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Let logical form be a neutral term for a syntactic 1ei’ei of linguistic re.pre.s-
entation which serves as the input to semantics. 1 assume that the grammar
of natural language specifies the connections between the collection of logical
form representations and three other types of objects: natural language tokens,
models, and proofs.

A standard language for specifying logical fornﬁ representations is predic-
ate logic. In terms of the picture of the grammar above, predicate logic has a
worked out proof theory but has problems in its connections with both natural
language syntax and its own -models. For example, it cannot capturé the fact
that the common noun maen and the intransitive verb walks play different syn-
tactic roles in the sentence Fvery man walks. In terms of its own semantics, the
standard truth definition for predicate logic is stated indirectly with respect to

assignments rather than directly with respect to models.

vii



I introduce a variant of predicate logic that has a new language and a new
class of models. The language is a propositional modal language; the models
can be thought of as trees. The fact that the language is propositional and

modal allows for a much closer fit with current Chomskian syntactic repres-

entations. The tree models allow for a direct, concrete semantics that does not

involve the notion of an assignment.
In the overview chapter I use the new language to specify logical form

representations for a simple fragment of English. To show that the perspective

is of real linguistic interest, there are four independent applications of the

perspective to current issues in natural language semantics. Two applications
are about pror_lominal anaphora: Chapter 2 is about dependent and independent
pronouns and Chapter 3 is about static and dynamic binding. The other two
are about linguistic applications of generalized quantifier theory: Chapter 4
is about reducibility to iterations and Chapter 5 is about conservativity and
extension.

For this simple fragment, the connections between the four types of objects
related by the grammar are simple: the logical form representations are close in
form to standard syntactic representations; they have a standard semantics with
repsect to a class of intuitive models; and they are close enough to predicate
logic formulas to make use of the latter’s proof theory. Future research may

tell how much of this simplicity can be maintained for larger fragments.

vii

Chapter 1

Semantic Trees-

1.1 Imntroduction

Chomskian linguistics and Montague grammar are different theories about the
grammar of natural language. They postulate radically different syntactic rep-
resentations and do not even agree about the proper role of semantics within
the grammar. But both of them use a syntactic level of representation which
serves as the input to semantics. 1 call this level logical form and intend it as
a neutral term for this level of linguistic representation. Following Stabler (to
appear), | also assume that it is logical form that serves as the input to proof
theory, i.e., to reasoning that is carried out by manipulating representations
derived from natural language expressions. I thus assume that the relevant
part of the grammar of natural language specifies the connections between the
four types of objects in (1):

(1) proofs

models __ - logical forms surface strings

A standard language for specifying logical form representations is predic-
ate logic. In terms of the grammar in {1), predicate logic has a worked out
proof theory but has well-known problems in its connections with both natural
language syntax and its own models. For example, predicate logic cannot cap-
ture the fact that the common noun man and the intransitive verb walks play
different syntactic roles in the sentence Every man walks. In terms of its own
semantics, the standard truth definition for predicate logic is stated indirectly
with respect to assignments rather than directly with respect to models. I solve

*I would like to thank Nissim Francez, David Kaplan, Ed Keenan, Ed Stabler, and Anna
Szabolesi for theirr helpful comments on this chapter.




some of these basic problems by introducing a variant of predicate logic that
has a new language and a new class of models. The language is a proposi-
tional modal language; the models can be thought of as trees. The fact that
the language is propositional and modal allows for a much closer fit with cur-
rent Chomskian syntactic representations. The tree models allow for a direct,
concrete semantics that does not involve the notion of an assignment.

In this dissertation I use the propositional modal language to specify logical
form representations for a simple fragment of English. Because the fragment
is small, it is important to argue that 1t 1s of real linguistic interest. To achieve
this goal, the dissertation is composed of an overview chapter followed by
four independent applications of the perspective to current issues in natural
language semantics. Two of these applications are about pronominal anaphora:
Chapter 2 is about dependent and independent pronouns and Chapter 3 is about
static and dynamic binding. The other two applications are about linguistic
applications of generalized quantifier theory: Chapter 4 is about reducibility
to iterations and Chapter 5 is about conservativity and extension.

In the overview chapter, I present the perspective and illustrate the intu-
‘tions behind it. Section 2 introduces the informal intuition behind semantic
trees. Section 3 defines the syntax of the modal language. Section 4 specifies
logical form representations for a fragment of English. Section 5 introduces
the tree models and uses them to define a semantics for the modal language.
Section 6 discusses the core intuition about the connection between ‘bound’ pro-
nouns and the copying operations that play the role of variables in the modal
language. Section 7 gives a short description of each of the four application
chapters.

In the case of the simple fragment in this dissertation, the connections |

between the four types of objects in (1) are simple: the modal formulas are
close in form to standard syntactic representations; they have a standard se-
mantics with respect to a class of intuitive models; and they are close enough

to predicate logic formulas to make use of the latter’s worked-out proof theory.

Future research may tell how much of this simplicity can be maintained for
larger fragments.

1.2 Semantic trees

The informal intuition behind semantic trees is that of a verification procedure,

which takes a logical form representation and calculates its truth value in a
predicate logic model by building a tree. For example, let D be the following
model: The individuals are John, Bill, and Tom, Susan, and Ruth; John loves
Susan, Tom loves Ruth, Ruth loves Tom, and no one else loves anyone else.

The truth value of the sentence every man loves some woman in the model D
is calculated in the five steps (2)-(5).

The first step is called an ezfend step. It extends the root with the indi-
viduals that are in the denotation of the predicate man in D.

(2)
m m m
] b t

The second step is another extend step. It extends each individual with the
individuals that are in the denotation of woman in D.

(3)

I m m

J b £
YN YN N
G,8) Gr) (b)) (br) (ts) (b1} -

The third step is called a mark step. It marks those pairs. that are in the
denotation of love in D.

(4)

m M m

N Y
YN YN N
() Gr) (bys) (b} (ts) (b1)

The fourth .step is called a reduce step. It applies the existential quantifier
some to each individual. When applied to a node, the existential quantifier

marks the node if at least one of its daughter nodes is marked, and deletes the
daughter nodes.



()

i b t
The last step is another reduce step. It applies the universal quantifier
every to the root. When applied to a node, the universal quantifier marks the
node if every one of its daughter nodes is marked, and deletes the daughter
nodes. At the end of the verification procedure, a marked root is interpreted
as the truth value true, and an unmarked root as the truth value false. So the
truth value of the sentence Fuvery man loves some woman in the model D is
calculated to be false. The reader may wish to work out the similar steps in
calculating that the truth value of the sentence Some woman loves some man
in D is true. _
In general, common nouns function as extenders, verbs as markers, and
determiners as reducers.

1.3 A modal language

In this section 1 introduce the syntax of the modal language £ that is used to
specify logical form representations. This syntax will be specified in two steps.
In the first, I give a concise formal definition of the language. In the second, 1
introduce abbreviations that make the language easier to read and use.

The definition in (6) defines what is a formula of the modal language:

(6) pu=p|8i|¢ldr— b |0

The definition in (6) says the following. Basic formulas of the language
are of two kinds: atomic formulas called relation symbols, and delta predicates
of the form §; for some natural number 7. Complex formulas are built from
basic formulas by using negation, implication and the universal operator O.
For example, if p and g are relation symbols, then p and &5 are formulas of £,
and so are —g and O(&; — q). _

Each relation symbol is associated with a natural number called its type.
Intuitively, the type specifies the degree of the relation that will be the denota-
tion of the relation symbol. For example, a relation symbol with type 2 will
denote a binary relation, and a relation symbol with type 1 will denote a unary

relation.

The first type of abbreviations define additional boolean operations and the _

existential operator <.

(1) oV ¥ g >y
def

pAp = ~(=¢V )
<>¢ d:ef —ID—:qS L

For exa.mple, the last definition reflects the semantic intuition that Some
man came is true if and only if Every man did not come is false.

The second type of abbreviations relate restricted and unrestricted quanti-
fication.

def

(8) Ogtp = DI(d = )

Ogth (6 A )

For example, the first definition says that Every man came is true under
the same conditions as Buvery thing has the property thal if it is a man then
it came. Similarly, the second definition, which can be derived from the first
and the definitions in (7), says that Seme man came is true under the same
conditions as Some thing has the property that it is @ man and it came.

With these abbreviations, we can think of £ as a multi-modal propositional
language: A propositional modal language that has a family of operators of the
form O; for some set J of restrictor symbols, instead of the one operator 0.
For example, if ¢ is a basic formula of a multi-modal propositional language
L' and j, k are restrictor symbols of £', then O;0¢ is a formula of £'. In the
special case where the members of J are themselves formulas of a propositional
modal} language, the abbreviations in (8) establish a correspondence between
formulas of £’ and formulas of a single-modal language. For example, if &
and g are formulas of £, the £’ formula O ¢ corresponds to the £ formula
0{(é; — q).

'The modal language £ is formally defined as a propositional language with
a single O operator. In the rest of the overview chapter [ keep the single modal
perspective for formal definitions, but make use of the multi-modal perspective
whenever it gives insight about £ and its models.

1.4 A'fragment of English

In t}{is section I specify logical form representations for a small fragment of
Enghsh. This fragment will be extended in later sections and chapters. In this
section, the fragment consists of transitive and intransitive verbs, and noun
phrases built up from the determiners every, some and a lexical common noun.
The syntactic representations of sentences with transitive and intransitive verbs



are assumed to be [;,DP[,,V DP]] and [DPL,pV]], respectively. This assumption
too will be brought more in line with current Chomskian syntactic theory in
Section 6. The definition in (9) defines a translation between these syntactic

structures and the modal language defined in Section 3.

In general, transitive verbs are translated as symbols for binary relations
(relation symbols with type 2), intransitive verbs and common nouns are trans-
lated as symbols for unary relations (relation symbols with with type 1), and
determiners as symbols for modal operators.

The following is a sample derivation:

(11) [eplaple everylln manllupl loves Jlapla some] [ woman]I]]]
Tnla every )l man] ][l loves VLapla some ][ woman]lI]
[l every g, manyplllal somells woman]J ([ loves]l =

O man [l some]]lf, womaniy love =

O man < woman love

In this core fragment, the structure of the syntactic representations is very
close to the structure of the logical form representations. In a sense, the trans-
lation amounts to thinking of verbs as relation symbols, determiners as modal
operators and common nouns as restrictor symbols.

1.5 Tree models

In general, a model for a propositional modal language £ is a triple M =
(S, R, V), where § is a non-empty set of objects called points, R is a binary
relation on S called an accessibilily relation, and V is a function called a
valuation that assigns a subset of 5 to every basic formula of £. A nafural
intuitive perspective is to think of each such model as a graph, where each
member of K is an arrow that leads from some point to another, and each
member of V is a ‘color’ that marks some of the points of the graph. Similarly,
a model for a multi-modal propositional modal language is a triple M =
(S,{R;};jet, V), where each operator of the form O; has its own accessibility
relation R;. In terms of the intuitive graph picture, one can think of each
member of the accessibility relation R; as an arrow with the label 3.

For example, the picture in {12) depicts a model for a multi-modal language
whose operator symbols are 7, 7, and k. The underline marks the points at which
the relation symbol p is true.

(12} a

[

g*i_b
C

[

l

Qk

In general, the truth definition for a propositional modal language £ defines
the conditions under which a formula ¢ of £ is true at a point 5 in a model
M: A basic formula p is true at s if and only if s is in V(p). Negation and
implication are defined locally to each point, e.g., 2¢ is true at s if and only if
¢ is false at s. The modal operator [ express local quantification: O¢ is true
at s if and only if ¢ is true at every point &' that is accessible from s by R, i.e.,
every point such that sRs'. For example, —p is true at point ¢ in the model
in (12) because p is false at c. Consequently, Op is false at ¢ because there is
a point accessible from ¢ by Ry, namely c, at which p is false. Consequently,
0,;04p is false at b.

The formal truth definition for the modal language £ in Section 3 is in (13).
The only non-standard clause is the clause for the delta predicates, which will
not be discussed until the next section.




(13) m = p iff seVip)
M I:s &; iff se V(ét)
M Ezs _'QS iff M t?és d’ _
M, ¢ = ¢o it M |, ¢ implies M |=, 6,
M=, 0¢ i for all s’ € S, sRs implies M =4 ¢

In general, the points of models for £ are sequences. For the special purpose
of specifying logical form representations for natural language, finite sequences
seem enough. I will give an informal description of the models needed for the
fragment, while a formal definition of the models needed for predicate logic can
be found in the Appendix.

Crucially, models with finite sequences can be thought of as trees. And each
tree model M = (S, R, V) can be thought of as corresponding to a familiar
predicate logic model D = (D, ] ), where D is a non-empty set of individuals,
and T is a function that assigns an m-ary relation over D to every relation
symbol p with type n of the relevant predicate language. For example, the tree
model depicted in (14) corresponds to a predicate logic model whese domain
D consists of the individuals @ and b, and p is a unary relation symbol such
that I(p) is {a}. The underline in (14) marks the points at which p is true as
a relation symbol of the modal language L.

(14)
/'\b
SN\ N\

(aa) (ab) (ba) (b.b).

In general, the points of the tree model corresponding to D are finite se-
quences of members of the domain D, each point is connected to all the points
that are its extensions to the right by one member of D, and for every relation

symbol p with type n, V(p) is true of a sequence if and only if I{p) is true of

the last n members of the sequence.!

1A formal definition would need to address the question of sequences that are too short
to evaluate a given basic formula. But this issue never arises in the interpretation of logical
form representations for natural language, mainly because the Theta criterion ensures that
each verb is evaluated at sequences that have been extended by the right number of noun
phrases.

Every tree model M has infinite depth, but in order to calculate the truth
value of any specific formula ¢ of the modal language £ it is enough to consider
a top part of M with a finite depth, since every formula is finite and hence
will have a finite depth of modal embedding. In addition, if ¢ is a multi-
modal formula, only the relevant accessibility relations at each level of the tree
need to be considered. For example, recall the model P from Section 1. The
individuals are John, Bill, and Tom, Susan, and Ruth; John loves Susan, Tom
loves Ruth, Ruth loves Tom, and no one else loves anyone else. To calculate
the truth value of the formula Vz( man(z) — Jy( woman(y) A love(z,y))) in
D it is enough to evaluate the formula O menC woman loves at the root of the

tree in (15).
2P

(15)
j b ¢
o N PN
Gs) Gy (bys) (br) () (t,r)

We can thus informally talk about a multi-modal formula and a predicate
logic model determining a tree.

An important feature of the tree models is that they allow for an elegant
solution to a basic technical problem in the application of Generalized Quanti-
fier Theory to natural language. In Generalized Quantifier Theory, the meaning
of a transitive verb is a binary relation while the meaning of a noun phrase is
a set of unary relations, i.e., sets. The main obstacle to a simple treatment
of transitive sentences is that the meaning of the object noun phrase has to
combine with the binary relation that is the meaning of the verb. Tree models
solve the problem by taking the elements of the models to be sequences: when
a modal operator like D is associated with an object noun phrase, it quantifies
over a set of points, but each point is itself a pair, i.e., a member of a binary
relation. In other words, some of the combinatory burden involved in relating
natural language to models is shifted to the models themselves. |

1.6 Pronouns and delta predicates

In the last section I introduced a semantics for the modal language in terms of
a staz'ldard modal truth definition with respect to a new class of tree models.
In this section I complete the description of the system with the introduction




of delta predicates and their truth definition. Intuitively, delta predicates are
interpreted as ‘copy operations’ that compare the last element of a path to
the element a fixed number of steps up the path. The informal verification
procedure in Section 1 will be used to illustrate the truth definition for delta
predicates via their role as translations for ‘bound pronouns’. But in order to
do that T will first extend the fragment in Section 3 fo include names. All the
trees in this chapter are determined by the model D in Section 1.

As discussed in Section 1, a common noun can be thought of as an tree
extender. For example, the tree in (16) results from the extend step of man as
the common noun of a subject, when calculating the truth value of a sentences

in D,

(16)

j b ¢

By analogy, it is clear how to think of a name like a tree extender. For
example, the tree in (17) results from the extend step of John as subject, when
calculating the truth value of a sentences in D.

(17)
j

i

This intuition can be captured by extending the translation in Section 3 with

the clause for names in (18), and lexical translations like the one in (19). This

translation amounts to treating a name like John like a common noun john
and an implicit universal determiner. Note, however, that since the relation
symbol john denotes a set with exactly one member, any positive quantifier,
for example 3 would do just as well. For example, everyone who is John,
someone who is John and the individual who is John are true under the same
conditions.

(18) [lzpNAME]] = [NaME]

(19) {[{ John]]] = E]john

As was the case for other noun phrases, the same translation applies equally
well to subjects and objects. For example, the translation of the sentence John
loves Susan is O j ohn O susan love. The tree determined by this formula and

~ the model D is (20). The formula is true at the root of the tree.
(20) ‘

s
J
I
ls

{:8)

The tree in (20) captures the intuition that the truth of the sentence John
loves Susan depends only on the value of the denotation of the relation symbol
love at the pair (j,s).

In a similar way, the truth of a sentence like John loves himself depends
only on the value of the denotation of the relation symbol love at the pair
(3,3} but in terms of the informal verification procedure, this pair seems to be
constructed in a different way than the pair in (20). Intuitively, the extend
step associated with the reflexive pronoun himself in John loves himself copies
the individual introduced by the extend step associated with the subject. The
resulting tree is (21), where for every positive natural number 7, the extend
step of é; copies the individual ¢ steps above it in the path.

(21) ‘j

]

[—y

&
W),
- This intuition can be captured by extending the translation in Section 3
with the claus:e for pronouns in (22), and lexical translations like the one in
(23). The choice of 7 in (23) is partly determined by grammatical constraints,

like Binding theory. in Chornskian syntax. Any remaining ambiguity, like all
other forms of ambiguity, is not dealt with in this dissertation.

(22) [[[¢xPRONOUN]]] = [PRONOUN]|

(23) [[himseif]]] = O,

11




The translation of the sentence John loves himself is O jOhnB61 love. The
tree determined by this formula and the model D is (21). The formula is false
at the root of the tree. '

The same translation works equally well when the antecedent of the pronoun
is a quantified noun phrase like every man. For example, the translation of the
sentence Every man loves himself is O manUs, loves. The tree determined by
this formula and the model D is (24). The formula is false at the root of the
tree,

(24)
j b t
i s
(1) (b,b) {t,t)

 Formally, the accessibility relation Ra;. connects a sequence s to the sequence
o' that extends s to the right with its i-th element from the right. Thought
about as a basic formula of £, §; is'true at a sequence s if and only if its last
elemnent is identical to its 1 + 1-th element from the right.

The idea of delta predicates has two important consequences.

Within logic itself, delta predicates allow the propositional language £ to
express any predicate logic formula. A formal recursive translation definition
can be found in the Appendix.

Within linguistics, delta predicates allow for a closer fit between logical
form representations and the syntactic structures posited by current Chom-
skian syntax. As traces can be thought of as silent bound pronouns, it is easy
to give logical form representations to structures with traces. For example, a
structure like [ some woman; [ every man; [t; loves t]]] can have the logical
form representation < woman B man s, Us, love. The tree determined by this
formula and the model D is {25). The formula is false at the root of the tree.

12

(25)

o e o e
(sd) (D) (s} (ri) (t.b) ()
|51 & ‘51 !51 1 ’51'
(8.a) (s:b,b) {8,5,8) (rjui) (r,b,b) (r,t,t)
‘53 s |8 ‘53 & ‘53_
{8,3,3,8) (s,b,b,8) (5,t,t,8Xr,j,J,rH{r,b,b,r}{r,t,t,r}

This example also illustrates the logical claim about the ability of £ to
express any predicate logical formula. In particular structures with ‘inverse
scope’ like the one above can be given a logical form representation. In addition
delta predicates make it easy to give logical form representations to structure;
with intermediate traces, which is something that is hard to do with predicate
logic. For example, a structure like [ some woman; [¢; [¢; walks]]] can have
the logical form representation < woman Os, Os, walk. The tree determined by
this formula and a model D’ that is like D but in addition specifies that Susan

walks but Ruth does not, is the one in (26). The formula is true at the root of
the tree.

(26)
VN
Fz .(51
(S,_S) (r,r)
& d1

1.7 A road map-

The rest of the dissertation are four (:ha,pters,mwhich.a.re .foﬁr iﬁdependent

appl:cathns of different aspects of the perspective introduced in this chapter
to 1ssues in natural language semantics. '

13




Chapter 2, Dependent and independent pronouns is about the distinction
between dependent (bound anaphora, sloppy) pronouns and independent (core-
ference, strict) pronouns, exemplified by the ambiguity in (27).

(27) John loves his mother, and Bill does too.

The second sentence in (27) can mean that Bill loves Bill’s mother, or that
he loves John's mother. The first reading corresponds to a dependent reading
of the pronoun in the first sentence; the second reading corresponds to an
independent reading of the pronoun in the first sentence.

Using the fragment, dependent pronouns are translated as delta predic-
ates, and independent pronouns are translated as name-like relation symbols.
This approach can be seen as a conceptually simpler and more general way of
expressing the basic insights of Fiengo and May (1994). In particular, trans-
lating anaphors, bound pronouns and traces as copy operators suggests a new
perspective on the connection between anaphora and movement.

Chapter 3, Static and dynamic binding, is about the relation between static
binding, exemplified in (28), and dynamic binding, exemplified in (29).

(28) There is a woman that every man likes.
(29) There is a man. He walks.

" The covert pronoun in There is ¢ woman that every man likes (her) is
bound within the scope of the existential quantifier; the pronoun in He walks
is bound outside the scope of the existential quantifier. '

Using the modal language, the chapter presents a simple systemn that com-

bines the system of semantic trees and the system of predicate logic with ana-
phora of Dekker (1994). In the combined system, both static and dynamic
binding are expressed with delta predicates. One natural hypothesis about
the semantic difference between them is the following: A statically bound delta
predicate targets entities in an initial set (considered af the beginning of quanti-
fication); A dynamically bound delta predicate targets entities in a final subset
(found at the end of quantification).

Chapter 4, Generalized quantifier reducibility, a reprint of Ben-Shalom
(1994a), deals with the formal question of when a generalized quantifier can
be expressed by an iteration of generalized quantifiers of lower types. This
question is of linguistic interest because it is a measure of the interdependence
between the denotations of noun phrases within a sentence:

{(30) Every man loves some woman.

(31) Different men love different women.

The binary quantifier that corresponds to the subject-object pair in (30)
is called reducible because it is equal to the iteration of the unary quantifiers
EVERY MAN and SOME WOMAN. The binary quantifier that corresponds to the
subject-object pair in (31) is called irreducible because it is not equal to the
iteration of any two unary quantifiers.

Using the free models, the chapter proves all the unreducibility results in
Keenan (1992) and other results, using a general graphic proof technique based
on a characterization of reducibility to iterations as invariance under simple
transformations on tree models.

Chapter 5, Conservativity and extension, out of Ben-Shalom (1994b), deals
with the generalized quantifier conditions of Conservativity (32) and Extension
(33), which are generally assumed to be true of all natural language quantifiers.

(32) GuAB & QuAANEB

(33) if A,BC M C M then
@mAB & QumAB

For example, (32) says that the interpretation of every man laughed does not
depend on laughers who are not men; and (33) says that the interpretation of
every man laughed does not depend on things that are neither men nor laughers;
together, they say that the interpretation of every man laughed depends only
on men.

Using the connection between generalized quantifiers and modal operators,
this idea of domain restriction (van Benthem (1984)) is shown to correspond
to the basic modal invariance under generated submodels.

Appendix

A Language

Let £ 'be a propositional modal language, whose set @ of atomic formulas is
the union of two disjoint sets: A denumerable set ® of relation symbols, and
the set A of delta predicates of the form §&;, one for each positive i € w. ,

Each g € @ is associated with a non-negative integer called its type. The
type of every &; € A is fixed to be 1.

A typical member of ® is denoted by p, and when no confusion arises, it is
assumed to have type j. ,
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The formulas of £ are then defined as usual, by:

gpu=L|pldildr—=+¢2|0d

B Models

A model for £ is a triple M = (5 R, V), which meets the following conditions:
A is a non-empty set. _
S is the set of sequences of length w over A. lLe,

scSiffs=...8...818, 8 € Afor alli e w
R is the binary relation on S defined by:
sRs' iff &' = sa for somea € A

For every p € ® of type j, P is an j-ary relation over A.
V is the function from Q to subsets of S defined by:

Sj_l...slngP if g=1p
8; = 3o ifq=52

se V(g iff {

Satisfaction in M is then defined as usual, by:

M, q iff seViqg)

M L | |

M, d1— ¢ it M =, ¢ implies M =, ¢,
M

s i for all 8 € S, sRs’ implies M l:rsf )

C Translation

Definition 1 A subformula ¢ of 1 is at modal depth ¢ in W if it is in the
scope of ezactly 1+ Doperators.

Definition 2 A subformula &; of 1 is free in if it is at modal depth at most
i. Otherwise, it 15 bound.

Definition 3 The formula [+1]¢ is oblained from ¢ by replacing each §; free
in q‘) with 5‘5+1'

Definition 4 The formula [—1]¢ is obtained from ¢ by replacing each §; free
in ¢ with §;1.
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Definition 5 The formula ¢ is obtained from ¢ by replacing each [+1]* at
modal depth i in ¢ with [+1]*.

Let @ be a set of relation symbols, each with a ndn—negative integer called
its type. '

Let A be a non-empty sef and for each p € ¥ of type j, let P be a j-ary
relation over A.

Let £ be the first-order language determined by ®.

Let £, be the modal model determined by ®, as above.

Let M/ be the £;-model determined by A and {P|pe ®}.

Let M,, be the £,,-model determined by A and {P | p € ®}, as above.

We define the following translations between £y and L,,:

| | (Lm=1 | |
(bl 25))" = B(H116, — O(+126, > D418 = p ).
(zp =)™ = D(H‘l]Jk - [+1]5£) § times
(612 )" = (62)" = ()"

(Vaad)™ = O(([+1]((@)™)EP

(J_)f:J_...

(p) = p(zji...2120)
(&)Y = ==
(b1 —= &) = (61)) = ()
(O8) = Y ew ([—1)(((¢)/)F )

[+1) new

Proposition 1 For every s € AY, ¢n, € Lo, ¢y € Ly,

M [y $m il My = $L[5]
Mo |0 &7 4T My  4ls]
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Chapter 2

Dependent and Independent Pronouns-

2.1 Introduction

This chapter is about the distinction between dependent and independent pro-
nouns. This distinction, also known as bound anaphora vs. coreference or
sloppy vs. strict, has received a fair amount of attention within generative
grammar. Although often treated as a syntactic issue, the following semantic
intuition is relatively uncontroversial: the reference of an independent pronoun
is established independently, while the reference of a dependent pronoun is es-
tablished indirectly, via a linguistic antecedent. In this chapter I show that
this intuition can be expressed in a version of predicate logic that uses copy
operations instead of variables. Using this language to express logical forms,
independent pronouns are translated as name-like operators, while dependent
pronouns are translated as copy operators that indicate the semantic address
of their antecedents.

Logical forms expressed with this language have a simple direct semantics
in terms of semantic trees. At the same time, and largely because the copy
operations allow for a direct interpretation of traces, these logical forms are
very similar in structure to traditional LI representations. From one perspect-
ive, this chapter is an illustration of the usefulness of the new logical forms for
linguistic theory. From another, its treatment of the distinction between de-
pendent and independent pronouns can be seen as a particularly simple way of
executing the basic insights of Fiengo and May (1994): the name-like operators
correspond to their a- occurrences and the copy operators to their 8- occur-
rences. Yet more generally, it suggests a new perspective on the old idea about
the connection between anaphora and movement: anaphors, bound pronouns
and traces are all copy operators. :

Section 2 introduces the intuitive distinction between independent and de-
pendent pronouns. Section 3 reviews Reinhart’s (1983) treatment of this dis-
tinction in terms of coreference vs. binding. Section 4 summarizes Fiengo
and May (1994) treatment of the distinction in terms of a- vs. B-occurrences.

"I would like to thank Tanya Reinhart, Ed Stabler, and Anna Szabolesi for their helpful
comments on this chapter.
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Section 5 presents a treatment of the distinction in terms of name-like vs. copy
operators. Section 6 discusses the empirical problems with Fiengo and May’s
extension of their core idea to independent 8- and dependent o-occurrences.
Section 7 shows that a key result of Fiengo and May can be seen as a minim-
ality condition on dependent pronouns which is not unlike familiar minimality

conditions on traces.

2.2 Independent vs. dependent pronouns

The basic intuition behind the distinction between independent and dependent
pronouns ascribes an ambiguity to simple sentences like (1).

(1) John loves his mother.

According to one reading, where the pronoun is independent, John loves
John’s mother. According to another, where the pronouns is dependent, John
loves his own mother. What makes the distinction elusive is that the two
readings have the same truth conditions. Where they differ is in the way the
pronoun his picks its reference: either independently, like a name; or in a
dependent way, via a linguistic antecedent. This distinction is easier to justify
in the context of verb phrase ellipsis, where the two readings of the pronoun
give rise to different truth conditions. :

(2) John loves his mother, and Bill does too.

Under the assumption that the interpretation of the second verb phrase is
determined by that of the first, the claim about the ambiguity of (1) accounts
for the two relevant readings of (2). If the pronoun is independent in the
first sentence, it will determine the same reference in the second, leading to an
interpretation in which Bill loves John’s mother. If the pronoun is dependent in
the first sentence, it will determine the same dependency in the second, leading
to an interpretation in which Bill loves Bill's mother.

2.3 Coreference vs. binding

One influential theory of the distinction between independent and dependent
occurrences of pronouns is that of Reinhart (1983). According to this theory,
independent occurrences of pronouns involve coreference, while dependent oc-
currences involve binding. Of these two notions, only binding is linguistically
determined: a noun phrase is bound if it is coindexed with a c-commanding

noun phrase. Bound pronouns are interpreted as bound variables, while the
interpretation of pronouns that are not bound is determined pragmatically:
two noun phrases that are not coindexed can still end up as corefering, i.e.
refering to the same entity, subject to pragmatic considerations of the spea,,ker’s’
intentions.

For example, the independent reading of (1) has the syntactic representation
in (3), and the dependent reading has the representation in (4).

(3) John; loves his; mother.
(4) John; loves his; mother.

These s"){ntactic representations are interpreted semantically as in (5) and
(6), respectlve.ly Crucially, a bound pronoun is assumed to correspond to a
variable, that is bound within a predicate formed by lambda abstraction.

(5) 7 loves j ’s mother
(6) Az[z loves z s mother](7)

. "I‘he‘ma,in conceptual problem with Reinhart’s (1983) theory is the lack of
fi;stmctxon between semantic and pragmatic coreference. This distinction is
illustrated by the sentence in (7), due to Higginbotham (1985).

(7) He put on John’s coat.

_ The rele_vant reading is the one in which ke corefers with John. This par-
?,wula,r reading can only be felicitously used in a special pragmatic context, say
in a party where the speaker intends to imply that he refers to John without

asserti:r%g it. A natural way of describing this reading is to say that it has the
semantic representation in (8)

(8) k put on j ’s coal

:zx.nd that in the intended context, both k and j refer to John. This description
18 not available within Reinhart’s theory.

The main technical problem with Reinhart’s theory concerns the role of
lambda abstraction. Basically, this use of abstraction entails an inherent mis-
nr‘}atch between syntactic and semantic representations. Specifically, if the only
du:ecif syntactic counterparts of variables are pronouns and traces, t]::en the only
f‘imapl?d way of relating syntactic structures like (4) and semantic structures
ike (6).15 by movement. Concretely, the subject in (6) would have to be moved
out of its surface position so that its trace can be interpreted as a variable
More:- generally, every antecedent of a pronoun may have to be moved at LF;
Just in order to create a variable between itself and the pronoun it binds.
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2.4 «- vs. f-occurrences

A recent theory of the distinction between independent and dependent occur-
rences of pronouns is that of Fiengo and May (1994). According to this theory,
every occurrence of a pronoun has an index composed of a numerical indezical
value and an indezical type that is either o or B. In the core cases, independent
occurrences of pronouns are a-occurrences while dependent occutrences are
[B-occurrences.

For example, the independent reading of (1) has the syntactic representation
in (9), and the dependent reading has the representation in (10).

(9) John$ loves his§ mother.
10) John? loves his? mother.
1 1

Fiengo and May specify a semantics for a small fragment of English that
includes sentences (9) and (10). It is stated in terms of the semantic value of
expressions with respect to sequences of individuals. In symbols, Val(x, ®, )
reads as y is the value of expression ® with respect to the sequence o. The
interpretations of the values of a- and B-occurrences are defined by (11) and

(12).
(11) Val (2, [sp+ pronoun]?, o) iff z = o(7)
(12) Vval (z, [+ pronoun]?, o) iff Val (z,NP;,0)

In other words, while the value of an a-occurrence of a pronoun is obtained
directly from a sequence, the value of a f-occurrence of a pronoun is resolved
by substituting a noun phrase with the same indexical value. The reason sub-
stitution yields the right truth conditions is that Fiengo and May assume that
every quantified noun antecedent is moved at LF.

The basic insight of Fiengo and May (1994) treatment of independent and
dependent occurrences of pronouns is that while independent occurrences do
not depend on linguistic structure, dependent occurrences do. This difference
can be demonstrated in the context of verb phrase ellipsis, where an overt and
a covert verb phrase have to be similar enough for the structure to be well
formed. The core case is (13).

(13) John loves his mother, and Bill thinks that Tom does too.

Assuming that the first overt verb phrase in (13) claims that John loves -

John’s mother, the covert verb phrase can claim that Tom loves John’s mother
or that Tom loves Tom’s mother. But it cannot claim that Tom loves Bill’s

mother, despite the fact that Bill c-commands the covert verb phrase i (13)
Intuitively, the difference between the first two readings and the third is the;
following. The first reading involves two independent pronouns that are sim-
ilar enough by virtue of refering to the same person, namely John. The second
reading involves two dependent pronouns that are similar enough by virtue
of depending on an antecedent that has the same syntactic position relative
to them, namely the subject of their own clause. The third reading involves
two dependent pronouns that are not similar enough because they depend on
antecedents that have different syntactic positions relative to them, namely the
subject of their own clause and the subject of the clanse above them, respect-
ively.

Fiengo and May (1994) execute this idea in terms of o~ and S-occurrences,
by positing that the three readings above have the three representations in

(14)-(16).
(14) John{ loves his{ mother and Bill] thinks that Tom$ loves his® mother

(15) John loves his? mother and Billg thinks that Tomg loves his? mother

(16) * John§ loves his? mother and Billg thinks that Tomg loves his? mother

In (14) the overt and covert verb phrases are similar enough because the
two c-occurrences of the pronouns have the same value, namely 1. In (15) the
overt and covert verb phrases are similar enough because the two B-occurrences
of the pronouns have the same dependency, namely the one in (17). In (16)
the overt and covert verb phrases are not similar enough because the two g-
occurrences of the pronouns have different dependencies, namely the ones in
(18a) and (18b), respectively. Structural dependencies between pronouns and
their antecedents are specified by a mechanism that involves Chomsky (1955)
style linear structural descriptions of phrase markers. The complex details of
this mechanism can be ignored for the present purposes.

(17) (NP,V,NP)
(18a) (NP,V,NP)
(18b) (NP,V,NP,V,NP)

The main technical problem with this theory is that the pronouns in the
overt and covert verb phrases cannot be required to be identical. Rather, their

sgmla,n.ty is deﬁne'd in indirect and complex ways. Some empirical problems
with this theory will be discussed in Section 6.
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2.5 Names vs. delta predicates

Fiengo and May (1994) argue that the distinction between independent and
dependent occurrences of pronouns has a semantic basis: the value of an inde-
pendent occurrence of a pronoun is established directly, while that of a depend-
ent occurrence is established indirectly, from the value associated with another
noun phrase in the sentence. In this section we suggest that this semantic intu-
ition can be executed directly, in logical forms where pronouns are represented
as operators that specify explicitly in what way they establish their value. Con-
cretely, a singular independent pronoun can be represented as a name, or any
other operator that refers to a fixed individual irrespective of syntactic struc-
ture; a singular dependent pronoun can be represented as a copy operator that

specifies the semantic address of its antecedent. These copy operators, called

delta predicates are introduced and defined in the semantic trees framework of
Chapter 1. In this chapter they are used on an intuitive basis.

The idea behind semantic trees is that to calculate the truth value of a
sentence in a given model, one evaluates a formula determined by the logical
form of the sentence in a tree model determined conjointly by the formula

and the model. For example, consider the sentence Some woman loves every .

man. This sentence has a reading according to which for every man there is
a woman that loves him. According to current theories of logical form, this
reading is represented as something like (19), where irrelevant details have
been suppressed.

(19) [every man;[ some woman;{t; lovest;]]]

The logical form in (19) determines the modal formula in (20), where asym-
metric syntactic c-command translates into the scope of modal operators. U is
the universal modal operator, and < is the existential modal operator. 1

(20) {0 man[© woman [Ds,0s, love]]]
Now imagine the the model in (21).

(21) The men are John, Bill and Tom, the women are Susan and Ruth; Susan
loves John, Ruth loves Tom, and no one else loves anyone else.

The semantic tree determined by the formula in (20) and the model in (21)
is the tree in (22). The underlined sequences are the ones where the second
individual from the right loves the rightmost one.

1Gince a singular pronoun or a name quantifies over exactly one individual, it makes no
difference whether its modal operator is taken as O or <.,

T

(22)

m ast m

] b ¢
YN NN
Gs) ) (bysy (br) {(ts) (t,:r)

51 51 151 14’51 51 |61 '
{3,8,8) (,r,1) (b,s,s) (b,r,r) (6,8,8) {t,r,r)
63 63 ‘53 (53 ‘53 (53

(j)sas_sj Xj;r,r,iXb,s,s,bXb,r,r,bYt,s,5,6Xt,r,r,8)

As can be seen by inspecting the sequences at the bottom of the tree in (22),
the formula in (20} is false in the model in (21), because not every man m has a,
woman w such that w loves m. The general idea is that noun phrases are evalu-
ated according to their c-command order, thereby creating the right sequences
for the verb to be evaluated at. More concretely, the operator associated with
each noun phrase extends every sequence at the bottom of the tree with the in-
dividuals that are relevant for the evaluation of the noun phrase. For example,
the operator O mgn corresponding to every man extends every sequence with
all the men in the model. Similarly, the operator O john corresponding to John
extends every sequence with the individual John. In other words, singular pro-
nouns are always associated with operators of the form O ind- 1hese operators
are like names in that they extend every sequence with a single individual. But
this individual can be determined in more than one way. In particular, it can
be determined by the structure of the tree itself: an operator of the form O,
faxtends each sequence with its i-th member from the right. In other words, it
15 a copy operator.

The independent reading of (1) has the logical form in (23), and the de-
pendent reading has the logical form in (24).

(23) [DjOhn[D[Djohn] motherl fovelll

(24) [Djohn[D[DJQJmother[lo“e]]] |

- To derive just the right readings for the verb phrase ellipsis in (13) it is
elrllough to assume that the covert verb phrase has an identical logical form to
the overt one. Assuming that the overt verb phrase in (13) claims that John

1 J :
a‘;\’;S( z‘lé))hn s mother, the covert verb phrase has the two logical forms in (25)
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(25) [D{Djohnl motherl lovel]

(26) [D[':’-Sz] mother! fovell

When combined with the representation of the embedded subject Tom, the
embedded sentence in (13) claims that Tom loves John’s mother, according
to (25), or that Tom loves Tom’s mother, according to (26). The unavailable
reading (16), according to which Tom loves Bill’s mother, is unavailable here,
without further stipulation. The logical forms in this section have a standard
and simple semantics as propositional modal formulas. The details are spelled
out in Chapter 1.

2.6 Dependent o- and independent - occurrences

In the last section we argued that the core distinction between independent and
dependent occurrences of pronouns should be viewed as a distinction between
name-like operators and copy operators. From this general operator perspect-
ive, these two options are just two of the ways in which the operator corres-

ponding to a singular pronoun can pick its individual. This plurality contrasts -

with Fiengo and May (1994) distinction between a- and f-occurrences of pro-
nouns, which is a strict dichotomy. One could then expect a principled source
of empirical problems for Fiengo and May’s theory: namely, whenever the core
distinction between independent a- occurrences and dependent B-occurrences
is stretched to describe occurrences of pronouns that fall properly outside the
core dichotomy. In this section we discuss two such cases, which can be de-
scribed as independent B-occurrences, and dependent a-occurrences, respect-
vely.
Recall from Section 4 that in the core cases, q-occurrences are considered
identical if they have the same indexical value, while J-occurrences are con-
sidered identical if they exhibit the same dependency. But Fiengo and May
chose to compromise this distinction by allowing f-occurrences to be con-
sidered identical if they have the same value. This is done in order to account
for the verb phrase ellipsis in sentences like (27).

(27) Max thinks he is strong, Oscar does too, but his father doesn’t.

The relevant reading is the one according to which Max thinks that Max is
strong, Oscar thinks that Oscar is strong and Oscar’s father thinks that Oscar
is strong. Fiengo and May represent this reading by representation in (28).

(28) Maxy thinks he? is strong, Oscar, thinks hes is strong, but his§ father
doesn’t think hej is strong

To maintain that the embedded verb phrases in (28) can be considered
identical, Fiengo and May claim that the first and second occurrences of the
pronoun he are identical by virtue of having the same dependency, the second

and third are identical by having the same value, and so all three are identical

by transitivity.
But these assumptions entail a direct incorrect prediction with respect to
the sentence in (29).

(29) His father thinks that he is strong, Oscar does too, but Max doesn’t.

Since the embedded verb phrases are required to be considered identical
but no order restrictions are involved, the representation in (30) should be
well-formed: the second and third occurrences of the pronoun he are identical
by virtue of having the same dependency, and the first and third are identical
by having the same value.” But (29) clearly cannot mean that Max’s father
thinks that Max is strong, Oscar thinks that Oscar is strong and Max doesn’t
think that Max is strong.

(30) His§ father think that he’.gi is strong, Oscar; thinks that he? is strong, but
Max 3 doesn’t think that hef? is strong

' The second empirical problem with Fiengo and May (1994) theory is the
mirror image of the first, in a sense; whereas the conceptual source of trouble
in the first is that the indexical value of S-occurrences mattered, the conceptual
source of trouble in the second is that the indexical value of a-occurrences do
not matter, in the sense that they are used for quantification. This is done in
order to account for the verb phrase ellipsis in sentences like (31).

(31) T know which book Max read, and which book Sally thinks that Oscar

did.

This sentence is given the representation in (32). ..

5 - - . A
i That (30). is not ill-formed because of the backward anaphora is shown by sentences like
is father thinks that he is strong, and Maz does too.
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(32) 1 know [which book; [Max read e2]] and [which book; [Sally thinks that
[Oscar read ef]]]

To maintain that the most embedded verb phrases in (32) can be con-
sidered identical, Fiengo and May claim that the first and second occurrences
of the trace ¢ are identical by virtue of having the same value. Intuitively, this
amounts to treating the trace as a free variable that can get caught by any
operator with the same indexical value that has scope over if.

.

This assumption entails a direct incorrect prediction with respect to the

sentence in (33).

(33) 1know which girl Max insulted, and which boy told which girl that Oscar
did.

Since the only relevant requirement is that the most embedded verb phrases
can be considered identical, the representation in (34) should be well-formed.?
So (33) should mean something tike I know which girl Max insulted, and which
boy told which girl that Oscar insulted her. But it clearly doesn’t.*

(34) I know [which girl; [Max insulted €]} and [which boy [told which gicl
that [Oscar insulted ef}]]

2.7 Minimality

A key result for Fiengo and May (1994') is their ab.ility.to account for the
following observation: if both pronouns in the first sentence of (35) refer to
Max, the second sentence in (35) has the three readings in (36a)-(36¢) but not

the reading in (36d).

(35) Max said he saw his mother, and Oscar did, too.

3That (34) is not ill-formed because the ellided pronoun corresponds to a trace in the
first sentence and to an overt noun phrase in the second is shown by sentences like Dulles
suspected Philby, who Angleton did too. '
4That there is c-command between which girl and the pronoun in the second sentence in
(34) is shown by the Condition C violation in I told him that Maz is stupid.

(36a) Oscar said Max saw Max’s mother
( b) Oscar said Oscar saw Oscar’s mother
( c¢) Oscar said Oscar saw Max’s mother

(d) * and Oscar said Max saw Oscar’s mother

Adding more pronouns in the first sentence, the following generalization is
observed: once any of the pronouns in the ellided verb phrase refers to Max
subsequent pronouns in the ellided verb phrase have to refer to Max too. ,

For Fiengo and May, the generalization is the following: once any of the
pronouns in the ellided verb phrase is an independent occurrence, subsequent
pronouns in the ellided verb phrase are independent occurrences too. For
example, the logical forms of the readings in (36) are schematically described
as follows:

(372) @ o
(b) BB
(c) B«
(d)*a p

Thei'r account oIT this generalization hinges on particular details of their
mechanism of factorization. For example, the missing reading in (36d) corres-
ponds to the logical form in (38).

(38) Max; said he? saw his? mother, and Oscar; said he¢ saw his? mother

35 A crﬁcial component of F;he reason why (38) is not a possible reading for
5) is that the dependency in (39) is not realized in the first sentence of (35).

(39) ({Max,his),1,(NP,V,NP}}

thagﬁiulti this is only so }l:ecause the definition of realizing a dependency stipulates
all pronouns with the same indexical value in the sc
ope of a d

ha,v;a to be members of the factorization. pe ol & dependency
o : the; press:nt chapter, d.ependent pronouns are thought of as a special case
o I;yt- perators, along anth. anaphors and traces; this suggests a different
pers 1; e; twe on the genera,hza.t'lon above. Assume that all the pronouns in the

ence in (35) can be either dependent or independent. In other words,

all the options i .
(35). ptions in (40) are available for the pronouns in the first sentence of
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(40a) i i
(b)d d
(c) di
(d)yi d

To exclude the reading in (36d), it is enough to assume the following con-
dition on dependent readings: a dependent pronoun has to copy its value from
the closest possible noun phrase. The options in (40) thus correspond to the
following schematic logical forms for the first sentence:’

maxr Mmar

(41a) maz
{(b) mar & &1

(c) maz &y maz

mar 61

(d) maz
Copied as the interpretation of the ellided verb phrase, these logical forms
determine the following logical forms for the second sentence:

(42a) oscar mar maz

(b) oscar 4 &

(c) oscar & ma:_t

(d) oscar 'rﬁam &y

The logical forms in (42a)-(42c) give the readings in (36a)-(36c), respect-
ively; but the logical form in (42d) does not give the missing reading in (36d);
rather, it gives another way of deriving the reading in (36a).

An important advantage of this solution is that the minimality condifion
it assumes is of a familiar kind, once dependent pronouns and traces are both
though of as copy operators. It is just a version of the familiar condition that
minimizes the chain links between traces and their antecedents.

SIgnoring the operators for the noun phrase his mother and, possibly, for the embedded
clause itself.

2.8 Conclusion

This chapter is about the distinction between dependent and independent pro-
nouns. It suggests that the distinction can be captured by logical forms where
independent pronouns are translated as name-like operators that pick their ref-
erence directly, whereas dependent pronouns are translated as copy operators
that establish their reference via an antecedent noun phrase. This approach
is a,r.gued to conceptually superior to other approaches to the distinction, in
particular the coreference vs. binding approach of Reinhart (1983) and ,the
a-occurrences vs. f-occurrences approach of Fiengo and May (1994). In par-

ticular, copy operators suggest a new perspective on the connection between
anaphora and movement.
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Chapter 3

Static and Dynamic Binding:-

3.1 Introduction

This chapter is about the similarities and differences between static (‘bound

anaphora’} and dynamic binding. A key difference between statically and dy-

namically bound variables is that the former but not the latter are bound by

operators that have syntactic scope over them. Among the two main types of
approaches to dynamic binding, the so-called E-type pronoun approach {Evans -
(1985)) treats dynamic binding completely separately from ordinary predicate

logic ‘static’ binding of variables. The so-called bound anaphora approach,

on the other hand, (Groenendijk and Stokhof (1991)) treats dynamic binding
as involving the binding of variables, thus making it similar to ordinary pre-
dicate logic ‘static’ binding. Recently, Dekker (1994) suggested a SUCCessor
to Groenendijk and Stokhof’s dynamic predicate logic which keeps variables
for static binding but eliminates them from dynamic binding. His main argu-
ment is that the ‘syntactically free but somehow semantically bound’ variables
used to achieve dynamic binding create technical and conceptual complica-
tions that can be eliminated by replacing variables with anaphoric terms. In
his system, static and dynamic binding are incomparable again. Independ-
ently, Ben-Shalom (1994) showed that predicate logic itself can be thought of
as a propositional modal system that involves copy predicates rather than vari-
ables. Both Dekker’s anaphoric terms and Ben-Shalom’s copy predicates can
be thought of as copy operations based on paths. This chapter suggests a syn-
thesis of the two systems, where static and dynamic binding are both expressed
by copy predicates. In the combined system, the difference between static and
dynamic binding correlates with a semantic distinction: static binding targets
entities in an initial set (considered at the beginning of quantification); dynamic
binding targets entities in a final subset (found at the end of quantification).

Technically, it is thus quite possible to have a simple unified representation
for static and dynamic binding within a variant of dynamic predicate logic. =

The conceptual issues deserve further consideration in future work.

*T would like to thank Nissim Francez and Ed Stabler for their helpful comments on this

chapter.

Section 2 summarizes the semantic trees system of Chapter 1. Section 3
summarizes the predicate logic with anaphora system of Dekker (1994). Section
4 presents a system that combines the two. Section 5 uses the combined system
for a semantic comparison of static and dynamic binding.

3.2 Semantic trees |

The semantic trees system (Chapter 1) is a version of predicate logic whose
models can be thought of as trees. The truth value of a predicate logic sentence
in a predicate logic model D can be determined by evaluating the appropriate
propositional modal formula at the root of a tree. The tree has depth n for
some finite n, and it corresponds to an n-ary relation over D. Formulas are
evaluated as tuples: For example, the binary predicate ADMIRE is true at a
tuple e iff the second member of e from the right admires the first member of e
from the right according to D. A statically bound pronoun is translated as a
copy predicate d; for an appropriate i. The copy predicate §; is true of a tuple
e iff the first member of e from the right is identical to the ¢ + 1-th member of
e from the right.

The following example illustrates how ST works. The simplest way to read
the formula below is as a translation of There is @ woman that every man
admires (her). The tree is the part of M that is relevant for evalnating this
formula in the model M determined by D = {j,b,s,r,k} with MAN = {7,06}

WOMAN == {s,7,k} and ADMIRE = {(j, s}, (b, s}, (b, k)}. The formula is true at
the root of the tree.

(1) There is a woman that every man admires.

O(woman A O man — O(8; A admaire )))

w w w

s : L
B N\e N n/ e

{s:))

d2

{s,b) (rj)

(r,b)
s

(i) (k,b)

5

o2

& }52

(539 (0, 558) (Ebis) (ed) (bl

- Fg;{rially, the s‘;emantic trees system is defined as follows:
e anguage 1s a propositional modal language. Tts set of atomic formulas
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is the disjoint union of two sets: a set @ of relation symbols, each with a natural
aumber called its arity; and a set A= {d; |1 € w} of delta predicates.
The formulas of ST are defined as follows:

Definition 1 (syntax of ST)

pu=p || ¢ ldAP|OF
with p € ®, §; € A. As usual, B¢ and ¢ — 3 abbreviate ~O—¢ and ~(PA-p),
respectively.

Complex formulas are built up from atomic formulas by negation, con-
junction and existential quantification. The only difference from the syntax of
ordinary propositional modal logic s the additional set of atomic formulas A.

An ST model M = (S, R, V) is determined by & non-empty domain D of
individuals, and a set of finitary relations over I with a set P of n-ary tuples of
individuals for each relation symbol p of arity n. S is the set of tuples of finite
length over D. sRe iff ' = s-d for somed € D. s- {do, . - - doq) € V(p)iffn
is the arity of p and {do,...dn—1) €P. 5 (do, ..., dip1) € V(&) iff do = dit1.

_ This definition is illustrated in the figure below, which depicts a model M
for an ST language with one yelation symbol g, of arity 1, where D = {a,b},
and @ = {a}. The underlined tuples are the ones in V(q).

/ N\
a b

NN
(a,a){a,b) {b,a) {b,b)

If defined, the truth value of a formula ¢ of ST at a tuple s in a model M
is determined in the ordinary propositional modal logic way. The only reason
for the truth value of ¢ to be undefined at a state s is if it contains an atomic
formula g evaluated at a tuple s” which is too short for it: either g is a relation

symbol of arity n and [s”|< n, or ¢ is the delta predicate §; and |s"|<2+1

Definition 2 (semantics of ST)

M, p iff seVip)
M ':s 6; %ﬁ 5 € V(a‘l)
M l:s "‘1{) iﬁ M bés qts
M. oAy iff ME,pand ME ¥

M, O iff M g ¢ for some s’ sRs" '

3.3 Predicate logic with anaphora

The predicate logic with anaphora system (Dekker (1994)) is a version of dy-
namic predicate logic whose information states can be thought of as states zf
knowledge about n roles for some finite n. An information state with degree
n about a predicate logic model D corresponds to an n-ary relation ovef D
For example, for every predicate logic D with domain D, the minimal state o%
knowledge about n roles is the full set of tuples D”: the n roles can be played
by any tuple of n individuals. The processing of a formula in an inforriagon
state o with degree n can change o in fwo ways: it can rule out certain tupl

of individuals in & as playing these n roles; and it can extend tuples in 01') fj
Fuples in a new state ¢’ with more than n roles. A dynamically bound pronoun
is translated as an anaphoric term p; for an appropriate :. For each tuple

the anaphoric term p; ‘copies’ the 3-th member of e from the right e

The following example illustrates how PLA works: .

(2) There is a man. He walks.
dzM(z) A W(po)

oBeM@ag = {e-d|deD A ¢ € oM@ moora}

’ = {e-d|e€a/\disaman}(:c;’)

dIW(po)lmg = {€¢ € '] the last element of ¢/ walks }
= {e-dleco A disaman A dwalks}

- F;]Eiaily, the pr‘edicate logic with anaphora system is defined as follows:
et p anguage is constructed from sets of relation constants R" of arity n
a set (' of individual constants, and countable sets V and A = {p; | i € w} 01’C

variables and pronouns, respecti
the set of terms T , respectively. The sets C', V and A together constitute

The formulas of PLA are defined as follows:

Definition 3 (syntax of PLA)

¢u=R(li, ... tn) [ty =12 | =d | 1 A g | Tz

wzthtteT ReRn ¢ V. As .
! ’ . ! . -
~($ A ), respectively. usual, Vzp and ¢ — o abbreviate =Iz—¢ and
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A basic formula is either a relation symbol and the right number of terms,
or an equality. Complex formulas are built up from basic formmlas by negation,
conjunction and existential quantification. The only difference from the syntax
of ordinary predicate logic is the additional set of anaphor terms A.

A PLA model M = (D, F} is a non-empty domain D of individuals, and
an interpretation function F which assigns individuals in D to individual con-
stants and sets of n-tuples of individuals to relations constants of arity n. An
information state o about M is a relation of degree k over D for some k > 0; if
o is non-empty its degree | 0| is the length of the tuples in o; if o is empty its
degree | 7| is inherent. Information states are ordered by a partial order, based
on a partial order on tuples: e < ¢/ iff there is a tuple € such that &/ = e~ €.
o < o' iff the degree | ¢ | of ¢ is no larger than the degree |o'| of o/, and for
every tuple €' in ¢’ there is a tuple e in ¢ such that e < ¢. This definition is

illustrated in the figure below:
( {dyy. .. dn) w

(dy,...,d,) (dly. iy dhgys ey gm)
4 : ;S :
(df,. . dn) (dyeen s dipse s digm)

L (dY,. ... dy) )

Individual constants and variables are evaluated as in ordinary predicate
logic with respect to a model and an assignment function, respectively. Pro-
nouns are evaluated with respect to a case e = {e1,...,ey) of an information

state o.

Definition 4

[C]M,a,e,g = F(C)
(2] Mooes = 9(2) |
[P Moes = ep—i (i lo]>1)

If defined, the dynamic interpretation o[¢llm, of a PLA formula’¢ in an
information state o is a state ¢’ such that ¢ < o'. The formula that follows
é is interpreted in the updated state o'. The only reason for the dynamic
interpretation of ¢ to be undefined at a state o is if it contains a pronoun p;
that cannot be evaluated at a state ¢”: either |o”|< 7 or " is empty.

Definition 5 (semantics of PLA)

a[R(ts, .. ) lmg = {e € o | {{tilmoegs - - s [En) o

(if |o|> i for et?:ry pi € {ty,. .(.I,t]:;,), , elitaca) € (D}
0[_[t1 = taflme = {€ € o | f1lMoo,en = [tal Moo}

( [z[f Ig;:hl> g fol" every p; € {t1,13} ) -
o[=dlmy={e € o | -3¢ such thate<e' A e' €0

ollgr A dallmg = olldil gl g € ek -
U[[EQTQS}]M@ ={e-d|deD A e€ J[[QS]]M,g[m/d}}

- where |0’[[R(t1, ses 1tﬁ)]]M,g !1 !J[[ti = ti-’]]M,g |1 | O'I[_’ ]]M,g |c1_§_ff a IJ

and |o[Fzd] a1 0| +1.

3.4 A combined system

Thls. section combines the PLA and ST systems. In the combined system
relations of finite degree are used for both information states and the evaluation,
of formulas. .Both statically and dynamically bound pronouns are translated
as copy predicates. The syntax of the combined system is as simple as that of
ST, and 1ts semantics is no more complex than that of PLA.

The following example illustrates how CS works:!

(3) There is a man. He walks.

& man; $(bo; walk)

o[ manl;m - = {¢'|eRe for somee € o} man]m
{e-d|e€o A disaman }(= o)
{e" | ¢ Re" for some ¢’ € o'H[So]| m[] walk ] e
= {e-d]eeco A

d' is equal to the last element of ¢ A d' walks }
= {e-d-d|e€o A disaman A dwalks}

o"[O(b0; walk)] aa

TheFornlally, the predicate logic with anaphora system is defined as follows:
syntax of the CS language is practically identical to that of ST

£ ST ‘indiv'. s" are prefered not to have dvna o
i idual terms’ P ynamic effects, they can be tr. eated as
mvolving O rather than & 1 . :
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Definition 6 (syntax of CS)

i=p |8 ~d| 6|00

withp € ®, §; € A. As usual, O¢ and ¢ — 1 abbreviate ~$ ~p and ~(¢p; ~p),
respectively.

A C8 model is just an ST model M = (S, R, V), as defined in Section 2.
An information state o about M is just a PLA information state about the base
set I of M, as defined in Section 3.2 If defined, the dynamic interpretation
of a CS formula ¢ at an information state o about a model M is defined very
much as in PLA. The only reason for the dynamic interpretation of a formula
¢ to be undefined at a state o is if ¢ contains an atomic formula g evaluated

at a state o” whose tuples are too short for ¢ as an ST formula, as defined in

Section 2. In the following definition, R* & Uiew R

Definition 7 (semantics of CS)

oplm=f{ceco|ecV(p}}

oclldflm={eco|eec V(&)}

ol[~dlm = {e € o | =3¢’ such that eR*e’ A ¢ € o[[p]lm}
ol[¢1; pallm = a[elmllda]l m

o[[Cllm = {€' | eRe for some e € o}[[d]| m

where |a([pal, | ol8]at ], lol~ellm |l o |, and |o[[G¢lm|E] o] +1.

3.5 Static and dynamic binding

But CS is more than an elegant way of combining the systems of semantic

trees and predicate logic with anaphora . Because it uses copy predicates to

express both static and dynamic binding it offers a simple way of compar-
ing them. A natural perspective about CS takes each tuple in an information
state as a path, and interpretation as a process that eliminates and/or extends
paths. In terms of this perspective, the two types of binding are similar in
that both involve a copy operator that targets entities a fixed number of steps
up every path. In addition, the interpretation of a quantified formula of the
form $(¢) seem to involve the following steps: an initial set S of entities is
considered at the point {>(}; some of these entities are eliminated during the

interpretation of ¢, until a final subset S of S is left at the point {($)*. In

?Information states were defined with respect to M = (D, F'), but in fact only use D.

- during the processing of a formula with one statically boun

terms of this perspective, a statically bound copy operator seems t'ogt'&

tities in an initial set S while a dynamically bound copy predicaté_sngt o
target entities in a final set S’. This distinction is illustrated in the ?Hﬁs to
ing example, which depicts the current information state o at severa] ;0;‘:;

d delta py di
and one dynamically bound delta predicate. For simplicity, the init'iaﬁ iif:)(;?rtf

ation state is taken to be (), the minimal information state about 0 pol
The formula in (4) is evaluated in this information state with res roes.
% model determined by D = {j, b,s,m,k}, MAN = {j b}, WOMAN =
- ADMIRE = {{j, 5), (b, s), (b,k)}, and BEAUTIFUL = {s,r}.

pect to the
{S! T: k})

(4) There is a woman that every man admires. She is beautiful.
O woman; O( man — {(dy; admire))); G(do; beautiful)

¢ $( womant

The first quantification considers the set S of the women in D,

w w w

o ${woman;O( man — O (8%
The statically bound &, targets the entities in 5.

w w W

s r k
v\ 2N
(s:3) {sb) (rj) (rb) (kj) (kb)

&z 44 l52 &2 ‘52 ‘52

(8:3,5) {5,5,8) (rafor) {r,byr) (ki k) (k,b k)

~ 39




¢ O(woman;O( man — O(8y; admire )))*
The woman s is the only entity n S that meets the condition that
every man admires her, S’ is the set {s}.

w

3

e O woman; O( man — O{d2; a','d.'ﬂ:m"m))).;(}(cﬂ)¢ |
The dynamically bound do targets the entities in S5’

w

8
K

(s,5)

_ 3.6 * Conclusion

This chapter presents a system that combines the predicate logic with anaphora
system of Dekker (1994) with the semantic trees system of Chapter 1. In
the combined system both static and dynamic binding are expressed by copy
operations based on paths. The difference between the two types of binding
correlates with a semantic distinction: static binding targets entities in an
considered at the beginning of quantification

initial set (
s in a final subset (found at the end of quantification).

targets entitie
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Semantics and Linguistic Theory -

Chapter 4
Generalized Quantifier Reducibility* |

4.1 Introduction

Already in Montague Grammar, sentences like Some cat sneezed were analyzed
as involving Generalized Quantifiers: the Verb Phrase sneezed demotes the
property SNEEZE, i.e., the set of entities who sneezed; The subject Noun Phrase
some cat denotes the generalized quantifier SOME CAT, i.e., the set of properties
Fhat intflude at least one cat. The truth value of the sentence Some cat sneezed
;sniértztli E};esiz(;z:zt.y SNEEZED is in the set SOME CAT, i.e., if there is at least
This type of analysis had to be extended in order to interpret transitive
sentences like Every dog bit some cat. The crucial difference is that at least
one of the Noun Phrases has to apply to the binary relation BITE rather than
to a property. A natural way of doing this, suggested in Keenan (1987), i
t(? extend th.e domain of the generalized quantifier SOME CAT so it indu’dés
b}nary rela,t.lons in addition to properties. The value of SOME CAT at thz
F)mary relation BITE is then defined as the property of having bitten some cat,
;.Z.];{éacokf‘yt:hx .BiTE v} € SOME CAT}. Witlh this extension of the domain o%
Sow! Phra;e ;‘ tzn erpretation of Fvery dog bit some cat is straightforward: the
Verb Phre thatz ;iszza; ;ci ferrlI‘OIEES tl;)ef le‘:o%erty SOME CAT(BITE), i.e., the set
. The subject Noun Phrase ever

g)l};le‘xtended). genera'iized quantifier EVERY DOG, and the seitiflied%l;t: , :;};e
bit some cat 1s true iff the property BITE SOME CAT is in the set EVERY oc
le., if for every dog there is a cat which that dog bit. oo
- g?ﬁv e:)n:iz:i)s of t];z‘mmt.lve sentenfz@ is attractive for current linguistic theor-
e T ns'. ;‘T'St’ in a‘s'ense 1t is a minimal extension of the generalized
o e O (3515(, }c% intransitive sentences. The quantification is analysed in
o bl‘ 2(R)), where the generalized quantifier @, is the interpreta-
e subject, the extended generalized quantifier (}; is the i ion

of the object and the binary relati i i ; _15 © ierpretation
verb, T g e 3; elation R is the interpretation of the transitive
, the only additional assumption is the simple extension of

“l would like to thank Ed
| Keenan, Johan van B 2
onymous reviewer for their helpful comments concerrfil;ztghiﬁls ];;gefv ceierstabl, and s s
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the domain of generalized quantifiers. Second, the analysis is strictly compos-
itional, i.e., the semantic interpretation of a transitive sentence can be carried
out in a way that respects the syntactic structure of the sentence. In particu-
lar, the interpretation of the sentence is derived from the interpretation of its
two immediate syntactic constituents, namely the Verb Phrase and the subject
Noun Phrase.

But not all transitive sentences are amenable to such an analysis. For

example, it is not obvious how to derive the interpretation of the sentence Dif- .

ferent people like different things from the interpretation of the Verb Phrase like
different things and the interpretation of the subject different people. Form-
ally, the binary quantifier defingd by the interpretation of the subject-object
pair DIFFERENT PEOPLE_DIFFERENT THINGS is not reducible: there is no gen-
eralized quantifier Q; and extended generalized quantifier ¢, such that for all
binary relations R DIFFERENT PEOPLE_DIFFERENT THINGS(R) = Q1(Q:(R)).

Keenan (1987,1992) and van Benthem (1989) present natural language bin-
ary quantifiers that are not reducible, and offer formal tests to determine
whether a given binary quantifier is reducible or not. Van Benthem’s test
is easy to apply, but it is only.applicable to a subset of natural language
quantifiers, namely the permutation invariant ones. Keenan'’s tests are Redu-
cibility Equivalence (RE) and Reducibility Characterization (RC). RE is not
general. RC is general but it is hard to apply: using RC to prove that a given
binary quantifier Qo is unreducible amounts to proving that for every exten-
ded generalized quantifier @, there is no generalized quantifier ¢4 such that
Qo = @1 0 Q3. But one is not told how to prove this.

The Graphic Invariance criterion developed in this paper can be used to
construct simple, visual and uniform unreducibility proofs. More importantly,
the invariance perspective makes it clear what makes a quantifier unreducible.
Keenan and van Benthem consider a variety of English expressions which de-
termine unreducible quantifiers, but it is unclear from their works whether
these quantifiers have anything in common. What Graphic Invariance says is
that a reducible quantifier is invariant to certain graphic transformations. In
other words, an unreducible quantifier is unreducible because it distinguishes
between relations that ‘look the same’ to reducible quantifiers.

Finally and perhaps most importantly, the current literature on unredu-

cible quantifiers deals exclusively with the special case of binary quantifiers.

Consequently, it has little to say about natural language quantifiers that are
determined by sentences mvolvmg a subject, an object, and an indirect object.
For example, the quantifiers determined by sentences such as Different teach-
ers assigned different questions to different students or Two guests introduced
themselves to each other.

A2

The more general and conceptually simpler proof technique developed in
this paper makes it possible to show that the two sentences above determ-
ine unreducible ternary quantifiers. In addition, it enables one to discrimin-
ate between different patterns of unreducibility in sentences with three Noun
Phrases: sentences like Two guests introduced themselves to each other, in
which the dependency between the Noun Phrases spans the subject and both
of the objects; sentences like Mary introduced each guest to his host in which
the dependency spans the object and the indirect object only, but not the sub-
ject; and sentences like Each guest introduced his host to Mary, in which it
spans the subject and the object, but not the indirect object.

The paper is organized as follows:

In Section 2, I give the basic definitions: an n-ary relation, an (extended)
Generalized Quantifier (GQ) of type <n>, and type <k> reducibility.

In Section 3, I state and prove a generalization of Keenan’s RC, and char-
acterize reducible GQs in terms of Graphic Invariance, a graphic formulation
of RC, based on a tree interpretation of n-ary relations. Using Graphic Invari-
ance, | develop an easy, visual and general proof technique for proving that a
given quantifier is not type <k> reducible.

In Section 4, I use the Graphic Invariance proof technique to show that
certain natural language GQs are not type <k> reducible. I cover all of
Keenan’s core examples of unreducible binary GQs, as well as some closely
related cases whose unreducibility is hard to prove by his tests. Finally, I
discuss unreducible ternary GQs.

4.2 Definitions

4.2.1 Relations over £

Let us write £ for the set (assumed non-empty) of objects under discussion.
An n-ary relation over £ is a set of n-tuples of elements of £ . 1 write the set
of all n-ary relations over £ as R™. The truth values {rue and false are treated
as the universal and empty 0-place relations, respectively.

4.2.2 GQs of type <n>
We define,

(1) Fisan (extended) generalized quantzﬁer (GQ) of type <n>
iff F' extends a GQ from R™ to {0,1} in the following way: '
For all R € R*™, k > 0,
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F(R)={<a1,...,ak>:
F({<b1,...,bn>:<a1,...,ak,bl,...,bn>ER})EI}

For example, the value of the extended GQ SOME CAT at the binary relation
BITE is {x : SOME CAT{{y : = BITE y}) = 1}, i.e., the property of having bitten
some cat.

A extended GQ) of type <n> is completely determined by the GQ it ex-
tends. So i1t can be characterized in terms of its values on n-ary relations.
For example, the subject-object pair in both (2a) and (2b) are interpreted as
GQs of type <2>. In (2a) it is the GQ that checks whether a binary relation
contains the tuples < john, john > and <mary, mary>. In (2b) it is the GQ
that checks whether every dog stands in the relevant relation to some cat.

(2) a. John and Mary (both) love themselves.
b. Every dog bit some cat.

4.2.3 Type <k> reducibility

A GQ of type <n> is called type <k> reducible iff it is the composition of
two GQs of typesn —k and k, n > k.
We define,

(3) A GQ F of type <n> is lype <k> reducible iff there is a GQ f of type
<n —k> and a GQ g of type <k> such that F = fog.

For example, the binary quantifier EVERY DOG_SOME CAT determined by
the sentence Fvery dog bit some cat is type <1 > reducible, because it is equal
to EVERY DOG o SOME CAT. Here F = EVERY DOG_SOME CAT, f = EVERY
DOG and g = SOME CAT.

Note that a type <n> quantifier that is type < k> reducible does not have
to be type < m > reducible for any other m, 0 < m < n. For example, we prove
in Section 4.3 that the type <3 > quantifier determined by the sentence Mary
introduced each guest to his host is type <2> but not type <1> reducible.
Similarly, the type <3 quantifier determined by the sentence Fach guest
introduced his guest to Mary is type <1> but not type <2> reducible.
Finally, one technical remark. In practice, it is more convenient to use the
definition of type <k > reducibility given in (4), in which ¢ is known to be
positive, 1.e., true only of sets that are not empty. For example MORE THAN
FOUR CATS is positive, while AT MOST FOUR CATS is not. Generalizing a
proof by Keenan (1992), it can be shown that the definitions in (3) and (4)
~ are equivalent. Intuitively, this is true because of equivalences like the one
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between Fuery dog bit at most four cats and No dog bit more than four cats.
Formally, fog = f — o — g, and one of g,—g is positive, where for all R,

(—9)(R) =aer —(9(R)) and (f=)(R) =aes F(—(R)).

(4) A GQ F of type <n> is type <k> reducible iff there is a GQ f of type
<n — k> and a positive GQ g of type <k> such that FF = fog.

4.3 Graphic Invariance

The type <k > reducible type <n> GQs can be characterized by a simple
generalization of Keenan’s Reducibility Characterization (RC) theorem. The
generalized RC can in principle be used to prove that a certain GQ is not type
< k> reducible. But since it does not suggest any specific proof technique, it
is in practice quite hard to apply.

An alternative formulation of RC is in terms of Graphic Invariance, based
on a natural representation of n-ary relations as trees: A quantifier F'is fog for
some quantifier g iff F' 1s invariant to certain graphic transformations induced
by g. Graphic Invariance can be used to construct simple, visual and uniform
unreducibility proofs.

4.3.1 Type <k> Reducibility Characterization

The theorem in {5) characterizes the type < k> reducible type <n> GQs. It
is proved by a simple generalization of Keenan’s original proof for the special
case k=1, n = 2.

(5) Type <k> Reducibility Characterization
Let F be a GQ of type <n>. F is type <k > reducible iff 3 a positive
GQ g of type <k>, k < n, s.t. for all n-ary relations R,R' FI(R) = F(R')
if g(R) = g(R).

Proof:
= : F(R) = fog(R) = f(g(R)) = f(g(R)) = fog(R) = F(R)
<= Definea GQ f of type <n — k> by: f(S)=1iTAR st. F(R)

and g(R') = 5. Then f(¢g(R)) = 1 iff IR s.t. F{I') =1 and g(R'):
g(R)iff F(R)=1. So F=fog. )

i
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4.3.2 A tree interpretation of n-ary relations

(6) Let B € R™ We define T'(R), or the tree determined by R, as follows: |
T'(R) =4et (N, 2),
where the set Ny of nodes is the set of prefixes of members of A:
Np={<aj,...,ap>: 0<k <nand
Aarit, ..., an 8.b <1y rey Ghy Gpgly - -, Gn> € R}
and the domination relation < is the prefix relation:
a=xp il Je,m 0<k<m<ns.t.

a=<ay,...,0p> and 0= <ay,..., 0 Cktis- 0, Q>

In other words, T'(R) is the set of prefixes of members of R, ordered by the
prefix relation. Clearly, if a tree 7 = (T'(R) for some relation R, then this & is
unique. We can therefore write R, for the unique relation R s.t. 7 = T(R).

In what follows, I use a graphic representation of trees in {T'(R) : R € R"}.
For example, let R be the binary relation in (7a). R is graphically represented
by the tree in (7b). ‘

(7) a. R={<john, m’&}'y>, < bill,mary >, <bill, ruth >}

b. .
/ \
john bill
l VRN

mary mary ruth

A node « is above a node # and there is a sequence of edges from « to 8 iff
a,3 € Np and o < 3. Every node o = <ay,...,ar> € Ng is represented by
ay, only, while the root node <> is represented by a ..

Note that the path < john,mary> in {7b) corresponds to the tuple
< john,mary> in (7a). In general, <ay,...,a,> is a path from the root of a
graphic tree representing T(R) to its frontier iff <aq,...,a,>
€ R {Lemma 3 in the appendix). So R can be ‘read off’ any graphic repres-
entation of T(R). '

4.3.3 A graphic interpretation of RC

Let R be an n-ary relation, o = <ay,...,t,_x> € Ng, and consider the
graphic tree representing T'( R).

(T{R)){(a), or the tree under o in T(R), is the graphic object at the right
hand side of the drawing in (8).
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ay N
a N a AN

Gn,1 e anp Gn1 v . p

So the left hand side of (8) can be represented as in (9).
(9)

(T(R)(e)
Now consider B(r(r))(«), the k-ary relation determined by (T'(R))(a).
(10) R(T(R])(a) = {< k) tls v ey On > P <Apyenny 8y > € R}

By (1), <@1,..., 01> € g(R) iff g({<@(n-kjt1,...,80>:
<@i,...,a,> € B}) = 1. So RC in (5) can be reformulated-as in (11).

(11) Let F be a GQ of type <n>. F is type < k> reducible iff 3 a positive
GQ g of type <k>, k < n, s.t for all n-ary relations R,R’, F(R) = F(R')
if for all o € gn—k’ g(R(T(R))(Q)) =1iff Q(R(T(R'))(a)) = 1.

Alternatively, RC can be expressed in terms of Graphic Invariance:
(12) Graphic Invariance.
~ Let F be a GQ of type <n>. F is type <k> reducible iff 3 a positive

GQ g of type <k>, k < n, s.t for all n-ary relations R, R', F'(R) = F(R')
if for all a € £7F,
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and

(T(E)(e)  (T(E))e)

are either identical, or one of them can be derived from the other by one
of the following two graphic transformations:

Replace Tree

replace . with

T £ T !

if g(R,) = g(R.+), and R, R« # 0.

Delete Tree
delete . 1.e., delete all the nodes which
dominate only nodes in 7
and eliminate all edges that no
longer connect two nodes '
ey
T

if g(R-) =0 (= g()).

What this theorem says is that a reducible GQ F = fog is invariant to cer-
tain graphic transformations induced by g, i.e., F' is graphically invariant with
respect to g. This fact is the basis of the Graphic Invariance proof technique.
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4.3.4 The Graphic Invariance proof technique

Let F' be a GQ of type <n>. To show that F is not type <k> reducible we
show that there is no positive GQ g of type < k> s.t. I is graphically invariant
with respect to g.

Concretely, we choose two k-ary relations r and ' and argue as follows:

If g(r) = 0, i.e., g is false of r, then F is invariant under deleting a tree
representing r. But we exhibit two graphic trees 7 and  that are related by
this instance of Delete Tree and F(R,,) # F(R,,).

Similarly, if g(r) = 0 then F' is invariant under deleting a tree representing
r’. But we exhibit two graphic trees 15 and 74 that are related by this instance
of Delete Tree and F(R,,) # F(R,,).

The only other option is that g(r) = g(r’) = 1, in which case F' is invariant
under replacing a tree representing r by a tree representing . But we exhibit
two graphic frees 75 and 7 that are related by this instance of Replace Tree
and F(R,,) # F(R.,).

To make the proofs more perspicuous we write F(7) for F(R,).

4.3.5 A sample proof

Let ' be the type <2> GQ determined by the joint interpretation of the
subject-object pair in (13).

(13) Different people like different things.

Following Keenan (1992) we assume that F' is true of LIKE iff there are at
least two people, and if = and y are different people, then the things that z likes
are not exactly the same as y does. We show F is not type < 1> reducible.

Let & = {1,2,3,4,5} with 1,2,3 being the people in £ and 4,5 being the
things in £.

We show that there is no positive GQ g of type < 1> such that F is graph-
ically invariant with respect to g.

a. If g({4}) = 0 then
F(.)y=F(.)
1 2

by Delete Tree, with
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a =<1> and (T(R))(a) = .

But F

i I—‘\’-‘

. Similarly if g({5}) =0 then

F(.)=F(.
=)
1 2

|
1
o
4 5 4

by Delete Tree, with .~

a = <2> and (T(R))(a) =,

5

But F( ) =1#0 =F( .
(/\) 7 ()
12
L]

4 5

. Blse, g({4}) = g({5}) = 1. So

F. =F( .
RN
1 2 1 2
[ I
4 5 4 4

by Replace Tree, with
a =<2> (T(R)(a)=.,
5

B —

and T =.
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|
4

But F ( . =1 0 =F( .
AREARIIN
1 2 1 2
| .
4 5 4 4

In the rest of the paper we write proofs like the one above in the following
abbreviated format. '

g({4})=0: FC.)=F(.) Delete Tree
/\ | '
1 2 2
| F
4 5 5

g({56})=0: FC.)=F(.) Delete Tree
/\ |
1 2 1
I |
4 b 4

g({a}t)=g({5})=1: FC.)=F(.) Replace Tree
/\ / N\ -

1 2 1 2

Frr
4 5 4 4

For each two trees, F' is true on the relation corresponding to the tree on
the left, and false on the relation corresponding to the tree on the right.

NB: unless otherwise noted, F'x is the type <2> GQ that is the joint -
interpretation of the subject and object of sentence number (). For example,
F'13 is the unreducible binary quantifier in the sample proof above.

4.4 Some unreducible GQs

In this section we use the Graphic Invariance proof technique to present some
natural language n-ary quantifiers that are not type < k> reducible.

Section 4.1 covers all of Keenan’s (1992) examples.

Section 4.2 presents related unreducible binary quantifiers whose unredu-
cibility is harder to prove by current proof techniques.

Section 4.3 presents unreducible ternary quantifiers.
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4.4.1

Reflexives:
(14) John and Mary both love themselves.

Let £ = {j,m} _ :
The proof is identical to the one for F13, with ‘7’ instead of ‘1’ and ‘4’, and
‘m’ instead of ‘2’ and ‘5.

g({j})=0: FC . ) =F(.) Delete Tree
/ A\ |
j m m
. |
i m m
g({m})=0: F(.)=F(C.) Delete Tree
A |
j m ]
[ |
j m ]
g({iH=g({m})=1: F(C . )=F(.) Replace Tree
/N /\
J m J n

Reciprocals:
(15) John and Ma,ry.love each other.

Let £ = {j,m}
Again, the proof is identical to the one for F'13; with ‘7’ instead of ‘1’ and
‘5", and ‘m’ instead of ‘2> and ‘4’.

g({m}P)=0: . FC.)=F(.) : Delete Tree - :
/ \ ! : :
j m m
] i I
m ] 3
- 52

g({j})=0: FC. ) =F(.) Delete Tree
/\ f
j m ]
I |
mo ] m
g({m})=g({j})=t: F(C . )=F(.) Replace Tree
/\ /\
j o m j m
[ P
moj m om

Comparative dependent determiners:

(16) A certain number of professors interviewed a larger number of scholarship
applicants.

Let € = {7,m,3,4,5} with j,m being professors and 3,4,5 being scholar-
ship applicants.
Let g be a positive GQ} of type <1>.

g({3,4})=0: FC . ) =F() Delete Tree
|
3
/ \
3 4
g({3,5})=0: F( . ) =F() Delete Tree
|
J
/\
o 3 5
g({3,4})=g({3,5})=1:
FC . ) =F ( . ) Replace Tree
/\ /N
J m J m
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Cumulative quantification:
(17) The editors read a total of two manuscripts between them.

Let € = {1,2,4,5} with 1,2 being the editors in £ and 4,5 being
manuscripts. The proof is identical to the one for F13. '

Predicate anaphors:
(18) John knows more students than Mary (does).

Let £ = {4,m,3,4,5} with 3,4 being the students in £ . The proof is identical
to the one for F'16.

‘Else-else’ anaphora:

(19} John criticized Bill and no one else criticized anyone else.

Let £ = {j,b}. .
Let g be a positive GQ of type <1>.
g({b})=0: F( . ) =F(C) . Delete Tree
|
J
[
b
g({j})=0: FC.)=F(.) Delete Tree
| /\
J j b
| 1
b b j
g({p}H)=g({jH)=1: F( . )=F(.) Replace Tree
| |
] ]
| ]
b J

Branching quantifiers:

Let F20 be the branching quantifier determined by AT LEAST TWO, defined
as in (20). F20 is a possible interpretation of the subject-object pair in the
sentence At least two kids climbed at least two trees.

o4

(20) (AT LEAST TWO)(A) * (AT LEAST TWO)(B)(R) = 1 iff there are A’ C
ABCBst. |A'|>1and | B'|>1and A’ x B'CR.

Let £ = {1,2,3,4,5} with A= {1,2} and B = {3,4,5}.
Let g be a positive GQ of type <1>.

g({3,4})=0: F(C . ) = F( . ) Delete Tree
/A | '
1 2 2
/N /AN /\
3 43 4 3 4
g({3,5})=0: F(C . ) = F( . ) Delete Tree
/N I
1 2 1
/N A / \
3 53 5 3 b

g({3,41)=g({3,5})=1:

FC . )y = F(C . ) Replace Tree

Bach-Peters sentences (Higginbotham and May (1981)):

A typical Bach-Peters sentence is Fvery pilot that shot at it hit some mig that
chased him.

For every binary relation R let F'21 be the Bach-Peters-related type <2> GQ
defined by (EVERY*SOME)(R) in (21).

(21) (EVERY SOME)(R)(S) = 1 iff for every a s.b. {b:<a,b>¢€ R},"there is
acst. <a,c> € Rand <a,c>¢€ 5. :

This is a complicated GQ, but the Graphic Invariance proof that it is unre-

ducible is easy. Let £= {1,2,4,5}, B = {<1,4>,<2,5>}. The proof is
identical to the one for F'13.
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4.4.2 New binary unreducible GQs

Keenan’s examples contain a curious gap. For example, they include the dis-
tributive readings of sentences like (22)-(24), but not of sentences like (25).

(22) Every student -criticized himself.

(23) John and Bill criticized themselves.
(24) The two students criticized themselves.
(25) Two students criticized themselves.

This gap is not accidental, since Keenan proves the unreducibility of the quan-
tifiers in (22)-(24) by the theorem in (26).

(26) Reducibility Equivalence (RE) For F,G reducible GQs of type <2>,
F = @ iff for all subsets P,Q of £, F(P x Q) = G(P x @)

A typical argument is the following: F'22 has the same values on the cross
product relations P x @ as-F27, but differs from it on the diagonal {<a,a> :
a € £, and a is a student}, if £ contains more than one student. F27 =
(EVERY STUDENT) o (EVERY STUDENT) and is therefore reducible, so F'22 is
unreducible by RE.

(27) Every student criticized every student.

This type of argument does not go through for GQs like '28, which is determ-
ined by an indefinite subject NP: Restricted to the cross products relations
P x (), F28 is identical to F'29, rather to F'30. (Distributive readings)

(28) Two students criticized themselves.
(29) Two students criticized the same two students.

{30) Two students criticized two students.

For example, 28 can be distinguished from F'30 on the universe £ = {1,2,3,4}
where 1,2,3,4 are students. F28 is false on {1,2} x {3,4} but F30 is true.
F28 is identical to 29, but as will be prove shortly, F'29 itself is unreducible.
So RE cannot be applied as in the examples above. _

This is a special case of a more general problem, which arises if the subject
and object are related by other relations than ‘self’ too. For example, consider

the ‘mother’ relation in (31) and (32). Restricted to the cross product relations
P x Q F31 1s identical to F'32, which is itself unreducible.
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{31) A husband and wife kissed their (own) mothers.

{32) A husband and wife kissed their {own) mothers and mothers-in-law.

Using Graphic Invariance, it is easy to prove these GQs are indeed unre-
ducible.

(33) A husband and wife each kissed their (own) mother and mother-in-law,

Let € = {1,2,3,4,m1,m2,m3,m4} such that 1 and 2 are a man and his
wife, 3 and 4 are a man and his wife, m1 is the mother of 1, m2 is the mother

of 2, m3 is the mother of 3 and m4 is the mother of 4.
Let g be a positive GQ of type <1 >.

The structure of the proof is identical to the one for F20.

g({m1,m2})=0: FC . ) = F( . ) Delete Tree
/A I
1 2 2
/N /A /\
nl m2 ml m2 ml m2
g({m3,m4})=0: FC . ) = F( . ) Delete Tree
/A i
3 4 3
/N /A /' \
m3 m4 m3 mé m3 m4

g({m1,m2})=g({m3,md})=1: N
FC . ) F( . ) Replace Tree
/A YA
1 2 | 2

/NN /N /A
ml m2 mi m2 mi m2 m3 md

(34) A husband and wife kissed their {(own) mother. _
Assuming the same & as for I'33, the proof is identical to the one for F'33.
(35) Two students criticized themselves.

(36) Two students criticized the same two students.

Let £ = {1,2,3,4} such that 1,2,3,4 are students.
The proofs are again identical to the one for F33, with ‘1’ instead of ‘m1’,
‘2" instead of ‘m2’, ‘3’ instead of ‘m3’ and ‘4’ instead of ‘m4’.
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g{1,2}1)=0 : F( . ) = F( . ) Delete Tree

/ A\ I
1 2 2
/N /N /\
1 21 2 1 2
g({3,41)=0 : FC . ) = F( . ) Delete Tree
/A E
3 4 3
/N A / \
3 43 4 3 4
g({1,2})=g({3,4})=1: :
FC . ) = F( . ) Replace Tree
/A /A
1 2 1 2

4.4.3 Unreducible ternary GQs

‘The current literature on unreducible quantifiers deals exclusively with binary
quantifiers. Binary quantifiers are either reducible, i.e., type <1> reducible,
or unreducible, i.e., not type < 1> reducible.

Ternary quantifiers can be completely reducible, i.e., both type < 1> and
type <2> reducible. For example, the ternary quantifier determined by the
sentence Most department heads introduced at least one student to two profess-
ors can be expressed as MOST DEPARTMENT HEADS o AT LEAST ONE STUDENT
© TWO PROFESSORS. It is therefore both type <1> and type <2> reducible.

Ternary quantifiers can also be completely unreducible, i.e., neither type
< 1> nor type <2 > reducible. For example, the following sentences determine
completely unreducible quantifiers: Different teachers assigned different ques-
tions to different students, Two guests introduced themselves to each other and
John gave his girlfriend more presents than Bill did.

But in addition ternary quantifiers can be type < 1> reducible but not type
< 2> reducible, or type <2> reducible but not type < 1> reducible.

For example, the ternary quantifier determined by the sentence Mary in-

troduced each guest to his host can be expressed as MARY o EACH GUEST_HIS
HOST, where EACH GUEST STUDENT_HIS HOST is the unreducible binary quan-

tifier determined by the sentence Fach guest greeted his host. This ternary

quantifier is type < 1> but not type <2> reducible.
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Similarly, the ternary quantifier determined by the sentence Each guest
introduced his host to Mary can be expressed as EACH GUEST_HIS HOST o
MARY. This ternary quantifier is type <2> but not type <1> reducible.

In the rest of this section, we prove the unreducibility claims made about
the ternary quantifiers above.

Let F37 be the type <3> GQ that is the joint interpretation of the subject-
direct object-indirect object triplet in (37).

(37) Different teachers assigned different questions to different students.

We assume that (37) is true of ASSIGN iff there are at least two teachers,
and every two different teachers did not assign exactly the same questions to
exactly the same students. In other words, for all distinct teachers z and y we
can find some question-student pair (g, s) s.t. = assigned ¢ to s and y did not,
or vice versa.

We show that there are no GQs f, g, ¢ positive, such that 37 = f o ¢ and
either f is of type <2> and g is of type <1>, or f is of type <1> and ¢ is
of type <2>.

Let £ = {1,2,3,4,5,6,7} with 1,2,3 being the teachers in £ , 4,5 being the
students in £ , and 6,7 being the questions in £ .
Let g be a positive GQ of type <1>.

g({6})=0: FC.)=F(.) Delete Tree
/\ !
1 2 2
I | |
4 4 4
[ !
8 7 7
g({7})=0: FC . ) =F(.) Delete Tree
/' \ | :
1 2 1
| | |
4 4 4
I | |
6 7 6
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g({61)=g({7})=1: FC.)=F(.) . Replace Tree
/\ /' \
1 2 1 2
I [
4 4 4 4
oo S
6 7 6 6

Let g be a positive GQ) of type <2>.

g({<4,6>})=0: FC.)Y=F(C.) Delete Tree
!/ \ - :
1i 2 2
| I !
4 4 4
[ |
6 7 7

gl<a,>p=0:  F(.)

=F(.)  Delete Tree
/ A\ | '
1 2 1
| | ]
4 4 4
| . |
g 7 6
g({<4,6>})=
g({<4,7>})=1: S FC L)Y =F(.) Replace Tree
/\ /N
1 2 1 2
| | | ]
4 4 4 4
] | | I
6 7 & 6

(38) Two guests introduced themselves to each other.

Interpreted so that (38) is true of INTRODUCE iff there are two distinct
guests z,y such that z introduced z to y, and y introduced y to z.
Let £ = {1,2} with 1,2 being guests in £ .

60

Let g be a positive GQ) of type <1>.
g({2})=0: FC. ) =F(.)
/' \ (.
i 2 2
I P
1 2 2
I |
2 1 1
g({1})=0: F(C.)=F(.)
/\ |
1 2 1
oo I
1 2 1
I |
2 1 2
g({2h)=g({1})=1: FC. D) =F(C.)
AR /' \
1 2 12
I I
1 2 1 2
(R (.
2 1 2 2

Let g be a positive GQ of type <2>.

g({<1,2>})=0: F( . )
/\

1 2

I

i 2

(.

2 1

FC L)

e N~ N —
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Delete Tree

Delete Tree

Replace Tree

Delete Tree




g({<2,1>})=0:

g({<1,2>})=
g({<2,1>})=1:

FC . ) =F(.) Delete Tree
/\ I
1 2 i
I |
1 2 1
I !
2 1 2
F(.)=F(.) Replace Tree
/\ /N
1 2 1 2
b oo
1 2 1 1
|| I
2 1 2 2

(39) John gave his girlfriend more presents than Bill did.

We interpret (39) as ffue of GIVE iff the number of presents that John gave to
John’s girlfriend is larger than the number of presents that Bill gave to Bill’s

girlfriend.

Let £ = {1,2,91,92,3,4} with 1 being John, 2 being Bill, g1 being John’s
girlfriend, g2 being Bill’s girlfriend and 3,4 being a present in £ .
Let ¢ be a positive GQ of type <1>.

g({3})=0:

g({3,4})=0:

F(C . ) =F( ) Delete Tree
[
1
|
gl
|
3
F( . ) =F( ) . Delete Tree
|
i
]
gl
/\
3 4
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g({31)=g({3,41)=1: F( . ) = F(.)
/N / \
1 2 1 2
| | I
gl g2 gl g2
/ A\ I I |
3 4 3 3 3

Let g be a positive G() of type <2>.

g{{<g1,3>})=0: FC . )Y =F( )
i
-1
!
gl
l
3
g({<g1,3>,
<gl,4>})=0: FC . ) =F(C )
|
1
|
gl
/ \
3 4
g({<gl,3>P=
g({<g1,3>,
<gl,4>})=1: FC . ) = F(C.)
/N / A\
1 2 1 2
| ! P
gl g2 gl g2
/\ i o
3 4 3 3 3

(40) Mary introduced each guest to his host.

(41) Each guest introduced his host to Mary.
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Beplace Tree

Delete Tree

Delete Tree

Replace Tree




Let £ = {m,1,2,h1,h2} with 1 and 2 being the guests in £ , ~1 being 1’s host
and h2 being 2’s host.

We show that there are no GQ f, g, g positive, such that F40 = f o g and
f is of type <2> and g is of type <1>.

Let ¢ be a positive GQ of type <1>.

g({h1})=0: F(C . )Y=F(.) Delete Tree

g({h2})=0: F(.)=F(.) Delete Tree

 g{niP=gh2d)=1: F(.) =F(.) Replace Tree

hi h2 hl M1

We show that there are no GQ f, g, g positive, such that F'41 = fog and
f is of type <1> and g is of type <2>.

Let g be a positive GQ of type <2>.

g({<h1,m>})=0: FC . )=F(C.) Delete Tree
/\
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g({<h2,m>})=0: FC.)=F(C.) Delete Tree
/ A\ |
102 1
! f !
hi h2 hl
i | |
m m m
g({(hi,m>})= : '
g({<h2,m>})=1 FC.)=F(.) . . Replace Tree
/ \ /N

Appendix

Let R € R™. T(R), the tree determined by R, is the set of prefixes of members
of R, ordered by the prefix relation.

Let oo = <ay,...,0,>.
Lemmal a € Ny iffa € R.

Suppose « € Ng.

Let Path(a) = <pBi,...,0.>, where §; = <ai,...,a;>.
Let Label{a) be the last element of c.

Define Label( Path{a)) = < Label($), ..., Label(3,)>.

Lemma 2 Label(Path(c)) = <ay,...,an> = c.
In a graphic tree representing T(R), Label(Path(e)) is a sequence of nodes
along the edges from the root to the frontier.

Lemma 3 « € R iff « € Np and Label( Path(a)) = a. _
In a graphic tree representing T(R), R can be ‘read off’ the nodes along the
edges from the root to the frontier.
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Chapter 5

Conservativity and Extension-

5.1 Introduction

In general, a generalized quantifier is a functional that assigns to every non-
empty model M a binary relation between subsets of M. In other words, given
a model M and two of its subsets, it says ‘yes’ or ‘no’. But the generalized
quantifiers used in natural language semantics seem to obey additional condi-
tions.

In particular, the following two have been claimed to be universally true:

conservativity says that QuAB = QyAAN B; extension says that if A and B

are subsets of both M and M’, QuAB = QuAB. Taken together, these two
conditions express domain restriction (van Benthem (1984)), a basic asym-
metry between the roles of the two subsets taken by the generalized quantifier.
One subset serves to define the domain of quantification, while the other is an
extension of some property in that restricted domain. For example, it is stand-
ardly assumed that the semantics of the sentence Every woman laughs involves
the quantification structure ¥pW L, where W is the set of entities in M who
are woman and L is the set of entities in M who laugh. Domain restriction

then says that the value of this sentence in M depends only on entities in M

that are in W. Thought about in terms of domain restriction, conservativity
and extension lead one to think of modal logic, which is a natural system for
expressing restricted quantification: the value of a formula of the form O¢ at
a point s in a model M = (S, R, V} depends only on points in M that are
successors of 5 in the accessibility relation R.

This chapter suggests a connection between generalized quantifiers and
modal operators, and uses it to show that conservativity and extension together
correspond to a basic modal invariance, called invariance under generated sub-
models: the value of a formula 3 at a point s in a model M depends only on
points in M that are accessible from s by a finite number of R steps.

*1 would like to thank Johan van Benthem, Jan van Eijck, and Andras Simon for their
helpful comments on this subject. '

67

|
3
;
|
;
|
E
§
i
i
i
:
?




5.2 Generalized quantifiers and modal
operators

Definition 1 A generalized quantifier is a functional ) which to each non-
empty set M assigns a binary relation Qar belween subsets of M.

A generalized quantifier ) can be thought of as inducing a unary model
operator Og whose semantics is defined by:

Definition 2
M,s|EOgd iff Qw{s' | sRSHs' [M,s' ¢}

For example, the standard O and < are equal to [y and O3, respectively.

5.3 Conservativity and extension
Definition 3 A generalized quantifier () is said to have CONS‘ERV if. the fol-
;c;f:ing condition holds/fo'r any non-empty sets M, M’ and A, BC M, A, B' C
QuAB & QuAAN B
Similarly, .it is said to have EXT if the following condition holds
| ifA,BC M C M then QuAB & QuAB
Definition 4 M?, the submodel of M generated by s, is defined .by:'
M* =gy <W*,R*,V*>, where
W* = {s | sR's', 0 <1},
R = RN (W* x W*),
Vi(p)=V(p)nW°

In other words, the submodel of M generated by s is M restricted to the
points reachable from S by a finite number of R steps.

Theorem Qgp is invariant under generated submodels iff ) has CONSERV
and EXT.
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proof:

¢ .

Suppose @ has CONSERV and EXT. Let M and M’ be non-empty sets, A, B C
M,AACCM , MCM ,and ANB =ANC. Then QuABiff QpAANB
(by CONSERV) iff QarA ANC (by EXT) iff QaAC (by CONSERV). Let M® =
<W?*,RB°,V*> be the submodel of M = <W, R,V > penerated by s € W,
{t | sR*t} = {t | sRt}, and {t | sRt}N{t | Mt = p} = {t | sRI}N{t]
M, t = p}. So M, s = Ogp iff M®,s = Ogp by the truth definition of Ogp.
=

Suppose Ogp is invariant under generated submodels. Let A,B C M C M'.
For any non empty set M and A, B C M let My 4.5y, the Kripke model
determined by (M, A, B), be defined by:

M(M,A,B) =def <M,M x A, B>

In other words, the domain of M is M, the set of R-successors for every point
in M are the points in A, and for every propositional letter p,V(p) = B.
Let A,B C M C M, and s be an element of M, and consider the Kripke
models M(as4 By and M(as 4,8y. By the construction of Mar4,5), QuAB iff
Mar,asys | Ogp. Similarly, QuAB iff My ap),s |E DOgp. Since Ogp
is invariant under generated submodels, Mns,4,8),s | Ogp ifl M?M’A,B), s E
Dopand Mur,a,8), s |= Oopiff My 4 5y, s | Ogp. But My 4 gy is identical
to MfM,’A’B). So QuAB iff QmAB, ie., () has EXT. Next let A,B C M,
and let s be an element not in M. Since @ has EXT, QuAB iff QuuiaAB,
Similarly, @QuAAN B iff QuuiaAAN B, Since Mirtugsy,a,py Is identical to
MfMu{s}.A,AnB)a @muisAB it Qamus3A AN B by the same argument as for
EXT. So () has CONSERV. &

5.4 Conclusion

This chapter suggests a connection between generalized quantifiers and modal
operators and uses it to show that the natural language universals conservativ-
ity and extension correspond to the basic modal invariance under generated
submodels.
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