn more about the input, other cues to word and morpheme boundaries such as

stress, intonation and phonotactics begin to play an increasingly important role.

For instance, we know that young infants can track transitional probabilities of

syllables even after very brief exposure to the training data (Saffran et al., 1996;

Aslin et al., 1998). Nine month old English speaking infants are already sensitive

to actual prefixes of their language, but not yet to the suffixes (Santelmann et al.,

2003). Several studies show infants’ sensitivity to stress and phonotactics when

these are used to mark morpheme boundaries (Mattys et al., 1999; Johnson and

Jusczyk, 2001; Thiessen and Saffran, 2007).

The second assumption I mentioned has to do with semantic representations.

I assume that at the onset of learning all possible semantic features that could

potentially be expressed by inflectional morphemes are available to the learner,

and that learners are capable of determining values of these features based on

perceptual information, cognitive inferences about speakers’ intentions and even
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semantic information (see below and page 32 for a discussion of exceptions to this

assumption.) The question of how exactly are the contrasts perceived and/or in-

ferred from the environment is still an open question in the domain of psychology,

and I don’t have much to say about it.

Recall that I assume that in the process of learning, the learners come to figure

out which of the universally possible contrasts are encoded in their language and

which are irrelevant.

There are other domains in language acquisition where there is evidence that

children initially pay attention to lots of contrasts, but gradually stop paying

attention to those contrasts that do not prove to be useful. For example, when

it comes to speech perception, 6 month olds can distinguish practically any non-

native phonetic contrast, but by 12 months of age this ability declines and infants

reliably discriminate only those phonetic contrasts that are phonemic in their lan-

guage (see review by Werker (1989)). Similarly, in the domain of word learning,

it has been shown that 13 and 18 month olds generalize a learned object name to

new instances based on overall similarity across many dimensions (Smith et al.,

1999). But by age 2, children start showing systematic biases, attending to spe-

cific dimensions for different types of objects – shape for the artifact-like things,

material for substances, colors for foods (Imai and Gentner, 1999; Booth and

Waxman, 2002; Jones and Smith, 2002).

It is worth noting that some inflectional morphemes express meanings that

in principle cannot be learned from the environment, such as inflection classes,

gender of inanimate nouns, some case marking, etc. These features mark either

syntactic or arbitrary relationships, and they have to be learned from the dis-

tributional or syntactic information. Learning how such features are mapped

to morphs is largely outside the scope of this thesis (see, however, discussion
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at the end of chapter 5 for some remarks about possible directions for learning

inflectional classes).

Provided the two assumptions above, the first rough characterization of the

learning problem I tackle can be stated as follows: given a string of inflectional

morphs uttered in a particular situation that can be described in terms of a

complete assignment of all universal features to their values, the learner has to

determine which of the features are relevant, and how they match up with the

individual morphs.

To give a more concrete example, imagine that upon hearing a word “elephant-

s,” the child can infer from the situation that this word refers to the big grey

animals with trunks, that there are more than one of them, that they are “an-

imate”, they are “definite” (the particular elephants standing over there), they

are located in front of the child, they are present now, they are relatively far

away, etc. Given all this (and other similar kinds of) information, the child has

to figure out that -s (and not elephant) encodes the property “plural” (and not

definiteness, location, animacy, etc). Later on, when a child experiences the use

of -s to mark possession (as in an elephant’s trunk), she would also have to cor-

rectly resolve the ambiguity and be able to detect that this time -s is used in a

very different way and does not indicate the property “plural”.

1.5 Thesis Outline

The general structure of this thesis is as follows. In the next chapter, I will

discuss some of the basic concepts pertaining to the structure of lexicons. I will

also introduce a first intuitive proposal about how lexical meanings might be

learned and show how this proposal, in its simplest formulation, fails to deal
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with homonymy. Nevertheless, the basic idea behind this proposal will play an

important role in the learning algorithms proposed later.

In chapter 3, I concentrate on the theoretical issues surrounding homonymy

and syncretism in inflectional paradigms. Here is where I define the notions of

“elsewhere” and “overlapping” homonymy, and formulate the empirical hypothe-

ses with respect to frequency of different patterns of form-meaning mapping.

These hypotheses are evaluated against typological data and against calculations

of chance frequencies in chapter 4. Finally, chapter 5 is devoted to the learning

model. This chapter begins with some general discussion of adopted assumptions

and definitions related to formal learning theory. I then proceed to present three

learning algorithms building up to the final General Homonymy learner. Each

new algorithm covers more empirical ground, and builds on the previous simpler

algorithm. A thorough understanding of this chapter may require familiarity with

formal notation. However, such knowledge is not required for getting the grasp

of the basic ideas.
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CHAPTER 2

Lexicon and cross-situational learning

This chapter lays a foundation for the rest of this dissertation. Here I describe

general assumptions about the organization of the lexicon and introduce some

terminology and key concepts that are used throughout the thesis.

I begin by providing background on certain common assumptions about lexical

representations. In the second half of this chapter, I discuss a “cross-situational”

approach to acquiring lexical meanings that gives the reader a first glimpse at a

general learning strategy which forms the backbone for the formal work presented

in chapter 5.

2.1 The nature of the morphological lexicon

2.1.1 Lexical units

The first question that arises when one talks about lexical learning is what are

the appropriate lexical units in speakers’ mental lexicon? This dissertation rests

on the assumption that regular inflectional markers, such as affixes, are among

such atomic lexical units. This assumption is not without controversy, as some re-

searchers hold a view that speakers don’t decompose words into morphemes but

rather store them as a whole (Butterworth, 1983; Seidenberg and McClelland,

1989; Gonnerman, 1999). In such models, morphemes are discussed as epiphe-
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nomenal objects that amount to semantic and acoustic/orthographic similarities

among words, as opposed to abstract units that have their own lexical represen-

tations. Morphological productivity is accounted for by appealing to analogy or

to rules derived by mechanisms of general pattern extraction based on a subset

of words that are similar in some relevant respect.

The opposition between the two views (storing words as decomposed or as

a whole) might not be as drastic as it appears at the first glance. Once one

specifies precisely what the rules of pattern extraction are and how similarity of

words can be used to compute the relationships between overlaps in form and

overlaps in meaning, I believe that the two points of view will be very difficult

to distinguish from each other on the basis of their predictions about what’s

grammatical. However, they do make somewhat different processing predictions.

Some of the latest experiments testing these predictions (using the lexical

priming paradigm) support the morphemic point of view, where morphemes

rather than words are the atomic units stored in the lexicon.1 Priming is based on

the idea that accessing a lexical representation in the mental lexicon will facilitate

subsequent access of the same lexical representation as well as of other seman-

tically or formally similar representations. Proponents of whole word storage

maintain that morphological priming effects are reducible to the sum of semantic

and formal priming. However, it has been established that in certain experi-

mental conditions, when the prime and the target are separated by several other

words (long-lag priming), the semantic and formal priming do not obtain, i.e.

jump does not prime hop, and car does not prime card. In such conditions,

morphological priming effects persist (sings continues to prime sing and happi-

ness continues to prime shyness) suggesting that morphemic representations can

1This does not mean that whole words or even whole phrases cannot be stored as a whole
if they cannot be analyzed compositionally.
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prime each other independently from phonological and semantic representations

(Bentin and Feldman, 1990; VanWagenen, 2005).

Stockall and Marantz (2006) report results from a MEG study that show

reactivation effects even for the regular-irregular verb pairs whose overlap in

form is rather minimal (e.g., teach - taught). They also mention a study on

Finnish by Jarvikivi and Niemi who showed that monomorphemic words (like

the singular noun sormi “finger”) can be primed by a bound stem allomorph

which is not a real word of Finnish (sorme from sormesta “from finger”). At

the same time, phonologically matched pseudo-words such as sorma do not lead

to priming. This experiment suggests that both roots and stems have their own

lexical representations. The results are not easily explained by the whole word

storage model, since the two primes - sorme and sorma - overlap with the target

in form and meaning (or the lack thereof) to the same extent. The only difference

between these pseudo-words is that one is a possible bound stem while the other

is not.

The view that morphemes are lexical units is also more intuitive given a

natural hypothesis about how lexical knowledge might be acquired. Consider a

problem a child faces when trying to parse the continuous stream of speech and

make sense of it. We have reasons to believe that even before children understand

simple sentences, they have already begun to segment speech into discrete units

that later on will be mapped onto conceptual structures. Our best models of

segmentation so far are mainly based on distributional evidence (see section 1.4)

and draw no principled distinction between words and morphemes. If anything,

the criteria they use for finding boundaries in phonological strings leads to the

discovery of morphological units, not of words (de Marcken, 1996; Goldsmith,
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2001; Baroni, 2003).2 Likewise, the distinction between words and morphemes,

although appearing intuitive to us, is notoriously hard to draw on theoretical

grounds (Williams and DiScullio, 1987). Given that whole-word theories of mor-

phological organization make a distinction between words and morphemes, where

the former are units of meaning listed in the mental lexicon and the latter are

epiphenomenal objects, one might ask how a child would arrive at this rather

shaky distinction in order to store words but not morphemes? For instance, if

a child is learning a fairly well-behaved agglutinative language, what would pre-

vent her from using general learning strategies for segmentation and association

of forms with meanings to posit morphemic lexical entries? Such learning strate-

gies are necessary in any case for discovering atomic units to be stored in the

lexicon (whatever those units might be).

Another anti-morphemic view is maintained by the proponents of the Word

and Paradigm tradition who claim that inflectional marking is achieved by means

of transformations applied to the stem (Zwicky (1985); Anderson (1992); Stump

(2001) and others). In these models, stems or “bases” are listed in the lexi-

con proper while inflectional rules are part of a separate grammatical compo-

nent consisting of rules that specify how inflectional features should be realized.

These models are motivated by the fact that inflectional systems can contain non-

concatenative and irregular means of grammatical marking. On the other hand,

fully morphemic approaches make no distinction between stems and other mor-

phemes; they are all conceived of as “pieces” that are combined together either in

the lexicon itself (Lieber, 1992) or in the syntax (Marantz, 1997). Lieber proposes

that non-concatenative irregular patterns can be dealt with by means of auto-

segmental and prosodic phonology such as floating features, etc. Marantz and

the Distributed Morphology (DM) tradition assume a special battery of readjust-

2De Marcken’s model produces a hierarchy of units including phrases, word and morphemes.
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ment rules that apply post-syntactically to handle irregular morphology (some

irregularity is also handled at the lexical insertion). Finally, there are dual-rule

models where morphemic representations are assumed only for regular and con-

catenative morphology, while all other words are not decomposable but stored as

a whole (Pinker, 1991; Marcus, 1995; Clahsen, 1999).

These alternatives remain hotly debated. I will avoid this debate by focus-

ing my attention on concatenative and regular patterns of affixation. For this

subtype of inflection any of the above mentioned approaches assume that there

is some association between the phonological realizations of grammatical dis-

tinctions (morphs) and the features or representations they are associated with

(whether we want to call this association a “rule” that applies to stems, or a lexical

item which directly encodes both the phonological and the semantic components

of the morpheme). I believe that the same largely holds for non-concatenative

inflection if one does not restrict morphs to a contiguous string of phones.3

Looking at the concatenative inflectional patterns is just a first step in under-

standing how form-meaning mappings are learned. We have to start somewhere,

and I prefer to start with simple cases before proceeding to more complex ones.

This endeavor is not invaluable especially given the fact that concatenative in-

flection seems to predominate cross-linguistically. For instance, Greenberg (1963)

observes that most languages in his sample use affixation to mark inflectional

contrasts. The predominance of affixal inflection is also true for the sample of

30 languages I will discuss in this thesis (however, the languages in my sample

were not selected completely randomly but with an eye towards systems with

3As I see it, the main difference between morphemic and Word and Paradigm approaches is
not in how they instanciate the relationship between forms and meanings, but in the difference
of the status attributed to the stems. In the Word and Paradigm approach one of the stems
per lexeme has a special stutus of a “base” from which all other forms are derived, including
other related stems. No such difference exists in morphemic approaches: all morphs, including
roots and stems, combine with each other in the same way.
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syncretism).

2.1.2 Minimality and non-redundancy

Besides the fact that lexicons contain morphemic representations, they are also

often assumed to be somehow minimal and/or non-redundant. The notion of

minimality has been one of the central notions in the generative linguistics, albeit

a difficult one to define precisely.4

There are two different kinds of minimality or economy proposals in the lit-

erature. First, there are proposals that certain structures are avoided because

they are non-minimal. Second, there are proposals that certain descriptions or

representations of structures are avoided because they are non-minimal. An ex-

ample of the first kind of proposal is the conjecture that perfect synonymy is

dispreferred for reasons of economy. A lexicon with abundant synonymy or free

variation not only would have more lexical entries than a lexicon without free

variation, but it would also generate more strings.

An example of the second kind of minimality has already been alluded to

in this chapter: morphological models that assume full decomposition are more

economical in the sense that they posit fewer lexical entries than the whole-

word models, but both are intended to generate exactly the same strings. The

4One of the difficulties is that what is minimal for one aspect of language is not necessarily
minimal for another aspect. For example, Plank (1986) observes that agglutinative or separatist
inflectional systems (where every inflectional feature is realized by a separate morph) allow for
shorter lexicons, but result in longer strings and hence require more effort for the production
system. The cumulative inflection (several features realized by the same morph) lead to longer
lexicons, but result in shorter strings. To see this, consider the fact that given two features
with three values (6 values all together), there are 32 = 9 distinctions that can be made. A
language that makes all these distinction via cumulative affixes will need 9 morphemes, whereas
a language in which these distinctions are made by combining separate morphs will only need
6 morphemes (one for each feature value). But, the first language will realize the two features
using just one morph, while the second language will have to use two morphs for the same
purpose.
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hybrid models of the lexicon (which assume both whole word and decomposed

representations for some words) choose to economize on the processing time and

effort rather than on the size of the lexicon (cf. Augmented Addressed Morphol-

ogy, Caramazza et al. (1988)) or Morphological Race Model, Frauenfelder and

Schreuder (1992)).5

The idea that language users and analysts should prefer shorter descriptions

was already present in the SPE rule model of Chomsky and Halle (1968). Formal

notions of this idea were developed in the domain of information theory and

gave rise to the so called “minimum description length” approach (Wallace and

Boulton, 1968; Rissanen, 1978). The basic principle of this approach rests on the

hypothesis that all else being equal shorter descriptions are simpler and therefore

more likely.

In this section, I consider three assumptions about minimizing descriptions

in the domain of morphological lexicons: exclusion of irrelevant features from

lexical representations, the use of null morphs, and the use of blocking rules.

These assumptions are motivated by considerations of storage economy and are

often adopted as constraints on the descriptive apparatus (the lexicon). As a

side note, although such restrictions on grammars seem prima facie reasonable,

they are difficult to test or confirm empirically. This is because the predictions

they make concern rather subtle facts about processing rather than facts about

grammaticality. However, as I show in this thesis, some of the proposals above can

be restated as proposals about the learning algorithm, which does make testable

predictions, namely predictions about overgeneralization errors in the process of

5In such models, memory recall and morphological analysis run in parallel. The memory
recall is faster and more efficient for high frequency words, while the morphological analysis is
faster and more efficient for low frequency words (some of which lack whole-word representations
all together). Since both of the routines apply in parallel until one of them succeeds, this ensures
that the most efficient strategy is applied in each case.
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language acquisition and about statistical frequencies of patterns that are harder

to learn (and harder to describe succinctly within a particular framework).

2.1.2.1 Exclusion of irrelevant features

It is a common (and mostly implicit) assumption that lexicons do not include

irrelevant features in the representations of morpheme meanings. Irrelevant fea-

tures are not overtly marked either in the language as a whole or in certain

contexts (see section 2.2.2). For example, we don’t see morphological analyses of

the following sort.

(1) Lexical entries for the English plural morpheme -s :

a. -s : [+pl,+anim,+fem]

b. -s : [+pl,+anim,−fem]

c. -s : [+pl,−anim]

Although the above lexicon correctly predicts how the plural morpheme is used,

an alternative and generatively equivalent lexicon with a single lexical entry -

s :[+pl] is more minimal. If lexicons always specified irrelevant features for every

morpheme, they would contain an enormous amount of redundant homonymy. In

the worst case, every morph would have as many meanings as there are different

situations in which it could be used, which would defeat any usefulness of mor-

phological analysis. Moreover, this kind of redundancy would fail to encode the

generalization that phonologically similar inflectional morphemes are also usually

semantically similar.

The fact that lexicons do not include irrelevant features is usually stated as a

requirement to use feature underspecification in lexical representations whenever
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possible. Bierwisch (2006) puts it this way: “The quest for economy . . . leads

to the assumption that lexical representations are subject to underspecification,

such that lexical entries respect in one way or the other the conditions that make

predictable specifications follow from more general rules or principles.” In this

work, I will also assume that morphemic representations are maximally under-

specified (in the “strict” sense of underspecification which I explain in section

2.2.2). This requirement is built into the formal description of the target lexicons

for the learning algorithm in chapter 5.

2.1.2.2 Null morphs

Positing null morphs to describe non-overt realization of meaning also helps us to

avoid positing redundant homonymy. To see this, consider the following inflected

words from Russian.

(2) stran-a (“country”, nom.sg.)

ruk-a (“arm”, nom.sg.)

stran (“country”, gen.pl.)

ruk (“arm”, gen.pl.)

Taking this mini-set of words in isolation, we have several choices in how to assign

meanings to the individual morphs in the example. If this were a problem set

for Linguistics 1, most students would quickly determine that the meaning of the

suffix -a is [nom.sg]. As for the other morphs, there are several options. One

option is to assume that there is a null (silent) morph that expresses the meaning

[gen.pl.]. This morph attaches to the stems stran- (“country”) and ruk- (“arm”)

in the same way as the suffix -a. Another option is to posit two separate lexical

entries for each of the roots. For example, the root stran could be associated with
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two meanings “country” and “country, gen.pl.”. This means that thousands of

other words like “country” and “arm” would also have two homonymous roots. It

is obvious that the first option - positing a single null morph - is more economical

and avoids unnecessary redundancy in lexical entries.6

In this thesis I will take for granted the idea that null morphs are part of the

morphological vocabulary since they are useful in succinctly describing data like

the Russian example above. However, I will not address the question of how they

may be discovered and learned, instead I will assume that they are supplied by

the segmentor (see, however, some preliminary ideas for the problem of learning

null morphemes in chapter 5, section 5.2.3).

2.1.2.3 Blocking and minimality

Another descriptive tool that arguably has a minimizing effect on the size of

lexical representations is the assumption of blocking mentioned in chapter 1 in

connection to default reasoning. One of the most wide-spread uses of blocking

is to capture irregular morphology. For example, the English past tense is often

analyzed by specific rules or specific lexical items for the irregular verbs (such

as taught, spent, sang) and a general default rule for the regular -ed affixation

(jumped, walked, yelled). The irregular verbs are said to “block” the application

of the regular -ed affixation. The use of the blocking principle can be viewed as a

filter on the expressions generated by the lexicon. Those expressions that are not

6In some theories in which features are monovalent, the unmarked values are assumed by
default and do not have to be specified in lexical representations. On this view of features, non-
overt realization of meaning can be easily explained without positing null morphs or redundant
homonymy, but only if such non-overt realization always coincided with the expression of un-
marked values. Although languages do show a correlation between zero-marking and semantic
non-markedness (cf. Jakobson, 1939), it is at best only a tendency. In the Russian example
above, the feature values “genitive” and “plural” are not the unmarked values for the categories
of case and number. Therefore we can’t assume that these features would be provided as default
features in the absence of an overt marker.
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“filtered out” or blocked are grammatical, while all others are ungrammatical.

In other words, there are two components to the grammar - a lexicon which is

allowed to overgenerate, and a blocking principle (or blocking rules) which rule

out overgenerated expressions. (This view does not commit us to a processing

model in which filtering is a second stage that follows a first stage of overgenera-

tion.) The blocking principle can be formulated in many ways, depending on the

empirical facts. The most common way used in linguistics is to say that more

specific rules or lexical items block the more general ones (although see discussion

in section 5.5.2 of the empirical vacuousness of this principle).

The two-component grammar (lexicon with defaults + blocking principle)

is often shorter than an alternative description consisting of a single lexicon in

which lexical representations alone are sufficient for generating only grammatical

expressions. For example, in the case of the English past tense, the lexical entry

for -ed in the description without the blocking principle would have to include

a list of all regular verbs with which -ed can be used (since the membership in

either regular or irregular class is largely arbitrary).7 This of course requires

listing thousands of stems because the regular verbs constitute a majority of

English verbs.8

On the other hand, in the description involving a blocking principle, we only

need to list irregular verbs (either as contextual restrictions on irregular rules or

as independent lexical items). The -ed suffix is then said to have an elsewhere

distribution (i.e., during the insertion process it will apply only to those stems

7I assume that lexical entries not only specify the semantic content or meaning of morphemes,
but also contextual information encompassing any idiosyncratic facts about how the morpheme
in question is to be used.

8Another alternative would be to assume that the contextual specification of the morpheme
-ed was something like “is NOT used with sing, teach, rise, etc”. However, such negative
specifications of lexical items are viewed as unacceptable by some morphologists (e.g., Carstairs,
1998). Additionally such a lexicon will still be less minimal than the lexicon in which -ed is
simply stipulated as a default morpheme, since it would mention the irregular verbs twice.
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that are not listed as irregular).

When it comes to inflectional paradigms, the blocking principle (instantiated

as the Subset Condition) together with underspecification is often used to describe

certain patterns of homonymy.9 In this domain, however, the savings offered by

the use of blocking are much less significant given that inflectional paradigms are

usually small in size to begin with.

Additionally, even if the blocking accounts are somewhat more minimal, they

achieve this minimality by shifting the complexity from the lexicon to the proces-

sor. For instance, consider two alternative accounts of the present tense paradigm

of the English verb “to be”.

(3) Two alternative descriptions of the present tense of “to be”

a. With no blocking

am [BE, pres., 1p., sg.]

are [BE, pres., 2p., sg.]

is [BE, pres., 3p., sg.]

are [BE, pres., pl.]

b. With blocking

am [BE, pres., 1p., sg.]

is [BE, pres., 3p., sg.]

are [BE, pres.]

Subset Principle: more specific items block more general ones.

The second account might be just a tiny bit more economical than the first one

in the number of lexical entries, but it involves an additional blocking component

9Blocking proposals also have an effect of ruling out free variation, which appears to be rare
in inflection, although not non-existent.
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which introduces an extra reasoning step during the generation/production of

phonological forms. Suppose we’re trying to generate the phonological realization

of [BE, pres.,1p.,sg.]. Given the first account, we just look up which lexical item

is consistent with this meaning. Given the second account, we do the same thing

except this leads to competition between is and are, and we need to apply the

blocking principle to resolve it. In other words, it is not obvious that one of

the accounts above is more minimal than the other. In general, the minimality

argument does not provide a convincing motivation for preferring the blocking

accounts of type (b) above to the generatively equivalent accounts of type (a).10

Nevertheless, I will adopt the blocking types of descriptions as targets for

my learners, but for reasons other than minimality. More specifically, adopt-

ing such non-monotonic representations will allow my learners to use a natural

generalization strategy and a simple way of correcting overgeneralizations, at

the same time as accounting for the statistical tendencies found in patterns of

form-meaning mappings (see the next two chapters).

2.1.3 Interim summary

To summarise the discussion so far, a lexicon is a theoretical device we posit to

account for our conviction that speakers must have some mental repository of

10Sometimes, there are other arguments suggested in the literature for preferring descriptive
accounts involving blocking. For instance, it is claimed that such an account predicts how
paradigm gaps should be filled in paradigms with defaults (Halle and Marantz, 1994). How-
ever, it is easy to see that any generalization that can be expressed in an account of type (b)
can also be expressed in an account of type (a) since there is a direct translation from one
formalism to the other. In particular, if one makes an additional assumption (and it really is
an additional assumption in disguise) that paradigm gaps should be filled by defaults, then the
same assumption can be made in the alternative account, except we would have to explicitly
specify the properties of morphemes that can be extended to cover paradigm gaps. Besides
this conceptual point, there is also lack of conclusive empirical data showing that paradigm
gaps indeed tend to become filled by forms that can be independently shown to have a default
status.)
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associations between units of form and units of meaning. This repository is part

of the grammar which allows speakers to generate and understand expressions

of their language. I assume that inflectional affixes are among the lexical units

stored in the lexicon. The minimal amount of information that a morphological

entry must encode includes its phonological form and the semantic content which

specifies the distribution of this form with respect to semantic environments (it

may also include contextual and syntactic restrictions on its distribution). Ad-

ditionally, as I have discussed, irrelevant features are never included in the se-

mantic content of morphemes; null morphs are used for the purpose of describing

non-overt realization of features; and “default” morphemes or “default” context

specifications, in addition to a blocking principle, may be used in special cir-

cumstances creating a two-component grammatical structure: a lexicon that can

overgeneralize and a filtering blocking principle that rules out overgeneralizations.

In the remainder of this chapter, I will begin considering a question of how

a morphological lexicon of the sort discussed above might be learned. As a first

stab at this question, I introduce an intuitive approach to learning form-meaning

mappings. This approach, known as “cross-situational learning”, has been in-

formally discussed by many psychologists and linguists such as Pinker (1989);

Fisher et al. (1994); Gleitman (1990) and others, and it underlies several com-

putational models of word learning (e.g Siskind (1996); Thompson and Mooney

(2003); Smith (2003); Vogt (2003)).

When applied to morphology, cross-situational learning runs into several prob-

lems. As I will discuss, these problems include null morphs, co-occurrence restric-

tions on morphemes, and homonymy. My main focus will be on tackling the last

of these three problems - homonymy. Homonymy appears to be at first glance

quite common in the domain of inflection, but as I show in chapter 4 the distribu-
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tion of homonyms is not completely random - certain patterns appear to be more

common than others. The formal learners I present at the end of this dissertation

overcome the problem of homonymy and capture the statistical regularities in the

data by predicting that those patterns that are rare are harder to learn.

2.2 Cross-situational approach to learning form-meaning

mappings

In this section I introduce the general idea behind a basic cross-situational learner.

The actual learner for learning form-meaning mappings of inflectional morphemes

proposed in chapter 5 will be more complex, but it will build on the cross-

situational strategy outlined here.

In the Grundlagen der Arithmetic, Gottlob Frege wrote “It is enough if the

sentence as a whole has a meaning; it is this that confers on its parts also their

content.” This statement has been taken as a recipe for finding meanings of

expressions (Hodges, 2000). The Fregean claim presupposes that languages have

a compositional semantics and inspires the idea that one class of expressions is

special because speakers have access to their meanings (e.g. sentences). The

intuition is that meanings of “special” expressions can presumably be inferred

from the environment (I use the term “environment” in its most general sense

covering perceptual information about surroundings, inferences about speakers

intentions, syntactic and distributional context of words, etc.).

A cross-situational approach to learning meanings is essentially a proposal

about how to implement the Fregean idea, i.e., how to learn meanings of basic

expressions from environments. For illustrative purposes I will introduce this

approach in the context of learning word meanings, although soon after I will
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switch to the problem addressed in this dissertation - learning of inflectional

morphology. When applied to natural languages, cross-situational approach by

itself is deficient for several reasons discussed here. But it will serve as a good

starting point for understanding what properties of the input are particularly

useful or problematic for learning.

I will take the word to be a “special” expression (whose meaning can be in-

ferred from the environment) and the morpheme to be the basic unit of meaning.

I also adopt a standard assumption that meanings of words can be usually derived

compositionally from the meanings of their constituent morphemes.

2.2.1 Introduction to the cross-situational approach

Several constraints on the kinds of meanings human learners entertain as possible

meanings of words have been proposed in the literature (“Whole Object Con-

straint”, Markman (1989),“Mutual Exclusivity Constraint”, Markman (1984)).

However, while these constraints are certainly helpful, they are not sufficient

for learning complex concepts. One needs further means for narrowing down

the space of possibilities, especially since inferences drawn from only a couple of

exposures to a word might be misleading.

One intuitive idea about how to narrow down potential meanings of a word

involves keeping track of semantic properties that are constant across all contexts

in which that word occurs. Imagine, for example, that a child is exposed to the

word “car” when he is playing with his toy car, then when he sees a picture of a

car in a book, and, finally, when he rides in a family sedan and sees other cars

around him. The basic idea is that hearing the label “car” in all these different

situations will help the child to abstract away from the irrelevant characteristics

not included in the meaning of “car” (such as size, shape, color, model etc.) and
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hone in on the more relevant characteristics such as “has four wheels,” “has a

steering wheel,” “used to transport (toy) people and things,” etc. (see however

subsequent discussion of why this approach is not always appropriate especially

for learning meanings of open-class items). This idea about how babies figure

out what words mean is not a new one and is similar in spirit to the models

of associative learning in which a connection between stimuli (experience) and

a verbal response (words) is established and adjusted over time as associations

between perceptual properties that always co-occur with the word strengthen,

while other associations weaken (Skinner, 1957; Goldfarb, 1986; Regier, 2003).

Pinker (1989) suggests that verbs, just like nouns, can be learned through

observations across different situations. He illustrates his point by considering

verbs such as fill and pour that are used in very similar situations and whose

meanings can be initially ambiguous for the learner. However, paying continual

attention to the varying properties of the situations in which these verbs are used

will help to disambiguate them. That is, the child will eventually experience the

use of “pour” as opposed to “fill” in situations when the water is put in a glass

up to the halfway point. On the other hand, the verb “fill” will eventually be

used when a glass is left on the windowsill and is filled by the rain water. Based

on such observations, the child will converge on the correct meanings.

Notice that the cross-situational approach to learning requires that the mean-

ings of words can be exhaustively described in terms of some set of semantic

primitives that combine to form more complex concepts (compositionality at the

level of individual words). However, this notion of meaning is highly controver-

sial. A more dominant view is that the meaning of a word (or, at least most

words) cannot be defined in terms of a set of necessary and sufficient seman-

tic primitives (Wittgenstein, 1953; Fodor et al., 1980; Fodor, 1998). Taking an
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example from Wittgenstein, the word game is used in many different situations

that taken together seem to have little in common (e.g., a chess game, a football

game, a solitaire game, a game of wits and so on). According to Wittgenstein,

if we look at all contexts in which the word game is used, we won’t find any

stable characteristics that pick out the class of games; instead we’ll see “a com-

plicated network of similarities overlapping and crisscrossing: sometimes overall

similarities, sometimes similarities of detail.” Fodor et al. (1980) present more

general arguments against decompositional accounts of word meanings based on

certain facts about reference fixing and informal inference. They also discuss a

psycho-linguistics experiment that failed to show a relevant difference between

causative verbs, thought to be semantically complex, and other “simple” verbs

(although see a rebuttal of their arguments and critique of experimental design

by Pitt (1999)).

However, when we look at the meanings of syntactic and grammatical com-

plexes, such as sentences or sequences of inflectional morphemes, the situation

is much less controversial. The meaning of a string of morphemes or a string

of words is typically compositional. In fact, compositional accounts at this level

correspond to the linguistic notion of grammar that, broadly speaking, specifies

rules for combining structures and building larger expressions using finite means.

This view is widely accepted as a way to understand the human ability to gener-

ate and comprehend the infinitely many grammatical expressions of a language.

Thus, at these levels of grammatical structure, the compositionality requirement

necessary for the cross-situational method is satisfied.

Decompositional analyses sometimes seem plausible even at the level of indi-

vidual words or morphemes. For instance, such analyses have been proposed now

and then for inflectional concepts like “person” and “number” which appear to
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be complex, judging from their cross-linguistic realizations. I will discuss some

such proposals in chapter 3 in connection to evaluating degree of homonymy and

syncretism in the verbal agreement paradigms. A decompositional analysis is also

appropriate and standard for morphemes that realize several inflectional features

at once (cumulative exponence). For instance, the meaning of the verbal affix -s

in English can be viewed as a complex “inflectional concept” that consists of a

combination of several more primitive concepts such as “indicative,” “present,”

“3 person,” and “singular.”

Another more practical concern raised in connection with the assumptions

behind the cross-situational approach is the fact that in the real life situations,

the immediate context to which a learner is attending does not always include

relevant semantic properties that are denoted by the string. Bloom (2000) spec-

ulates that children are able to overcome this problem largely because they can

often infer others’ intentions by being particularly attuned to their gestures, facial

expressions, intonation, following their eye gazes, and other types of information

present in human interactions.11 In addition, information from the neighboring

words and syntactic context most likely also plays important role in aiding learn-

ing. So, we can take “situations” in the cross-situational picture of learning to

mean something very general, covering variety of information sources mentioned

above.12

We saw that cross-situational learning proceeds by keeping track of what prop-

11As discussed by Bloom, this hypothesis finds some support from the discrepant-looking
paradigm experiments, where the experimenter utters a word while focusing her gaze on a
different object than what the child is attending to (Baron-Cohen, et al. 1997). Normal and
mentally handicapped children perform better at this task than autistic children who don’t
focus on human interactions. A certain percentage of autistic children are known to show a
significant delay in vocabulary acquisition and other language skills.

12This assumption by itself is not entirely sufficient. There will be cases when a learner’s
inferences are incorrect or incomplete, and so the final learning algorithm would have to be
robust enough to deal with noise. I leave the problem of noise to future research.
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erties remain invariant across different situations and what properties change. If

we think of situations in which words are uttered as sets of properties, then the

invariant features of a particular morph can be found by taking intersections over

all such sets. In the next section I discuss how this intersective strategy helps

to zoom in on the meanings of individual morphemes by discarding irrelevant

features. I also discuss how irrelevant features are connected to the notion of

underspecification.

2.2.2 Irrelevant features and underspecification

The cross-situational learner not only must solve the mapping-problem (deter-

mining which morphs in a string correspond to which semantic features), but it

also must identify which features present in the context are “extra” or irrelevant.

In general, irrelevant features are those features that have no effect on phono-

logical realizations. For example, the feature “transitive” is irrelevant in English

inflection because there are hardly any phonological contrasts due to different

values of this feature, i.e., transitive and intransitive verbs are not inflectionally

differentiated.13 An alternative way of expressing complete irrelevance is to say

that English does not inflect for transitivity.

Features can also be partially irrelevant, or irrelevant only in a certain con-

text. For instance, animacy in Russian is partially irrelevant: most nouns in

all cases and numbers don’t inflect for animacy, except for declension 1 nouns.

These nouns have different affixes in accusative depending on animacy. More

specifically, for animate nouns, the accusative forms are identical to the genitive

forms, while for the inanimate nouns they are identical to the nominative forms

13A few exceptions to this claim are verbs like “lay - lie” and “raise - rise”. However, these
verbs are often confused and used incorrectly by the native speakers which is a testimony to
the unproductiveness of the transitivity as an inflectional category.
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(the same can be said about agreement morphology on the adjectives).

Features that are irrelevant for the language as a whole result in uninflected-

ness, while those that are partially irrelevant result in syncretism, or in what I

call natural class syncretism (see next chapter). Both uninflectedness and nat-

ural class syncretism are often described with feature underspecification. The

way the term “underspecification” is used collapses an important for our pur-

poses distinction, which I attempt to bring out by differentiating two kinds of

underspecification: strict underspecification and free underspecification.

Strict underspecification rules out features that are either completely or par-

tially irrelevant. A strictly underspecified feature matrix associated with some

morph presents a set of necessary and sufficient feature values that describe the

distribution of this morph. Notice that the above fact implies that affixes whose

distribution can be described with strict underspecification are not homophones

on my definition of homonymy. Another sign of strict underspecification is that

the value of the underspecified feature never has an effect on the phonological

realization in question. For example, animacy is underspecified for the English

verbal third person agreement morpheme -s. That is, the 3rd person singular

present tense verb will be marked with the suffix -s regardless of whether its sub-

ject is animate or inanimate. Strictly underspecified feature matrices correspond

to partial functions of features to their values (or non-contradictory conjunctions

of positive and negative literals), which are well understood mathematically and

are known as monomials.

On the other hand, there is no correlation between irrelevance and another

common use of the term “underspecification” that I call “free underspecification.”

Free underspecification is used in many morphological theories to describe mor-

phemes that have an elsewhere-type distribution. For example, the present tense
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verb-form are of the English verb be is often said to be fully underspecified for

features of person and number. However, it is not true that either person or num-

ber are irrelevant features in the paradigm of the verb be. For instance, changing

the value of number in the feature bundle [present, 1person, pl.] to [present,

1person, sg.] changes the phonological realization from are to am. Thus, the

notions of strict and free underspecification are quite different. Free underspec-

ification is usually used in tandem with blocking in order to correctly account

for the distribution of the underspecified morphs. (Reasoning with blocking is a

little trickier and less standard in formal theories than reasoning with monomials

because it involves non-monotonicity.)

If for every form there is only one meaning in the language, then irrelevant

features will be intersected out by the cross-situational learner. That is, in the

absence of homonymy, cross-situational intersections are sufficient for solving the

mapping problem and the problem of identifying irrelevant features (given that a

few other properties hold in the input, see proofs in chapter 5). This fact by itself

suggests a great advantage for languages with no homonymy - the existence of

an extremely simple learning strategy for them. However, all languages contain

instances of homonymy, which presents a problem for learning. In the next few

sections I explores why homonymy is problematic, and briefly look at a few other

phenomena that also provide a challenge for the cross-situational learner.

2.2.3 Homonymy as a problem for cross-situational

learning

Recall that cross-situational approach involves making inferences over identical

forms that occur across different situations. The first obvious case when this ap-

proach would fail is when identity of form does not imply identity of meaning and
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instead is merely accidental, i.e. when the target language contains homonymy.

Reasoning across different situations based on forms that are homonymous

will lead to overgeneralization (i.e., predicting a wider than actual distribution of

morphs). For instance, consider a German verbal paradigm in 2.1 where the suffix

-e occurs in several different verb-forms. It is evident from this example that the

only feature value common to all contexts in which -e occurs is singular. Thus,

a simple cross-situational learner would wrongly infer that the distribution of -e

must be restricted to singular. This, however, would be an overgeneralization

since there are many other singular contexts in which the morpheme -e does not

occur.

Table 2.1: The present and past forms of the German verb “to play”
present past

1p.sg spiel-e spiel-t-e
2p.sg spiel-st spiel-te-st
3p.sg spiel-t spiel-t-e
1p.pl spiel-en spiel-t-en
2p.pl spiel-t spiel-te-t
3p.pl spiel-en spiel-t-en

Given that homonymy is problematic, we would like to know how common

it is in natural language. For, if it is extremely common, the cross-situational

approach is completely unfounded: as the German example above shows, the

invariant features are not helpful in determining meanings of morphemes in the

presence of homonymy. On the other hand, if homonymy is rather rare, then

the cross-situational approach could still capture the majority of the data and

something special could be done in the remaining cases.

It is clear that homonymy must be limited in some way. Imagine a language

where every time you wanted to express a new meaning you would use exactly

the same word. There would be no structure in such a language for the listener to
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be able to infer anything about meanings of utterances. Nevertheless, it appears

that homonymy is relatively common in inflectional paradigms,14 although exact

limits on it are generally not known. In this dissertation, I attempt to establish

such limits by investigating how frequent homonymy occurs in verbal subject

agreement paradigms.

As we will see in chapter 4, based on my calculations homonymy can be de-

tected in roughly 25-30% of verbal agreement paradigms. Additionally, and more

interestingly, I find that the cases of homonymy that do occur in inflection tend

to be restricted in a particular way. This tendency has to do with the fact that

homonymous patterns that cannot be described with blocking are particularly

rare. The upshot of this statistical restriction is that it provides a clue for a

learner about how to resolve most ambiguities arising due to homonymy.

To sum up, although homonymy is problematic for the cross-situational learner

(it leads to overgeneralizations), we will see that the space of possibilities for at-

tested form-meaning mappings is still structured in a way that makes learning

easier. This idea is made more concrete in the chapter on learning.

14The fact that homonymy is relatively widespread in inflection might be related to a general
tendency of homonyms to be prevalent among frequent lexical items. Ke (2004) analyzed the
CELEX corpus for English, German, and Dutch and found that homonyms occurred in the
highest frequency bands. He examined only a subset of homonyms, namely words that are
spelled differently but pronounced the same. In English, 35 out of the 100 most frequent words
were homophones, and 32 of them belonged to the closed class lexical items (cf. “I”/“eye,”
“to”/“too,” “there”/“their,” etc). Why would homonymy be more common in high-frequency
lexical items? An intuitive explanation of his fact is that high frequency lexical elements are
usually short, and hence allow for fewer phonological contrasts. Ke found some confirmation
of this hypothesis by examining the degree of homophony among monosyllabic morphemes
in 20 Chinese dialects. He found that dialects with the smaller syllable inventory had more
homophony. Another possible reason for frequency of homonymy in inflection is the fact that
phonological processes such as attrition, that lead to neutralization of phonological oppositions
and eventually to homonymy, often occur at the word-edges where inflectional elements reside.
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2.2.4 Other problems for cross-situational learning

Null morphs (or non-overt realization of meaning) and some co-occurrence re-

strictions on morphs also present an obstacle for the cross-situational learner.

Since it is impossible to directly observe when the null morphs occur in the

string, it is impossible to rely on such occurrences for computing cross-situational

intersections. Moreover, having multiple null morphs in the lexicon is like having

homonymy that cannot be detected. And since homonymy is not handled by the

simplistic cross-situational learner, neither are multiple null morphs. I discuss

the problem of null morphs and possible solutions to it in chapter 5 section 5.2.3.

Depending on the particular mode of combination used for semantic val-

ues, some co-occurrence patterns among morphs could also be problematic for

a learner that only calculates intersections. For example, if the meaning of the

whole is exhaustively defined by the sum of the parts (a multiunion), then each

semantic symbol that is part of the meaning of the string should be contributed

by a single phonological symbol in that string. In accord with this assumption,

given a word like cran-berry (provided that it consists of two parts), the mean-

ing BERRY can only be attributed to one but not both of the parts. But the

invariant values associated with cran will include BERRY since this morpheme

always co-occurs with the stem berry. Setting aside the issue about what the

appropriate analysis of cranberry is, if one is indeed aiming at representations

where the same feature cannot be associated with more than one morph in a

string, cross-situational learner by itself won’t always be sufficient. It would have

to be augmented with some additional inferences to further narrow down the

hypotheses about morphs’ meanings (see Siskind (1996); Kobele et al. (2003) for

examples of such inferences).

My learner will avoid this issue all together because it will assume that the
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appropriate mode of combination for inflectional affixes is unions rather than

multi-unions (see more discussion on this point in chapter 5 section 5.2.1). Con-

sequently, including the meaning BERRY as part of the meaning of the morpheme

cran will not be problematic (but keep in mind that my algorithm applies to in-

flectional sequences rather than to the open class lexical items).

2.2.5 Synonymy and free variation

At first glance, the flip-side of homonymy, free variation or perfect synonymy

does not appear to be problematic for the cross-situational learner.

Since we begin with distinct forms and proceed to generalize over the envi-

ronments in which they occur, synonymy is handled straight-forwardly because

it presents no ambiguity on the form-side. If we have two perfect synonyms, they

will end up having exactly the same invariant features and, therefore, will be

predicted to stand in free variation.

However, in a language with abundant homonymy, free variation can look

very much like certain types of homonymy at an intermediate learning stage,

especially when many of the irrelevant features have not yet been ruled out. This

particular difficulty will be made more clear when we consider exactly what the

learning algorithms in chapter 5 do in the presence of free variation.

In broad terms, the difficulty with free variation is that, at an intermediate

learning state, it can be easily confused with a certain type of homonymy, that I

call overlapping homonymy. The similarity between free variation and overlap-

ping homonymy can also be seen from the fact that both are ruled out by the

blocking proposals (for more discussion of this fact see section 5.7.3).

Although I will not concentrate as much on the problem of free variation,

let me note here that it is a long standing idea that morphological doublets
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are relatively rare in inflection, and when they do occur, they are historically

unstable (Kroch 1994). Inflectional paradigms seem to be structured in such

a way as not to allow more than one affix per paradigm cell. This is a much

stronger restriction than a simple ban on perfect synonymy, as it also bars partial

synonymy or taxonomic dependencies among affixes. That is, it is very unusual to

see morphological systems where one could use one morpheme meaning “1 person,

singular,” or another morpheme meaning “singular” in exactly the same situation

and in the same string (cf. words like “beans” and “legumes” in the open class

vocabulary). Similarly, we don’t normally see languages where some morpheme

could be used to express “1 person” (any number) and another morpheme to

express “singular” (any person) given that person and number are expressed

cumulatively. If this were the case then we would expect that in the environments

that included both “singular” and “1 person” feature values, either of the two

morphemes could occur. (Note that in these examples the hypothetical morphs

are not quite synonymous since at least one of them can occur in contexts where

the other cannot.) Nevertheless, examples of free variation are attested and their

learning has to be also eventually addressed.
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CHAPTER 3

Constraints on form identity

At the end of the previous chapter I showed that homonymy presents a problem

for learning morph-meaning mappings. A natural response to this problem is

to observe that homonymy would not be a serious barrier for learning if it were

restricted in a helpful way. For example, if homonyms always occurred in distinct

contexts, then these contexts could be used to differentiate them.1 The effects of

context in inflectional morphology are briefly considered in section 3.1. However,

most of the discussion in this chapter focuses on other kinds of restrictions on

homonymy (and form identity in general) specified shortly.

The connection between the learner and the restrictions on homonymy is at

least implicitly assumed in the literature on syncretism (Carstairs, 1984; Williams,

1994; Stump, 1993; Luraghi, 2000). In particular, this literature is concerned with

the distinction between “systematic” and “accidental” identity of form, where

“systematic” is most naturally interpreted as grounded in some principle that

guides learning and language change.

Muller (2004) defines the notion of systematic as follows: “some instances of

syncretism are ... systematic in the sense that they should follow from the mor-

phological analysis.” (p.197). The particular morphological analysis that Müller

(and other proponents of DM) assumes draws a distinction between instances of

1For example, the cross-situational intersections could be taken within but not across dif-
ferent contextual domains.
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syncretism that can be described with a single lexical entry (+ the assumption

of blocking), and those that involve positing several lexical entries. It is the first

kind of syncretism that is viewed as systematic. However, if the morphological

analysis is completely disconnected from the analysis adopted by the speakers,

then the statement that something is systematic just in case our theory says so,

is meaningless. One coherent way to understand this statement is to assume that

the morphological analysis is connected to the analysis imposed by the learners,

so that whatever patterns can be easily captured by a particular morphological

theory (e.g., because it involves positing a single lexical entry vs. several homony-

mous lexical entries) are also easily learned by the speakers and hence show signs

of systematicity (such as relative stability, productivity, frequency, or whatever

is normally meant by “systematic”).

The first non-contextual restriction on form identity that I discuss has to do

with an observation that many instances of identical phonological realizations

in paradigms are due to neutralizations of partially irrelevant features (features

that are underspecified in some context). Some authors want to restrict the term

syncretism to this type of form identity only (Meiser, 1993). Syncretism defined

in this way does not present an instance of true homonymy (as discussed in section

2.2.2). In the next chapter, I consider how common this type of syncretism is.

This question will also help us determine a more general bound on homonymy in

paradigms.

The second major restriction I consider explores an idea that seems to be

particularly dominant in the Distributed Morphology tradition, namely that,

among cases of inflectional homonymy, those that can be accounted for with help

of blocking (along with a few other theoretical tools) are systematic (and hence

common), while all others are accidental. This statistical restriction will also be
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evaluated in the next chapter.

3.1 The effects of context

When adult speakers are faced with ambiguous input, the first intuitive idea

about how they manage to resolve the ambiguity has to do with contextual clues

that restrict the range of possible hypotheses, hopefully to a single most probable

option. For example, when a geometry teacher speaks of an “angle dividing a

plane,” most students are not going to think of an airplane. The real world

context (such as being in a geometry class), as well as the linguistic context

(proximity to the words angle and dividing) will most likely be sufficient for

disambiguating the word plane.

For the purpose of learning, if homonyms were indeed always restricted to

contextually distinct domains in the adult language, this would potentially be of

big help: once children learned to differentiate different contextual domains, they

would be home free in terms of dealing with homonymy.

For example, if homonymy were possible across but not within different parts

of speech, then by the time children learned to classify words into different parts

of speech, they would be able to easily differentiate homophones. In fact, this is

a standard technique used in natural language processing for word sense disam-

biguation for words like paint (noun) and to paint (verb). With development of

part-of-speech tagging methods (whose state of the art performance is at 95%),

homonymy that can be easily disambiguated by part of speech is no longer con-

sidered to be problematic. Thus, most word sense disambiguation models only

focus on homonymy within the same grammatical category (Ide and Veronis,

1998). (Parts of speech are often determined based on syntactic information con-
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tained in the neighboring words.) The fact that such a diambiguation strategy

is successful makes it plausible as a technique that is at least on some occasions

is also used by human comprehenders and learners.2

Another kind of obvious contextual difference that learners can potentially

take advantage of is the syntactic position of morphemes (or words) within a

larger phrase. Since in inflectional morphology the position of morphs within a

word is largely linearly fixed, morph order provides an easy, string-evident, and

tangible clue for differentiating homonymous affixes in different positions.3. For

example, consider the following phrase in Aymara, an indigenous language of

South America (from Hardman, 2001).

2To take advantage of this method, human learners would have to be able to differentiate
parts of speech before they attempt to learn meanings, that is, in the absense of any semantic
information. We don’t know yet whether and how this can be done, but there are some proposals
in the literature about first possible steps a learner can take to achieve this goal. In particular,
Finch and Chater (1992); Mintz (2002) show that classifying words based on their occurrence in
the same frequently encountered frames (such as [was . . . ing] or [the . . . is ], etc.) correlates well
with membership in the same grammatical categories. In reality, it could be that the two types
of knowledge, grammatical category membership and form-meaning mappings, are acquired
side by side in a bootstrapping fashion - knowing a little bit about grammatical categories can
help to zero in on affix meanings, and vice versa, knowing the meaning of the affix might help
to determine the grammatical category.

3However, there are some situations, where the position of an affix cannot be easily deter-
mined from the string because the string also contains some null morphemes. For instance,
this could happen if all the slots in between the homonymous affixes are left empty, or if all
the slots including the slot where one of the homonyms occurs are left empty. For example,
it is not immediately clear whether the morph -s in the English string cat-s is the second-slot
morph marking plurality or the third-slot morph marking possession (assuming that these two
meanings are marked in different slots).
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(1) kawk-sa-ru-sa

where-loc.side-direction-wh

“To which side”

In this language a suffix sa that occurs directly after the stem (usually attached

to deictics and interrogatives) is a locational suffix meaning something like “side.”

A distinct but homonymous suffix sa marks information question either directly

on the wh element or on the head of the wh containing phrase. Given their

distinct distribution, the two sa’s are not likely to be confused with each other,

even when they don’t occur together in the same sentence (unless the situation

discussed in footnote 3 arises).

The idea that distinct order of elements can resolve ambiguity is also familiar

from the commonly observed tendency of languages with an impoverished inflec-

tional system to develop fixed word-order. This is because when arguments are

not distinctly marked, word order often (although not always) helps to determine

their identity.4

Contextual disambiguation based on order within a string is easy to implement

within the simple model of learning I propose in chapter 5. My learner will take

the position of morphs within words into account, which automatically provides

a way for disambiguating homophones occurring in different word slots.

Let me finally mention another type of distributional data that is potentially

4Even in languages with relatively free word order, certain orders become preferred in the
presence of looming ambiguity. For instance, in Russian, as in many Indo-European languages,
nominative and accusative inflectional markers are identical in some declensions. Word order is
generally free in Russian, but sentences in which homonymy creates ambiguity between subject
and direct object, are normally interpreted to have a fixed SVO order (Plank, 1980). For
example,

Mat’ l’ubit doc̆.
mother (nom/acc) loves daughter (nom/acc).
“The mother loves the daughter.”
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helpful in homonymy disambiguation. This data has to do with co-occurrence of

ambiguous morphemes with other morphemes or free forms that mark some or

all of the same distinctions unambiguously. To see how this might happen with

bound morphemes, consider the data below from the New Guinean language Daga

(based on the grammar by Murane, 1974). In this language suffixes occurring in

several slots can have different shape depending on person and number. For

instance, suffixes that occur in the second slot after the extended stem mark

tense, person, and number. These suffixes can sometimes be followed by the

so-called “medial suffixes” that make a medial verb (as opposed to a final verb).

The paradigm of the verbal suffixes in the past tense for the conjugation A is

given below:

Table 3.1: Daga past tense, class A suffixes (Murane, 1974)
singular plural

1 -an -aton
2 -aan -ayan
3 -en -an

Notice that in the above paradigm 1st person singular suffix is homonymous

with the 3rd person plural suffix. As mentioned before, the agreement suffixes can

be followed by the medial suffixes which also have different allomorphs depending

on person and number (see table 3.2).

Table 3.2: Daga past tense, medial suffixes (Murane, 1974)

singular plural
1 -a -i
2 -a -a
3 -i -e

The medial suffixes are highly ambiguous, showing no distinctions between

1st person singular, 2nd person singular and 2nd person plural, as well as no
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distinction between 3rd person plural and 1st person plural. However, when

these suffixes are combined with the agreement suffixes, each person and number

combination is actually uniquely determined (see table 3.3.)

Table 3.3: Past tense of the Daga verb war “to get”

singular plural
1 war-an-a war-aton-i
2 war-aan-a war-ayan-a
3 war-en-i war-an-e

The learner that keeps track of the co-occurrence patterns among morphs

could take advantage of them in disambiguating the types of homonyms discussed

above. For example, such a learner could adopt a conservative generalization

strategy, such that it will initially treat morphs that have different co-occurrence

patterns as belonging to different sub-classes. This learner will not generalize

across such sub-classes, until it determines that it is safe to collapse them.5

It remains to be quantitatively shown that inflectional homonymy in general

is more prevalent when it can be contextually disambiguated.6 But even if it

were the case, this would still not make such homonymy trivial to learn. This is

true in particular because at the early stages of learning children might not have

a strong sense of what constitutes a different contextual domain, or they might

not be able to integrate many sources of information in trying to interpret and

decipher meanings of words. Some psycholinguistic studies suggest this might

5My learner will not be as sophisticated, it will only keep track of the morphs’ positions and
not of their co-occurrence patterns.

6Plank (1980) shows that this might at least be true for particular constructions. He studied
possessive constructions in which there was a danger of an identical encoding of the possessee
and the possessor. There seems to be a strong tendency in a number of languages he considered
for keeping this contrast distinct while allowing neutralizations of semantic contrasts in many
other areas, including the subject-object contrast encoded by case. For example, in languages
such as Finnish and Uzbek, the word order in possesive constructions is generally free, except in
cases where the genitive is syncretic with the nominative. In such cases, the strict word-order
presumably indicates the default interpretation of the possessor possessee relationship.
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be true for some non-distributional, pragmatic notions of context. These studies

show that children do not process information in the same way as adults do, and

in many cases fail to rely on pragmatic information in parsing ambiguous input

(Trueswell et al., 1993).

Additionally, most cases of inflectional form identity that receive a great deal

of attention in the literature come from affixes that occur in the same word slot,

and that have similar distributions, i.e., affixes that usually belong to the same

sub-paradigm. Such cases of homonymy/syncretism are less likely to be easily

accounted for by contextual differences. Therefore, we still need an alternative

strategy of dealing with homonymy. The next two sections begin to investigate

restrictions that will eventually help us to formulate such an alternative strategy.

3.2 Natural class syncretism

When we look at inflectional paradigms as they are traditionally represented in

grammars, we notice that often the same phonological form will occupy more than

one paradigmatic cell. Such inflectional identity has been the subject of many

papers seeking to define what instances of identity should count as systematic

and what instances should count as truly accidental (the use of these terms differs

depending on the theory). Systematic form identity is generally referred to by the

term syncretism. In the diachronic perspective, syncretism is used to refer to the

process of neutralization of some semantic (or even syntactic) contrast(s) which

results in the phonological merger of several inflectional markers (Bazell, 1960;

Luraghi, 1987). In other words, conceptually similar morphological categories

(e.g. “plural” and “dual”) might over time be re-analyzed as a single category

and hence be expressed by the same formal means. The idea that syncretism

reflects semantic relatedness has been present in the literature for a long time.
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It is at least implicitly assumed in many proposals about semantic organization

of inflectional features, for instance in Jakobson’s famous analysis of the case

semantics informed largely by the syncretism in the Russian nominal paradigm

(Jakobson, 1936).

If a semantic contrast is completely lost overtime, it would not occur to us to

describe the resulting pattern of identity as homonymy. Complete loss of contrasts

is simply interpreted as irrelevance or absence of some semantic distinction. But

if a contrast is neutralized only in a particular sub-paradigm of the grammar,

this looks more like homonymy since the same means are used to express several

inflectional concepts that are differentiated elsewhere in the language. Yet, in

essence, there is no deep difference between partial and full neutralization of

contrasts. Both can be described with underspecification, neither is an instance

of homonymy, and hence neither is problematic for the cross-situational learner

described earlier. For instance, if categories of gender such as “masculine” and

“feminine” are merged in the plural, but remain distinct in the singular, the

gender features will be intersected out in the plural contexts only.

Partial neutralization of an inflectional contrast could be linked to a historical

re-analysis in which semantically similar morphological concepts were merged in

particular sub-paradigms (or in the presence of some other features). From the

synchronic point of view, however, speakers are not aware of which instances of

non-distinction came about via a historical process of semantic neutralization and

which were mere accidents. What matters from their point of view is that some

instances of form identity look as though they arose via a systematic merger (i.e.,

the syncretic categories form a semantically natural class definable by a necessary

and sufficient set of feature values), while other instances of identity do not. In

the first case, the syncretic morph has a homogeneous and systematic pattern of
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distribution and can be said to have a single meaning. I will refer to this type of

identity as natural class syncretism.

If most cases of paradigmatic form identity were due to natural class syn-

cretism, this would mean that inflectional paradigms tend to avoid homonymy

(this is stated in the hypothesis below). The next chapter will address the ques-

tion of whether this hypothesis is actually true.

Hypothesis 1: Natural class syncretism, as well as full non-distinction of

contrasts should be historically stable and relatively common cross-linguistically

compared to all other types of form-meaning mappings in inflectional paradigms

(i.e., mappings involving homonymy).

3.3 The elsewhere and the overlapping homonymy

In the previous section, we saw that some instances of form identity are due

to natural class syncretism. We have put forth a hypothesis that perhaps most

cases of indenty are of this type. In this section, we will consider a possible

statistical restriction on the remaining types of form ambiguity. Namely, we

formulate a hypothesis that among the homonymous mappings the cases that

can be described with defaults are particularly common. This proposal is at

least implicitly present in many morphological theories that make use of blocking

(Distributed Morphology, Paradigm Function Morphology, Network Morphology

and others). In such theories, affixes that can be described by a single lexical

entry (or a singe rule) that has an “elsewhere” status with respect to some other

set of representations or rules are are believed to present instances of systematic

(rather than accidental) homonymy.
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The idea of defaults and “elsewhere” patterns has played a crucial role in

grammatical descriptions since Panini. It provides an intuitive short-hand for

capturing what appears to be the set of “left-over” items that do not fit into

any other well-defined category. Below, I discuss how the notion of defaults is

instantiated in the framework of Distributed Morphology, and how it ties into

the distinction between accidental vs. systematic homonymy.7

In Distributed Morphology, defaults are achieved by means of free under-

specification, the Subset Principle, and sometimes the so-called Rules of Impov-

erishment. To quickly demonstrate how these mechanisms work, consider the

following example (from the Distributed Morphology website, Sauerland (1995)).

Table 3.4: Distribution of adjectival suffixes in Norwegian, Sauerland (1995)

STRONG (used with definites) -neuter +neuter
-pl zero t
+pl e e

WEAK (used with indefinites)
-pl e e
+pl e e

In Norwegian, the weak adjectival ending -e does not differentiate number

or gender. Additionally, this ending is homonymous with the plural ending of

strong adjectives. Sauerland proposes the following analysis for the Norwegian

adjectival suffixes.

(2) DM-style lexical entries for Norwegian

zero – [-pl, -neut]/Adj +

t – [-pl, +neut]/Adj +

e – elsewhere/Adj +

7Notice that defaults do not have to be global, they can be relativized to a particular corner
of a paradigm.
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In this analysis, -e is underspecified and has the elsewhere distribution. It is used

in the plural contexts because it is the only morpheme that is compatible with

the specification [+pl] by virtue of being underspecified for number. The fact

that this morpheme is used in the “weak” contexts is explained by appealing to

Impoverishment. More specifically, when the adjective is used with an indefinite

noun (“weak” syntactic position), a post-lexical rule of Impoverishment is said

to delete the gender features from the syntactic representation. This deletion

has an effect of blocking morphemes specified for gender from being inserted into

the corresponding morpho-syntactic representation and triggering what Halle and

Marantz call “retreat to the more general case,” or the insertion of the default

morpheme into the “impoverished” syntactic node (for more details on Rules of

Impoverishment see Noyer (1998)).

Let me point out that it is possible for a single paradigm to contain several

default or “elsewhere” morphemes. (Roughly speaking, a default morpheme is

a morpheme whose distribution is described with a freely underspecified feature

matrix and a Blocking Principle.) This can happen if the defaults are nested

within each other, or if they share the same “blocker(s)”, or if they are com-

pletely disjoint. These possibilities are demonstrated schematically in figure 3.1

in (1) (2) and (3), correspondingly. I use the notation “A ≫ B” to indicate that

morpheme A blocks morpheme B. This means that B occurs in the box labeled

B (representing some natural class of meanings) except where this box overlaps

with the box labeled A.

In the case of the nested distribution in (1), the default morphemes are B and

C, where B is an elsewhere case with respect to A, and C is an elsewhere case

with respect to both B and A. In case (2), A and B are defaults with respect

to the same morpheme C. Finally, in case (3), there are two disjoint defaults C
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(with respect to D) and A (with respect to B).

Figure 3.1: Cases of multiple defaults within a single paradigm

Also note that Rules of Impoverishment (which were proposed as an alter-

native to rules of referral (Zwicky, 1985; Stump, 1993) are extremely powerful.

The only restrictive power they have comes from a stipulation that marked fea-

tures (and features that depend on them) are more likely to be “impoverished”

(deleted from the syntactic representations) than unmarked features. (However,

this connection to markedness is not specific to the impoverishment mechanism

per se and could be build into any other theory, including the rules of referral).

Since Rules of Impoverishment are not very restrictive, they don’t provide a good

way of constraining homonymy.

On the other hand, the Subset Principle and blocking proposals in general are

in principle restrictive since not all patterns of homonymy can be described by

appealing to defaults. In particular, certain patterns that I call overlapping are

not amenable to an analysis in which every morph is assigned a single lexical value

and some morphs have a default status. Figure 3.2 schematically depicts such

overlapping patterns. They can be either due to overlapping homonymy or to
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Figure 3.2: Overlapping Homonymy

free variation. More concretely, this picture shows a situation in which A and B

occur in the same sub-paradigm that lies at the intersection of the natural classes

that limit the distribution of A and B (see a more precise definition below).

To define overlapping distributions I first need to define a notion of invariant

features, and for that I need to make the terms paradigm and paradigm cell more

precise.

Definition of the Overlapping Affix Distribution

1. A paradigm over a set of features F is a collection of all complete assign-

ments of features in F to their values.

2. Each complete assignment is called a cell. For example, if F includes two fea-

tures gender (with values “masculine” and “feminine”) and number (with

values “singular” and “plural”), then the combination [masculine, singular]

is a complete assignment and one of the four cells in a paradigm over F .

3. When we say that a morph is associated with a cell, this means it expresses

features of that cell.
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4. If we take an intersection of all cells occupied by some morph m, we will

get some set of feature values that I call invariant features of m or I(m).

We can now define exactly what it means for two morphs to stand in an

overlapping distribution.

(3) Two morphs x and y, are in the overlapping distribution just in case the

two conditions below are met:8

a. x and y are in competition. That is, the invariant features of x

are consistent with the invariant features of y, which is to say that

I(x) ∪ I(y) contains no contradictory features.

b. x occurs in the domain of the invariant features of y and vice versa.

That is, ∃ a cell c in a paradigm, where c ⊇ I(x)∪I(y), such that c is

associated with x, and ∃ a cell c in a paradigm, where c ⊇ I(x)∪I(y),

such that c is associated with y.

For an example of an overlapping distribution, consider the German paradigm for

regular verbs below (I assume person features such as “participant in the speech

event” and “speaker”, and a number feature “group”).

Table 3.5: Present tense paradigm of the German regular verbs

number
person sg: -group pl: +group
1p: +part,+speak -e/-ø -en
2p: +part,-speak -st -t
3p: -part,-speak -t -en

In this paradigm, the invariant features of the affix -en (that is, the features

that are present in all cells where this affix occurs) is the set [+group]. The

8As it will be made more explicit in Chapter 5, the overlapping relation is transitive so that
if x and y are overlapping and y and z are overlapping, then x and z are also overlapping.
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invariant feature of the affix -t is [-speaker]. These two feature sets are non-

contradictory and therefore consistent with each other. In addition, -t occurs

in the domain of the invariant features of -en, i.e. in one of the [+group] cells

(2p.pl.), and vice versa -en occurs in the domain of the invariant features of -t,

i.e., in the [-speaker] cell (3p.pl). Therefore, this is an example of overlapping

homonymy. The above paradigm contains another overlapping distribution due

to free variation in the 1p.sg. cell. Neither -e nor -ø are homonymous in the

present paradigm: each can be described in terms of a single natural class of

features. Nevertheless, their invariant features are consistent, and both occur in

exactly the same domain - 1p.sg. (i.e. they meet the definition of the overlapping

distribution).

The overlapping distributions are precisely those that cannot be described

exclusively with free underspecification coupled with the Subset Principle. This

is because neither of the overlapping morphs can be said to block the other morph

since either both of them occur in exactly the same cell (free variation), or each

blocks the other in some cell (overlapping homonymy).

To the extent that overlapping distributions (free variation and overlapping

homonymy) are empirically attested, they are usually viewed as idiosyncratic or

accidental. Such patterns are hypothesized to be historically unstable and hence

in some sense non-optimal or difficult for the speakers to learn. The fact that

such patterns actually exist has been pointed out before, but as far as I know,

there has been no typological investigation of their relative frequency. I believe

this is largely due to fact that there was no clear understanding of exactly what

types of affix distributions cannot be described with blocking. Once we have a

precise formulation of such distributions (provided above) we can ask the question

of how frequent are overlapping patterns compared to the elsewhere homonymy
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and natural class syncretism.

Since, intuitively, overlapping homonymy appears to be more accidental and

more complex, the particular hypothesis that we’d like to evaluate next is that

homonymy in inflectional paradigms is rarely due to overlaps and most often can

be described as an “elsewhere” case. If this is indeed cross-linguistically true,

this would be beneficial for a learner biased to use simpler learning strategies

whenever possible.

Hypothesis 2: Elsewhere cases of homonymy are historically more stable

and more common cross-linguistically compared to the overlapping homonymy

which is expected to be rare in inflectional paradigms.

This hypothesis as well as the first hypothesis will be evaluated against typo-

logical data in the next chapter. In the next few subsections I give more examples

of overlapping distributions of three different types. The reader can skip these

sections without any loss in continuity.

3.3.0.1 Overlapping Homonymy Type 1: same invariant features

The first obvious case which allows to easily detect an overlapping homonymy

has to do with paradigms where two (or more) homonyms have exactly the same

invariant features (i.e., the intersections of all cells in which they occur are the

same). An example of this case comes from the verbal paradigm of the Cushitic

language Dhaasanac (Baerman (2004), described by Tosco 2001). All verbs in

this language distinguish two stems, which are abstractly labeled as A and B in

the table below (an example verb is given in parenthesis).

Notice that if we take the intersections of all fully specified cells occupied by

the A form, it will be equivalent to the intersection of all cells occupied by the B
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Table 3.6: Dhaasanac verbal paradigm, example verb: kufji - kuyyi “to die”

sg pl
1p (incl) – A (kufi)

(excl) A (kufi) B (kuyyi)
2p B (kuyyi) B (kuyyi)
3p (masc) A (kufi) A (kufi)

(fem) B (kuyyi) A (kufi)

forms, because both A and B occur with all possible person, number, and gender

values. So the first condition for overlapping homonymy in the definition (3) is

obviously met. It is not hard to see that the second condition, the overlapping

property, is met as well. We can verify that the Dhaasanac distribution of stem

allomorphs cannot be described by appealing to defaults, since it is impossible

for both A and B to be defaults with respect to the same sub-paradigm.

3.3.0.2 Overlapping Homonymy Type 2: equally specific invariant

features

Another example of the overlapping homonymy comes from the subset of paradigms

in which homonymous affixes have different invariant features that are consistent

with each other and neither of them is more specific than the other.9 The Ger-

man paradigm in table 3.5 presents one example of this homonymy. For another

example consider the verbal paradigm of French conjugation I verbs in the future

9Not all cases of this sort involve overlapping homonymy. Some paradigms in which in-
variant features of several homonymous morphs are consistent and equally specific are of the
“elsewhere” type. Because they are not covered by the Subset Principle the way it is defined,
there have been proposals in the literature in which the competition between equally specific
vocabulary items is resolved either by language particular preferences (see Halle and Marantz,
1993; Hjelmslev, 1935) or alternatively by a universal feature hierarchy (UFH, Noyer, 1998).
The vocabulary item that is specified for a feature appearing higher in the UFH or that is stip-
ulated to be more important by a language specific preference rule, wins the competition. Yet,
as this section demonstrates, neither language specific nor the universal hierarchy of features
can account for all patterns of homonymy in which the invariant features of two competing
morphemes are equally specific.
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tense (given in phonetic transcription in table 3.7).

Table 3.7: French, conj.I. future tense suffixes

number
person sg: -group pl: +group
1p: +part,+speak -Re -Rõ
2p: +part,-speak -Ra -Re
3p: -part,-speak -Ra -Rõ

Observe that the suffix -Rõ always occurs in the cells whose intersection yields

[+group], and the the suffix -Re occurs in the cells whose intersection is [+partic-

ipant]. These two feature sets are consistent with each other and neither is more

specific than the other. Moreover, they meet the overlapping condition: [+group]

is consistent with a cell occupied by -Re, (i.e. [+part., -speaker, +group]), and

[+participant] is consistent with a cell occupied by -Rõ (i.e. [+part, +speaker,

+group]). No feature hierarchy will help us here: we cannot stipulate that [-sg]

should override [+participant] or vice versa because blocking is happening in

both directions. One could perhaps reanalyze this example using different fea-

ture values, but the point remains - no blocking principle (even if it involves

feature hierarchies or stipulated blocking relationships) can in principle resolve

all conflicts between equally specific items.

3.3.0.3 Overlapping Homonymy Type 3: invariant features in the sub-

set relation but in the wrong direction

Finally, the last example of overlapping homonymy shows that even when invari-

ant values of competing morphemes stand in a subset relationship to each other,

they cannot always be accounted for by the Subset Principle. This case is illus-

trated in the sub-paradigm of the Slovenian pronominal adjective “that” in table

3.8 that encompasses non-oblique cases only (nominative and accusative).
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Table 3.8: Slovenian pronominal adjective “that”

sg du pl
masc neut fem masc neut fem masc neut fem

nom. tâ tô. tâ tâ tê. tê. t̂ı tâ tê.
acc. tâ tô. tô. tâ tê. tê. tê. tâ te

Calculating the invariant features for all different forms of “that”, we get the

following.

(4) The invariant features for forms of “that”

t̂ı [-oblique case, +nom, -sg, -du, +masc]

tô. [-oblique case, +sg, -du, -masc]

tê. [-oblique case, -sg]

tâ [-oblique case]

Given the above paradigm and the list of invariant feature values, the reader

can verify that the forms tê. and tâ meet the requirements for the overlapping

homonymy. Correspondingly, Slovenian data cannot be explained by the Subset

principle. In fact, the Subset Principle applied to the lexical representations

based on the invariant features would make a wrong prediction in this case.

More specifically, it would predict that tê. should appear in the contexts [-oblique

case,-sg,+du,+masc] because it is the most specific affix compatible with this

context. But in fact, the form that actually appears there is tâ. (Similarly, tâ

also overlaps with tô.)

One important conclusion we can draw from this discussion is that a simple

learning algorithm that finds invariant features by underspecifying whenever pos-

sible, and that applies the Subset Principle to resolve the resulting conflicts, will

not do. It will fail to correctly account for instances of overlapping homonymy.
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The question of what the learner should do in such cases will be taken up in

chapter 4.
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CHAPTER 4

Evaluating constraints on form identity

In this chapter, I take a look at whether the restrictions on form identity discussed

in chapter 3 are supported by typological data. Given that these restrictions

are hypothesised to be connected to the learning algorithm, the rationale behind

considering typological frequencies rests on the common assumption that patterns

grounded in learning biases should be more frequent cross-linguistically than the

merely accidental patterns. The intuition behind this idea is this: presumably

the learner will have more difficulty in learning accidental patterns and over time

such patterns should be regularized and appear less frequently.1

Recall that there are two claims that we would like to evaluate in connection

to phonological realizations of semantic contrasts. These claims are repeated

below.

(1) Hypotheses for evaluation

a. Form identity due to homonymy is relatively rare in morphological

paradigms. That is, most mappings between form and meaning are

either unambiguous or are instances of natural class syncretism (due

to partial neutralization of some semantic contrasts).

1In reality, things are a bit more complicated. For instance, even if accidental homonymy
diminishes over time, new instances of it emerge afresh. More generally, there are other factors
besides learning biases that affect language change and the amount of affixal ambiguity. Nev-
ertheless, it could still be that a particular learning mechanism is biasing the empirical data
which is reflected in strong typological preferences, if not in categorical restrictions.
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b. Among attested instances of inflectional homonymy (i) elsewhere pat-

terns are common, and (ii) overlapping patterns are rare

Typological studies investigating constraints on inflectional identity are not

numerous, but they do exist. The most comprehensive of such studies is per-

haps presented in the recent book by Baerman et al. (2005), based on typological

work of the Surrey Morphology group. This book attempts to evaluate vari-

ous notions of syncretism proposed over the years against a typologically diverse

sample of languages (based in part on the sample from the World Atlas of Lan-

guage Structures and in part on the authors’ own databases). The data used in

this sample has been compiled into the Syncretism Database available on-line (at

www.smg.surrey.ac.uk/Syncretism/index.aspx).

In their book, Baerman et al. briefly discuss the proposal that syncretism re-

flects an underlying organization of semantic features into natural classes. How-

ever, the models of feature structure they discuss include the “elsewhere” syn-

cretism into the category of natural class, unlike the terminology I have adopted.

In these models, as long as syncretism can be described with feature underspec-

ification (whether “free” or “strict”) it is considered to reflect a natural class

grouping (the blocking relationships are implicitly assumed). Baerman et al.

give several examples that cannot be accounted for in terms of underspecification

on any assumption about the feature structure2, although they don’t address the

question of exactly how wide-spread such patterns are.

In this chapter, I will take a closer look at this question, as well as the ques-

tion of the overall frequency of homonymy in inflection. In particular, I will

2The only exception is the so-called cross-classifying model of features from Johnston 1997.
However, from what I can understand, this model allows one to group any features whatsoever
into a “natural class” and thus is completely nonrestrictive.
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examine verbal agreement paradigms of 30 genetically and geographically diverse

languages. This sample of languages was largely based on the Surrey Person

Syncretism Database mentioned above. Before I discuss the typological data, I

lay out a feature analysis of agreement morphology that will serve as a frame of

reference for evaluating semantic relatedness of inflectional contrasts.

Also, before I turn to the typological data, I attempt to address a frequently

neglected issue of the expected chance frequencies of different affix distributions.

Evaluation of actual frequencies should take the chance frequencies into account

to make sure that some pattern is not frequent for a trivial reason, namely that

it is expected to be frequent by pure chance. Calculating chance frequencies is

challenging for several reasons, the most significant one being that we don’t quite

know what the appropriate underlying feature structure of universal inflectional

contrasts looks like. Thus, the calculations I present here serve only as very crude

approximations of the actual chance frequencies.

4.1 Computing chance frequencies

Given a paradigm of a particular size defined by a particular feature system, cer-

tain types of homonymy will be more likely than others for purely combinatorial

reasons. To give a very simple example, if we have a two cell paradigm defined

over a single binary feature, there are only two possible ways to fill it, and none

of them could constitute an overlapping homonymy. This is because an overlap-

ping homonymy has to involve at least two ambiguous morphemes, and this is

impossible in a paradigm with two cells.

In order to rule out the possibility that some patterns of form identity are

cross-linguistically frequent or rare for combinatorial reasons, we would like to

64



have at least an approximate estimate of the expected or “chance” frequencies

of these patterns as a function of the paradigm size. We can conclude that a

particular type of mapping is favored if its actual frequency is much higher than

its expected frequency.

To calculate the exact expected frequencies, we would need to know what the

right feature system is, what (if any) dependencies among the features there are,

and what the maximum number of affixes a paradigm may have. Unfortunately,

we don’t have a very good theory of these facts (as I will discuss in the next sub-

section). So, as a first approximation, I will calculate the expected frequencies for

systems defined over n binary features with an assumption that all features are

independent. These calculations present an upper bound for the types of feature

systems most commonly assumed in linguistics – that is, systems including de-

pendencies among features (e.g., the feature “tense” is dependent on the feature

value “+ finite” meaning that it can only be activated in [+finite] environments).

When a feature system includes dependencies of the sort above, it can be de-

scribed as a paradigm with “gaps” where certain combinations of features are

impossible.3 So, a paradigm defined over a feature system with dependencies will

have less cells than a paradigm defined over the same number of features which

are fully independent. As a result, the assumption of independence implies that

we will be computing upper bounds for the expected frequencies of different affix

distributions. I will comment on this fact later when we consider the specific

results for the chance frequencies.

Additionally, for simplicity I assume that every cell may be occupied by at

most one affix (i.e., free variation is ruled out). Note that with no bound on

free variation, the number of possible affixes and possible affix arrangements is

3By a “gap” here I mean a logically impossible combination of features, rather than an
accidental absence of phonological realization for some logically possible distinction.
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infinite in the worst case scenario.

So, our null hypothesis is that given a paradigm with n cells and an inventory

of n affixes, any distribution of affixes such that each paradigm cell is filled by

some affix, but not every affix is necessarily assigned to a cell, is equiprobable.

The first question we want to ask is this: what is the total number of possibilities

for assigning affixes to paradigm cells? This question is answered in the next

section.

4.1.1 Total number of possible mappings

Ultimately we are interested in finding out the expected frequencies of paradigms

that contain instances of homonymy vs. those that don’t, and the expected

frequencies of paradigms with overlaps vs. those without. To calculate these

expectations, we would first need to know the total number of possible mappings

between affixes and paradigm cells under the null assumption that any mapping

is equally likely.

In the absence of free variation, we can view a paradigm arrangement as

a partition induced by affixes, where the cells occupied by the same affix are

grouped into the same partition block. The maximum number of affixes in a

paradigm with n cells is n, and the minimum number of affixes is 1. This view

helps us see that the number of all possible arrangements of affixes in a paradigm

of size n is equivalent to the number of partitions (or the number of equivalence

classes) of an n size set.4 This number equals to the sum of the “Stirling numbers

4Notice that this view gives us a way of calculating possible paradigm types, ignoring identity
of actual affixes. That is, paradigms that are isomorphic to each other up to relabeling of the
affixes are counted as the same. An alternative way of calculating the space of possibilities
would be to consider all possible mappings for a particular inventory of inflectional affixes.
For example, if we could define a finite universal set of possible affixes using a universal set of
phonemes, we could ask how many ways there are of mapping this particular set to a particular
number of cells such that every cell has only one affix in it, but not every affix need be mapped
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of the second kind,” and is also known as the Bell number (Rota, 1964). The

Stirling numbers (abbreviated S(n,k)) give us a number of partitions of a set of

size n into k subsets. The formulas for the Stirling and the Bell numbers are

given below.

(2) Stirling numbers and the Bell number

S(n, k) = 1
k!

∑k
j=1(−1)k−j

(

k

j

)

jn

Bn =
∑n

k=1 S(n, k)

For example, the number of all possible arrangements of affixes in a paradigm

with 3 cells is B3 = 5. I list all these arrangements in figure 4.1.

a b c a b b a a b a b a a a a

Figure 4.1: Partitions of size 3

Bell numbers grow extremely fast (consider their values for the first few n’s

in table 4.1).

Table 4.1: Bell numbers

number of cells, n number of different partitions, B(n)
3 5
4 15
5 52
6 203
7 877
8 4,140
9 21,147

These numbers alone are already suggestive. If any pattern of affix assign-

ment were equally likely, then even for relatively moderate-sized paradigms, we

to a cell. This would be similar to calculating the number of all possible paradigm tokens.
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would expect to see a huge number of different paradigm types with no particular

consistencies in realization of paradigmatic contrasts. However, although all lan-

guages contain inconsistencies and ambiguities, even an untrained eye can notice

that majority of the contrasts in languages are made along the lines of the natural

classes formed by the features. For example, from language to language we see

that meanings such as “singular” are realized consistently by the same morph

or a set of morphs which are phonologically distinct from the realizations of the

meaning “plural.” This observation is essentially at core of the first hypothesis

in (1), which is considered in greater detail in the following section.

4.1.2 Expected occurrence of paradigms with no homonymy

In this section we estimate the expected proportion of paradigms that contain

no instances of homonymy. Recall that non-homonymous mappings are those in

which the distribution of each affix can be precisely defined in terms of a single set

of necessary and sufficient feature values, comprising a natural class of meanings

associated with the same affix. Thus, to calculate the number of paradigms

with no homonymy, we need to calculate partitions in which each block forms a

complete natural class.

Recall that we assume features to be binary and independent. The number

of natural classes for a paradigm defined over n binary independent features is

equivalent to the number of ways in which a feature matrix can be underspecified.

This number is 3n given that each feature could range over three possible values:

+, − or underspecified. There is however no mathematical formula (that I am

aware of) for finding the number of partitions in which each block forms a natural

class. To calculate this number, I used a program written by Jeff Heinz for the
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purpose of generating natural class partitions of phonological features.5 The

results of these calculations are shown in table 4.2.

Table 4.2: Expected proportion of paradigms with no homonymy

feat. cells # of nat. # of parad. with # of possible p. of parad. with
classes no homonymy partitions no homonymy

n 2n 3n - (no formula) B2n

1 2 3 2 2 1
2 4 9 8 15 .53
3 8 27 146 4,140 .03
4 16 81 61,712 104,8 ∗105 5.8 ∗10−6

As you can see, the proportion of paradigms with no homonymy (i.e., paradigms

in which each partition forms a natural class) decreases very rapidly as the size

of the paradigms grows. For instance, in a paradigm with 8 cells defined by 3

binary features, the percentage of affix arrangements that contain no homonymy

is already less than 5 percent. In other words, if affixes were distributed in a

completely random way, then paradigms with no homonymy would be very rare.

Recall that these calculations present an upper bound for systems containing de-

pendent features. Thus, if morphological systems include feature dependencies,

the expected number of paradigms with no homonymy is even lower than the

estimations above suggest.

This result is perhaps not so surprising: we would not expect languages to

respect the 1-1 correspondence between forms and meanings by pure chance. It

seems only natural that the 1-1 property of semantic mappings is systematic and

would be difficult to obtain randomly.

5The software that I used for this calculation can be obtained from
http://www.linguistics.ucla.edu/people/grads/jheinz/software/index.html).
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4.1.3 Expected occurrence of paradigms with overlapping and else-

where homonymy

In the previous section, we saw that fully unambiguous paradigms are not ex-

pected to be frequent by chance. Thus, an overwhelming majority of affix ar-

rangements occurring completely randomly are very likely to involve homonymy.

The question we ask in this section is how many of these arrangements are ex-

pected to include at least one instance of overlapping homonymy? Those that

don’t include any overlapping homonymy must be cases of elsewhere distributions

(describable by blocking and underspecification).

Once again, there is no easy formula for calculating the proportion of ar-

rangements including overlaps. I did it by writing a computer program that

first generated all possible partitions for a set of cells defined by n binary fea-

tures, and then counted how many of these partitions included cases of overlaps.

As before, to calculate the expected frequency, we will divide this count by the

total number of possible arrangements given by the Bell number. The propor-

tion of the elsewhere arrangements is found by subtracting the expected propor-

tions of paradigms with overlapping homonymy and the expected proportions

of paradigms with no homonymy from 1. The results of these calculations are

summarized below.

Table 4.3: Upper bounds on overlapping homonymy

feat. cells p. of parad. with p. of parad. with p. of elsewhere
no homonymy overlaps paradigms

1 2 1. 0 0
2 4 0.53 1/15=.06 .41
3 8 0.03 2,658/4,140=.64 .33

We see that the proportion of paradigms containing at least one instance of

overlapping homonymy grows extremely fast (in reverse proportion to paradigms
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root

+f1 -f1

+f2 -f2

+f3 -f3

+f4 -f4

Figure 4.2: A feature hierarchy with dependencies

with no homonymy). Thus, the bigger the paradigm, the more we can expect it

to include an instance of overlapping homonymy by chance.

However, these estimations are not particularly telling if the actual frequency

of overlapping distributions turns out to be rather low. This is due to the general

fact that upper bound estimates are only useful if the observed frequencies exceed

them. The worry is that if overlapping patterns are empirically rare, it could still

be the case that they are expected to be rare given feature systems with many

dependencies. To check this hypothesis, I tried to estimate expected proportions

of overlapping homonymy in such systems. To take an extreme case, I looked

at the feature systems with the maximum number of dependencies, i.e., systems

in which all but one feature are dependent. Such feature systems look like the

schematic hierarchy in 4.2. Notice that the number of distinct cells in paradigms

of this type equals n+1. Correspondingly, the number of total affix arrangements

will be B(n+1).

Running my program using the feature systems with the maximum number

of dependencies I obtained the resuts shown in table 4.4.

We see that in feature systems with many inter-dependencies among features,

the proportion of overlapping homonymy is even higher than in systems with fully
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Table 4.4: Overlapping homonymy in systems with many dependencies

.

feat. cells in a # of parad. with p of parad. with
paradigm overlaps overlaps

n n + 1 ? ?/Bn+1

2 3 0 0/5=0
3 4 2 2/15=.13
4 5 15 15/52=.29
5 6 91 91/204=.44
6 7 523 523/877=.60

independent features (if we contrast paradigms of the same size, not paradigms

defined over the same number of features). For example, a 7 cell paradigm over

6 dependent features allows a much greater proportion of possible overlapping

arrangements than an 8 cell paradigm with independent features (0.6 vs. 0.33).

I tried a few other hypothetical systems with fewer dependencies, and in all of

them the expected proportion of overlapping homonymy grows extremely fast as

a function of paradigm size.

Thus, I conclude that if affix arrangement were completely arbitrary, most

paradigms would involve at least some cases of homonymy; and if the universal

feature inventory included more than 6 features (which it surely must), most of

the paradigms with homonymy would include some cases of overlapps.

4.2 The underlying structure of agreement features

The choice of features and their organization is crucial in the analysis of inflec-

tional identity because it determines to a large degree which affixes are syncretic

or homonymous. For example, depending on how one construes the person fea-

tures, consistent non-distinction between 1st and 2nd person can be viewed either

as homonymy of the two (out of 3) independent feature values, or simple unin-
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flectedness (irrelevance) of a single morphological feature in the language (e.g.

the feature [± speaker]).

There is however no general agreement about what the underlying feature

structure is for inflectional categories such as person and number. When it comes

to person features, there are several proposals in the literature that differ with

respect to what they pick out as a natural class.

For instance, Anderson (1992) analyzes the person features in terms of the

values ±you, and ±me. Under this analysis, 2nd and 3rd person form a natural

class as the [−me] category, and 1st and 3rd person form a natural class as the

[−you] category, while 1st and 2nd person don’t share any features in common.

On the other hand, Harley and Ritter (2002) propose a feature hierarchy for

the pronouns in which only 1st and 2nd person form a natural class (see figure

4.3).6 They cite sources going back to Forchheimer (1953) and Benveniste (1971)

who in some remarks suggest that 3rd person is not even a true person. The

old insight that 1st and 2nd person form a natural class is based on a number

of empirical observations. For example, some languages only have 1st and 2nd

person pronouns and use demonstratives for the 3rd person pronouns. Third

person agreement is often zero marked, while 1st and 2nd person agreement is

overt. Pro-drop in some languages (such as Hebrew and Finish) may be restricted

to 1st and 2nd person. Also in some languages with split-ergativity, the split is

conditioned by the person features: nominative-accusative case marking is used

with 1st and 2nd persons while ergative case marking is used with 3rd persons

(cf. languages such as Duirbal, Pashto). Harley and Ritter (henceforth H&R)

remark that at least since Jakobson (1971), the key distinction between 1st and

6The nodes in capital font identify three major subgroups of features. The participant

node specifies person features, the individuation node specifies number (group, minimal,
augmented) and class features. And finally, the class node encodes gender and animacy
specifications. The labels in bold represent default interpretations of the organizing feature.
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Referring Expression (Pronoun)

PARTICIPANT INDIVIDUATION

Speaker Addressee Group Minimal CLASS

Augmented Animate Inanimate/Neuter

Feminine Masculine

Figure 4.3: A morpho-syntactic feature geometry (Harley and Ritter, 2002)

2nd person, on one hand, and 3rd person, on the other, has been recognized

as the difference between discourse dependent vs. discourse independent refer-

ence. That is, what “I” and “you” refer to depends on who is speaking or being

addressed at the moment of speech, while the reference of the 3rd person is fixed.

H&R propose that the relevant person features are “participant” (in the

speech event), “speaker”, and “addressee”. The last two features are depen-

dent on the “participant” feature. Non-activation of the participant feature is

viewed as a manifestation of the 3rd person. Activation of both “speaker” and

“addressee” results in an inclusive 1st person marking. However, this theory of

person features does not predict some of the attested person categories. More

specifically, a number of languages (e.g., Hatam, Uradhi) distinguish situations

that include a speaker and addressee vs. those that include the speaker, addressee

and a 3rd person (Siewierska, 2004). This distinction is impossible to draw within

a theory that treats 3rd person as a non-feature.

Cysouw (2001) proposes that combinations of 1+2+3 (speaker, addressee and

other) persons be called “augmented inclusive,” while the 1+2 is the regular
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inclusive. These two combinations can stand in opposition to the exclusive 1st

person (1+3). Cysouw suggests to use an 8 person system to describe person cat-

egories in both singular and non-singular numbers (instead of the the traditional

6 category system). This view is exemplified in the table below.

sing. group
1+2 minimal inclusive

1 1+2+3 augmented inclusive
1+3 exclusive

2 2+3 or 2+2
3 3+3

Since there is no agreed upon feature system for the person marking, I will

remain somewhat agnostic about the precise details of such a system. I will,

however, rely on insights and proposals of other linguists about what person cat-

egories form a natural class, which will be sufficient for the purposes of evaluating

degrees and types of homonymy.

The natural classes with respect to person values (and their rough semantic

descriptions) assumed here are summarized in table 4.5.

Table 4.5: Natural classes of person values

1+2 Participants in the speech event
1incl+1excl including the speaker
1incl+2 including the addressee
2+3 excluding the speaker
1incl+1aug.incl including the speaker and addressee

I have already discussed the reasons for grouping 1st and 2nd person into a

natural class. There are also motivations for grouping 2nd and 3rd person into a

natural class, which I will discuss shortly. On the other had, there is no strong

empirical support for grouping 1st (excl.) and 3 person together, although both of

these categories are logically connected as excluding the addressee. (Perhaps this
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could be accounted for in a system where “addressee” was a dependent feature

of the “+participant” node only.) The grouping of 1st person inclusive and

exclusive forms is widely accepted as reflecting a natural class category realized

syncretically in many languages (e.g., Indo-European languages). Also, since on

practically all analyses of person, “inclusive” is analyzed as including the features

of both the speaker and the addressee, I assume that 1st person inclusive also

forms a natural class with the 2nd person. Minimal inclusive and augmented

inclusive form a natural class according to Cysouw, although this grouping will

be tangential for my purposes since no languages in my sample distinguished

augmented inclusive.

Below, I go over some considerations in support of grouping 2nd and 3rd per-

sons as a natural class. The view that 2nd and 3rd person form a natural class

goes back to the old tradition in linguistics and anthropology (as discussed in

Forchheimer (1953)). This grouping coincides with the intuitive (albeit egocen-

tric) division of the world into us - 1st person - and everything else - 2nd and 3rd

person.

This grouping is also supported by the facts about syncretism (including the

data I discuss later). For instance, Baerman (2004) reports that many languages

do not distinguish between 2nd and 3rd personal pronouns and 2nd and 3rd

person agreement marking (either in the singular, or in the plural, or in both

number categories). His data is based on the sample of languages considered in

Cysouw (2001), with addition of a few languages from the syncretism database

mentioned earlier.

Another indirect evidence that 2nd and 3rd person stand in opposition to the

1st person is the fact that in languages in which verbs agree for gender only in

some persons, the division is either between the participants and non-participants
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Table 4.6: Neutralization of person distinctions (based on Baerman, 2004)

Num. of lang. in the sample 1p=3p 1p=2p 2p=3p
pronouns 18 1/18 5/18 12/18
verb agr. 27 5/27 9/27 13/27

with gender being marked on the 3rd, non-participant person (e.g., Ket, Harar

Oromo, Swahili, Iraqw), or between 1st and non-1st persons with gender being

marked on the 2nd and 3rd person (e.g., Hebrew, Olo, Beja). On the other hand,

1st and 3rd persons, to my knowledge, never pattern together in inflecting (or

not inflecting) for gender to the exclusion of the 2nd person.

Turning to number, H&R assume that features such as “group” and “minimal”

are involved in marking number distinctions (cf. the hierarchy in 4.3). Just like

“speaker” and “addressee”, these features can combine to form another category,

in this case “dual.” The intuition is that the most minimal group is a group of

size 2. The feature “minimal” has a further dependent feature “augmented” that,

when activated, can indicate “trial” or “paucal” numbers (paucal is usually used

with small groups between 2 and 6 objects). In all examples given by H&R, the

feature “augmented” always co-occurs with the feature “group”. H&R do not

discuss what happens when “minimal” and “augmented” are activated together

without the feature “group” (which is logically possible given their hierarchy). I

suggest a slight modification to their number hierarchy to make it more consistent

(see figure 4.4).

According to my number hierarchy (depicted in figure 4.4), languages can be

broken down into three types. Those in which only the feature “group” is rele-

vant, distinguish between what we in English refer to as singular (-group) and

plural (+group) numbers. The second type of languages also distinguish between

minimal vs. non-minimal groups. Following H&R, I assume that depending on
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INDIVIDUATION

- group + group

- min + min

- aug + aug

Figure 4.4: Number geometry

whether the language uses determinate or indeterminate way of counting in the

sense of Corbett (2000),7 this distinction could be instantiated either as “few”

(paucal) vs. “many” (pl.) or as “two” (dual) vs. “more than 2” (pl.). That

is, a minimal determinate group will be normally interpreted as a group of size

two, while a minimal indeterminate group will be interpreted as a group of small

size (usually 2-6). The third type of languages utilizes the feature “augmented”

which refines the category “minimal” into minimal non-augmented and minimal

augmented group. An augmented group has an additional member (or a few

members) on top of the members included in the minimal group. This again

could be either a division between “two” (dual) and “more than two, but still

minimal” (paucal) or “two” (dual) and “three” (trial). Notice that this fea-

ture hierarchy accounts for Greenberg’s universals that no language distinguishes

trial without distinguishing dual and that no language distinguishes dual with-

out distinguishing plural (Greenberg, 1963). This generalization follows from the

general premise that if a language has a marked value of some feature, it also has

7“Determinate” refers to exact counting, such as one, two, three, etc. and “indeterminate”
refers to approximate way of counting.
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its unmarked value. As it is apparent from the number geometry I propose, dual

is an unmarked counterpart of trial in languages that have the concept “aug-

mented,” i.e., dual is [-augmented] while trial in [+augmented]. Similarly, plural

is an unmarked counterpart of dual in languages that have the concept “minimal

group”, i.e., plural is [-minimal] while dual is [+minimal]. The traditional terms

singular, dual, plural are somewhat misleading as they can encompass different

categories depending on which underlying features are activated in the given lan-

guage. Thus, I will only use them when it does not lead to confusion, otherwise,

I’ll stick with the features group, minimal and augmented.

As for the analysis of gender and animacy, the features assumed in the H&R’s

analysis of the class node (see figure 4.3) will suffice for my purposes. In this

analysis, feminine and masculine form a natural class as the “animate” categories,

in the opposition to the “inanimate”/neuter category. (However, for a more

complete analysis, we would probably also like to distinguish grammatical gender

within the inanimate category for languages in which inanimate nouns are marked

for gender.)

4.3 Empirical data

Given the rough idea about expected frequencies (from section 4.1.2) and a con-

crete set of assumptions about the verbal agreement features, we now turn to

evaluating the two hypotheses in (1) at the beginning of this chapter against the

empirical data.

The data in my sample comes from 30 genetically and geographically diverse

languages, all of which show some degree of form identity in the realization of

agreement features. Most of these languages were taken from the University of
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Surrey Syncretism Database. However, since this database was constructed with

slightly different goals in mind, and since the examples it contained didn’t always

include all the relevant information, instead of querying the database I just used

it for selecting languages with person/number syncretism so I could consult the

relevant grammars for these languages.

All paradigms included in my sample encode subject agreement, or in a few

languages, agreement with the most prominent argument.8

Agreement contrasts expressed in these languages include person (1st incl. or

excl./2nd/3rd), number (sg/pl/du/trial), nominal class (including animacy, gen-

der and some other class distinctions), degree of politeness, and switch reference.

Occasionally, other verbal features are expressed cumulatively with agreement

features, such as tense, modality, conjugation class, etc. A single language might

have a different pattern of agreement across different tenses, mood, aspect, conju-

gations and other distinctions. Thus, a single language often contributed several

different paradigm types to the sample. The total number of paradigms came to

93. Paradigms that were isomorphic to each other, i.e., that had the same inflec-

tional pattern but different affixes, were not counted more than once. Homonymy

and syncretism sometimes occur across these different paradigms; however, to

narrow down the scope of inquiry, I will only focus on identical realization of

feature values within a single agreement paradigm.

The information about the languages included in the sample and the number

of paradigms contributed by each language are summarized in table 4.7.

8In some languages, verbs agree with whatever argument is higher on some hierarchy of
prominence, usually the person hierarchy 1 >> 2 >> 3.
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Table 4.7: Language sample

Language Family Region Num. of
paradigms

1. Aleut Eskimo-Aleut North America 1
2. Amahuaca Panoan South America 3
3. Amele Trans New-Guinea New-Guinea 4
4. Atakapa Gulf North America 1
5. Bagirmi Nilo Saharan North Africa 3
6. Beja Afro-Asiatic North Africa 1
7. Bulgarian Indo-European East Europe 2
8. Burarra Australian Australia 1
9. Burushaski Isolate South Asia 9

10. Canelo-Craho Macro-Ge South America 2
11. Carib Carib South America 2
12. Cayuvava Isolate South America 2
13. Chinantec Oto-Manguean Central America 7
14. Daga Trans New-Guinea New-Guinea 12
15. Dargwa (Icari) North Caucasian South Russia 4
16. Diola-Fogni Niger-Kongo West-Africa 2
17. French Indo-European Europe 5
18. Harar Oromo Afro-Asiatic North Africa 3
29. Hebrew Afro-Asiatic Middle East 3
20. Hayu Sino-Tibetan South-Asia 2
21. Hindi Indo-European South Asia 5
22. Ibibio Niger-Kongo West-Africa 4
23. Ket Yeniseian Asia 3
24. Kiwai Trans New-Guinea New Guinea 1
25. Krongo Nilo-Saharan North Africa 1
26. Kwamera Austronesian South-East Asia 1
27. Ngarinjin Australian Australia 1
28. Olo Torricelli New-Guinea 1
29. Rongpo Sino-Tibetan South Asia 6
30. Teribe Chibchan Central America 1
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4.3.1 Observed frequency of natural class syncretism

In this section, I evaluate the first empirical hypothesis in question, namely that

inflectional paradigms avoid homonymy, but might include instances of natural

class syncretism. Bear in mind that the counts presented here will underestimate

the proportion of paradigms with no homonymy, as the selection criteria for the

languages in the sample required that they contain some instances of syncretism

or homonymy. In other words, this sample does not include languages in which

subject agreement is marked unambiguously. If it turns out that even in such a

biased sample most cases of ambiguity are due to natural class syncretism, this

would be a strong confirmation for the hypothesis under consideration.

To count instances of natural class syncretism of person I relied on the natural

classes identified in table 4.5. For number, I used the hierarchy in figure 4.4 in

which each non-terminal node corresponds to a grouping of several categories

into a natural class. For gender and animacy, I used H&R’s hierarchy of CLASS

features.

Form identity was identified as natural class syncretism if all paradigm cells

that were occupied by the identical morph formed a natural class and no other

morph occured within these cells.

Out of 30 languages in my sample, 25 had natural class syncretism in one

or more of their paradigms. Out of the total 93 paradigms, 41 contained only

natural class syncretism, and 21 contained natural class syncretism in addition

to other kinds of inflectional identity. Additionally 7 paradigms contained no

instances of form ambiguity at all. In other words, about half of the paradigms

in the sample have no homonymy (41+7)/93 (≈ 52%). The language by language

breakdown showing the number of paradigms with natural class syncretism can

be found the table 4.8.
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Table 4.8: Number of paradigms with natural class syncretism and no homonymy

Language # of parad. with only # of parad. with natural
natural class syncretism class syncretism and

other types of syncretism
Amahuaca 2 0
Amele 3 0
Atakapa 1 0
Bagirmi 0 1
Beja 0 1
Bulgarian 1 0
Burushaki 2 5
Carib 1 0
Cayuvava 1 0
Chinantec 5 0
Daga 5 4
Dargwa 2 1
French 2 0
Harar Oromo 2 1
Hayu 1 1
Hebrew 2 1
Hindi 4 1
Ibibio 1 0
Ket 1 1
Kiwai 1 0
Krongo 0 1
Kwamera 0 1
Ngarinjin 1 0
Olo 0 1
Rongpo 3 1
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In table 4.9 I take a more detailed look at the person syncretism. This table

reports only those instances of form identity in which different person values are

fully syncretic across one or more numbers. It does not include cases where person

values are realized by the same affix across a partial range of contexts, such as

when 1sg = 2sg = 2pl 6= 1pl. The upper half of the table corresponds to instances

of natural class syncretism, which predominate over all other types of identity

among person values. Among the natural class patterns, homonymy between 2nd

and 3rd person inflectional markers seems to be particularly common, consistent

with the facts reported by Baerman (2004) (see table 4.6) and Baerman et al.

(2005).

Table 4.9: Person syncretism in more detail

form sg du pl number
ambiguity independent

1=2 Amele, Daga, Bagirmi, Rongpo Amahuaca
Burushaski

2=3 Hindi, Atakapa, Hayu,Amele Amele,Oromo, Chinantec,
Hayu, Bulgarian, Carib,Chinantec, Amahuaca,
French,Rongpo, Burushaski, Kiwai
Amele, Ibibio Ibibio

1inc.=1excl – Cayuvava

1=2=3 French,Dargwa Burushaski, Hindi,Rongpo
Rongpo Chinantec

1incl=2=3 Hayu

1incl=3 Kwamera

1excl=3 Canelo-Craho

1excl=2 Burarra

As for number syncretism, there were no languages where singular markers

were always identical to the plural markers to the exclusion of dual or trial. Simi-

larly, there were no languages where dual or trial markers were always identical to

the singular markers to the exclusion of plural. In majority of the languages, no

distinctions were made among the [+group] numbers, so the only opposition was
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singular vs. plural. Seven languages made a distinction between “minimal group”

vs. “non-minimal group” and out of these seven two distinguished dual (non aug-

mented) vs. trial (augmented) minimal groups. In other words, the hierarchy in

4.4 makes correct predictions about attested patterns of number marking. All

instances of inflectional identity in which one or several different number cate-

gories were fully identical across some person category presented cases of natural

class syncretism (for more details see table 4.10)

Table 4.10: Number syncretism in more detail

form identity in some persons in all persons

−min.group = +min.group Amele, Olo

−group = −min.group = +min.group Kwamera

−group = +group Burushaski, Rongpo, Chinantec,
in lang. with Chinantec, Daga, Icari Dargwa
no min.group Ket, Icari Dargwa

Similarly, most cases of form identity of gender markers across other categories

were instances of natural class syncretism. They all involved full neutralization

of gender contrasts, usually in the plural and in the 1st and/or 2nd persons.

Languages that had paradigms with gender syncretism are Beja, Hindi, Hebrew,

Harar Oromo, Krongo, Ket, Olo and Ngarinjin.

There were also a few paradigms in the sample in which absolutely all dis-

tinctions were neutralized, i.e., the same form was used with all possible per-

son/number/gender combinations.

Overall, we see that in about half of the verbal agreement paradigms, the

instances of form identity are due to natural class syncretism. By itself, this

does not seem to support the hypothesis that homonymy is dispreferred. But

remember that our sample underestimates the proportion of non-homonymous

paradigms because the Syncretism database that this sample is based on ex-
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cludes languages that don’t exhibit form-identity in the first place (or that don’t

inflect for subject agreement). To see how significant of an underestimation this

is, consider that out of the 197 languages in the World Atlas of Language Struc-

tures 57 don’t show verbal agreement for the subject (and thus, don’t have any

homonymy in agreement paradigms), 60 contain some syncretism or homonymy

in verbal agreement, and 80 mark person/number unambiguously (Haspelmath

et al., 2005) (see figure 4.5). So, based on this information we can already de-

termine that at least ≈ 70% of languages have no homonymy in their verbal

agreement paradigms (including those which simply don’t distinguish any agree-

ment categories). As we’ve seen, the remaining languages, those that have some

syncretism and/or homonymy, are such that 52% of their paradigms (according

to my estimates) don’t contain homonymy but only natural class syncretism.

Thus, we can be reasonably sure that, at least with respect to verbal agreement

paradigms, non-homonymous mappings predominate in inflectional systems, i.e.,

about 70% + (.52 ∗ 30%) ≈ 85% of agreement paradigms contain no homonymy

(these estimations assume that on average languages in my sample are not sig-

nificantly different from other languages in the number of agreement paradigms

they have).

Also recall that paradigms with no homonymy are expected to be rather rare

by pure chance (given certain assumptions about the feature system discussed

in section 4.1). This fact, together with the high observed frequency of non-

ambiguous paradigms, support the first hypothesis in (1): namely, that languages

avoid homonymy.
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Figure 4.5: Person-number syncretism from the World Atlas of Language Struc-
tures (Haspelmath, 2005)
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4.3.2 Observed frequency of elsewhere and overlapping homonymy

In the last section we established that about half of all paradigms in the sample

contain no homonymy, since all examples of form identity in these paradigms are

due to natural class syncretism. In this section we will evaluate the second hy-

pothesis in (1), namely that when homonymy does occur, it is rarely overlapping

(and therefore can usually be described with default reasoning).

To count the attested frequency of overlapping patterns, I again rely on the

natural classes of inflectional categories identified in table 4.5, and the definition

of overlapping homonymy. Since the invariant features of a morph could be viewed

as the intersection of the smallest set of cells forming a natural class occupied by

that morph, we can use the definition of overlapping homonymy as follows. Two

morphs are overlapping if the smallest natural class containing one morph also

contains the other and vice versa.

There were only 9 instances of overlapping homonymy in my sample, coming

from 9 different languages. One such example comes from the Daga paradigm of

past tense medial suffixes discussed in chapter 3 in section 3.1. Observe that in

this paradigm, the suffix -a occurs within the domain that constitutes a natural

class (1/2 person), but this domain also contains a suffix -i. At the same time,

the smallest natural class containing all occurrences of i is the whole past tense

paradigm, but it also contains the suffix a. For another example of an overlapping

pattern, consider the following class prefixes in a Caucasian language spoken in

Dagestan, Icari Dargwa. In this language the class prefixes on the verbs (indicat-

ing gender and animacy) differ depending on the number and sometimes person

(Sumbatova and Mutalov, 2003).

The distribution of these prefixes is summarized in table 4.11.
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Table 4.11: Class agreement prefixes in Icari Dargwa (Sumbatova & Mulatov,
2003)

singular plural
1/2p. masc -w-/-Ø- -d-/-t-
1/2p. fem -r- -d-/-t-
3p. masc -w-/-Ø- -b-

fem -r- -b-
inanim -b- -d-/-t-

Observe that in the above paradigm the distribution of the morphs -d-/-t-

(which are phonologically conditioned allomorphs) overlaps with the distribution

of the morph -b- such that neither of them is more specific than the other, or can

be said to block the other. -d-/-t- occur in the 3 person (the smallest natural

class for -b-), and -b- occurs in the plural (the smallest natural class for -d-/-t-).

This is the hallmark of overlapping homonymy.

Also, none of the 9 paradigms with overlapping homonymy involved more

than 2 overlapping homophones. That is, even in paradigms with overlapping

homonymy, majority of morphemes had either a non-ambiguous or an elsewhere

distribution.

The total proportion of overlapping homonymy in the sample of 93 paradigms

is 9/93, or about 10%. Since this sample is biased towards homonymous paradigms,

the actual frequency of this type of homonymy will be significantly less than 10%.

Additionally, the infrequent occurrence of overlaps cannot be attributed to the

fact that such patterns are expected to be rare, since, as we have seen in section

4.1.3 they are likely to be very frequent by chance. However, it is possible that

the number of overlapping patterns would go up if we consider larger paradigms

spanning conjugation classes, tenses, etc. But at the same time, homonymy in

such larger paradigms is more likely to be disambiguated by contextual and dis-

tributional factors (some of which I discussed at the beginning of this chapter). In
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Table 4.12: Breakdown of paradigm types
Paradigm type Num. (out of 93)
No form identity 7
Nat.class syncretism only 41
Elsewhere homonymy only 19
Overlapping homonymy only 5
Mixed homonymy/syncretism 21

other words, it seems to me that homonymy should be most problematic within

the smaller domains, e.g. within a single subclass of affixes that occur in the

same slot, and have similar distributional patterns belonging to the same inflec-

tional class.9 This reasoning was one of the rationals for limiting the window of

investigation to agreement sub-paradigms only.

As for the “elsewhere” homonymy, it occured in 19 paradigms with no over-

lapping patterns or natural class syncretism. Elsewhere homonymy also often co-

occurred with natural-class syncretism. The complete breakdown of the paradigm

types discoved in the sample is shown in table 4.12.

Out of the 21 paradigms with mixed homonymy/syncretism types, 17 had

natural class syncretism and elsewhere homonymy and 4 involved overlapping

homonymy (together with natural class syncretism or elsewhere homonymy).

Thus, overall the number of paradigms, that could be accounted for with un-

derspecification and defaults was 84 of 93 paradigms, i.e., 90% of paradigms

in the sample (and even more in the larger unbiased sample of languages). In

short, the second hypothesis under investigation is also confirmed: among at-

tested patterns of homonymy, overlapping patterns are significantly rarer than

the elsewhere patterns within the window of a single agreement paradigm.

9The learner I propose here will not make a distinction between small vs. large domains,
however I believe that a more realistic learner will begin generalizing within smaller domains or
sub-paradigms extending the generalizations further only when they don’t lead to problematic
cases.
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As a side note, free variation also appeared to be rare in the paradigms

that I looked at. Whenever the grammars reported allomorphs, they were nor-

mally assigned to different inflectional classes, or there was some remark about

conditioning factors. There were only three instances of allomorphy in verbal

paradigms that represent clear examples of free variation. These examples come

from Bagirmi, Daga, and Rongpo. For instance, in Rongpo many paradigms

contain variants for 3 person singular, and sometimes other person/number com-

binations as well (see the paradigm for the copula “be” below).

Table 4.13: The Rongpo verb “be”, present tense

1p.sg hinki
2p.sg hini or hin
3p.sg hini or yã
1p.pl hini
2p.pl hini
3p.pl hini or yã

To summarize this chapter, the available evidence leads us to believe that the

hypotheses about statistical restrictions on homonymy in inflection formulated

at the beginning of this chapter are true.

This raises the question of why languages have these tendencies, or why they

prefer certain types of form-meaning mappings over others? The answer sug-

gested in this dissertation is that non-homonymous mappings are particularly

easy to learn, while overlapping mappings are particularly hard, with the else-

where patterns lying somewhere in between. The learning model developed in

the next chapter captures this intuition and makes further predictions about the

shape of the resulting grammars and patterns of overgeneralization occurring

during the learning phase.
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CHAPTER 5

Learning

5.1 Introduction

In chapter 2, we saw that speakers possess a mental lexicon which includes rep-

resentations of inflectional morphemes. We believe that such lexicons, or mental

dictionaries where phonological units are associated with semantic and syntactic

information, are necessary for speakers to be able to generate larger expressions

such as words, phrases and sentences. In addition, we assume that the lexicon is

minimal in the sense discussed in section 2.1.2.

The question we now face is: how can such a lexicon be learned? We know

that speakers are not exposed to morphemes in isolation and they are not ex-

plicitly told what words mean. Instead, they hear fluent speech in different

situations. Thus, the learner should be able to reason across such situations to

extract features that are relevant to the speech signal and to find a mapping

between such features and the units of form. In chapter 2, I discussed an in-

tuitive cross-situational approach to this mapping problem that provides a first

rough idea for lexical acquisition. This approach will form the core of the more

sophisticated inflectional learner proposed here.

Since the problem of lexical acquisition is quite complex in its entirety, and

since I am mainly focusing on one aspect of it - learning form-meaning corre-

spondences in a way that fits the frequency patterns of form-meaning mappings
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- I make a number of idealizations which I will point out as we go along. One

of the big idealizations due to the focus on inflectional morphology is that the

learner’s input consists not of sentences, but rather of inflectional sub-sequences

of words of the same part of speech. The inflectional strings segmented into

morphs are paired with featural representations of the semantic context in the

form of semantic feature values (refer to chapter 1 section 1.4 for a more detailed

discussion of the input to the learner). Other kinds of idealizations pertaining to

more specific morphological phenomena are discussed later in this chapter.

We can think of the learning space as organized into increasingly larger subsets

according to a particular complexity hierarchy. In our case, this hierarchy is based

on the empirically supported hypothesis that the overlapping patterns are more

complex than the elsewhere patterns, which are in turn more complex than the

one-to-one patterns. This is demonstrated in figure 5.1. The smallest subset, H1,

includes paradigms with 1-1 form-meaning mappings, a slightly larger subset,

H2, also includes paradigms that can be dealt with by default reasoning. Finally,

the largest subset, (H3), includes all types of ambiguous and non-ambiguous

mappings (except for paradigms with free variation, which are excluded from

consideration). Assuming this kind of structured hypothesis space motivated

by empirically grounded complexity considerations is similar to the idea used in

Structural Risk Minimization framework for statistical learning (Vapnik, 2000).

The General Homonymy learner I propose at the end of this chapter will be

able to learn any language from the set H3, although it will be biased to first

select hypotheses from H1 and then from H2. That is, it will move to H3 only

as a last resort. I build up to this learner by first considering simpler learners for

the spaces H1 and H2.

In the remainder of this introductory section I do three things: I briefly
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Figure 5.1: The hypothesis space based on the proposed complexity criteria

introduce some some basic concepts used in the work on formal learning, defend

the view that a psychologically plausible learner must generalize, and discuss some

previous computational work of Jeff Siskind that also relies on cross-situational

learning to learn lexical meanings.

5.1.1 Setting the stage

Following the classical learning theory perspective (Gold, 1967; Blum and Blum,

1975), we will think of a target language as a set of expressions. In our case, the

expressions are pairs of inflectional strings and environments, where a string is a

sequence of morphs and an environment is a complete assignment of all universal

inflectional features to some value. For example, if there are only 3 universal

features {F1,F2,F3} and they are all binary, the following set of feature values

constitutes an environment: {F1 : +; F2 : −; F3 : −}. I will sometimes refer to

the target languages described above as inflectional languages.
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So, a single expression is a string-environment pair. An infinite sequence of

all expressions from a language is called a text (a text may contain more than

one repetition of any expression). Learners are exposed to such positive texts

and their job is to identify what language the text comes from. This is done

by identifying a grammar that can generate the expressions of the language (in

our case, the grammar is the lexicon). A learner is said to converge on a text

if after a certain point it never changes its hypothesis. Such convergence counts

as successful learning if the grammar that the learner converges on generates the

language of the text. A learner successfully learns a language if it can successfully

converge on every text for that language.

Before I discuss the grammars for the set of inflectional languages, I would

like to make a few comments about some properties of the languages themselves.

Sequences of inflectional morphemes are bounded in length - we don’t see un-

bounded recursion in inflection (although perhaps one could argue that such

recursion exists in derivation). Moreover, I assume that there is a finite bound

on the semantic distinctions that can be marked inflectionally, and that there

is a finite bound on the distinct morphs used to express these distinctions (i.e.,

there is no infinite synonymy). Given these three facts, we know that the target

languages are finite.

This means that such languages could in principle be learned by a memorizing

learner that simply records each new data-point it sees. Since the languages are

finite, such a learner would eventually see all the data, and at that point it would

have correctly converged on the target language.

In the next subsection, I discuss some reasons for why, such a simple memo-

rizing learner will not do if we’re trying to model human learning or even if we

are simply trying to construct an efficient learning strategy. This discussion is
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not meant as an argument against a view that anyone holds, but simply as a way

of delimiting learning strategies and understanding the nature of the hypothesis

space.

5.1.2 The need to generalize

First of all, a purely memorizing and non-generalizing morphological learner is

not realistic as a model of human learning because wug-tests and overgeneraliza-

tion errors made by children strongly suggest that people generalize even when

learning in a finite domain.1

There are at least two other reasons for why a learner that simply adds each

input to a memory stack is not plausible. First of all, such a learner would

learn any finite pattern in exactly the same way, and make no predictions about

the regularities in morphological lexicons. That is, a purely memorizing learner

would just as easily learn languages where affix ordering was completely ran-

dom in every new word and languages where the order was fixed, or languages

with thousands of arbitrary inflectional classes and languages with no inflectional

classes, languages with no homonymy, and languages with lots of homonymy. In

other words, a memorizing learner would tell us absolutely nothing about why

languages are the way they are, which goes against the premise that many prop-

erties of languages are to some extent determined by the constraints on language

learning and language evolution.

Second, the sheer size of inflectional languages makes learning by memoriza-

tion alone not feasible: there is little hope that a human learner will hear all

1This consideration by itself does not mean that a learner cannot memorize every input pair,
as long as he/she is also generalizing. For instance, there are several memorizing-type models
in which generalization is achieved via analogy or general ability to compute similarities over
the memorized information (cf. Exemplar Models in phonology).
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inflectional sequences in all possible contexts in which they could occur in her

lifetime. A generalizing learner on the other hand, may converge on the target

language after seeing only a subset of the data (depending on the number of

irrelevant features).

To see how big inflectional languages can get, consider the following calcula-

tions. We can compute the upper and lower bounds on the size of an individual

language as a function of the number of morphs m, the maximum allowed string

length p (in terms of number of morphs), the number of universal semantic fea-

tures n, and the number of feature values for every feature q. The number of

maximum distinct strings of length p in a language is mp, and the number of dis-

tinct environments is qn. Assuming that any string can be associated with any

environment and that every environment must be associated with some string,

the maximum number of expressions in a language in which all words are of

length p is mp ∗ qn (if every possible string occurs in every environment) and the

absolute minimum number of expressions is 1 ∗ qn (if all environments are asso-

ciated with a single string). The actual number of expressions in any language

lies somewhere between these two extremes.

To get an idea of how big the lower bound on the number of expressions can

get, suppose that a universal feature inventory consists of 50 binary independent

features.2 The number of environments in such a language is already an astro-

2It is likely that the actual inventory of features is at least this big. For instance, consider
just some of the common inflectional distinctions that can be marked on the verbs: aspect,
tense, mood, voice, transitivity, reflexivity, switch reference, direction of motion, subj. person,
subj. number, subj. animacy, subj. gender, subj. social status, definiteness, subj. location,
obj. person, obj. number, . . . , indirect object number/person etc. Also consider the fact that
many inflectional distinctions mentioned above have to be defined by several features, or defined
by a feature with more than two values. For instance, we saw that the number contrasts could
be defined with three different features: group, minimal and augmented. Similarly gender and
person contrasts are often analyzed in terms of several features (e.g. “feminine”; “masculine”;
“speaker”; “addressee”, “participant in the speech event” etc). When it comes to tense, even
if we assume that it constitutes a single feature, it will have a great number of values, such as
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nomical figure: 250 ≈ 1.13 ∗ 1015. Even if the actual number of environments is a

million times smaller than this (for instance, due to dependencies among features

that make certain combinations of feature values impossible), the total number of

environments is still huge: ≈ 1.13 ∗ 109. For comparison, the number of seconds

in 80 years is only ≈ 2.5 ∗ 108. So, even if a learner were exposed to a new input

pair every second, 80 years would still not be enough to get through all of the

possible environments.

Finally, the actual number of pairs between inflectional strings and environ-

ments (i.e., the expressions in the target language) also depends on the number of

possible inflectional sequences. Some highly inflective languages, such as Turkish,

have thousands and even millions of such sequences. For instance, consider the

following statistical data based on Turkish corpora from Kurimo et al. (2006).

Figure 5.2: The growth of words and morphs in Turkish (Kurimo et al. 2006)

The graph on the left shows the growth of distinct word-forms and morphs

in the corpus, while the graph on the right shows the same data for the morphs

in more detail. We see that as the sample reaches 20 million sentences, new

words continue to be encountered, while the number of morphs levels off. This

graph is not specific to inflectional sequences, but it makes a general point that

present, past, future, distant past, distant future, immediate past, and so on. Same can be said
about several other inflectional distinctions above.
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in Turkish (and in most other languages) the number of morph sequences is

generally considerably larger than the number of morphs.

Since, as we have seen, the number of environments and the number of morph

sequences are already huge, the number of mappings between the two will be

even bigger. The above considerations show that the purely memorizing, non-

generalizing strategy is extremely inefficient and psychologically implausible.

5.1.3 The cross-situational learner of Siskind

The closest learning model that addresses a similar question as the one raised in

this dissertation is the cross-situational learning algorithm proposed in Siskind

(1996). This algorithm was designed for learning meanings of words from sen-

tences paired with sets of conceptual expressions, such as CAUSE(John,GO(ball,

TO(John))) for “John took the ball.” The results of Siskind’s work are somewhat

hard to interpret since their presentation does not include a precise specification

of the learning problem, proofs of convergence, or a rigorous discussion of the

properties of the algorithm itself. From the general discussion and examples

provided in the paper I can infer the following things.

Besides relying on cross-situational inference, Siskind’s algorithm also takes

advantage of the following assumptions: an empty set is not a possible meaning,

and the meaning of an expression is equivalent to a multi-union of the meanings

of its parts. The last assumption implies that (a) every symbol that is part of

the meaning of a sentence must be attributed to some word in the sentence, and

(b) words contribute non-overlapping parts to the meaning of a sentence. As I

will discuss shortly, assumption (b) is not applicable in the domain of inflectional

morphology, since sometimes several morphemes in the string can express some

of the same features. Accordingly, we will assume that the meaning of a sequence
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of inflectional morphs is equivalent to unions (rather than multi-unions) of the

morphs’ meanings. As for the assumption (a), while it also holds for inflectional

sequences, it is not easy to take advantage of this fact since the learner does not

know a priori what the exact meaning of the string is. Instead, it is presented

with some superset of that meaning.

In Siskind’s set-up there is also some uncertainty about the meaning of the

sentence, but it is an uncertainty of a different kind. He assumes that the learn-

ers entertain several different hypotheses about the meanings of sentences, but

that they have already converged on the relevant semantic symbols that can be

used in the language. His assumption, when applied to the problem of learning

inflectional sequences, is equivalent to a scenario in which upon hearing a word

like (jump)-s, the learner entertains several disjoint hypotheses such as:

(1) (jump)-s:

a. JUMP, 3p. sg. pres.

b. JUMP, 3p. sg. past.

c. RUN, 1p. sg. future.

That is, the learner knows what conceptual symbols are appropriate in a given

language, but it might incorrectly interpret the situation in several different ways.

The first rule in Siskind’s algorithm is designed to rule out the incorrect hypothe-

ses before all other rules apply. It seems that in practice, the incorrect hypotheses

can be identified quite quickly and that most of the time learning proceeds in

a scenario in which an utterance is paired with a single meaning (at least, all

of the examples considered in Siskind’s paper assume a single meaning per ut-

terance).3 Most of the time the meaning that ends up being associated with an

3In cases in which an expression is globally ambiguous and a sentence could have several

100



expression after the first rule applies, corresponds to the correct meaning, though

occasionally it may not (i.e., there is a possibility of noise).

I assume a somewhat different kind of uncertainty: although the learner can

correctly interpret the semantic information contained in the environment (i.e.,

there is no noise), it does not yet know what semantic symbols are actually

encoded by the speech signal. That is, I assume that upon hearing a sequence

of morphs such as (jump)-s, the learner might be faced with the following set of

semantic primitives:

(2) [JUMP; present, habitual, imperfective, intransitive, realis; subject: 3p.sg,

anim, masc, respectful, located far away, etc. ].

The learner has yet to determine that the morphology of the target language

encodes only features of tense, mood, and subject’s person and number, and how

these features are lined up with the morphs.

In addressing the problem of homonymy and noise, Siskind’s learner relies on

several heuristics which are not perfect but in practice give good results (judging

from the simulations on an artificial corpus of data). To detect homonymy or

noise, Siskind’s algorithm checks whether the set of possible meanings for a word

(found through cross-situational intersections) is empty, or whether the set of

necessary meanings for a word (found through some additional inferences) is not a

subset of the possible meanings. He is able to take advantage of the latter heuristic

because in circumstances in which a sentence is paired with the correct meaning,

it is often possible to determine by process of elimination which meanings are

necessarily part of some word. This inference, however, is not easy if irrelevant

features are included in the mix or if a sentence is paired with an incorrect

meanings, one of the meanings is chosen based on a probabilistic metric.
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meaning (which can lead to “corruptions” of the lexical entries). The other

heuristic (observing whether the set of possible meanings becomes empty) works

in many cases because open class homonyms are rarely used in situations that

are very similar. For instance, the two meanings of the word bank (“financial

institution” and a “river edge”) are so distinct that if one takes an intersection

of the two conceptual expressions associated with sentences including these two

different uses of bank (which is how the set of possible meanings is calculated), one

is likely to come up with an empty set. This heuristic, however, is not effective

with inflectional homophones because they often share features in common. For

instance, two different but homonymous morphemes may both be used in present

singular environments, and their possible or invariant features will never be empty.

The learners I present here are not based on heuristics and can be proven

to converge (with the Gold and PAC criteria for convergence4) on the languages

they are designed to learn.

5.2 Assumptions about the hypothesis space

We can define the class of target languages in terms of constraints on the gram-

mars that generate them. In this section I discuss such constraints and formally

lay out the structure of the grammars for inflectional languages. Some of the con-

straints introduced here have not yet been discussed. Many of them are adopted

to simplify or abstract away from various complicating morphological phenomena

such as certain types of allomorphy, null morphs, variable affix ordering, etc.

Below is a high-level summary of the grammatical structure I assume. The

specific properties of the grammars for inflectional languages will be first discussed

4PAC refers to the Probably Approximately Correct learning (cf. Valiant, 1984b; Anthony
and Biggs, 1992)
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informally and then formalized in section 5.3.

One of the main components of grammars for inflectional languages is the

lexicon, which contains lexical items. Lexical items are morphemes consisting

of a phonological realization (a morph, which could also be an empty string)

and some semantico-grammatical representation. This representation essentially

specifies how the morph is used. That is, it generally includes semantic properties

that the morph expresses (sometimes referred to as properties of content) as well

as properties of context, which limit the range of contexts in which the morpheme

in question can be inserted. If a morpheme has no context specification, then it

can co-occur with any other morpheme that is not competing to be realized in

the same position. In here, I will largely ignore properties of context except for

morphological properties (see 5.2.1).

In addition to the lexicon, the grammar also includes a slot template specify-

ing what features might be expressed in what positions. Slots are often viewed as

a reflection of the ordering of syntactic projections. The questions connected to

morpheme ordering and consistency in feature realizations are taken up in section

5.2.2. Together, the lexicon, the slot template, and the principle of compositional-

ity allow one to generate the language of string-environment pairs, where a string

for our purposes is just a sequence of inflectional morphs. Recall that the term

environment refers to a complete evaluation of a finite universal set of features

corresponding to the properties that are true for the intended meaning. Each

string is paired with some environment, namely an environment that comprises

a superset of the meaning of the string. (Additionally, any context requirements

on the morpheme combinations have to be satisfied.)5

5This picture of the grammar allows one to most naturally represent concatenative morpho-
logical systems, although I imagine that it could be extended to certain other systems as well
with some modifications of the terms “slot” and “morph.”
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Besides the just mentioned requirements, the lexicon also obeys the minimal-

ity restrictions discussed in chapter 2, section 2.1.2. Recall that these minimality

restrictions are part of the general preference for shorter representations among

otherwise equivalent options.

In the next few subsections, I discuss some of the constraints on the inflectional

languages I assume, as well as morphological phenomena that I will abstract away

from for reasons of simplicity. These phenomena include allomorphy conditioned

by phonological and lexical factors, variable morpheme ordering, portmanteau,

and null morphemes.

5.2.1 Allomorphy and properties of context

First, I discuss the phenomenon of allomorphy, which will also give me a chance

to motivate my assumption that the meaning of an inflectional string is better

defined as a union of features of the constituent morphemes (rather than a mul-

tiunion). The learners I present later will not address the question of learning

constraints on allomorphy, except for the morphologically conditioned allomor-

phy.

When different morphs express the same semantic features, but occur in com-

plementary distribution, we call them allomorphs. Allomorphs are often likened

to imperfect synonyms. The features of context mentioned in the previous section

are introduced into the grammar to handle allomorphs, and ultimately to define

constraints on legal morph combinations or morphotactics. Since allomorphs are

constrained by their co-occurrence with other morphemes as discussed below,

learning allomorphy results in learning morphotactics.

Morphologists usually distinguish three types of allomorphy: phonological,

lexical and morphological (Haspelmath, 2002). Phonological allomorphs are con-
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ditioned by co-occurring with morphemes that share some phonological proper-

ties in common. Examples of phonological allomorphs are the English inflectional

endings -[s], -[z], and -[�z] conditioned by the phonological properties of the pre-

ceding segment.

Lexical allomorphs are conditioned by co-occurrence with an arbitrary set of

morphemes that have to be memorized. For instance, English speakers have to

learn on the verb by verb basis which past participles take the suffix -en and which

take the suffix -ed. Some declension/conjugation classes also present instances

of lexically conditioned allomorphy (as long as stems that belong to the same

class cannot be differentiated from other classes by some set of phonological or

semantic properties).

Finally, morphological allomorphs are conditioned by co-occurrence with other

morphemes expressing particular morpho-semantic feature(s). Recall the German

verbal paradigm from chapter 2 (cf. table 2.1). In this paradigm, 3rd person

singular is realized as -e in the past and as -ø in the present. Thus, we could say

that the 3p.sg. allomorphs are conditioned by a tense feature, or by co-occurrence

with morphemes that encode tense.

Morphological allomorphy could be easily learned if we ignore the distinction

between the morphological features of content and context.6 If we do this, we

can then say that the German morpheme -ø has a meaning [3p.sg.,pres.] in-

stead of [3p.sg] in the context [pres.]. I suppose the insistence on demarcating

morphological features of context comes from avoiding situations where the same

6While, in principle, there is a distinction between the notions of content and context, this
distinction is irrelevant in certain regards. For instance, from the point of view of a learner who
is trying to learn the distribution of a particular morph, both content and context information
present restrictions on this distribution: the content restricts the range of real-world situations
in which a morph can be used, while the context restricts the range of combinatorial possibilities
for the morph. In case of morphological allomorphy, the conditioning factors are semantic in
nature and thus the distinction between content and context is further weakened.
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feature could be expressed more than once. For example, the feature [+past] is

already expressed in German by an independent tense morpheme -t. So, if we

don’t differentiate between features of content and context, we have to say that

in words such as spiel-t-ø (“played”, 3p.pres.) the property of tense is expressed

twice - once by the tense morpheme, and once by the null agreement morpheme.

But nothing prohibits us from saying this as long as the meaning of expressions

is defined as a union rather that a multi-union, so that multiple expression of the

same features does not change the meaning of the expression as a whole.

In fact, inflectional features are sometimes expressed redundantly either in

different slots (a phenomenon called “extended exponence”), or in several words

in a phrase that stand in the agreement relationship (e.g., pronominal clitics

used in tandem with agreement morphology on the verbs). The meaning of the

phrase in such cases is not different than if the agreement features were expressed

only once. We also don’t see the same inflectional morphemes apply to stems

recursively, continuing to introduce more and more layers of meaning. These

facts suggest that unions are the appropriate operation for calculating meanings

of inflectional sequences. Therefore, it is possible to include what is often regarded

as morphological features of context into the features of content without affecting

the meaning of the expression as a whole (this does not apply to the contextual

restrictions that are phonological or lexical in nature). The advantage of such an

inclusion is that it provides an automatic way of disambiguating what is viewed

as morphologically conditioned allomorphy.

In this thesis, I will not address the question of how phonological and lexical

allomorphy is learned. The former task requires having a finer level of structure

than what I have assumed (for instance, sequences of bundles of phonological

features). At the end of this chapter, I will discuss some ideas about how the
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latter task could be achieved by keeping track of co-occurrences of inflectional

morphemes.

5.2.2 Slots and featural coherence

Another restriction on the target languages I adopt is the assumption that words

can be analyzed as having a number of distinct positions or slots, and that each

slot is designated for some set of inflectional features.7 Morphs that occur in

word positions corresponding to a particular slot realize some subset of the set of

features appropriate for this slot. This assumption, which I call featural coherence

(borrowing this term from Stump (2001), but using it in a slightly different way),

is based on the idealized picture of empirical facts.

Many grammars incorporate the assumption of featural coherence by using

slot templates in their exposition of the inflectional system. For example, Reh

(1985) describes verbs in Krongo main clauses as having the following slot struc-

ture.

(3) Krongo Verb (Reh, 1985).

1 2 3 4 5 6 7 8

sbj.agr tns/asp stem refl deriv pass tempr emph

I define featural coherence as follows: a morpheme belonging to some slot has to

express a non-empty subset of the features appropriate for this slot. This allows

some morphemes to be underspecified. For example, in Russian, verbal inflec-

tional sequences that follow the stem can be broken down into two slots, assuming

7Although there are cross-linguistic tendencies with respect to affix ordering (Bybee, 1985;
Trommer, 2003), there is still a considerable amount of variation and it is reasonable to assume
that the order of affixes is part of what the learner has to learn about the morphological
structure of her language.
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that the first slot expresses features of tense and the second slot expresses fea-

tures of person, number and gender. The second slot can also be said to express

features of tense, or alternatively tense can be construed as a context feature

(see table 5.1). Either way, there are two sets of morphologically conditioned

allomorphs that occur in the second slot: one set is completely underspecified

for person (these are agreement morphemes that co-occur with the past tense

morpheme), and another set is completely underspecified for gender (agreement

morphemes that co-occur with the present tense morpheme). The morphemes in

slot 2 are featurally coherent in the sense that they all express some subset of the

tense, person, number, and gender distinctions.

However, note that with no restrictions on the assignment of features to slots,

the current definition of featural coherence is too weak in the sense that a whole

set of universal features might be assigned to each slot, and then any morph

can realize any feature in any position. However, the minimality restriction on

the lexicons will rule out the possibility of assigning features to a slot if they

are completely irrelevant for that slot (see formal definition of the minimality

restriction in section 5.3). That is, I assume that if a feature is assigned to a slot,

then it must have some effect on the strings of the language.

Table 5.1: Tense and agreement slots for some Russian verbs
slot O: stem slot 1: tense slot 2: tense,person,number,gender
govori- “speak” -Ø- “present” -u “1p.sg.present”
uchi- “teach” -l- “past” -ish “2p.sg.present”
etc. -it “3p.sg.present”

-im “1p.pl.present”
-ite “2p.pl.present”
-at “3p.pl.present”
-Ø“masc.sg.past”
-a “fem.sg.past”
-o “neut.sg.past”
-i “pl.past”
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The advantages of a fixed morpheme order are great for learning. For instance,

it provides for a possibility of bootstrapping. That is, once a learner observes a

morph occurring in a certain position, and if she already knows what features are

expressed in this position - she can zoom in on the meaning of the morph more

quickly.

However, as I mentioned before, featural coherence and a fixed morpheme

order are idealizations of the empirical facts. In some languages, the same prop-

erties are sometimes realized in different slots depending on the context. A point

in case is Winnebago, where the instrumental prefix can either appear right be-

fore the verb root, or it can be sandwiched between the locative and the subject

agreement prefixes. The reason for such alternations appears to be phonological

in nature, since the position of the locative prefix depends on whether it contains

a long or a short vowel (Hayes, 2005). Other types of factors that can affect

affix ordering include a type of clause (e.g., main clause vs. subordinate clause),

and morpho-semantic contexts (such as negative vs. non-negative sentence, past

vs. present, etc.). Yet, changes in slot ordering usually affect only a few affixes

and, as far as I know, there are no languages in which the order of inflections is

completely arbitrary in every different word. Given that affix order is fixed at

least within some morphological domain, I will limit my attention to such fixed

orders only.

Another apparent exception to the concept of slots and featural coherence are

the so-called portmanteau morphemes. Portmanteau morphemes can be analyzed

as a fusion of several contiguous slots that are normally distinct in other strings

in the language. This fusion results in a single portmanteau morpheme which

expresses features of the contiguous slots simultaneously.8

8Sometimes non-concatenative realizations of inflection can create something very similar
to a portmanteau morpheme. For instance, the irregular English form “sang” can be thought
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Observe, however, that portmanteau morphemes cease to be exceptions to

featural coherence if we extend the notion of coherence to apply at a higher

level covering sequences of slots as well. In such case, we can always analyze

portmanteau affixes as expressing features appropriate for positions spanned by

the portmanteau morph.

Sometimes an analysis involving portmanteau morphemes can be restated

using null morphs. To avoid these additional complications, I will focus on cases

in which a single slot template can be posited, and every morph in every word

can be said to express features of the slot corresponding to its linear position.

5.2.3 Null morphs

The last idealization discussed here is the assumption that null morphs have

already been identified in the segmentation process and therefore are part of the

input. This is a significant simplification because it is probably unrealistic to

think that null morphs can be found based on phonological strings alone, with

no semantic input (although it is sometimes possible to do so). In this section, I

briefly outline some preliminary ideas about how null morphs can be discovered in

tandem with learning form-meaning mappings. However, I leave the development

of these ideas to future research.

Recall that null morphs are normally assumed as a representational device in

order to describe non-overt realization of features in a minimal fashion. The as-

sumption of null morphs is also convenient because it allows the analyst to main-

tain the idea that morphs are linearly ordered as specified by the slot-template.

If words are organized into slots, it should be possible to identify some null

of as a portmanteau morpheme expressing the features of two slots: the stem slot and the
tense/agreement slot.
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morphs during the segmentation process. For instance, the segmentation model

of Goldsmith (2001) seems to do just that for languages that normally have a

single inflectional morpheme following the stem. When a bare stem is discov-

ered, one can automatically posit that it is followed by a null morph. In cases in

which inflectional sequences are longer, the task of finding null morphs is harder,

but it could possibly be achieved by using algorithms for finding the best align-

ment between maximally similar words that differ in length. For example, if

we encounter two words of the form “a-b-c-d” and “a-b-d” and align them with

each other so that they share as much common structure as possible, we would

posit a null morph in the second word between “b” and “d”. Undoubtably, this

strategy is quite rough and it won’t work in cases in which homonymy across

different slots makes it more difficult to pinpoint the boundaries. For instance,

when two adjacent slots can both contain the null morph and all overt morphs

in these slots are homonymous, different strings (e.g., “a-Ø” and “Ø-a”) would

look identical on the surface (i.e., “a”). Morphotactic restrictions on the strings

can further complicate the alignment procedure. Nevertheless, it is possible that

finding minimal pairs and performing an alignment analysis could provide a first

rough pass for identification of null morphs.

It is also possible to identify null morphs at the same time as finding min-

imal lexical mappings. I have pursued this idea previously, capitalizing on an

observation that positing null morphs results in smaller lexicons. It is easy to

see that after applying cross-situational intersections to strings that can be said

to contain a null morph, the features that are expressed by the null morph will

end up being associated with some other morphs in the string. For example, the

English word “cat” will end up being associated with the representation [CAT;

sg]. However, the lexicon will also contain a homonymous morpheme such as

“cat” - [CAT] obtained from analyzing other words in which this stem occurs
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in combination with overt affixes. Similarly, we will have pairs such as “dog” -

[DOG] and “dog” - [DOG,sg]. After observing several homonymous lexical en-

tries of this sort, the learner can minimize the lexicon by merging homonymous

morphemes and positing a null morph expressing the feature singular.

However for simplicity of dealing with the problem of homonymy, I will assume

that the input strings already have null morphs explicitly marked (this is also

equivalent to an assumption that all morphemes are overt).

5.3 Definitions of the grammar and the language

We are now ready to define a language L of string-environment pairs (where

the strings belong to the same part of speech). The expressions of L will serve

as an input to the learner. The formal definitions below are helpful for better

understanding the setup of the problem and for proving theorems about the

learning algorithms.

Recall that the language is defined in terms of a grammar that can generate

it. A grammar G for a language consists of an alphabet of morphs Σ, an alphabet

of semantic properties F , a set of slots [p] = {1, ..., p}, a function Π that asso-

ciates slots with sets of features, and a lexicon Lex consisting of lexical items, all

discussed shortly.

Whenever I use the term monomial it refers to non-redundant consistent

monomials (or combinations of feature values) as defined below.

(4) Monomials

For any Y ⊆ F , the non-redundant consistent monomials are M(Y ) =

[Y → V ], where V is a set of feature values (in our case {+,−, n/a}).
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That is, M(Y ) is the set of possibly partial assignments from Y to V .

The feature value “n/a” is used for those situations in which a feature cannot

be evaluated because the presence of some other feature makes it non-applicable.

For example, the number feature “minimal” does not apply in contexts in which

the feature “group” is set to “−”. Thus, the “n/a” feature is different from an

underspecified feature (which is simply left out from the monomial). “n/a” is not

compatible with “+” or “−”.

The term maximal monomial refers to a monomial that constitutes a total

function from Y to V .

(5) Maximal Monomials

MM(Y ) is the set of total assignments from Y to V .

(6) We will say that two monomials are consistent with each other if their

union contains no contradictory features.

The affix slots are represented as a set of integers [p] ={1 . . . p}. A function Π

associates each slot i ∈ [p] with a non-empty subset of the features Fi ⊆ F , more

specifically, with elements of the power set of F , or P(F ).

(7) Π(i) = {Fi|Fi ∈ (P(F )− ∅)}

Note that the above definition excludes a situation in which some slot i is not

associated with any features whatsoever, but slots are allowed to overlap in the

features they express. Given the function Π we can define the Lexicon Lex in two

steps. First, for each slot i in the template, I define a sub-lexicon of morphemes

Lexi that are said to belong to this slot. Then, the lexicon Lex can be viewed as
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a union of all such sub-lexicons, i.e.,
⋃p

i=1 Lexi.

Each sub-lexicon contains pairs whose first coordinate is a morph (an element

of Σ), and whose second coordinate is a monomial of features. Additionally,

sub-lexicons respect two requirements: featural coherence (see section 5.2.2) and

minimality. The minimality requirement is in turn broken down into two parts:

first we exclude useless (or irrelevant) features from being assigned to any feature

slot; second, we require that morphemes be maximally underspecified (using strict

underspecification). All of this is formulated below.

(8) ∀i ∈ [p], Lexi ⊆ (Σ × M(F )) such that:

a. featural coherence:

∀(m, v) ∈ Lexi, v ∈M(Π(i))

b. minimality:

(i) no useless features:

∀f ∈ Π(i), ∃(m, v) ∈ Lexi, such that f ∈ v.

(ii) strictly underspecify whenever possible:

¬∃ H = {(m, v1) . . . (m, vn)} ∈ Lexi for n > 1, such that (v1 ∨

. . . ∨ vn) ≡
⋂n

j=1 vj .

The first minimality restriction in (8),b,(i) rules out grammars in which there is

a feature z assigned to some slot by the function Π, but no morph that occurs in

this slot realizes z. The second minimality restriction (ii) rules out morphemes

that are not maximally underspecified. This amounts to ruling out homonymous

entries (lexical items that have the same first coordinate) if a single morpheme

can be posited instead. This happens if the disjunction of the second coordinates

of the homonymous lexical entries is logically equivalent (≡) to the intersection

of their second coordinates. For example, ({p,−q, r} ∨ {p, q, r} ∨ {−p, q, r} ∨
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{−p,−q, r}) ≡ r = ({p,−q, r} ∩ {p, q, r} ∩ {−p, q, r} ∩ {−p,−q, r}).

The lexicon is defined as a union of sub-lexicons for each slot in the template

[p]:

(9) Lex =
⋃p

i=1 Lexi

To refer to the second coordinate v of a k-th slot morph m in the lexicon Lex

(i.e., the meaning of m), I will use a notation Mean(m, k)Lex. I will leave off the

subscript whenever its clear what lexicon we are talking about.

With this definition of the grammar we can define the language L that consists

of strings or morphs paired with complete assignments of all universal features,

what I’ve been calling environments (or maximal monomials over F). In the defi-

nition below, s stands for the strings of morphs and e stands for the environments.

(10) L = {(s, e)| ∃q ∈ 〈Lex1 × . . .×Lexp〉, q = 〈(s1, e1) . . . (sp, ep)〉, such that

a. s = s1...sp, (concatenation)

b. e ⊇ e1 ∪ . . . ∪ ep (compositionality)

c. e ∈MM(F ) }

Observe that, because of the requirement that monomials be consistent (see (4)),

the last condition above rules out combination of morphemes that contain con-

tradictory features. Also note that the last requirement ensures that every string

is paired with a maximal assignment of features. That is, every single feature

from the universal feature set including the irrelevant features is part of the en-

vironment e.

The space of hypotheses entertained by the learner is restricted by the con-

straints on the grammars discussed above. Most of these constraints can be
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interpreted as knowledge provided by UG. They include the assumption of com-

positionality, the assumption of featural coherence (morphemes that belong to

the same slot express some subset of features assigned to this slot by Π), and

the assumption of minimality. Recall, however, that the minimality assumption

does not restrict the language, rather it is merely a restriction on representations:

shorter representations are preferred over longer ones (see discussion in chapter

2).

The learner will be exposed to the language pairs (s,e) satisfying the conditions

in (10) with respect to some lexicon Lex and a slot template Π. The job of the

learner is to infer the identity of Lex. (Once Lex has been found, Π can be

inferred from it.)

5.4 The No-Homonymy learner

The first learner I present is a simple cross-situational learner introduced infor-

mally in chapter 2. This learner will be shortly abandoned because it is ultimately

inadequate for several reasons, one of which is its inability to handle same-slot

homonymy. Nevertheless, it will serve as a good starting point for getting a

concrete idea about how lexical mappings might be obtained from the string-

environment pairs in a generalizing fashion.

The hypothesis space of this learner is restricted to languages with homonymy

in the same slot. In such languages there is never a situation in which one

morph is associated with several different meanings in the same sub-lexicon. This

additional restriction on the grammar is formulated in (11).

(11) No homonymy within the same slot.

∀i ∈ [p], if ∃(m, v) ∈ Lexi, then ¬∃(m, v′) ∈ Lexi, where v 6= v′.
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To learn the lexicon, the algorithm simply computes the invariant features for

each different morph by taking intersections of the environments in which that

morph occurs. (Identical morphs that belong to different slots are considered to

be different.) This can be done incrementally and will result in a generalizing

strategy. For example, upon seeing some morph in two different environments

[+f1,−f2, +f3] and [−f1,−f2,−f3], the learner will infer that the meaning

of this morph is [−f2]. This is a generalizing inference because it is performed

without seeing the complete set of environments in which this morph can pos-

sibly occur (e.g., the environments [+f1,−f2,−f3] and [−f1,−f2, +f3]). The

cross-situational intersections (or underspecification) lead to discarding irrelevant

features, and at the same time converging on the meanings of morphs.

5.4.1 The algorithm

The precise learning algorithm is presented in the pseudo-code format in Algo-

rithm 1 below. Since we assume no portmanteau or null morphemes, the positions

of each morph can be unambiguously identified by their linear order in the strings

(we assign a subscript to each morph corresponding to its linear position in the

string).

The algorithm takes a sequence of string-environment pairs of the form (s, e)

as an input, and at each step returns an updated lexicon of morpheme pairs.

For each morph si in the string s we check whether our current lexicon already

contains a lexical entry in slot i, where si is the first member of the pair. Notice

there could only be one such entry given our assumption of no homonymy within

the same slot. If such lexical entry exists, then we update its current meaning by

intersecting it with the environment e. If there is no such lexical entry, then we

add a new entry (si, e) to the sub-lexicon Lexi.
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Algorithm 1 The No-Homonymy Learner

Input: a text T for the language L consisting of pairs (s, e)
Output: a set of sub-lexicons Lex1 . . . Lexp (all initially empty)
1: for all pairs (s, e) in Lg do
2: for all si ∈ s do
3: if ∃ (si, oldMeaning) in Lexi then
4: newMeaning ← (oldMeaning

⋂

e)
5: replace (si, oldMeaning) with (si, newMeaning) in Lexi

6: else
7: add (si, e) to Lexi

8: end if
9: end for

10: end for

We can prove that the algorithm described above correctly converges on a

lexicon that generates the target language in the current setting, (i.e., assuming

languages have no homonymy within the same slot, no co-occurrence patterns

besides the morphological ones, and that every word consists of a sequence of

morphs of the same length where each morph expresses the feature of its word-

slot.) Moreover, for languages that have more than one irrelevant feature this

convergence will occur before all the text has been seen. These proofs are provided

in the next sub-section (5.4.2).

The No-Homonymy learner helps us see more clearly that languages in which

all homonymous mappings can be disambiguated by the linear position in the

string are easy to learn. This learner relies on a simple, generalizing, incremental

and memoryless strategy, that goes through the input one pair at a time, adjusts

its current hypothesis, and discards the processed input pair. The intersective

generalization strategy is safe in the absence of same-slot homonymy since it

does not lead to incorrect predictions. This is a testimony to the fact that non-

homonymous mappings are advantageous for the language learners. The fact

that such mappings, including natural class syncretism, are rather a norm than
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an exception as we have seen in the last chapter, lends support to a learner that

incorporates cross-situational strategy as a generalization method.

Kobele et al. (2003) have a similar implementation of the cross-situational

learner based on Siskind’s work. Their learner is even simpler due to an as-

sumption that the input consists of an unordered set of morphs paired with a

set of sememes that correspond to the exact meaning of the utterances. The

cross-situational learner I described in this section is slightly different in that (i)

it takes some (albeit minimal) advantage of the morpheme order and is hence

able to handle homonymy in different word slots; (ii) it learns from a superset

of semantic meanings, which means that even seeing a monomorphemic word in

isolation is not sufficient to converge on its meaning right away.

Another learner that relies on an intersectional strategy is the monomial

learner (Valiant, 1984a). This learner starts with the hypothesis that every single

literal of n features is in the concept 〈u1, ū1, ...un, ūn〉, and then eliminates literals

that are contradicted in the positive examples of the concept. The result is the

same as if we take an intersection of the positive examples. Monomials defined

over a finite number of attributes k are efficiently PAC learnable in the presence

of irrelevant features (or attributes) from positive and negative examples (Dhagat

and Hellerstein, 1994). The learner I presented here is like a monomial learner in

that it learns in presence of irrelevant attributes; the difference is that my learner

learns a set of concepts at once, rather than a single concept. The fact that all

the concepts for my learner are formally distinct (there is no homonymy) helps

keep the learning strategy simple.

In the next section, I elaborate on this simple learner and show how it can be

extended to learn languages that include the elsewhere type of homonymy within

the same slot.
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5.4.2 Proofs

The casual reader can skip this section if he or she is bored by technical proofs

and is eager to proceed to the next learner. The theorems proved here establish

that the No-Homonymy learner converges on the right grammar for the languages

it sets out to learn. Most of the notation used here has already been introduced

in the previous section.

The main theorem of this section, theorem 2, proves that given a language L,

the invariant features of any morph m in L (found by the intersective strategy)

are equivalent to the meaning of m in some lexicon Lex that satisfies all the

requirements in (8) and (11) and that generates L. To prove this, I rely on the

definition of ‘language’ given in the previous section, as well as lemma 1 and

theorem 1 below.

Recall that completely irrelevant features are those features that are not part

of the lexical meaning of any morph.

Definition 1 (Irrelevant features) A feature z is irrelevant iff there is no

morpheme in Lex whose meaning includes any value of z.

The next lemma (used in theorem 2) falls out of this definition of irrelevant

features.

Lemma 1 If a feature z is irrelevant, then for every pair (s,e) ∈ L, ∃(s, e′) ∈ L such

that e differs from e′ only in the value of the feature z.

Proof. Suppose that some feature z ∈ F is irrelevant. That is, no morph in Lex is

associated with a feature set containing any value of z. Since every environment is a

total function of F , some value of z is included in every environment. Suppose we take

an arbitrary pair (s, e) ∈ L and derive a new environment e′ by taking e and changing
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the value of z to any other value. This environment has to be associated with the string

s in L, since z, being irrelevant, is not included in the meaning of any morpheme and

so has no affect on the phonological realizations. Thus, the pair (s, e′) must be in L.

The next theorem, which is also used in the main theorem 2, is necessitated by

the fact that in presence of certain co-occurrence patterns, it is possible to have

several equally minimal lexicons generating the same language. The main point

of this theorem is to show that if a morph always occurs in environments that

contain some semantic feature value, then this value is included as part of the

morph’s meaning in at least one of the several generatively equivalent lexicons.

Theorem 1 If a language L is generated by a lexicon Lex such that

1. L satisfies all restrictions in (8) and the restriction on no homonymy

2. in the strings of L, some k-th slot morph m always co-occurs with one of the

morphs xi from some set X = {x1 . . . xn} where C =
⋃

xi∈X Mean(xi, Lex), and

C 6⊆MeanLex(m,k)

then a lexicon Lex′ equivalent to Lex in all respects except that C ⊆ MeanLex′(m,k)

generates the same language L.

Proof. Assume that (1) and (2) above are true. And assume for contradiction

that Lex and Lex′ don’t generate the same language. Since the only difference be-

tween Lex and Lex′ is in the meaning of the morpheme m, then the only difference

between the languages they generate should concern expressions that contain m. Take

all expressions in L generated by Lex that contain m in slot k. These are expressions

of the form (s,e) where sk = m and where C ∪ Mean(m,k)Lex ⊆ e (by composi-

tionality and assumption 2). Lex′ must generate exactly the same expressions, since

Mean(m,k)Lex′ = C ∪Mean(m,k)Lex (by definition of Lex′ above). Lex′ cannot gen-

erate any other expressions that are not generated by Lex since it is identical to Lex
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in all other respects. By the same reasoning we can show that all expressions generated

by Lex′ that involve m are also generated by Lex. Therefore Lex and Lex′ generate

the same language.

Before we turn to the main theorem, one more definition is in order.

Definition 2 (Invariant features of a k-th slot morph m)

I(m, k) =
⋂

(w,e)∈L,m=wk

e.

This definition basically says that invariant features for a particular morph

(computed by the cross-situational learner) are equivalent to the intersection of

all environments associated with this morph in the language. We are now ready

for the main theorem which proves the convergence of the algorithm 1.

Theorem 2 Suppose that a lexicon Lex (which satisfies all the relevant criteria in (8)

and (11)) generates a language L. From this lexicon we can derive an equally minimal

and generatively equivalent lexicon Lex′ following the recipe in the theorem 1. We show

that for any k-th slot morpheme (m, v) ∈ Lex′

k the following is true:

I(m,k) = v

In other words, the invariant features of any morph m are equivalent to the meaning

associated with the morph m by the sub-lexicon Lex′

k.

Proof. We will show that for any k-th slot morpheme (m, v) ∈ Lex′:

(a) I(m,k) ⊇ v, and

(b) v ⊇ I(m,k)

Part (a) is easy to show. Assume some morpheme (m, v) ∈ Lex′

k. By def-n of the

language in (10) and the assumption of no homonymy, any (s, e) ∈ L where sk = m is

such that v ⊆ e. Since I(m,k) =
⋂

(s,e)∈L,sk=m

e, it follows that v ⊆ I(m).
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Part (b) is a bit trickier. Take an arbitrary morph m that occurs in the k-th

position in strings of L. Suppose that a feature value l is in I(m,k). That is, l is in

the semantic environment of every string containing m in the k-th slot. We will show

that l is necessarily in v, for a morpheme (m, v) ∈ Lex′

k.

Claim 1: l cannot be a value of an irrelevant feature. If l was expressing an irrele-

vant feature, then by lemma 1 the set of expressions whose strings contained m would

include pairs like (s, f) and (s, f ′) where l ∈ f , l 6∈ f ′. But then, l could not be in

I(m,k), contrary to our assumption.

Claim 2: Since l ∈ I(m,k), l must be expressing a feature that is part of the

environment of every string containing m in the k-th slot. The feature values in an

environment are either irrelevant or contributed by at least one of the morphemes in

the string associated with that environment. Since l is not irrelevant, either (i) l is part

of the meaning associated with m (ii) or it is part of the meaning of every morph in

some set X, and m always co-occurs with some xi ∈ X in every string of L. In case

(i), l is necessarily in v of any lexicon generating L (compositionality). In case (ii), l

is included in v by definition of Lex′ (see the theorem 1). Thus, l is necessarily in v

for (m, v) in Lex′.

In short, we have proved that in the simplest scenario assumed for the first

learner invariant features for all morphs in L are equivalent to the second co-

ordinates of these morphs in one of the minimal lexicons generating the language

L.

5.5 The Elsewhere learner

In this section, we provide a learner for the second hypothesis space H2, which

excludes overlapping distributions but allows elsewhere homonymy. Accordingly,

we remove the restriction adopted for the first learner, namely the restriction
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that languages contain no homonymy within the same slot. However, we replace

it with a different restriction, the one demanding that there be no overlapping

morpheme distributions. This is in one sense a weaker restriction because it

allows homonymy within the same slot as long as it is not overlapping. On

the other hand, it is a stronger restriction because it rules out free variation.

However, both of these consequences, absence of free variation and of overlapping

homonymy, get us closer to the empirical facts since these types of patterns are

rare in inflectional paradigms (as we have seen in the previous chapter). Thus,

ruling out overlapping patterns, is a less severe simplification of the facts than

ruling out same-slot homonymy.

Recall that we have previously defined an overlapping distribution relative to

the notion of a paradigm, where a paradigm was viewed as all possible combi-

nations of a set of features (cf. chapter 3 section 3.3). I repeat the definition of

overlapping distributions here.

(12) A paradigm contains an overlapping distribution of morphemes, if at

least two morphs in the paradigm “overlap”, i.e.:

a. their invariant features are consistent with each other, and

b. each morph occurs in a cell that is consistent with the other morph’s

invariant features.

This definition can be used to determine the overlapping distribution in the lan-

guage as a whole rather than in a particular paradigm. To do this we just extend

the notion of a paradigm to encompass the set of all combinations of universal

features. In other words, each individual environment associated with a word

serves as a paradigm cell in the above definition.
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Recall that the overlapping distribution encompasses precisely those patterns

that cannot be described by the Blocking Principle (for examples of overlapping

patterns consult chapter 3).

There are several ways to formalize a ban on overlapping distributions. We

can either try to exclude overlaps from the lexicon by introducing homonymous

lexical entries when necessary, or, in accord with the blocking proposals, we

can assume a separate grammatical component that resolves competition among

lexical items while maintaining a lexicon in which there is a single entry for each

different morph. I follow the latter strategy, since it allows to formulate a target

grammar that can be learned by a simple generalizing method that continues to

make use of cross-situational intersections.

5.5.1 Formalizing blocking

In this subsection I modify the definition of the grammar presented in section 5.3

so as to rule out overlapping distributions. With this new restriction in place, we

can proceed to provide a learning algorithm for the languages generated by the

grammar defined here.

In addition to Π and Lex, we will have another grammatical component that

I call BR (for blocking rules). Instead of assuming a single Blocking Principle

based on some high level generalization, BR will explicitly record what morphs

block each other. Given this set of blocking rules, one can later infer a higher level

general Blocking Principle if such a principle indeed holds true for a given lan-

guage. Just like Lex, BR will be a union of slot-specific components BR1 . . . BRp.

Each set of blocking rules BRi will contain a set of morph pairs, in which the

first morph in a pair blocks the second morph in the pair. The conditions in (13)

specify under what circumstances the blocking rules are posited.
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(13) ∀i ∈ [p], if Lexi contains two different morphemes (m, v) and (m′, v′)

where v is consistent with v′, then one of the following is true:

a. (m, m′) ∈ BRi

b. (m′, m) ∈ BRi

c. (m′′, m) and (m′′, m′) ∈ Bri, for a morpheme (m′′, v′′) ∈ Lexi, such

that v′′ ⊇ v ∪ v′.

The last condition (c) says that if two morphemes have consistent lexical speci-

fications, it could be that neither of them blocks the other, but that some other

third morpheme blocks both of them (for a schematic example of this pattern see

figure 3.1 (b) in chapter 3).

The blocking relation is transitive: that is, if m blocks m′ and m′ blocks m′′,

then m also blocks m′′. However, loops are disallowed:

(14) For any i, if (m, m′) ∈ BRi, then (m′, m) 6∈ BRi.

Also observe that the formulation of the BR component above allows for some

grammars in which certain lexical items are never used. This can happen if a

pair (m, m′) is in BRi, and Mean(m, i) ⊂ Mean(m′, i) (i.e., m is more general

than m′). In such a case morph m′ will always be blocked by m and so it would

be a “useless” lexical item. However, as you will see, the learning algorithm will

never propose such strange grammars and so we can ignore them. This fact is

discussed in more detail later in regard to the Subset Theorem (page 133) which

highlights the empirical vacuousness of the Subset Principle.

We will say that some i-slot morpheme is a winner with respect to some set

of feature values Y if its meaning is a subset of Y and if it blocks all other i-slot
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morphemes whose meanings are also subsets of Y .9

(15) (m, v) ∈ Lexi is an i-winner(Y ) iff

a. v ⊆ Y

b. ∀(m′, v′) ∈ Lexi s.t. v′ ⊆ Y , (m, m′) ∈ BRi.

Now, we can modify the definition of the language given previously in (10) to

incorporate blocking as follows:

(16) L = {(s, e)| ∃q ∈ 〈Lex1 × . . . Lexp〉, q = 〈(s1, e1) . . . (sp, ep)〉, such that

a. ∀i, (si, ei) = i-winner(e), (blocking and compositionality)

b. s = s1...sp, (concatenation)

c. e ∈MM(F ) }

Note that the compositionality restriction is now automatically encoded in the

restriction that words consist of winners with respect to the features of the en-

vironment: it follows from the definition of winners that the features of the

environment are a superset of the union of the features of the constituent mor-

phemes.

With the addition of blocking, we can now describe the “elsewhere” distribu-

tions of morphemes without positing homonymous lexical entries. At the same

time, the blocking component excludes overlapping patterns since they are im-

possible to generate using the restrictions on the grammar I described in this

section.

9We can imagine some sets of feature values that are ineffable or for which no unique winners
exist. This could happen either because there are no morphemes compatible with this set of
features or because the grammar somehow fails to resolve the competition (although in my
definition of blocking, I require that the competition always be resolved, but we can imagine
relaxing this assumption).
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5.5.2 The algorithm

The first learner we considered was based on a simple intersective strategy that

easily learned languages with natural class syncretism and homonymy restricted

to different word slots. However, this simple learner did not have a way of de-

tecting homonymy within the same slot. The learner I present next will be able

to do just that for a subset of the homonymous affix distributions, namely the

elsewhere distributions. Hence, I call it the Elsewhere learner. This learner relies

on the same generalization method as the previous learner, and thus it can still

easily learn any non-ambiguous mapping including natural class syncretism.

Besides the cross-situational intersections, the Elsewhere learner includes an

additional routine for detecting homonymy and correcting its hypothesis by adding

blocking rules. The lexicon still contains only a single lexical entry per each

morph, and each morph is still paired with its invariant features. However,

some morphemes have an elsewhere distribution due to the fact that they can be

blocked in particular environments by other morphemes. Algorithm 2 on page

130 shows an implementation of this learner.

The general strategy for this learner can be described as follows. As before,

the algorithm runs through a text T for a language L one expression at a time,

and incrementally calculates the invariant features for each morph. However,

now after every cross-situational intersection, we check if this intersection leads

to unresolved lexical competition (i.e., a situation in which several same-slot lex-

ical entries are compatible with the same environments, and the current blocking

rules don’t resolve the competition). In case some morph m has competitors,

for every one of them we determine whether it can be posited as a blocker or

a blockee of m, or neither (if some other morph blocks moth m and its com-

petitor). This can be determined trivially if the hypothesized invariant features
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stand in a subset relation to each other because the more specific morph has to

block the more general one (see Theorem 4). If they don’t stand in the subset

relation, then we can determine the direction of blocking only if we have already

seen what morph occurs in an environment that is consistent with the currently

hypothesized features of both competitors. If such evidence has not been seen

yet, no blocking rules are added and overgeneralizations are predicted to persist

until the disambiguating data is uncovered. For instance, this could happen if

some morph a were associated with the features [f1,f2], a morph b were associated

with features [f3,f4], and a morph c were associated with features [f1,f2,f3,f4]. The

algorithm will correctly diagnose this case by adding appropriate blocking rules if

c has already been seen. If there is no evidence one way or the other about what

morph occurs in the environments that are consistent with both competitors, no

blocking rules are added and the learner continues to overgeneralize until the rel-

evant data is discovered and c is posited as a blocker of both a and b. Recall that

by our assumption of no overlaps, if a blocks b the reverse is impossible. Thus,

once the direction of blocking has been determined, it will not be contradicted

by any future data.

This learner will succeed on the languages with no overlaps because (i) in

absence of homonymy it works just like the no-homonymy learner, (ii) it has a

capacity to correctly diagnose the presence of “elsewhere” homonymy (see The-

orem 3), (iii) when elsewhere homonymy is detected it can determine the right

blocking relationships (see Theorem 4 and the subsequent discussion).

If one wants to have a memoryless strategy (in which the learner does not

have access to all input pairs seen so far), one could adopt the assumption that

the text is fat. That is, every expression of the language occurs in it infinitely

many times although with different probabilities (Osherson et al., 1986). With
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Algorithm 2 The Elsewhere Learner

Input: a text T for the language L consisting of pairs (s, e)
Output: a lexicon Lex = Lex1...Lexp, a set of blocking rules BR = BR1...BRp.
1: Mem ← ∅
2: for all pairs (s, e) in T do
3: Mem ← add (s, e) to Mem
4: for all si ∈ s do
5: if (si, x) ∈ Lexi then
6: newMeaning ← (x

⋂

e)
7: else
8: newMeaning ← e
9: end if

10: competitors ← {(m, v) ∈ Lexi |(m, v) 6= (m, oldMeaning), v is consis-
tent with newMeaning and ¬∃(si, m) ∈ BRi}

11: for all (m, v) ∈ competitors do
12: if v ⊂ newMeaning then
13: ensure (si, m) is in BRi (add it if it’s not there)
14: else if v ⊃ newMeaning then
15: ensure (m, si) is in BRi

16: else if ∃(s′, e′) ∈ Mem, s.t. (v ∪ newMeaning) ⊆ e′) and s′i = m
then

17: ensure (m, si) is in BRi

18: else if ∃(s′, e′) ∈ Mem, s.t. (v ∪ newMeaning) ⊆ e′) and s′i = si

then
19: ensure (si, m) is in BRi

20: else if ∃(s′, e′) ∈ Mem, s.t. (v ∪ newMeaning) ⊆ e′) and s′i = x 6=
si 6= m then

21: ensure (x, m) and (x, s′i) are in BRi

22: else
23: {Do nothing. There is no evidence.}
24: end if
25: end for
26: addreplace (si, newMeaning) in Lexi {add it if it’s not there, replace

the old entry if there is one}
27: end for
28: end for
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this assumption, we are guaranteed that, no matter where in the text we currently

are, we will always see the input pair that allows us to determine the direction of

blocking. The algorithm 2 below is a simplified version of the previous algorithm

that takes a fat text as an input.

Algorithm 3 The Memoryless Elsewhere Learner

Input: a fat text T for the language L consisting of pairs (s, e)
Output: a lexicon Lex = Lex1...Lexp, a set of blocking rules BR = BR1...BRp.
1: for all pairs (s, e) in T do
2: for all si ∈ s do
3: if (si, x) ∈ Lexi then
4: newMeaning ← (x

⋂

e)
5: else
6: newMeaning ← e
7: end if
8: competitors ← {(m, v) ∈ Lexi |(m, v) 6= (m, oldMeaning), v is consis-

tent with newMeaning and ¬∃(si, m) ∈ BRi}
9: for all (m, v) ∈ competitors do

10: if v ⊂ newMeaning then
11: ensure (si, m) is in BRi (add it if it’s not there)
12: else if v ⊃ newMeaning then
13: ensure (m, si) is in BRi

14: else if e ⊇ v ∪ newMeaning then
15: ensure (si, m) is in BRi

16: else
17: {Do nothing.}
18: end if
19: end for
20: addreplace (si, newMeaning) in Lexi {add it if it’s not there, replace

the old entry if there is one}
21: end for
22: end for

Notice that both of the Elsewhere learners above learn the lexical mappings

and rule out irrelevant features in a generalizing fashion. The generalizations

occur not only during intersections, but also in the process of positing blocking

rules. More concretely, after observing a single instance in which some morph
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a blocks another morph b, we conclude right away that a is always a blocker

of b (even without yet knowing the exact meanings of a and b). This kind of

generalization is safe given the restriction of no overlaps adopted in this section.

This Elsewhere learner captures the relative simplicity of elsewhere mappings

compared to the overlapping mappings: in languages with no overlaps one can still

use a relatively simple generalizing strategy based on cross-situational learning

without backtracking or changing the adopted lexical items.

5.5.3 Theorems related to the Elsewhere learner

In what follows, I present a few theorems that prove that the above learners

correctly detect presence of homonymy, and correctly determine the direction of

blocking in case competitors are in a subset relationship. If competitors are not in

the subset relationship, the blocking rules are always correctly determined since

the algorithm simply waits to see which morph will occur in the environment

compatible with both of the competitor’s invariant features.

Let the term “currently invariant features” refer to the features derived at

some intermediate stage of computing invariant features. The first theorem below

shows that whenever currently invariant features of two same slot morphs become

consistent, we can conclude that at least one of the morphs is a homophone.

Theorem 3 Adopting the restriction on no overlaps (i.e., no free variation and no

overlapping homonymy), we prove that whenever the currently invariant features of

two same slot morphs become consistent at an intermediate learning stage, we can

infer that one of the morphs is a homophone.

Proof.

Suppose that the language L contains no free variation and no overlapping homonymy.

Furthermore, suppose that in the process of applying the Elsewhere algorithm to the
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language L, the currently invariant features of two same slot morphs a and b become

consistent. Since the currently invariant features are supersets of the invariant features

(this follows from the way invariant features are calculated), the invariant features of

the two morphs must also be consistent (i.e. contain no contradictory feature values).

There are two possibilities: (1) neither a or b are homophones (2) at least one of them

is a homophone. In the first case, the invariant features of both morphs correspond to

the necessary and sufficient features determining their distribution. These features are

also equivalent to their lexical meaning in a lexicon for L (see theorem 2). In the ab-

sence of homonymy, two morphs with consistent lexical meanings are predicted to stand

in free variation in some environments. However, this contradicts our assumption of

no free variation. Therefore (2) must be true.

Thus, consistency can be used as an indicator of homonymy.

Theorem 4 shows how the ban on overlapping distributions also helps in infer-

ring the blocking direction from the invariant features. Namely, if the currently

invariant features of the two competitors stand in a subset relation to each other,

we can immediately determine which one of them blocks the other.

Theorem 4 (The Subset Theorem) If the intermediate lexicon contains an entry

(m, v), and a new entry (m′, v′) is about to be added such that v ⊂ v′, we can immedi-

ately infer that (m′,m) ∈ BR.

Proof: Suppose an intermediate lexicon Lex obtained by the Elsewhere learner con-

tains a morpheme (m, v), and another morpheme (m′, v′) (where v ⊂ v′)) is about to

be added to Lex. Since v ⊂ v′, then v and v′ are consistent and by (13) the blocking

rules must include one of the following: (i) (m,m′), (ii) (m′,m), or (iii) (m′′,m) and

(m′′,m′) for some morpheme (m′′, v′′) where v′′ ⊇ v ∪ v′.

Suppose that (i) above were true. That is, m blocked m′. Then, it would be im-

possible for m′ to be expressed in any language pair, since m would win over m′ with
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respect to any environment in which m′ could possibly occur. Therefore, we couldn’t

have derived the lexical entry (m, v) in the first place. The same could be said about

option (iii). Since v ⊂ v′, then v ∪ v′ = v′, therefore v′′ ⊇ v′, and neither m nor m′

could ever win with respect to m′′. By process of elimination (ii) must be true.

This theorem shows the empirical vacuousness of the Subset Principle (or

the Elsewhere Condition based on specificity). The empirical data could never

provide us with any evidence that the more general lexical items block the more

specific ones. The opposite state of affairs is the only empirically observable

option. Thus, the Subset Principle is inherently and logically build into reasoning

with blocking; it is not a separate principle that makes empirical predictions. The

same point is made by Prince and Smolensky with regard to OT constraints that

are in a subset relationship (cf. “Pananini’s Theorem on Constraint Ranking”

Prince and Smolensky, 1993).

5.6 The General Homonymy learner

So far we have seen that a language in which strings of morphs are associated

with maximal monomials over a finite number of features is easily learnable given

particular affix distributions, namely distributions that exclude overlapping pat-

terns. Nevertheless, such patterns are empirically attested, and therefore, we

need our learner to be flexible enough to learn them. In this section, I get one

step closer to this goal by showing how any pattern of homonymy including over-

lapping homonymy can be learned (keeping a restriction on no free variation

constant).

The learner presented here is called a General Homonymy learner. It extends

the elsewhere learning strategy to handle any type of form-meaning mapping
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except for free variation. This learner continues to generalize non-monotonically

and it matches the empirical facts regarding frequencies of homonymy patterns

because it has the easiest time learning one-to-one mappings and the hardest

time learning overlapping mappings.

The next subsections elaborate on the target grammars for this learner, the

learning method and the predictions that this learner makes.

5.6.1 The learning space

Languages with unrestricted homonymy can be described by positing several lex-

ical entries with the same first coordinate (something we have not done yet).

Allowing an unbounded number of homonymous lexical entries in the lexicon

makes the use of blocking rules, technically speaking, unnecessary. However, we

will only posit homonymous lexical entries as a last resort, so reasoning with

blocking will still be useful as a simple and efficient method for learning major-

ity of homonymous mappings (i.e., the elsewhere mappings). Therefore, I will

continue to rely on blocking since I aim to construct a learner that easily learns

simple and well-attested patterns in contrast to more complex and infrequent

patterns.

In the present scenario, the restrictions on the languages in (10) continue

to hold, as well as the restrictions on the blocking rules discussed in section 5.5.

However, now there are no additional restrictions on homonymy, although we still

assume that free variation is ruled out. This assumption is spelled out below.

(17) ∀Lexi, 1 ≤ i ≤ p, there are no two different morphemes in Lexi whose

meanings are consistent and the blocking rules do not resolve the com-

petition among them.
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Since we are allowed to have several lexical entries with the same first coordinate,

we need a way to distinguish them from each other. For this purpose, I use inte-

gers starting from 1 to whatever the highest number of homophonous morphemes

may be. So, now the first coordinate of the lexical entries is a tuple with the first

member being a morph and the second member - an integer. (As before, the

second coordinate of lexical entries is a set of feature values, or a monomial).

(18) Lexi ⊆ (Σ×N)×M(Fi)

Morphs that are phonologically the same but paired with different integers are

assigned different semantic representations in the lexicon. They are instances

of homonymous lexical entries. As before, the blocking rules are pairs of the

first coordinates of lexical entries. However, keep in mind that now the first

coordinates are morph-integer tuples.

When blocking co-exists with homonymous lexical entries, it is possible to

specify multiple grammars for the same language. To demonstrate the types of

grammars the general homonymy learner will induce from the data, consider the

following two subsets of lexical entries for the overlapping affixes -en and -t in

the German paradigm in table 3.5 in chapter 3.

(19) Two alternative grammars for German

Grammar 1 (LEX + BR)

(-en,1) +group

(-t,1) +part -speak, +group

(-t,2) -part -speak, -group

BR: ((t,1),(en,1)); ((t,2),(en,1))
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Grammar 2 (LEX + BR)

(-t,1) -speak

(-en,1) +part +speak, +group

(-en,2) -part -speak, +group

BR: ((en,1),(t,1)); ((en,1),(t,1))

In both of these grammars, one of the affixes is still the “elsewhere” form,

while the other is split into two different lexical entries. Although there will

sometimes be several possible “solutions” that a learner can find (i.e., several

grammars for a single language), it will only converge on one of them depending

on the order in which the input is presented. Namely, which morph will end

up having an elsewhere status will depend on how early the learner sees it in

comparison to the other morphs. This will become clearer when we consider the

learning algorithm.

5.6.2 The algorithm

The General Homonymy Learner relies on the strategy of the Elsewhere learner

which, as you recall, in turn relies on the strategy of the No-Homonymy learner.

This nested relationship between the learners can be described as follows: we

proceed under the assumption that the mapping between form and meaning is

one-to-one until we have some positive evidence that this is not true, i.e., when

invariant features of two different morphs become consistent. In this case we

switch to the assumption that the discovered homonymy is due to an elsewhere-

type of affix distribution. Recall that in such cases we can recover from overgen-

eralizations by introducing blocking rules rather than modifying lexical entries.

However, if no blocking rule can be posited because we have evidence of an over-

lapping pattern (this is the new part), we switch to the least restrictive hypothesis
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and consider the possibility that there is more than one homonymous lexical entry

for the morph under consideration.

The strategy outlined above will succeed because at some finite point we

can always determine whether we have overgeneralized either by (i) detecting

homonymy, or (ii) detecting overlapping homonymy. The first kind of error is

discovered as soon as the invariant features of two different morphs become con-

sistent (see theorem 3). The second kind of error is discovered as soon as we have

seen two competing morphs in the environments which are consistent with both

of their invariant features or if we are about to add a contradictory blocking rule

(see the definition of overlapping homonymy in (12)).

The General Homonymy Learner is different from the previous learners in

that it has an additional component for detecting overlapping patterns and for

postulating several homonymous lexical entries in the lexicon. The postulation

of several lexical entries eliminates the overlaps and reduces the problem to the

same scenario that the Elsewhere learner was facing, with one minor difference

- now the input strings are ambiguous in the way they were not before (since a

lexicon may contain more than one entry with the same phonological form).

Previously, we computed the invariant features of a morph incrementally by

taking intersections of its current environment and the meaning of the morph in

the current lexicon. Now, the current lexicon may contain several different lexical

entries for a single phonological form, and so it is not immediately clear which

of these we should choose to intersect with a given morph. When faced with

such ambiguity, the learner will simply select the first in a list of possible lexical

entries for the morph under consideration.10 For instance, suppose there are two

different morphemes in the current lexicon: (−en, 1) − [1person, plural, fem.]

10Alternatively, we could select the lexical entry whose current meaning is most similar to the
environment we are considering. This could save us some time and make the lexicon shorter.
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and (−en, 2) − [3person, plural]. When the learner encounters an input string

containing −en, it will first proceed under the assumption that this morph is a

realization of the morpheme (en, 1). The learner will abandon this hypothesis

only if it leads to a “dead end”, i.e., if it is impossible to describe the distribution

of the hypothesized morpheme with underspecification and blocking (in other

words, if the distribution of (en, 1) “overlaps” with the distribution of some other

morph). In such a case, the learner will discard its current hypothesis without

changing previous lexical entries and switch to the next possibility, namely the

possibility that the morph−en in the current input string is an instance of (en, 2).

If all possibilities lead to a dead end (i.e., an overlap), the algorithm will create a

new entry for −en assigning to it a new index and setting its second coordinate

to the value of the environment in which −en has just been seen.

In what follows, I step through this routine as it is presented in the Algorithm

‘Main’ (on page 146 in the pseudo-code format.

The first thing we do for each individual morph x is look up all morphemes

in the current lexicon that have x as their first coordinate. I call this set of

morphemes homophones of x. The main function has a while loop that goes

through the homophones and calls another function lexicalize which is used to

add a new hypothesized morpheme to the lexicon. If lexicalize returns true this

means that an overlapping pattern was detected, in which case we continue in

the while loop of the main function and try the next homophone. If false is

returned, then the new morpheme was successfully added to the lexicon and we

break from the while-loop. If we have exhausted all homophones (i.e., true was

returned on all of them), we create a new lexical item for x and add it to the

lexicon. To do this, we need to compute a next integer to be paired with x (this

is done in the function nextIndex). Next index of x will be set to 1 if x is not
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currently in the lexicon, and to k + 1 where k is the largest integer currently

associated with a morph x.

So, how does the algorithm detect overlapping homonymy? This is done in the

function lexicalize. Recall that an overlapping pattern arises when some morph a

occurs in the environment compatible with invariant features of another morph b,

and vice versa: b occurs in an environment compatible with the invariant features

of a. Additionally, overlaps can be detected by watching out for circular blocking

rule chains.

If an overlapping pattern is detected, we immediately return true, which

means that we abandon the current hypothesis and consider an alternative ho-

mophone. If no overlapping pattern has been detected, the algorithm proceeds to

determine the blocking rules for all the competitors. If none of the competitors

overlap with the current morpheme, all discovered blocking rules are added to

BR.

For a better understanding of how this algorithm works, I go through a short

example. Suppose that we have four universal binary features f1, f2, f3, f4,

and that all strings in our language have length 1 (i.e., there is only one slot).

Furthermore, features f3 and f4 are irrelevant, there are only two morphemes A

and B, and they are in the following overlapping distribution:

(20) A hypothetical paradigm for language L

+f1 −f1

+f2 A B

−f2 B A
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Suppose that the text for this language begins as follows:

(21) A text for L

1. A −f1,−f2, +f3,−f4

2. A −f1,−f2,−f3,−f4

3. B +f1,−f2, +f3, +f4

4. A +f1, +f2, +f3,−f4

5. B −f1, +f2,−f3,−f4

6. B −f1, +f2, +f3,−f4

7. A +f1, +f2,−f3, +f4

After seeing the first three lines of text, our lexicon looks like this:

(22) LEX:

(A,1) [−f1,−f2,−f4]

(B,1) [+f1,−f2, +f3, +f4]

We are now processing the third input pair (A, [+f1, +f2, +f3,−f4]). First of

all, we find all lexical entries in the current lexicon that have A as their first

coordinate. There is only one of them. We call the function lexicalize and form

a new lexical entry by taking an intersection of the current environment and the

“old” meaning of A. As a result we get a potential morpheme ((A, 1)[−f4])).

Next, we check whether this new morpheme has any competitors in the current

lexicon, i.e., other entries whose second coordinates are consistent with [−f4].

There are no such competitors (the condition of the while loop in lexicalize is not

met because the length of the competitors set is 0), so we replace the old entry

((A,1),[−f1,−f2,−f4]) with the new entry ((A, 1)[−f4]).

Now we move on to the next input pair (B,[−f1, +f2,−f3,−f4]). There is
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only one entry in the lexicon for the morph B. We take an intersection with

this entry and get a new potential morpheme ((B, 1), ∅). This time, the set of

competitors is not empty: (A, 1) is a competitor of (B, 1). Then, we check for an

overlapping pattern: we look at all the expressions seen so far that are consistent

with the current meanings of A and B (this is the set P in the Algorithm 4). The

input pairs 1,2,4,and 5 will be in P because they are consistent with the feature

set {{−f4} ∪ {∅}}. The condition in line 9 is met, i.e., P contains expressions

whose first coordinates contain A and and those whose first coordinates contain

B. Therefore, we know we found an overlapping pattern. This means we will not

add (B, ∅) to the lexicon, instead we set the variable break to true, and exit the

while loop of lexicalize.

Because lexicalize returns true, we continue in the while-loop of the main

function. But there is no other lexical entry with B as the first coordinate,

so we form a new lexical entry for B with the index 2 and the semantic value

([−f1, +f2,−f3,−f4]). We then try to lexicalize this new morpheme. This is

now our second round in the lexicalize function. The new morpheme is still in

competition with the lexical entry for ((A, 1), [−f4]). However, this time around

no overlapping pattern is detected since P contains only one expression B −

([−f1, +f2,−f3,−f4]). From this we can infer that (B, 1) has to block (A, 1).

So, after exiting the while-loop (with the variable break still set as false), we

successfully add the new lexical entry and the new blocking rule to the grammar

and exit the lexicalize function by returning false and hence breaking from the

while-loop in the main function. At this point, the lexicon looks as follows:

(23) LEX:

(A,1) [−f4]

(B,1) [+f1,−f2, +f3, +f4]
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(B,2) [−f1, +f2,−f3,−f4]

BR: ((B,2),(A,1))

Next, we process the input pair 6. There are now two different lexical entries for

B. We try to merge the current input with the first of these – (B, 1). This leads

to the potential morpheme ((B, 1), [+f3]) which competes with ((A, 1), [−f4]).

We don’t end up lexicalizing this potential morpheme because it is overlapping.

Namely, we saw the feature set [+f3,−f4] occur in the environments that were as-

sociated with both A and B. Therefore, we try the second entry - (B, 2). Through

intersection we get a potential morpheme ((B, 2), [−f1, +f2,−f4]), which also

competes with (A, 1), but this competition can be resolved by a blocking that

is already part of the grammar. So, we go ahead and replace the old entry for

(B, 2) with the new one, and now our lexicon looks like this:

(24) LEX:

(A,1) [−f4]

(B,1) [+f1,−f2, +f3, +f4]

(B,2) [−f1, +f2,−f4]

BR: ((B,2),(A,1))

Finally, consider the last input pair in our example. I leave it as an exercise for the

reader to verify that the cross-situational intersection will lead to a new potential

morpheme (A, 1), ∅, which will be successfully lexicalized (since no overlaps can

be detected) with an addition of a new blocking rule ((B, 1), (A, 1)).

It should be clear at this point that we are bound to converge on the correct

grammar below, by continuing to rule out irrelevant features.
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(25) LEX:

(A,1) ∅

(B,1) [+f1,−f2]

(B,2) [−f1, +f2]

BR: ((B,2),(A,1)); ((B,1),(A,1))

Notice that a somewhat different order of presentation of the input pairs could

give us a different (but generatively equivalent) grammar:

(26) LEX:

(B,1) ∅

(A,1) [+f1, +f2]

(A,2) [−f1,−f2]

BR: ((A,2),(B,1)); ((A,1),(B,1))

Overall, this algorithm introduces homonymous lexical entries into the lexicon

only when it is impossible to posit blocking rules to resolve lexical competition.

By preventing the merging of morphs that would lead to an overlap, the learner

essentially reduces the problem to the same situation that the elsewhere learner

was faced with.

As the Elsewhere learner, the General Homonymy learner sometimes overgen-

eralizes. But eventually, it fixes overgeneralizations either by positing blocking

rules or homonymous lexical entries. When no evidence has been seen to de-

termine the direction of blocking or the presence of an overlapping pattern, the

learner predicts free variation among several forms. These rare cases arise when

the competitors under consideration are not currently overlapping and neither

of them has been seen in any environment that is consistent with both of them.
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In such cases, no blocking rules are added and the competition between lexical

items is temporarily unresolved until the relevant data is encountered.

The General Homonymy learner will succeed because it correctly diagnoses

when an overlapping pattern occurs (relying straight-forwardly on the definition

of overlapping homonymy), and at that point it does not change any lexical items

or introduce any blocking rules that are inconsistent with the data seen so far.

Instead, it posits a new lexical entry for the morph in question.

In general, the algorithm is still relatively simple and consistent: at every

point it either adds a new lexical item or a new blocking rule which correctly

accounts for all the data seen so far. Since the algorithm is consistent and it

operates in the finite space, we know that it is PAC-learnable (Anthony and

Biggs, 1992, p.29).

Like the first elsewhere learner we considered, this algorithm also keeps a

memory stack to which it can later refer. This stack is used for detection of

overlaps. Undoubtedly, this algorithm can be made more efficient and perhaps

also memoryless (assuming a fat text as before); however, I will not explore these

option here.

Finally, it is also worth noting that the grammars this learner converges on are

not necessarily most minimal grammars satisfying all the relevant requirements.

This is particularly obvious for the languages with many overlaps. The order in

which the input is processed will have a crucial impact on how the overlaps are

resolved, and how many homonymous lexical entries are posited.
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Algorithm 4 The General Homonymy Learner: main

Input: a text T for L consisting of pairs (s, e), where s has length p.
Output: a lexicon Lex = Lex1...Lexp, a set of blocking rules BR = BR1...BRp.
1: Mem = ∅
2: for all pairs (s, e) in T do
3: Mem = add (s,e) to Mem
4: for all si ∈ s do
5: homophones← {((m, k), v) ∈ Lexi|m = si}
6: j ← 0
7: fail ← true
8: while fail = true do
9: if j ≥ length of homophones then

10: index ← nextIndex(si, Lexi)
11: fail ← lexicalize(((si, index), e), ((∗, 0), ∅), Lexi) {((*,0),∅) is a

dummy lexical entry}
12: else
13: ((m, k), v)← homophones.(j)
14: newMeaning ← (v

⋂

e)
15: fail ← lexicalize(((si, k), newMeaning), ((m, k), v), Lexi)
16: end if
17: j ← j + 1
18: end while
19: end for
20: end for
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Algorithm 5 lexicalize

Input: new morpheme ((m, k), v), old morpheme ((m, k), oldMeaning), Lexi,
BRi

Output: fail = false, if the new morpheme was successfully added to Lexi, true
otherwise

1: competitors← {((m′, k′), v′) ∈ Lexi|(m
′, k′) 6= (m, k), & v′ is consistent with

v}
2: tempBR← ∅ {temprorary blocking rules}
3: j ← 0
4: break ← false
5: while break = false and j < the length of competitors do
6: ((m′, k′), v′)← competitors.(j)
7: j ← j + 1
8: P ← {(s, e) ∈Mem |e is consistent with v′ and v}
9: if ∃(s, e) ∈ P , where si = m then

10: if ∃(s, e) ∈ P , where si = m′ then
11: break ← true {overlapping pattern}
12: else
13: if transitive closure of BR will have a contradiction with addition of

((m, k), (m′, k′)) to it then
14: break ← true {overlapping pattern}
15: else
16: add ((m, k), (m′, k′)) to tempBR
17: end if
18: end if
19: else
20: if ∃(s, e) ∈ P , where si = m′ then
21: if transitive closure of BR will have a contradiction with addition of

((m′, k′), (m, k)) to it then
22: break ← true {overlapping pattern}
23: else
24: add ((m′, k′), (m, k)) to tempBR
25: end if
26: else
27: {No evidence for overlaps or blocking rules.}
28: end if
29: end if
30: end while
31: if break = true then
32: return true
33: else
34: replace ((m, k), oldMeaning) with ((m, k), v) in Lexi

35: BRi ← transitive closure of BRi ∪ tempBr
36: return false
37: end if 147



5.7 Discussion

5.7.1 Properties of the learners

In this chapter I presented three learners operating within increasingly larger and

more complex learning spaces. The first learner was designed to learn languages

with no-homonymy in the same slot. It followed a simple intersectional procedure

to calculate invariant features and was equivalent to a learner that learns a set

of monomials.

The second learner was a little more sophisticated: on top of calculating

invariant features, it also added blocking rules to resolve competition among lex-

ical items. As a result, this learner successfully learned languages with elsewhere

homonymy but no overlapping distributions. In other words, it handled majority

of inflectional paradigms, judging from the typological data on verbal inflection

discussed in chapter 4.

Finally, the last (General Homonymy) learner had the additional power to

add homonymous lexical entries when the competition among the morphs could

not be resolved by any blocking rule, i.e., in presence of overlapping homonymy

(free variation was explicitly ruled out).

The General Homonymy learner easily learns 1-1 form-meaning mappings us-

ing cross-situational intersections (in the same way as the No-Homonymy learner).

It has to do more work in order to learn elsewhere distributions because those

require checking for competitors and determining the appropriate blocking rules.

This learner does it in a similar way as the Elsewhere learner, except it per-

forms an additional check for overlapping patterns before positing blocking rules.

When this check is positive, i.e., an overlap has been detected, the learner has

to do still more work. In particular, when an overlap is discovered, the learner
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abandons its current hypothesis and has to start from scratch, moving on to a

different lexical item or forming a new one, calculating competitors, determining

blocking, etc. In other words, in presence of overlaps, the algorithm goes through

several passes of the function lexicalize (cf. the example in the previous section).

Thus, this algorithm predicts that the overlapping homonymy requires more time

and resources to learn. This prediction fits the empirical observation that such

patterns are rare (and by hypothesis complex).

In short, the General Homonymy algorithm behaves in such a way that it is

biased to rely on simple generalization strategies resulting in the learning of sim-

ple patterns (1-1 and elsewhere), but it has an ability to shift to more complex

strategies when simple strategies are not sufficient. As discussed in the intro-

duction to this chapter, the space of learning hypotheses can be thought of as

structured into increasingly larger subsets with smaller (more restricted and sim-

pler) subsets being preferred by the algorithm and therefore being empirically

more probable.

If a language had an abundance of overlapping patterns, there would be little

reason to propose a learner similar to the General Homonymy learner which

relies on the idea of defaults. But because overlapping homonymy is rather rare

(while elsewhere homonymy is common), defaults are still useful in describing

and learning the grammars in a relatively simple fashion.

One other distinguishing property of my learner is that it overgeneralizes and

subsequently corrects its overgeneralizations. The generalization method that the

learner uses can be broken down into two parts. First, it generalizes in calculat-

ing invariant features which are used to find appropriate lexical specifications for

the morphs. Since majority of morphs are not ambiguous, the invariant features

alone are sufficient to define their meaning. But in cases of homonymy, invariant
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features lead to overgeneralizations. Such overgeneralizations are later corrected

either by blocking rules or by new lexical entries. The former method (positing

blocking rules) is also generalizing. For example, if the learner has some evidence

that a morph “a” blocks a morph “b” (without yet knowing precisely what the

meaning of “a” or “b” is, and without seeing these morphs in all possible envi-

ronments), it posits a blocking rule “a≫ b”. This generalization method is safe

due to the way the algorithm is structured. That is, we are guaranteed that no

future data point will lead the algorithm to posit a contradictory blocking rule.

This danger simply does not exist for the elsewhere homonyms (majority of the

homonyms) because of the properties of the “elsewhere” patterns. As for the

overlapping homonyms, this danger is eliminated by the algorithm since it checks

for overlaps before positing the blocking rules.

How do invariant features help us in getting at the morphs’ meanings? As I

showed in this chapter, the invariant features are directly relevant to the mean-

ing of non-ambiguous morphs. When it comes to the ambiguous morphs, the

invariant features can be used as a first approximation or a rough cut that is

made more precise with help of the blocking rules or the introduction of lexical

homonymy.

In the rest of this discussion section, I consider predictions with regard to

language acquisition and some remaining problems not addressed by the General

Homonymy learner.

5.7.2 Predictions

Although the learner presented here rests on many idealizations, it already makes

some interesting predictions with respect to the general trajectory of morpholog-

ical acquisition.

150



One of the main predictions of this learner is the presence of overgeneraliza-

tions at intermediate learning stages and subsequent corrections of such over-

generalizations. The exact rate and types of overgeneralizations will depend on

the order in which the learner is exposed to the input (which in turn could be

connected to different frequencies of affixes).

In general, however, we would expect that, when the invariant features of two

morphs are in a subset relationship and the more specific morph is less common,

the more general morph would be temporarily used in the domain of the more

specific morph. In cases in which the invariant features of different homophones

are consistent but are overlapping or are in the subset relationship, we predict

that these morphs should sometimes be used interchangeably, as though they

were in free variation.

Some studies in language acquisition report several cases of overgeneraliza-

tion errors in presence of homonymy (Ferdinand, 1996; Blom, 2003; Weerman

et al., 2003; Berger-Morales, in progress), however they are difficult to evaluate

with respect to the proposed learners for several reasons. First, there are many

factors affecting children’s output that are either irrelevant to learning or are not

addressed by the current model (constraints on processing, phonological limita-

tions, markedness, relative frequency of forms, etc.). Second, different language

acquisition studies use different methodologies and different evaluation metrics for

what counts as an overgeneralization, so that it is not immediately clear how to

assess and compare such data. It is possible, that an artificial grammar learning

experiment with children would be more beneficial for testing the above learning

predictions.

We also predict that in presence of overlaps, it is possible that different chil-

dren might arrive at slightly different grammars that nevertheless generate the
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same input. The differences would manifest themselves in what forms are as-

sumed to be defaults and what forms are listed as homonymous. Unfortunately

this prediction is hard to test since we don’t yet have a good way of determining

which lexical representations in the mental lexicon have the default status.

Having such a method would also be useful in testing the psychological real-

ity of the representations themselves (rather than the behavior of the learners).

Yang (2005) considers a few possibilities for testing predictions of grammars that

incorporate elsewhere statements of the type below:

IF w = w1 THEN . . .

ELSE IF w = w2 THEN . . .

. . .

ELSE IF w = wn THEN . . .

ELSE apply R

More specifically, according to the “elsewhere condition serial search” model

of processing that Yang assumes, the default rules should take longer to apply

compared to other rules (provided that one controls for the stem-cluster frequency

and the time course of rule application).

Lexical priming can also be potentially used to test the predictions of a model

containing defaults. In particular, taking this model and the learner’s output

quite literally (i.e., assuming that the lexical entries derived by the learner cor-

respond to the entries in the mental lexicon, while the blocking rules are in some

separate grammatical component) we would predict that different instances of

the elsewhere homonyms should prime each other, but instances of the overlap-

ping homonyms should not prime each other. This is because on the standard

interpretation, priming is due to re-activation of a recently accessed representa-

tion, and in the case of the elsewhere homonymy the learner I presented posits a
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single underspecified lexical entry, while the same is not true for the overlapping

homonymy.

5.7.3 Remaining problems

5.7.3.1 Free variation

When languages can have both free variation and overlapping homonymy, they

are more challenging to learn. This is because once a learner discovers that

a paradigm contains an overlapping distribution, it then still has to determine

whether it is due to homonymy or to free variation. Free variation would be

easy to spot if we already knew what the relevant features were. Then, by

simply observing when the same sets of features are always associated with several

different affixes, we could infer that such affixes stand in free variation. We could

do this in the present scenario, but given a large number of universal features

it might take a very long time before we discover that two different strings are

always used in the same environments.

In general, the problem is this: in the initial stages of learning, free variation

is hard to tell apart from overlapping homonymy. For instance, consider the

following subset of input pairs:

(27) Hypothetical text

a −f1− f2− f3

a −f1− f2 + f3

a −f1 + f2 + f3

b −f1 + f2− f3

b +f1 + f2 + f3
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Given this input we know that the paradigm contains an overlapping distribution,

but it could either be due to free variation if f3 is irrelevant, or to overlapping

homonymy if f3 is relevant. That is, the above input is consistent with a grammar

in which f3 is irrelevant, and a is in free variation with b in some contexts:

(28) Grammar 1:

LEX: (a,1) - [-f1]; (b,1) - [+f2]

But it is also consistent with a grammar in which f3 is a relevant feature and

there are two different entries for a:

(29) Grammar 2:

LEX: (a,1) - [-f1,-f2]; (a,2) - [-f1,+f2,+f3]; (b,1) - [+f2]

BR: ((a,2),(b,1))

It seems that to tackle both overlapping homonymy and free variation at the same

time, it would be useful to exclude irrelevant features from consideration at some

intermediate stage of learning. We know that a feature is irrelevant when it is

not part of any lexical representation for any morphemes in a language, or when

its value never affects the spell out of the strings. We could at some point guess

what features are irrelevant by keeping track of those features that are always

intersected out from every single morph in a given slot. Given this guess, we

could evaluate whether the paradigm contains free variation by checking if any

input pairs whose second coordinates have exactly the same relevant features

contain different morphs in the same slot.

Alternatively, we could detect free variation whenever overlaps cannot be

resolved by simply postulating more homonymous lexical entries. This would be
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possible since overlaps that are due to free variation could never be removed. In

other words, such overlaps are part of the grammar, they represent non-resolved

competition that leads to use of several morphs interchangeably. I leave it to

future research to work out exactly how this property of free variation could

be used to detect it and how learning of free variation could be successfully

incorporated into an on-line learning algorithm presented in the previous section.

5.7.3.2 Learning co-occurrence restrictions

Recall that one of our assumptions was that languages do not include co-occurrence

restrictions conditioned by phonological or arbitrary lexical factors. We would

like to eventually relax this assumption to be able to learn such co-occurrence

restrictions which would form a basis for learning inflectional classes, as well as

other types of non-semantic features like gender of inanimates, etc.

The simple learners that I have discussed, do not pay attention to the co-

occurrence restrictions. But we can imagine making them more sophisticated so

that they keep track of what subset of morphs a given morph can occur with.

Once such subsets are correctly identified, the learner can attempt to find a

conditioning factor for them. There is, of course, a whole set of new problems that

such a learner would have to deal with if it attempts to generalize. For instance, if

we generalize “bottom-up”, when do we reach enough evidence to merge distinct

subsets into a single set? Or, in other words, when do we conclude that morphs

currently assigned to different subsets actually have the same distribution? If

we generalize “top-down”, assuming at first that all morphs can co-occur with

all other morphs, when do we split them into the distinct subsets? And how do

we recover from over- or under-generalizations that these strategies bring with

them?
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I am currently working on some ideas of how to solve this problem, but they

are beyond the scope of this thesis.
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CHAPTER 6

Summary

What I hope to have shown in this dissertation is that learning in the presence

of homonymy is not a trivial task since languages contain unrestricted kinds of

homonymy. However, the learner can still rely on a relatively simple learning

strategy most of the time, taking advantage of the fact that majority of affix

distributions are not overlapping, which is to say that the relationship between

form and meaning is usually not arbitrary.

The learner presented here incorporates a bias for particular kinds of form-

meaning mappings, namely those that can be described with underspecification

and defaults. If this learner is on the right track, it suggests that the learning

biases might be responsible for certain core properties of languages manifested

in strong statistical tendencies. These tendencies organize the space of form-

meaning patterns into a structured hierarchy, in which the higher is a pattern in

the hierarchy, the more arbitrary and difficult it is for the speakers.

To show that inflectional form-meaning mappings are subject to strong statis-

tical preferences, I examined two hypotheses about verbal agreement paradigms.

First, I considered the hypothesis that majority of inflectional paradigms do

not include cases of true homonymy. This might strike one as surprising, since

morphological descriptions of many languages include examples of what I called

form identity, the scenario in which different paradigm cells are occupied by
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the same phonological form. However, the empirical data on verbal agreement

paradigms discussed in chapter 4 suggests that, in fact, agreement sub-paradigms

containing homonymy amount to less than 20% of all paradigms.

Since homonymy is expected to be extremely frequent by pure chance (see

chapter 4), the fact that it is rather limited cannot be accidental. The natural

and widely accepted explanation for why languages avoid homonymy is that it

poses a problem for processing and learning. For instance, as I showed in the

course of describing the learning algorithms, presence of homonymy leads to

overgeneralization errors which require additional effort to eliminate. From the

processing point of view, presence of homonymy requires additional resources for

sense disambiguation.1

The second constraint on homonymy I explored is more controversial. It has

to do with preference of homonymy patterns that can be described with defaults

compared to those that cannot (i.e., the overlapping homonymy). Overlapping

homonymy involves several morphs whose distribution is intertwined in a complex

way, so it appears arbitrary. We saw that overlapping patterns are expected to

be quite frequent by chance and that, contrary to this expectation, they are very

rare in the verbal agreement paradigms.

Interestingly, similarly to the absence of homonymy, the scarcity of overlap-

ping patterns is also advantageous for learning. In particular, as the Elsewhere

learner shows, excluding overlaps from the hypothesis space allows one to rely

on a simple procedure for correcting overgeneralizations due to homonymy. This

procedure requires no backtracking or changing of the previous hypothesis. It

1However, the view that homonymy is problematic in this way is not incompatible with the
view that it might also be beneficial when we change our perspective. Namely, it is sometimes
suggested that homonymy helps to reduce the number of distinct phonological units. As far as
I know, there is no strong evidence for this claim, however, it it turns out to be true, then we
could modify the current learning algorithm to model divergent pressures posed by homonymy.
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merely consists of adding blocking rules that in effect restrict the distribution of

the elsewhere homophones.

In the presence of overlaps, the same strategy can be largely maintained with

an additional complication of adding homonymous lexical entries to resolve am-

biguity of overlapping homophones. In principle, this complication could lead

to very inelegant and convoluted grammars, but since overlapping homonymy is

quite rare, it is still possible to keep both the learning procedure and the resulting

grammars simple.

Thus, the learning model proposed here fits the statistical findings: it requires

most complex calculations for learning overlapping patterns, and least complex

calculations for learning non-homonymous mappings with elsewhere homonymy

falling in between. At the same time, this learning strategy is based on a natural

and intuitive generalization method which lends credibility to the idea that people

rely on non-monotonic reasoning. Recall that, in somewhat simplified terms, the

type of non-monotonic learning we employ here can be thought of as holding on

to general rules and memorizing exceptions to it as long it is possible to do so.

I expect that psycholinguistic evidence would shed more light on whether this is

indeed the kind of strategy people use in learning meanings of morphemes.
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