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ABSTRACT OF THE DISSERTATION

Distributional Cues in Morpheme Discovery:

A Computational Model and Empirical Evidence

by

Marco Baroni
Doctor of Philosophy in Linguistics
University of California, Los Angeles, 2000

Professor Bruce Hayes

In an early stage of morphological acquisition, children must discover which strings
correspond to affixes of their language, and which of the words containing those strings
are actually affixed. For example, a child acquiring English must be able to discover that
the word-initial string re- is a prefix, but also that the word remake is prefixed, whereas the
word retail, probably, is not, even though it begins with re-.

In this study, I present a computational model of how the task of morpheme (in
particular, prefix) discovery could be performed on the basis of distributional cues (cues
based on the distribution, frequency and length of words and their substrings in the input).

The results of a simulation with a corpus of English words show that distributional
evidence could in principle be very helpful to learners having to perform the task of

morpheme discovery.

xvi
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Moreover, I show that the morphological parses assigned by the distribution-driven
model to a set of potentially prefixed but semantically opaque words are correlated with
morphological complexity ratings assigned to the same words by native English speakers. I
argue that this convergence between the model and the speakers, in a domain in which
speakers cannot rely on semantic cues, constitutes evidence that humans do rely on
distributional cues similar to the ones exploited by my model, when assigning

morphological structure to words.

Xvii
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Introduction

A child acquiring the morphology of her language must first of all discover which strings
constitute the morphemes (in particular, affixes) of the language. For example, learners of
English must realize that, say, the strings re- and -s are (or rather, can be) morphemes
before they can learn the grammatical (morphological, semantic and syntactic) properties
associated with these strings.

Moreover, the learners must discover which words containing strings identical to
morphemes are actually morphologically complex. For example, in order to formulate the
correct generalizations about the grammatical properties of the affixes re- and -s, an English
learner must realize that, while words like redo and cats contain re- and -s, respectively, the
word retail should not be decomposed into re- and tail, and the word lens should not be
decomposed into len and -s.!

Even after the speaker figures out the morphology of her language and discovers
the grammatical properties (morphological and syntactic function, meaning...) associated
with each morpheme, she will have to occasionally decide whether a new word containing
a string identical to a morpheme she is familiar with does indeed contain the morpheme. In
this case, the learner can simply try to match the grammatical properties of the morpheme
with the morphological, syntactic and semantic characteristics of the new word. However,

learners must have at least a preliminary idea about which of the words containing a string

n this study, most points are illustrated through examples presented in orthographic transcription. Unless
explicitly mentioned, the same points could have been also illustrated by the same examples (or similar

ones) presented in phonetic transcription.
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identical to a certain morpheme are actually morphologically complex before they discover
the grammatical properties of the morpheme, or else they would not be able to extract
correct generalizations about such properties. In this study, I will be referring regularly to
this preliminary, probably tentative kind of morphological parsing, which the learner must
perform in order to discover which words are going to teach her something useful about a
morpheme.

The task of finding the morphemes of a language and the task of discovering which
words of the language are morphologically complex are related. Indeed, in the learning
model I present here the task of discovering morphemes is almost entirely reduced to the
task of deciding which words are complex (a string is a morpheme of the language if and
only if it is parsed as a morpheme in at least one word containing it). I will refer to the sum
of both these preliminary morphological learning tasks (finding the morphemes and
discovering which words are complex) with the cover term morpheme discovery.

The primary goal of this study is to contribute to a better understanding of how
language learners perform morpheme discovery. In particular, the study provides evidence
in favor of the hypothesis that learners rely on distributional cues in order to succeed in this
task. While the idea that distributional information plays an important role in language
learning has not been popular in the generative literature on acquisition, many recent studies
have provided new support for it (see Redington and Chater 1998 for a review of both the
classic generative objections to distributional approaches and recent distribution-driven
learning models). Thus, another goal of the present study is to provide further support for
the general claim that language learners make crucial use of distributional cues.

Finally, the current study proposes a partial explanation for an interesting datum
emerging from experimental studies of morphological processing and representation

(discussed in 1.4.3.1 below), i.e., that speakers can represent words as morphologically
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complex even if they lack semantic compositionality (i.e., the meaning of the whole word
is not the product of the meanings of the component morphemes). I argue that this
phenomenon (complex representation/treatment of semantically opaque words) is at least in
part a by-product of distribution-driven morpheme discovery, and I present some empirical
support for this hypothesis.

In order to assess the potential role of distributional cues in morpheme discovery, I
designed an automated learner which performs a simplified version of this task on the sole
basis of the distributional evidence it can extract from a corpus of untagged words. The
most obvious simplification in the task performed by this computational model, as opposed
to actual morpheme discovery as performed by children, is that the automated learner only
looks for prefixes and stems. The automated learner does not consider the hypothesis that
the language of the input corpus contains other kinds of morphemes, such as suffixes,
infixes, prosodic templates, autosegmental morphemes etc. (I discuss in 3.2 below the
reasons why I chose to concentrate on prefixation, and why I believe that it is legitimate to
model prefix discovery as a separate subtask within morpheme discovery).

Most of the heuristics followed by the automated learner in its search for prefixes
and stems are based on a simple observation about the distributional nature of morphemes,
i.e. that morphemes are independent linguistic units and, as such, they occur in a number
of different words where they combine with other morphemes. Heuristics following from
this observation are implemented using a version of the Minimum Description Length
(MDL) criterion (Rissanen 1978, Brent and Cartwright 1996 and references quoted there).
Thus, while this is not one of the central points of this study, the research presented here
also constitutes another example of the usefulness of the MDL criterion in modeling

distribution-driven learning.
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Given an input corpus of English words, the automated learner, equipped with a
small number of simple distributional heuristics, is able to discover a large set of actual
English prefixes, finding very few “false positives” (strings which are not English prefixes
but are treated by the learner as such). Moreover, the morphological parses (prefix + stem
vs. monomorphemic parses) assigned by the learner to the words in the input corpus are
correlated with intuitions of native English speakers about the morphological structure of
the same words.

Thus, the computational simulation presented here demonstrates that a limited
number of simple distributional heuristics can help a morpheme discoverer a great deal. [n
particular, the success of the simulation constitutes evidence against the claim that children
cannot in principle learn something about morphology from distributional evidence, since
distributional evidence does not provide enough useful cues.

While I am not aware of similar claims in relation to morpheme discovery, in the
past distributional approaches have been criticized on the basis of a priori arguments of this
nature: Given that distributional cues in domain x can in principle be shown to be
insufficient and/or misleading, there is no need to collect empirical evidence pertaining to
the relevance of distributional learning in domain x (see Redington and Chater 1998 for the
discussion of similar arguments, and in particular of the influential arguments presented by

Pinker 1984 against distribution-driven learning in syntax2?). Given the successful results

2In short, Pinker's a priori arguments against distributional learning in syntax reviewed by Redington and
Chater are: 1) some properties of syntax cannot be induced from positive evidence; 2) If a learner had to
consider all the possible relationships between elements in the surface structure of sentences, there would be
a combinatorial explosion of analyses to be evaluated; 3) the type of information that can easily be extracted

from the input (serial positions, adjacency, etc.) is not very informative; 4) as linguistic properties are not-
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of the simulation presented here, I believe that future discussion of the relevance of
distributional cues in morpheme discovery should be conducted on empirical grounds:
Since children could, in principle, make successful use of distributional evidence, the
question is whether they actually resort to distributional cues during morphological
acquisition -- a question to be answered by developmental psycholinguistic studies, rather
than on the basis of general a priori arguments.

I would argue, indeed, that the most plausible a priori hypothesis to be submitted to
empirical testing is that children do resort to distributional cues in morpheme discovery.
This claim is based on the following considerations: First, distributional information can be
straightforwardly extracted from the input data before the child performs any kind of
linguistic analysis. Thus, it is reasonable to hypothesize that the child formulates
preliminary hypotheses about the morphological units of the language on the basis of
distributional evidence. These preliminary guesses will make the goal of gathering relevant
linguistic generalizations easier, and later the more sophisticated linguistic information
acquired in this way can be used to refine those preliminary guesses. Second, it is likely
that distributional information must be collected by learners anyway, in order to find
reliable linguistic generalizations. Third, psycholinguistic research suggests that adult
speakers are sensitive to the distributional properties of morphemes. Thus, we have direct
evidence that humans do, at some stage in morphological development, are sensitive to

distributional information about morphemes.

independent from each other, it would be anti-economical to try to extract all properties from the data, rather
than deriving some properties from other properties; 5) a distribution-driven learner could come to wrong

conclusions due to spurious correlations in small samples of data.
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Going beyond these general considerations, the comparison of the output parses
assigned by the automated prefix leamer to English words with morphological intuitions of
native speakers also provides a form of more direct empirical evidence in favor of the
hypothesis that learners resort to distributional cues in morpheme discovery. Above, I
observed that the fact that the automated learner assigns plausible parses (parses matching
adult speakers’ intuitions) shows that human learners could in principle successfully rely
on distributional cues. However, this does not per se constitute evidence that humans do
rely on such cues, since humans, unlike the automated learner, could have used different
types of evidence in order to discover the same structures found by the automated learner.
As I will argue in 3.2.2 below, it is unlikely that English learners can extract much useful
information about prefixation from phonological and syntactic cues. However, the learners
could still have relied on semantic cues.

For example, the learner, exploiting distributional cues only, came to the conclusion
that renamed is a prefixed word, composed of the prefix re- and the stem named. Although
all the native speakers surveyed shared the intuition that renamed is indeed a prefixed form
composed of re- and named, this convergence between the automated learner and humans
does not prove that humans exploited distributional cues in morpheme discovery, since
humans could have decided that renamed is prefixed simply on the basis of its meaning.

Consider, however, the case of semantically opaque but potentially morphologically
complex words such as recitation or remain. Words of this kind are potentially prefixed, at
least in the sense that they begin with a string identical to a prefix (re-, in this case).
However, the meaning of recitation is not synchronically related to the meaning of the
prefix re- nor to the meaning of the stem citation (or cite). In the case of remain, not only is
the meaning of the word not related to the meaning of the components, but it is not even

clear that the potential stem, a bound verbal form -main, could be associated with any
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semantic content. Several experimental studies (see 1.4.3.1 below) have shown that
speakers treat some semantically opaque forms as morphologically complex.

Now: if it turned out that there is a convergence between the parses assigned by the
distribution-driven learner and the speakers’ intuitions about semantically opaque forms,
then this would constitute a stronger form of evidence in favor of the hypothesis that
speakers used distributional cues to assign morphological structure to words. For example,
if it turned out that both the automated learner and the speakers treated recitation as
morphologically complex (re+citation), but remain as monomorphemic, then it would be
reasonable to conclude that speakers are sensitive to distributional cues similar to the ones
implemented in the automated leamner, since they could not have assigned a structure to
recitation on the basis of its meaning (and also, it is unlikely that they could have used
syntactic or phonological cues to distinguish reciration from remain).

Indeed, I will show that, even when only semantically opaque words are
considered, there is a significant correlation between the parses assigned by the learner and
speakers’ intuitions. Thus, this study provides strong support for the claim that humans
use distributional cues in morpheme discovery.

Notice that this type of evidence in favor of distribution-driven learning is not
available in other domains. For example, even if it has been shown that distributional cues
can be very effective for segmenting utterances into words (Brent and Cartwright 1996),
there is no equivalent to semantically opaque morphemes in this domain.

At the same time, the data on semantically opaque words presented here are also of
interest to the theory of morphological representations and processing, in that they provide
a partial explanation for the phenomenon of complex representation of semantically opaque

forms: Adult speakers treat some semantically opaque forms as morphologically complex
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because they used distributional cues in morpheme discovery which lead them to treat such
forms as complex.

The remainder of this study is organized as follows: In chapter 1, I discuss the
problem of morpheme discovery in general terms, focusing on the nature and possible role
of distributional cues in this domain. In chapter 2, I review models of morpheme discovery
proposed by other authors. In chapter 3, I present and discuss the computational model I
am proposing. In chapter 4, I present the results of a simulation in which this model was
tested, and I compare the morphological parses assigned by the model to morphological
complexity ratings assigned by humans. Finally, in the conclusion I briefly discuss

outstanding problems and future directions that this project could take.
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Chapter 1
The Problem of Morpheme Discovery

1.1 The task of morpheme discovery

During the process of language acquisition, learners must discover which strings constitute
the morphemes of their language® and which words of the language can be decomposed
into morphemes. These are prerequisites to morphological acquisition.

Ultimately, a learner acquiring a language must discover the syntactic and semantic
properties associated with each morpheme (in particular, affix) of the language, in order to
be able to produce and understand new words, and possibly for other reasons (such as
reducing the amount of information stored in the lexicon by avoiding storing certain
morphologically complex words). For example, a learner acquiring English must discover
that, say, re- is a prefix which attaches to verbs to create other verbs with an iterative
meaning.

However, in order to learn the morphological properties of an affix (or class of
affixes), learners must first of all notice the existence of that affix. Moreover, in order to

discover the linguistic properties associated with the affix the learner must consider the

3Even theories in which affixes do not constitute lexical entries (such as the theory of “a-morphous
morphology™ of Anderson 1992) must assume a stage in which learners discover phonological strings
corresponding to affixes. Even if in such theories these strings are not going to form lexical entries,
speakers must become aware of their existence in order to encode them in the relevant morphological rules

or constraints.
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semantic, syntactic and morphological characteristics of a set of words containing that
affix. For example, in order to discover the properties of the prefix re-, English learners
must first of all, of course, notice that the string re- is a prefix. Moreover, the learners must
collect and analyze a number of words containing the prefix re- (redo, rename, remake...)
in order to extract the correct generalizations about this prefix.4

However, not all the words containing a string identical to an affix actually contain
that affix. In order to discover the correct generalizations about the properties of the affix,
the learners must have a preliminary idea of which of the words containing a string identical
to the affix are actually affixed. If an English learner tried to decide what is the meaning and
function of re- on the basis of, say, redo, retail and really, the learner would probably come
up with the wrong generalizations about the prefix or, more likely, she would not notice

any generalization at all and she would conclude that re- is not a prefix.

41t seems plausible that learners will need to consider a certain number of forms containing a certain affix
before they draw conclusions about the properties of that affix. A learner should not rely on a single form
for at least two reasons: First, even if the form seems to be related to another word that the learner knows,
the relation could be a matter of chance (or etymology) -- it would be risky for the learner to conclude, on
the sole basis of the words redo and do, that re- is a prefix attaching to verbs and carrying an iterative
meaning. Notice that it is not sufficient for the learner to make sure that the single, potentially affixed form
she chose to consider is semantically related to its potential base. For example, if a learner were going to
try to extract the (synchronic) semantic properties of the prefix re- from the semantically related pair
represent/present, she would probably fail. Moreover, a learner should analyze more than one form per affix
to determine whether the affix can be attached to words belonging to different syntactic categories, whether

the meaning of the affix changes depending on certain properties of the stem, etc.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Of course, if the string corresponding to an affix mostly occurs in words which do
indeed contain the affix, the learner is probably going to extract the correct generalizations
even if there are a few pseudo-affixed words (i.e., words containing the string
corresponding to the affix without actually being morphologically affixed). However, this
is not always the case. For example, Schreuder and Baayen 1994 have shown that, for
several common English and Dutch prefixes, the number of pseudo-prefixed words is
higher than the number of truly prefixed words.5

Thus, it would not be safe, for a learner, to assume a priori that any word
containing a string identical to an affix does indeed contain the affix from a morphological
point of view. Consequently, the learner, besides hypothesizing that a string corresponds
to an affix of her language, must also decide which of the words containing the affix are
truly morphologically complex, and which are pseudo-affixed, i.e. the learner must assign
morphological parses to the words she hears.

Notice that we are referring to the task of discovering that a certain string is an affix
(or more generally a morpheme) and the task of assigning parses to words as separate
aspects of morpheme discovery, however the two tasks are closely related. In particular,
since a learner probably does not hear affixes in isolation, the task of discovering the
affixes will typically involve assigning morphological parses to words. A string is an affix

of the language if at least one of the words containing the string in the language is parsed as

SDifferent factors can affect the ratio of truly affixed to pseudo-affixed forms per affix, ranging from the
phonological length of the affix (a string identical to a longer affix is less likely to occur by chance than a
string identical to a short affix) to its productivity (inflectional and highly productive derivational affixes are

likely to have fewer pseudo-affixed forms than less productive derivational affixes).
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morphologically complex, and the string constitutes one of the morphological components
in the parse.

This study explores the possible role of distributional cues in the morpheme
discovery stage of language acquisition, i.e. in the stage in which a learner assigns tentative
morphological parses to words, before she determines which strings constitute the set of
affixes of her language and before she figures out the morphological properties of these
affixes. Even in adult life, when speakers hear a new word containing a string identical to
an affix, they must decide whether the word is morphologically complex or not. However.
adult speakers can rely on their knowledge of the morphological, syntactic and semantic
properties of morphemes, when assigning morphological structure to new words. This is
an essentially different task from the one faced by learners during morpheme discovery,
when they have to guess the morphological structure of words in order to discover the
linguistic properties of the potential morphemes they contain. Of course, as morpheme
discovery proceeds, learners will progressively acquire bits of morphological knowledge,
and it is likely that they will immediately put this knowledge to use in order to parse new
words. However, in the beginning stages of morpheme discovery, this knowledge will be
rather fragmentary and not entirely reliable. When, below, I discuss the role of linguistic
cues in morpheme discovery, I am referring to this kind of early, fragmentary knowledge.

Morpheme discovery is of course successful, in the sense that learners are
eventually able to discover the set of affixes/morphemes of their language and to extract the
correct generalizations about the meaning and function of morphemes. However, it is
extremely unlikely that the tentative parses assigned by a learner to potentially complex
words during morpheme discovery are entirely appropriate: Given that the learner does not
a priori know the semantic, syntactic and morphological properties associated with an affix

(she is assigning morphological parses to words because she needs to discover such
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properties!), it would be a miracle if she managed to parse all and only perfectly
transparent, semantically compositional forms as complex. It is more likely that the parses
assigned by the learner are, in general, accurate enough to allow the learner to discover the
relevant generalizations, but, still, some forms that should be treated as complex are not,
and some opaque forms are treated as complex.

Thus, the following question arises. Once the learner successfully terminates the
process of acquiring the morphology of her language, does she update the earlier parses on
the basis of the newly acquired knowledge? For example, suppose that during the
morpheme discovery stage a learner acquiring English decided that, say, recite must be
represented as a prefixed word (re+cite). Once the leamer discovers the morphological
properties of the prefix re- (something like: ‘re- is a prefix which attaches to verbs to form
verbs with an iterative meaning’), would she change her representation of the word recite,
since fo recite is not the same as to cite again?

The psycholinguistic studies I mentioned in the introduction, suggesting that adult
speakers treat some semantically opaque words as morphologically complex, as well as the
results that will be reported here, support the view that speakers do not update their parses
of words that were “wrongly” represented as complex during morpheme discovery (under
the assumption, of course, that learners started representing the relevant set of opaque
words as complex during morpheme discovery). Still, I am not necessarily claiming that
words of this sort have exactly the same status as completely transparent complex words.
In particular, in theories in which the notion of morphological complexity is not categorical
(simple vs. complex) but gradient, such as the one I sketched in Baroni in press or the one
defended by Gonnerman and Andersen 2000, we would expect opaque but complex words
to have an intermediate status: A word such as recite would have a higher complexity index

than, say, really, but would still be less complex than a perfectly transparent form such as
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redo. Under a gradient view of this sort, we predict that it is possible to distinguish forms
of intermediate morphological complexity from both completely simple and perfectly
complex fo.rms.6 This second type of comparison is not pursued in this study.

Before we turn to consider how different cues can help learners in morpheme
discovery, let me remark that, even if it has not been frequently studied by morphologists

(see the review of previous studies in chapter 2), morpheme discovery is by no means a

SAnother theory that could account for a three-way distinction of this sort, without requiring the
assumption that morphological complexity is a gradient property, was suggested to me by Carson Schiitze:
In this alternative model, morphologically complex but opaque words are represented as lexical units
associated with the corresponding regular affix entry, and with a special stem entry specifying the
idiosyncratic properties of the form (alternatively, the special stem entry contains only the phonological
representation of the stem, and the idiosyncratic properties associated with the form are associated with the
lexical unit connecting affix and stem). For example, the semantically opaque word department would be
represented by a node associating the unit corresponding to the regular suffix -ment with a special entry
corresponding to the stem depart as used in this word, which constitutes a different entry from that of the
verb depart (there is no semantic relation between departments and departing). This theory predicts a three-
way distinction between transparent complex words (represented by a link between the regular, independent
entries for the corresponding stems and affixes), opaque complex words (represented as just discussed) and
monomorphemic words (not associated with affixes). On the other hand, under the gradient approach, there
is no reason to expect the distinction between words of different degrees of complexity to be limited to three
levels. Thus, the two theories make different empirical predictions. However, for our current purposes it is
not necessary to choose between them, as the whole point of my discussion in the text is that the claim
that some semantically opaque forms are morphologically complex does not automatically commit us to a

theory in which the representation of semantically opaque and transparent forms is indistinguishable.
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trivial task. Not only does the learner have to consider many possible segmentations of
each potentially complex word she hears, but she does not a priori know which meanings
and/or syntactic functions are expressed by morphemes in her language, and consequently
she cannot a priori know whether a word has to be decomposed into morphemes or not.
Furthermore, the learner does not know which types of morphemes (prefixes, suffixes,
circumfixes, infixes, autosegments, templates...) are present in the language. Thus, even if
the learner had a reason to expect a certain word to be morphologically complex (for
example, thanks to her innate knowledge), she still would not a priori know whether the
word should be divided into a prefix and a stem, or into a stem and a suffix, or into
consonantal and vocalic templates, or into other morpheme combinations.

It is probable that learners follow a number of different morpheme discovery
strategies, looking for phonological, syntactic and semantic cues and relying on innate
knowledge. Moreover, the frequency and distribution of words and their substrings
constitute potentially useful sources of evidence that learners can exploit. While each of
these approaches can help the learner in the morpheme discovery task, none of them is
likely to be sufficient by itself. In the current project I am modeling morpheme discovery as
a purely distribution-driven task because I am interested in trying to determine how much
and what kind of information a learner could in principle extract from distributional
evidence alone. I am not trying to argue that this is the only kind of evidence used by
human learners.

In the remainder of this chapter, I will consider the potential role of different forms
of evidence in morpheme discovery. Of course, the focus will be on the role of

distributional learning.
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1.2 Morpheme discovery strategies based on linguistic knowledge

Children looking for morphemes and morphologically complex forms can rely on their
knowledge of other linguistic domains, such as phonology, syntax and, especially,
semantics. Of course, these strategies assume that children already acquired the relevant

knowledge in the relevant domains.

1.2.1 Phonological cues

Sometimes. special phonotactic or prosodic patterns mark morphemes and morpheme
edges. For example, in Northern Italian only the voiced alveolar fricative allophone [z] can
occur intervocalically, except in stem-initial position, where its voiceless counterpart [s]
occurs (Nespor and Vogel 1986, Baroni in press): Cf. ri[z]altare ‘to stand out’ vs.
rifs]altare ‘to jump again’ (from ri- ‘re-’ plus saltare ‘to jump’). Italian leamers could notice
the (relatively) unusual occurrences of intervocalic [s], and hypothesize that the forms with
intervocalic [s] have a special morphological status.

While phonological cues of this sort are potentially very useful, they are also
obviously limited to the special cases in which morphemes or morpheme boundaries are
signaled by special phonotactic or phonological configurations. For example, as far as I can
tell, Italian suffixes and stem-suffix boundaries display no single phonotactic or prosodic
characteristic distinguishing them from monomorphemic strings.

Thus, while phonological cues can constitute a precious “bonus” in morpheme

discovery, a sensible learner cannot a priori expect that all the affixes/morphemes of her
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language will display some special phonological mark. Phonological cues are likely to play
only an auxiliary role.

Moreover, it is not clear that, in cases in which morphemes serve as the domain of
particular phonological patterns, it is phonology that is providing cues to morphological
structures and not vice versa: language learners could be using their knowledge of
morphology to discover the relevant (morpho-)phonological generalizations. For example,
Italian learners who figured out which words are morphologically complex could notice
that, in all the forms displaying intervocalic [s], the latter occurs in stem-initial position,
and thus conclude that the phonological generalization that [z] is the intervocalic alveolar

fricative allophone is exceptionless, but morphology-sensitive.

1.2.2 Syntactic cues

Learners can look for systematic relationships between phonological substrings and the
distribution of words in sentences or the syntactic category of the words containing the
substrings. For example, children acquiring English could notice the distribution of -s in
pairs such as the cat sleeps vs. the cats sleep and infer from it that the final -s’s of nouns
and verbs are morphemes. In cases like this, syntactic patterns can be very helpful to a

morpheme learner.”

7Aronoff 1994 (section 2.5) discusses the case of semantically empty morphemes with a purely
morphosyntactic function, such as Latin theme vowels, whose only function is to mark the membership of
a verb in a certain conjugation class. It is clear that syntactic/morphosyntactic cues must play an especially

important role in the identification of this type of morpheme.
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However, syntactic cues are mostly relevant to the discovery of inflectional
morphemes and, possibly, of specific classes of derivational morphemes (for example,
category-changing or category-marking affixes). A large portion of derivational
morphology is independent from syntax, and consequently a syntax-driven morpheme

discovery strategy is not likely to be very useful in this domain.

1.2.3 Semantic cues

Probably, semantic cues are the first kind of evidence that comes to mind when one
ponders the issue of how children can discover morphemes. Thus, I will dedicate some
space to arguments suggesting that, while it is very likely that semantics plays a major role
in morpheme discovery, morpheme discovery could not be and is not performed on the
sole basis of semantic cues.

In order to find morphemes, learners can look for systematic relationships between
phonological strings and meaning components. For example, an English learner could
notice that the word-initial substring re- tends to occur in words with an iterative meaning
(redo, recharge etc.) and conclude that re- is a prefix meaning something like ‘again’ (of
course, knowing the meaning of do and charge will also be helpful). Moreover, before the
learner figures out the exact semantic properties of re-, she could decide that, say, retail is
not a prefixed form on the basis of the fact that it is not even remotely semantically related
to tail.

This is a very plausible and effective strategy, and, obviously, learners must
eventually become aware of the semantic (and/or syntactic) features associated with

morphemes, or else they would not be able to create and understand newly formed
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morphologically complex words. However, there are arguments suggesting that learners
could not succeed in the morpheme discovery task on the sole basis of semantic
information and some evidence that, indeed, they also use other kinds of cues.

First of all, a purely semantically based strategy appears to be rather inefficient and
anti-economical. I am not able to provide formal support for this claim, given that [ am not
familiar with any theory of the acquisition of lexical semantics explicit and detailed enough
to allow a full formalization of how the semantic approach to morpheme discovery would
work. However, let us consider a very schematic model which should illustrate the point.

Let us assume that a learner has to acquire the morphology of a language in which
all words have four segments and four semantic features. In this stage, the learner is
looking for prefixes, and thus she considers only binary (prefix + stem) parses of words.
Each four segment string has three possible segmentations (a+bcd, ab+cd, abc+d).
Assuming that each potential stem must be associated with at least one semantic feature,
each segmentation can have fourteen (2¢ - 2) semantic analyses. For example, consider the
segmentation a+bcd, and the four semantic features /, 2, 3, 4. The following analyses are
possible:a= 1, bcd = 234; a=2,bcd = 134;a=3,bcd = 124; a=4, bcd = 123;a = 12,
becd =34;a=13,bcd=24;a=14,bcd=23;a=23, bcd=14; a =24, bcd = 13; a =34,
bed 12; a = 123, bcd = 4; a = 124, bcd = 3; a = 134, bed = 2; a = 234, bed = I. The same
fourteen analyses are possible for each of the other two segmentations. Thus, for each
word, a learner has to store a total of forty-two (fourteen times three) possible
morphological/semantic parses. While it is likely that the distribution of semantic features is
more constrained than this example would suggest (at least, it is likely that some features

must/cannot be associated with the same morpheme), it is also the case that in a real
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language words are likely to be on average longer than four segments, and the semantic
features associated with words are likely to be more than four.8

Continuing with our schematic example, each time the child learns a new word and
generates the forty-two potential parses that can be associated with the word, she then must
go through the set of previous words, checking if one of the two parts of any of the forty-
two parses associated with each word matches one of the parts of any of the forty-two
parses of the new word. Clearly, this is not a very efficient and economical way to explore
the relevant hypothesis space.

Compare this with a strategy based on distributional cues: Given that a
distributional strategy does not require semantic analysis, a learner relying on distributional
evidence has to consider only three possible morphological parses of each four segment
word, independently of the number of semantic features associated with the word.
Moreover, very simple distributional heuristics can trim down the hypothesis space

radically. For example, a learner could consider as potential affixes only strings which

8To discover the structure of complex words with free stems, learners could first identify the meaning of
shorter words, and then consider whether any longer word can be reduced to a combination of the
phonological material and semantic features of a shorter word plus a remainder of phonological material and
semantic features which belong only to the longer word, and which is likely to correspond to an affix of the
language. This strategy is more efficient than the one discussed in the text, but learners cannot a priori
assume that their language does not contain bound stems. Moreover, the strategy suggested here is
implicitly based on a semantics-independent, purely distributional constraint (something like: “longer words

are more likely to be morphologically complex™).
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occur in at least a certain number n of words. No analogous heuristic is available to a
purely semantics-driven learner.?

Arguments based on efficiency and economy are not conclusive, since we do not
know much about the actual processing and storage limitations of the human linguistic
faculty, but the previous considerations suggest that it would be sensible for learners to
trim down the hypothesis space using at least some simple distributional strategy before
they start evaluating possible morpheme-to-meaning-component mappings.

Possibly, the following is a stronger argument against the hypothesis that a learner
could successfully complete the morpheme discovery task by relying on semantic evidence
alone. As we remarked earlier, substrings corresponding to morphemes tend also to occur
in words that are not morphologically complex, or in words that are etymologically
complex but semantically opaque (such as presume). If the percentage of cases in which the
string corresponding to a particular morpheme occurs in semantically transparent forms is
small, it becomes very hard for learners to notice the relevant semantic generalizations.

Similar cases are more common than one may think, as shown by the lexico-
statistic analysis of Schreuder and Baayen 1994. Schreuder and Baayen present statistics
(based on the Cobuild corpus -- Baayen, Piepenbrock and van Rijn 1993) on the
proportion of pseudo-prefixed forms for each of the seven most frequently occurring
English prefixes (they also present similar data for Dutch). Pseudo-prefixed words,
according to Schreuder and Baayen’s definition, are words like refer or remit, which begin

with a string identical to a prefix (re-, in this case), but whose potential stems (-fer and

%1t is indeed not clear what would count as a “pure” semantics-driven learner. At the very least, it seems that
a semantics-based learner should collect statistics on the frequency of co-occurrence of each potential

morpheme with various semantic feature sets, in order to look for reliable semantic generalizations.
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-mit) never occur in semantically fully transparent combinations, and are never used in
productive word formation (forms in which the potential stem would be an
orthographically/phonologically ill-formed word and forms in which the potential stem is
orthographically very short are not counted as pseudo-prefixed).

The average proportion of pseudo-prefixed word tokens across the seven prefixes
considered is 81% for orthographic forms and 83% for phonologically transcribed forms.
The proportion of pseudo-prefixed word tokens ranges from 24% (orthography) / 44%
(phonemic transcription) in the case of un- to 98% (both orthography and phonemic
transcription) in the case of de-.

The proportion of pseudo-prefixed word rypes per prefix is lower but still
considerable, ranging from 17% (orthography) / 19% (phonemic transcription) in the case
of mis- to 72% (orthography) / 71% (phonemic transcription) in the case of de-. The
(relative) mismatch between token- and type-based counts indicates that pseudo-prefixed
words tend to have high token frequency and truly prefixed words tend to have low token
frequency. Thus, if only high token frequency words had been considered when
computing type frequency, the proportion of pseudo-prefixed words per prefix would have
probably been considerably higher.

Thus, under the reasonable assumption that language learners are mostly exposed to
high frequency words, it follows that children acquiring English must hear/read pseudo-
prefixed words much more frequently than semantically transparent, truly prefixed words.

Thus, they can very easily overlook the relevant semantic generalizations. !0

101¢ could be that learners are able to ignore the “noise” (or evidence against postulating a morpheme) due
to the large number of pseudo-prefixed words per prefix, and they are willing to postulate a prefix x as soon

as they hear a few forms of shape xy, xw, xz that are clearly related, in meaning, to y, w, z, respectively.
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On the other hand, notice that distributional generalizations are insensitive to the
distinction between prefixed and pseudo-prefixed forms. For example, the string de- is a
frequent word-initial string, even if many of the words in which it occurs do not contain the
prefix de- from a semantic point of view. Once a learner started suspecting that de- is a
prefix on the basis of distributional cues, she could pay special attention to the meaning of
all the forms containing this string, and eventually discover the semantic properties of de-.

The previous discussion suggests that pure semantic learning is an inefficient, anti-
economical strategy and that it is likely run into problems with certain types of affixes.
Indeed, some of the experimental evidence presented in the literature on morphological
processing indicates that speakers must also have been sensitive to other cues in morpheme
discovery, or else they would not have assigned a morphological structure to semantically
opaque words.

For example, Emmorey 1989 found a strong facilitatory priming effect between
semantically opaque but morphologically related forms such as submir and permit, but not
between matched phonologically related pairs such as balloon and saloon (see also the
work discussed in 1.4.3.1 below). If learners were only relying on semantic cues, they
would not treat forms such as submit and permit as morphologically complex, since these
forms could not be analyzed as complex on the basis of their semantic content.

Similar cases provide strong evidence that learners are not entirely relying on

semantic cues when assigning morphological parses to words. Notice, on the other hand,

However, Baayen and Schreuder’s results indicate that, at least for prefixes such as de-, it is not unlikely
that learners simply do not hear enough transparent forms to even be able to follow a strategy along these
lines, independently of their ability to immediately notice the relevant forms in the middle of a majority of

pseudo-prefixed words.
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that a distributional learning strategy could easily lead the learners to conclude that a form
such as submit is prefixed: for example, because of the occurrence of -mit in a number of
words in which it is preceded by prefix-like strings (submit, permit, admit, remit,
commit...)!

To conclude, the arguments and evidence presented here suggest that, while it is
clear that semantic information plays an important role in morpheme discovery, it is not

likely that learners use semantics as their only source of evidence.

1.3 The role of innate knowledge in morpheme discovery

It is possible that certain aspects of morpheme discovery are driven by innate knowledge.
At a very general level, speakers may be innately endowed with the knowledge that words
can be composed of morphemes and with the set of possible morpheme types.
Furthermore, the morpheme discovery strategies per se may be innate. For example, the
learners could innately know that they have to pay attention to distributional cues such as
the ones discussed in this study.

Moreover, learners may be endowed with more specific forms of knowledge
relevant to the morpheme discovery task. For example, the set of all the possible meanings

and syntactic functions that affixes can express could be innate.

U1The existence of semantically empty morphemes with a purely morphosyntactic function (Aronoff 1994,

mentioned in footnote 7 above) also constitutes evidence against the hypothesis that learners discover

morphemes on purely semantic grounds.
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However, since many properties of morphemes are language-specific, it is not
possible for learners to succeed in morpheme discovery on the sole basis of innate
knowledge. For example, learners cannot use (only) innate knowledge to discover which
particular set of meanings are expressed by morphemes in their language, nor to discover
which morpheme types are present in their language nor, of course, to discover which
particular strings constitute the morphemes of their language.

Thus, while innate knowledge may provide the learner with general tools helping
her in morpheme discovery, it is clear that the morpheme discovery task cannot be

completed on the sole basis of this kind of knowledge.

1.4 Distributional cues in morpheme discovery

Having discussed how other types of evidence can help learners during morpheme
discovery, and having argued that none of them is likely to be sufficient by itself, I now
turn to the main focus of this study, i.e. the nature and role of distributional cues in
morpheme discovery. I first present some basic ideas about how distribution-based
morpheme discovery could work (these are the same ideas which are implemented in the
computational model I will present in chapter 3). Then, I discuss my view about the
possible role played by distributional cues in morpheme discovery. Finally, I present some
empirical evidence showing that, at the very least, adult speakers are sensitive to the
distributional properties of morphemes, and I discuss the significance of semantically
opaque but morphologically complex forms as evidence for distributional learning, since

evidence of this nature will be presented in chapter 4 below.
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1.4.1 Distribution-based morpheme discovery: general strategies

While this is not necessarily the only kind of distributional evidence a learner could use, the
heuristics explored here are based on the observation that morphemes are syntagmatically
independent units. This is one of the most basic distributional facts about morphemes (and
linguistic units in general): If a substring corresponds to a morpheme, then that substring
can occur in different contexts (words) independently of the substrings surrounding it.

According to this definition, if a string is syntagmatically independent, the string
can in principle occur in different, independent contexts. However, children looking for
morphemes have no way of telling whether a string they hear could in principle occur in
different contexts; they can only observe that some strings do in actuality occur in a number
of different words. Thus, actual frequency of occurrence of a string must be used by
children as a heuristic approximation of the more abstract property of potential occurrence
in different contexts.

The most obvious morpheme-searching heuristic based on the syntagmatic
independence of morphemes is the following: A learner should look for substrings which
occur in a high number of different words; these strings are likely to be morphemes. The
rationale for this heuristic is the following: If a substring occurs in a high number of
different words, then it is likely (but not necessary: see below) that the string is

syntagmatically independent from the strings it occurs with.12

I2Notice that the reverse of what is stated in this heuristic is not true: stems and monomorphemic words

are morphemes even if they occur in only one or few words. Distributional independence implies that
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Even a very primitive heuristic of this sort can provide learners with surprisingly
good evidence. Consider for example the list of the ten most frequent word-initial two letter

strings in the PHLEX database:!3

(n String Type Frequency
co 1345
in 992
re 955
pr 734
de 645
ma 611
ca 598
st 590
di 551
pa 523

The ten most frequent three letter word-initial strings in the PHLEX database are:

morphemes, unlike random, linguistically insignificant strings, can in principle occur in a high number of
independent contexts, but it does not imply that they will.

I3The PHLEX database (Seitz, Bernstein, Auer and MacEachern 1998) contains the 18460 most frequent
word types in the Brown corpus (Kucera and Francis 1967) and the 12,118 word types listed in the Hoosier
Mental Lexicon (Nusbaum, Pisoni and Davis 1984), in orthographic and phonemic transcription, with

token frequency information.
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(2) String Type Frequency

con 534
pro 358
dis 295
com 261
pre 250
int 233
per 186
tra 183
sta 173
par 165

Of the ten most frequent two letter word-initial strings in the PHLEX database, five are
actual English prefixes (co-, in-, re-, de-, di-). Furthermore, the string pr constitutes the
beginning of two three letter strings (pro- and pre-) which are among the ten most frequent
three letter strings in the PHLEX database and are actual English prefixes.

Of the ten most frequent three letter word-initial strings in the PHLEX database, six
are actual English prefixes (the allomorphs con- and com-, pro-, dis-, pre-, per-). The
strings int, tra and par constitute the beginnings of longer prefixes (inter-, intra-, trans-,
para-).

These data show that even a primitive distributional strategy (such as “look for
substrings occurring in a high number of words”) can help a learner searching for the

morphemes of her language. However it is also clear that, to be truly effective, this
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distributional strategy should be greatly refined. Besides the fact that many of the strings in
(1) and (2) are not actual English prefixes, notice that, by considering only two and three
letter strings, we are artificially controlling for string length. When the type frequency of
strings of all possible lengths is compared, the high type frequency criterion becomes very
problematic. At one end, single characters / phonemes are, of course, extremely frequent
(the ten most frequent word-initial strings in the PHLEX database, when strings of all
lengths are compared, are: s, ¢, p, a,d, m, b, r, t and i). At the other end, longer strings,
including long strings corresponding to morphemes, will tend to have a low frequency
when compared to shorter strings.

The main problem with the high type frequency heuristic is that it is not sensitive to
an important characteristic of morphologically complex words: It is not sufficient for a
word to contain a potential morpheme to be classified as complex -- true morphologically
complex words can be exhaustively parsed into morphemes. Thus, a learner should not
simply consider the frequency of occurrence of a potential prefix, but how many times the
string corresponding to the prefix occurs in words in which what follows is a potential
stem.!4 Stems, like prefixes, are syntagmatically independent units. As such, they can in
principle occur in different contexts independently of the strings surrounding them. Again,
in order to guess whether a unit can in principle occur in different contexts, the learner must
rely on the actual occurrence of the unit in different contexts in the input stream. It is
unlikely that stems will actually occur in a high number of different contexts in the input,
but it is reasonable to expect free stems of prefixed forms to also occur as independent

words, and bound stems to occur in more than one affixed word.

141n a very broad sense, in which any constituent or sequence of constituents that can follow a prefix is

labeled as a stem.
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A prefix-searching strategy based not only on absolute frequency of word-initial
strings, but on frequency of occurrence before potential stems, will take care, in part, of the
problem arising from the comparison of strings of different length. A string such as word-
initial s occurs in a high number of words, but in many of these words it is not followed by
potential stems. Contrariwise, a string such as word initial over occurs in a small number
of words, but in many of these words it is followed by potential stems.

I discussed the previous heuristics as prefix-searching heuristics, but of course they
can also help the learners in deciding whether words are complex or not. If a word contains
a frequent word-initial string, such as re-, it is more likely that the word is morphologically
complex. More importantly, the possibility of exhaustively parsing a word into morphemic
components constitutes the basic distributional criterion to decide whether a word is
morphologically complex or not. A word like reason should not be treated as prefixed,
even if it begins with the string re-, because what remains when we remove re- is not a
potential stem.

Another heuristic based on syntagmatic independence provides further help in
determining the morphological status of words. Words, like morphemes, are
syntagmatically independent units. If a string corresponds to a word of the language, that
string can occur in different sentences, surrounded by independent strings (other words).
Of course, the most obvious application of this property is as a heuristic helping to segment
sentences into words (indeed, syntagmatic independence is the basis of the sentence
segmentation algorithm proposed by Brent and Cartwright 1996, described in 2.6 below).

Here, we assume that children undertake morpheme discovery after they have
successfully completed the sentence segmentation task (see discussion in 3.2.11 below).
The property of syntagmatic independence of words, however, can also help learners

trying to decide whether a form is morphologically complex or not, in the following way: If
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a word frequently occurs in the input stream, i.e., if a word has a high token frequency,!5
the learner has strong evidence that the word constitutes an independent linguistic (lexical)
unit of the language and, thus, it should not be decomposed into morphemes, even if it
could be in principle analyzed as complex. Vice versa, if a word occurs very rarely, the
learner has less evidence that the word constitutes an independent lexical unit. Thus, if the
word can be decomposed into morphemes, it is reasonable to hypothesize that the word is
indeed morphologically complex.

If a morphologically complex word is very frequent, the word is likely to have its
own lexical entry, distinct from the entries of its component parts (at the very least, for
reasons of ease of lexical access). However, once a word has an independent lexical entry,
the word can acquire its own semantic features and thus it is likely to lose, over the course
of time, its connection with its component parts. In other words, high frequency words are
less likely to be morphologically complex because, even if they were complex from an
etymological point of view, they are likely to have acquired a lexicalized meaning due to
heavy usage.

At the other extreme, productively formed complex words must be hapax legomena
(words with a token frequency of 1), or in any event have a very low token frequency.
Indeed, Baayen has shown in several studies (see for example Baayen 1994, Baayen and
Lieber 1991) that the number of hapax legomena containing a certain morpheme is a good

indicator of the productivity of the morpheme. If a morpheme is productive, then the

I5[ assume that in general the token frequency of a word (the number of times the word occurs in the input
corpus) will be highly correlated with the number of times the word occurs in different sentences,
surrounded by different words. Thus, I consider token frequency a reasonable estimate of the frequency of

occurrence of a word in different contexts.
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morpheme is often used to create nonce forms, and nonce forms by definition have a token
frequency of 1.

Thus, all else being equal, a learner should be more willing to guess that a word is
complex if the word has a low token frequency than if the word has a high token
frequency. As a form of evidence supporting the hypothesis that token frequency and
likelihood of lexicalization are correlated, consider the following data.

In (3), I list the twenty most frequent words beginning with orthographic re- from

the PHLEX database (token frequency values in parenthesis):

3) really (275), real (258), result (244), reason (241), red (197), required (181),
return (180), recent (179), report (174), read (174), research (174), reached (169),
religious (165), received (163), rest (163), results (149), ready (143), reading
(141), remember (138), record (137)

None of the words in (3) is non-controversially prefixed from a synchronic point of view.
On the other hand, consider the list in (4), which is composed of twenty randomly selected

words from the seventy-five PHLEX hapax legomena beginning with re-:

4) referendum, regalia, resplendent, repugnance, restive, reorganize, rendition,
reopen, regain, renown, regimentation, revery, rend, rejoice, replica, revitalize,
retch, reimburse, rejoinder, relict

Probably most morphologists would agree that the words reorganize, reopen, regain, and

revitalize are synchronically prefixed. Similarly, (5) lists the twenty most frequent words

beginning with de- in the PHLEX database:
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(5 development (333), death (276), department (230), dead (174), developed (170),
defense (167), deal (143), decided (141), degree (125) described (120), decision
(119), determined (119), design (114), deep (109), democratic (109), designed
(108), determine (107), despite (104), demand (102), develop (89)

None of the words in (5) is non-controversially prefixed. On the other hand, consider the
list in (6), which is composed of twenty randomly selected words from the fifty-two

PHILEX hapax legomena beginning with de-:

(6) detain, debonair, derogate, decompose, depress, deem, dehumanize, delectation,
dexterity, deprivation, delimit, debatable, deceive, detach, decentralization,

deadweight, desegregate, deity, derogatory, derivative

Probably most morphologists would agree that at least the words decompose, dehumanize,
decentralization and desegregate are synchronically prefixed. Finally, in (7) I listed the
twenty more frequent words beginning with in- in the PHLEX database (words beginning

with inter- not counted):
@) into (1789), information (269), individual (239), increase (195), inside (174),
instead (173), including (171), industry (171), indeed (162), involved (147),

increased (146), industrial (143), influence (132), include (113), income (109),
indicated (108), institutions (98), included (97), inch (89), inches (86)
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Again, none of these words is non-controversially prefixed. Consider instead the following
list of twenty randomly selected words from the one hundred and fifteen PHLEX hapax
legomena beginning with in- (words beginning with inter- were excluded from the random

sampling):

(8) informality, inane, indigent, insurgent, inkling, inexpressible, infirmity,
instigation, incongruous, inconspicuous, inmate, inoperable, insatiable, infertile,

indonesian, indelicate, incalculable, invulnerable, incorrigible, indivisible

Probably, most morphologists would agree that at least the words informality,
inexpressible, incongruous, inconspicuous, inoperable, insatiable, infertile, indelicate,
incalculable, invulnerable and indivisible are synchronically prefixed.

The small survey I just presented supports the intuition that the likelihood of a form
being prefixed is (loosely) correlated to the inverse of the token frequency of the form.
However, it is not clear that learners would a priori (innately?) know that frequent words
are likely to develop idiosyncratic meanings, and thus become morphological opaque.!6
However, a heuristic disfavoring morphological analysis of frequent words could naturally
emerge from some basic assumptions about the structure of language that a distributionally
aware learner could make.

If the learner is looking for prefixes, she could assume, for heuristic purposes, a
simple model like the following: Prefixed words are formed by independently selecting a

prefix from the list of prefixes of the language and a stem from the list of stems of the

161 carners probably store frequent complex words in the lexicon as units, but this does not imply, per se,

that they should chose to treat these words as morphologically simple.
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language.!7 Under this assumption, the learner should expect that the probability of
occurrence -- and hence the relative frequency -- of a prefixed form will be approximately
related to the product of the probabilities of occurrence -- relative frequencies -- of its
component parts (this follows from the fact that the selection of the prefix and the selection
of the stems are treated as independent events).18 Thus, if a learner encounters a word that
could be split into morphemes, but whose relative frequency is significantly higher than the
product of the relative frequencies of the potential constituents, the learner will be inclined
to conclude that the word is not complex, since it occurs more frequently than what would
be predicted by the morphological model assumed.

What emerges from this discussion is a more sophisticated strategy than the one
proposed above: The frequency threshold above which learners will decide that a word is
not complex will vary from word to word, depending on the frequency of the potential
constituents. However, since in general the product of two relative frequencies is going to
be rather low, the more general heuristic I proposed (high frequency words are less likely
to be complex) is probably a good approximation to the more sophisticated strategy
deriving from the assumption that morphologically complex words are formed by
independently selecting a prefix and a stem.

The most obvious application of this heuristic concerns the decision to treat words
as complex or simple. However, the heuristic also serves as a prefix-searching strategy, in

the sense that substrings occurring in a high number of low frequency words will be more

17Clearly, this model is too simple, but it could serve as a first, heuristic approximation of how

morphology works.

18For the notions of probability theory employed here, see, for example, the first chapter of Roman 1996.
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likely to be treated as morphemes than substrings occurring in a high number of high
frequency words.

Summarizing, in this section I have proposed distributional heuristics deriving from
the observation that linguistic units are syntagmatically independent. Putting the various
pieces together, I suggested that a learner could hypothesize that frequent word-initial
strings are likely to be prefixes. They are more likely to be prefixes if they frequently occur
before strings which are potential stems, i.e. strings which occur as independent words
and/or in other potentially complex words. Words which can be exhaustively parsed into
component morphemes should be treated as morphologically complex by the learner.
Moreover, all else being equal, the learner should be more willing to treat low rather than
high frequency words as morphologically complex. As I will show in chapter 3, the MDL
criterion provides a natural way of implementing a distribution-learning model based on the
heuristics discussed here.

While.I illustrated basic ideas about distributional morpheme discovery with
examples from prefixation, the same strategies could be applied to the search for suffixes,
or infixes, templates and other forms of discontinuous morphological constituents (see
Spencer 1991: chapter 5 for a review), given that the property of syntagmatic independence
is not necessarily restricted to adjacent sequences of segments or letters. However, the
number of possible morphological parses of words that a learner has to evaluate when
looking for discontinuous morphological constituents is much higher than in the search for
prefixes and suffixes. Possibly, a learner could trim down the number of discontinuous
parses to be explored by using phonological and prosodic constraints on the distribution of
infixes, templates, etc. (see the work on prosodic morphology by McCarthy and Prince

1986, 1993 and others).
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Thus, at the very least, it is unlikely that distributional cues would be sufficient by
themselves to successfully identify discontinuous morphemes. How much the learners can
discover about the suffixes and prefixes of their language on the basis of distributional cues
is an open empirical question. The results of the simulation I will present in chapter 4

provide some preliminary insights into the limits inherent to distributional evidence.

1.4.2 The role of distributional learning in morpheme discovery

I have suggested that it is plausible that learners use a number of strategies to discover the
morphemes of their language, relying on innate knowledge, exploiting cues from various
linguistic domains and keeping track of distributional patterns. I argued that none of these
strategies is likely to stand by itself as the only one employed by learners. In this section, I
will defend a specific hypothesis about the role played by distributional cues in morpheme
discovery, i.e., that distributional cues play a primary role in the earliest stages of
morpheme discovery.

Distributional information can be straightforwardly extracted from the data without
requiring any prior linguistic knowledge. Moreover, distributional cues such as the ones
discussed here reflect such basic properties of morphological usage that they are likely to be
universal, independent of language-specific features. For example, in any language affixes
will correspond to strings occurring in a number of different words and, thus, will tend to
have a high type frequency.

Thus, it seems reasonable that, if leamners rely on distributional cues at all, they
would use them earlier on to assign preliminary parses to the words they hear, using these

preliminary parses to extract linguistic generalizations about the morphology of their
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language, and later using the linguistic knowledge gathered in this way to refine the coarse
guesses on morphological structure made on the basis of distributional strategies.

For example, we discussed above the case of the English prefix de-. According to
the data presented by Schreuder and Baayen 1994, the large majority of English words
beginning with a phonological or orthographic string identical to this prefix is not
semantically transparent. Thus, English learners could easily overlook the relevant semantic
generalization. More generally, even if certain morphemes probably do mostly occur in
semantically transparent forms, we observed that it is not plausible that learners try each
possible combination of each possible phonological and semantic decomposition of each
word they hear, to check whether the word is semantically transparent.

It is plausible that distributional properties alert the learners to the possibility that
certain strings are morphemes, making it easier for them to notice the systematic semantic
patterns that occur in a certain number of words containing those strings. For example, the
fact that word-initial de occurs in a high number of words could lead the learners to
hypothesize that de- is a prefix. Subsequently, the learners can look for semantic
similarities among the potentially prefixed words beginning with de-. Ultimately, de- is a
prefix because it has certain semantic and syntactic properties, which allow the speakers to
understand and form new words using it, and not because the string de- has a peculiar
distribution. However, easy-to-extract distributional evidence provides the learner with a
simple heuristic strategy to search for potential morphemes.

Moreover, learners must probably go through the step of extracting some form of
distributional information anyway, for the purpose of other forms of morpheme discovery.
For example, if a learner is evaluating the likelihood of possible form-to-meaning
mappings, it is very likely that she has to keep track of hcw many times a certain string is

associated with various semantic features. But if learners have to collect distributional
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evidence anyway, then it would be strange if they did not try to extract some useful
information from distributional data by themselves before they combine them with other
types of evidence.

If the hypothesis presented in this section is correct, then, by modeling morpheme
discovery as a purely distribution-driven task, we are not simply making a useful
abstraction in order to assess to what extent distributional cues could be useful by
themselves: we are actually modeling the first stage of morpheme discovery, before

bootstrapping based on linguistic knowledge kicks in.

1.4.3 Distribution-driven learning in morpheme discovery: the empirical

evidence

The (admittedly inconclusive) arguments presented in the previous section support the view
that, if learners do resort to distributional strategies in morpheme discovery, then it is likely
that they use such strategies in the earliest stages of this process. [ am not aware of
empirical evidence in favor of this claim, and this study will not be providing evidence in
its support. However, I will present some indirect evidence in favor of the more general
hypothesis that humans do rely on distributional strategies during morpheme discovery,
and I will discuss the nature of the data supporting this hypothesis that will be presented in
this study.

Unfortunately, as far as I know, there are no studies presenting data on how

children discover the morphemes of their language and on whether they are sensitive to the
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distributional properties of these morphemes.!? However, some studies have shown that
adult speakers are sensitive to distributional properties of morphemes. Stolz and Feldman
1995 report results from a segment shifting experiment (a production task meant to simulate
spontaneous speech errors in a laboratory setting)2? showing that the time it takes English
subjects to shift a suffix from a word to another is significantly correlated with the type
frequency of the suffix (and with the ratio of truly suffixed to pseudo-suffixed words
containing a word-final string identical to the suffix).2!

Laudanna and Burani 1995 report results from a series of experiments which show
that two distributional properties of prefixes (their length and the ratio of truly prefixed
forms to pseudo-prefixed forms) have a significant effect on Italian subjects’ performance

in a visual lexical decision task. The longer a prefix and the higher the corresponding truly

19Saffran, Aslin and Newport 1996 have shown that 8 month old infants are sensitive to distributional
information relevant to the task of continuous speech segmentation.

201n this task, speakers have to separate a designated segment from a word and attach it to a new word as
quickly as possible. For example, if the designated segment is en, the source word is harden and the target
word is bright, the speaker has to say the word brighten as soon as possible. It has been shown that
speakers are faster at this task if the designated segment functions as a morpheme in the target word than if
it does not (e.g., it is easier to detach en from harden than from garden).

21The variable used by Stolz and Feldman in this analysis is the mean difference in shifiting time from
complex words and control words (simple words ending in a string identical to the relevant suffix). Thus, a
higher value of this variable indicates faster shifting times from actually suffixed words. Thus, the positive
correlation between this measure and type frequency (and /or ratio of suffixed to pseudo-suffixed words) and
this measure indicates that speakers are faster at shifting suffixes that have a higher type frquency (and/or

ratio of suffixed to pseudo-suffiex words).
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prefixed/pseudo-prefixed ratio, the longer it takes speakers to decide that nonsense forms
beginning with a string identical to the prefix are not real words (prefix length also has a
significant effect on the number of errors made by subjects).

In Baroni in press, I show that the likelihood that potentially prefixed words are
treated as complex for the sake of a morphophonological process of Northern Italian is
significantly correlated with prefix length.

While these studies do not provide evidence in favor of the claim that learners use
distributional cues in morpheme discovery, they show that adult speakers are sensitive to
some distributional properties of morphemes, which implies that the language processing
component of humans is, at some level, keeping track of such properties.

The morpheme discovery simulation presented in this study shows that simple
distributional cues can be very effective in morpheme discovery. Moreover, the comparison
of the parses assigned by the automated learner to semantically opaque forms with the
parses assigned by English speakers to the same forms provides evidence that humans use
distributional cues similar to the ones used by the learner when attributing a morphological
structure to words. Thus, I turn now to the discussion of previous studies showing that
speakers are aware of the morphological structure of some semantically opaque words, and
I explain why this type of word can play an important role in providing evidence for the

reality of distributional learning.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4.3.1 Distributional learning and the status of morphologically complex,

semantically opaque words

An interesting and challenging aspect of modeling how children learn to segment words
into morphemes is that we are actually not sure of what the “correct” output of this process
should be. Of course, if our algorithm fails to parse a word like reconstruct as
morphologically complex, or if the algorithm treats giraffe as a prefixed word, we have
reasons to worry. However, there are many intermediate cases of words (such as resist,
resume etc.) whose morphological status is not clear.

Several studies have presented evidence from different experimental tasks that
speakers are aware of the morphological structure of words that are (partially or
completely) semantically opaque. I mentioned in section 1.2.3 the findings of Emmorey
1989. Other studies providing empirical evidence for the claim that some semantically
opaque words are treated as complex by adult speakers include Bentin and Feldman 1990,
Feldman and Stotko unpublished (quoted in Stolz and Feldman 1995), Baroni in press,
Baayen, Schreuder and Burani submitted, and Roelofs and Baayen submitted.

Bentin and Feldman 1990 report the results of a series of repetition priming
experiments in Hebrew showing, among other things, that there is a facilitatory effect
among words whose morphological relation is semantically opaque. Feldman and Stotko
also used a repetition priming paradigm to show that semantically opaque suffixed words
prime their stem in English. In Baroni in press, I show that Northern Italian speakers treat
some prefixed semantically opaque words as complex for the sake of a productive
morphophonological rule. Baayen, Schreuder and Burani submitted present data from a
series of lexical decision experiments in Dutch, showing, among other things, that the

frequency of the constituents of semantically opaque words affects lexical decision speed.
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Roelofs and Baayen submitted show that some semantically opaque compounds of Dutch
behave like semantically transparent compounds for the purposes of syllabification and that
some semantically opaque prefixed words of Dutch behave like complex for the sake of a
morphophonemic process. Moreover, Roelofs and Baayen show that semantically opaque
prefixed words pattern with transparent prefixed words in an implicit priming
experiment.22

I will not discuss the results of these studies in more detail here. The important
point for current purposes is that, when taken together, these results provide evidence for
the claim that speakers treat some semantically opaque words as morphologically complex.

[ observed above that these findings constitute a form of evidence against the
hypothesis that morpheme discovery is entirely semantics-driven. Moreover, they suggest a

way to test distribution-driven learning models: The morphological parses that an

22Marslen-Wilson, Tyler, Waksler and Older 1994 found that semantically opaque affixed words did not
behave like transparent affixed words in a cross-modal priming experiment (in the sense that they did not
significantly prime morphologically related forms). This result is in apparent contradiction with the ones
discussed in the text. However, Marslen-Wilson and collaborators presented the target immediately after the
prime, and it has been observed (see discussion in Stolz and Feldman 1995) that purely semantic effects are
strongest at very short lags. Thus, the strength of semantic effects in the immediate priming paradigm could
have obscured weaker, purely morphological effects shared by transparent and opaque forms (notice,
however, that the paradigm used by Marslen-Wilson and collaborators is similar to the one used by
Emmorey 1989, who did find purely morphological effects). Alternatively, the apparent contradiction could
be due to the fact that morphological complexity is a gradient property, and semantically opaque forms have
an intermediate degree of complexity, so that they pattern with complex forms in certain respects and with

simple forms in other respects.
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automated learner assigns to semantically opaque but potentially complex words (such as
recite) can be compared to morphological parses assigned to the same words by human
subjects (as recorded in some form of behavioral test).23 If the distribution-driven
algorithm produced parses similar to the ones assigned by humans, this would first of all
constitute strong evidence that the automated leamner is generating morphological analyses
analogous to the ones learned by human beings.

Moreover, the convergence between the distribution-driven learner and human
beings in parsing semantically opaque words would also provide evidence that humans
adopt distributional strategies similar to the ones implemented by the automated learner. If
both the automated learner and the human subjects treated, say, resist as a complex form
but, say, resume as monomorphemic, the most plausible explanation of this fact would be
that, when humans stored such forms in their lexicon, they followed distributional criteria
similar to the ones used by the automated learner.

Thus, if a distribution-based model of morpheme discovery produced parses of
opaque words matching those assigned by humans, this would provide a form of direct
evidence for distribution-driven morpheme discovery (and hence distributional learning in
general) which is not available in other domains. For example, consider the related issue of
modeling how children learn to segment utterances into words (see Brent and Cartwright
1996 and the references quoted there). Even if a distribution-driven model of sentence
segmentation were completely successful, this would still be a weaker form of evidence for

the relevance of distributional cues in language acquisition, since all the words discovered

230f course, this approach is more convincing if the semantically opaque words under analysis are not

marked by obvious syntactic or phonological cues of morphological complexity.
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by the model could also have been discovered by human learners on the basis of semantic
(or syntactic) cues.24

From the point of view of morphological theory, if the distributional model
correctly predicted which semantically opaque words are treated as complex by speakers,
this would provide the basis for a (partial) explanation of the fact that speakers do treat
some semantically opaque words as morphologically complex: They do so because they
used distributional schemes to search for the morphemes of their language, and these
schemes lead them to analyze some words as morphologically complex even in the lack of
semantic cues supporting the complex analysis.

In chapter 4, I present the results of a survey in which adult English speakers rated
a set of potentially complex but semantically opaque forms, and I compare the speakers’
ratings to the morphological parses generated by the automated distribution-driven leamer,

showing that, indeed, speakers’ ratings and learner’s parses are correlated.

1.5 Summary

In this chapter, I discussed the problem of morpheme discovery and I examined different

types of evidence which could help the learners in this task. I have presented arguments

241diomatic phrases such as kick the bucket are not the equivalent of semantically opaque morphologically
complex forms such as permit. First, idiomatic phrases also have a literal, semantically transparent
meaning, and it is unlikely that speakers are not aware of this meaning. Second, words occurring in idioms
also occur in non-idiomatic sentences. This is not the case of a bound stem like -mit, which occurs only in

opaque forms.
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supporting the claim that, while several morpheme-searching strategies can be useful to
learners, there is no single strategy which could fully account on its own for the process of
morpheme discovery. I then proposed some general distributional heuristics that could be
useful to learners, and I discussed what could be the role of distributional learning in
morpheme discovery, and how the comparison of the morphological parses assigned by a
distribution-based model and by human beings to a set of semantically opaque but
potentially complex words could provide important evidence in favor of the relevance of

distributional learning in language acquisition.
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Chapter 2

Other models of morpheme discovery

2.1 Introduction

In this chapter, I review models of morpheme discovery proposed by other authors. While
there has been considerable work on modeling the similar task of utterance segmentation,
very few explicit models of the morpheme discovery process have been proposed.25
Interestingly, all the models proposed (at least, the ones [ am aware of) are either entirely
distribution-driven, or characterized by a mixture of distributional and syntactic
information. None of the models proposed makes use of semantic information.

Harris 1955 treats utterance segmentation into words and word segmentation into
morphemes as the same problem, and presents an algorithm which takes unsegmented and
unlabeled utterances as its input and segments them into words or morphemes. Harris’
algorithm uses a boundary-based segmentation strategy, in which words/morphemes are
identified on the basis of the patterns which follow or precede them.

The suffix discovering algorithm discussed in Brent 1993 (see also Brent, Murthy

and Lundberg 1995) represents, as far as I know, the first attempt to apply the Minimum

251 do not discuss here models, such as the one proposed by Albro 1998, in which the input contains
information on which forms are paradigmatically related. By providing this information, models of this kind
arc enormously simplifying the morpheme discovery task, typically because morpheme discovery is not the
main focus of the study (the ultimate goal of Albro’s algorithm, for example, is to find the positional

classes of the inflectional morphemes of a language).
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Description Length principle (Rissanen 1978) to the problem of morpheme discovery. The
algorithm is presented in two versions: in one version, the algorithm is entirely distribution-
driven; in the other version, the algorithm also exploits syntactic category information.

Mikheev 1997 presents a part-of-speech tagger which happens also to work as a
good morpheme discovering algorithm. Mikheev’s algorithm exploits both distributional
and syntactic category information.

Goldsmith submitted presents an algorithm which discovers stems, suffixes and
“signatures” (elementary forms of paradigms). Goldsmith’s algorithm is entirely
distribution-driven, and like the one by Brent and the one presented here, it is based on the
Minimum Description Length principle.

Finally, I will discuss the model proposed by Brent and Cartwright 1996 for the
utterance segmentation task, since their work provided the main source of inspiration for

the morpheme discovery procedure I present in this study.

2.2 Harris 195§

Harris 1955 proposes an algorithm to segment utterances into morphemes. The basic
intuition behind Harris’s approach is that it is easier to predict the following segment within
the same morpheme (or word) than across morpheme (or word) boundaries. Thus, Harris

proposes the following procedure:

* Count how many phonemes could follow the string formed by the first n segments of

the utterance in some well-formed utterance, with n ranging from 1 to the number of
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segments in the utterance. The number of phonemes that can follow a string in a well-
formed utterance is the number of successors of the string.

* Insert a morpheme boundary after each string of n segments whose number of
successors is higher than or equal to the number of successors of the (n-/) and (n+1)

strings (i.e., insert a morpheme boundary after each local maximum).

Harris presents an analysis of the sentence He's clever /hiyzklevar/ as an example.
Following his procedure, we first count how many phonemes can occur after /h/ in some
well-formed utterance: the number of successors of the string /h/ turns out to be 9. Then,
we count the number of successors of /hi/, which is 14, and so on until the end of the
utterance. The number under each segment in (9) is the number of successors of the string

ending with that segment (as computed by Harris):

9) h i y z k l e v a r

The three-phoneme string /hiy/ has a higher number of successors than the two-phoneme
string /hi/ and the same number of phonemes as the four-phoneme string /hiyz/. Thus, a
morpheme boundary is inserted after /hiy/. Following Harris’ procedure, morpheme
boundaries are also inserted after /hiyz/, /hiyzkle/, /hiyzklevar/, and we end up with the
segmentation: /hiy#z#kle#var/.

The algorithm guessed all the right morpheme/word boundaries, but it also inserted
an unlikely boundary between /kle/ and /var/. This problem can probably be solved by
requiring that boundaries be inserted only after strings whose number of successors is

higher than a certain threshold.
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Another example presented by Harris is the sentence He's quicker /hiyzkwikar/:

(10) h i y z k w i k 2 r

This time, the segmentation generated by Harris’ algorithm is: /hi#z#kwik#ar/. Thus,
Harris’ algorithm captures the fact that the same string (/ar/) is a morpheme in quicker but
not in clever.

The algorithm is able to distinguish between quicker and clever in virtue of the fact
that quick is an independent word and, as such, it can occur in a sentence before most
English sounds, whereas clev is not an independent word, and thus it can occur only
before the restricted number of strings which make it a real word.

In order to apply Harris’ algorithm to the prefix searching problem, we must adopt
one of the modifications of the basic procedure proposed in the paper, i.e. we must apply
the procedure backwards, counting the possible predecessors of a string. Consider the
difference between (orthographic) reprint and regatta. If we applied Harris’ basic procedure
to these words (in isolation, or embedded in identical sentences), the procedure would fail
to recognize that the re in reprint, but not the one in regarta, is a morpheme, since the two
strings re are identical, and hence they have the same successor count.

If we apply the procedure backwards, we compare the strings print and gatta. Since
the first string is an independent word of English, it can be preceded by more strings than
the second word, which can occur only after the restricted number of strings (1?) which
make it a real word.

An obvious problem with Harris’ algorithm is that, in general, it is unlikely that it

will be able to recognize bound stems. The reason why the algorithm can distinguish
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quicker from clever and reprint from regatta is that in both pairs the morphologically
complex member contains a stem which is an independent word. Typically, languages
impose stricter phonotactic constraints within words than across word boundaries. For
example, quick can occur before /f/ in the phrase a quick phonetician; but /kf/ could not be a
(possible) word-internal cluster of English (except in compounds). Thus, stems that are
also independent words can typically be preceded/followed by a very large number of
phonemes, whereas this is not necessarily the case with bound stems, whose distribution
will be typically subject to stricter word-internal phonotactics.

Furthermore, it is not the case that all the (possible) phonotactically well-formed
combinations of English segments form existing English words. Even if a word in which
gatta is preceded by r could be a well-formed English word (ergatta, for example), such a
word does not exist. This fact about the English lexicon limits the successor and
predecessor counts of strings which are not autonomous words. On the other hand, the
combinatorial possibilities of syntax make it possible for words to be preceded by virtually
any word-final segment of the language, and followed by virtually any word-initial
segment.

Bound stems need an affix to form a word and hence their predecessor/successor
counts are limited by word-internal phonotactic constraints and by the fact that they can be
preceded and followed by only a limited number of affixes. Consider as an example the
Italian suffixed form ver-i /veri/ (ver- is a bound stem meaning ‘true’, and -i is the
masculine plural suffix). Since ver- is not an autonomous word, it can be followed only by
the strings (most of them suffixes) which make it a word. These strings begin with a very
limited number of segments. Consequently, ver- has a low successor count and it is not

recognized as a morpheme by Harris’ procedure:
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(I1) v e r i
7 17 11 27

Harris’ procedure fails to recognize ver- as a morpheme because this string is not an
independent word of Italian, and consequently it can occur only before a limited number of
suffix-initial segments.26

In English and some other Indo-European languages (such as Italian), productive
prefixation2? always involves free stems. Thus, if we accepted the conservative assumption
that a morpheme-discovering algorithm should look only for productively formed complex
words, Harris’ algorithm could still be used in a prefix-searching procedure. However,
even within this conservative approach it is not reasonable to assume that learners a priori

know that the productive prefixation rules of their language are restricted to free stems.

2.3 Brent 1993

Brent 1993 proposes an algorithm which discovers suffixes using the MDL criterion of

Rissanen 1978 (see also Brent, Murthy and Lundberg 1995 for a more technical description

26The example in (11) shows another problem of the successor count procedure: in a language like Italian,
in which vowels are typically followed by consonants, consonants are typically followed by vowels and
there are considerably more consonants than vowels, the successor counts of vowels will tend in general to
be higher than those of the surrounding consonants. In (11), the string ve would be wrongly identified as a
morpheme for this reason. This problem was already noticed by Harris.

27 Productive in the sense that it can be used to form new words.
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of the same algorithm). As far as I know, Brent’s work represents the first attempt to apply
the MDL criterion to the problem of morpheme discovery. I will discuss the MDL criterion
and its relation to plausible morpheme searching heuristics in 3.3, below.

Brent’s basic approach can be summarized in the following way: Assume that a
lexicon is a list of suffixes and stems, and that each word in the input was generated by
combining a stem and a suffix (monomorphemic words have a zero suffix). Then, when
comparing alternative lexica which could have generated the input stream, simply select the
shortest lexicon, i.e. the lexicon represented by the smallest number of letters.

In order to understand why this is a sensible strategy, consider the following
example (taken, with some simplifications, from Brent 1993). We want to select the best

lexicon accounting for the following input:

(12) walk referral
walks refer
walked refers
walking dump
referred dumps
referring preferential

The input in (12) could have been generated by the following lexicon (I use the symbol @

to represent the zero suffix attached to monomorphemic words):
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(13)  stem list: suffix list:

walk %]
referr s
refer ed
dump ing
preferenti al

total number of letters used to represent lexicon: 38

An alternative lexicon which could have generated the input in (12) is the following:

(14)  stem list: suffix list:
wal k
refer ks
refe ked
dum king
preferent red

ring
ral

r

rs

P
ps
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ial

total number of letters used to represent lexicon: 53

Yet another lexicon which could have generated the input in (12):

(15) stem list: suffix list:

walk o
walks d
walke ng
walki 1
referre

referri

referra

refer

refers

dump

dumps

preferentia

total number of letters used to represent lexicon: 75

If we adopt the shortest lexicon criterion, we must select the lexicon in (13), which is

represented by a total of 38 letters, vs. the 53 letters needed to represent the lexicon in (14)
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and the 75 letters needed to represent the lexicon in (15). Clearly, (13) is also the lexicon
corresponding to the most reasonable morphological analysis of the input (among these
three).

Sensible morphological decompositions shorten the lexicon because true
morphemes, unlike random substrings, occur in a number of different words. For
example, if walked is decomposed into walk and -ed, and referring is decomposed into
referr- and -ing, the same morphemes can be “recycled” to represent the input words
walking (walk plus -ing) and referred (referr- and -ed), without need to add new items to
the lexicon. On the other hand, if walked is decomposed into wal- and -ked, and referring
is decomposed into refer- and -ring, we cannot recycle the same morphemes to derive other
input words such as walking and referred, and thus we have to add more stems and
suffixes to the lexicon, lengthening it.

The way in which representation length is actually computed in Brent’s model is
more complex than simply counting the number of letters used to represent a lexicon, but
this simple criterion illustrates the basic idea of how the model works. The most important
difference between the simplified criterion used in the example above and the actual method
to compute representation length adopted by Brent is that, using the actual criterion, lexica
containing a small number of morphemes that occur in the input corpus very frequently are
preferred to lexica in which corpus frequency is evenly distributed among morphemes.

While the criterion used to select the best lexicon constitutes the core of Brent’s
algorithm, the algorithm must also generate a set of candidate lexica. Brent’s strategy is to
allow the generation of a very large number of lexica, leaving the burden of finding the
most sensible one entirely to the shortest lexicon criterion.

Still, to avoid an explosion of the search space, only lexical analyses of the input

which meet the following constraints are evaluated as possible lexica (I will discuss below
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some problematic aspects of these constraints): 1) only stem-suffix decompositions in
which the stem is at least as long as the suffix are considered (this also has the function of
minimizing the risk of treating prefix-stem combinations as stem-suffix combinations); 2) if
a word-final substring is treated as a suffix, the substring is treated as a suffix in all the
words ending with it. For example, if -ing is treated as a suffix, then not only walking, but
also string must be represented as a suffixed form (str+ing).

It also follows from the latter condition that suffixes cannot be substrings of other
suffixes. Consider a potential lexicon containing both the suffix -ness and the suffix -s.
Given such a lexicon, any word ending in ness would violate the constraint requiring that a
substring identical to a suffix is treated as a suffix in all the words ending with it. If a word
like kindness was parsed as kind+ness, the constraint would be violated because this word
ends in s but it is not treated as a word containing the suffix -s. If kindness was parsed as
kindnes+s, the constraint would be violated because this would be a word ending in ness
but not treated as containing the suffix -ness.

The algorithm was tested with corpora of different sizes (from 500 to 8000 words)
sampled from the Wall Street Journal. The total number of real English suffixes (or other
linguistically significant units, such as second members of compounds and suffix
combinations) found by the model ranged from 6 (500 word corpus) to 55 (8000 word
corpus). The number of errors (strings treated as suffixes that are not actual English
suffixes) ranged from 1 (2000 word corpus) to 10 (500 word corpus).

Brent also presents a version of the algorithm which takes syntactic category
information into account. Without going into details, this version of the model takes a
corpus of tagged words as its input, and the entries in the suffix list are associated with one
or more syntactic categories. All else being equal, this version of the model favors lexica

with suffixes associated with a small number of categories, and suffix + category pairs
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which occur in a high number of words in the corpus. Interestingly, the model
incorporating syntactic information performs only marginally better than the model based
on distributional information alone.

To conclude, Brent’s MDL-based lexicon selection criterion constitutes an elegant
and effective implementation of distributional morpheme-searching strategies of the kind I
discussed in the previous chapter. Indeed, the lexicon selection criterion of the procedure I
will present below is almost identical to the one adopted by Brent. However, the lexicon
generation algorithm used by Brent has some obvious limitations, in that the constraints
restricting the set of possible lexical analyses appear to be too strong.

First, it is obviously not always the case that stems are as long or longer than the
morphemes they occur with (consider, for example, the word ill+ness, with a three letter
stem and a four letter suffix). Second, it is also obviously not always true that all words
ending with a substring identical to a suffix should be parsed as suffixed. For example, the
word string ends in -ing but it clearly should not be parsed as str+ing. Moreover, learners
should not exclude the hypothesis that some suffixes are substrings of other suffixes. For
example, the English suffix -s is a substring of the Engiish suffix -ness.

Notice that Brent explicitly claims that the aim of his procedure is to discover
suffixes, and not to assign morphological parses to input words. In this perspective, only
the last issue I mentioned (the ban against suffixes identical to endings of other suffixes) is

problematic (as observed by Brent himself).
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2.4 Mikheev 1997

Mikheev 1997 presents a part-of-speech tagging algorithm which takes a corpus of tagged
words as its input and formulates part-of-speech guessing rules which can then be used to
label an untagged corpus.

Some of the guessing rules predict the part of speech of a word by removing a
word-initial string and checking whether the remainder is identical to a word which has a
certain tag in the input corpus. For example, the rule in (16) says that if, by removing the
word-initial string un from an unknown word we obtain a word that is tagged in the input

corpus as a past participle, then the unknown word is an adjective:28

(16)  <un> + past-participle -> adjective

If the past participle known was in the input corpus, the rule in (8) would correctly guess
that unknown is an adjective.

Rules such as the one in (16) are essentially prefixation rules. Here, I will describe
only how Mikheev’s algorithm finds prefixation rules. Mikheev’s suffixation rules are
similar to the prefixation rules. I will not discuss how Mikheev’s algorithm discovers
suffixation and non-morphological part-of-speech tagging rules. I will also ignore the “rule
merging phase” of Mikheev’s algorithm and the way in which the performance of the
algorithm as a part-of-speech tagger is evaluated.

Prefix guessing rules are extracted in the following way: for each pair of tagged

words in the input corpus, the algorithm checks whether the longer of the two words is

28] am using a simplified version of Mikheev's notation.
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composed of prefix+short_word, where prefix is a non-empty word-initial string and
short_word is a string identical to the shorter of the two words. If the operation is

successful, the system creates a rule according to the template in (17):

(17)  prefix + tag_short -> tag_long

Where tag_short is the part-of-speech tag of the shorter word and tag_long is the part-of-
speech tag of the longer word. For example, if regain and gain are tagged as (base forms
of) verbs in the input corpus, the algorithm, when comparing these two words, will output

the rule (18):

(18) <re> + verb -> verb

If the input corpus contains the noun delivery and the adverb very, the procedure will

extract the rule (19):

(19) <deli> + adverb -> noun

If a rule extracted by this procedure has already been generated in the comparison of
another pair, the frequency count of the rule is incremented.

After extracting all the possible prefixation rules in this way, the algorithm trims the
rule set by eliminating all the rules with a very low frequency count (such as, presumably,
the rule in (19)). Among the remaining rules, the algorithm tries to select the most effective
ones: optimally, a rule should both apply to many forms and correctly predict the part-of-

speech tag of the forms it applies to.
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For each rule, the algorithm counts the number of forms in the input corpus meeting
its structural description (i.e. to which the rule could in principle apply) and the number of
forms in the input corpus for which the application of the rule would be successful. For
example, if the verbs make, remake, ally and the adverb really are in the input corpus, the
algorithm will count remake and really among the forms compatible with the rule in (18),
since both forms are analyzable as re- plus verb; however, only remake will be counted
among the forms for which the application of the rule is successful, since the rule, if
applied to really, wrongly predicts that this word is a verb.

The algorithm calculates the estimated proportion of success (5) of each rule, which
is the proportion of successful applications of the rule over the total number of words
compatible with it:29

~ _ number of successful applications of the rule
= number of words compatible with the rule

(20)

The p estimate is a measure of the accuracy of a rule. However, intuitively, we are more

willing to trust a rule which successfully applies to 95 of the 100 words compatible with it

than a rule which applies successfully to the only word compatible with it. The j estimate
does not take this intuition into account: a rule which successfully applied to the only
compatible word would have the highest possible p value (i.e. 1).

Thus, Mikheev’s procedure, rather than considering p per se, computes the lower
confidence limit 7, of p, which can be interpreted as the minimal expected value of the 5 of
arule if the number of samples (= words compatible with the rule) were larger, assuming a

certain confidence level (in (21), a is set to .90):

29Mikheev computes these quantities over the word tokens in the input corpus.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 -5
RQl) m=p-to* \’&%

In (21), £ is the coefficient of the z-distribution when a = .90 and there are (n - 1) degrees
of freedom; n is the number of words compatible with the rule being scored. The value of

-7 .
155 decreases as the degrees of freedom increase.

The & of a rule depends on the p estimate of the rule but also on the absolute
number of forms compatible with the rule. The smaller this number, the larger the term
subtracted from p to compute m; will be.

Mikheev observes that, if the affix associated with a rule is long, then we should be
more confident that the rule is not a coincidental one, even if the number of words
compatible with the rule is small. Thus, in order to compute the final score of each rule,
Mikheev’s procedure divides the error term of m; by the logarithm of the rule’s prefix
length (represented by the symbol 18! in the equation in (22)):

p (1 -p)

fih + .
(22)  rule score =p - T+log(is))

In this formula, the term subtracted from the p decreases as string length increases. Thus,

using the formula in (22) to compute the score of each prefixation guessing rule, Mikheev’s

procedure corrects p by taking both the absolute number of words compatible with a rule

and the length of the postulated prefix into account.
Given an input of about 18,000 words from the Cobuild corpus (Baayen,

Piepenbrock and van Rijn 1993), the ten prefixation rules with the highest scores found by
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Mikheev’s algorithm involve the following word-initial strings: re-, ex-, self-, inter-, non-,
un-, dis-, anti-, de-, in-. These are all real English prefixes. Mikheev also mentions that
some of the highest scoring rules involve strings which are not standard English prefixes
(such as sr-). Unfortunately, Mikheev does not provide more detailed data on the
performance of the algorithm as a morpheme discovering procedure, since the main goal of
the rule scoring component is to select guessing rules for the purpose of unlabeled word
tagging.

Mikheev’s algorithm appears to follow an effective affix-searching strategy, given a
tagged corpus as input. Since Mikheeyv is not trying to model morphological acquisition, he
does not provide hints of how his procedure could be extended to assigning morphological

parses to words, besides finding the list of affixes of a language.

2.5 Goldsmith submitted

Goldsmith proposes a morpheme (stem and suffix) discovery procedure or, rather, a set of
related procedures that, like the model presented by Brent 1993 and the one presented here,
are based on the MDL principle. Goldsmith’s proposal is characterized by a series of MDL-
related heuristics which are sometimes applied sequentially, sometimes presented as
alternative procedures. Here, I present only a simplified sketch of the basic steps of
Goldsmith’s algorithm.

Given an untagged corpus of words, the first step of this model is to run a
probabilistic algorithm which splits all the words in the corpus into a stem and a suffix. For

each word, the algorithm selects the parse with the highest value of the following measure:
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(23)  H(stem/suffix) = - (Isteml * log freq(stem) + Isuffixl * log freq(suffix))

Where Istem| is the length, in letters, of the stem and Isuffixl is the length, in letters, of the
suffix. This measure favors parses in which both the stem and the suffix correspond to
strings which are also treated as morphemes in a number of other words, and longer stems
and suffixes over shorter ones.

After the first step of the procedure terminates, assigning a morphological parse to
each word in the corpus, the stems are organized into mini-paradigms called signarures. A
signature is a list of all the stems which occur exactly with the same set of suffixes. For
example, in one run of the procedure with an English corpus, the stems despair, pity,
appeal, insult all occurred with the suffixes -ing and -ingly, and as free-standing words (I

use @ to indicate a zero suffix). Thus, one of the signatures generated by the procedure

was:

(24)  despair 1)
pity + ing
appeal ingly

At this point, all signatures with only one stem or only one suffix (the overwhelming
majority) are discarded. In this way, a high number of linguistically insignificant analyses

are eliminated -- for example, the one corresponding to the following signature:
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(25) ch
e
erial
mat + erials
rimony
rons

uring

The suffixes which are found in the remaining signatures, labeled regular signatures, are
not all linguistically significant, but they do represent a very good approximation to the list
of suffixes of the languages analyzed. Moreover, the regular signatures often correspond to
linguistically significant mini-paradigms which could be exploited, for example, for
purposes of part-of-speech tagging, or as a first step in constructing larger paradigms.
Goldsmith reports convincing results which were obtained with corpora of English,
French, Spanish, Latin and Italian words. Thus, Goldsmith’s work constitutes strong
evidence of the effectiveness of an entirely distribution-based morpheme discovery

strategy.30

30Among the most important aspects of Goldsmith’s model which I did not review here are his discussion
of how the proposed heuristics are related to the MDL criterion, and later steps of the procedure, some
implemented, some yet to be implemented, which further improve the performance of the model. In future
research, it would be interesting to compare the performance of Goldsmith’s model with the performance of

the model presented here.
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2.6 The utterance segmentation model of Brent and Cartwright 1996

Brent and Cartwright 1996 present an utterance segmentation algorithm which is also
based on the MDL principle (Brent and Cartwright refer to the same principle as the
Minimum Representation Length principle). The algorithm developed by Brent and
Cartwright selects the segmentation of input utterances which minimizes the sum of the
length of the lexicon postulated by the segmentation and the length of the derivations of
each input utterance encoded using the postulated lexicon.

Consider the following input utterances:
(26)  doyouseethekitty
seethekitty
doyoulikethekitty
Several segmentations of these utterances are possible. For example:
27) a. doyouseethekitty
seethekitty
doyoulikethekitty
b. do you see the kitty

see the kitty
do you like the kitty
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c. do you see thekitty
see thekitty
do you like thekitty

d. do yousee thekitty
see thekitty
do you like thekitty

e. doyouseethekitty
seethekitty
doyoulikethekitty

Each of these segmentations can be represented by:

* alexicon, composed of the word types occurring in the segmentation, each paired with
an arbitrary, unique index;
* aderivation, constructed by replacing each occurrence of a word type in the

segmentation with its index.
Brent and Cartwright’s algorithm selects the segmentation with the minimum representation
length, i.e. the segmentation for which the sum of the length (number of characters) of the

lexicon and the length of the derivation is minimal. The five segmentations in (27) have the

following representations:
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(28)  Segmentation (27.a):

Lexicon:
Old 020 03y O04u O05s O06e O7t O8h 09k 10i
111

Derivation:

01 02 03 02 04 05 06 06 07 08 06 09 10 07 07 03
05 06 06 07 08 06 09 10 07 07 03

0102030204 11100906 07 08 06 09 10 07 07 03

Segmentation (27.b):

Lexicon:

Ol do 02 you 03 see 04 the OS5 kitty 06 like
Derivation:

01 02 03 04 05

03 04 05

01 02 06 04 05

Segmentation (27.c):

Lexicon:

0l do 02 you 03 see 04 thekitty 05 like
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Derivation:
0102 03 04
03 04

01 020504

Segmentation (27.d):

Lexicon:

01 do 02 yousee 03 thekitty 04 see 05 you 06 like

Derivation:
010203
04 03

01 0506 03

Segmentation (27.e):

Lexicon:

01 doyouseethekitty 02 seethekitty 03 doyoulikethekitty
Derivation:
01

02
03
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For each segmentation, we sum the number of characters (letters and digits) in the lexicon

and derivation, obtaining the following values:

(29) Segmentation (27.a): 33 (lexicon) + 88 (derivation) = 121
Segmentation (27.b): 32 (lexicon) + 26 (derivation) = 58
Segmentation (27.c): 30 (lexicon) + 20 (derivation) = 50
Segmentation (27.d): 38 (lexicon) + 18 (derivation) = 56

Segmentation (27.e): 50 (lexicon) + 6 (derivation) = 56

The segmentation of the input in (26) for which the sum of the lexicon and derivation
lengths is minimal is the one in (27.c) (do you see thekitty, see thekitty, do you like
thekitty). This is the segmentation selected by Brent and Cartwright’s algorithm.

Notice that the minimum representation length criterion disfavors the “extreme”
segmentation strategies in (27.e) and (27.a). In (27.e), no segmentation is attempted, and
the three utterances in the input are stored as lexical units (words). This strategy minimizes
the derivation length, but it is anti-economical in terms of the lexical representation
length.3! At the other extreme, in (27.a) each letter in the input is treated as an independent
word and stored as such in the lexicon. This strategy minimizes the lexical representation

length,32 but it is anti-economical in terms of derivation length.

31This would be easier to see in the case of an input composcd of a larger number of utterances.
32The advantage of this strategy in terms of lexical representation length becomes more evident as the

number of utterances in the input increases.
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Since in the input in (26) the strings the and kitty always occur together, the
minimum representation criterion favors the representation in which they are treated as one
word (27.c) over the representation in which they are treated as independent words (27.b),
since the latter option increases both the lexicon length (requiring an extra index) and the
derivation length.

On the other hand, the segmentation (27.d), in which you and see are stored as a
single lexical unit, is not optimal, since (given the utterances seethekitty and
doyoulikethekitty) these strings must also be stored as independent lexical units, making
the lexical representation longer. However, the minimum representation length principle
does not necessarily disfavor segmentations in which some lexical units are identical to the
composition of other lexical units. In the case at hand, if the string yousee were very
frequent in the input, then the gain in terms of derivational length of representing it as a unit
would outweigh the cost of having both yousee and the substrings you and see represented
in the lexicon.

If we assume an indexing system such as the one adopted in (28), in which all

indices are two digits long, the representation length of a segmentation S is given by:

(30) RL(S) =2TYPES(S)| + we%é(s(usz)) + 2ITOKENS(S)!

Where ITYPES(S)! is the number of items listed in the lexicon, /(w) is the length in
phonemes (or letters) of lexical item w and ITOKENS(S)! is the total number of occurrences
of all the indices in the derivation. The minimum representation length principle favors

segmentations with fewer and shorter types and fewer tokens.
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Brent and Cartwright use a representational system which is more economical and
less biased than the one used in (28). Adopting Brent and Cartwright’s representational

system, the representation length of a segmentation is given by...

(31) RL(S) = 3ITYPES(S)! + (log, P) (we%égg))) + ITOKENS(S)! * H(S)

... where P is the number of phonemes (or letters) in the input alphabet and H(S) is the

entropy of the relative frequencies of the lexical items in the segmentation:

_ fiw) f(w)
(32) H(S)= " 4w TOKENS(S)! °®2ITOKENS(S)|

The value computed by the formula in (31), like the value computed by (30), increases with
the number and length (in phonemes or letters) of the types in the lexicon, and with the
number of tokens in the derivation. Furthermore, the entropy term increases when
frequency is evenly distributed across types.

Thus, the minimum representation length criterion, when applied to segmentations
whose representation lengths are computed using (31), will favor segmentations which

achieve a compromise between the following trends:

* minimize the number of word types in the lexicon;

* minimize the length (in segments or phonemes) of the word types;

* minimize the number of word tokens in the derivation;

* have an uneven frequency distribution of types, in which a small number of words

accounts for most of the frequency distribution.
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The minimum representation length criterion provides a way to select among lexical
analyses, but it does not indicate how these analyses should be generated. In Brent and
Cartwright’s model, candidate analyses are generated using a “greedy” strategy (for a
general introduction to greedy algorithms, see Cormen, Leiserson and Rivest 1990: chapter
17). Their algorithm evaluates a large number of lexical analyses of different generality,
ranging from the one in which no input utterance is analyzed to the one in which each letter
is treated as a different word. However, of all possible analyses generated by inserting n +
I boundaries in the input utterances, only those analyses are evaluated in which n
boundaries are inserted exactly where they are in the best (w.r.t. the minimum
representation length criterion) analysis generated by inserting n boundaries. This means
that if, say, in the best analysis which was generated by inserting 3 boundaries in the input
corpus the utterance doit is segmented as do it, then, of all the analyses generated by
inserting more than 3 boundaries in the input corpus, only those in which the utterance doit
is segmented as do it are considered.

Brent and Cartwright compare the performance of an algorithm based on the
minimum representation length criterion with the performance of a “baseline” procedure
which inserts the correct number of word boundaries per utterance at random (e.g. the
baseline algorithm inserts two boundaries in the utterance seethekitty, but the position of
the two boundaries is random). The algorithm based on the minimum representation length
criterion performs significantly better than the baseline on an input of phonemically
transcribed child-directed English with word boundaries removed (the input utterances
come from the CHILDES corpus). In the remainder of their paper, Brent and Cartwright
show how the performance of their algorithm can be further improved when the minimum

representation length strategy is supplemented with phonotactically-driven strategies.
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The utterance segmentation heuristics emerging from Brent and Cartwright’s
application of the MDL / minimum representation length criterion can also be re-interpreted
as reasonable morpheme searching heuristics. The morpheme discovery model that I
present in the next chapter can be seen as an adaptation of Brent and Cartwright’s lexicon

selection and generation methods to the morpheme discovery problem.
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Chapter 3

DDPL: An automated Distribution-Driven Prefix Learner

3.1 Introduction

In order to assess the effectiveness of distributional heuristics in morpheme discovery, I
designed and implemented a learning model which performs a particular aspect of this task
-- prefix discovery -- on the sole basis of distributional evidence. The algorithm presented
here takes a corpus of untagged orthographically or phonetically transcribed words as its
input and it outputs a lexicon composed of a list of prefixes and stems. Moreover, the
algorithm assigns morphological parses (prefix+stem or monomorphemic parses) to all the
word types in the input corpus. The algorithm relies entirely on the distributional
information that can be extracted from the input, and it uses a formula based on the MDL
criterion (discussed in 3.3.3 below) to select the best lexicon compatible with the input
data. From now on, I will refer to the model presented here with the acronym DDPL,
which stands for Distribution-Driven Prefix Learner.

I will first motivate and defend the choice of modeling prefix discovery as an
independent subtask within morpheme discovery, then describe the basic idea and the
details of the model and, finally, I will briefly discuss to what extent DDPL is a plausible

model of how human process distributional information for the sake of morpheme

discovery.
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3.2 Modeling prefix discovery as an independent task

DDPL takes a list of words as its input, it generates a lexicon composed of prefixes and
stems, and assigns maximally binary morphological parses to the word types in the input
corpus. In this section, I (try to) answer the following important preliminary questions
regarding this model: Is it legitimate to assume that the input to morpheme discovery is a
list of words, and not a list of unsegmented utterances? Is it legitimate to assume that the
search for prefixes takes place independently of the search for other types of morphemes?
Since in real life words can contain more than one prefix, how dangerous is it to simplify
the task by assuming that words maximally contain one single prefix? Are there particular
reasons to choose to model prefix discovery rather than suffix discovery? The first three
questions concern the more general issue of whether it is legitimate to model prefix
discovery as an independent task, whereas the last question concerns the issue of whether
there are good reasons to model prefix discovery as an independent task. I will dedicate

different subsections to these two separate issues.

3.2.1 Is it legitimate to model prefix discovery as an independent task?

The general answer to the first three questions asked above is based on the following

observation: It is much easier and more economical to perform a sequence of simpler
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analyses, looking for one kind of constituent at a time, than to look for all possible kinds of
morphological (and syntactic) units at the same time.33

The fact that the sequential approach makes the task of modeling utterance and
morphological segmentation more tractable from a computational point of view does not
imply that this approach is simply an expedient dictated by psycholinguistically
unmotivated necessities. To the contrary, it is reasonable to assume that children, like
computational linguists, would approach the complicated problem of discovering words

and morphemes from an angle which makes the problem more tractable.

3.2.1.1 Utterance segmentation vs. morphological segmentation

Let us start by considering the issue of utterance segmentation vs. morpheme discovery.
By using a list of words as the input to DDPL, I am implicitly assuming that morpheme
discovery should be modeled as a later task independent from utterance segmentation. I
believe that this is a reasonable assumption for the following reasons.

First of all, notice that (most) words are easier units to identify than bound

morphemes, on the basis of distributional, phonological and semantic cues. Since the

33The whole discussion in this section is based on the idea that there is a clear-cut distinction between
words and bound morphemes/affixes, and between different types of morphemes. Of course, it is sometimes
hard to tell whether a certain unit is a word or a bound morpheme, whether a unit is a prefix or the first
member of a compound etc. However, I believe that it is reasonable to claim that most units children have
to discover can be straightforwardly classified as independent words or bound morphemes, and, if they are

morphemes, as morphemes of a specific type.
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distribution of words is typically much less restricted than the distribution of bound
morphemes, words are easier to identify on purely distributional grounds than bound
morphemes. Moreover, words tend to display specific prosodic marks (typically, some
form of word-level accent) and their edges are often easily identifiable on the basis of
phonotactic evidence (since it is rare for phonotactic constraints to apply across word
boundaries, word boundaries can be the locus of otherwise illegal segmental
combinations). Furthermore, words in general are associated with more specific and
complex semantic representations than bound morphemes.34

Thus, on the one hand it is plausible that learners will be able to perform (a
significant amount of) the task of word segmentation much earlier than the harder task of
morpheme segmentation.35 Moreover, if the learners were trying to perform the two tasks
at the same time, the stronger cues signaling words and word boundaries would be likely to
obscure the weaker cues marking bound morphemes and morpheme boundaries.

Furthermore, by performing the task of morpheme discovery on a corpus of words,
rather than unsegmented utterances, the learners can make their task a lot easier. In other
words, children can greatly simplify the task of morpheme discovery if they first solve the
problem of utterance segmentation. For example, if a learner were looking for prefixes in

the input sentence doitagain, she should consider the hypothesis that each of the following

34Function words are probably closer to morphemes in terms of their phonological and semantic properties.
However, function words tend to occur in a very large number of sentences, surrounded by a very large

number of different strings. Thus, function words are easier to discover on the basis of distributional cues

than bound morphemes.

35Indeed, experimental evidence suggests that seven and a half month old infants are already able to perform

word segmentation (Jusczyk and Aslin 1995).
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35 substrings is a prefix (any substring followed by at least one segment in the utterance
could in principle be a prefix): d, do, doi, doit, doita, doitag, doitaga, doitagai, o, oi, oit,
oita, oitag, oitaga, oitagai, i, it, ita, itag, itaga, itagai, t, ta, tag, taga, tagai, a, ag, aga, agai,
& ga, gai, a, ai. On the other hand, if the learner were looking for prefixes in the already
segmented input do it again, she would have to consider only the following 6 potential
prefixes: d, i, a, ag, aga, agai. It is likely that, in order to decide if a string is a prefix, the
learner has to also consider whether what remains of a word when the string is stripped off
from it is a plausible stem. Now: the learner faced with the unsegmented utterance doitagain
has to evaluate 8 candidate stems for the potential prefix d (o, 0i, oit, oita, oitag, oitaga,
oitagai, oitagain); on the other hand, a learner considering the segmented input do it again
will only have to decide whether o is a plausible stem for 4.

The number of possible morphological parses to be evaluated is only one of the
many aspects with respect to which performing morpheme discovery on words rather than
unsegmented utterances appears to be a much easier task. However, it should be clear to
anybody who has pondered similar issues that virtually all the semantic, syntactic,
phonotactic and distributional cues relevant to morpheme discovery are also likely to be
easier to extract from a list of segmented words than from a list of unsegmented utterances.

While the arguments presented here do not prove that morpheme discovery occurs
after utterance segmentation, I believe that, at least, they make a good case for using this as

a reasonable null hypothesis, to be modified only in the face of empirical evidence to the

contrary.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.1.2 Looking for different moi'phemes in different steps

Similar arguments can be applied to the search for different types of morphemes: it is easier
for a learner to first look for one kind of morpheme, then another, then yet another, than to
consider all possible combinations of morphemes at the same time.

First of all, in this way the number of possible parses of each word which a learner
has to consider at one time (and in total) is drastically reduced. For example, if a learner is
looking only for suffixes, she will have to consider only four potential morphological
parses of the word frost (potential stems are underlined to avoid ambiguities): f+rost,
fr+ost, fro+st, fros+t. Then, when looking for prefixes, the learner will have to consider
four other potential parses of the same word: f+rost, fr+ost, fro+st, fros+t. The total
number of parses explored during both analyses is eight. On the other hand, if a learner is
looking even simply for prefixes and suffixes at the same time, the same word will have
fourteen possible parses: f+rost, fr+ost, fro+st, fros+t, f+rost, fr+ost, fro+st, fros+t,
Srr+ost, f+ro+st, f+ros+t, fr+o+st, fr+os+t, fro+s+t.

Moreover, what the learner knows about a certain class of morphemes can be
helpful in the search for other types of morphemes. For example, a learner who already
knows that plural is marked by the suffix -s in English, can, in the absence of strong
evidence for some form of double marking, disregard the hypothesis that words with plural
meaning ending in -s contain a plural-marking prefix. Knowing that -s is a plural marking
suffix could also be useful for more general reasons to a learner looking for prefixes: For
example, the learner could avoid counting singular and plural forms of the same noun as
different word types for the purpose of a distribution-driven prefix search (e.g., when
counting the number of occurrences in different words of a candidate prefix ro-, the forms

rose and roses should really be counted as a single word type).
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Looking for one kind of morpheme at a time may provide help of an even more
general nature. Indeed, it is possible that learners look for rarer types of morphemes, such
as prosodic or autosegmental morphemes, only if they notice large or unexpected gaps in
the affixing (suffixing/prefixing) morphology of their language.36

All the arguments presented here in favor of the idea that learners should look for
one kind of morpheme at a time were already suggested by Brent 1993, who phrased them

in the following way:

Even when known universal constraints are taken into account, the number
of possible hypotheses consistent with a given linguistic input is generally
so large that evaluating them all is computationally intractible... One
technique that might aid children in the identification of morphemes is
search ordering, where the most likely hypotheses are explored first. For
example, suffixation appears to be the most common effect of
morphological processes in the world’s languages, and all languages in
Greenberg’s survey that have non-affixal morphology also have prefixes,
suffixes, or both (Greenberg 1966). Thus, it would make sense for children
to look for suffixes and prefixes before looking for metatheses and

truncations. Search ordering would clearly speed the identification of

36Slarling with unsegmented sentences, onc can imagine a hierarchy of scarches ordered by how
typologically common a certain unit is: children first look for words, since all languages have words, then,
if necessary, for suffixes, then, if necessary, for prefixes, then, if necessary, for discontinuous
morphological constituents. It seems plausible that children are innately aware of the existence of such a

hierarchy.
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suffixes, as compared to searching for all sorts of phonological effects at
once, and since suffixes are so common, the average rate of acquisition
would be improved too. But looking for suffixes first might actually speed
the acquisition of non-affixal morphology as well. The rapid discovery of
some suffixes might provide the child with a toe-hold on the language’s
morphology, making possible partial analysis of the input and thereby
simplifying the search for other morphemes. (Brent 1993: 28-29.)

Again, although the arguments presented here do not prove that learners look for different
types of morphemes in different steps, they do make a case for this as a reasonable null
hypothesis.

Notice that, if the suggestion that learners look for more common morphemes first
is correct, then learners should look for suffixes before prefixes, and could use the
information gained during suffix discovery in their search for prefixes and prefixed forms.
However, here I model prefix discovery assuming that learners do not know anything

about suffixation. In this sense, the task faced by DDPL might actually be harder than the

task faced by human learners.

3.2.1.3 Maximally binary parses
DDPL evaluates only monomorphemic and binary (prefix+stem) parses of words, and,
thus, it systematically misses all but the first prefix of words containing more than one

prefix. Evaluating maximally binary parses greatly reduces the hypothesis space DDPL has

to explore, and a strategy along these line could also be helpful to human learners.
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Children could first consider only binary parses of words and then, for the set of
words that were treated as prefixed in the first pass, strip off the prefix and repeat the
search (and then again repeat the search for the set of doubly prefixed words found in this
way, etc.). In this way children will reduce the overall number of possible parses to be
considered (this is true even in a language in which all the words contain at least one prefix,
and of course the savings are really dramatic in languages, such as English, in which the
large majority of words are not prefixed). Moreover, the list of prefixes found during the

first pass could make the second and later passes considerably easier.

3.2.2 Why prefix discovery?

In the previous section, I defended the view that it is legitimate to model prefix discovery as
an independent subtask within the general process of morpheme discovery, which is in turn
independent from utterance segmentation.

Now, I will discuss the reason why I decided to concentrate on prefix discovery, as
opposed to suffix discovery (the reasons why I did not decide to start by modeling the
discovery of non-affixing morphemes should be clear). Given that, for practical reasons,
the only language on which DDPL was tested, until now, is English, the argument
presented here concerns why it seemed a good idea to concentrate on English prefixes vs.
English suffixes.

My interest in modeling the discovery of English prefixation derives from the fact
that this is a domain in which it is unlikely that semantic, syntactic and phonological
heuristics play a major role. As I discussed in section 1.2.3, the statistics presented by

Schreuder and Baayen on the proportion of pseudo-prefixed forms corresponding to the
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most frequent English prefixes suggest that semantic cues cannot be too helpful to learners
looking for prefixes. Moreover, since English prefixation is entirely derivational and it does
not change the syntactic category of words, syntactic cues can have only a marginal
function. Furthermore, while phonological cues may help learners to a certain extent (for
example, the vowel of the prefix of nonce formations and transparent forms tends to carry
secondary stress), many prefixed words are not marked by special phonological
characteristics (and, even if this were the case, it is not clear that learners could notice that
certain special phonological features characterize prefixed words until they have performed
at least part of the prefix discovery task).

The fact that semantic, syntactic and phonological cues are not likely to play a major
role in morpheme discovery makes this a good testing ground for distribution-driven
models for two reasons. First, if we find that our model is able to discover actual prefixes
and assign correct morphological parses, it is plausible to hypothesize that English learners
also relied on distributional cues such as the ones implemented in the model, given that they
could not have extracted too much information from other kinds of cues.

Second, if learners do indeed use distributional strategies, English prefixation could
be a domain in which these strategies are particularly prominent (given that other forms of
evidence are weak), leaving obvious traces in the lexical representations of adult speakers.
Thus, it should be easier to test a convergence between learners’ intuitions and the output

of the computational model in this domain.
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3.3 The DDPL model

I turn now to the description and discussion of the prefix learning model which constitutes
the core of this study, i.e. the DDPL (Distribution-Driven Prefix Learner) model. Like the
suffix discovering algorithm of Brent 1993 and the utterance segmentation model of Brent
and Cartwright 1996, DDPL is based on a “generation and selection” strategy: a large
number of lexica compatible with the input data are generated, a certain measure is
computed for each lexicon, and the lexicon with the lowest value of this measure is
selected. The formula used to compute this measure constitutes the conceptual core of the
algorithm, and it is based on the idea that the best morphological analysis of the input is
also the one allowing maximal data compression of the input, given certain assumptions
about how the data compression process should work.

I will start by discussing examples illustrating the connection between the task of
data compression and the task of morpheme discovery. In particular, I will present a data
compression scheme which, as examples will show, favors the same lexical analyses
which would have to be selected on the basis of the morpheme discovering heuristics

discussed in 1.4.1 above:

. Substrings which occur in a high number of different words are likely to be
morphemes;
. Substrings which tend to occur with other potential morphemes are more likely to

be morphemes;
. All else being equal, low frequency words are more likely to be morphologically

complex than high frequency words.
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The approach presented here, as I will mention, can be interpreted as an implementation of
the MDL principle of Rissanen 1978. Finally, I will show how the formula used by the
DDPL to select the best lexicon derives from a computation of data compression based on
the discussed compression scheme.

In later sections, I will present and discuss the lexicon generation algorithm used by
DDPL. For now, I will concentrate on the problem of selecting the best one among a set of

candidate lexica, without discussing how these candidate lexica were generated.

3.3.1 Data compression and morphological analysis: the shortest lexicon

criterion

The criterion used by DDPL to select the best lexicon is based on the idea that the lexicon
generated by the most plausible morphological analysis is also the best lexicon for purposes
of data compression, given certain restrictions on how the compressing procedure works.
The rationale behind this intuition is the following: since morphemes are syntagmatically
independent units (see 1.4.1) which occur in different words and combine with each other,
a lexicon containing morphemes is going to be “shorter” (in the literal sense that it can be
represented using a small number of characters) than a lexicon containing random
substrings, or a lexicon in which no word is decomposed. The advantage of reducing the
problem of morpheme discovery to a matter of (constrained) data compression is the
following: There are no straightforward ways to decide which one, among a set of possible
lexica, is the best one from the point of view of morphology, but it is relatively simple to

estimate which lexicon allows maximal data compression.
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Given that the connection between data compression and morphological analysis is
not very intuitive, I will illustrate it through a simple example. Suppose that we are given

the following list of words:

(33) redo
do
remake
undo
make

unmake

Our goal is to find the shortest possible lexicon which could be used to “reconstruct” this
list (as I said, the shortest lexicon is, literally, the one which can be written using the
smallest number of characters). A word can be reconstructed from the lexicon if the word is
listed in the lexicon, so that it can be directly retrieved from it, or if the word can be formed
by combining exactly two lexical units. It does not matter if other words, besides the ones
in (33), could also be reconstructed by combining lexical units. Given these restrictions,

here is a legitimate lexicon from which one could reconstruct the list in (33):
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(34) redo
do
remake
undo
make

unmake

length of lexicon: 26

The lexicon in (34) is identical to the word list. There is no attempt to split words into

smaller units. It is easier to design a shorter lexicon. For example, we can exploit the fact

that the final substrings o and ke occur in more than one word:

(35) red

rema

ke

und

unma

length of lexicon: 20
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This lexicon is shorter than the one in (34), since it exploits the fact that the substrings o
and ke occur in more than one word. Thus, instead of rewriting them for each of the words
in which they occur, we can write them once as independent lexical units, and reuse them
multiple times to reconstruct the words in the input (rema + ke, ma + ke, unma + ke...)

This example highlights a first connection between data compression and
morpheme discovery: In 1.4.1, I suggested that morphemes are likely to be substrings
occurring in a number of different words. The comparison of the lexica in (34) and (35)
shows that treating strings which occur in a number of different words as independent
lexical units is also a good data compression strategy.

While the lexicon in (35) is based on what could be seen as a plausible morpheme
searching strategy, this lexicon does not correspond to a plausible morphological analysis
of the input word list. However, the following lexicon is shorter than the one in (35) -- it
is, probably, the shortest lexicon from which one could reconstruct the list in (33)37 - and

it does correspond to a plausible morphological analysis of the input:

37Here and below, keep in mind that I am assuming that words in the input can maximally be composed of
two lexical entries. Without this restriction, the lexicon containing only the list of all phonemes/letters
occurring in the corpus would always be the shortest one (or, in case of ties, part of the set of shortest

lexica).
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(36) re
un
do
make

length of lexicon: 10

As we observed in 1.4.1, true morphemes, unlike frequent but arbitrary substrings, have
the property that they co-occur with other morphemes. Thus, by splitting a word at a
morpheme boundary, we obtain not one, but two syntagmatically independent units, which
probably also occur in other words of the input. By decomposing the word redo into the
morphemes re- and do, and the word unmake into the morphemes un- and make, we obtain
four constituents which can be used to reconstruct not only the two words redo and
unmake, but also do, make, undo and remake, all words occurring in the input word list.

We see here another parallelism between data compression and morpheme
discovery: In 1.4.1, I suggested that learners should be more willing to treat substrings as
morphemes if they tend to co-occur with other potential morphemes. But to split a word
into two units both occurring in other words is also a good compression strategy.

Before I move on to consider a different data compression task, which provides a
better approximation to the set of morpheme searching heuristics presented in 1.4.1, notice
the following, crucial point. As morphologists, we know that (36) derives from a better
morphological analysis of the input than (35). However, it is very difficult to devise a way
to quantify this intuition, to compute the objective “morphological plausibility” score of a
lexicon. Indeed, unless we already know which strings correspond to the morphemes of a

language, it is probably impossible to compute such measure. On the other hand, it is
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extremely easy to check which of two or more lexica is the most compact one -- it is
sufficient to count how many characters are needed to write down each lexicon. Thus, the
parallelisms between morpheme searching heuristics and data compression strategies that
we started exploring are important because, as long as we can show that our data
compression strategy lead us to select morphologically plausible lexica, we found what, as
a matter of fact, is an objective and easy-to-compute measure of “morphological

goodness”.

3.3.2 Data compression and morphological analysis: the shortest lexicon +

encoding criterion

There are several problems with the idea of using the shortest lexicon criterion described in
the previous section as a system to look for the best morphological analysis of an input.

The most obvious problem is illustrated by the following example. Consider the input list

in (37):

(37) dog
tag
mug

The most plausible lexicon from which this list could be reconstructed is the following:
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(38) dog
tag

mug

length of lexicon: 9

However, the shortest lexicon from which the list in (37) could be reconstructed is:

39) do

length of lexicon: 7

Since word-final g occurs in all three input words, it is convenient to store it in the lexicon
as a separate unit, rather than writing it three times, once for each word.

This example illustrates the main problem with the shortest lexicon criterion: it is
sufficient for a string to occur in a few words -- as little as two words -- to make lexica in
which the string is treated as a lexical unit better than lexica in which those words are not
decomposed. Clearly, from the point of view of morpheme discovery, this is too lax an
interpretation of the “high” type frequency criterion.

One way of dealing with this problem would be to impose a minimum frequency
threshold below which substrings cannot be treated as independent lexical units. However,

this solution is problematic in at least two respects. First, the threshold would be arbitrary
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and it would have to be changed depending on the size of the input corpus (the larger the
corpus, the higher the threshold should be). Moreover, more than the absolute number of
times a substring occurs in a corpus, what should matter is how many times the string
occurs in contexts in which it is preceded/followed by other potential morphemes.

An elegant solution to the problem of excessive decomposition, which does not
require arbitrary thresholds, naturally emerges from a reformulation of the goal of data
compression that, as we will see, also constitutes a closer approximation to morpheme
discovery in other respects.

Let us suppose that we are given a list of words, and our goal is to find a compact
format to store information from which the very same list can be reconstructed. In
particular, we take a “lexicon and encoding” approach to this task. We construct a compact
lexicon from which all the input words (plus, possibly, others) can be reconstructed. We
associate an index to each lexical unit, and then we rewrite the corpus as a sequence of
these indices. I will refer to the rewriting of the corpus as a sequence of indices with the
term encoding.

The difference with the task we discussed in the previous section is that in the new
scenario we are not simply looking for the shortest lexicon from which the words in the
input corpus can be reconstructed, but we are actually trying to find the most compact
format in which the corpus itself can be represented. In the lexicon and encoding approach,
we try to achieve this by constructing a short lexicon from which the corpus can be
reconstructed in an economical way (through the encoding). As we will see, there is
typically a trade-off between ways in which the lexicon can be shortened and ways in

which the encoding of the input can be shortened. From the point of view of morpheme
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discovery, it is this trade-off which will ensure that only decompositions motivated by
strong distributional evidence will be performed.38

As long as some lexical units occur very frequently in the input corpus (and/or
many units occur relatively frequently), and the lexical indices are, on average, shorter than
the units they represent, the lexicon + encoding strategy will allow us to represent the
corpus in a shorter format than the original one. In order to make sure that the second
requirement is satisfied (i.e., lexical indices are on average shorter than the input words
they represent), I assume here that all indices are exactly one character long. I will return to
this assumption in 3.3.5 and 3.3.7 below.

The following example, which has nothing to do with morphological
decomposition, is presented to give a first, general idea of how and why the lexicon and

encoding strategy works. Suppose that we are given the following input corpus:

(40) dog
cat
dog
dog
cat

cat

38Sce 3.3.3 below for a discussion of the relationship of this approach to the MDL principle of Rissanen
1978. As I mentioned, the “shortest lexicon + encoding” approach presented here is closely modeled after

Brent and Cartwright’s 1996 minimum representation length criterion.
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In order to write this list, we need 18 characters. Following the compression method
described above, we can instead write the words dog and cat only once, assigning a one-
character index to each of them (this is the lexicon component of the compressed data), and

then rewrite the words in the input as a sequence of indices (the encoding):

@41) lexicon

dog 1

cat 2

length of lexicon: 8

encoding of (40)
1 (= dog)
2 (=cat)

1 (= dog)

1 (= dog)
2 (= cat)

2 (= cat)

length of encoding: 6

total length (lexicon + encoding): 14
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To store the word types dog and cat in a lexicon, and then rewrite the word tokens in the
input as a sequence of indices is more economical (in the sense that it requires a smaller
number of characters: 14 vs. 18) than writing down the list of input word tokens as it is.
Notice that from the lexicon and the list of indices we can reconstruct the original input.
Thus, we can store a corpus in the more economical lexicon and encoding format without
any loss of information.

The reason why the lexicon and encoding format is more economical than the
original list should be clear: even if lexical entries and indices require a certain number of
characters, a “good” lexical entry, i.e. an entry corresponding to many tokens in the input,
allows major savings in the encoding of the lexicon.

The lexical entry for a three segment word such as dog takes four characters (three
letters to write the word, one digit for the index). If this word occurs three times in the
corpus, the corresponding index will occur three times in the encoding, requiring three
characters. Thus, the total number of characters taken by the lexical entry for dog and the
three occurrences of the corresponding index in the encoded corpus is seven. In the
unencoded corpus, three occurrences of a three segment word require nine characters.
Thus, we see that it is sufficient for a three segment word to occur three times in the input
to justify a lexicon and encoding approach to its representation. Longer and/or more
frequent words allow bigger savings.

Now, exactly as in the scenario described above, suppose that we are allowed to
decompose input words into two constituents, in order to further compress the data. We
assume the following encoding scheme: if an input word is identical to a lexical entry, then
the input word is encoded using the index associated with that lexical entry (as in the
example above); however, if a word does not have a corresponding entry, and must be

reconstructed by concatenating two lexical units, then the word is encoded as the sequence
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of the index associated with the first component, a one-character concatenation operator
(represented here by the symbol °) and the index associated with the second component.

For example, suppose that a corpus contains the word redo. If this word is listed in
the lexicon, for example associated with the index /, then the word is represented by a / in
the encoded input. However, if redo is not listed in the lexicon, and it has to be
reconstructed from the entries re, associated with the index /, and do, associated with the
index 2, then the word will be represented by the sequence /2 in the encoded corpus.

While it can be convenient to store frequent substrings in the lexicon, in order to
make it shorter, there is going to be a tradeoff between minimizing the length of the lexicon
and minimizing the length of the encoding. On the one hand, as in the scenario above,
treating substrings which occur in a number of words as independent lexical entries will
make the lexicon shorter. On the other hand, since it takes three characters (two indices
plus the concatenation operator), instead of one, to encode an input word not listed in the
lexicon, any decomposition which makes the lexicon shorter will also make the encoding
longer. Thus, only those decompositions which allow a major decrease in lexical length,
more than compensating for the corresponding increase in encoding length, are worth
performing.

We observed above that morphologically sensible decompositions allow major
savings in lexical length because it is likely that both constituents occur in several different
words. On the other hand, there is no reason to expect that morphologically arbitrary
substrings, although frequent, will tend to combine with other frequent arbitrary strings to
form words. Thus, in general, arbitrary substrings will allow less savings in lexical length
than complex words, and given that in the shortest lexicon + encoding model each
decomposition is penalized in the encoding component, they will be less likely to be treated

as independent units than true morphological constituents.
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To illustrate this point, let us consider efficient ways to compress the input lists
presented in (33) and (37) above, using the lexicon + encoding approach. The list of input

words from (33) is re-presented here as (42):

(42) redo
do
remake
undo
make

unmake

The shortest lexicon + encoding representation of this list is the following:

(43) lexicon

re |
un 2
do 3
make 4

length of lexicon: 14
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encoding of (42)

1°3 (=re’do)

3 (= do)

1°4  (=re"make)
2°3 (= un’do)

4 (= make)
2°4 (= un’make)

length of encoding: 14

total length (lexicon + encoding): 28

In particular, this is a shorter representation than the one in which no decomposition is

attempted:

(44) lexicon

redo 1
do 2
remake 3
undo 4
make 5
unmake 6
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length of lexicon: 32

encoding of (42)

| (=redo)

2 (=do)

3 (= remake)
4 (= undo)

5 (= make)

6 (= unmake)

length of encoding: 6

total length (lexicon + encoding): 38

The representation in (43), which is based on a plausible morphological decomposition of
the input, is ten characters shorter than the representation in (44), where no decomposition
is attempted. The reason for this is that the analysis of the input upon which (43) is based
provides a very compact lexical component, since the units re, un, do and make are all
morphemes which occur in at least two input words. Thus, even if the encoding in (43) is
longer than the encoding in (44), the lexicon in (43) is so much shorter than the one of (44)
that, overall, (43) is the analysis to be selected on the basis of the shortest lexicon +

encoding criterion.

However, consider now the case of the input in (45) (presented above as (39)):
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(45) dog

mug
Recall that the shortest lexicon criterion lead us to choose a lexicon in which g is treated as
a separate unit. However, if we consider the length of both lexica and encodings, we must

choose the lexical analysis of (46), in which no word is decomposed:

(46) lexicon

dog 1
tag 2
mug 3

length of lexicon: 12

encoding of (45)
1 (= dog)
2 (=tag)

3 (= mug)

length of encoding: 3

total length (lexicon + encoding): 15
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The total length of lexicon and encoding in (46) (where the input words are not

decomposed) is shorter than the one of (47), where g is treated as an independent lexical

unit:

47) lexicon

do 1
ta 2
mu 3
g 4

length of lexicon: 11

encoding of (45)
1°4 (=do’g)
2’4 (=ta’g)

3°4 (=mu’g)

length of encoding: 9

total length (lexicon + encoding): 20
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While the lexicon in (47) is shorter than the one in (46), the small decrease in lexical length
does not justify the increase in encoding length due to the fact that one needs three
characters to represent each word not listed as an independent unit in the lexicon.

As the previous examples show, the shortest lexicon + encoding criterion favors the
representation of substrings as lexical entries only when this approach leads to considerable
savings in lexical length. True morphemes, unlike arbitrary substrings, are more likely to
lead to such savings, and, thus, to be treated as independent lexical entries.

Notice how we are now able to avoid excessive decompositions without having to
resort to an absolute type frequency threshold. Indeed, the substrings re- and un- occur
only twice in (42). Still, in the shortest representation of this input these substrings are
treated as independent units. On the other hand, even though the substring g occurs once
more (three times) in (45), this substring is not treated as an independent unit in the shortest

representation of the relevant input.

3.3.3 The shortest lexicon + encoding criterion as an interpretation of the

MDL principle

Before I move on to the illustration of how the shortest lexicon + encoding criterion favors
the same analyses that are best from the point of view of distributional morpheme
discovering heuristics, I want to make clear that this criterion, which constitutes the basis
of the DDPL algorithm, is actually an interpretation of the MDL principle.

The MDL principle (first proposed by Rissanen 1978) has been applied as an

inductive learning strategy in many different areas, ranging from computer vision to protein
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structure analysis (see the references in Li and Vitanyi 1997 ).39 Within linguistics, the
MDL principle has been applied to aspects of phonological structure learning (Ellison
1992), continuous speech segmentation (Brent and Cartwright 1996, de Marcken 1996),
morphological segmentation (Brent 1993, Brent, Murthy and Lundberg 1995, Goldsmith
submitted) and syntactic category acquisition (Cartwright and Brent 1997).

The MDL principle can be stated in the following way (adapted from Li and Vitanyi
1997: 5.5): given a sample of data and a set of theories that can account for the data, the
best theory is the one that minimizes the sum of the length of the description of the theory
and the length of the data when encoded with the help of the theory (where both the length
of the theory and the length of the data encoded with the help of the theory are measured in
number of units of the description language adopted).

In the lexicon + encoding approach, the sample of data is represented by the list of
morphologically unanalyzed input words. The set of theories is a set of lexica, where each
lexicon is a list of entries associated with indices. The data are encoded with the help of the
lexicon by representing them as a sequence of indices. Both the length of the theory and the
length of the data encoded with the help of the theory are measured by counting how many
characters (letters, digits, special symbols) are needed to write them.

From here on, I will often directly refer to the shortest lexicon + encoding criterion

with the term “MDL principle (criterion)”.

39The MDL principle can be seen as an information-theoretic interpretation of the Occam's Razor principle.
See Li and Vitdnyi 1997 for a discussion of this principle in the larger context of the theory of
computational complexity. General introductions to the MDL principle are presented in Ballard (1997: 2),

Griinwald (1998: 1), Hutchinson (1994: 8.2), Li and Vitdnyi (1997: 5.5).
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3.3.4 Data compression and morphological analysis: illustrating the
relationship between the lexicon + encoding approach to data compression

and distribution-based morpheme discovery heuristics

In this section, I present a series of related examples which have the function of illustrating
how the MDL principle favors lexical analyses that are also optimal from the point of view
of the distributional morpheme discovery heuristics that I proposed in 1.4.1 above, and

how interesting interactions between these heuristics directly follow from this approach.

3.3.4.1 The high frequency heuristic

The first example I present shows how the first heuristic is captured by the MDL criterion.

Consider the data sample in (48):

(48) disarray
disdain
disintegrate
disadvantage

disaster

The analysis in which the word-initial substring dis is treated as an independent lexical
entry (49.a) allows a more compact lexicon + encoding representation than the analysis in

which the words are not decomposed (49.b)
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(49) a. lexicon

dis 1
array 2
dain 3
integrate 4
advantage 5
aster 6

length of lexicon: 40

encoding of (48)

1°2 (= disarray)

1°3 (= dis°dain)

1°4  (=dis’integrate)
1°5 (= dis"advantage)
1°6 (=dis’aster)

length of encoding: 15

total length (lexicon + encoding): 55
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b. lexicon

disarray 1
disdain 2
disintegrate 3
disadvantage 4

disaster 5

length of lexicon: 52

encoding of (48)

1 (= disarray)

2 (= disdain)

3 (= disintegrate)
4 (= disadvantage)
) (= disaster)

length of encoding: 5

total length (lexicon + encoding): 57

The analysis in (49.a) is shorter than the analysis in (49.b) (and, hence, it must be selected

on the basis of the MDL principle) simply in virtue of the fact that dis is a frequent word-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



initial string.4® The lexicon which would be favored by the “frequent strings are
morphemes” heuristic is also the lexicon favored by the MDL criterion.
However, notice also that the difference in length between the analyses is rather

small (55 vs. 57). Indeed, it is sufficient to remove one word from the list in (48)...

(50) disarray
disdain
disintegrate

disadvantage

... and the analysis in which dis is treated as an independent entry is no longer shorter than

the analysis in which the input words are not decomposed:

(51) a. lexicon

dis 1
array 2
dain 3
integrate 4

5

advantage

400f course, what counts as “frequent” depends in gencral on the size of the input corpus. In this and the
following sections, we analyze very small corpora, and, as a consequence, strings occurring in a small

number of words will behave as “frequent”.
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length of lexicon: 35

encoding of (50)

1°2  (=dis’array)

1°3 (= dis°dain)

1°4 (= dis’integrate)

1°5 (= dis"advantage)

length of encoding: 12

total length (lexicon + encoding): 47
b. lexicon

disarray 1

disdain 2

disintegrate 3

disadvantage 4

length of lexicon: 43
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encoding of (50)

1 (= disarray)

2 (= disdain)

3 (= disintegrate)
4 (= disadvantage)

length of encoding: 4

total length (lexicon + encoding): 47

Exactly as we observed that the “frequent strings are morphemes” heuristic is rather
problematic in morpheme discovery, the “store frequent strings as independent units”
principle plays a secondary role in data compression: as we will see below, treating
substrings co-occurring with other syntagmatically independent substrings as independent
entries leads to shorter representations than simply treating frequent substrings as
independent units.

When I discussed the “frequent strings are morphemes” heuristic in 1.4.1, I also
observed that, in order for this heuristic to be valid, string length has to be controlled for: a
longer substring is more likely to be a morpheme than a shorter string of equal frequency.
The weight-by-length principle naturally emerges from the shortest lexicon + encoding

approach, as the following example illustrates. Consider this input:

(52) allied

amber
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asymptotic
arithmetic

adored

In this case, the lexicon in (53.b), where no decomposition is attempted, allows a shorter
overall representation than the lexicon in (53.a), where the word-initial string a is treated as

an independent entry:

(53) a. lexicon

a 1
llied
mber
symptotic

rithmetic

A L W N

dored

length of lexicon: 39
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encoding of (52)

172
1°3
1°4
1°5
1°6

(= a’llied)

(= a’mber)

(= a’symptotic)
(= a’rithmetic)

(=a’dored)

length of encoding: 15

total length (lexicon + encoding): 54

b. lexicon

allied

amber

2
asymptotic 3
4

arithmetic

adored

length of lexicon: 42
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encoding of (52)

1 (= allied)

2 (= amber)

3 (= asymptotic)
4 (= arithmetic)
5 (= adored)

length of encoding: 5

total length (lexicon + encoding): 47

Compare (52)/(53) to (48)/(49) above. There, we saw that it is convenient, for the sake of
data compression, to treat a word-initial three letter string (dis) as an independent unit,
when it occurs in five words in which it is followed by “stems” of length S (array), 4
(dain), 9 (integrate), 9 (advantage) and 5 (aster), respectively. The example in (52)/(53)
shows instead that it is not convenient to represent a one letter string as an independent
entry even if the string occurs in a corpus which is, in all the other relevant respects,
identical to the one in (48) (in (52), the string a occurs in five words in which it is followed
by “stems” of the same length as the “stems” following dis in (48)).

The reason for this asymmetry is the following: the longer a substring is, the larger
the savings that its storage as an independent unit will allow. If a three letter string occurs
in five words and the string is represented once as an independent lexical unit, instead of
repeated in the entry for each of the five words, we save twelve characters. On the other

hand, if a one letter string occurs in five words, we save only four characters by
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representing it as an independent unit. Thus, all else being equal, in the shortest lexicon +
encoding model shorter substrings require higher frequencies in order to be treated as
independent entries. But, as we observed, this is also a sensible principle from the point of
view of morpheme discovery.

Here, I illustrated the interaction of the effect of substring length with the high
frequency principle, but of course the same length effect will also affect the morpheme
discovery heuristics / data compression strategies I discuss below (en passant: the length
effect is also what guarantees that the analysis of (48) in which dis is a prefix is shorter

than the analyses in which its substrings di and d are treated as prefixes).

3.3.4.2 Co-occurrence with other potential morphemes

As we observed in 1.4.1, one of the main reasons why high type frequency constitutes a
rather poor approximation to morphemic status is that morphemes, unlike arbitrary but
frequent strings, occur in combination with other morphemes. Thus, we proposed that a
sensible morpheme discovery strategy should not simply be based on absolute frequency,
but on the number of times a string tends to co-occur with other “potential morphemes”,
i.e. strings which also occur elsewhere in the corpus.

In the lexicon + encoding model, independent lexical entries for strings which tend
to combine with other independently occurring strings lead to larger savings than simply

treating frequent strings as lexical entries. Consider first the sample in (54):
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(54) redo
go
remake
replug
dogs

Even if the string re occurs three times in this corpus, the representation in which this string
is not represented as an independent lexical unit (55.b) is shorter than the one in which the

words beginning with re are decomposed:
(55) a. lexicon

re 1

do 2
go 3
make 4
plug S
dogs 6

length of lexicon: 24
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encoding of (54)

1°2 (=re’do)

3 (= go)

1°4 (= re’make)

1°5 (= re’plug)

6 (dog)

length of encoding: 11

total length (lexicon + encoding): 35
b. lexicon

redo 1

go 2

remake 3

replug 4

dogs S

length of lexicon: 27
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encoding of (54)

1 (=redo)

2 (= go)

3 (= remake)
4 (=replug)
5 (= dogs)

length of encoding: 5

total length (lexicon + encoding): 32

Compare now the input in (54) with the input in (56):

(56) redo
do
remake
sprint

make

The two inputs are similar in that they are both composed of six words of length 4, 2, 6, 6
and 4 respectively. Moreover, the two words containing re in (56) are also present in (55).
However, on the one hand the string re only occurs two times in (56) (vs. three times in
(54)); on the other hand, in (56) the string re occurs before strings which also occur

elsewhere in the list (both do and make also occur as independent words). In this case, the
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analysis in which re is treated as an independent lexical entry (57.a) is much shorter than

the analysis in which the words beginning with re are not decomposed (57.b):
(57) a. lexicon
re |
do 2
make 3
sprint 4
length of lexicon: 18
encoding of (56)
1°2  (=re’do)
2 (= do)
1°3 (= re’make)
4 (= sprint)
3 (= make)

length of encoding: 9

total length (lexicon + encoding): 27
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b. lexicon

redo 1
do 2
remake 3
sprint 4

make S

length of lexicon: 27

encoding of (56)

1 (= redo)

2 (=do)

3 (= remake)
4 (= sprint)
5 (= make)

length of encoding: 5
total length (lexicon + encoding): 32
The examples from (54) to (57) show how, in the MDL model, strings which co-occur

with other strings that also independently occur in the corpus are more likely to be treated

as independent units than strings which simply frequently occur in the corpus, even if the
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latter are more frequent, in absolute terms, than the former.4! The reason for this
preference is that, if both elements forming a complex word are already stored in the
lexicon, then there is no need to store any extra item in the lexicon in order to be able to
reconstruct the word. On the other hand, if only one of the constituents of a word is already
stored in the lexicon, we still need to create a lexical entry, complete with an index, for the
remainder of the form.

As we observed in 1.4.1, looking for substrings which tend to co-occur with other

independently occurring substring is also a plausible morpheme discovery strategy.

3.3.4.3 Word frequency and morphological complexity

We observed that, all else being equal, learners should be more willing to treat words as
morphologically complex if they rarely occur in the corpus than if they are frequent. Again,
there is a parallel with the shortest lexicon + encoding approach to data compression, as the

following examples show. Consider first the input in (58):

41To keep things simple, I presented here an example in which stems occur elsewhere in the corpus as
independent words -- i.e., they are free stems. However, the same pattern takes place even if the relevant
stems never occur in independent words, but are the product of the parse of other prefixed forms -- i.e., they

are bound stems.
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(58) disarray
array
disobey
obey

Of course, the shortest analysis of this input is the one in which both disarray and disobey

are decomposed (59.a):42

(59) a. lexicon
dis 1
array 2
obey 3

length of lexicon: 15

encoding of (58)

1°2 (= dis’array)
2 (= array)
1°3 (= dis’obey)
3 (= obey)

42Both analyses presented here are shorter than the one in which disobey is not decomposed.
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length of encoding: 8

total length (lexicon + encoding): 23

b. lexicon
disarray 1
array 2
dis 3
obey 4

length of lexicon: 24

encoding of (58)
1 (= disarray)
2 (= array)

3°4  (=dis’obey)
4 (= obey)

length of encoding: 6

total length (lexicon + encoding): 30
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However, consider now the input in (60), which is identical to (58), except that I added

four more tokens of the word disarray.

(60) disarray
array
disobey
obey
disarray
disarray
disarray

disarray

Now, the best analysis becomes the one in which disarray is not decomposed into dis and

array (61.b):43

(61) a. lexicon
dis |
array 2
obey 3

length of lexicon: 15

43Both analyses are shorter than the one in which neither disarray nor disobey are decomposed.
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encoding of (60)

1°2 (= dis array)
2 (= array)

1°3 (= dis’obey)
3 (= obey)

1°2 (= dis’array)
1°2 (= dis’array)
1°2 (= dis’array)
1°2 (= dis’array)

length of encoding: 20

total length (lexicon + encoding): 35

b. lexicon
disarray 1
array 2
dis 3
obey 4

length of lexicon: 24
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encoding of (60)

1 (= disarray)
2 (= array)
3°4 (= dis"obey)

4 (= obey)

1 (= disarray)
1 (= disarray)
1 (= disarray)
1 (= disarray)

length of encoding: 10

total length (lexicon + encoding): 34

These examples show how, all else being equal, in the lexicon + encoding model more
frequent words are more likely to be stored in the lexicon in non-decomposed format than
less frequent words. The only difference between the distribution of disarray in (58) and
(60) is that in (60) this word occurs five times, whereas in (58) it occurs only once.
Because of this difference in frequency, disarray get its own lexical entry in the shortest
analysis of (60), whereas in the shortest analysis of (58) it must be reconstructed from the
components dis and array.

The reason why this model favors independent storage of frequent words, even
when both of their components are also specified in the lexicon, is the following: Given

that each occurrence of a decomposed word in the encoded corpus requires three indices
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instead of one, if a word occurs frequently in the corpus, it is more convenient to use some
characters to build a lexical entry for it, in order to have an economical way to encode it. On
the other hand, if a word is rare, it is more convenient to save the characters required to
represent the word in the lexicon, and encode the word in a costly way the few times in
which it occurs in the corpus.

The example (60)/(61.b) also illustrates an interesting general property of the DDPL
model: Not only is this model flexible enough to allow words to be treated as
morphologically simple (i.e., represented in the lexicon as independent units), even if they
begin with a substring which is specified as a prefix in the lexicon (in this case, the string
dis is a prefix in the lexicon of (61.b), but the word disarray is represented in the lexicon in
non-decomposed format), but words can be represented as units in the lexicon even if both
their component parts are also lexical entries: in the case at hand, both the word disarray
and its constituents dis and array are listed in the lexicon.

As it is a common feature of many recent models of lexical-morphological
processing (see Schreuder and Baayen 1995 and the other models reviewed there) to
assume that words can have an independent lexical representation even if they could be
entirely derived from morphemic constituents also stored in the lexicon, I believe that it is a
desirable property of our learning model that it is allowed to select lexica in which this

situation arises.

3.3.4.4 Type vs. token frequency

The fact that, as we showed in the previous section, the MDL criterion disfavors lexica in

which frequent words are not represented as whole units, also has an important
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consequence for the high frequency heuristic. Intuitively, this heuristic should be based on
type and not token frequency. If a substring occurs at the beginning of, say, 100 words, it
is more likely that this substring is a prefix than if the substring occurs at the beginning of a
single word repeated 100 times in the input.

Indeed, since in the lexica selected using the MDL criterion frequent words tend to
be stored as independent units, substrings occurring in a number of different low frequency
words are more likely to be treated as independent lexical entries than substrings which
occur in a limited number of high frequency words (this can also be seen as an
approximation to the hapax legomena heuristic suggested by Baayen’s work on
productivity).

For example, recall that the best analysis of the input in (48) above (re-presented

here as (62.a)) was the one in (49.a) (re-presented here as (62.b)):
(62) a. input

disarray

disdain

disintegrate

disadvantage

disaster
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b. lexicon

dis 1
array
dain
integrate

advantage

A W s W N

aster
length of lexicon: 40
encoding of (62.a)

1°2  (=dis’array)

1°3  (=dis°dain)

1°4  (=dis’integrate)
1°5  (=dis’advantage)
1°6 (=dis’aster)

length of encoding: 15

total length (lexicon + encoding): 55
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In this corpus, the word-initial string dis occurs in five different words, each occurring
only once. In the shortest analysis of the corpus, dis is represented as an independent

lexical unit. Consider now the following input:

(63) disarray
disarray
disarray
disarray

disintegrate

Even though the string dis occurs five times in this input as well, the analysis of (63) in
which disarray and disintegrate are not decomposed (64.b} is shorter than the analysis in

which dis is treated as an independent entry (64.a):

(64) a. lexicon
dis 1
array 2
integrate 3

length of lexicon: 20
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encoding of (63)

1°2 (= dis’array)

1°2 (= dis’array)

1°2 (= dis’array)

1°2 (= dis’array)

1°3 (= dis’integrate)

length of encoding: 15

total length (lexicon + encoding): 35

b. lexicon

disarray |

disintegrate 2

length of lexicon: 22
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encoding of (63)

| (= disarray)

1 (= disarray)

l (= disarray)
1 (= disarray)
2 (= disintegrate)

length of encoding: 5

total length (lexicon + encoding): 27

All else being equal, in the MDL model type frequency is more important than token
frequency. The string dis has the same token frequency (five occurrences) in (62.a) and
(63). However, in the first input it also has a (relatively) high type frequency -- it occurs in
five different words -- whereas in the second input its type frequency is only two. In the
shortest analysis of the corpus in which dis has a high type frequency, the string is
represented as an independent entry, whereas in the shortest analysis of the corpus in
which the string has only a high token frequency, the words containing it are not

decomposed.
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3.3.4.5 An example of constraint interaction in the lexicon + encoding

model

In the previous sections, we saw how the shortest lexicon + encoding (MDL) criterion
favors analyses which are also sensible from the point of view of the distribution-driven
morpheme discovery heuristics that we discussed in chapter 1. Of course, sometimes what
is good from the point of view of one heuristic is not good from the point of view of
another heuristic.

For example, given a word such as, say, resist in an English corpus, the high
frequency heuristic could favor a parse such as r+esist, since r is an extremely frequent
word-initial substring. On the other hand, the heuristic favoring splits in which both
components also occur elsewhere will probably favor the parse re+sist. Finally, given that
resist is a relatively frequent word, the heuristic favoring independent storage of frequent
words probably favors the parse in which this word is not divided.

In the MDL model, which solution wins in cases of conflict among heuristics
depends on the amount of savings that each solution allows given the characteristics of a
particular input. The way in which the heuristics interact can be rather complex. As an
example of how contrasting data compression (and morpheme searching) schemes can lead
to interesting lexicon selection patterns, consider the following set of examples.

First, recall from (60)/(61) above that in the shortest analysis of an input such as

(64.a), the word disarray is represented as an independent lexical unit (64.b):
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(64) a. input

disarray
array

disobey
obey

disarray
disarray
disarray

disarray

b. lexicon

disarray 1

array

dis

&~ wWoN

obey

length of lexicon: 24
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encoding of (64.a)

1 (= disarray)
2 (= array)

34 (= dis"obey)

4 (= obey)

1 (= disarray)
| (= disarray)
1 (= disarray)
1 (= disarray)

length of encoding: 10

total length (lexicon + encoding): 34

The representation in (64.b) respects the principle requiring frequent words to be stored as
independent units in the lexicon, but it is marked in that disarray is not decomposed
although both dis and array also occur elsewhere in the corpus (and are represented as
independent units in the lexicon).

The reader can verify that, if we were to remove even just one occurrence of
disarray from the input in (64.a), then the best analysis of the input would become the one
in which this word is decomposed into dis and array. Thus, disarray must occur at least
five times in this kind of input to gain its own independent lexical entry. Consider now the

following list:
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(65) disaster
disobey
obey

In the shortest analysis of this input, the word disaster is decomposed into dis and aster

(66.a):44

(66) a. lexicon

dis 1
aster 2
obey 3

length of lexicon: 15

encoding of (65)

172

1°3

length of encoding: 7

44Both analyses reported here are shorter than the ones in which disobey is not decomposed. This is also

true for (68).
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total length (lexicon + encoding): 22

b. lexicon
disaster 1
dis 2
obey 3

length of lexicon: 18

encoding of (65)

2°3

length of encoding: 5

total length (lexicon + encoding): 23
Here, it is convenient to decompose disaster into dis and aster because the unit dis “comes
for free” from the analysis of disobey and obey. However, this solution is somewhat

marked, in that it requires us to build a lexical entry aster even if this substring occurs only

once in the corpus.
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Now, interestingly, it is sufficient to add one more instance of disaster to the corpus

in (65)...

(67) disaster
disobey
obey

disaster

... and the analysis in which disaster is not decomposed (68.b) becomes the shortest one:

(68) a. lexicon
dis |
aster 2
obey 3

length of lexicon: 15

encoding of (67)
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length of encoding: 10

total length (lexicon + encoding): 25

b. lexicon
disaster 1
dis 2
obey 3

length of lexicon: 18

encoding of (67)

length of encoding: 6

total length (lexicon + encoding): 24

Both (64) and (67)/(68) illustrate the effect of the “store frequent words as independent

entries” constraint on eight character words beginning with dis. However, the non-
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decomposed representation of disarray in (64) violates the constraint favoring the
decomposition of words that can be entirely parsed into constituents independently
occurring in the input (dis and array). No such counterforce is active in (67), where the
potential stem of disaster (aster) does not occur elsewhere.

As a result of the tension between two contrasting forces, disarray in (64) is more
resistant against the “store frequent words as independent entries” constraint than disaster
in (67). In the case of disarray, it is necessary to include at least five occurrences of this
word in the input to make the analysis in which the word is not decomposed the shortest
one. On the other hand, in the case of disaster, it is sufficient for this word to occur twice,

and the analysis in which the word is not decomposed becomes the shortest one.

3.3.5 Prefixes, stems and prefix-stem asymmetries in the lexicon +

encoding model

In the previous sections, we saw how the MDL criterion provides an objective, easy-to-
compute measure to select a lexicon which is also optimal from the point of view of
morpheme discovery heuristics. Since our ultimate goal is to model morpheme discovery,
we are not interested in what would be, in principle, the best way to maximally compress a
data set. Rather, we are interested in a compression scheme which is constrained and
biased towards morphologically sensible analyses.

In section 3.3.7, I review some of the differences between the shortest lexicon +
encoding criterion implemented in the DDPL model and more efficient and realistic
compression schemes. First, however, I will introduce some changes to the lexicon +

encoding model as it was presented above. These changes are not justified from the point
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of view of data compression; instead, they have the function of making the model sensitive
to the fact that prefixes and stems are different types of units, with different distributional
properties.

First of all, notice that in the lexica considered above there is no distinction between

prefixes and stems. For example, this was the lexicon of (57.a), the shortest analysis of

(56):

69) re 1
do 2
make 3
sprint 4

Nothing in this representation tells us that re is different from the other entries. While this is
not a problem from the point of view of data compression, the ultimate purpose of DDPL is
to model prefix discovery, and discovering which lexical entries are prefixes and which
entries are stems is of course one of the basic aspects of this task (at the very least, learners
should know which entries are prefixes and which entries are stems/words in order to be
able to parse any new complex word they learn).

Thus, in the actual DDPL model, each lexical entry is marked by a one-character

diacritic indicating whether the unit is a prefix or a stem.45 Let us assume that the diacritic

451n the current version of the DDPL system, bound and free stems do not have a different status. However,
even if we assigned a different one-character diacritic to bound stems in order to distinguish them from free

stems, the formula in (76) below would not have to be modified.
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marking prefixes is the symbol +, and the diacritic marking stems/words is the symbol #.

Then, the lexicon in (69) can be rewritten as:

(70) re+ 1
do# 2
make# 3
sprint# 4

This is an improvement, but it is not enough. Prefixes and stems have different
distributional properties, and this should be reflected in the model.46 In particular, the
formula used to select the best lexicon should take into account the fact that affixes tend to
be more frequent units than stems. Given a prefixed input word, it is very likely that its
prefix also occurs in a number of other input words, whereas the stem probably only
occurs in very few other words. For example, it is plausible that in a corpus of English
containing the form reconsider, the prefix re also occurs in hundreds of other words,
whereas the stem consider only occurs in this prefixed form and as an independent word.
In order to take the prefix-stem asymmetry into account, I introduce the following
bias against prefix entries. I have assumed until now that both prefix and stem entries are
associated with indices that are one character long. However, in the final version of the

DDPL model prefix entries are associated with indices that are 1.25 characters long. The

46Part of the duties of the lexicon generation algorithm [ discuss in 3.3.9 below is to ensure that only
word-initial substrings are counted as occurrences of prefixes (e.g. that re as an independent word and re in
more are not treated as instances of the prefix re-) and that only word-final stems and independent words are

counted as stems.
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particular amount of extra-length assigned to prefix indices (.25) in the current model was
empirically determined, by running the algorithm with the same input and different values
for this parameter.47

While this final modification is not very straightforward to represent, suppose that
we use the symbol ' to mark “one fourth of character” (= .25). Then, the lexicon in (70)

has to be rewritten as:

(71)  re+ 1’
do# 2
make# 3
sprint# 4

Besides making the lexical representation of a prefix one fourth longer than the
representation of a stemn of the same orthographic or phonetic length, this approach further

penalizes prefixes because each occurrence of an index corresponding to a prefix in the

47In a series of simulations, I ran DDPL with the input described in chapter 4, but changing the value of
the prefix index length parameter (from a minimum length of 1 to a maximum of 2, with .05 intervals).
What emerged from these experiments was that the value of this parameter can range from 1.15 to 1.55
without crcating major differences in the output generated by the model (the same prefixes are found, and the
parses assigned to input words are almost identical). If the prefix index parameter is assigned a value higher
than 1.55, DDPL finds only a subset of the prefixes found in the 1.15-1.55 range. More interestingly, if the
prefix index parameter is assigned a value lower than 1.15, DDPL does not find more actual English
prefixes, but just more “false positives” (strings that are not real English prefixes but are treated as prefixes

by DDPL).
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encoded corpus will be one fourth longer than the representation of a stem or a
morphologically simple word.

The effect of this representational bias is that prefixes have to be more frequent
(and/or more frequently co-occur with potential morphemes) than stems in order to be
represented as independent lexical units in the shortest analysis of the input.

An important consequence of the bias against infrequent prefixes we just introduced
is that it will in general disfavor analyses in which stems of suffixed forms are mistakenly
treated as prefixes. Consider for example the word lovely. Given that, in a reasonably sized
English corpus, both love and Iy probably also occur in other forms, there is the risk that
DDPL could treat love as a prefix and ly as a bound stem. However, compared to a real
prefix, love- is likely to occur in a very limited number of forms: for example, in the
PHLEX database the word-initial substring love only occurs in a total of 8 forms, whereas
even a rare prefix such as para- occurs in 22 words. Thus, given the “anti-infrequent-
prefix” bias, it is unlikely that in the shortest analysis of an input a string such as love will

be actually treated as a prefix.

3.3.6 A note on boundaries

For obvious reasons of clarity, in the previous sections I presented each lexicon + encoding
pair exploiting the organization of lines and blank spaces in the page as a way to make the
examples easier to read. However, a lexicon + encoding pair could be stored as a continuos

string of symbols without any loss of information, since all the necessary boundaries can

be recovered from this continuous string. Thus, there is no need to compute the length of
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the formatting and of blank spaces, when calculating the overall length of a lexicon +
encoding pair, as formatting and blank spaces do not carry any extra information.

Consider the following example. Given the input in (72.a) the analysis presented in
(72.b,c) could also be presented as a continuous string, as in (72.d) (assuming, as before,

that /* stands for a single, one-and-one-fourth characters long index):

(72) a. input

redo
do
make
make

remake

b. lexicon

re+ 1’

do#

(5]

make# 3
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C. encoding of (71.a)

1'2  (=re’do)
(= do)
(= make)

W W N

(= make)
1'°3 (=re’make)

d. lexicon + encoding

re+1'do#2make#31'°22331'°3

Given (72.d), we can reconstruct the boundaries in the lexical component since we know
that every time we encounter the symbols + or # an entry is over, the next symbol will be
the index associated with that entry (recall that we are assuming that even prefix indices are
single, although longer, symbols), and the next next symbol is the beginning of a new
entry. Assuming (as we have, implicitly, until now) that there is no overlap between the
alphabet used to represent the lexical entries and the alphabet used to represent the indices,
then the end of lexicon / beginning of encoding boundary is marked by a sequence of two
index symbols. In the part of the string corresponding to the encoding, we can reconstruct
the boundary between input words in this way: whenever we encounter an index
corresponding to a stem, we are at the end of a word; whenever we encounter an index
corresponding to a prefix, we know that the next two symbols are the concatenation

operator and the index corresponding to the stem of the same word.
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3.3.7 Why DDPL is not a realistic data compression scheme

In various respects, the lexicon + encoding model described above is not realistic and/or
not economical as a data compression scheme.

First of all, I assumed that all indices associated with stems are one character long
and that all indices associated with prefixes are one-and-one-fourth characters long. While
justified by morphological considerations, the anti-prefix bias is of course absolutely
unmotivated from the point of view of data compression, as it makes the representation of
prefixes in the lexicon and encoded corpus less succinct. Moreover, the idea of “one fourth
of a character” is rather abstract, and it is not clear to me how it could be actually
implemented in a concrete representational system. Finally, in order to be able to assign a
different one-character index to each stem in a reasonably sized corpus, we would need an
alphabet of thousands of characters. This is not a very plausible scenario.

The standard approach to encoding (as described by Roman 1996, among others),
of course, does not make use of a huge alphabet. Instead, indices of different length (but
mostly longer than one character) are assigned to different entries on the basis of their
frequency of occurrence in the corpus. The length of an index is inversely proportional to
the frequency of the corresponding entry: frequent entries are assigned shorter indices; rare
entries are assigned longer indices.

This approach to encoding is commonly adopted in applications of the MDL
principle to linguistic problems (see, for example, Brent and Cartwright 1996). Indeed, an
earlier version of DDPL (Baroni 2000) was based on this standard, frequency-dependent
approach to index assignment. However, I later decided to opt for the alternative approach

presented above for the following reasons.
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First, frequency-dependent index assignment schemes favor lexical analyses in
which few entries are extremely frequent and many entries are extremely rare. It is not clear
to me that this corresponds to a sensible morpheme discovery heuristic.

Moreover, it would be harder to introduce an anti-prefix bias, such as the one I
proposed in the previous section, if indices, independently of whether they represent
prefixes or stems, had different lengths depending on their frequency.

Finally, as I will discuss below, the DDPL algorithm is based on a formula which
allows us to estimate what would be the length of a lexicon plus the corresponding
encoding of the input without having to perform the actual data compression procedure.
While such a formula can also be derived for the model in which indices depend on
frequency, in the latter model the formula is likely to require the computation of the entropy
of the relative frequencies of the lexical indices in the corpus. This term is extremely
inefficient to compute, and I am not aware of any efficient way to estimate it.

The DDPL lexicon + encoding scheme also differs from more plausible data
compression strategies in that some of the information present in the proposed
representations is redundant, and thus it should be removed to obtain maximal data
compression. In particular, the concatenation mark is not necessary. Even in an encoding
scheme that does not employ this symbol, whenever we encounter an index corresponding
to a prefix we would know that we are dealing with a complex form, and that the next
index represents the stem of the same prefixed word. Moreover, if the decoders of the
corpus can tell one-and-one-fourth characters long indices from one-character indices (and
assuming that there is no overlap between the alphabet used to represent entries and the
alphabet used to represent indices), then even the diacritics marking prefixes and stems in
the corpus become redundant, as the indices are already sufficient to mark the boundaries

between entries and to signal which entries are prefixes and which entries are stems.
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To conclude, in this section, I pointed out several aspects in which the lexicon +
encoding model as presented above is not realistic / efficient as a data compression scheme.
However, these aspects should not be seen as “problems” of the model, since, as we
already remarked many times, the real testing ground for DDPL is not data compression,

but morpheme discovery.

3.3.8 Computing the length of lexicon + encoding pairs: the DDPL lexicon

selection formula

One way to evaluate different lexica using the shortest lexicon + encoding criterion would
be to actually construct alternative lexicon + encoding pairs, and check which one is the
shortest. However, DDPL uses a different, more efficient approach, in which the length of
a lexicon and the corresponding encoding is calculated without actually having to go
through the steps of diacritic and index assignment and input encoding.

The data structures generated and compared by DDPL constitute analyses of the
input that are different from the lexicon + encoding pairs considered above, but from which
we can easily reconstruct how long lexicon + encoding pairs containing the same kind of
information would be.

The data structures generated by DDPL contain a list of prefixes, a list of stems
(which can also be independent, non-prefixed words) and, for each prefix and stem, the
number of occurrences of that prefix or stem in the input corpus. Consider for example the

following input:

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(73) redo
redo
do
remake
remake
make
make

The lexicon + encoding representation of this input in which re is treated as a prefix is the

following:

(74) lexicon

re+ '
do# 2
make# 3

length of lexicon: 14.25
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encoding of (73)

1'"2 (=re’do)
1'"2  (=re°do)

2 (=do)

1'°3  (=re'make)
1'°3  (=re’make)
(= make)

w W

(= make)
length of encoding: 16
total length (lexicon + encoding): 30.25

The corresponding DDPL data structure is:

(75)  prefix list

stem list

do 3
make 4
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In (75), the number following each lexical entry is not an index, but the number of times
that the entry occurs in the corpus. Given (75), we can calculate the length of the same
analysis as if it were represented in the lexicon + encoding format.

Notice that there are two aspects of (74) (the corresponding lexicon + encoding
representation) which could not be reconstructed from the DDPL data structure in (75): the
order in which indices occur in the input corpus, and the specific symbols used to represent
indices. For example, from (75) we cannot tell that the first index in the encoding in (74) is
1", which corresponds to the prefix re- (however, we can tell that the index corresponding
to re- occurs 4 times in the encoded input). Moreover, we cannot tell that the index
assigned to re- is /', and not, say, 7' (however, we can tell that re-, being a prefix, is
associated with an index that is one-and-one-fourth characters long).

From our perspective, this loss of information is not problematic, since neither the
order in which indices occur in the encoded input nor the particular symbols representing
indices play a role in the computation of the lexicon + encoding length: If the index
corresponding to re- occurs four times in the encoded input, then it will contribute a total of
5 characters (1.25 times 4) to the encoding length, independently of where it occurs. If re-
is a prefix, then its index will be one-and-one-fourth characters long, independently of the
specific symbol used to represent it.

In other words, while there is a one-to-many relationship between DDPL data
structures and lexicon + encoding representations, all the lexicon + encoding
representations corresponding to a single DDPL data structure have the same length (they
differ in the specific alphabet symbols assigned to indices and/or in the order of indices in
the corpus, but these properties do not affect their total length). Thus, while a DDPL data
structure does not contain all the information present in a lexicon + encoding

representation, it does contain all the information necessary to calculate the length common
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to all the corresponding lexicon + encoding representations. From our point of view, the
alternative lexicon + encoding pairs corresponding to each DDPL data structure are
equivalent, since they have the same length. Thus, I will from now on assume that there is
only one such pair.

Also, from now on, I will refer to the total (lexicon + encoding) length of a lexicon
+ encoding pair with the term description length. The idea is that a lexicon + encoding pair
constitutes a description of the input. This term is obviously related to the name of the MDL
principle.

Let us see how the length of the corresponding lexicon + encoding description can
be computed from a DDPL data structure, such as the one in (75) above.

For each entry in the prefix list of a DDPL data structure, the same entry also occurs
in the lexicon of the corresponding lexicon + encoding pair, where it is followed by the
one-character prefix-marking diacritic, and associated with a one-and-one-fourth characters
long index. Thus, the contribution of each entry in the prefix list to the description length of
the corresponding lexicon is given by the sum of length of the entry itself plus 2.25 (one
character for the diacritic plus 1.25 characters for the index). For example, the entry re in
(75) contributes 4.25 (= 2 + 2.25) characters to the length of the lexical component.

Similarly, the contribution of each entry in the stem list to the description length of
the corresponding lexicon is given by the sum of the length of the entry itself plus 2 (one
character for the stem-marking diacritic and one character for the associated index).

Thus, the total length of the lexicon component corresponding to a DDPL data
structure will be given by the length (in characters) of all the entries in both the prefix and
the stem lists, plus 2.25 times the number of entries in the prefix list (for the prefix
diacritics and indices), and 2 times the number of entries in the stem list (for the stem

diacritics and indices).
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In order to compute the length of the encoding component, notice that there are
three classes of symbols occurring in it: 1.25-character-long prefix indices, one-character
concatenation symbols and one-character stem indices.

Starting from the latter: Since each stem index is one character long, the total length
contributed by all occurrences of all stem indices in the encoded corpus equals the total
number of occurrences of all stems in the corpus. Thus, the total length contributed by stem
indices can simply be computed by summing the number of occurrences in the input of
each entry listed in the stem list (recall that the number following each entry in a DDPL data
structure is the number of occurrences of that entry in the input). For example, the total
length contributed by the stem indices in the encoding corresponding to (75) is given by 7
(3 occurrences of do plus 4 occurrences of make).

Since prefix indices are one-and-one-fourth characters long, the total length
contributed by all occurrences of all prefix indices in the encoded corpus equals the total
number of occurrences of all prefixes in the input times 1.25. Thus, the total length
contributed by prefix indices is computed by summing the number of occurrences of each
entry listed in the prefix list and multiplying this number by 1.25. For example, the total
length contributed by prefix indices in the encoding corresponding to (75) is 5 (4
occurrences of re times 1.25).

Finally, observe that the concatenation symbol is always preceded by a prefix
index. Thus, the total number of occurrences of the concatenation mark is the same as the
total number of occurrences of all prefixes in the corpus. Since the concatenation symbol is
one character long, the total length contributed by all concatenation marks equals the
number of occurrences of prefixes in the corpus. For example, the length contributed by
concatenation marks in the encoding corresponding to (75) is 4 (the only prefix in the

prefix list, re, has four occurrences in the corpus).
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Thus, the total length of the encoding component corresponding to a DDPL data
structure will be given by the total number of occurrences in the input of all the stems in the
stem list, plus 2.25 times the total number of occurrences in the input of all the prefixes in
the prefix list (this term derives by summing the terms used to compute the total length of
prefix indices and the total length of concatenation marks).

Putting the pieces together, the description length of a lexicon + encoding pair

corresponding to a DDPL data structure can be computed using the following formula:

(76)  the description length formula

dl= 3 length(ent) + 2Istem_entries| + 2.25\prefix_entries| +

ent € entries

+ Istem_occurrences| + 2.25lprefix_occurrencesl

dl: description length;

ent € entries: any entry, prefix or stem, in the DDPL data structure;
length(ent): length in characters of an entry;

Istem_entriesi: total number of entries in the stem list;
Iprefix_entriest: total number of entries in the prefix list;

Istem_occurrencesl:  total number of occurrences of all stem entries in the input;

Iprefix_occurrencesi: total number of occurrences of all prefix entries in the input;

For example, if we calculate each of the terms of the formula in (76) for the data structure

in (75), we obtain:
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7)) di=QR+2+4)+2*2+225%1 +T7 +225%4=8+4+225+7+9=3025

The description length computed from the DDPL data structure in (75) using the formula in
(76) equals the length as calculated by actually representing the same data in the lexicon +
encoding format, as in (73).

Given that the formula in (76) computes the length of a certain analysis as if it were
represented in the lexicon + encoding format, the very same analyses that are selected by
the shortest lexicon + encoding criterion are also selected when using (76) to determine the
shortest description length. For this reason, I will not discuss how various patterns are
favored/disfavored by (76).

In brief, the need to minimize the first three terms of (76) will favor distributionally
motivated decompositions (as such decompositions will reduce the number of entries in the
prefix and stem lists, and they will reduce the lengths of lexical entries), whereas the last
two terms will disfavor decompositions (after a decomposition, some words in the input
will have to be encoded with three indices instead of one, and thus the total number of
occurrences of stems or prefixes in the encoding will increase). The extra weights added to
the two prefix-specific factors will insure that, all else being equal, less distributional
evidence is needed to postulate a stem than to postulate a prefix.

Henceforth, I will use the term lexicon to refer to DDPL data structures. In

ambiguous cases, I will refer to these structures as DDPL lexica.
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3.3.9 Searching for the best lexicon: the lexicon generation algorithm

We can use the formula in (76) to determine which, among alternative lexica, has the
shortest description length, and should thus be selected as the best lexicon accounting for
the input data. However, we still need a way to find the best lexicon, or more precisely,
generate the set of alternative lexica from which to select the one allowing the shortest
description length.

The brute force solution in which all possible combinations of all possible bi- or
monomorphemic parses of each word in the input are evaluated is not feasible, as the
number of possible combinations grows exponentially with the number of words in the
corpus.4® Therefore, it is necessary to substitute it with a search procedure that is likely to
find the best solution, or something close to it. I will refer to this procedure as a “lexicon
generation algorithm”. The DDPL lexicon generation algorithm is based on a greedy
strategy inspired by the one proposed by Brent and Cartwright 1996.49

The DDPL starts by computing the description length of the lexicon in which no

morphological analysis of the input is computed. Then, all possible lexica generated by

48This approach is not feasible even if, as in the DDPL model, we assume that tokens of the same word are
always parsed in the same way. In this case, the number of analyses to be considered grows exponentially

with the number of word types in the corpus.

49The algorithm can be classified as greedy since, at each stage, only lexica derived from the best lexicon of
the previous stage are evaluated. For a general introduction to greedy algorithms, see Cormen, Leiserson and
Rivest (1990: chapter 17). Cormen, Leiserson and Rivest discuss several examples in which it can be
proven that a greedy algorithm will be able to find the best solution. This is not the case here. In future

research, it would be interesting to design algorithms that explore a larger section of the hypothesis space.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



splitting one single word (type) into morphemes are evaluated. The description length of
these lexica is computed, and the lexicon with the shortest description length is selected.

Now, of all the lexica which could be generated by splitting two word (types) into
morphemes, only those lexica are evaluated in which one of the two morphological splits is
the same as the one performed to generate the shortest lexicon created by one
morphological split. Then, the same procedure is repeated for lexica generated by splitting
three words, and so on. Generalizing, of all lexica which could be generated by n
morphological splits, only those in which n-/ splits are identical to the ones performed to
generate the shortest lexicon created by »n - / morphological splits are evaluated.

Since we are only considering binary parses of words, we add the further condition
that, if a stem/word occurs in a morphological split, then no further decomposition of that
stem/word will be attempted.

All of this will probably become clearer by considering an example. Consider the

following input:

(78) do
redo
cat
redo
do
do

The first lexicon generated by the DDPL is simply listing word types, with no

morphological analysis:
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(79) prefix list
(empty)

stem list

do 3 redo 2 cat 1

dl: 21
Now, we consider all the possible lexica generated by decomposing one single word type
of the input into one prefix and a stem (notice that only splits in which the prefix is
followed by a word-final string are allowed; e.g. the lexicon in which the input word do is

treated as a prefix in its entirety is not considered):

(80) a. prefix list
d 3

stem list

o 3 redo 2 cat |

dl: 30

b. prefix list
r 2
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stem list

do 3 edo 2 cat 1

dl: 27.75

c. prefix list

re 2

stem list

do 5 cat 1

dl: 23.75

d. prefix list
red 2

stem list

do 3 o 2 cat 1

dl: 27.75

e. prefix list

C 1
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stem list

do 3 redo 2 at 1

di: 26

f. prefix list

ca |

stem list

do 3 redo 2 t |

dl: 26

Now, the crucial step. The shortest among the lexica in (80) is (80.c), i.e., the lexicon
which was generated by dividing the word redo into re and do. Thus, of all the lexica
which could be generated by dividing two words into morphemes, only those will be
considered in which redo is one of the two words, and it is split into re plus do. This
means that no lexicon in which redo is not split will be considered, and that no lexicon in
which redo is parsed otherwise (as r+edo or red+o) will be considered.

Thus, only the following two, among the lexica which could be generated by two

morphological splits, are evaluated:

(81) a. prefix list
re 2
c 1
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stem list

do 5 at 1

dl: 28.25

b. prefix list
re 2

ca |

stem list

do 5 t 1

di: 28.25

Further analysis of do is not allowed, or else the input word redo would have to be parsed
into more than two units, violating one of the basic assumptions of the DDPL. model. Thus,
the algorithm stops. Among all the lexica considered, the one in (79) (no morphological
analysis) is the one with the shortest description length, and thus the one that DDPL will
select as its output.

The basic procedure I just illustrated guarantees that the number of lexica to be
evaluated does not grow exponentially with the number of word types in the corpus.
Moreover, other constraints are introduced in the model to further reduce the number of

lexica that has to be evaluated.
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First of all, only morphological splits which create a stem and/or a prefix that is
already in the shortest lexicon of the previous level are considered. For example, of all the
lexica in (80), the only one that DDPL would actually consider is the one in (80.c), because
it is based on a split which produces the stem do, and this stem is already present in the
lexicon of (79). None of the lexica in (81) would be considered by DDPL.50

Moreover, the following constraint dramatically reduces the number of lexica
evaluated by the DDPL, while at the same time further reducing the risk that stem + affix
parses are mistakenly treated as prefix + suffix parses. In very general term, the constraint
can be phrased in the following way: Only word-initial strings that frequently occur in the
corpus before relatively long word-final strings can be treated as prefixes in a
morphological split.

Before I go on to describe how this is actually implemented in DDPL, I will quickly
mention the rationale behind the constraint: Prefixes are always followed by stems;
possibly, by stems and suffixes. Thus, it seems reasonable to expect that prefixes will
occur in a certain number of words in which they are followed by relatively long word-final
strings. Consequently, we can trim the search space by requiring, as I said, that only word-
initial strings that “frequently” occur before “relatively long” word-final strings can be

treated as prefixes in a morphological split.

50This constraint has the following side effect: if a language had a set of bound stems which only occur in
combination with a set of prefixes all of which, in turn, never combine with free stems, DDPL is going to
be able to find neither the bound stems nor the prefixes combining with them. Notice that it is sufficient
for one of the prefixes in such a set to combine with at least one free stem, then all the other prefixes and

bound stems in the set can also be discovered by DDPL.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In order to implement the constraint, we have to specify what we mean for
“frequently” and what we mean for “relatively long”. Starting from the latter: In DDPL, a
word-initial string is a potential prefix only if it frequently occurs before word-final strings
of length / or longer, where [ is the length of the average word in the corpus. This
constraint could be problematic for prefixes occurring only before bound stems. However,
I believe that it is reasonable to expect that, even for a prefix which only occurs before
bound stems, some of these stems (or stem + suffix combinations) will be as long as
independent words.

Now, I have to make the notion of “frequently occurring” explicit. Notice that what
counts as frequent, rather than being constant, should depend on the length of the word-
initial string. That a single segment word-initial string occurs before, say, one hundred
word-final strings of length / is less significant than if a four-segment word-initial string
occurs before the same number of word-final strings of length I.

Thus, f, the minimum number of times that a word-initial string of length k is
required to occur before a word-final string of length / or longer is given by the following

formula:

(82) f=[e2*H] 4+

The formula in (82) requires a very high frequency of occurrence for one-segment strings,

drastically lower frequencies for longer strings:
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83) % f

1 2982
2 56

3 9

4 4
>4 3

While the constraint I just described is based on a plausible heuristic and makes the lexicon
generation procedure a lot more efficient, by drastically reducing the number of possible
morphological analyses to be evaluated, notice that the exact formula used to compute fin
(82) is rather arbitrary, and it would have to be changed depending on the size of the input
corpus.3!

Finally, after the best lexicon is selected, the DDPL algorithm goes over the list of
prefixes postulated in this lexicon and, if a prefix only occurs in a single word of the input
corpus, the prefix is removed from the list, and the corresponding word is re-introduced in

the list of stems.

3!Given the constraints I just described, DDPL halts when one of these events takes place: 1) each word in
the input word type list has either been split, or analyzed as the stem of another word; 2) no further
morphological split generates a prefix and/or stem identical to an already existing prefix or stem; 2) no
further morphological split generates a prefix occurring at least f times before strings of length / (or longer)
in the input. Notice that the lexicon selected by DDPL is not necessarily the last lexicon evaluated, but the
lexicon with the shortest description length, among all the lexica that were evaluated during the lexicon

generation procedure.
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To summarize: In the actual DDPL model, the procedure illustrated by the examples
(78)-(81) above is further constrained in the following ways: first, only morphological
splits producing either a stem or a prefix that is already in the lexicon are allowed; second,
only those morphological splits are allowed in which the prefix is a word-initial string that
occurs at least f times before strings of length / (or longer) in the input. Moreover, prefixes
with a type frequency of one are trimmed from the final lexicon constituting the DDPL

output.

3.3.10 The DDPL model: summary

At the core of the DDPL algorithm is the formula in (76), repeated here as (84):

84) dl= Y length(ent) + 2lstem_entries| + 2.25Iprefix_entries! +

ent € entries

+ Istem_occurrences| + 2.25|prefix_occurrencesl

The analysis of the input (represented as a DDPL lexicon) which minimizes this formula is
selected by DDPL as the most plausible one. The formula in (84) computes the length of
the same analysis if it was represented in a specific data compression format, i.e., the
lexicon + encoding format. As [ argued, the optimal (most compact) lexicon + encoding
analysis is also the best analysis from the point of view of distribution-driven morpheme
discovery heuristics such as the ones I discussed in chapter 1.

While the connection between data compression and morpheme discovery (based

on the observation that the property of syntagmatic independence is crucial to both data
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compression and distributional morpheme learning) constitutes the conceptual core of the
DDPL model, we need a way to generate a set of alternative analyses to be evaluated and
compared using the formula in (84).

The specific algorithm implemented in DDPL is based on a greedy strategy similar
to the one proposed by Brent and Cartwright 1996 for the sentence segmentation task. The
basic idea adapted from Brent and Cartwright is that a lexicon constructed with n
morphological splits is only evaluated if, of those n splits, n-/ are identical to the ones that
were used to generate the shortest lexicon constructed with n-/ splits.

However, the DDPL lexicon generation strategy is further constrained. In
particular, the number of lexica to be evaluated is strongly reduced by the requirement that
only word-initial strings that frequently occur in the input before relatively long word-final

strings can be treated as prefixes in a DDPL lexicon.

3.4 DDPL as a model of human morpheme discovery

My ultimate purpose in designing the computational model presented in this chapter is, of
course, to learn something about how human beings discover the morphemes of their
language. By showing that DDPL can extract a fair amount of information about English
prefixation from distributional cues, we can prove that, in principle, human beings could
successfully use distributional cues in morpheme discovery. Moreover, as we discussed in
the introduction and in chapter 1, if we can show that human beings assign morphological
parses similar to the ones assigned by DDPL to words where their intuition is not likely to
depend on semantics or other non-distributional factors, then we can make a case for the

claim that humans rely on distributional cues such as the one used by DDPL.
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Notice that these arguments are based on the nature of the evidence used by DDPL
(distribution, frequency and length of words and substrings), and on the output generated
by the model (does DDPL discover actual English prefixes? do the DDPL parses match
speakers’ intuitions?) However, I am making no claim about DDPL as a model of how
humans process distributional information.

The purpose of DDPL is to show that it is in principle possible to generate a certain
output (prefixes, stems, morphological parses) given a certain type of input (distributional
cues): and I would like to argue that humans, like the DDPL algorithm, are indeed relying
on the same kind of input information in order to come up with the same kind of output.
The specific way in which the input data are actually manipulated by DDPL vs. by humans,
in order to generate the output, could be radically different without invalidating my
arguments.

Indeed, there are several aspects of the DDPL model that are probably implausible
from a psychological point of view, the most obvious one being that DDPL takes a fixed
list of words as its input, and analyzes them all together (and multiple times) in order to try
to determine what are the morphemes of the language under consideration. While it is not
implausible that even human learners use a certain set of words as their “benchmark” to
perform morpheme discovery, it is not plausible that this set is determined at the beginning
of morphological acquisition, and never augmented by new words the learners acquire.
Moreover, it is not clear that the greedy algorithm used to generate candidate lexica in
DDPL could have any plausible psychological counterpart.

On the other hand, if learners do rely on distributional heuristics such as the ones
used by the DDPL, it is not completely implausible that they would use a strategy based on

something like the lexicon + encoding scheme in order to implement these heuristics.
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The most radical view along these lines would be that learners use the shortest
lexicon + encoding criterion because they are indeed performing a task which is very
similar to data compression. Suppose that, on the one hand, learners constructing their
lexicon are trying to minimize the amount of information that they have to memorize, and
that one of the functions of morphological analysis is to economize on lexical storage. On
the other hand, suppose that there is an extra cost associated with the processing needed to
reconstruct words from morphemes during lexical access (as opposed to directly retrieving
whole words form the lexicon), and that learners are also trying to minimize this cost. In
particular, since learners do not know how frequently they will need to retrieve a certain
word in the future, suppose that they estimate the processing cost associated with retrieving
a word in decomposed format on the basis of how often they heard that word in the past. It
is not hard to imagine that, if learners are trying to find a balance between the need to
minimize lexical storage and the need to minimize the amount of processing associated with
the retrieval of words in a decomposed format, they could come up with a measure related
to the shortest lexicon + encoding criterion.

An alternative theory which could explain why learners rely on something similar to
the lexicon + encoding scheme, without committing us to the claim that learners are trying
to optimize their lexical representations in the way I just suggested, is the following: The
task of the learner is to discover which one, among the many lexica compatible with it, was
the one that actually generated the input, i.e. the lexicon shared by the adult speakers
surrounding the learner. Now, in the absence of better heuristics, the learner could assume
that the lexicon of adults is optimal, in the sense that it allows a good trade-off between
economy of storage and efficiency of retrieval. Thus, they use the shortest lexicon +
encoding criterion not because they actually want to optimize their lexicon, but because they

assume that this is what adults did.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



One way to express the difference between the two views is this: In one scenario,
the Occam Razor is a tool which children actually use to construct an optimal lexicon,
whereas in the other scenario the Occam Razor is a theory that children developed about
how the adult mind works.

These are very abstract speculations. As I remarked at the beginning of this section,
the DDPL simulation can provide us with useful insights on human morphological
acquisition independently of whether the shortest lexicon + encoding criterion, or other
aspects of the model, correspond to ways in which human beings handle distributional

data.

3.5 Summary

In this chapter, I first explained why I believe that modeling prefix discovery as an
independent stage of morpheme discovery is both interesting and legitimate. Then, I
presented DDPL, an algorithm which performs prefix discovery taking a list of words as its
input and relying on distributional evidence only. I have shown that the formula used by
this model to select the best morphological analysis of the input favors the same kind of
analysis that would be favored by the distributional heuristics discussed in chapter 1.
Finally, I briefly presented some speculations on how certain aspects of the DDPL model

could have a psychologically plausible counterpart as human learning strategies.
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Chapter 4
The DDPL model and the discovery of English prefixes

4.1 Introduction

In this chapter, I discuss the results of a simulation in which DDPL was tested with a
corpus of untagged orthographically transcribed English words from the PHLEX database
as its input. After discussing the characteristics of this corpus and why I chose it, I will
present the results of the simulation. First, I analyze the list of prefixes discovered by
DDPL. Then, I present the results of two surveys in which the morphological parses
assigned by DDPL were compared to morphological complexity ratings assigned by native
English speakers to the same words. In particular, in the second survey DDPL and English
speakers’ morphological parses of a set of semantically opaque words were compared.
Finally, I briefly discuss another simulation in which DDPL was run with a corpus of

phonetically transcribed words as its input.

4.2 The input corpus

The PHLEX database (Seitz, Bernstein, Auer and MacEachern 1998) contains, among
other word lists, a list of the 20,000 most common word types in the Brown corpus
(Kucera and Francis 1967), in orthographic and phonetic transcription, together with their

frequency of occurrence in the Brown corpus. I removed from this list all word-types
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containing non-alphabetic symbols (digits and diacritics such as -).52 After this trimming, a
set composed of 18,460 word types was left. The input corpus for the DDPL simulation
was generated by multiplying each of the types in this set by its frequency in the Brown
corpus, and randomizing the resulting list.53 For example, the word kindergarten has a
frequency of 3 in the Brown corpus, and thus it occurs three times in the DDPL input used
for the current simulation. In total, the corpus generated in this way contains 959,655
orthographically transcribed word tokens.

The primary reason why I decided to use the Brown list from the PHLEX database
as the input to DDPL is that, when this project started, this was the first corpus that became
available to me. However, I consider the fact that PHLEX only contains the 20,000
(18,460 after trimming) most frequent word types in the Brown corpus as a positive
feature, for current purposes. Concretely, this means that the each word in the PHLEX-
Brown list has a minimum token frequency of 3. Thus, the corpus I used does not contain
hapax legomena or words with a token frequency of 2. Given that we are trying to model
an aspect of language acquisition, this seems to be a plausible exclusion, as in general

language learners are not likely to be exposed to such forms.54

52Notice that, while the exclusion of words containing - makes it less likely for DDPL to treat compounds
as prefixed words, at the same time the same exclusion makes its task harder, because many productively
formed prefixed words (such as re-elected, re-enter, re-examine) are transcribed with - in the original list, and
were thus discarded from the DDPL input.

53Randomization has a purely esthetic function, as the order of tokens in the input is irrelevant to DDPL.
54Notice also that, by excluding words with a frequency lower than 3, we are probably making the task of

DDPL more challenging, given that, as shown in the work of Baayen and collaborators (see, for instance,
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One could argue that, from this point of view, it would have been more interesting
to test the DDPL model using a corpus of child-directed speech. Besides the fact that I am
not aware of the existence of any large corpus of English child-directed speech that would
have been practical to use for our goal, I believe that English prefix discovery does not take
place very early in morphological acquisition, but late enough that we would have to
consider child-directed speech from an age in which the discrepancy between the adult and
child-directed lexicon is not very large. Thus, I believe that the PHLEX-Brown corpus is
not as bad an approximation to the type of input children are probably using to perform
prefix discovery as it would be to the input to what are likely to be earlier acquisition tasks
(e.g., sentence segmentation).

The reason why I believe that prefix discovery does not take place very early in
English language acquisition is that English prefixation is entirely derivational and, in
general, not very productive. As a consequence of this, prefixed forms are not very
frequent, and it seems to me that children would simply lack enough evidence
(distributional or of some other nature) to perform prefix discovery if they pursued this task
early on, when their lexicon is very small, and, one would expect, mostly composed of
high frequency words.

Consider for example the case of re-, which is probably the most productive and
definitely the most common English prefix. The most frequent prefixed word with re- in
the PHLEX-Brown corpus is review, a relatively cultivated word which, with a token

frequency of 56, cannot be classified as a high frequency form (there are 1939 words with
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higher frequency of occurrence in the same corpus).55 And, of course, before children
become familiar with at least a few forms containing a prefix, they will probably not notice
its presence. Thus, English learners must develop a relatively large and sophisticated
vocabulary in order to be able to discover even the most common of their prefixes.56

I decided to use orthographic transcriptions instead of phonetic transcriptions for
several reasons, besides the fact that it is obviously easier to work with a corpus of
orthographically transcribed words.

First, notice that some English prefixes display special prosodic properties,
reflected in their segmental makeup, when they occur in prefixed nonce formations and
transparent forms. For example, the vowel of the prefix re- is likely to be produced as /i:/ in
a transparent form such redo but as /v/ or /a/ in an opaque form such as resume. Given that
DDPL has no access to prosodic/phonological knowledge (for example, DDPL cannot tell
that the distribution of stress in English determines alternations such as /i:/ vs. /u/ or /i:/ vs.
/al), the model has no way to tell that the /ri:/ of redo and the /rv/ of resume should be

counted as instances of the same string. On the other hand, vowel reduction is such a basic

Baayen 1994, Baayen and Lieber 1991), productive affixes are characterized by their frequent occurrence in
hapax legomena.

55Compare re- with an inflectional suffix such as -ing. In the PHLEX-Brown corpus, there are 55 words
containing this suffix (counting only uncontroversially suffixed words) that have a higher frequency than
review (the highest frequency form containing -ing being being, with a token frequency of 711).

56Notice that, while I am not attempting to model this pattern in DDPL, it is very likely that learners
discover different prefixes in different stages. For example, English learners probably discover prefixes such
as re- and de- much earlier than “fancy” prefixes such as para- or meta- (if they do discover such prefixes at

all).
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pattern of English that it seems reasonable to assume that children performing prefix
discovery would already be aware of it.57

Moreover, many entries in the PHLEX-Brown database have multiple phonetic
transcriptions. One common source of multiple transcriptions is the following: given that
the PHLEX entries are untagged and not lemmatized, verbs and nouns that are only
distinguished by their stress pattern (and by the effects of the stress pattern on their
segments) have a single orthographic entry and frequency value, but two phonological
transcriptions: one corresponding to the verb, one corresponding to the noun. For example,
the PHLEX entry for the orthographic word rebels (fq = 17) has two transcriptions,
corresponding to its interpretations as a plural noun (‘rebalz) or third person singular verb
(ri'belz). In other cases, multiple transcriptions are due to the fact that the PHLEX
transcribers report more than one pronunciation of a certain word. For example, the word
respiratory (fq = 17) is transcribed as ‘resparatori and res'pairatori.

In order to deal with multiple transcriptions, we have to either arbitrarily select one
of the transcriptions of each ambiguous word, or divide the frequency of the corresponding

orthographic entry among the alternative transcriptions. Both strategies would affect the

57In other respects as well, orthographic transcriptions make the task of finding prefixes and assigning
morphological parses to words harder than phonetic transcriptions. For example, in orthographic
transcription the un- (/an/) of undo (which is a prefix) and the un- (/jun/) of unir (not a prefix) are not
distinguished. Thus, given an orthographic input, a learner that discovered that un- is a prefix would have to
decide whether unit is a prefixed word or not, whereas this would not be an issue for a learner that, given

phonetic input, discovered that /an/ is a prefix.
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distribution of strings in the corpus in ways that would be hard to control and probably not
motivated.58

Notice also that, as I am arguing that the discovery of English prefixes must occur
relatively late, it is not completely unlikely that, at least for some prefixes, it actually takes
place when children already learned to read. Thus, I would not completely exclude the
hypothesis that the input to prefix discovery, for children literate in English, is in part
constituted by written words.

Finally, given that the parses assigned by DDPL to input words will be compared to
morphological complexity ratings assigned to the same words by English speakers, and
these speakers were presented with orthographic transcriptions of the words, to the extent
that there could be some discrepancy between morphological representations of spoken and
written words, it made sense to test the DDPL on a written input.

While the main focus of this chapter is on a simulation in which the input to DDPL
is composed of orthographically transcribed forms, I will briefly discuss in section 4.6 the
results of a run in which the DDPL was tested with the same words in phonetic

transcription.

58Qbserve also that the Brown corpus is a corpus of written English.
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4.3 Assessing the performance of the distribution-driven model, part 1:

prefixes postulated by DDPL

Given the input described in the previous section, DDPL generated an output lexicon

containing the following 29 prefixes:59

(85) prefixes postulated by DDPL

ad- auto- co- com- con-  COr- de- dis- ex-
extra- juris- in- inter- man- mis- non-  over- para-
pre- psycho- radio- re- sub-  sup-  super- sur- tele-
un- under-

A first inspection of this list shows that DDPL was quite successful and accurate in finding

(almost) only actual English prefixes.60 In the next two subsections, I discuss the “false

59Notice that com-, con- and cor- are actually allomorphs of the same prefix, and so are sub- and sup- (cf.
suppress). The purpose of the DDPL model is simply to find the list of strings that correspond to prefixes
(and stems) of a language. The model does not attempt to group strings that are allomorphs of the same
morpheme into the same entry. [ do not think that allomorph grouping is a task which should be performed
on the sole basis of distributional cues, as semantic and phonological cues would, obviously, be of great
help.

6ONotice, among other things, that the DDPL model was able to find prefixes that constitute substrings of
other prefixes: co- is a substring of com-/con-/cor-; ex- is a substring of extra-; in- is a substring of inter-;

un- is a substring of under-. This property (together with the fact that not all words containing a word-
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positives” in the list (i.e., strings that were treated as prefixes by DDPL but are not actual

English prefixes) and the “misses” (i.e., English prefixes that were not found by DDPL).

4.3.1 False positives

The list contains only one obvious false positive: the string man-. As man- is a noun which
often occurs as the first member of compounds, and DDPL does not have access to
(morpho-)syntactic information, the model mistakenly treated forms such as manservant
and manslaughter as prefixed.

Besides man-, there are three ambiguous cases: The strings juris-, radio- and
psycho- are not classified as prefixes in standard references such as Marchand 1969 or
Quirk, Greenbaum and Svartvik 1985.6! Thus, we should probably count them as false
positives. However, as these strings correspond to bound word-initial units associated with
specific semantic features, even if they might not be prefixes under some definition of what
a prefix is, they are “prefix-like” enough that I am reluctant to classify them as real false
positives.

The DDPL did not treat any frequent but linguistically insignificant word-initial
string (strings such as pa-, pr-...) as a prefix.

It seems legitimate, I think, to conclude that the DDPL was very accurate in its

identification of English prefixes.

initial string identical to one of the postulated prefixes are treated as prefixed) constitutes, I believe, a major
improvement with respect to Brent’s 1993 model.

6!The Merriam-Webster's dictionary classifies radio- and psycho- as “combining forms.”
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4.3.2 Misses

The following 19 prefixes listed in Quirk et al. 1985 were not discovered by DDPL (notice
that il-, im- and ir- are allomorphs of in-, a prefix that was found by DDPL):62

(86) prefixes missed by DDPL

a- an- anti- arch- contra-  counter- fore-
hyper- il- im- ir- mal- mini- out-
post- pro-  pseudo- trans- uitra-

Of this set, the following 6 misses are due to the nature of the input corpus, which did not

contain enough forms to motivate their treatment as prefixes:

(87) a- an- arch- hyper- mini- pseudo-

In particular, the string hyper- never occurs in the corpus, whereas the other five strings in

(87) only occur in two or fewer words in which they function as prefixes (even counting

completely semantically opaque, highly lexicalized prefixed forms).

62The neo-classical prefixes (such as hemi- and paleo-) and conversion prefixes (such as en- and be-) listed
in Quirk er al. 1985 but missed by DDPL are not reported in this list. I believe that misses from these

classes are not problematic, as they concern prefixes that are very cultivated and/or not very productive.
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Of the remaining 13 misses, the following 9 are due to the constraint on lexicon
generation presented in 3.3.9, which requires that a word-initial string of length k occurs at
least f times before a word-final string of length / or longer,%3 in order to be a candidate

prefix:

(88) counter- fore- il- im- ir- mal- out- post- ultra-

None of these prefixes occurs frequently enough before word-final strings of length / in the
input to justify their treatment as prefixes.

This leaves us with 4 unexplained misses:

(89) anti- contra- pro-  trans-

Inspection of the input suggests that the corpus does contain several truly prefixed forms
displaying these prefixes in combination with independently occurring stems (but notice
that, in the input used in this simulation, the prefixes contra- and pro- only occur in
lexicalized formations with bound stems, such as contraception and proceed). Thus, these
misses cannot be attributed to the nature of the input. I plan to explore the issue of why

DDPL failed to discover these prefixes in future research.

631n this specific input, [ = 7.5.
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4.3.3 Prefixes found and missed by DDPL: concluding remarks

The list of prefixes found by DDPL is more accurate than exhaustive. On the one hand, the
false positives in the list are few and linguistically motivated. On the other hand, even if the
prefixes in (87) are excluded from the count, as they hardly occur in the input, we must
remark that DDPL missed 13 productive English prefixes.

In particular, most of these misses are due to the constraint on lexicon generation
requiring word-initial strings to occur a certain number of times before “long” word-final
strings. This constraint plays an important role in the current DDPL model, as it greatly
reduces the number of lexica DDPL has to evaluate, and it helps (together with the anti-
prefix bias) avoiding the parsing of stem+suffix combinations as prefix+stem sequences. It
is likely that the misses that are not due to the mentioned constraint are also a product of the
lexicon generation algorithm, rather than of the lexicon selection method.

These considerations suggest that the first step in future revisions of DDPL should

concentrate on the lexicon generation component of the model.

4.4 Assessing the performance of the distribution-driven model, part 2:
morphological parses assigned by DDPL compared to complexity ratings

assigned by English speakers

Besides finding a list of prefixes, DDPL assigns morphological parses (prefixed vs.

monomorphemic parses) to all the words in the input corpus. Of course, only the parses

assigned by DDPL to potentially prefixed words, i.e., words beginning with a string
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identical to one of the prefixes found by the algorithm, are of interest, as all other input
words are treated as monomorphemic.

Notice that assessing the plausibility of the parses assigned by DDPL to potentially
prefixed words are is not a trivial task, as the morphological status of many potentially
prefixed words is not clear. While probably everybody would agree that the word redo is
prefixed and the word red is not, there are many intermediate cases (such as resume,
recitation, remove) about whose status morphologists would probably disagree.

Thus, rather than trying to decide on my own which of the parses assigned by
DDPL were “right” and which ones were “wrong”, I conducted a survey in which I
collected morphological complexity ratings from native English speakers, and then I
compared these ratings to the parses assigned by DDPL to the same words, in a correlation
analysis. The idea was to see if speakers’ intuitions on the prefixed status of such words
would agree with the parses assigned by the algorithm.

All the words in the survey corpus began with a string corresponding to one of the
prefixes postulated by DDPL, but half of the words were selected from the set of forms that
were treated as complex by the model (for example, disability), the other half from the set
of forms which, although they begin with a string identical to a prefix, were not treated as
complex by the model (for example, cocoon).

In particular, the survey corpus contained 300 forms that were randomly selected
from the words in the DDPL output that began with one of the prefixes postulated by the
algorithm (excluding man-, juris- and radio-). 150 of these forms were randomly selected
from the set of words that DDPL treated as prefixed. The other 150 forms were randomly
selected from the set of words that DDPL treated as monomorphemic (non-prefixed).

Before I present the results of the DDPL/speakers correlation analysis, I will

describe how the morphological complexity ratings were collected, and I will discuss some
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issues related to the nature of this kind of data, which are rather unusual in morphological

studies.64

4.4.1 Collecting morphological complexity ratings

4.4.1.1 Methodology and data collection

A group of eight native English speakers were asked to rate a set of potentially prefixed
words (“potentially prefixed” in the sense that they begin with a word-initial string identical
to a prefix) on a scale from 1 to 5, assigning | to words that they definitely feel to be non-
prefixed, 5 to words that they definitely feel to be prefixed.

In the instructions (see appendix 1), the participants were presented with an
example of a word that should receive a I-rating (the word cocoon) and an example of a
word that should receive a S-rating (the word coexist).

I originally planned to use a 3-point scale (“non-prefixed”, “don’t know”,
“prefixed”) but later opted for the 5-point scale after some of the participants in a pilot study
reported that they felt they needed more than 3 rating options to satisfactorily perform the
rating task.

The 300 words in the survey corpus were presented in a different random order to
each participant. Words were presented in a list format. To avoid possible ambiguities due

to the fact that some of the prefixes under investigation are substrings of other prefixes

64The only other study [ am aware of in which this kind of data is presented is Smith 1988,
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(e.g. in- is a substring of infer-), each word in the list was followed by the potential prefix
that participants were to consider.

Participants were given unlimited time to complete the task, but they were asked to
write down their ratings as quickly as possible, and to avoid revising a rating once they had
written it down.

Clearly, in order to take part in the survey, participants had to be familiar with basic
notions of morphology (at least, the notions of prefix and prefixed form). Thus, I selected
the participants among undergraduate and graduate linguistics students: S participants were
UCLA undergraduate linguistics majors; 3 participants were graduate students in the UCLA

linguistics program.

4.4.1.2 Are morphological complexity ratings valid data?

The first issue we have to consider is whether the participants were able to perform the
task, or whether they randomly assigned ratings to the words in the survey.

If participants assigned ratings randomly, then we would expect that their ratings
would not be correlated with each other, but this is not the case. I computed Pearson and
Spearman correlation coefficients for the ratings of each pair of speakers.65 This set of
analyses showed that the rating patterns of all eight participants were highly correlated (the

Pearson correlation coefficients computed pairwise for each pair of raters were always

65For the notions of statistics employed in this chapter, see, for example, Woods, Fletcher and Hughes

1986, in particular chapter 10.
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higher than .55; the Spearman correlation coefficients computed pairwise for each pair of
raters were always higher than .6).

This inter-speaker agreement indicates that the participants did not assign ratings
randomly. However, this by itself does not entail that the ratings were indeed based on the
way in which the speakers represent the relevant words in their lexicon.

First of all, it could be that speakers based their judgment on explicit linguistic
knowledge. In particular, they could have assigned ratings on the basis of the
morphological theory of their choice or on the basis of whether a certain word is
etymologically complex or not.56

As I checked in informal interviews with the participants, none of the undergraduate
students who took part in the survey had a serious background in Latin, Greek or the
history of English. While it was harder to verify this, it also seems that the knowledge of
morphology of the undergraduate students who participated in the survey was relatively
limited, and none of them seemed to be familiar with a morphological theory detailed
enough to predict the morphological status of a list of words.7 Thus, the hypothesis that
ratings were assigned on the basis of etymology or morphological theory can be excluded
at least for the majority of participants.

Still, one could object that, even if speakers did not rely on their explicit knowledge

of morphology to assign ratings, the kind of implicit linguistic knowledge accessed in a

66Unfortunalcly. morphological complexity as determined by distributional cues and etymology will tend
to be highly correlated: strings such as -sume and -sist occur in combination with a number of strings
identical to prefixes, in English, because they correspond to real Latin stems.

67What is said here also holds for the undergraduate linguistics majors who participated in the survey

discussed in 4.5 below.
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rating task is distinct from (and not determined by) the implicit linguistic knowledge that
speakers access during real communication. Notice that, for this objection to be
problematic, we have to assume not only that when speakers assign ratings they access an
implicit metalinguistic knowledge component, and not their lexical representations, but also
that the knowledge stored in this component does not derive from the speakers’ actual
linguistic competence, but from some other, as-yet-mysterious source.

While I cannot exclude this hypothesis, I believe that, as it is not clear what the
status of this implicit metalinguistic component unrelated to actual linguistic knowledge
would be, the burden of proof is on the supporters of the hypothesis of its existence. Until
such evidence is provided, it is reasonable to maintain the simpler working hypothesis that
speakers’ morphological ratings derive from their direct or indirect access to lexical

representations of the words under analysis.

4.4.2 DDPL parses and speakers’ complexity ratings: results and

discussion

As I discussed in the previous section, the rating patterns of all eight participants were
highly correlated. Thus, I computed the per-word average rating across all participants, and
I compared the resulting variable to the parses assigned by DDPL to the same words (coded
by assigning | to words treated by DDPL as prefixed and 0 to words treated by DDPL as

non-prefixed) in a correlation analysis.
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The Spearman coefficient of this analysis was .62 (p < .000), i.e., speakers’
morphological ratings and DDPL parses are correlated.68 Thus, we can conclude that,
besides being able to find a number of actual English prefixes, DDPL also assigned
plausible morphological parses to potentially prefixed words.

Of course, while the correlation between DDPL and the speakers’ ratings is
significant, it is by no means “perfect”, as there are some discrepancies between the
speakers’ ratings and the DDPL parses (see appendix 3, where I present the list of words in
the survey, reporting for each word how it was parsed by DDPL and the average speakers’
rating).

Several reasons can explain these discrepancies. First, as there are individual
differences in morphological intuitions (and probably representations) among speakers
(indeed, the ratings of some of the speakers were less correlated with each other than the
DDPL parses and the average ratings), I think that, even if DDPL were a perfect model of
human morpheme discovery, we should not expect a 100% correlation between its parses
and an average of human intuitions.

More importantly, the DDPL is intended to model a hypothesized early stage of
morpheme discovery in which learners rely entirely on distributional cues (see discussion

in chapter 1). However, the speakers who participated in the survey are adults who

68Similar results were obtained in an ANOVA in which the DDPL parses were used to predict the speakers’
ratings. Notice that, with Spearman coefficients, 2 cannot be interpreted as a value indicating how much of
the variance in one variable can be explained by the other variable (see discussion in Woods, Fletcher and

Hughes 1986: 10.7).
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successfully completed the task of morphological acquisition, and are aware of the semantic
and syntactic properties associated with prefixes and stems.9

From this perspective, it is actually surprising that the purely distributionally-driven
parses assigned by DDPL are as correlated to adult speakers’ ratings as the results indicate.

Interestingly, the discrepancies between DDPL and English speakers appear to be
attributable to the fact that DDPL is too “conservative”, i.e., DDPL was more likely to treat
obviously prefixed forms as simple than obviously simple forms as complex. The reader
can verify this by inspecting the data in appendix 3: while it is easy to find obvious misses
among the forms treated as simple by DDPL (unconsciously, distrust, subgroups,
unavoidable...), | would judge that only two of the forms treated as complex by DDPL are
obviously non-prefixed (comin,’ constable).

The same point is made by the following analysis: The average mean rating across
all forms that were treated as complex by DDPL is a rather high 4.05 (recall that speakers
had to rate forms on a scale from 1| to S, assigning 5 to clearly prefixed forms). This
indicates that in general speakers largely agree with DDPL on the status of forms that the
algorithm treated as complex. On the other hand, the average mean rating across all forms
that were treated as simple by DDPL is 2.11. This is still lower than the chance level, but
does suggest that there was less overlap between DDPL parses and speakers’ intuitions in

the domain of forms that are simple for the computational model.

69Indeed, I suspect that the reason why speakers feel more comfortable with a 5-point scale than with more
categorical parses is that they try to accommodate cases in which distributional and semantic cues are in
conflict by assigning intermediate ratings.

70This form is probably a spelling of the colloquial form of coming.
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Thus, as with the list of prefixes found by DDPL, what emerges here is that the
analysis generated by the model is quite accurate (very few “false positives”) but not
exhaustive (many “misses”).

Notice that, as I discussed in the introduction and in chapter 1, the purpose of
assigning parses to potentially complex words in morpheme discovery is to have a set of
forms to analyze in order to discover the semantic and grammatical properties of affixes. In
this perspective, it seems that morpheme discovery should indeed favor accuracy over
exhaustiveness: a relatively small set of words containing a certain prefix is probably more
helpful, in identifying the properties of that prefix, than a larger set that also includes many

pseudo-prefixed forms.

4.4.3 Assessing the performance of the distribution-driven model:

concluding remarks

The analysis of the results of the DDPL simulation shows that distribution-driven heuristics
such as the ones implemented by this model can be quite helpful in morpheme discovery,
both in terms of finding the prefixes of a language and in terms of assigning morphological

parses to words.

As I discussed in the introduction of this study, the success of this computational
simulation constitutes evidence against the claim that children cannot in principle learn
something about morphology from distributional evidence, since distributional evidence
does not provide enough useful cues. Clearly, even the relatively simple distributional cues

used by DDPL could be of great help to language learners.
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We observed in both the analysis of the prefixes and the analysis of the parses that
DDPL is better in terms of accuracy than in terms of exhaustiveness. At least with respect
to the misses in the list of prefixes, the excessive conservativeness of DDPL is in part due

to the lexicon generation component of the model, which should probably be revised.

4.5 Evidence from the morphological treatment of semantically opaque

words: a second survey

As I discussed at length in the introduction and in chapter 1 (see in particular section
1.4.3.1), the treatment of semantically opaque but potentially prefixed forms constitutes a
potential source of evidence on the “psychological relevance” of distributional cues in
morpheme discovery.

Without going into details, the argument goes like this: If we show that DDPL
assigns parses matching speakers’ intuitions to potentially prefixed but semantically opaque
words, then it seems reasonable to conclude that speakers relied on distributional cues such
as the ones used by DDPL when determining the morphological status of those words, as
they could not have relied on semantics (nor other grammatical cues -- see 3.2.2 above).

To test this, I designed another survey, using the same methodology described in

section 4.4.1, but with a corpus composed entirely of semantically opaque words.
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4.5.1 Constructing the semantically opaque word list

Following a standard practice in morphological processing studies (see, for example,
Marslen-Wilson, Tyler, Waksler and Older 1994), I first conducted a survey in which three
Jjudges were asked to rate a set of forms from the DDPL output for semantic transparency,
and then I selected forms that received a low average semantic transparency rating to
construct the survey corpus.

As the DDPL output contains a total of 3,651 forms beginning with one of the
prefixes postulated by the model, it was not feasible to ask the semantic transparency
judges to assign a rating to all the forms. Thus, the corpus presented to the judges was
constructed in the following way.

First, I made a preliminary division of the 382 words treated as prefixed by DDPL
into two categories: words that I judged to be obviously prefixed (productively formed,
semantically transparent), and words that may or may not be prefixed (this preliminary list
included a wide range of types, from obviously monomorphemic words such as adage to
only slightly lexicalized forms such as inhumane). The first list was composed of 101
words, the second list of 181 words. I randomly selected 10 words from the first list, and [
kept all the 181 words from the second list.

[ then randomly selected, from the list of the remaining 3269 words that begin with
a string identical to a prefix but are treated as simple by DDPL, 10 more words that were
obviously prefixed and completely transparent, and 200 words that may or may not be
prefixed.

The corpus presented to the three judges was composed of the 20 completely
transparent words and 381 “ambiguous” words selected in this way. The 20 completely

transparent words served both as a form of control and, more importantly, to make sure
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that the judges were not going to rate some semantically opaque forms as transparent
merely to make use of the whole scale.

The judges were two graduate students and one postdoctoral fellow in the UCLA
Linguistics Department, and were selected because of their strong background in
morphology/processing.”! Judges were asked to rate the words in the corpus on a scale
from 1 to 5, assigning 1 to completely opaque words and S to completely transparent
words. The instruction sheet given to the judges is presented in appendix 2.

A series of correlation analyses showed that the judges’ ratings were highly
correlated (both Pearson and Spearman correlation coefficients in all pairwise comparisons
were higher than .7). Thus, I computed the average cross-judge rating for each word in the
corpus.

As expected, the 20 transparent words received very high ratings (the mean rating
for this set of words was 4.89). Of the remaining forms, 97 out of the 181 words treated as
prefixed by DDPL received an average rating lower than 2.5; 183 out of the 200 words

treated as simple by DDPL received an average rating lower than 2.5.72

7H selected “expert” judges because I wanted to make sure that they would understand the task, and in
particular that they would understand the distinction between rating forms on the basis of semantic
transparency vs. morphological complexity.

72Notice the asymmetry between the two sets: just a little more than half of the complex (for DDPL)
words that were pre-selected as potentially opaque are indeed semantically opaque, whereas 90% of the
simple (for DDPL) words that were pre-selected as potentially opaque are indeed semantically opaque. This
suggests that, although DDPL did not have access to semantic information, the model did show a preference
for treating semantically opaque words as simple. This is good from the point of view of a general

assessment of the DDPL performance, but it made it harder to design the survey presented here.
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The corpus for the morphological complexity survey was thus composed of the 97
prefixed (for DDPL) forms that had a semantic rating lower than 2.5, and 97 randomly
selected words from the 183 simple (for DDPL) words with a semantic rating lower than
2.5.73 The average semantic rating across the prefixed (for DDPL) forms in this corpus
was 1.54; the average rating across the simple (for DDPL) forms in this corpus was
1.21.74 The survey corpus, together with the average complexity rating and DDPL parse of

each form, is presented in appendix 4.

731 decided not to add a control set of semantically transparent forms, as I wanted to maximize the
participants’ sensitivity to differences in morphological status among opaque words. If some semantically
transparent words had been inserted, speakers would have probably reserved the high values of the rating
scale for such forms, “squeezing” the ratings of semantically opaque words within a narrow range at the
bottom of the scale.

740ne of the judges was also asked to rate the 194 forms in the corpus by assigning ratings on a 5 point
scale on the sole basis of the degree of semantic transparency of the potential prefix of each form. The
average prefix transparency rating across forms treated as complex by DDPL was 1.86; the average prefix
transparency rating across forms treated as simple by DDPL was 1.46. Thus, while there is a noticeable and
slightly worrisome difference in the degree of prefix transparency between the two sets, it seems safe to
state that not only the forms in both sets are semantically opaque when considered as wholes, but also that

the potential prefixes occurring in them tend to be opaque.
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4.5.2 Methodology and data collection/analysis

The same methodology described in section 4.4.1 was followed in this second survey. The
words were presented in random list format, followed by the corresponding potential
prefixes, and the participants were asked to rate them on a 5-point scale, assigning 1 to
clearly non-prefixed forms and 5 to clearly prefixed forms. The instructions given to the
participants in this survey were identical to the ones given to the participants in the previous
survey.

A group of eight English native speakers took part in the survey. None of them had
participated in the previous study. Of these eight speakers, one was a postdoctoral fellow
and two were graduate students in the UCLA linguistics department. The other five
participants were UCLA undergraduate linguistics majors.

Pairwise Pearson and Spearman correlation coefficients were computed for the
ratings of all pairs of participants. The patterns of three participants were poorly correlated
with those of the other participants (and with each other). Thus, their data were
discarded.’s

As the ratings of the remaining participants were highly correlated (all pairwise
Pearson and Spearman coefficients were higher than .5), the per-word average rating value
across these participants was computed, and the resulting variable was compared to the
parses assigned by DDPL to the same words (coded by assigning 1 to words treated by
DDPL as prefixed and O to words treated by DDPL as non-prefixed) in a correlation

analysis.

75For each of these three participants, the correlation cocfficient between her/his ratings and those of a

majority of other speakers was lower than .4.
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The Spearman coefficient of this analysis was .46 (p < .000), i.e., the speakers’
morphological ratings of the list of semantically opaque words in the survey were

significantly correlated to the parses assigned by DDPL to the same words.”6

4.5.3 Morphological complexity of semantically opaque words: discussion

If the participants in the survey had mostly relied on semantic cues when assigning ratings
to the words in the list, they should have assigned uniformly low ratings to all words.

However, this was not the case: as shown by the correlation between the average
ratings and DDPL parses, in general speakers assigned higher ratings to words that DDPL
treated as complex, lower ratings to words that DDPL treated as simple. The average mean
rating across all words that were complex for DDPL was 3.78; the average mean rating
across all words that were simple for DDPL was 2.81.

The most plausible explanation for this asymmetry is that the way in which
speakers represent potentially complex words is affected by distributional factors such as

the ones implemented in DDPL.77 In turn, a plausible hypothesis about why distributional

76Similar results were obtained in an ANOVA in which the DDPL parses were used to predict the speakers’
ratings.

7TDonca Steriade pointed out a possible confound in the survey word list: The speakers could have decided
that some of the words in the list are simple or complex on the basis of phonological (rather than
distributional) cues. For example, speakers could have unanimously rated cod as non-prefixed simply
because English stems must contain a syllabic segment; and they could have been more inclined to treat

suppress(ed) as complex because it is unusual for non-prefixed disyllabic verbs ending in CVC (with short
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factors have an effect on speakers’ morphological intuitions is that speakers relied on
distributional cues during morpheme discovery.

On the other hand, adult speakers are obviously also sensitive to semantic cues,
when rating words for morphological complexity. As all the words in the survey corpus
were semantically opaque, it is not surprising that the results of this second survey are less
clear-cut than those of the previous survey (as shown by the lower correlation coefficient
and by the fact that there is less difference between the average mean ratings assigned to
DDPL simple and complex words).

[ suspect that semantics influenced the results both directly and indirectly. First, the
morphological representations of adult speakers are almost certainly affected by the
semantic structure of words. Thus, while speakers seem to be able to distinguish words

that are complex on purely distributional grounds from simple words, still it is likely that

V) to be stressed on the last syllable. I asked an experienced phonologist to list all the words in the survey
corpus for which speakers could have relied on phonological cues (either to decide that they are simple, or to
decide that they are complex). The phonologist assigned marks according to the following criteria: A form
was marked as “simple from a phonological point of view" if the potential stem of the form did not contain
a syllabic segment; and/or the potential stem was stressles; and/or the potential stem contained a
phonotactically or orthographically impossible stem-initial sequence, an/or the potential prefix or stem
contained other phonologically impossible structures. A form was marked as *“complex from a phonological
point of view” if it was a disyllabic verb ending in CVC (with short V) stressed on the last syllable (or a
derivative of such form). In total, the phonologist marked 33 forms. I ran a Spearman correlation analysis
after removing these forms. The results were very similar to the ones reported in the text (correlation
coefficient = .44, p < .000). This preliminary analysis suggests that the results reported here are not due to

phonological confounds.
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such words are not as straightforwardly complex as semantically transparent forms. Hence,
we expect that speakers will be less inclined to assign very high ratings to distributionally
complex but semantically opaque words.”8

Moreover, as a consequence of the fact that the distinction between semantically
opaque but complex forms and simple forms is probably not as clear-cut as the distinction
between complex and transparent words and simple words, the participants in the second
survey had to provide ratings based on more subtle judgments, requiring more
sophisticated metalinguistic introspection skills. Thus, as this was a harder task, it is likely
that the participants in the second survey had more difficulty with their task than the
participants in the first survey, and that the lower correlation coefficient is in part due to
“noise” in the ratings.

However, beyond these considerations, what is truly important from our point of
view is that, still, there is a high correlation between DDPL parses and some speakers’
ratings of semantically opaque words. Thus, the survey results provide support for the
hypothesis that humans are sensitive to distributional cues to morphological constituency

such as the ones used by DDPL.

78[ndeed, if no correlation between DDPL and the speakers had emerged, we could not have been sure that
the negative result was due to the fact that speakers do not rely on distributional cues such as the ones
employed by DDPL during morpheme discovery. The negative result could have instead been due to the fact
that, once speakers acquire sufficient evidence about the semantic properties associated with morphemes,
they revise their morphological representation of forms, and they change (from complex to simple) the
representation of those forms that were originally treated as complex on distributional grounds, but whose

complex representation is not supported by semantic evidence.
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Notice that this is a weaker claim than the one we are truly interested in, i.e. that
humans use distributional cues such as the ones used by DDPL during morpheme
discovery. However, I believe that it is reasonable to hypothesize that humans are sensitive

to distributional cues bhecause they relied on them to discover morphemes.
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4.6 Testing DDPL with a phonetically transcribed input

I ran DDPL with the same list of words from the PHLEX database used for the analyses
described above, but using phonetic transcriptions of the input words.”? In the cases in
which a word had multiple phonetic transcriptions, the first of the transcriptions was
selected.

Given this input, DDPL came up with the list of prefixes in (90):

(90) ¢€ks €kstr mmp n Instru Intar  an andar di dis di
kan kam ksn man nan pers pr re reidio ri sab
supar tren

Notice that ekstr is an allomorph of extra- (occurring before vowels in forms such as
extraordinarily) and treen is an allomorph of trans- (occurring before s in forms such as
transcript).

This list contains the false positives meen (man-) and rerdio (radio-), which are also
in the list of orthographic prefixes in (85). Moreover, the list in (90) contains the false
positives mp and mstru, which are not in (85), and which do not correspond to any
plausible linguistic constituent.

The following prefixes from the list in (85) were missed in the simulation with

phonetic transcriptions:

91) ad- auto- co- cor- mis- over- sup- sur- tele-

79Stress and syllable boundary marking symbols were removed from the transcriptions.
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With the exception of co- and sup-, these prefixes were missed in this run because they did
not meet the constraint requiring word-initial strings to occur before a certain number of
“long” word-final strings (something probably due to the fact that phonetically transcribed
words tend to be in general shorter than orthographically transcribed words, with a
different distribution of length across forms).80

Trans- (more precisely, its allomorph tren) was the only prefix found in the
simulation with phonetically transcribed input but not in the simulation with
orthographically transcribed input.

Clearly, future research should address issues related to assessing the performance

of DDPL with a phonetically transcribed input in more detail.

4.7 Summary

In this chapter, I presented the results of a simulation in which the DDPL model was tested
with a list of English words from the Brown-PHLEX corpus as its input. The results of the
simulation suggest that DDPL is, to a large extent, successful at finding prefixes and
assigning morphological parses to words. The problems the model encountered appear to
be due to its lexicon generation component, rather than to the MDL-based lexicon selection
formula at its core.

Moreover, I presented the results of a survey that shows that the morphological

complexity ratings assigned by English speakers to semantically opaque but potentially

80fn this simulation, [ = 6.4.
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prefixed forms are correlated with the parses assigned by DDPL to the same words. As I
argued in previous chapters, this constitutes evidence that humans are sensitive to

distributional cues such as the ones implemented in DDPL..
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Chapter §

Conclusion

The results of the simulation reported in the previous chapter provide support for the
general hypothesis that distributional information of the kind encoded in the DDPL model
can in principle be helpful in morpheme discovery. Moreover, the reported convergence
between the DDPL parses and speakers’ ratings of a set of semantically opaque words
provides some preliminary support for the hypothesis that humans rely on distributional
cues such as the ones employed by the automated learner when assigning morphological
parses to some words. A plausible explanation of this finding is that speakers are sensitive
to such cues because they employed them in order to assign morphological parses during
morpheme discovery.

Clearly, while I believe that the results presented are encouraging, many questions
are still open, and much more research has to be done before we can reach safe conclusions
about the nature and role of distributional evidence in morpheme discovery. In particular, I
will conclude this study by discussing some of the future directions that the computational
and empirical work I am reporting could take.

In terms of improving the DDPL model, the first step one should take would be to
design alternative lexicon generation algorithms, which explore a larger (or, rather, a
morphologically more sensible) area of the hypothesis space. I observed that the lexicon
selection formula based on the shortest lexicon + encoding criterion constitutes the
conceptual core of the computational model. However, in order for a lexicon to be
evaluated by the selection component of the model, that lexicon must have been generated

by the generation component.
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As I discussed in chapter 4, the lexicon generation component fails to generate
some crucial analyses that should be evaluated (and, one hopes, selected) by the lexicon
selection component. For example, the lexicon generation component fails to generate
analyses in which the string post- is treated as a prefix.

A very simple way to assess the impact of this problem would be to force the
lexicon generation component to generate some of the analyses that we know to be
plausible (for example, the analysis in which post- is a prefix). In this way, we could at
least check whether, once it is artificially presented with a plausible analysis of the input,
the lexicon selection component is able to select it (for example, if the lexicon selection
component would select a lexicon in which post- is a prefix, once it is presented with such
a lexicon).

However, while this approach could allow us to assess the performance of the
shortest lexicon + encoding model in a more satisfactory way, it would be of course
crucial, in the long term, to come up with a better lexicon generation algorithm, which
generates better analyses without requiring ad hoc interventions.

The DDPL model should be extended and revised in many other respects as well.
For example, it would be interesting to design and test variations of the model in which the
weights assigned to different heuristics are changed, and to compare the results in order to
assess the role that each of the heuristics is playing in the model.

Moreover, it would be interesting to extend the model to suffixation, and possibly
to design algorithms in which the distributional information used by DDPL is integrated
with other types of information (such as syntactic category information).

From the point of view of testing the model, we should first of all test DDPL in
simulations with other English corpora, both in orthographic and phonetic transcriptions.

Furthermore, DDPL should be tested using input corpora from other languages.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In terms of collecting empirical evidence, we should first of all collect data from
more speakers, possibly re-designing the survey task in order to make it feasible for
speakers with no linguistics background. Furthermore, it would be interesting to collect
data using other methods (for example, using a morphological priming paradigm), to make
sure that the results we obtained are not task-specific. Finally, it would of course be
important to collect developmental data from children, to have a more concrete idea of when
and how human learners perform morpheme discovery.

While all these lines of research should be pursued in the near future, and I am sure
that readers will raise other important issues that were not dealt with here, I believe that this
study (together with the work of Brent and Goldsmith reviewed in chapter 2) constitutes an
encouraging starting point for the investigation of morpheme discovery in general, and of

the role of distributional cues in this domain in particular.
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Appendix 1

MORPHOLOGICAL COMPLEXITY RATING INSTRUCTIONS

Each of the words in the attached list is potentially prefixed, in the sense that it begins with

a string identical to an English prefix.

Probably, you will have the intuition that some of these words are actually prefixed, others
are not. For example, both the words coexist and cocoon begin with the string co.
However, it is likely that you will have the intuition that, while the word coexist is prefixed
(i.e. it is composed of the prefix co plus the stem exist), the word cocoon is not prefixed
(i.e. it is not composed of co plus coon). There are intermediate cases in which the
morphological status of words (prefixed vs. non-prefixed) is not so obvious, and different

speakers may have different intuitions.

Your task is to rate the degree of prefixedness of each word, on the basis of your native
speaker intuitions (and NOT on the basis of what you learned in linguistics classes or
elsewhere!) You should rate these words on a 5 point scale, assigning 1 to words that are
clearly non-prefixed (such as cocoon) and S to words that are clearly prefixed (such as

coexist). Use the intermediate values for less clear-cut cases.
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Since the words of the list were randomly selected from a corpus of written English, the list
may contain last names, misspellings, technical terms etc. If you do not have intuitions

about such forms, please assign them a rating of 1.

To avoid ambiguities, I entered next to each word the potential prefix I would like you to
consider. This means that, for example, even if a word begins with the string inter, if the
word is followed by in, you should decide whether the word contains the prefix in, and not

the prefix inter.

Please, complete the task in one session. Try to assign ratings quickly, and do not change

ratings once you wrote them down.

NB: in the version of these instructions presented to graduate student and post-docs (and
NOT on the basis of what you learned in linguistics classes or elsewhere!) was replaced
with (and NOT on the basis of their etymology or the morphological theory of your

choice!).
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Appendix 2

SEMANTIC TRANSPARENCY SURVEY INSTRUCTIONS

Each of the words in the attached list is potentially prefixed, in the sense that it begins with

a string identical to an English prefix.

Your task is to rate the degree of semantic transparency of each (potentially) prefixed word
on a 5 point scale, using 1 for completely semantically opaque words (no relation between
the meaning of the word and the meanings of the potential components) and 5 for
completely semantically transparent words (the meaning of the word is entirely predictable

from the meanings of the components).

Notice that there could be mismatches between your semantic analysis and your
morphological intuitions. In particular, you may have the intuition that certain words are
morphologically complex (prefixed) even if they are (almost) completely opaque from a
semantic point of view. In such cases, you should assign ratings on the basis of your

semantic analysis, and not on the basis of your morphological intuitions.
Since the words of the list were randomly selected from a corpus of written English, the list

may contain last names, misspellings, technical terms etc. If you do not have intuitions

about the semantic structure of such forms, please assign them a rating of 1.
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To avoid ambiguities, I entered next to each word the potential prefix I would like you to

consider.
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Appendix 3

RESULTS OF FIRST SURVEY

(ddpl: parses assigned by DDPL, coded as 0 = non-prefixed, 1 = prefixed; avg_rating:

average per word complexity rating across the participants in the survey).

word prefix ddpl avg_rating
ada ad 0 1
additional ad 0 1.625
adelia ad 0 1
administered ad 0 2.125
administration ad 0 2.125
adolescent ad 0 1.25
adopted ad 0 1.375
automnobile auto 0 3.375
coastal co 0 1
cocoon co 0 1
cohesive co 0 2.5
coincidence co 0 4.125
college co 0 |
collusion co 0 1.625
colonel co 0 1
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columnist co 0 1
commissions com 0 2.125
commotion com 0 1.5
communication com 0 1.625
communist com 0 1.5
company com 0 1.25
competition com 0 1.25
components com 0 1.625
conceal con 0 1.625
conclusion con 0 2.625
conferred con 0 2.125
confide con 0 1.75
congregational con 0 1.875
conjugates con 0 1.625
conservatory con 0 2
conspired con 0 1.875
constituents con 0 2
constitution con 0 1.5
consultation con 0 1.5
contends con 0 1.75
contingencies con 0 2
contradiction con 0 1.75
convoy con 0 1.375
coop co 0 1.5
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corporations
corso
costume
couple
coupler
couplers
courteously
courting
debonnie
debris
deductible
deemed
definition
delegation
delivers
delphine
denied
denominations
depot
describe
destinies
destroyers
destroying

detachment

cor
cor
co
co
co
co
Cco
co

de

de

de
de
de
de

de
de
de

de

OQOOOOOOOOOOOOOOOOOOOOOO

1.25

1.375
1.25
2.375

1.5
1.5
1.25

1.375
3.25
1.25
2.375

1.375
1.375
3.375
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detergents de 0 1.5
dewey de 0 1
disarmament dis 0 4.75
discharges dis 0 3.5
discs dis 0 1
disparate dis 0 2.375
dissuade dis 0 2.875
distinctions dis 0 1.5
distinctly dis 0 1.625
distrust dis 0 5
examination ex 0 1.375
exchanged ex 0 4
exclamation ex 0 1.875
excluded ex 0 2.375
execute ex 0 1.375
executives ex 0 1.375
experts ex 0 1.25
explaining ex 0 1.625
incestuous in 0 2

inch in 0 1
increasingly in 0 2.25
incredibly in 0 3.375
incumbent in 0 2.5
indebted in 0 35
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indulge in 0 2
inform in 0 1.875
initiation in 0 1.5
inna in 0 1.375
instance in 0 1.5
insulation in 0 1.875
intensify in 0 2
intensity in 0 1.625
intentions in 0 1.75
internal inter 0 1.875
intimately in 0 1.75
intrusion in 0 2.25
investigating in 0 2.25
precincts pre 0 2.125
prescription pre 0 35
presiding pre 0 2.125
pretense pre 0 2.875
psychological psycho 0 3.875
reached re 0 1
reactors re 0 2.125
realizes re 0 1.125
rear re 0 1
reason re 0 1
reckoning re 0 1
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reconciled re 0 2.75
recordings re 0 1.25
reddish re 0 1
redoute re 0 2.5
reed re 0 1
referral re 0 1.625
register re 0 1.125
registration re 0 1.25
reid re 0 1
repeal re 0 2.375
repertory re 0 1.5
replacing re 0 4.25
reporters re 0 1.5
resolve re 0 3.375
respiratory re 0 1.25
response re 0 1.625
retained re 0 2.5
retaining re 0 2.375
returned re 0 2.875
reversed re 0 2.375
subgroups sub 0 5
subscription sub 0 2.75
subsequent sub 0 3.25
subtracting sub 0 2.875
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supernaturalism super 0 4.625
supersonic super 0 4.375
supremely - sup 0 1.25
surrounded sur 0 1.875
survival sur 0 1.875
telegrapher tele 0 3.625
unavoidable un 0 5
unconsciously un 0 4.375
underground under 0 4.25
underlying under 0 4.125
underworld under 0 4.625
unemployment un 0 5
unloaded un 0 5
unorthodox un 0 5
unwanted un 0 5
administering ad 1 2.25
admissions ad 1 2
autobiographical auto 1 4.375
autobiography auto 1 4.875
autofluorescence auto 1 3.875
comin com 1 1
complains com 1 1.375
composing com 1 1.75
compresses com I 2.5
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conducts con 1 2.125

conformation con 1 2.75
conformed con 1 2.25
connotation con 1 2.875
conserve con 1 2.25
constable con 1 1.5
convent con 1 1.5
corresponded cor I 2.375
defender de 1 1.75
detested de 1 1.125
disability dis | 5
disadvantage dis | 5
disappearing dis 1 4.375
disapprove dis | 5
disapproved dis 1 5
disarmed dis 1 4.875
disfigured dis 1 4.625
disgrace dis 1 3.125
dislikes dis 1 5
dismounted dis 1 4.75
disobeyed dis 1 5
disorganized dis 1 5
disprove dis 1 5
dissection dis 1 2.75
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dissolving dis 1 2.875

disunity dis 1 4.5
excite ex 1 1.5
exclaiming ex 1 1.875
extracts ex 1 2.375
extraordinarily extra 1 4.5
extraterrestrial extra 1 4.75
inaccurate in 1 5
incite in 1 1.875
inconsistent in 1 4.875
inconvenience in 1 4.875
indisposed in 1 4
ineligible in 1 4875
inflexible in 1 5
informally in 1 3.375
infrequent in 1 5
inholdings in 1 2.75
inhumane in 1 5
inroads in 1 3.25
insanity in 1 4
insecure in 1 5
insensitive in 1 4.5
insides in | 2.5
interfaces inter 1 3.625
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internationally inter | 4.875

interrelation inter 1 4.75
interrelations inter 1 4.75
interstage inter 1 3.75
intertwined inter 1 4.25
inviolate in 1 3.75
involuntary in 1 4.75
misled mis 1 4.25
nonexistent non 1 5
nonfiction non | 4.625
nonspecifically non 1 5
nonverbal non 1 5
nonwhite non I 5
overlap over 1 3.625
overload over 1 4.375
overlook over 1 4.875
overlooks over 1 4.5
overpayment over 1 5
overreach over 1 4.625
overtones over 1 4.5
parapsychology para I 5
parasites para 1 2.375
predetermined pre 1 5
premature pre 1 4.5
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premix pre 1 4.875

presumptuous pre 1 2.25
psychoanalysis psycho 1 4.5
psychologically psycho 1 3.875
psychotherapy psycho | 4.375
reagents re 1 2.625
rearrange re | 4.875
reassured re 1 5
recollection re 1 4.25
recollections re 1 3.625
reconsideration re 1 4.625
recounting re 1 4.375
recovering re 1 2.125
recurrent re 1 4.25
redecorating re 1 4.875
reformer re 1 2.625
regaining re 1 4.125
renamed re 1 4.875
reorganized re | 5
repressed re 1 3.375
resided re 1 1.25
resides re 1 1.25
restatement re 1 5
resuspended re 1 4.5
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rewards re 1 1.5

subcommittee sub 1 5
subconsciously sub 1 5
subsections sub 1 4.75
subtitled sub 1 4.625
supplant sup 1 2
supporter sup 1 1.375
unaffected un 1 4.875
unanalyzed un 1 5
unarmed un 1 4.875
unawareness un 1 4.5
unconditional un 1 4.875
uncontrolled un 1 5
undercurrent under 1 4.375
underfoot under 1 4.375
undershirt under 1 4.125
underwrite under 1 4.5
underwriters under 1 4.125
undeveloped un 1 5
undisciplined un 1 5
undisturbed un 1 4.75
undressing un I 4.875
uneconomical un 1 4.875
unending un l 5
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unexplained un 1 5

unfitting un | 4.125
unfolds un 1 4.625
unheard un 1 4.875
unhurried un 1 5
unkind un 1 5
unlined un | 5
unmoved un 1 4.875
unnamed un 1 5
unnoticed un 1 4.875
unpaired un | 4.5
unreasonable un | 4.875
unreliable un 1 5
unrelieved un 1 4.375
unsigned un 1 4.875
unspoken un 1 5
unstressed un 1 5
unsuitable un | 4.875
unveiled un | 4.75
unwarranted un 1 5
unwise un 1 5
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Appendix 4

RESULTS OF SECOND SURVEY

(ddpl: parses assigned by DDPL, coded as O = non-prefixed, 1 = prefixed; avg_rating:
average per word complexity rating across the S participants in the survey whose response

patterns were highly correlated).

word prefix ddpl avg_rating
administration ad 0 4
admissible ad 0 3.8
cod co 0 1
collapsed co 0 3.2
colors co 0 1
commodity com 0 2.2
commuting com 0 3.8
comptroller com 0 1.4
compute com 0 3.2
comrade com 0 3
concrete con 0 3.6
concur con 0 4.4
confronting con 0 3.6
congressional con 0 3.6
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consensus con 0 3.8
conspicuous con 0 3.2
consultants con 0 4
contemplate con 0 3.8
contracting con 0 3.8
contributes con 0 3.6
conventions con 0 3.8
conversations con 0 3.8
copied co 0 1
copper co 0 1
cossack co 0 1
cossacks co 0 1
coupled co 0 1
debts de 0 1
decency de 0 1.4
decrees de 0 2.8
deeds de 0 1
defends de 0 3.6
delegate de 0 2.8
denied de 0 2
depravity de 0 3
depth de 0 1
destinies de 0 1.4
detectable de 0 2.8
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developer de 0 3

deviant de 0 3.6
discipline dis 0 24
dispensation dis 0 4.2
distinct dis o 4

distinguishes dis 0 3.2
distortion dis 0 3.6
excerpts ex 0 3.2
exciting ex 0 3.2
executions ex 0 2

executives ex 0 2.6
exemption ex 0 3

expenditure ex 0 2.8
experimenter ex 0 3.2
expressive ex 0 3.8
extant ex 0 2.6
extruded ex 0 4.2
incepting in 0 4

inclination in 0 4

industrialized in 0 2.6
infestations in 0 3.6
initials in 0 1.4
injuries in 0 2.2
insults in 0 34
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intellectuals in o 2
intense in o 3
interesting inter 0 2
introduces in 0 24
inverse in 0 3.6
involve in 0 3.8
involvement in 0 4
overlapped over 0 4.8
parameter para 0 4
prevot pre 0 1
reader re 0 1
rebelling re 0 2.4
rebels re 0 1.8
received re 0 3.6
reflex re 0 4.2
region re 0 1
registration re 0 2.6
regrets re 0 2.4
reich re 0 1
rejects re 0 34
remain re 0 3
remainder re 0 3.2
remained re 0 2.6
repeal re 0 4.4
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reporter re 0 4.2
resin re 0 1

respectable re 0 2.6
respected re 0 2.4
responsibility re 0 2.6
revelation re 0 3.8
reward re 0 3.2
subsequent sub 0 44
supported sup 0 3.6
uniquely un 0 1

unit un 0 I

adage ad 1 1.6
addiction ad 1 3.6
administer ad | 4.2
administering ad I 4

admissions ad 1 4

adsorbed ad 1 3

coefficient co 1 4.6
comin com 1 1

compassion com l 4.4
compiling com 1 3.6
complains com l 2.8
composing com 1 3.6
compresses com 1 3.8
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concave con I 4.2

conducts con 1 3.8
confirms con 1 3.6
conformation con 1 4.4
conformed con 1 4.2
confronts con 1 4

connotation con 1 3.6
conserve con 1 4.2
consoles con 1 3.2
constable con 1 3

consummation con 1 4.2
contested con 1 34
convent con 1 3.6
convince con 1 3.6
convocation con 1 4.6
corresponded cor | 4.4
correspondents cor 1 3.8
defender de | 3.2
defoe de 1 1

delights de 1 1.4
depositions de 1 3.4
depressing de 1 4.2
detested de 1 2.8
discounts dis 1 4.2
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dismissing dis 1 4.2

dispatched dis | 34
dispatches dis 1 3

dissection dis 1 4.2
dissolution dis I 4.6
dissolving dis 1 4.4
exchanges ex 1 4

exchanging ex 1 4.2
excite ex 1 34
exclaiming ex 1 4

exposing ex l 3.6
extracts ex 1 4.4
incite in 1 3.8
incited in | 4

incorporation in 1 4.6
infamous in 1 4.8
informing in | 4

inholdings in 1 4

injunction in 1 4.2
inlets in 1 4.4
insides in 1 4.6
invest in | 38
overhaul over | 4.6
overlap over 1 4.6
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parades para 1 1

parasites para 1 3.6
parasol para 1 3.6
preface pre 1 4.4
prescribe pre 1 4.6
presumptuous pre 1 4

pretext pre 1 4.2
recitation re 1 3.8
recollection re 1 4

recollections re 1 4.6
recounting re 1 4.6
recounts re 1 4.4
recovering re 1 4

recurrent re 1 4.6
refine re 1 4.4
reformed re 1 4.2
reformer re 1 4

repetitions re 1 3.8
repressed re 1 4.2
reserving re 1 4

resided re 1 2.8
resides re 1 2.2
resolving re 1 4.2
retailing re 1 3.4
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retreating re 1 3.2

rewards re 1 2.8
sublime sub 1 3
submission sub 1 4
supplant sup 1 3.6
supporter sup 1 3.6
suppositions sup 1 4
suppressed sup 1 3.8
surname sur 1 4.8
surrendering sur 1 3
underwrite under 1 4.8
underwriters under 1 4.8
229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

Albro, D. 1998. PO : ut ogical analyzer, manuscript, UCLA.

Anderson, S. 1992. A-Morphous Morphology, Cambridge: Cambridge University Press.

Aronoff, M. 1994. Morphology by itself, Cambridge: MIT Press.

Baayen, H. 1994. Productivity in language production, Language and Cognitive Processes

9: 447-469.

Baayen, H. and R. Lieber 1991. Productivity and English derivation: A corpus-based

study, Linguistics 29: 801-843.

Baayen, R., R. Piepenbrock and F. van Rijn 1993. The CELEX lexical database (CD-
ROM), Philadelphia: Linguistic Data Consortium.

Baayen, H., R. Schreuder and C. Burani submitted. Parsing and _semantic opacity in

morphologica SS|

Ballard, D. 1997. An introduction to natural computation, Cambridge: MIT Press.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Baroni, M. 2000. Usi

driven prefix learner, paper presented at the LSA Meeting, Chicago.

Baroni, M. in press The representation of prefixes in the Italian lexicon: Evidence from the

distribution of [s] and [z], Yearbook of Morphology-

Bentin, S. and L. Feldman 1990. The contribution of morphological and semantic

relatedness to repetition priming at short and long lags: Evidence from Hebrew,

Quarterly Journal of Experimental Psychology 42A: 693-711.

Brent, M. 1993. Minimal generative explanations: A middle ground between neurons and

triggers, Pro. ings of t fer of t itiv ience

Society: 28-36.

Brent, M. and T. Cartwright 1996. Distributional regularity and phonotactic constraints are

useful for segmentation, Cognition 61: 93-125.

Brent, M., S. Murthy and A. Lundberg 1995. Discovering morphemic suffixes: A case

study in minimum description length induction, paper presented at the Fifth

International Workshop on Al and Statistics.

Cartwright, T. and M. Brent 1997. Syntactic categorization in early language acquisition:

Formalizing the role of distributional analysis, Cognition 63: 121-170.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cormen, T., C. Leiserson and R. Rivest 1990. Introductjon to algorithms, Cambridge:
MIT Press.

de Marcken, C. 1996. Unsupervised language acquijsition, MIT doctoral dissertation.

Ellison, T. 1992. The machine leaming of phonological structure, University of Western

Australia doctoral dissertation.

Emmorey, K. 1989. Auditory morphological priming in the lexicon, Language and
Cognitive Processes 4: 73-92.

Feldman, L. (ed.) 1995. Morphological aspects of language processing, Hillsdale: LEA.

Goldsmith, J. submirted. Unsupervised learning of the morphology of a natural language.

Gonnerman, L. and E. Andersen 2000. Graded semantic and phonological similarijty
effects in processing morphologically complex words, paper presented at the 9th

International Morphology Meeting, Vienna.

Greenberg, J. 1966. Some universals of grammar with particular reference to the order of
meaningful elements, Cambridge: MIT Press.

Griinwald, P. 1998. The minimum description length principle and reasoning under

uncertainty, Amsterdam: ILLC.

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Harris, Z. 1955. From phoneme to morpheme, Language 31: 190-222.

Hutchinson, A. 1994. Algorithmic leamning, Oxford: Clarendon Press.

Jusczyk, P. and R. Aslin 1995. Infants' detection of the sound patterns of words in fluent

speech, Cognitive Psychology 29: 1-23.

Kucera, H. and W. Francis 1967. Computational analysis of present-day American

English, Providence, RI: Brown University Press.

Laudanna, A. and C. Burani 1995. Distributional properties of derivational affixes:

implications for processing, in Feldman 1995: 345-364.

Li, M. and P. Vitanyi 1997. An_intro ion_to Kolmogorov complexity an

applications, New York: Springer.

Marchand, H. 1969, The categories and types of present-day English word-formation: A
synchronic-diachronic approach, Munich: Beck.

Marslen-Wilson, W., L. Tyler, R. Waksler and L. Older 1994. Morphology and meaning
in the English mental lexicon, Psychological Review 101: 3-33.

McCarthy, J. and A. Prince 1986. Prosodic morphology, manuscript.

McCarthy, J. and A. Prince 1993. Prosodic Morphology I, manuscript.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mikheev, A. 1997. Automatic rule induction for unknown-word guessing, Computational
Linguistics 24: 405-423.

Nespor, M. and I. Vogel 1986. Prosodic phonology, Dordrecht: Foris.

Nusbaum, H., D. Pisoni and C. Davis 1984. Sizing up the Hoosier Mental Lexicon:

Measuring the familiarity of 20,000 words, Research on Spoken Language
Processing PR 10: 357-376.

Pinker, S. 1984. Language learnability and language development, Cambridge: Harvard

University Press.

Quirk, R., S. Greenbaum, G. Leech and J. Svartvik 1985. A comprehensive grammar of
the English language, London: Longman.

Redington, M. and N. Chater 1998. Connectionist and statistical approaches to language
acquisition: A distributional perspective, Language and Cognitive Processes 13:
129-191.

Rissanen, J. 1978. Modeling by shortest data description, Automatica 14: 456-471.

Roelofs, A. and H. Baayen submitted. Semantic transparency in producing polymorphemic

words.

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Roman, S. 1996. Introduction to coding and information theory, New York: Springer.

Saffran, J., R. Aslin and E. Newport 1996. Statistical learning by 8-month-old infants,
Science 274: 1926-1928.

Schreuder, R. and H. Baayen 1994. Prefix stripping re-revisited, Journal of Memory and

Language 33: 357-375.

Schreuder, R. and H. Baayen 1995. Modeling morphological processing, in Feldman
1995, 131-154.

Seitz, P., L. Bernstein, E. Auer and M. MacEachern 1998. The PHLEX Database, Los

Angeles: House Ear Institute.

Smith, P. 1988. How to conduct experiments with morphologically complex words,

Linguistics 26: 699-714.

Spencer, A. 1991. Morphological theory, Oxford: Blackwell.

Stolz, J. and L. Feldman 1995. The role of orthographic and semantic transparency of the

base morpheme in morphological processing, in Feldman 1995: 109-129.

Woods, A., P. Fletcher and A. Hughes 1986. Statistics in language studies, Cambridge:

Cambridge University Press.

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



