Generating descriptions of motion from cognitive r epresentations
Keil, Benjamin

ProQuest Dissertations and Theses; 2010; ProQuest

pg. na

UNIVERSITY OF CALIFORNIA

Los Angeles

Generating Descriptions of Motion from Cognitive
Representations

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Linguistics
by

Benjamin Keil

2010

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3424163

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMIO
Dissertation Publishing

UMI 3424163
Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(© Copyright by
Benjamin Keil

2010

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dissertation of Benjamin Keil is apprbved.

Bt G oo

Herbert Enderton

Edward Stabler -

Edward Keenan

A o oo LEn vte

Marcus Kracht, Committee Chair

University of California, Los Angeles

2010

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation is dedicated to the memory of Andrea Scamihorn. She got so
many wonderful things rolling during her stay here. May those of us who knew

her add to their momentum.

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.3

1.14

TABLE OF CONTENTS

Why Motion is a Suitable Focus
Place of this Dissertation within Talmy’s Program

Place of this Dissertation within Levelt’s “Blueprint for the

Speaker”

This dissertation with respect to “definitions”

1.2 Other Approaches to Language Generation

1.2.1

1.2.2

1.2.3

1.24

Systemic Functional Linguistics
Meaning-Text Theory

Pratt-Hartmann

2 Cognitive Representations

2.1 Overview of Cognitive Representations

2.1.1

2.1.2

2.1.3

2.14

Motion + Co-Event
Motion + Path
Motion + Figure

Implications for Sentence Generation

2.2 More about Motion

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221 AMOVE 38

2.2.2 Other Mid-Level Motion Morphemes 41

2.3 Conclusions 42
3 Graphs, grammars, and parsing 43
3.1 Overview o 43
3.2 Rendering Cognitive Representations as Graphs 44
3.3 From String Grammars to Graph Grammars 47
3.4 Flowgraphs 52
3.4.1 Example Flowgraph Derivation 56

3.5 Converting from Graphs to Flowgraphs 58
3.5.1 Motivation L 58
3.5.2 Process 60

3.6 Parsing with Context Free Flowgraph Grammars 64

3.6.1 Designing a Flowgraph Grammar for Cognitive Represen-

tations L 64

36.2 Patches 66
3.6.3 Lutz’s Algorithm 70
3.6.4 Implementing Lutz’s Algorithm 73
3.6.5 Equivalence of Patches 73
3.6.6 Extension of Partial Patches by Complete Patches 74

3.7 AnExampleParse, 76
3.8 Conclusions 84

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 From Graph Parses to Linguistic Expressions 85

4.1 OVerview e e 85
4.2 Definitions 88
421 Trees e 88
422 Terms 94
4.2.3 From terms to treesand back 95

4.3 ParseTerms o 98
4.3.1 String Derivations and Parse Trees 98
4.3.2 Parse Terms for Graphs 101

4.4 Tree Transductions 104
4.4.1 Transducing to Syntactic Structures 106
4.4.2 Transduction to Derivation Trees 112

4.5 Generative power of Macro Tree Transducers 112
4.6 Conclusions o 115
5 Conclusion 117
Appendix 120
A A (slightly) Larger Graph Grammar 120
A1 Introduction 120
A.2 (Vector and) Conform 121
A3 Productions 122
A.3.1 Prepositions(Pathl=) 123

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A32 Pathverbs (S]=),

References

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1.1 A blueprint for the speaker. Simplified from Levelt, 1989, p.9 .. 6
1.2 A judgment in the logic of Merenciano and Morrill (1997). 28
3.1 Example flowgraph oL 53

3.2 A sketch of Lutz’s (1996, p. 367) parsing algorithm, simplified for

only bottom-up parsing 72

4.1 Transduction from a parse term to a traditional syntactic analysis 108
4.2 Transduction from tree yielding aaabbb to tree yielding aaabbbccc . 114

4.3 Hierarchy of languages generated by iterated MTT and EDTOL

transductions e e e e 115

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LisT OF TABLES

1.1 Pratt-Hartmann’s normal form conjuncts Pratt-Hartmann, 2003,

P38 . 20

3.1 Talmy’s list of universal vectors (Talmy, 2000b, p.53f) 46

3.2 Complete patches by input 79

3.3 Complete patches by output 80

Al Afewmore Conforms. 123
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Marcus Kracht introduced me to computational semantics and guided my
research throughout both my master’s thesis and my dissertation. His views on
language and meaning have shaped my own in innumerable ways. It has been an
honor to be his student. Ed Keenan taught me almost everything I know about
mathematical linguistics. On several occasions his pragmatic approach to solving
problems has allowed me to progress in my research when I otherwise would have
stalled. I will be forever grateful to him for that. From Ed Stabler, I learned the
awe-striking clarity that a computational model can bring to its subject. I hope
that my dissertation shows at least a hint of that potential. Herbert Enderton’s
eye for detail has also been of great value. For their roles in the development of
my intellect and of my dissertation, then, I cannot sufficiently thank the members
of my committee. For the imperfections that I have introduced along the way, I

humbly apologize.

I benefited, naturally, from all of the time that I spent in the company of
the faculty of the UCLA Linguistics department. I thank all of them, especially
the following: Colin Wilson and Kie Zuraw, who were very generous with their
time when I wanted help exploring various ideas; Bruce Hayes, who showed me
all manner of pedagogical tricks that helped be an effective TA; Pat Keeting
and Daniel Biiring, who allowed me to serve as their research assistants in the
summer and prevented me from going broke; and Pam Munro, who showed me
through example how to evaluate the quality of research independent of its as-
sumed framework. It was also a great privilege to attend the mini-course offered
by Peter Svenonius during his visit to UCLA; my discussions with him were

invaluable in understanding many aspects of spatial linguistics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I thank also the regents of the University of California Los Angeles for the
dissertation year fellowship that supported a portion of this research, as well as
Noa Golding and Alessandro Tonchia of Business Semantics, Inc., who kept me

well employed for the duration of the thesis.

My stay at UCLA was enhanced by many magnificent colleagues, foremost
among them Greg Kobele and Jason Riggle. These are two of the most intelli-
gent human beings I have ever encountered and they volunteered their time so
generously to lead my entering class through early morning workshops on various
topics. They were equally generous with their time when they served as TAs in
my courses and when I asked them for guidance in my research. I profited from

every moment that I spent in their company.

Other colleagues whose assistance with this dissertation must be acknowl-
edged include Harold Torrence, Leston Buell, John Foreman, Marcus Smith, Ying
Lin, Katya Pertsova, David Schueler, Jeff Heinz, Sarah VanWagenen, Michael
Pan, Ananda Lima, Andy Martin, Heather Willson, Julie Morgenlender, Christina
Kim, Sameer ud Dowla Kahn, Benjamin Jones, Byron Ahn, Asia Furmanska,
Chad Vicenik, Ben George, Roy Becker-Kristal, Kristine Yu, Heather Burnett,
Denis Paperno, and Natasha Abner. I thank each of you for your help and I beg

the forgiveness of anyone I have forgotten.

I wrap up my acknowledgments for UCLA with a huge “THANK YOU” to
the linguistics department staff, who have been so helpful over the years in all
matters large and small. Natasha Levy, Kathryn Roberts, Melanie Levin, Lisa
Harrington, and Anya Essiounina: without you, this would have been impossible.

My education did not begin, of course, at UCLA. From my early childhood
my patient parents—Stan and Kathy Keil—, my generous elder brothers—John

and C. Edward Emmer—, and my godmother Gloria Dugan were always ready

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to help me investigate whatever it was that caught my curiosity (mathematics

and grammar included).

I received most of my primary and secondary education at Burris Laboratory
School, a division of Ball State University. I had many wonderful teachers there
including Donna Biggs, Richard Hays, Brad Meyerdierks, Pamela Popovich, and
Nancy Watson. I am especially grateful to Ron Bullock, Theresa Greenwood, and
Martha Kendrick, who all encouraged me to excel rather than coast. Most of all,
I am indebted to Bruce Robbins who, by example, taught me to read analytically,

think critically, and recognize important commonalities across disparate works.

My junior year of high school was spent at the Albert Schweizer Gymnasium
in Crailsheim, Germany. The families of Agathe Masserer and Werner Schebesta
were kind enough to provide me with both hospitality and instruction in the

German language and the Swabian/Franconian/Hohenlohish way of life.

I began the study of linguistics at Indiana University Bloomington. My intro-
duction to the field and much of my development in it came from the lectures of
Stuart Davis. One could not ask for a better beginning. Kenneth de Jong, George
Fowler, Julie Auger, and Samuel Obeng also provided first-class instruction. It
was Steven Franks who encouraged and convinced me to apply to UCLA. I am

thankful that I had the opportunity to learn from each of them.

Finally, I wish to thank a few friends who have inspired me at various points
along the long journey from birth to doctorate. These are Kavon Behforouz,
Matthew Robey, Matthew Molter, Ryan Kinney, Laura Robinson, Sally O’Brien,
Leta Echelbarger, Kristen Murphy, Elaine Vozar, Brandon Mundell, Stanley Flo-
rek, Heather Frankland, Jim Richmond, Sarah Hoff, Sara Fox, Kelley Runyon
Lewis Farmer, Molly Johnson, Adam Johnson, Janelle Boys-Chen, and Kurt

Lawson. I have been quite fortunate to know each of you.

X1l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1979

1991

1995

1997

2001

2005

2005—

VITA

Born, Muncie, Indiana, USA.

Completed 7th year, Hampstead School, London, England

Completed 10th class, Albert Schweizer Gymnasium, Crail-

sheim, Germany

Graduated, Burris Laboratory School, Muncie, Indiana

B.A. Linguistics and Cognitive Science with concentration in

Computer Science, Indiana University Bloomington

M.A. Linguistics, University of California Los Angeles

Technical Team Lead, Business Semantics, Inc.

PUBLICATIONS

An Associative Semantics for Malagasy. Proceedings of the 12t Annual Confer-

ence of the Austronesian Formal Linguistics Association

Xiil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT OF THE DISSERTATION

Generating Descriptions of Motion from Cognitive
Representations

by

Benjamin Keil
Doctor of Philosophy in Linguistics
University of California, Los Angeles, 2010

Professor Marcus Kracht, Chair

This dissertation presents a novel method of sentence generation, drawing on
the insight from Cognitive Semantics (Talmy, 2000a,b) that the effect of uttering a
sentence is to evoke a Cognitive Representation in the mind of the listener. Under
the assumption that this Cognitive Representation is also present in the speaker
and defines (part of) the speaker’s communicative intention, sentence generation
is seen as the process of transforming Cognitive Representations into sentences.
Starting with a brief exposition of the Cognitive Representations of motion events,
this dissertation demonstrates how Cognitive Representations can be rendered as
graphs, the graphs can be analyzed (parsed) with a graph grammar, and the parse
term obtained from the graph can be transformed into the linguist’s traditional

representation of of a sentence, a syntactic tree.

The process of generation is presented in two phases: graph parsing and parse
transformation. The graph parsing phase itself has two sub-phases. An initial
descriptive phase motivates graphs as a means of depicting Cognitive Represen-
tations and tours the development of graph grammars from string grammars.

The following analytic phase introduces flowgraphs, a formalism closely related

xXiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to graphs. It is demonstrated that from any graph a unique flowgraph (up to
isomorphism) can be obtained. The analytic phase finishes with a detailed exhi-

bition of an algorithm for parsing flowgraphs based on the work of Lutz (1996).

The parse transformation phase shows first how the important details of a
parse can be recorded in a parse term while also discarding irrelevant details of
the parse. The transformation of the parse term into a syntactic tree is then
manifested with a top-down deterministic macro tree transducer (Engelfriet and
Vogler, 1985), and the generative powers of macro tree transducers is briefly

explored.

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

Introduction

1.1 Goal

The goal of this dissertation is to exhibit a method for generating linguistic ex-
pressions, specifically descriptions of motion. By “generate” I intend not merely
the enumeration of the grammatical descriptions of motion, but also the choice
among these grammatical descriptions to meet some communicative need. I mean
by “generation,” in other words, the process of taking a particular meaning, per-
haps one gleamed from an observation of a motion event, and constructing a

linguistic expression that encodes that meaning.

A method of generation, then, requires an idea of what meanings are. Where
can we look for answers? Semantics is nominally the study of meaning, and
semanticists in general reduce a linguistic expression to its truth conditions. One
might, therefore, work on the recovery of a linguistic expressions from its truth
conditions. Given the right kind of truth conditions, such recovery is possible,
and this is indeed a tenable method of sentence generation. For example, a
first-order logic (FOL) formula that expresses the truth conditions of a sentence
in Pratt-Hartmann’s two-variable English (E2V) can be run backwards through
the interpretation process to recover the precise E2V sentence that generated
it. The transduction from FOL to E2V is interesting, but it does not answer (or

even suggest any answers to) any questions about how the observation of an event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could lead to a description of that event. As an alternative, this work explores the
use of the Cognitive Representations (CRs) of motion events laid out by Talmy
(2000a,b) as the source from which sentences are generated. Talmy’s theory of
CRs is psychologically motivated and driven by an exhaustive typological study

of motion event descriptions across several language families.

In particular, the fundamental claims of this dissertation are listed in (1.1):

(1.1) a. Cognitive representations of events are a useful starting point for
generating linguistic expressions describing those events.
b. Cognitive representations can be rendered as graphs.
c¢. Using a graph grammar to parse the graph of a cognitive represen-
tation yields a parse term that can be transduced to a structured
linguistic expression.
d. A graph can have multiple parses and each parse term corresponds

to a different linguistic expression with the same meaning.

In addition, my dissertation suggests that cognitive representations are a lin-
guistic level of representation whose existence—like the existence of Phonological
Form and of Logical Form—is necessary to satisfy the criteria laid out by Chom-
sky (2002, pp. 85-91) for the adequacy of a theory of language. The necessity
of this level of representation is closely related to (1.1-d). Just as understanding
the homonymity of the two morpheme sequences “an aim” and “a name” is best
facilitated by reference to a phonological level of representation where the two are
the same (or very close), the synonymy of the two sentences in (1.2) also moti-
vates a level of representation on which they are the same. This level is certainly
not Phonological Form, and it also does not seem to be Logical Form, where the

sentences in (1.2) would be expected to have different representations, although

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their representations might be related in some theories by meaning postulates.
The two sentences will, however, have the same cognitive representation. Even a
more abstract logical form is not likely to suffice. The two sentences in (1.3) are
truth-conditionally equivalent, but represent different conceptualizations of the

situation they depict.

(1.2) a. The bottle floated into the cave.
b. The bottle entered the cave floating.

(1.3) a. A line of trees extends from the beach to the bluff.

b. A line of trees extends from the bluff to the beach.

1.1.1 Why Motion is a Suitable Focus

Certainly, any practical system for generating sentences and texts should account
for more topics than just motion. In this dissertation I focus on motion for
two reasons. First, the Cognitive Semantics literature is better developed in its
descriptions of motion-related language. Second, our understanding of space and

motion seems to shape our understanding of many other realms.

1.1.2 Place of this Dissertation within Talmy’s Program

Talmy (2000b, p. 22) outlines the steps in (1.4) as a means to develop a cognitive

semantics:

(1.4) (“entities” = elements, relations, and structures: both particular cases

and categories of these) (ibid., p. 22)

a. Determine various semantic entities in a language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. Determine various surface entities in the language.

c. Observe which (a) entities are expressed by which (b) entities—in
what combinations and with what relationships—noting any pat-
terns.

d. Compare (c)-type patterns across different languages, noting any
metapatterns.

e. Compare (c)-type patterns across different stages of a single lan-
guage, noting any shifts or non-shifts that accord with a (d)-type
metapattern.

f. Consider the cognitive processes and structures that might give rise

to the phenomena observed in (a) through (e).

This dissertation builds on the work that has already been done on (1.4-a-¢) and

concentrates on a new step, (1.4-g):

(1.4) g. Validate, through modeling and computation, that the processes and
structures considered in (f) actually can give rise to the phenomena

(a) through (e).

1.1.3 Place of this Dissertation within Levelt’s “Blueprint for the

Speaker”

Levelt (1989) offers a comprehensive cognitive model of the process that starts
with the intention to speak and ends with the articulation of an utterance that
more or less conveys the speaker’s intention. The model includes several pro-
cessing components, interconnected such that the input of one component is the
output of another. At a coarse level, there are the CONCEPTUALIZER, which

creates from the intention a “preverbal message”; the FORMULATOR, which pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

duces a “phonetic plan” (or “internal speech”) from the preverbal message; and
the ARTICULATOR, which produces overt speech from the phonetic plan. These
elements are complemented by the AUDITION, which captures the overt speech
and produces a phonetic string, and the SPEECH COMPREHENSION SYSTEM,
which parses both the internal phonetic plan and the phonetic analysis and in-
forms the CONCEPTUALIZER, which monitors the parse for any deviations from
the intention and can issue new preverbal messages to correct them when they

arise.

In this dissertation, I am concerned with the action of the FORMULATOR. 1
assume that I already have preverbal messages available to me, in the form of
Cognitive Representations. Moreover, I am only concerned with that part of the
FORMULATOR that Levelt labels “grammatical encoding,” which is emphasized

in bold in Figure 1.1.

Gubhe (2007) is an in-depth investigation of a cognitively motivated, incremen-
tal implementation of the CONCEPTUALIZER, called INC. The approach taken by
Guhe dovetails with this dissertation in spirit, although there is some disparity
between the preverbal messages generated by INC and the cognitive representa-

tions that I use to drive the formulation of sentences.

1.1.4 This dissertation with respect to “definitions” !

This dissertation might be seen as advocating a definitional theory of language,
and some scholars object to any theory of language that revolves around defini-

tions. I maintain that I do not use cognitive representations as definitions and so

1This section draws heavily from discussions with both Kracht and Stabler; if I convey any
insight into the topic, then much of it is due to them. Any over-simplifications and failures of
argumentation are, of course, wholly my own.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONCEPTUALIZER

discourse model,

message | o - — o o o el 2 situation knowledge,
generation encyclopedia
etc.

preverbal message

FORMULATOR

grammatical |_
encoding e B S

T T ----_/ LEXICON

surface lemmas
strug¢ture F - ———— =

Y
phonological | _ _ __ -4
encoding

phonefic plan
(interna{’speech)

ARTICULATOR

Figure 1.1: A blueprint for the speaker. Simplified from ibid., p. 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the content of this dissertation retains its value whether one accepts definitional

theories of language or rejects them.

Fodor et al. (1980) are among those who reject definitional theories of lan-
guage, rejecting specifically the idea “that the morphemes of a natural language
typically have internal structure at the ‘semantic level’,” which they refer to as
“The Standard Picture” (TSP). They cite a lack of direct evidence, a paucity
of persuasive examples, and a failure of definitions to actually fulfill the needs
of definitional theories. They also present experimental evidence that suggests
to them that definitions do not play an active part in adult comprehension of
language. As the language generation process that I present in this dissertation
does involve positing some relationship between, say, ‘enter’ and the pair ‘move’
and ‘into’, it falls to me to explore to what extent my work is subject to their
criticism.

To develop their criticism of definitions, Fodor et al. (ibid.) use the word
‘bachelor’ and its widely recognized definition: “unmarried male.” They first
object to this definition on the grounds that the terms ‘unmarried’ and ‘male’
in the definition are not obviously closer to the “primitive basis of language”
than ‘bachelor’ is. Although I make no claims in this dissertation about the
primitive basis of language, one may consider Talmy to do so. Talmy’s deep- and
mid-level morphemes (the closest elements to definitions in Talmy’s work) are,
however, based on rigorous typological surveys across several language groups.
In this light, my use of Talmy’s typological work to motivate my framework for
generation is comparable to the use of the typological work of Jakobson (1962)
by Prince and Smolensky (1993, chap. 6) to motivate their optimality-theoretic

analysis of syllable structure.

A second objection of Fodor et al. (1980) to definitions is their interposition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between syntax (“lexically-specified trees”) and logical form and what they see as
TSP’s use of this position to “underwrite the validity of informally valid argu-

2

ments.” Returning to ‘bachelor’, this refers to the validity of an argument like
“John is a bachelor. Therefore John is unmarried.” If a lexical item is replaced by
its definition in the logical form of a sentence, then the logical form of “John is a

" is something like “John is a male and John is unmarried.” The conclu-

bachelor.’
sion “Therefore John is male,” would therefore be an instance of the familiar “7P
and Q. Therefore P.” This breaks down, however, when other informally valid
arguments are tested. Fodor et al. (1980) give the example of “z is red. Therefore
z is colored.” There is no definition of ‘red’ that makes the argument valid. If
one takes ‘colored’ to be the defined term, and gives it a definition like “red or
blue or green or cyan or magenta or yellow or...” then the argument is valid,
but the definition appears to be intractable. In this dissertation, I do not place
cognitive representations between syntax and logical form. Rather, I consider
cognitive representations to be sources? of logical forms, with the logical forms of

both The bottle floated into the cave and The bottle entered the cave floating as

being connected to the same source cognitive representation, as in (1.5).

2“Sources,” that is, for the purpose of generation. For other purposes they may be derived
objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1.5) Cognitive Representation of both
“The bottle floated into ...” and
“The bottle entered ... floating”

Logical form of Logical form of
“The bottle floated into ...” “The bottle entered ... floating”
| |
Lexically-specified tree of Lexically-specified tree of
“The bottle floated into ...” “The bottle entered ... floating”

The reader may wonder if I intend the two sentences at the leaves in (1.5) to
have exactly the same meaning. The goal of this dissertation is the generation
of descriptions of motion events from Cognitive Representations, so my inten-
tion is that the two sentences are equally good reports of the observation of a
bottle moving across the surface of a body of water from a point outside of a
cave to a point inside of that cave. Cognitive Representations of motion events
are extracted from such observations, abstracting away from several details (the
decision as to which elements are kept in this abstraction and which are discarded
is the work of the CONCEPTUALIZER in Figure 1.1). Thus, two sentences with
the same Cognitive Representation may differ subtly in meaning in ways that are

not attended to by the generation system.

Meaning postulates (Carnap, 1952) are a proposed alternative to definitions.
In a system built around meaning postulates, knowledge of the English word
‘bachelor’ includes knowledge of the postulate “z is a bachelor just in case z
is male and z is unmarried,” but the lexical item ‘bachelor’ is a peer to lexi-

cal items such as ‘male’ and ‘unmarried’, rather than deriving its meaning from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

them. Fodor et al. (1980) prefer meaning postulates to definitions for the un-
derwriting of informally valid arguments. Meaning postulates, they say, have
greater descriptive power than definitions; definitions are essentially limited to
biconditional statements, where as all logical operations are available to meaning
postulates. There can be, therefore, a meaning postulate that “z is red implies x

is colored,” underwriting an argument where definitions failed to do so.

The use of cognitive representations to generate sentences parallels the use of
meaning postulates to assess the validity of an argument. Perhaps what Talmy
(2000a,b) is cataloging is just a system of regularities in the meaning postulates
that arise in the domain of motion and the lexical items whose behavior they

govern.

1.2 Other Approaches to Language Generation

The claims in (1.1) lay out an approach to generation that seeks to combine the
insights of the cognitive and generative linguistic traditions. Other traditions in
linguistics and logic have inspired quite different models of generation. The ways
in which the absence of either a cognitive or generative inspiration cause them to

differ from the thesis developed here are elaborated below.

1.2.1 Systemic Functional Linguistics

Systemic Functional Linguistics is a school of linguistics that centers around the
reasons that humans use language, the functions that language performs. For
example, Halliday (1975, p. 37) lists seven functions that language performs for
children:

Instrumental language allows a child to acquire what is wanted or needed

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Regulatory language allows a child to control the behavior of others by giving

commands

Interactional language allows a child to form and maintain interpersonal rela-

tionships
Personal language allows a child to express opinions and feelings
Heuristic language allows a child to gain knowledge about the environment
Imaginitive language allows a child to tell fanciful stories and jokes

Representational language allows a child to share information with others

Halliday (1970) argues that every function that language performs touches
to varying degrees on each of the three metafunctions of language. These are
the ideational, the interpersonal, and the tertual metafunctions. The ideational
function of language is to “express content,” to “give structure to experience”
and to “determine our way of looking at things.” The interpersonal function of
language is to “establish and maintain social relations,” to express social roles,
to “[get] things done,”, to “delimit social groups,” to identify and reinforce the

” The textual function

individual, and to “[enable] him to interact with others.
of language is to “links with itself and with features of the situation in which
it is used,” to establish “cohesive relations from one sentence to another in a
discourse,” to enable a speaker or writer to form a coherent text, and to enable a
listener or reader to distinguish a coherent text from a random list of sentences
(ibid., p. 175).

Systemic Functional Linguistics is also a stratificational theory of linguistics

in the sense of Lamb (1966), with the strata in (1.6). In a stratificational sys-

tem, each stratum is said to “realize” the stratum above it and to “abstract” the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stratum below it. A “behavioral potential” is realized as a “linguistic potential”
which is then realized as sound. Semantics and phonology are considered to be

intermediate steps which facilitate these realizations.

(1.6) SUBSTANCE | (interlevel) | FORM | (interlevel) | CONTEXT

Sounds Phonology | Grammar | Semantics | Situation
(Teich, 1999, p. 13)

The term systemic refers to the way that each stratum realizes the stratum
above it through a series of choices. Each local choice is called a system and
the collection of all systems dealing with a particular grammatical rank (e.g.,
morpheme, word, phrase, clause) is called a system network. Each system is
drawn with an entry condition on the left and an output term on the right, and a
rightward pointing arrow in the middle as in (1.7-a). Disjunction is allowed in the
entry condition, as in (1.7-b), where it means “if either a or b then choose z.” It is
also allowed in the output term, as in (1.7-c), with the meaning “if a then choose

3

either z or y.” Likewise, conjunction is allowed in the entry condition (1.7-d),
and in output term (1.7-e), where it is called “simultaneity” and is interpreted as

“if a then simultaneously choose z and choose y.”

(LY a a-—z
a_
b. -
b—
T
c. a—
Y
a_
d. -
h—

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— T

—Y

Systemic linguists recognize some patterns in system networks as recurring fre-
quently and have given them names. For example, one system in a network often
represents a refinement of another system, such as the system for choosing mood
in (1.8). In a grammar containing this system, one can only choose between
interrogative and declarative mood if indicative has already been chosen over

imperative mood. This is called a delicacy ordering.

interrogative
indicative —
MOOD — declarative

imperative
(Teich, 1999, p. 12)

Another example is a system where two choices made independently force a third
choice, as in (1.9), where independent choices in the topic of a sentence (called
here its “theme”) and the topic’s type force a particular choice for the topic’s role.

The forced choice is called a gate.

interpersonal
.
.- — unmarked — — textual
< —other
1.9
(1.9) experiential)
nonpredicated - — most-inherent-role
- — | other-simple
theme
| identifying
(adapted from ibid., p. 122)
13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Teich (1999) explores the use of Systemic Functional Linguistics in natural lan-
guage generation. The input to a systemic generation system is tied the choices
in the system network being used. At cach choice point, the generator uses the
input to decide between the multiple options. A typical input is (1.10), where the
top line of each box is a concept with an associated variable and the remaining
lines are attribute-value pairs. The expected output for (1.10) is “Kim devours

the cookies.”

devoury

actor: Persote
name: Kim
cookie,

(1.10) actee: identifiability: identifiable

number: plural

time: present

theme: P

speech act: statement

(ibid., p. 64)

The system network approach makes the finely detailed decisions of generation
quite easy to implement. The choice of whether or not to use the word ‘the’ in a
sentence like “Kim devours the cookies” is decided by having a specific indicator
of identifiability in the input and having a system that chooses to use ‘the’ when
an object is identifiable. When the system has to work with larger syntactic
constituents, however, Systemic Functional grammars suffer a “syntagmatic gap”
(ibid., pp. 2, 52-53), a lack of any way to express syntactic generalizations. In

generative grammar, on the other hand, devising abstract syntactic representa-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions and defining rules over them has been one of central focuses of the theory,

(see Chomsky, 2002, for example).

Also, any input to a system network is by necessity highly specified. Among
other things, (1.10) includes a specification of which verb to use in the sentence,
so one could presumably not produce both of the sentences in (1.2) from the
same input and system network. The formalized Cognitive Representations de-
veloped in this thesis are designed to do precisely this. The CRs developed here
do, however, fall short in some ways that the Systemic Functional Grammars do
not. Most notably, I will not develop here any means of generating “referring
expressions” like ‘the cookies’. The generation of referring expressions is an ex-
tremely complicated endeavor (see Reiter and Dale, 2000, for an overview), and

would detract from the focus on motion events.

1.2.2 Meaning-Text Theory

Meaning-Text Theory (Mel’¢uk, 1981) presents another model of language that is
very relevant to the work in this dissertation. It shares the stratificational heritage
of Systemic Functional Linguistics, but it also places a high value on paraphrase.
As a preface to an article on generation within Meaning-Text Theory (MTT),

Iordanskaja, Kittredge, and Polguére (1991) write

One measure of the power and completeness of a language model is
its ability to represent all the possible ways that a human speaker
could choose to say “the same thing” by using linguistic knowledge

(as opposed to world knowledge).

The importance of this measure is two-fold. First, it is important for the theory

of linguistics, as it serves to measure the grammatical and lexical coverage of the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model. Second, is important for the practical application of a language model to
the generation problem, as generators sometimes face conflicting constrains that

must be “paraphrased around.”

MTT aims to “cover all possible linguistic knowledge ...governing the usage
of words in texts” (Iordanskaja, Kittredge, and Polguére, 1991, citing Mel’¢uk,
1984) in formal dictionaries called Ezplanatory Combinatorial Dictionaries (see
Mel’¢uk, 1988, for a systematic exposition). The linguistic knowledge is stratified

across seven levels of representation:

(1.11) Semantic Representation (SemR)

&

b. Deep Syntactic Representation (DSyntR)

c. Surface Syntactic Representation (SSyntR)

d. Deep Morphological Representation (DMorphR)
e. Surface Morphological Representation (SMorphR)
f. Deep Phonetic Representation (DPhonR)

g. Surface Phonetic Representation (SPhonR)

Within MTT there are at least four recognized means of paraphrase:

(1.12) a. Reductions: within SemR, a number of simple morphemes may be
replaced bu a semantically more complex morpheme. For example,

reducing (i) to (ii):

(i) The referred-to user(s) of the system used (before now), dur-
ing the referred-to period of 7 hours, 32 minutes and 12 sec-
onds, more than one program of a type such that someone
compiles something with these programs and someone edits

something with these programs.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i) The aforementioned users of the system used programs of
compiler type and of editor type during the referred-to pe-
riod of 7 hours, 32 minutes and 12 seconds. (Iordanskaja,
Kittredge, and Polguére, 1991, p. 300).

b. Alternative Maximal Reductions: to be as brief as possible
requires applying as many “reductions” as are applicable, but it is
often the case that there are several maximally reduced SemR’s
derivable from the same unreduced SemR. The sentences (i)—(iii)
are sentences portraying three such maximal reductions:

(i) Fred limped across the road quickly.

(i) Fred hurried across the road with a limp.

(iii) Fred crossed the road, limping quickly. (ibid., p. 301)

c. Passage from SemR to DSyntR: once the semantic representa-
tion has been chosen, the next step is to structure the information
into a sentence. Something must become a subject. Something
must be predicated of that subject. These choices are encoded in
DSyntR. The different choices for the subject of the same SemR:
(i) The user who ran editors is named Martin. A
(ii) The name of the user who ran editors is Martin.

(iii) Martin is the name of the user who ran editors. (ibid., p. 302).

d. Passage from DSyntR to SSyntR: even when the lexical choices
and the information structure are set, there are still several choices
to be made in the surface syntactic representation. For example,
should a relative clause be a full or reduced relative clause (users
who run editors vs. users running editors. MTT also considers
operations like “dative shift” (give Mary the book vs. give the book

to Mary) to be surface phenomena.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this dissertation, I won’t investigate the kinds of paraphrase in (1.12-¢,d), but
the trio of sentences in (1.12-b. i-iii) bears a strong resemblance to the pair in
(1.2). In fact, there is a remarkable similarity between Talmy’s work and MTT;
even more striking as MTT is driven by what its researchers deem necessary for
formal linguistic description and Talmy is motivated by theories of cognition. A
reader coming from an MTT perspective would be kind to consider this whole

dissertation as an implementation of (1.12-a,b).

1.2.3 Pratt-Hartmann

Pratt-Hartmann (2003, 2005) has done much work on mappings between log-
ics “whose computational characteristics are well-understood” and “regimented
fragment|[s] of a natural language.” (Pratt-Hartmann, 2003, p. 14) In particu-
lar, he has studied two different two-variable fragments of first order logic: £2,
which does not have counting quantifiers and C? which does. These fragments
are interesting because they are decidable logics, although the decision problem
is NEXPTIME-hard in both cases. The goal of his work, then, is similar to the

goal of this dissertation.

Pratt-Hartmann has identified (i.e., constructed a grammar for) a moderately-
rich fragment of English called “E2V”, for “two-variable English.” The grammar
produces syntactic trees such as (1.13-a). Along with his grammar, he gives an
interpretation function that maps the each of grammar’s syntactic trees to an
intermediate logical form, which can then be translated into a statement in £2.
(1.13-a), for example, has the intermediate form (1.13-b) and the £2 interpreta-
tion (1.13-c).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1.13) a. IP

T

NP VP
P /\
DET N v

NP
| | | N

every N despises DET N’
| | |

artist every N

beekeeper

b. every

T

artisty, every

T

beekeeper,, despise(z;,)
c. Vzi(artist(z;) — Vzg(beekeeper(xzs) — despise(xry, z2)))

Pratt-Hartmann (2003, p. 37) also provides a translation function from £? back
into E2V. This translation is way of genefating language, and its scope is quite
impressive. It will generate a text for any formula in £2 and it will preserve
a relation of mutual entailment between the interpretation of the text and the
formula. It is not as impressive—{from the point of view of someone who intends
to generate natural language-—in terms of its results. Although Pratt-Hartmann
makes use of a generative grammar to specify and interpret E2V, the grammar
is entirely ignored in the translation from logic into E2V. Instead, an E2V text is
produced by choosing a sequence of sentences drawn from just the 15 templates

listed in Table 1.1. Impoverishing the syntax of E2V has severe consequences for

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VzVy(a(z,y) — b
Va(Jyal(z,y) — b
‘v’y Ara(z,y) — b

) Everything bees everything which ays it

) Everything which ays something bees itself
) Everything which something ays bees itself
)
)

(

Vz(b(z,z) = V y) Everything which bees itself ays everything
Vx(b(x,z) — Vya Y, T) Everything ays everything which bees itself
Vz(Jya(z,y) — b(z)) Everything which ays something eqs a bee
Vz(Jya(y, z) — b(z)) Everything which something ays eqs a bee
Vz(b(z) — Yya(z,y)) Every bee ays everything
Vz(b(z) — Vya(y, z)) Everything ays every bee

VaVy(a(z,y) — —b(z,y)) Nothing bees something which it ays
Y

VaVy(a(z,y) — b(z,y)) Everything bees everything which it ays
VaVya(z,y) Everything ays everything
VzIya(zx,y) Everything ays something

VzVy(-b(z,y) — a(x,y)) Everything ays everything which it does not bee
(z,y) ANc(z,y)) Everything which bees something which it cees
— a(z,y)) ays it

Table 1.1: Pratt-Hartmann’s normal form conjuncts ibid., p. 38

the translation, as the following example will demonstrate.

The translation function first translates the logical sentence into a normal
form, a conjunction of terms each of the form VazVy¢ or Vz3y¢, where in each case
¢ is quantifier-free.> Moreover, there are (up to renaming of predicate letters) only
finitely many formulas ¢ that need to appear in this normal form (those appearing
on the left hand side of Table 1.1). Pratt-Hartmann’s method of translating £2
into E2V is to translate each conjunct of the £? sentence into the E2V sentence
to its right in Table 1.1. The L£L? sentence has the same truth conditions as the

conjunction of all the £2 interpretations of the resulting translations.

For example, his syntax for E2V allows sentences like the one in (1.14-a),

which his semantics interprets as (1.14-b):

3The forms in Table 1.1 are in this form, but some have the quantification “late,” that is, with
one of the quantifiers “pushed down” into the embedded subformula. This is Pratt-Hartmann’s
program of “efficient” quantifier use that lets him express formulas with two variables that
would require more than two variables if quantification were done “early.”

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1.14) a. Some artist does not despise every beekeeper.
b. 3z (artist(z,)A-Vzo(beekeeper(z;) — despise(z,z2))). Pratt-
Hartmann, 2003, p. 26

To generate an E2V sentence or text in a mutual entailment relation with (1.14-b)
(henceforth ¢) following Pratt-Hartmann’s algorithm, first one must convert it
into Scott normal form. The normalization process, outlined by Grédel and Otto
(1999, p. 88), starts by finding the minimal subformula of ¢ with quantifier-depth
one, in this case (1.15-a), and assigning that subformula to a new sentence letter,
¥! (my notation). The process then creates a new unary predicate letter Py and
an assertion Ay (1.15-b), which guarantees that an assignment of an individual
to z; makes Py (z1) true just in case it makes ! true as well—intuitively, then,
Py is the property possessed by all and only those individuals that hate every
beekeeper. The next step is to substitute any occurrence of ¥ in ¢ with Py,
creating ¢ as in (1.16). The conjunction of ¢' and Oy is truth-functionally

equivalent to ¢.

(1.15) a. Vzy(beekeeper(z,) — despise(z;, 7))
b. Oyt =des V21V2(Pyr (31) < (beekeeper(zy) — despise(z1,2)))

(116) (15, =def Hacl(artist(acl) A ﬁ]3.(/,1 (.’El))

The process then recurses through ¢, picking out the new smallest subformula
with quantifier-depth 1 (which in this case is the whole of ¢'), and giving it a
new sentence letter, 1)2. The newly created predicate letter P2 is governed by
the assertion 62 in (1.17). This makes Py2 a very strange kind of property; given
0,2 is true, Py is true of all individuals if there is some artist who does not hate

every beekeeper and false of all individuals if no such artist exists. The truth

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of 1? (which has no unbound variables), then, is equivalent to Py being true of
any individual at all, so we can substitute all occurrences of 92 in ¢’ with Pyz(c),
where c is a special constant used by the translation process. The result of this
substitution is ¢” (1.18). ¢” contains no quantifiers, so at this point the end
of the recursion has been reached, and the resulting formula is given a special

-~

sentence letter, ¢.

(117) 61/,2 =def \/$13$2(P¢2(.’L'1) — (artist(:vg) A _\Pwl (1‘2)))

(1.18) 43 =gef ' =def sz(c)

Having reached ¢ through recursion, the next step in the process is to set ¢* =
3z,¢[°/,] and collect the Gn generated during the recursion. The conjunction of

all of these elements, (1.19), is the Scott normal form of ¢.4

(1.19) Va13z9Pye(w2) A Vo Ixo((artist(zy) A ~Pyi(z2)) « Pye(z1))

AVz1Vzy((beekeeper(x;) — despise(z1,z2)) « Py (z1))

Already at this point, we are far from anything that looks like an interpretation
of the original E2V sentence (1.14-a), but the translation into Pratt-Hartmann’s

normal form will take us further afield.

The first step in conversion to Pratt-Hartmann normal form is to rewrite the
quantifier free subformulae in the Scott normal form using only negation and

conjunction, as in (1.20), referred to by Pratt-Hartmann as f'(¢).

(1.20) Va3y(Ppz(y))A

4Presumably the vacuous—in a non-empty universe—universal quantification on ¢* is also
part of the process, but it is not mentioned in Gradel and Otto, 1999

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vz3y (—(—(artist(y) A =Pyi(y)) A Ppe(z)) A ~(=Pya(z) A (artist(y) A
=Py (y)))A
VzVy(—(——(—beekeeper(y) A despise(z,y)) A Py (x)) A =(—Pyr(z) A

—(—beekeeper(y) A despise(z,y))))

The next step is to get all of the atoms in (1.20) to be of the form b(z,y), in
the process creating new binary relation letters ay, ..., a, as well as many more
conjuncts which express the restrictions on those new relation letters. Pratt-

Hartmann refers to the result of applying (1.21) to f'(¢) as f"(¢).

(1.21) Replace an atom not of the form b(x,y) with a new binary relation

a;(z,y). Repeat as long as there still exist atoms not of the form b(z,).

a. Replace Pyi(x) with a;(z,y), imposing the following conditions:

() Va(@yai(z,9) — P ()
(i) Va(Py(z) — Vyar(s,))

b. Replace Pyi(y) with as(z,y), with the conditions:

(i) VaVy(az(z,y) — ai(y, z))
(i) VaVy(ai(z,y) — a2(y, z))

c. Replace Pyz(x) with as(x,y), Py2(y) with as(z,y), imposing con-
ditions as before; likewise artist(x) with a;(z,y), artist(y) with
ag(z,y), and again beekeeper(x) with as(z,y), and finally
beekeeper(y) with as(zx,y).

After (1.21), the first conjunct of (1.20) is now Vz3yae(x,y), which is one of the
forms on the left-hand side of Table 1.1. Moreover, all of the conditions imposed

by (1.21-a) and (1.21-b) were also forms from that table; the transformation

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process is nearing its end.

The conversion to Pratt-Hartmann normal form proceeds by working a similar
transformation on the smallest non-atomic units in the result of (1.21). Because
(1.20) was written using only conjunction and negation, there are exactly two
kinds of minimal non-atomic sentences. An example of the translation of each

form is given in (1.22).

(1.22) Replace the smallest non-atomic subformula with a new binary relation

a;(z,y). Repeat as long as there still exist non-atomic subformula.

a. The subformula =Py (y) of (1.20), which was replaced with —as(z,y)
in step (1.21), is now replaced with ag(z, y), and the following con-
ditions are placed:

() Vovy(as(zy) — —ax(z1))
(i) VaVy(-ax(z,y) — as(z,y))

b. The subformula (artist(y) A —~FPy(y)) of (1.20), which was replaced
with (ag(z,y) ANag(x,y)) in (1.21), is replaced by ayo(z, y) imposing
three conditions:

(1) Vavy((as(z,y) A ag(z,y)) — ai0(z,y))
(i) VaVy(aio(z,y) — as(z,y))
(i) VzVy(aio(z,y) — ag(z,v))

After (1.22) has been exhaustively applied to f”(¢), all that will remain is atomic
formulas of the form a;(z,v). In this manner (1.20) will be transformed to (1.23),
imposing in the process 60 conditions on the interpretation of the 26 new predicate
letters introduced during the translation. Let © be the conjunction of all of the
conditions imposed by steps (1.21) and (1.22), then the Pratt-Hartmann normal
form of ¢, f(¢) is the conjunction of (1.23) and ©.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1.23) VzIyae(z,y) A VzIyass(z,y) A ViVyass(z,y)

Each of these conjuncts (the three in (1.23) and the 60 in ©) will be translated into
an E2V sentence, making a text of 63 sentences where one solitary sentence of E2V
would have been sufficient. Moreover, contained in these 63 sentences are 26 new

%«

transitive verbs (“ay-one,” “ay-two,” ..., “ay-twenty-six,” which are interpreted as
a1.26) and 2 new nouns (“psi-one” and “psi-two,” which are interpreted as Pyu...2).
The text will contain sentences like the translation of (22-b-i), given as (1.24); it

seems somewhat unfair to call this a “fragment of a natural language.”

(1.24) Everything which ay-eights something which it ay-nines ay-tens it.

To be fair, the goal of Pratt-Hartmann’s translation algorithm is not to provide a
means of translating £2 into English (or E2V), but to prove that any £? formula
has an E2V text with the same (i.e., a mutually entailing) meaning. For those
formulas of £2 that are actually interpretations of E2V sentences—(1.14-b), for
example—it is relatively easy to retreat from the interpretation back to the inter-
mediate form and from there back to the original E2V sentence. Moreover, the
set of E2V interpretations is directly generable by a simple grammar. Given a
means of selecting a relevant member of the set of all E2V interpretations, then,

one could craft a reasonable system for generating English sentences.

1.2.4 Generation from Proof Nets

Where Pratt-Hartmann’s (2003) work centers around proving the equivalent ex-
pressive power of E2V and £? given the ability to create arbitrary novel nouns
and verbs in E2V, another tradition in generation focuses on deriving sentences

from their interpretations using a fixed vocabulary. In this tradition the lexical

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

items of a language are treated as resources to be used to build sentences and their
interpretations. Associating a sentence and an interpretation is done by proving
that the resources used to build one can be used in the same configuration to

build the other.

Traditional logic does a poor job of managing resources, but Girard (1987)
introduces a logic “as strong as intuitionism but more subtle,” calling it linear
logic. Linear logic is a “resource conscious” logic, meaning that propositions are
treated as resources that can only be used once. So, if one uses a proposition A
and a proposition A => B to prove a proposition B, then, at the end, all one has
available is the proposition B3; the other two propositions have been used up. This
can be difficult to appreciate with the standard semantics for propositional logic,
but—adapting an example from Wadler (1993)—it is much easier to appreciate
if one takes A to mean “I have a five dollar bill”, B to mean “I have a pizza,” and
A = B to mean “I can exchange a five dollar bill for a pizza.” If there is an
additional proposition on the table, for example, A = C “I can exchange a
five dollar bill to get a plate of brownies,” then it becomes clear that from one
instance of A, i.e., the possession of one five dollar bill, one can obtain either B,
a pizza, or C, a plate of brownies, but not both. The choice of B or C given the
availability of A is written A F B&C. Now, two five-dollar bills can be exchanged
for both a pizza and a plate of brownies, written A, A+ B & C.

Girard (1987) also introduces proof nets, a natural deduction system for linear
logic. Proof nets are proofs with multiple conclusions and are structured in such
a way that they avoid any spurious ambiguity, much like a traditional syntactic

derivation tree (see Chomsky, 2002, p. 27).

Lambek (1958) aims to “obtain an effective rule (or algorithm) for distinguish-

ing sentences from nonsentences, which works not only for ... formal languages

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

..., but also for natural languages such as English.” To this aim, he develops a
calculus for combining syntactic types. The calculus starts with basic types, like
n, for a nominal (e.g., ‘John’, or ‘the dog’) and s for a sentence. More compli-
cated types are built from these basic types using two “slashes,” a forward slash
/ (read “over”) and a backward slash \ (read “under”). These slashes determine
how the types combine with each other, such that A\ B combines with A on its
left to yield B and B/A combines with A on its right to yield B. For example,
the type n \ s may be assigned to ‘sleeps’, because placing ‘John’ of type n to
its left produces ‘John sleeps’ of type s. Any sequence of words, taken together
with an assignment of types, can be shown to either yield s or not yield s, thus

distinguishing sentences from nonsentences.

The “Lambek Calculus” anticipated the resource sensitivity of linear logic.
Having used a noun in a sentence does mean that the noun can occur arbitrarily
many times; each use must be accounted for. More concretely, given one instance
each of ‘the’, ‘dog’, and ‘eats’, one can construct the sentence “The dog eats”
but not the sentence “The dog eats the dog.” The latter requires two instances
each of ‘the’ and ‘dog’, just as an interested buyer requires two five dollar bills

to obtain both a pizza and a plate of brownies.

Roorda (1992) takes advantage of the two systems’ similarities to adapt the
proof nets of Linear Logic to the Lambek Calculus. Lecomte (1993) outlines an
efficient parsing algorithm using Lambek Calculus proof nets. de Groote and
Retoré (1996) demonstrate that the proof nets used for the Lambek Calcus and
other “categorial grammars” are a “unique structure that allows the syntactic and
semantic aspects of sentence analysis to be unified,” giving a correspondence be-
tween proof nets and typed A-terms. In the unified analysis, a proof net encoding

a syntactic analysis is combined with a “semantic recipe” (also a proof net) for

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runs—run : N\S,the—the : N/CN,dog—dog : CN = the+dog+runs—w: S

Figure 1.2: A judgment in the logic of Merenciano and Morrill (ibid.).

each lexical item, directly yielding the semantic reading of the sentence.

In the same spirit as de Groote and Retoré (1996), Merenciano and Morrill
(1997) use a unified syntactic and semantic analysis for the Lambek Calculus
as a framework for generation. The logic in their framework deals with “type
assignment statements.” A type assignment statement consists of three parts.
The first part is a sequence of pronounced or written elements, which they name
“prosodics.” The second part is a semantic term, which they initially introduce
as a term from the A-calculus but later replace with a proof net. The third
element is a syntactic category, a type from the Lambek calculus. A bag (i.e.,
a collection that, unlike a sequence, is unordered and that, unlike a set, allows
a member to have more that one membership) of type assignment statements
is called a “configuration.” A judgement in their logic combines a configuration
(the antecedent) with a type assignment statement (the succedent) and indicates
that “if the objects referred to in the antecedent are in the types indicated, then
the object referred to in the succedent is in the type indicated.” A variable
can stand in for either the semantics or the prosodics. If, as in Figure 1.2, a
variable stands in for the semantics, then proving that the given prosodics are the
pronunciation of a sentence is tantamount to parsing and the proof process will
ground the variable for the semantics, giving the interpretation of the sentence
corresponding with the parse. If, on the other hand, a variable stands in for
the prosodics, proving that the semantics are the interpretation of a sentence is
generation, grounding the prosodics variable with the pronunciation of a sentence

with the given interpretation.

Generation from proof-nets takes its syntactic queues from the Lambek cal-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

culus, so it does not suffer from the “syntagmatic gap” that hinders generation
based on Structural Functional linguistics. Issues of cognition are not often ad-
dressed in the proof-net generation literature, but some work in this field is quite
suggestive. A frequently used example (see Merenciano and Morrill, 1997; Pogo-
dalla, 2000, for examples) for proof-net based generation systems is generating
the sentence “John seeks Mary” from a semantic representation built from the
predicates ‘try’ and ‘find’. Presumably the sentence “John tries to find Mary”
would be an equally good output. From there it is just a small step to generating
the two sentences in (1.2) from a common representation. In fact, the approach
to graph grammars taken by Engelfriet and Vereijken (1997), in which graphs are
built up by concatenating sequences of “graph operations,” indicates that results
should be highly portable between the framework developed in this dissertation

and those frameworks that are used for generating from proof-nets.

1.3 Dissertation Overview

This dissertation tells the story of how Cognitive Representations correspond to
the sentences that evoke them. The story starts with the introduction of the
main character, the CRs themselves (Chapter 2). The story continues with the
CRs being rendered as graphs and parsed using graph grammars (Chapter 3). In

the story’s conclusion, the parses are transduced into sentences (Chapter 4.

Chapter 2’s introduction of Talmy’s theory of Cognitive Representations (Sec-
tion 2.1) acquaints the reader with the fundamental cognitive components of mo-
tion events: Figure, Ground, Path, and Motion. It also puts forward Talmy’s
concept of a Co-Event, which is an event distinct from but integrally connected
to a motion event. Section 2.2 explores the Motion component in greater de-

tail, especially its relation with agency and how it gets lexicalized in English and

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spanish.

Chapter 3 starts with a short overview (Section 3.1), and then discusses the
problem of rendering CRs as graphs (Section 3.2). Section 3.6 details the parsing
of CRs using flowgraph grammars (detailed in Section 3.1) after Section 3.3 pro-
vides a review of string grammars and traces the history of their generalization
to graph grammars. The conversion between graphs and flowgraphs is explained
in Section 3.5. Chapter 3 ends with a detailed exposition of a flowgraph parse in

Section 3.7.

The first section of Chapter 4 gives an outline of how Chapters 2 and 3 fit
together to set the stage for sentence generation: the CRs of the former yield
parsers in the latter. While parses are general analyzed as terms, linguists are
more comfortable using trees for describing sentences, so Section 4.2 gives formal
definitions for both trees and terms, and then demonstrates that the two are
isomorphic. Section 4.3 explains the connection between parses and parse-terms,
showing first how parse terms a given for string derivations and then generaliz-
ing from there to graph derivations. Finally, Section 4.4 details the process of

transducing a parse term into a traditional syntactic tree.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

Cognitive Representations

2.1 Overview of Cognitive Representations

Cognitive Representations, according to Talmy (2000a, p. 21), are a “particular
kind of experiential complex” that a sentence evokes in listeners. I assume that
the same kind of experiential complex exists in the speaker of a sentence. I also
assume that when a speaker utters a sentence, she intends to evoke in her listeners

a cognitive representation similar to the one that exists in her.

The Cognitive Representations of motion events in particular are explored
in depth by Talmy (2000b). Talmy offers a detailed account of how the mind
represents motion events, based on various linguistic universals and typological
generalizations. The basic constituents that he ascribes to motion events are:
the Figure, the subject of an observation; the Ground, the (relatively fixed) back-
ground against which the Figure is observed; Motion, the fact the Figure has
either changed its position relative to the Ground or that it has not, and the
extent to which the Figure seems to be acting of its own volition; and the Path,
the description of how the Figure changed its position relative to the Ground.
Talmy also identifies several kinds of Co-Fvents that are integrally connected to
the perception of motion; for example there are “self-contained motions™—also
called “Manners” of motion—, which are changes in the orientation, posture, or

configuration of the Figure that do not directly change the Figure’s relation to

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Ground. Other examples would be Causes of motion (e.g., a push or kick),
Precursors of motion (events which precede the motion event but do not cause

or assist it), and Enablings of motion.

Talmy (2000b) also focuses on which syntactic constituents correspond to
which constituents of the cognitive representation. One syntactic constituent
frequently corresponds to multiple constituents of the cognitive representation. In
this case, the syntactic constituent is said to conflate its cognitive correspondents,
and each language seems to have a single major pattern of conflation that it uses
to encode motion events;' the following examples demonstrate a few of these

conflation patterns.

2.1.1 Motion + Co-Event

One common pattern across languages is the conflation of Motion and Co-Event.
As a concrete example, suppose a person observers the situation described in
(2.1). If that person speaks English, one might expect the person to report her

observation as in (2.2):

(2.1) A bottle is floating on a lake. The bottle moves—travelling across the
surface of the lake—from a point on the exterior of a cave to a point on

the interior of the cave.

(2.2) The bottle floated into the cave.

ITalmy’s claim is actually stronger, but see Croft et al. (2008), for example, where it is
convincingly argued that

...the Talmy typology is not a typology of how a language encodes complex events
in general, but rather a typology of how particular complex event types are en-
coded by a language. Languages make use of multiple strategies to encode complex
events, depending on the type of complex event involved.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Talmy claims that there are direct relations between the syntactic constituents of
the sentence and the cognitive constituents of its meaning. In the case of (2.2),
Talmy claims the following relationships: “the bottle” is the Figure, “the cave” is
the Ground, t‘he prepositional element “into” is the Path, and the verb “floated” is
a conflation of both the Motion and the Manner of that motion. This pattern of
relationships—i.e., where the verb conflates the Motion with the Manner—is the
typical pattern for English speakers. Other examples of this pattern are given in
(2.3); moreover, Co-Events of several other types conflate with Motion in English,

as in (2.4).

The woman swam into the cave.

b. The duck waddled around the lake.

(2.3)

®

c. The snake slithered out of its hole.

d. The dancer shimmied across the stage.

(2.4) a. The leaf blew into the cave. (Cause, that is, something blowing on
it caused the leaf to blow into the cave.)
b. The man wore jeans into the office. (Concomitance)

c. The glass splintered onto the carpet. (Precursion)

Talmy reports that this pattern is the norm for not only English, but for most of
the Indo-European language family. The major exception to this generalization

is found in the modern Romance languages, the subject of the next section.

2.1,2 Motion + Path

Modern Romance languages, for example, seem to prefer verbal roots that con-

flate the Motion with the Path, and have few roots that express simultaneously

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Motion and Co-Event. Accordingly, one might expect a Spanish-speaking ob-

server of (2.1) to give the report in (2.5):

(2.5) La botella entr6 a la cueva (flotando). (Talmy, 2000b, p. 49)
the bottle move+in to the cave (floating)
“The bottle floated into the cave”

In this case, the verb ‘entré’ expresses both Motion and the fact that the Path
ends at an interior location, while the manner of motion—if it is expressed at
all—must be given separately as a gerund at the end. Spanish has many verbs

that exhibit the same behavior:

(2.6) From ibid., pp. 49-50:

a. La botella sali6 de la cueva (flotando).

the bottle move+out from the cave (floating)
“The bottle floated out of the cave.”

b. La botella pas6 por la piedra (flotando).
the bottle move+by past the rock (floating)
“The bottle floated past the rock.”

c. El globo subié por la chimenea (flotando).
the ballon move-+up through the chimney (floating)
“The balloon floated up the chimney.”

d. El globo bajé por la chimenea (flotando).
the balloon move+down through the chimney (floating)
“The balloon floated down the chimney.”

2.1.3 Motion + Figure

In addition to Motion with Path and Motion with Co-Event, Talmy identifies
Motion with Figure as another major pattern of conflation across the worlds

languages. It is not a frequent pattern in English, but Talmy does offer two

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

examples, shown in (2.7).

(2.7) From Talmy, 2000b, p. 57:

a. It rained in through the bedroom window.

b. I spat into the cuspidor.

In the case of (2.7-b), however, it should be noted that ‘spit’ also invokes some
notion of Path as well, as indicated by the contrast with (2.8-a), which presumably
involves motion of the same kind of Figure. ‘Spit’ is also compatible with a slightly

wider range of Figures, as shown in (2.8-a).

(2.8) a. Idrooled into the cuspidor.

b. My mouth was full of juice when I spat on him.

Even if (2.7-b) is less than convincing as an instance of Motion + Figure, it does
fit into a larger pattern in English. Motion + Figure seens to be the default
pattern used for describing substances leaving the body. In addition to ‘spit’, the
bold faced verbs in (2.9) follow this pattern, as do numerous slang words for male

ejaculation (e.g., ‘jizz’, ‘skeet’, ‘spooge’, and ‘spunk’, to name but a few).

(2.9) The unruly patron puked all over the bar.

®

b. If your dog pees/pisses on the carpet, you should punish it.

c. Before we trained her, the cat would frequently poop/shit on the
floor.

d. It felt like someone was breathing down my neck.

e. The child skinned her knee and bled on the pavement.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Atsugewi (a Hokan language of Northern California), according to Talmy (2000b,
p. 58), is a language where this pattern is the fundamental pattern for talking
about motion events. It features a large variety of verb roots that indicate that the
Figure belongs to some particular class. Two of this roots are given in (2.10). One
might object that these verb roots (as Talmy freely admits) “typically function
equally in the expression of events of location, of nonagentive motion, and of
agentive motion,” and that they therefore do not conflate the Figure with any
kind of Motion. What Talmy presumably intends in this case is that these verbs

are used to describe motion events and not, say, eating events.

(2.10) From Talmy (ibid., p. 58):

-lup- ‘for a small shiny spherical object (e.g., a round candy, an eye-

ball, a hailstone) to move/be located’

-caq- ‘for a slimy lumpish object (e.g., a toad, a cow dropping) to

move/be located’

2.1.4 Implications for Sentence Generation

So different languages have different major patterns that they use to encode
cognitive representations into linguistic expressions, and even within a language
certain lexical items use a different pattern than the norm (e.g., English ‘enter’
and ‘spit’). The generation process, from this point of view, involves selecting lex-
ical items whose usages cover the cognitive representation that is to be expressed.
In some cases, especially when roots not following a language’s primary pattern
are involved, the selection is ambiguous. It seems not unreasonable to assume
that the same cognitive representation could be the source of both sentences in

(2.11), for example:

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2.11) a. The officer walked into the room.

b. The officer entered the room walking.

This aspect of the generation process makes it similar to parsing, where syn-
tactic categories must be selected to carve up a linguistic expression and ambi-
guities also arise. There are (at least) two parses of (2.12), for example; it could
be a sequence of two noun phrases, “the old man” and “the ships”, or it could
be a noun phrase “the old” (meaning ‘old people’), the verb “man” (‘occupy sta-
tions on’) and, again, the noun phrase “the ships.” I will take advantage of this
similarity between sentence parsing and sentence generation by demonstrating a

process for parsing cognitive representations.

(2.12) the old man the ships

I am not proposing that cognitive representations are string like. The nature
of cognition seems to be fundamentally non-linear. There is no clear ordering
between the constituents of a cognitive representation, and the relationships be-
tween those unordered constituents may be many-to-many. A cognitive represen-
tation that contains both Motion and Manner constituents, for example, connects
both of these to the same Figure. It is for this reason that I propose to use graphs

for cognitive representations.

2.2 More about Motion

Talmy recognizes a few kinds of Motion. Fundamentally, there are two: MOVE,
which “refers to the presence of motion in the event,” and BEo¢, which refers to

the presence of “locatedness” in the event (Talmy, 2000b, p. 35). These two are

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deep morphemes in Talmy’s parlance, meaning that they represent “a concept that
is believed to be both fundamental and universal in the semantic organization
of language.” They are, moreover, the only two deep morphemes of Motion

according to Talmy.

There is much more to Motion that just two deep morphemes. In particular
there are many more of what Talmy calls mid-level morphemes. Each of these
represents “a particular conceptual complex that consists of a deep-morphemic
concept together with certain additional semantic material” and is “recurrent in
the semantic organization of a particular language.” Mid-level morphemes are

often found across several languages.

2.2.1 AMOVE

One mid-level morpheme that occurs in several languages is AMOVE, or “agen-
tively cause to move.” The following sections give a few examples of how ,\MOVE

can surface in English and Spanish.

2.2.1.1 AMOVE in English

AMOVE can surface in English on its own—usually as ‘move’ like in (2.13-a)—,
but most verb roots in English that express \MOVE conflate it with at least one
of several kinds of Co-Events. An example of ,MOVE conflated with a Manner is
given in (2.13-b), where the verb ‘slide’ describes what the Figure does. The verb
‘push’ in (2.13-c) describes what the Agent does, making that example illustrative
of the conflation of AMOVE and Cause. (2.13-d-f) show s MOVE conflated with

several more kinds of Co-Events.

(2.13) a. I moved the car into the garage. (no Co-Event)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. The barkeep slid the beer to the patron. (Manner)

c. The barkeep pushed the beer to the patron (Cause)

d. The barkeep cracked the egg into the whiskey sour. (Precursion)

e. The barkeep slammed the door shut at closing time. (Concurrent
result)

f. The barkeeper locked the cash in the safe. (Subsequence)

It is interesting, however, that AMOVE is not readily conflated with Co-Events
of Concomitance. The examples in (2.14) demonstrate this; the (i) sentences are
instantiations of MOVE + Concomitance and the (ii) sentences are (infelicitous)
attempts at instantiating A MOVE+ Concomitance. One reason for this might be
that, as Talmy (2000b, p. 46) writes, “[tJhe concomitance relation is not robustly
represented in English (thus speakers differ on their acceptance of [examples like

(2.14-c-1)].”

(2.14) a. (i) She wore a green gown to the party.

(ii) Her mother *dressed her in/*wore her a green gown to the

party. 2
b. (i) The bullet whistled past his ear.
(ii) 771 whistled a bullet past his ear.
c. (i) The girl whistled past the graveyard.
(ii) *Someone whistled me past the graveyard.?

2Intended meaning: “Her mother made her wear a green gown to the party.”

3Intended meaning: “Someone made me whistle past the graveyard.” There is a grammatical
reading of this sentence with the meaning “By whistling, someone (e.g., a traffic cop) caused
me to move past the graveyard,” which is an instance of \MOVE + Cause.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perhaps more interesting is the contrast between (2.15-b-ii) and (2.15-c-ii). Jack-
endoff and Goldberg (2004, pp. 540-541) as well as Zubizaretta and Oh (2007,
p. 89) present arguments suggesting that the former but not the latter is more ac-
curately interpreted as an instance of \MOVE + Manner; essentially the whistling
in (2.15-b) is causally related to the fact of the bullets motion while the whistling
in (2.15-c) does not have that relationship to the girl’s motion. If this is so, the
contrast between (2.15-b-ii) and (2.15-c-ii) is predicted, but the degraded nature
of (2.15-b-ii) is unexpected, as AMOVE and Manner can normally be conflated in
English. Talmy (2000b, p. 47) tenders the following compromise: “the presumed
difference between Manner and Concomitance may have the character more of a
gradient than of a sharp devision.” If one accepts this compromise, then (2.13-b)
and (2.14-c-ii) show examples at the extremes of this gradient and (2.14-b-ii) is

somewhere in the center.

AMOVE is not limited to conflation with Co-Events. It occurs, for example, in
the Motion + Ground given in (2.15). Note that in (2.15-a) the men are both the
Agents of the A\MOVE predicate, but also the Figure of the caused motion event.
It may be that all instances of Motion + Ground in English conflate \MOVE
with the Ground.

(2.15) a. Men of the Fifth Indian Division had no idea where they were going
when they cmplaned.
b. Airline personnel will deplane any passengers under the influence
of alcohol.
c. The angry French mob defenestrated two of Louis XVI’s closest

friends.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1.2 AMOVE in Spanish

Spanish also has \AMOVE, but, following the primary pattern for Spanish, the
verb roots expressing sMOVE conflate it with Path. Also following the central

Spanish pattern, any kind of Co-Event is expressed in an independent constituent.

(2.16) From Talmy (2000b, p. 51):

a. Meti el barrila la bodega rodandolo
I-AMOVEd-in the keg to the storeroom rolling-it
“I rolled the keg into the storeroom.”

b. Saqué el corchode la botella retorciéndolo.
I-lAMOVEd-out the cork from the bottle twisting-it
“I twisted the cork out of the bottle.”

c. Quité el papel del paquete cortandolo
[-AMOVEd-off the paper from-the package cutting-it
“I cut the wrapper off the package.”

2.2.2 Other Mid-Level Motion Morphemes

Most other mid-level morphemes that occur in Talmy’s writings are built on
top of AMOVE. GO, for example, is roughly defined as “AMOVE self,” PUT
(sometimes PLACE) is “controlledly \AMOVE through limb motion but without
body translocation,” and GIVE is “AMOVE into the GRASP of.” The Spanish
verbs in (2.16), for example, could be analyzed as conflating PUT with the Path,
rather than simply \MOVE.

Some mid-level morphemes are built up from BEpo¢, as well. One example
Talmy (ibid., p. 39) gives of this form is COVER, with the definition in (2.17-a)
and an sample instantiation in (2.17-b). Talmy interprets ‘checker’ in (2.17-b) as

conflating COVER with a checkering Manner Co-Event.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2.17) a. COVER: BEpoc all-over.
b. Streaks of light checkered the eastern clouds.

2.3 Conclusions

Talmy’s program of Cognitive Semantics begins with the idea that a semantics
of a sentence is a Cognitive Representation that the sentence evokes in a lis-
tener who hears it. Cognitive Representations for motion events have four major
constituents—Motion, Path, Figure, and Ground—and a fifth, tightly cognitively
linked Co-Event.

The constituents of a Cognitive Representation do not, in general, have a
one-to-one correspondence with lexical items in any given language, as lexical
items often conflate two or more of them. The patterns of conflation vary across
languages and (to a lesser extent) also within a single language. Typological
studies show that there are three major patterns of conflation: Motion+Co-Event,

Motion+Path, and Motion+Figure.

Chapter 3 develops a more formal model of Cognitive Representations and
explores the fine structure of Path. Much has been left unsaid about Figure
and Ground, but their fine structures do not play a role in model of sentence
generation developed in this thesis. An interested reader is referred to Talmy

(2000a, pp. 311-339).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

Graphs, grammars, and parsing

3.1 Overview

Levelt (1989, p .108) writes that “[tJhe mother of each speech act is a communica-
tive intention.” The previous chapter could be described using Levelt’s metaphor
as a proposal that Cognitive Representations are the form that these “mothers”

take on. In this chapter I show how each mother can have multiple offspring.

In order to give a formal account of how Cognitive Representations are pro-
cessed into linguistic expressions, it is necessary to give them an analyzable form.
Now, a Cognitive Representation (CR) has multiple constituents, such as the
Motion, Figure, Path, Ground and Manner constituents of the CR of a motion
event, so any method of rendering a CR must respect these constituents. The
constituents of a CR have no clear linear order with respect to each other, so
using strings, which enforce a particular linear ordering of their elements, is a
sub-optimal strategy for rendering CRs. Graphs, on the other hand, do not
enforce any ordering on their nodes, making them a more suitable candidate.

Rendering Cognitive Representations as graphs is the subject of Section 3.2.

As discussed in Section 2.1.4 (p. 36ff), the constituents of a CR need not be
in a one-to-one correspondence with the constituents of any linguistic expression
evoking that CR. This opens up the possibility that there may be more than

one way to select a set of lexical items that both combine to form a sentence

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and evoke all of the CR. The potential of having multiple ways to group the
constituents of a CR into sets that can be evoked by lexical items mirrors the
situation in sentence parsing where there may be multiple ways to group the
words of the sentence into constituents allowed by the grammar. The formal
problem of grouping the constituents is cast as a parsing problem in Section 3.3.
In that section, I introduce flowgraph grammars, a type of graph rewriting system.
Graph rewriting systems are a generalization of string rewriting systems, falling
into the same general categories as string grammars (i.e., regular, context-free,
context-sensitive, etc.). Just like string grammars they can be used to establish
derivation trees as proofs that a given graph is generated by a particular grammar,
and—in the same way that string grammars can generate multiple parses for one
string—graph grammars can generate multiple parses for one graph. I make use
of the latter property to generate the two sentences in (2.11), for example, from

the same graph, each sentence corresponding to a different parse of that graph.

An algorithm for parsing a flowgraph using a flowgraph grammar—due to
Lutz (1996)—is sketched in 3.6.3. The details of implementing this algorithm are
covered in 3.6.4. An example of the parsing running on a graph that is ambiguous

with respect to the parsing grammar is detailed in 3.7.

3.2 Rendering Cognitive Representations as Graphs

In order to treat cognitive representations as graphs, it is necessary to be quite
explicit about what elements they have and their constituency is. In the previous
section, I mentioned that Talmy’s work picks out Figure, Ground, Motion, and
Path as the major constituents of the cognitive representation of a motion event.

This suggests that cognitive representation graphs should match a schema like

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3.1).

)

motion
event

f

path

For Path, Talmy also outlines its fine structure: it has a fundamental schema

for the Figure and the Ground, a Vector, a Conform, and a Deictic. The funda-
mental Figure schema, Talmy claims (see Talmy, 2000b, p. 53), is always a point,
and the fundamental Ground schema (FGS) is one of the following: a point, a pair
of points, a bounded extent, an unbounded extent, an extent bounded at the ori-
gin of the motion, or an extent bounded at the terminus of the motion. Vectors
are the various schematic maneuvers that the fundamental Figure schema can
execute with respect to the fundamental Ground schema. According to Talmy,
they are drawn from a limited set of language-universal “deep prepositions.” The
complete list of them is given in Table 3.1. Moreover, each Vector selects exactly
one kind of fundamental Ground schema (also shown in Table 3.1), so I will treat
them as a single constituent from now on. Conforms define the relation between
the fundamental Groﬁnd schema and the Ground proper, for example for English
‘inside’, the conform is that the fundamental ground schema is a point “which s
of the inside of” the Ground viewed as an enclosure (I offer {21 as an abbrevia-
tion for this Conform). The Deictic element of the path relates the motion to
the point of view, for example English the path ‘move’ is neutral, that of ‘come’
is towards the point of view, and ‘go’ often indicates motion away from the point

of view. The structure of a Path, then, is as in (3.2):

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vector FGS

BELOC a point
MOVE TO (=) a point
MOVE FROM (*—) a point
MOVE VIA a point
MOVE ALONG (&) an unbounded extent
MOVE TOWARD a point

MOVE AWAY-FROM a point

MOVE ALENGTH (=) | a bounded extent

MOVE FROM-TO a pair of points

MOVE ALONG-TO an extent bounded at terminus
MOVE FROM-ALONG | an extent bounded at origin

Table 3.1: Talmy’s list of universal vectors (ibid., p.53f)

(3:2)
‘ path I—){ conf ormJ—>|j

So far, these graphs are trees, but when relationships between the motion event

and any co-events is represented, the graphs are no longer tree-like. For Manner,
the important relationship is that the self-contained motion and the main motion

event have the same figure, as in the fully articulated graph shown in (3.3):

(3.3) self-contained

motion
motion
figure
event g bottl e

—

conform }—> =
cave | deicticF——{oway]

[motion]

OVE | ground ‘

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here the graph represents the conceptualization that is evoked both by The bottle
floated into the cave and by The bottle entered the cave floating. Similar sentence
pairs are represented by similar graphs. The graph in (3.4), for example combines
the vector E}—Talmy’s “ALENGTH”, representing motion from the origin of a
bounded extent to its terminus—with the conform & a bounded extend “which is
aligned with the positive vertical azis of” the Ground, creating the description of
a path from the bottom of the Ground to its top. English sentences evoking this
conceptualization are The child jumped up the stairs and The child ascended the

stairs jumping.

(3.4) self-contained

motion
motion
figure
event g Chlld

conform |—>]

| stairs | ! deictic l——-——ﬁ away |

[motion]

OVE | ground\

3.3 From String Grammars to Graph Grammars

The theory of graph grammars is a descendant of Chomsky’s (1956; 1963; 2002,
etc.) work on string rewriting systems—which, in turn, is likely a descendant of
Thue’s and Emil Post’s work on algebraic term rewriting. There are several ex-
tant graph grammar formalisms, but they can all be understood as starting with
a particular conceptualization of strings (which varies between the different for-
malisms) and using that conceptualization to generalize string rewriting systems

to more elaborate structures.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I shall start with the notion of a string as a sequence of elements chosen from a
set of symbols. The symbols themselves are primitives, and the set they are drawn
from is called an alphabet. An example alphabet, then, is {a,b,c}. A sequence is
created by choosing elements from the alphabet and keeping track of the order
in which they are chosen. The same element may be chosen several times. A
way of writing a sequence is to write the elements (called the coordinates) of the
sequence in the order they were chosen, separated by commas, and surrounded by
angle brackets. So the sequence formed by choosing first ¢ and then a is written
{c,a). If s is an sequence of n elements, and ¢ is whole number between 1 and n
(inclusive), then s; represents the i*" coordinate of s, so {c,a), is c and {(c, a), is

a.

A string rewriting system comprises an alphabet of symbols, one element of
which is designated the start symbol, and a set of production rules, which are
pairs of strings over the alphabet. The first element of a production rule is called
its “left-hand side,” the second element is its “right-hand side,” and the rule is
often written by placing the elements on the corresponding side of an arrow.
When the rewriting system applies a production rule to a string, it replaces one

substring that matches the left-hand side with the right hand side.

For example, let 3 be the alphabet {also, amphipods, consume, copepods, eat,
enthusiastically, oysters, that}. Strings over ¥ include (oysters), (oysters, eat),
and (oysters, consume, amphipods). The production rule in (3.5-a) when applied
to the string in (3.5-b) produces either of (3.5-c) or (3.5-d). A string rewriting
system derives strings by beginning with its start symbol and applying a series

of rewrite rules.

(3.5) a. (eat) — (enthusiastically, consume)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. (amphipods, that, oysters, eat, also, eat, copepods)

c. (amphipods, that, oysters, enthusiastically, consume, also, eat,
copepods)

d. (amphipods, that, oysters, eat, also, enthusiastically, consume,

copepods)

Often, the symbols of the alphabet are divided into two disjoint sets, the “termi-
nal” and “non-terminal” symbols, and each production rule is required to have at
least one non-terminal in its left-hand side. Any string that does not contain a
non-terminal symbol, then, cannot be further rewritten by a system that makes
the distinction. The set of all strings that a rewriting system can derive from
its start symbol and that have no non-terminal symbols is called the “terminal

language” of that system.

One way to conceptualize strings is as one-dimensional arrays. The generaliza-
tion that suggests itself from this point of view is to create rewriting systems that
use multidimensional arrays. As computer displays are two-dimensional arrays,
early work in this direction was done with “picture languages.” The pioneering
work was done by Narasimhan (1962), who developed a linguistically inspired
process for analyzing photographs of the trail of bubbles that a charged particle
leaves as it traverses a chamber of super-heated liquid. Other early work was
done by Kirsch (1964), who developed a phrase-structure grammar for a frag-
ment of English along with a grammar for pictures that could be described by
the sentences in the fragment. Using the syntactic analysis of a sentence and that
of a picture, Kirsch’s paper gives a method for determining if the sentence is true
of that picture. Miller and Shaw (1968) provide a summary of further research

into picture language grammars.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Strings (or, more generally, arrays) can also be conceptualized as a kind of
graph. In this interpretation, each element in the string (array) is a node, and
there are edges between nodes that correspond to adjacent elements in the string
(cells in the array). Following the combined intuition of Kirsch and D. E. Knuth,
Pfaltz and Rosenfeld (1969) used this notion of strings to develop the theory of
“web grammars,” where the term “web” is used to mean a graph with a function
labeling its nodes. Web grammars have production rules that rewrite a graph,
exchanging one of its subgraphs (again, the “left-hand side” of the rule) for a

replacement graph (the right-hand side of the rule).

The primary complication in generalizing from strings to graphs or other
higher dimensional structures is the question of embedding. In the case of a
string, there is just one way to embed the right-side of a production rule into its
host string. Each substring neatly divides the string into two parts: the (possibly
empty) part that precedes it, and the (possibly empty) part that follows it. When
a substring is replaced, the resulting string is the concatenation of the preceding
part, the replacement, and the following part. Relieving a graph of one of its
subgraphs does not, in general, leave the graph in any predictable number of
disconnected pieces, so a more elaborate scheme for embedding the replacement

graph into the host is needed. Pfaltz and Rosenfeld (ibid., pp. 610-611) write:

The definition of “rewriting rules” for webs is more complicated
[than that for strings]; if we want to replace the subweb a of the web
w by another subweb [, it is necessary to specify how to “embed” 3 in
w in place of . This can be done in many different ways; for example,
once can specify that there be edges between given points in [and
any points of w — « (e.g., having given labels, having given numbers

of incoming or out-going edges, being on edges to or from particular

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

points of « in the original w, etc. etc.) Any such specification of the
edges between [and its “host web” will be called an embedding of (.

... It is important to emphasize that the definition of an embed-
ding must not depend on the host web w, since we want to be able
to replace a by § in any web containing o as a subweb. Thus any
properties of points in the host web that are used in defining the

embedding must be well defined for an arbitrary w.

A more specific means of determining the embedding of the replacement ma-
terial is offered by a third conceptualization of a string. In this conceptual-
ization, each element of the string is a building block with a label from the
alphabet and two attaching points, namely the one on its left, and the one on
its right. The more general structure suggested by this idea, then, is a building
block with more than two attaching points. Feder (1971), working from ideas
in Narasimhan (1966), makes this generalization and calls the resulting struc-
tures “n-attaching point entities—NAPESs, for short—and calls structures built
from NAPEs “plexes.” If NAPEs distinguish input and output attaching points,
then each connection between NAPEs has a direction and the structures built
from such NAPEs are called “directed plexes.” The left- and right-hand sides
of plex-rewriting rules are both plexes. Each side of the rule is outfitted with

”

a list of distinguished attaching points called “tie-points.” The two lists are of
equal lengths, allowing the right hand side to be embedded in the host graph by
attaching each of its tie-points to whatever NAPEs in the host graph its corre-
spondingly indexed tie-point on the left-hand side was attached to. NAPEs can
be realized as webs, where a central node in the web is labeled with whatever

symbol the NAPE bears and each attaching point of the NAPE is realized as a

node connected to that central node, so plex grammars are isomorphic to a subset

ol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of web grammars. Moreover, every web and directed graph can be realized as a
directed plex, making each node of the graph into a NAPE and using the attach-
ing points of the NAPEs to realize the edges of the graph, so web grammars are

isomorphic to a subset of plex grammars.

3.4 Flowgraphs

Flowgraphs are a variant of directed plexes where NAPEs (henceforth “napes”)
never connect directly to each other via their attachment points, but always indi-
rectly via intermediate tie-points. Every attaching point is connected to exactly
one tie-point, but each tie-point is attached to arbitrarily many attaching points.
In this dissertation I choose to work with flowgraphs as there is a preexisting

algorithm for efficiently parsing them, namely, the one described by Lutz (1996).

A nape in a flowgraph has its attaching points separated into two lists, one
for the input attaching points and one for the outputs. When depicted, a .nape
is shown as a boxed symbol with the connections to the input attaching points
coming in from the left and connections from the output points going out to the
right. The order of the attaching points is reflected by the vertical order of the
connections, with higher connections corresponding to attachment points earlier
in their respective list. An example flowgraph is shown in Figure 3.1, with the
tie-points being represented as numbered black circles. The figure also shows how
a nape can be written as the three-membered list of its symbol and its two lists

of tie-points and a flowgraph as the set of all its napes.

Formal definitions of flowgraphs and their components follow directly. The
definitions given here follow Lutz (ibid.) in the main, but I have occasionally

deviated from and elaborated his definitions where 1 found it either convenient

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 5
y) e b
2] dK 4 6 8

{[2.,[1],12)], [d,[21,[3,4]]; [e,[3].[5]], [£[4][6]}; [b:[5),[7]]. [c.[6],[8]1}

Figure 3.1: Example flowgraph

1

or necessary for implementing a flowgraph parser.

(3.6) Tie-point : a tie-point is a pair drawn from {true, false} x N. When
the first element is true, the tie-point is called instantiated; when false
is the first element, the tie-point is called variable. For a tie-point with
numeric component 3, I write T3 for a variable tie-point and 3 for an

instantiated tie-point.

(3.7) Alphabet : an alphabet is an arbitrary set of symbols. The flow-
graph in Figure 3.1, for example, makes use of the following alphabet:
{a,b,c,d,e,f}. For flowgraphs depicting Cognitive Representations, the
alphabet contains symbols like MOVE, BEo¢, Figure, Ground, etc.

(3.8) Nape: if T is a set of tie-points and X is an alphabet, then a T, X-nape
is a triple (A,I,0), where I,O € T* are the sequences of input and
output tie — points of the nape, respectively, and A € ¥ is the nape’s
name. The triple (A, |I],|O}), where |s| denotes the length of sequence
s, is called the nape’s label. The nape (A, (3,4),(T5)), for example,
has the label (A,2,1), as does the nape (A, (5,712),(13)). This label

can be shown graphically as ./ Additionally, there are functions
inputs, outputs, and tiepoints which map a nape to the set of its input

tie-points, the set of its output tie-points, and the set of all its tie-points,

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respectively.

(3.9) Flowgraph : a flowgraph is a triple (N, T, %), where T is a set of tie-
points, X is an alphabet, and N is a set of T', 3-napes.

a. input tie-point of a flowgraph : a tie-point that is an input tie-
point of at least one nape in a flowgraph but not an output tie-point
of any nape in that flowgraph is called an input tie-point of that
flowgraph.

b. input nape of a flowgraph : a nape which has an input tie-
point of a flowgraph as one of its inputs is an input nape of that
flowgraph. This is what lines 12 and 14 of the algorithm in Figure 3.2
are referring to.

c. output tie-point of a flowgraph : a tie-point that is an output
tie-point for at least one nape but not an input for any nape is an
output tie-point of the flowgraph.

d. output nape of a flowgraph : any nape which is connected to an

output tie-point of a flowgraph is an output nape of that lowgraph.

In general—since the set of tie-points and the alphabet are likely to be constant
across most of the flowgraphs used in a single parsing problem—it is convenient to
treat a flowgraph as just the set of napes it contains. Following this convention,
if there are two flowgraphs A = (An,T,%) and B = (By,T,%) then one can
write AU B for (Ay U By, T, %), AN B for (Ax N By, T, %), etc.

(3.10) Context Free Flowgraph Rewrite Rule : a context free flowgraph

rewrite rule is a pair (n, g) where n is a nape and g is a flowgraph.

a. left-hand side : the nape n is called the left-hand side of the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rewrite rule.
b. right-hand side : the flowgraph g is a called the right-hand side

of the rule.

For any rewrite rule (n, g), the tie-points found in n and g are all variable tie-
points. Moreover, every input tie-point of n is also an input tie-point of g and
every output tie-point of n is also and output tie-point of g. In this way the

embedding of g into the host of n is specified.

While the tie-points of n and g are all variable tie-points, the tie-points of any
flowgraph whefe a rewrite rule will be applied are, in contrast, all instantiated
tie-points. In this way, there can never be a confusion between the tie-points
specified in the rule and the tie-points of the graph that it is operating on. Thus,
a context free flowgraph rewrite rule can be applied to any flowgraph containing
an appropriately labeled node (i.e., a node labeled in the same as n), no mater

where that node appears in the flowgraph.

(3.11) Context Free Flowgraph Grammar : a context free flowgraph
grammar is a four-tuple (N, T, P, S), where N and T are sets of nape

labels, S € N, and P is a set of context free flowgraph rewrite rules.

a. Non-terminal label : the elements of N are called the non-
terminal labels of a flowgraph grammar.

b. Terminal label : the elements of 7" are called the términal labels
of a flowgraph grammar.

c. Starting label : the nape S is called the starting label of a flow-

graph grammar.

Given a grammar (N, T, P,S), each rule 7 in P has as its left-hand side a single

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nape labeled by a member of N. Each nape in the right-hand side of 7 is labeled
by a member of NUT.

3.4.1 Example Flowgraph Derivation

Example (3.12) enumerates the components of a context-free flowgraph grammar

that generates exactly one graph: (3.16).

(312) a. N = {®—[S}—~e e—{B}—~e e—{C|—e)
b T {o——@<:-@<:-—~l—~/@—~
o—(c}-oe,0—{T}e, S[E}— o0, 0K)
c. S=0—~S}—e

d. P contains the following three rules:

A flowgraph derivation starts with one nape, labeled by the start symbol, as in

(3.13).

(3.13)

o6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Any rule with a left-hand side nape labeled can be used to rewrite
this graph. In the grammar in (3.12), there is just one, namely (12-d-i). The
left-hand side of the rule matches the flowgraph in (3.13) by matching tie-point
T1 with 1 and T2 with 2. New tie-points must chosen for the instantiations of
T3, T4, T5 and T6; in (3.14) I choose 3, 4, 5 and 6, although any tie-points not
already in the graph would be fine.

(3.14)

The flowgraph now contains two non-terminally labeled napes, one labeled

and one labeled —{C®. Either one may be rewritten, the for-
mer by the rule in (12-d-ii) and the latter by (12-d-iii). Applying (12-d-ii), T'1 is
matched with 3 and T2 is matched with 4, and new tie-points are chosen for the

remaining tie-points in the left-hand side. The rewritten graph is given in (3.15).

(3.15)

At this point, the only remaining nape with a non-terminal label is the one
labeled ®—{Cl—®. Rewriting it using (12-d-iii), matching T'1 with 5 and T2
with 6 results in (3.16).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3.16)

All of the napes in (3.16) are now labeled with terminal labels, so this flowgraph

cannot be rewritten any further.

3.5 Converting from Graphs to Flowgraphs

3.5.1 Motivation

®

Section 3.2 developed graphs as a means of rendering Cognitive Representations,
but the algorithm developed in the remaineder of this chapter is an algorithm
for parsing flowgraphs. To show that this is not a case of bait-and-switch, this

section shows how a flowgraph can be obtained from a graph.

There are two major differences from the graphs in Section 3.2 and flowgraphs.
First, there is the addition of tie-points. Their addition is fairly innocent, how-
ever, as for the purposes of this dissertation they can be obtained by numbering
the edges of the graph in any arbitrary way. The second difference is that the
incoming and outgoing edges of a nape are ordered, while those of a graph are
not. To arrive at a flowgraph from a graph entails imposing an order on the
edges connecting to each node of the graph, and the order must be consistent for
each node with the same label. This is worrisome, as the lack of ordering among

the constituents of a Cognitive Representation is one of the reasons why graphs

o8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are an attractive means of formalizing them. It is important to keep in mind,
then, that the choice of flowgraphs for parsing is a choice made freely among a
large array of available graph grammars; a choice made primarily because the
algorithm for parsing flowgraphs is both easy to understand and to implement as

well as highly efficient.

A large part of the efficiency of flowgraph parsing derives from the ordering of
a napes input and output tie-points. Parsing proceeds by matching the napes in
the right-hand side of a rewrite rule against a subset of the napes in the flowgraph
being parsed. The first criterion for the matching is that each nape in the rewrite
rule has a corresponding nape with the same label in the graph being parsed.
The second criterion is that it must be possible to instantiate the variable tie-
points of the rewrite rule as the tie-points in the target flowgraph. By giving
the inputs and outputs of each nape an order, there is only one way to try to
instantiate any variable tie-points: the first input of one nape to the first input
of its correspondent, the second to the second, etc. If no order were given, then
all possible instantiations (of which there can be factorially many) would have
to be tried. Having ordered input and output tie-points lowers the complexity of
nape-to-nape matching from O(n!) to O(1), where n is higher of the cardinalities

of the input and output sequences.

The local simplification in nape-to-nape matching has, however, only a limited

effect on the global complexity of parsing the graph. When using the grammar
3

1
in (3.12) to parse (3.16), the nape 0——@<§ indicates that there may be an

instantiation of the rule in (12-d-i). Without ordered tie-points, there are two

possibilities to consider:

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is no need to investigate either of these possibilities any further, though,

until the parser finds evidence of an expansion of or ®—{C}—®_ The

3 4
parser will eventually find a evidence for and will then investigate

(3.17-a), but it will never find any reason to do any more work with (3.17-b).

3.5.2 Process

The process of obtaining a flowgraph from a directed graph involves three steps.
First, the edges must be numbered. Second, tie-points must be constructed from
each edge. Finally, a nape must be constructed from each node in the graph
using these tie-points. A specification of the process follows, using the graph in

(3.3), repeated as (3.18).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3.18)

self-contained

motion

motion
event zg ure
D@\ —
MOVE l ground ‘ conform }——» =

cave |deictic|—{away]

For the purposes of obtaining a flowgraph, it will be useful to consider a graph

G as a four-tuple (V, E, ¥, L), where V is the set of verticesin G, ECV x V is

the set of edges in G, ¥ is an alphabet, and L is a labeling function with domain

V and range . The graph in (3.18), then, is represented in (3.19):

(3.19) G=

a.

(V,A, L, L)

¥ D {self-contained motion, float, motion event, figure, bottle,
motion, path, vector, =**, MOVE, ground, conform, {1, cave,

deictic, away}

V ={a,b,¢,d,e, f,g,h,i,5,k,l,m,n,op}

L = {{a, self-contained motion), (b, float) , (c, motion-event) ,

(d, figure) , {e, bottle) , (f, motion) , (g, path) , (h, vector) , (z, =),
(j, MOVE) , (k, ground) (I, conform) , (m, [£1) | (n, cave) , (o, deictic) ,
(p, away)}

E={(a,b),(a,d),(c,d),{c, f),{c.9),(c. k), {d,e),(f,5)(g:),
(9,0),{g,0),(h,2), (k,m), (l,m), (0, D)}

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since F in (3.19-d) is a set with 15 members, there are 15! bijections between E
and the first 15 natural numbers. One such mapping—Ilet it be known as h—is

shown in (3.20).

(3.20) self-contained (o Float
motion

motion 2 Figure 6 bottle

event

3
7
MOV E Iground | 10\ con form }—13—> =1

12

cave I deictic Iiﬁ away]

A flowgraph is a set of napes that share an alphabet and a set of tie-points. In
creating a flowgraph F from G, the alphabet 3 of the graph can be reused as-is
in the flowgraph. The tie-points are easily derived from the number of the edges.

Let T be the set of all pairs (n, true) for each n that h maps to some element of

E.

Now that T" and ¥ are determined, F' is just a set of T, ¥-napes, one for each
node in the graph. Let f be a function that maps each vertex v in V to a distinct
T, nape v and that meets the conditions in (3.21), which guarantee that the
name of v is ¥’s label, that input tie-points of v are determined by the incoming
arcs of v, and that the outgoing arcs of v determine the output tie-points of v.

(As in Section 3.3, the notation I, indicates the k' element of I.) F, then, is the
set {f(v)ly €V}

(321) ForyeV,v= f(y)=(L(7),I,0)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a. {r:L=7,1<k<|I|} ={(ntrue): o€ E h(a)=n,a, =7}
b. {7:0,=7,1<k<|0|} ={(n,true):a € E,h(a)=n,01 =7}

What (3.21) leaves undefined is the order of elements in / and O. For most
vertices in a Cognitive Representation graph, there is at most one input arc and
one output arc, so the order is trivial. There are four exceptions to this, however.
A vertex labeled by motion event has four outgoing arcs, one labeled path has
three outgoing arcs, one labeled self-containd motion has two ougoing arcs, and
one labeled figure may have either one or two incoming arcs. In these cases, the

order must simply be conventionalized.

(3.22) a. For a Motion Event vertex, the arc going to the Figure is ordered
" first, followed by the arcs going to the Path, the Ground, and lastly
the Motion.

b. For a Path vertex, the first out-going arc is the one connecting
to the Vector; the second connects to the Conform; and the third
connects to the Deictic.

c. For a Self-Contained Motion (Manner) node, the arc leading to the
type of SCM is ordered first.

d. For a Figure vertex, if there is an incoming arc from a Manner,

then it is ordered first.

(3.23) {|self-contained motion, [], [0,1]], [float, [0], []], [motion event, [2,4,5,3],
[Il, [figure, [1,2], [6]], [bottle, [6], [I], [motion, [3}, [7]], [path, [4], [8,9,10]],
[vector, [8], [11]], [, [11], []], [MOVE, [3], [7]], [ground, [5], [12]], [con-
form, [9], [13]], [}, {13], [}], [cave, [12], [|], [deictic, [10], [14]], [away,

[14], [T}

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is one final concession to be made to flowgraph parsing. A flowgraph should
have an input nape, but (3.23) has none. Since the goal of this dissertation is to
generate sentences about motion events, the Motion Event nape is the natural
choice. So, let (15,true) be added to its input tie-points as well as to 7. The

final flowgraph is given as (3.24).

self-
(3-24) | contained 0]
motion

motion
event

3.6 Parsing with Context Free Flowgraph Grammars

3.6.1 Designing a Flowgraph Grammar for Cognitive Representations

Using (3.24) as an example of what cognitive representations are like when ren-
dered as flowgraphs, I shall demonstrate how the graphs are parsed. The graph in
(3.3) illustrates a reasonable rendering of the cognitive representation established
by the original observations from (2.1), which an English speaker might report as
(2.2): “the bottle floated into the cave.” This particular English sentence, as is
usual for English reports of motion events, introduces both the fact of motion and

the manner of motion simultaneously, a graph grammar for generating English

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expressions should reflect this tendency; the rule in (3.25) is designed to do so:

3.25 self-contained
() motion SCMType

— Figure

vent |6 Path]
\7\ T7}— Ground)]
\T8 — Motion |

A graph grammar for generating Spanish expressions, on the other hand, should
reflect the Spanish tendency to introduce fact of motion together with some aspect
of the path of the motion (3.26-a), as well as the fact the manner of motion may
be given or not; the latter expressed as the alternative expansions of ,
(3.26-b) and (3.26-c).

(3.26) a.

i8] =

T6 Vector

77} {Conform

T4}~ Ground| |T8}— Deictic|
[T5 |—~{motion }|~{T9
b. self-contained _)-_)-
motion
— e

motion
event

o [i{Figure] — [TU{figure] {2} {Thing)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In every language there are words that have an idiosyncratic behavior, not fol-
lowing the major pattern of the Language. English ‘enter’, for example, is a
Motion+Path verb. Graph grammars for producing a language can reflect the
non-general behavior of these words by associating their production with idiosyn-

cratic rules in the graph grammar.

(3.27) English graph grammar rule corresponding to use of ‘enter’:

T6 F—{vector F—={T10}>{ .

motion — T4+ Ground] T8}—[Deictic

event
N
| T5 |+ motion | T9 |—{MOVE]

3.6.2 Patches

Bottom-up parsing of a flowgraph involves searching the flowgraph for connected
groups of napes that could be instantiations of the right-hand side of a rule in a
grammar. Lutz (1996) calls these groups patches, the idea being that a graph
parsed, like a quilt, is complete when it is covered in patches. There are two kinds
of patches, complete and partial. Complete patches indicate that the entire right-
hand side of a rule has been found in the flowgraph being parsed. A partial patch
indicates that at least part of a rule’s right-hand side has been found, and has
a specification of which parts of the right-hand side should be searched for next.
Formal definitions (adaptated from Lutz (ibid.)) of complete and partial patches
are given in (3.28) and (3.29).

(3.28) Complete Patch : if n is a nape, then the pair (n,0) is a complete

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

patch; if n is a nape and C is a set of complete patches, then the pair
(n,C) is also a complete patch, and the elements of C' are called the
components of the patch. If a complete patch has no components,
then its nape is one that occurs in the flowgraph being parsed (that is,
a nape with a terminal label). If C is not empty, then C is a set of
napes that is the instantiation of the right-hand side of a rule and n is
the nape that stands on the left-hand side of that same rule, instantiated
by the same assignment as the napes in C. The functions label, inputs,
outputs, and tiepoints are extended from their definitions over napes to
complete patches, mapping a complete patch to whatever they match

the patch’s nape to.

It is important to note here that a flowgraph (N, T, ¥) uniquely determines a set of
complete patches {(n,) [n € N}. These complete patches are the starting points
of the flowgraph parsing process; the first partial patches found in a bottom-up

parse will be built from them.

(3.29) Partial Patch : a partial patch is a 5-tuple (n,C, A;, Ay, N), where n
is a nape, an instantiation of the left-hand side of a rule; C is a set of
complete patches, the components; A; is a set of tie-points drawn from
the input tie-points of n and called the active inputs; A, is a set of
tie-points drawn from the output tie-points of n and called the active
outputs; and N is a flowgraph containing the needed napes, those
napes which are required to complete the right-hand side of a rule and
which are not components of the patch. A partial patch immediately
needs one of its needed napes just in case one of the active outputs of

the patch is an input to the needed nape or one of the active inputs of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the patch is an output of the needed nape. As with complete patches,
the functions label, intputs, and outputs map a partial patch to the
same value as the patch’s nape. The tiepoints function maps a partial
patch to the union of the tie-points of its components. So, if B¢ is the

components of a partial patch B, then tiepoints(B) is:

U tiepoints(c)

ceBe
The tie-points in the flowgraph being parsed and the tie-points of a complete
patch are all instantiated (i.e., they are (true,n) for some n € N). When a new
partial patch is created, however, all of its tie-points are uninstantiated. As a
flowgraph parse proceeds, the parser matches a immediately needed nape of a
partial patch with a complete patch having the same label (and so also the same
number of input and output tie-points). If there are no conflicts between the
tie-points immediately needed nape and of the complete path—that is, all of the
instantiated tie-points of the nape match the tie-points of the complete patch,
and there is a mapping from the variable tie-points of the nape to those in the
complete patch—then a new parch is created by applying the mapping, adding
the complete patch to the components of the new patch and removing the nape

from its needed napes.

(3.30) a.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The flowgraph in (3.30-a) and the rule in (3.30-b) provide some useful examples.
In the flowgraph there is a nape with the symbol d, the input tie-point 2, and
two output tie-points 3 and 4. The label of this nape, then, is (d, 1, 2), which—as

mentioned earlier—can be written more visually as '—@<: This nape also

corresponds to a complete patch with no components, represented by the figure

in (3.31):

3

(3.31) 2_@<;

The right-hand side of (3.30-b) also has an input nape with the label ’_‘@<:
The input nape in the rule and the complete patch in (3.31) are sufficient for

a parser to record a partial patch with one component (i. e., (3.31)) and two

3 T2 4 T3
needed napes, (’_’@_” and) The needed napes have their input

tie-points instantiated but their output tie-points are still variable, meaning that,
for example, any partial patch with label o—{c|—~® 5nd input tie-point 3 can

extend the partial patch independent of its output tie-point.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T2

[N)

(3.32)

%
oW

3 T2 4 T3
o—{e}—~o

Once the parser has verified that there are completed patches satisfying the two

needed napes, it can record a complete patch for , (3.33):

(3.33) 3
3—@<§ S

3.6.3 Lutz’s Algorithm

Lutz (1996) provides the algorithm in Figure 3.2 for bottom-up parsing graphs
of the kind described in the previous section. The algorithm works on patches
(also called “covering patches”). A patch is a statement that a terminal or non-
terminal symbol from the grammar has been found in the graph. In the case of a
non-terminal symbol, it may be the case that only part of its expansion has been
found. In this case the patch is called partial. If the symbol is a terminal, or if

an entire expansion of it has been found, the patch is called complete.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A patch is labeled by the symbol from the grammar which has been found and
contains a graph with input and output tie-points where it (the patch) connects
to the rest of the graph, as well as the set of patches that have been used to build
it. For a patch generated from a terminal symbol the list of component patches
will always be empty. An incomplete patch will also have a record of what kind

patches need to be found to complete it.

The algorithm is driven by an agenda (a list of patches that need investiga-
tion) and a chart which stores information about patches that have already been
investigated. When a patch is drawn from the agenda, the algorithm checks the
chart to see if the patch has already been investigated and, if it has, ignores the

patch. Otherwise, the patch is added to the chart and investigated.

When the patch drawn from the agenda is a partial patch, the chart is checked
for any complete patches that might fill in the missing parts of its expansion. Each
suitable complete patch is used to create a new patch starting from the partial
patch and filling in the corresponding hole in the expansion, and each new patch

is then added to the agenda.

If the patch drawn from the agenda is a complete patch, then a similar search is
done in the chart for partial patches whose needs might be met by the complete
patch, and the suitable partial patches are used to create new patches to add
to the agenda. Additionally, each rule in the grammar is checked to see if its
expansions contains a peripheral nape with the same label as the complete patch.

New partial patches are created for each suitable rule and added to the agenda.

When the agenda is empty, the algorithm is finished. The chart ensures that
no work is duplicated. The exhaustive search of the chart for each new complete
and partial patch ensures that no work is skipped. After the algorithm has run

its course, any complete patch in the chart which is labeled by a start symbol is

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ParseGraph()
1 INITIALIZE chart AND agenda
2 repeat
3 A « PICK PATCH FROM agenda
4 if —(chart CONTAINS A)
5 then ADD A TO chart
6 if A 1S COMPLETE
7 then for each partial patch B in chart
8 where A CAN EXTEND B

9 do a «— B EXTENDED WITH A
10 PUT « ON agenda
11 for each rule R in P
12 where RHS(R) HAS INPUT NAPE LABELED BY
13 LABEL(A)
14 do for each input nape X in R
15 where LABEL(X) = LABEL(A)
16 do 3 «— NEW EMPTY PATCH
17 LABEL(() « LHS(R)
18 NEEDED(() «— RHS(R)
19 INSTANTIATE § w.r.t. X and A
20 INPUTS() « INPUTS(A)
21 ACTIVE-OUTS(3) « INPUTS(A)
22 PUT [ON agenda
23 else for each complete patch B in chart
24 where B CAN EXTEND A
25 do o +— A EXTENDED WITH B
26 PUT a ON agenda

27 until agenda 1S EMPTY

Figure 3.2: A sketch of Lutz’s (1996, p. 367) parsing algorithm, simplified for
only bottom-up parsing

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a successful parse of the graph using the grammar.

3.6.4 Implementing Lutz’s Algorithm

Implementing the algorithm in Figure 3.2 requires the choice of data structures
for the various elements involves as well as the definition of equivalence relations
for each kind of patch. Also, the extension of a partial patch by a complete patch
is a non-trivial operation, the details of which are not specified by Lutz (1996).
The following sections give more explicit definitions and specify how certain steps

of the algorithm are implemented for this dissertation.

3.6.5 Equivalence of Patches

The behavior of the algorithm depends profoundly on what it means to say that
two patches are the same. The difference comes about in line 4 of the algorithm,
where the chart is checked for the presence of the patch just drawn from the
agenda. Changing the criteria for being “the same patch” changes which patches

will be investigated and which patches will not.

The mathematical definitions in (3.28) and (3.29) each give a clear candidate
for an equivalence relation, namely, that two patches are the same just in case
they are identical at each element in their tuple. When this criterion is used for

sameness, then all possible parses will be found.

An alternative criterion for sameness relaxes the strict equivalence require-
ment, allowing two patches to count as the same even if they have different com-
ponents. Using this criterion, the algorithm will always find a parse if there is
one, but may fail to find many alternative parses. The advantage is that this cri-

terion allows the algorithm to investigate far fewer patches. Lutz (ibid.) explains,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“...for some flowgraphs and some grammars there may well be an exponential

number of parses (this is even true of Earley’s algorithm operating on strings!)”

Because this thesis revolves around considering all of the parses for a particular
graph and not around the efficiency of the computation, my implementation uses

the strict equivalence.

3.6.6 Extension of Partial Patches by Complete Patches

Two parts of the algorithm—lines 8-9 and 24-25—deal with complete patches
extending partial patches. A complete patch A = (A,,, A¢) can extend a partial
patch B = (By, Bc, Ba,, Ba,, By) if it matches the following conditions:

(3.34) a. there is a nape v such that B immediately needs v and label(A) =
label(v)

b. there is an assignment « under which A is the instantiation of v.

If B needs just one more nape (i.e, if By = {v}), then the extension of B by
a A is the complete patch with the nape a(B,) and the components Bc U {A}.
If, however, B needs more than one patch to fill out the right-hand side of its
originating rule, then the extension of B by A is another partial patch P =
(a(By), Bc U{A}, Pa,, Pa,, Py). The active tie-points of P are the active tie-
points of B with the additions and subtractions in (3.35), while the P’s flowgraph
of needed napes is the instantiation of B’s needed flowgraph without the instan-

tiation of v. The equations in (3.36) summarize the result of the extension.

(3.35) a. the inputs of A are not active outputs of P
b. the outputs of A are not active inputs of P

¢. aninput 7 of A is an active input of P just in case 7 is not an input

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of B, nor an input or output of any nape in B¢
d. an output 7 of A is an active output of P just in case 7 is not an

output of B, nor an input or output of any nape in Bx

®

(3.36) P4, = (Ba,—outputs(A))U(inputs(A)—(tiepoints(B)Uinputs(By))
b. = (By,—inputs(A))U(outputs(A)—(tiepoints(B)Uoutputs(B,))

c. Py=a(Bn)-—oav)

3.6.6.1 The Chart

Lutz’s algorithm stores the known complete and partial patches in a chart to
facilitate the quick retrieval of partial patches that can be extended by a given
complete patch and of complete patches that can extend a given partial patch.
To this end, the chart is divided into four tables: two for the partial patches and
two for the complete ones. Each tables has two axes, the tie-points along one

and the labels along the other.

The tables for the complete patches are simple. When a complete patch is
entered into the chart, an entry is made in the chart for each of its input and
output tie-points. The input tie-point based entries go into one table and the

output tie-point based entries go into the other.

The entries for the partial patches are a little more involved. For each imme-
diately needed nape in the partial patch an entry is made under the immediately
needed nape’s label at each active input and output tie-point. As with the com-
plete patches, the entries are separated between the two tables based on whether

they are derived from an input or an output.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 An Example Parse

The discussion of context-free flowgraph grammars in (3.11) provides a graph
and a grammar that may serve for an example run of Lutz’s algorithm. The
grammar has the three non-terminal napes in (3.37-a), the six terminal napes in
(3.37-b), the four production rules in (3.37-c), and the designated start symbol S.
The language generated by the grammar in (3.37) is the singleton set consisting

of the graph in (3.38), which it can generate in two different ways.

-

o—{al—e
o—{b] :
b, &—{c] o—{c|—e

T3
T1 T1 T2 b
= eo—{al-e—{AKT4
c. (i)
T2

T1 T1 b
=
(ii)
T2 T4 T2
T1 T1 e}
T3 = [dKT5 T3
(iii)

1 2 e b
B dK 4 6
(3.38)
76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first step of the algorithm is to initialize the agenda. Each nape in (3.38)
is made into a complete patch and added to the agenda. Displaying complete
patches as a pair of stacked boxes with the nape in the top box and the com-
ponents in the bottom box, the structures in (3.39) display the agenda after

initialization.

3

1@22@::43@54.65@

(3.39)

Once the agenda has been initialized, patches are drawn from it. In this ex-
ample, suppose that the first patch in (3.39) is drawn first. The parser checks its
chart—which is empty initially—and finds that the patch is not there. Accord-
ingly, the patch is entered into the chart under (1,a) for complete-patches-by-
input and under (2,a) for complete-patches-by-output. The chart is then checked
for any partial patches that could be extended with the complete patch. Next, the
parser checks the rules for right-hand sides with input napes labeled as o—{a]—e

and finds that the rule for expanding meets this condition. The as-
signment [T1—1, T4—2|, which instantiates the input nape of the rule as the
nape from the complete patch, is then used to create the new partial patch shown
in (3.40-a), where the top two boxes are as in the display for complete patches
and the bottom box represents the needed components and the active tie-points
are displayed with non-filled circles. The first rule for expanding also has
an input nape labeled .—'@_", so the parser also creates the new partial patch

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in (3.40-b). The parser adds (3.40-a) and (3.40-b) to the agenda and then draws

from the agenda again.

T2
1
3
(3.40) a.
T5 T2
1 2 €]
O—{ 8] [dKT6 T3
1
b.
T3
1 2 b
O— a] T4

The second draw from the agenda gives the parser the second patch in (3.39),

the one labeled "‘@<: Since this patch is also not already in the chart,
it is added under (2,d) for its input and under (3,d) and (4,d) for its outputs.

There are still no partial patches in the chart, so there is nothing for this patch

to extend, but a check against the rules reveals that is potentially an input nape

for an expansion of . Using the assignment [T1—2, T4—3, T5—4],
another new partial patch (3.41) is created and added to the agenda.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T2
)
3
(3.41)
3 T2
2 7l e
O 4 T3

None of the remaining complete patches on the agenda can cause the creation of
new partial patches, so each is simply added to the chart in turn. This leaves the
agenda with just the partial patches in (3.40) and (3.41) and the chart with the

entries shown in Tables 3.2 and 3.3.

H@M»@»—KH@—*
L || o—fa—o
23

) ~—@<§
3 e ol -o
4
5 2—-@

6
6

Table 3.2: Complete patches by input

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KA R

4
3 5
5 o—{c|—o
4 6
6

Table 3.3: Complete patches by output

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next patch that the parser draws from the agenda is the one shown in
(3.40-a). The parser confirms that this patch is not already in the chart, and
begins to process it. It immediately needs a patch that is labeled by o—{al—e
and has the tie-point 1 as an input. This has two consequences. First, the partial
patch is entered into the partial-patches-by-active-output table of the chart at the
intersection of ®—2—® and 1. Second, the parser checks the complete-patches-
by-input table in its chart (i.e., Table 3.2) at the same pair of coordinates. In
this table it finds the complete patch that can extend the partial patch. The
resulting new partial patch, shown as (3.42-a), is then added to the agenda.
Similar operations on the patches in (3.40-b) and (3.40) produce the new patches
in (3.42-b) and (3.42-c) for the agenda.

T2
T2 9
1 1 3
BK T3
1 2 3
1 9 o—{aj—e 2
(3.42) a. (8] b, c. 4
T3
T5 = T2 2 b
2 O T4 3 T2
o—{dK 16 T3 Oo—{e}—e
4 T3
O

The parser deals with (3.42-a) almost identically to (3.41)—it has the same
needed graph and the same active outputs—and there are no complete patches
in the chart that can extend (3.42-b) yet, so no new patches can be created from
it. When (3.42-c) is drawn from the agenda, however, the parser finds two com-

plete patches that can extend it, so two new partial patches are created: one

extended by the complete patch labeled ®—{e|—® 4nd the other extended by

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the one labeled by o—{f}—® Each of the new partial patches, when drawn from
the agenda, is extended by the other patch, so the patch that resulted from ex-
tending (3.42-c) by the patch labeled o—{c|—® 5 extended by the patch labeled
and vice-versa. Both of these further extensions create the complete
patch in (3.43-b). The constant check for patches already in the chart means
that (3.43-b) is skipped the second time it is drawn from the agenda. The de-
scendants of (3.42-a) create the complete patch in (3.43-a) via two different paths

in a completely analogous fashion.

5 5
1 2
BK 6 6
3 3
1 2 2 2
(3.43) a ||® R '—@<; b. '_'@<.§
3 5 4 6 3 5 4 6
o—{cl—~o o—{ecl—eo

When (3.43-a) is drawn from the agenda the parser finds no complete patches
for it to extend but it does find that the second rule for expanding has a

matching input nape. The new partial patch for this match is shown as (3.44-a).

1
(3.44) -
1 b]
o—{BK 6

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The other complete patch, (3.43-b), does not match an input nape of any rule
but can extend the patch in (3.42). The patch shown in (3.45) is the result

of this extension.

5
26
1 2 2 :
gl »—@<§
(3.45)
3@5 4.6

oo™
o]

The steps from (3.45) to a complete patch for involve extending it twice
once with the ®—{bJor patch from the chart and then extending the result

with the other. (3.44) will also lead to a complete patch, extended first with the

complete patch and then enjoying the same fate as (3.45). So, the
Lutz algorithm, given the right specification for patch equality, finds both parses

available for the flowgraph and the grammar.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8 Conclusions

A string grammar determines a set of strings in string language. A graph gram-
mar works in the same way to determine a set of graphs. But grammars don’t just
determine sets, they also provide a recipe for constructing each of their members.
For some members of a set, a grammar may offer multiple recipes, which leads

to an ambiguity in parsing.

In this chapter, I offered a grammar for graphs rendering Cognitive Repre-
sentations using rules that match the patterns of conflation commonly found in
lexical items—such as a rule simultaneously introducing a Motion Event and a
Co-Event with the same Figure, paralleling the common conflation of fact-of-
motion and manner-of-motion. Parsing ambiguities induced by this grammar,
then, reflect alternate patterns of conflation that still evoke the same CR. In
Chapter 4 I show how different parses are used to generate different sentences,
and in Appendix A I offer a more complete grammar for Cognitive Representa-

tions of Motion Events.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

From Graph Parses to Linguistic Expressions

4.1 Overview

This is the chapter where the generation aétually happens. It builds upon all the

other parts of the dissertation.

In the introduction to this dissertation, I set out a goal: to generate sentences

which, like (4.1), evoke a particular Cognitive Representation of a motion event.
(4.1) The bottle entered the cave floating.

In Chapter 2, I explained what Cognitive Representations are, laying out their
rough structure in terms of Motion, Path, Figure, Ground, and Co-Events. In

the case of the sentence in (4.1), the components are those in (4.2).

(4.2) Motion: MOVE

®

b. Figure: a bottle
c. Path: to a point belonging to the interior of the Ground
d. Ground: a cave

e. Co-Event: floating

Chapter 3 accomplished two things. First, I showed how graphs can be used to

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encode the fine structure of a cognitive representation and I sketched a small
grammar for graphs of Cognitive Representations. Second, I demonstrated how
a graph grammar can be used to parse a graph, and how the same graph can be

parsed in different ways by the same grammar.

Encoding Cognitive Representations as graphs was the task of Section 3.2.
For the Cognitive Representation described in (4.2), the corresponding graph
was (3.3), repeated below as (4.3).

(4.3) self-contained

motion

motion fz'gure bottle

event

{1

Parsing graphs with a graph grammar was covered at a high level in Section 3.6.3
and at a lower level in Section 3.6.4. The algorithm for parsing detailed there
works by filling a chart with “patches”, where a patch is a record that a particular
section of the graph (the section of the graph “covered” by the patch) can be
generated by an application of a rule from the grammar. The graph in (4.3) is

covered by the patch in (4.4), corresponding to the sentence in (4.1).

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
Figure
Ground

9
: 9
9

14 6

14
5 9
fgure)

(4.4)

Lo 8N
—_
o D

4 7
4 7 10
move K 5 5
12
10 8 11§ |11

12 i 13
otion

13

The final claim of this dissertation remain to be shown is that from each parse of
a Cognitive Representation graph, a sentence can be generated which will evoke

that Cognitive Representation. This chapter develops a method for obtaining the

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relevant sentence for each parse.

In order to generate a linguistic expression from a Cognitive Representation,
it is necessary to parse its graph with the appropriate graph grammar for the
target (human) language. This was the subject of Sections 3.6.3 and 3.6.4. To
use the results of the parse, it is useful to have a representation what happened
during the parse. These records are called parse terms, and obtaining parse terms

from a flowgraph grammar is the subject of Section 4.3.

Parse terms are still not linguistic expressions. Terms are closely related to
trees, however, and trees can be transduced into other trees. Section 4.4 shows
how the parse terms of Section 4.3 can be transduced into the kinds of syntactic

trees frequently used by syntacticians.

4.2 Definitions

4.2.1 Trees

Trees are useful structures for describing any set of elements that have a hierar-
chical grouping. Genealogists use them to display progeny, biologists use them to
show common evolutionary origins, syntacticians use them to show constituency
as well as to show derivations, etc. It is their capacity to describe derivations

that is of interest here. A formal treatment of trees follows.

(4.5) tree : a tree is a set of primitives called nodes together with a binary
relation over the nodes called the dominance relation, often written
D. The dominance relation is reflexive, transitive, and anti-symmetric
(i.e., if a node z dominates a node y and y also dominates x then z and

y are the same node) and meets two additional conditions:

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a. the root condition : one node, the root node, dominates all other
nodes, and no other node dominates the root.

b. the chain condition: if two nodes z and y both dominate a node
2z, then either z dominates y or y dominates z (or both, in the case

that = and y are the same node).

There are two traditional refinements of the dominance relation:

(4.6) strict dominance (SD) : a node z strictly dominates a node y if both

Dy and z and y are distinct nodes.

(4.7) immediate dominance (ID) : anode z immediately dominates a node
y if zSDy and for any node 2z such that 25Dy, it is also the case that
zDzx.

Trees are conventionally drawn with the root at the top and each node above
all of the nodes that it dominates. The dominance relation is shown by lines
connecting each node to the nodes it immediately dominates. So the nodes N

(4.8-a) with the dominance relation D (4.8-b), are drawn as the tree in (4.8-c).

(4.8) a. N=1{1,2,34,5}
b. D= {(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(3,3), (4,4),
(5,5)}

c 1
T
2 4 5
|
3
&9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When drawn in this way, relations that fail to meet the two additional conditions
on dominance relations are easily spotted. The relation in (4.9), for example,
violates the root condition as no node dominates both 1 and 2, so no node can
dominate all other nodes and the tree has no root. A violation of the chain
condition is shown in (4.10), where both 2 and 3 dominate 4, but 2 does not

dominate 3 and 3 does not dominate 2.

(4.9)

W<

2
4 / \ 5
(4.10) 1
2 / \ 3
N
Nodes on the periphery of a tree often have a special status, so there is a special

vocabulary for talking about them:

(4.11) leaf node : a leaf node of a tree is a node that dominates only itself.

In (4.8-c) the leaf nodes are 3, 4, and 5.

(4.12) internal node : an internal node of a tree is any node that is not a

leaf node.

A dominance relation determines the fundamental structure of a tree, but it does
not order the elements in the tree nor does it place any content in the tree. The

next two sections deal with these issues.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1.1 Labeled trees

(4.13) labeled trees : a labeled tree is a quadruple (N, D, ¥, L), where N is
a set of nodes, D is a dominance relation, ¥ is an alphabet, and L is
a function from N into ¥. A labeled tree can be drawn similar to the

trees above, but with each node n being written as n, L(n).

Labeling a tree’s nodes allows the tree to present some information in an organized
manner. The tree in (4.14) has N C N and has an alphabet ¥ that consists of
the terms I remember from high school biology. Its dominance and labeling are
done such that if one node dominates another, then I believe that the dominating

node’s label is a term inclusive of the dominated node’s label.

(4.14) 1,life

T

2,animals 3,plants 4,protists 7,fungi 8 ,bacteria

T

5,algae 6,protozoa

The tree in (4.14), could, of course, have been constructed just as well without
labels, using the terms I remember from high school biology as the nodes them-
selves. The advantage of a labeled trees is that different nodes can have the
same labels. The tree in (4.15-e) demonstrates this, showing an analysis of the

expression 2 X 3 + 4 x 3.

(4.15) a. N ={a,bcd,e f, g}
b' D = {(a’a>’(a’b>’<a’c>’<a7d>’<a’e> I <a"f>) <a'7g>7<b’b>’<b’c>’
(b,d),{c,c),(d,d), (e e}, (e f), (e, 9),(f, f),{(g,9)}

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c. Y={+,x%,2,3,4}

d. L={{a,+),(b %), (c,;2),(d;3), (e, x),(f,4),(9,3)}
e. a, + v
/\
b, X e, X

PN N
2 d,3 f4 g¢,3

4.2.1.2 Ordered trees

When trees are used as a mechanism for describing strings in natural or formal

languages, it is frequently useful to encode the string order in the tree itself.

(4.16) leaf-ordered trees : a leaf=ordered tree is a triple (N, D, <), where
(N, D) is a tree as above, and < is a total order on the leaf nodes of
(N, D). The total order < is reflexive, transitive, and antisymmetric,
and additionally meets the condition that for any two leaf nodes z and
y, either x <y or y < z (or both in the case that z and y are the same
node). Leaf-ordered trees are written exactly as other trees, but care is

taken to write the leaf nodes left-to-right in the order imposed by <.

The total order on the leaf nodes extends to a partial order on the whole set of
nodes in the following way: if either a or b is an internal node, then a < b just in
case all of the leaf nodes that a dominates stand in the < relation to all of the
nodes that b dominates. In (4.17), for example, 2 < 5, 2 < 6, and 2 < 9, but

neither 5 < 6 nor 6 < 5.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.17) 1

7 8 10 11

(4.18) discontinuous constituents : an internal node n is called a discon-

tinuous constituent if the following hold true:

a. n dominates at least two distinct leafs a and b,
b. there is a third leaf ¢ that n does not dominate, and

c. a<c<hb.

Drawing a tree with a discontinuous constituent often involves crossing lines, as
in (4.19), where 5 is a discontinuous constituent dominating both 7 and 10 but

not 11 when 7 < 11 < 10.

(4.19)

e N <———

T 9 10
11 12

It follows from the definition of a discontinuous constituent that for any two

nodes a and b in a tree with no discontinuous constituents, either aDb or bDa or

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a<borb<a.

(4.20) leaf-ordered, labeled trees : a leaf-ordered, labeled tree is a quintu-
ple (N, D, <, %, L), where (N, D, <) is a leaf-ordered tree and (N, D, £, L)
is a labeled tree. Leaf-ordered, labeled trees can be safely written with-
out displaying the nodes (just displaying the labels), as a node can be
uniquely identified by its parent and position among its siblings (e.g.,

first, second, third).

4.2.2 Terms

Many properties of and actions on trees are easier to state as properties of and
actions on terms. Comon et al. (2007) offer an excellent introduction to trees and

terms, from which the following definitions are adapted.

(4.21) Ranked Alphabet : aranked alphabet is a pair (F, arity), where F is
an alphabet in the sense of (3.7), that is, an arbitrary set of symbols and
arity is a function from F into N. The set of symbols f in F such that
arity(f) is n is denoted F,,. The elements of F; are called constants,
those of JF; are called “unary” symbols, F are called “binary” symbols,

and in general the elements of F,, are called n-ary symbols.

(4.22) Ranked Ordered Term : terms are built from symbols in a ranked
alphabet F as well as a set of constants (i.e., 0-ary symbols) X called
variables, with F and X disjoint. The set of terms built from F and

X is denoted T'(F, X) and is the smallest set meeting these conditions:

a. fQCT(f,X)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. X CT(F,X)
c. if f e F, for some p > 0 and t1,ts,...,t, are in T(F, X), then
f(t1,te,...,tp) isalso in T'(F, X). The terms t1,%,, ..., 1, are called

subterms

4.2.3 From terms to trees and back

Terms as defined in (4.22) are isomorphic to labeled, leaf-ordered trees with no
discontinuous constituents, modulo a certain wrinkle: in a leaf-ordered labeled
tree, the sets of nodes immediately dominated by nodes with the same label may
differ in cardinality, but in a term over a ranked alphabet, each symbol has a
fixed arity. So a label C in a tree may correspond to distinct symbols Cj, Cs, . ..

in a term where C; and C; have differing arities.

4.2.3.1 From terms to trees

The transformation of a term into a tree is straightforward. Constants correspond
to single node trees, and complex term f(t;,ts,...,t,) is built from the trees
corresponding to each of its subterms and a node corresponding to f dominating

them.

When assembling distinct trees into a single structure, it is important to keep
the nodes of each tree distinct. The function in (4.23) can be used for this

purpose.

(4.23) Forne€ Nandatreed = (N, D, <, 3, L), let P(n,d) = (N, D', <", E, L),

where:

a. N ={n}xN

b. for v, € N,

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i) {(n,11),{n, 1)) € D' just in case (v, 1) € D
(i) ((n,11),{n,n)) € <'justin case (v1,1n) € <
c. L'={{(nv),0)|{v,o)eL}

Starting with a term ¢ € T(F, X'), the corresponding tree h(t) = (N, D, <, %, L)

is constructed in the following way:

(4.24) a. a constant t € (Fo U X') becomes a tree with a single node
h(t) = ({1}, (1, 1), {1, 1), {t}, (1, 8))

b. aterm t = f(t1,%a,...,tp) with p subterms becomes a tree with a
node corresponding to f dominating all of the nodes of the trees
h(t1), h(t), ..., h(t,)

(i) the function P is used to keep the nodes of each subtree §;
distinct
8 = (N;, D;, <, 8, L) =P(i,h(t)), 1 <i<p

(ii) the union of the subtree nodes, N, is | ._, V;

(iii) the nodes of h(t) are the nodes of the subtrees, along with a
new node for the root
N={1}UN

(iv) all the dominance relations of the subtrees are maintained,
plus the new root dominates everything
D = ({1} x N)UUL, D

V) T=ULE

(viy L=, L;U{(1,)}

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3.2 From trees to terms

As mentioned earlier, even trees with no discontinuous constituents offer slightly
more freedom than ranked ordered terms; they allow different nodes with the

same label to immediately dominate distinct numbers of nodes.

The first step in transforming a tree into a term, then, is to annotate each label
with the number of nodes it immediately dominates. If L : N — X is the labeling
function of a tree, then the new labeling function is L'(n) = L(n)|{zn1ps}|, Where
0; indicates the symbol ¢ annotated with the arity ¢. The pair of trees in (4.25)

shows how this annotation works.

A A A A A A Ao Ay Ay Ay Ay Ag

Let § = (N, D, <,%,L) be a leaf-ordered labeled tree that has no discontinuous
constituents and that has undergone this arity annotation process. The labels of
¢ induce a ranked alphabet F® which each symbol o; € F?. The term ¢ = h=1(§)

corresponding to ¢ is built from the root of § down, following the steps in (4.26)

(4.26) a. Let p be the root of §, and s be the sequence (si,s2,...,Sp) of
the nodes immediately dominated by p ordered according to the
extension of < that covers internal nodes. The elements of s are
guaranteed to be ordered by < as § contains no discontinuous con-
stituents and no element of s can dominate any other elements of

s, or else the dominating element would not be immediately domi-

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nated by p.
b. If the sequence s is empty, then the term ¢ is simply L(p).
c. If the sequence s is non-empty, then
(i) let §;, 1 <4 < |s| be the subtree of § rooted at s;. This tree

1s:

{{n|s;Dn},{(n1,n2) € D|s;Dny and s;Dnsy}, <, 8, L)

(i) the term ¢ is (L(p))(h~'(8,), h™'(8s),. .., h~1(5,)).

4.3 Parse Terms

4.3.1 String Derivations and Parse Trees

Parsing an object with a grammar is essentially equivalent to providing a deriva-
tion of the object using that grammar. However, derivations can contain super-
fluous information, which is often discarded when parsing. As an example of this
unwanted information, Chomsky (2002, pp. 26-28) offers the derivation of (4.28),
where the offset letter to the right of each row refers to the rule in (4.27) that

was used to arrive at that step in the derivation.

(4.27) a. Sentence - NP+VP
b. NP—->T+N
c. VP—Verb+ NP
d. T —the
e. N — man,ball,etc.

f. Verb — hit, took, etc.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.28) a. Sentence

b. NP+VP (a)
c. T+N+VP (b)
d T+N+Verb+ NP (c)
e. the+ N+Verb+ NP (d)
f. the+man+ Verb+ NP (e)

the + man + hit + NP (f)

the + man + hit +T + N (b)
i. the+man+ hit +the + N (d)
j- the+ man + hit + the + ball (e)

So, a derivation is a sequence of rule applications; two different sequence of rule
applications are two different derivations. For example, the rule applications in
(4.28-¢) and (4.28-f) could have been done in the opposite order as in (4.29). This
is a different derivation, but it is not different in any interesting way. Inverting
(4.28-¢) and (4.28-f) has no effect on the following steps of the derivation nor on

the final result.

(4.29) €. T+ man+Verb+ NP (e)
f. the+man+Verb+ NP (d)

For this reason, parses of strings are often represented as trees. The root of the
tree is the start symbol of the grammar, and the leafs of the tree are the elements
of the string, written in their order in the string. The internal nodes of the tree
are determined in the following way: For each rule that was applied in generating
the string, the node corresponding with the left-hand side of the rule immediately

dominates (i.e., has as daughters) nodes corresponding to the right hand side of

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the rule. In other words, if a derivation makes use of the rule (4.27-c), then the
tree corresponding to that derivation will have a node labeled V P dominating
nodes labeled Verb and NP. Following this process, the tree in (4.30) represents
the derivations of both (4.28) and (4.29):

(4.30) Sentence

the ball

The parse tree in (4.30) records what got rewritten as what, but not the order in
which two independent rewrites happened. The former is considered interesting
for many reasons, one being that syntactic elements with a common origin (e.g.,
as hit, the, and ball all share the common origin VP in (4.30)) are usually
understood to group semantically as well. The latter is usually not attributed

any theoretical significance.

A parse term is essentially the same thing as a parse tree and the two are
often used interchangeably. To arrive at a parse term from a parse tree, each
node has its label written like a mathematical function and the daughters of that
node, if there are any, are written as its arguments. The parse tree in (4.31-a),

for example, corresponds to the parse term in (4.31-b).

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.31) a NP b. NP(T(the), N(ball))

N
T N
| |
the ball

Although trees and terms have essentially the same structure, the vocabulary for
terms are trees is quite different. Trees are structures built from nodes together
with a dominance relation, which relates each node to her daughters, and a la-
beling relation which gives a label (e.g., ‘Sentence’, ‘NP’, etc.) to each node.
Terms, on the other hand, are built from symbols taken from a ranked alphabet.
A ranked alphabet is a set of symbols and an assignment of a number to each
symbol. The number associated with each symbol is called its arity or rank. A
symbol’s arity determines how many other terms must be used to build it. For
example, the symbol NP in (4.31-b) has arity 2, T and N have arity 1, and both
the and ball have arity 0.

4.3.2 Parse Terms for Graphs

Trees are an especially convenient structure for showing a parse of a string; the
leafs of the tree can reflect the order of the elements of the string, and each
direct path from the root of the tree to a leaf reveals the provenance of that leaf
without encoding any superfluous information about the order of its derivation.
Trees do not, however, offer the same level of convenience for representing parses
of graphs. This is mainly because the graph components are not totally ordered

with respect to each other the way that the elements of a string are.

Although trees do not immediately lend themselves for representing parses

of graphs, they are exceptionally easy structures to work with. In particular,

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there are well understood automata and transducers that operate on trees and
these automata can be used to derive more traditional linguistic representations
from the graph parses. In order to take advantage of these automata, then, it is

necessary to create tree representations for the graph parses.

The biggest decision to make in creating a tree representation for the graph
parses is what information the tree should encode. Section 3.6 offers an answer
here: what matters for the parse is what rules get used to build each part of the
graph, along with the components that each application of the rule assembles.
To encode this information in a tree (or term), each rule can be outfitted with
a recipe for the construction of a ranked order term, with its subterms (if any)
determined by the rules used to rewrite the non-terminal elements of the rule’s

right-hand side.

The simplest case is the analog of lexical insertion rules, i.e. those rules whose
right hand sides contain no non-terminals; the term that they generate cannot

vary.

(432) Term (— “o{bottle]) = bottle

Another simple case is rules that have exactly one non-terminal on the right hand
side; the term generated by the rule can have at most one variable, so there can
be no ambiguity about which subterm corresponds to which non-terminal. The
Term function in this case can be expressed as in (4.33), where the right hand

side of the equation indicates the term generated by whatever rule expands the

non-terminal .

(4.33) Term (= 14>lground H Thing D
~ Term (~{Ting)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the right hand side has multiple non-terminals, some care must be take
to keep them distinct, as two non-terminals could have the same label. One way
to differentiate them is to more fully label the edges of the right hand side, and
invoke these edge labels in the specification of the term. The rule for introducing
Motion with Manner (3.25) is so annotated in (4.34-a), the rule for the idiosyn-
cratic English ‘enter’ (3.27) is annotated as in (4.34-b), and (4.34-c) shows the

annotation for the rule introducing an optional Manner to the figure (3.26-b).

self-contained | 2
i)
= fz'gure}—?’—)[Thz'ng'

(4.34) a. Term

= manneredMove <Te7“m (i) , T'erm () ,
Term (Path) Term () ,Term (—6—>))

MOVE

(motion) [Figure] -
b. Term 2

= L Hégzinotn —)’path !——>| conform l—)[ﬂ

al
\ |Ground| |deictic Hneutral |

= enter (Term (i) ,Term (i))

' __|self-contained _
= motion SCMType
:
= manneredFigure (Term (SCMType) , T'erm (i >)

c. Term

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With similar terms for the remaining rules, the English generation grammar
would generate two parse terms for (4.3). One is (4.35-a), produced using (4.34-b)
followed (4.34-c) (corresponding to the sentence “The bottle entered the cave
floating”). The other is (4.35-b), using the expansion in (4.34-a) (corresponding
to “The bottle floated into the cave”).

(4.35) a. enter

T

manneredFigure cave

TN

Hoat bottle
b. manneredMove
float bottle path cave MOVE
—e {21 neutral

4.4 Tree Transductions

The remaining work is to transform terms like (4.35) into linguistic expressions. If
syntactic trees are desired, then the remaining work is a translation from one tree
to another: an ideal task for a tree transducer. I will demonstrate the technique

here with a top-down deterministic macro tree transducer (Engelfriet, 1980).

A tree transducer is a set of rewriting rules for trees, translating trees from
a source tree language into a target tree language. In this case, the source tree
language is the parse terms from the graph parses, and the destination tree lan-

guage is Government and Binding style syntactic trees (Chomsky, 1981, e.g.).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree transducers in general rewrite a term in some way depending on its sub-
terms. A macro tree transducer rewrites a term depending both on its subterms

and on contextual information called parameters.

Formally, a macro tree transducer has five components. It has three ranked
alphabets, an initial state, and a set of rules. The three ranked alphabets are:
the alphabet ¥ of input symbols, the alphabet A of output symbols, and the
alphabet Q of states, in which one state qq is determined to be the initial state.
The rules in a macro tree transducer have the form in (4.36), where ¢ € Q and
o € ¥ are of the appropriate rank and ¢ is in the set RHS defined in (4.37)

(where, e.g. Ag denotes the symbols in A with rank 0).

(4.36) q(y1,---,Yn,0(T1y...,Tm)) — ¢

(4.37) The set of Right Hand Sides (RHS) is the smallest set meeting the
following conditions (Engelfriet, 1980, p. 260):

a. {y1,-.-,un} UAg C RHS,

b. ifty,...,t, € RHS and f € Ay, then f(¢;,...,t) € RHS, and

c. ifty,...,tr € RHS, ¢ € Qxyq and z; € {x1,...,Zm} then
q(ty, ..., tx,x;) € RHS.

The transduction process starts by creating a term with the initial state gy dom-
inating a term over the input language. In each step the term is rewritten in
accordance with the rules. In the case of a top-down macro tree transducer, this

has the effect of moving the states ever deeper into the term.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.1 Transducing to Syntactic Structures

In the case of transducing graph parse terms to (traditional linguistic) syntactic
trees, the input alphabet ¥ is the alphabet containing the symbols in the parse
terms—i.e., the bold face items in (4.35)—and the output alphabet A consists of

lexical and categorical symbols of a traditional linguistic syntactic analysis.

Zubizaretta and Oh (2007) determine the structure in (4.38) to be the syntac-
tic structure that (at least in Germanic languages) is responsible for combining
the meaning of manner and motion, and claim that the ability of the Germanic
languages to simultaneously express Manner and Motion is correlated with the
freedom with which the Germanic languages form same-category compounds.
The particular case of Manner and Motion forming a compound (in their analy-
sis) involves a Motion head that is silent when compounded with another verb,
but surfaces in English as ‘come’ or ‘go’ or ‘move’ (determined by the Deictic

component, of the motion event) when not in a compound.

(4.38) VP
DP \%4
A\ PP
/\ /\
Vv A% P PP
| | N
manner motion P DP

The tree transducer of interest, then, is the one that takes (4.35-b) and produces

a tree in the form of (4.38). The transduction rules given in (4.39) are sufficient

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for this purpose, and a transduction of (4.35-b) is shown in Figure 4.1. Notable
in this transduction is the way that (4.39-a) passes the DP term for the Ground
as a parameter to (4.39-b).

(4.39) a. o — VP
| /\
manneredMove DP V!
TS T~
1 T9 T3 T4 Ty D N V2 qp
I P
the 2o Vv Vv DP 13

| | PN

)
)

1 path P PP

,
>

1 T2 T3 Qo P w
1 Qo

T2

c. go— to cjo—> in
| |
—e <

For the case of ‘enter’ the transduction is more interesting, due to the optional

Manner. The parse term for ‘enter’ with Manner was given in (4.35-a). To

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do

manneredMove

float bottle path cave MOVE

I

—e (21 neutral
\Y

P
'vl
N
D N
I .

the bottle v

Oy T T

| | DP path
float MOVE M\
D N
| | —e {21 neutral
the cave
VP

DP

V/
/\ /\
D N
| | \ PP
the bottle /\ /\

\% A% P PP
| | | T
float MOVE ¢ P DP
| | T

—re % D N
| |
(2

the cave

Figure 4.1: Transduction from a parse term to a traditional syntactic analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generate a parse term for Cognitive Representation with no Manner, the rule in

(4.40) is used, and the resulting parse term is that in (4.41).

(440 Term = —figure}“{Thing)
= figure (Term (—2+))

(4.41) enter
TN

figure cave

|
bottle

The linguistic target for the transduction depends quite a bit on the presence
or absence of the Manner. In the case of the parse term involving enter and
manneredFigure, the output term will have an adjunction site where the Man-
ner will be expressed. When there is no Manner, the transduction should also
have no adjunction site. This poses a small challenge, because the rewrite rules
rewrite a term without knowledge of its subterms; in terms of trees, they rewrite
a node without any knowledge of its daughters. Here, another interesting aspect
of Top-Down Deterministic Macro Tree Transducers comes into play: they are
closed under regular look-ahead (Engelfriet and Vogler, 1985, pp. 113-116). Look-
ahead is what it sounds like, the ability to look ahead into the future, which for
a term is the term’s subterms and their subterms, etc. With the ability to look
ahead to the children of enter, there is no problem in determining which linguistic
tree to build (i.e., the one with or the one without the adjunction site). Regular
means that this knowledge of the future is encoded by a finite state machine, so
it’s not perfect knowledge about the future, but knowledge that the future fits

into one of finitely many categories of possible futures. That suits the need here,

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as it only matters whether the first daughter of enter is manneredFigure or
figure. Closed under regular look-ahead, then, means that for every Top-Down
Deterministic Macro Tree Transducer that has this look-ahead ability, there is
another one that performs the exact same translations but without looking ahead.
The short-sighted transducer achieves this by first creating all of the trees that it
might need and storing them in parameters, and then later picking the one that
it actually needs. The rule in (4.42) shows the creation and storage of the possi-

ble trees, and the pair of rules (4.43-a) and (4.43-b) shows the decision between

them.
(4-42) g — q1
|
enter
TN
Tr1 Io
VP VP 1
/\ /\
qd V, VP q
| O |
o qd Vv I
| PN |
enter D N) v DP
the enter D N
| |
the z,
110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.43) a. q1 — U

T

v Y2 figure
|

1
b @ - ¥
Y1 y2 manneredFigure
N
1 T9

With the tree decided, the transduction has only to put together the syntactic
constituents for the Figure and the optional Manner. The former is taken care

of by (4.44-a) and (4.44-b), while (4.44-c) creates a small CP for the latter.

(4.44) . g4 — DP

| N
manneredFigure D N

T I ‘ the T

| S
figure D N

I the I

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c. qe — CP
| |

manneredFigure VP
PN N
1 X D Vv
| |
PRO

4.4.2 Transduction to Derivation Trees

An interesting alternative would be to transduce parse terms to the derivation
trees of some syntactic formalism like that of Stabler (1997). In this way the
transduction rules could easily be interpreted not as generating structure directly,
but as informing the syntactic cognitive module about what needs to be done.
The syntactic component would then be wholly responsible for determining what
structures result from following the indications of the cognitive representation

parser.

4.5 Generative power of Macro Tree Transducers

As top-down deterministic macro tree transducers are the final stop in obtaining
an appropriate sentence for a given parse, the generative power of macro tree

transducers determines the generative power of the entire process.

For a class of tree transducers, there are three relevant language classes. There
is the class of input tree languages, the class of output tree languages, and the

class of string languages that are yields of the output tree languages.

The input tree language, that is, the set of trees coming into the transducer,

largely determines the set of trees coming out. Comon et al. (2007, p. 61) demon-

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strate that the derivation trees of context free languages are the same sets of trees
as the reqular tree languages. Since the input to the transduction in this case is a
parse term of a context free language, it follows that the trees given as input form

regular tree language. The class of regular tree languages is denoted by REGT.

The class of tree languages generated by top-down deterministic macro tree
transducers with regular input trees is denoted by MTT(REGT). Kithnemann
(1996) gives a pumping lemma for MTT(REGT) and shows that the set of all
monadic trees (i. e., trees that are essentially just strings with dominance in the
tree taking on the role of precedence in the string) with double exponential height
is not a member of MTT(REGT), but is unable to establish any strong results

on languages of non-monadic trees.

The string yield of a tree means the string of all the labels of the tree’s leafs in
their natural order. The string yields of MTT{REGT) include all of the context
free languages. Consider, for example, the context free language (alternatively,
the regular tree language) described by the grammar in (4.45). It yields the
language a™b". Clearly a transducer performing the identity transformation on
its derivation trees yields the same language. The tree transducer in (4.46),
on the other hand, yields the language a™b"c™ given the same trees as input

(demonstrated in Figure 4.2). So, the yields of MTT(REGT') go beyond context

free.

(4.45) a. Sp—e
b. S — S5
c. S1—8S;
d. Sy —ab
e. S3— aSyb

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a S3 b a S, b a b
/]\ PN
a SQ b a b
NN
a b
= Q1 = S3
Sg /1\

Figure 4.2: Transduction from tree yielding aaabbb to tree yielding aaabbbccc

f. S3 — aSsb
(4.46) a. qo(Si(z1)) — qo(z1)
b. qole) —

c. go(Sa(z1,z9)) — Ss(a,b,c)
e. q1{y1, Y2, Y3, Sa(x1,22)) — S3(A(a,y1), B(b,y2),C(c,y3))

(
(
(
d. qo(S3(x1,x2,23)) — qi(a,b,c, xa)
(
£ a1(y1, Y2, ¥3, S3(21, 22, 73)) — 1(A(a, y1), B(b, 2), Clc, y3), T2)

Engelfriet and Maneth (2002a,b); Maneth (1999) establish some bounds on
the string yields of MTT(REGT), which they denote ,MTT(REGT). One re-
sult they establish is the there are infinite intertwining hierarchies of string lan-

guage classes created by iterating various kinds of transductions (Figure 4.3). In

particular, ,MTT(REGT) is sandwiched between EDTOL(EDTOL(REG)) and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EDTOL(REG) € EDTOL(EDTOL(REG)) C ,MTT(REGT)
EDTOL}REG) C ,MTT*(REGT)... C ,MTT*(REGT) G
EDTOL™2(REG)

Figure 4.3: Hierarchy of languages generated by iterated MTT and EDTOL
transductions

EDTOL3}(REQG), where REG denotes the regular string languages and EDTOL(L)
denotes the class of string languages generated by extended, deterministic, tab-
ular, context-free Lindenmayer systems controlled by languages of class £. An
EDTOL is a string rewriting system (3, H,w, A}, where ¥ is an alphabet, A C ¥
is the terminal alphabet, w € X% is the aziom, and H is a set {hy,hs,...} of
functions X +— X*. A string derivation of an EDTOL starts with the axiom and
applies a sequence of elements of H as a string homomorphisms. A string w
derived by an EDTOL G is in the language L(G) just in case w € A*. An EVDTOL
controlled by a language L C H* derives just those strings whose derivations

involve a sequence of homomorphisms that is a member of L.

4.6 Conclusions

After parsing Cognitive Representation with an appropriate grammar there is a
record of the parse—or of the parses, in the case of an ambiguity. The goal of
this dissertation, however, is not to produce parses of CRs, but rather to produce

sentences that evoke CRs.

The solution explored here is to transduce the parses into appropriate sen-
tences. Parse terms are a natural way of representing parses, and macro tree
transducers have the power to transduce parse terms into trees that are more

familiar to linguists.

Clearly macro tree transducers are powerful machines. This has a good side,

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in that one can be optimistic that it will be possible to generate string languages
of interest to linguists. It also has the disadvantage that it offers no insight into
why do humans generate the sentences that they do, and why don’t they generate
the sentences that they don’t. Various restrictions on the powers of macro tree
transducers and the effects of these restrictions on the possible string yields is an

area of current research.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

Conclusion

I have given an exposition of Talmy’s (2000a, 2000b) program of Cognitive Seman-
tics and developed a novel method of generating linguistic expressions intended
to evoke a targeted Cognitive Representation. This method involves rendering
the target Cognitive Representation as a graphs, parsing the graph with a graph
grammar, obtaining a term from the parse, and finally transducing the parse term

into a traditional syntactic tree for a sentence which evokes the targeted CR.

The primary intuition of this parsing-by-generation approach is that there is a
fundamental symmetry between sentence understanding and sentence generation.
When a listener is attempting to understand a sentence, she must choose between
the possibly large number of syntactic analyses that are compatible with that
sentence. In generation, a speaker must choose between the array of sentences
that convey her intended meaning. Using a parser for both tasks captures this
similarity. In parsing a sentence to be understood, there is ambiguity in how to
carve the sequence of words (or sounds in a detailed account) into larger syntactic
categories. In parsing a CR, there is ambiguity in how to carve the elements of

meaning into lexical items that express them.

I restricted my attention to Talmy’s description of the Cognitive Represen-
tations of motion events and sketched a grammar for their graph renderings.
Typological study of lexicalization patterns reveals that there are a rather lim-

ited set of major conflation patterns and the rules of the grammar were tailored

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to match these major patterns. In this way the ambiguities encountered by the
parser are precisely those ambiguities that a speaker faces when trying to force

her meaning into a sequence of lexical items.

In implementing my method of generation, I switched from graphs and graph
grammars to flowgraphs and flowgraph grammars. To avoid any complaints of
“bait and switch”, I provided an algorithm for obtaining a flowgraph from a
graph. The switch was not empirically or theoretically motivated. Rather, it
was a pragmatic decision motivated by my superior understanding of algorithms
for parsing flowgraphs compared to general graph parsing. As the algorithm
for obtaining a flowgraph from a graph can be incorporated into the sentence-
generation pipeline, the original claim of the thesis—that rendering Cognitive
Representations as graphs is a useful step in generating sentences to evoke them—

still stands.

I demonstrated the transduction from parse terms to syntactic trees using
top-down deterministic macro tree transducers and presented upper and lower
bounds on their generative power. These bounds are quite high, so the algorithm
proposed here offers very little in the way of explanation for why humans generate

the particular kinds of sentences that they do.

The interesting directions for further related research depart from the two
ends of the generation process here. Talmy’s Cognitive Semantics covers much
more than just motion events. The most promising area in this direction is likely
Talmy’s theory of Force Dynamics, as this would bring in more relations between
events such as causation and prevention and might lead to the generation of
recursive syntactic structures. The other promising branching point for future
research is to vary the kind of tree transduction performed on the parse terms.

Results about the languages generated by macro tree transducers have proven

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difficult (see comments at Kiihnemann, 1996, p. 67, for example), but the situa-
tion here offers a question should be easier to answer: For any given reduction in

the power of the transducer, is it still possible to generate the desired sentences?

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

A (slightly) Larger Graph Grammar

A.1 Introduction

Chapter 3 sketched a graph grammar for Cognitive Representations (Talmy,

2000a,b). The grammar included two sets of rules which generated an ambiguity.

One set of rules contained a rule (3.25) for simultaneously introducing a Mo-
tion Event and a Self-Contained Motion, and then rules for specifying the Path
and other constituents of the Motion Event. This set of rules was intended to
mimic the primary English pattern of verbs simultaneously expressing fact-of-

motion and manner-of-motion.

A second set of rules included a rule (3.27) which introduced the Motion Event
with the Vector and the Conform of the Path already specified. This set of rules

was intended to mimic the exceptional English verb ‘enter’.

A main theme of this dissertation is that the kind of ambiguity of produced
by these two sets of rules models the choice between lexical items that a speaker
describing a motion event must make. This appendix continues the exposition
of the fine structure of Path that began in Section 3.2 and sketches several more
productions appropriate for a graph grammar of the Cognitive Representations

evoked by English sentences about Motion Events.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 (Vector and) Conform

Talmy defines Path in terms of three constituents, the Vector, the Conform, and
the Deictic. Table 3.1 (p. 46) presents what Talmy (2000b, p. 53f) describes as the
complete, language-universal list of Vectors. The Deictic element in English plays
only a limited role in the selection of verbs and prepositions (it distinguishes, for
example, ‘come’ from ‘go’). It remains, then, to provide some exposition of the

conform.

A Vector is a schematic maneuver that a Figure can execute with respect
to a Ground. The Figure and the Ground themselves have highly schematized
representations within a Vector. That of the Figure is always a single point, but
the Ground can have one of several varied schematizations, such as one or more
points, or an extent bounded or unbounded at either extreme. The purpose of
the Conform is to represent the schematized version of the Ground (the “Ground

Schema”) to the actual Ground.

Chapter 3 introduced only a single Conform ({21), where the Ground Schema
is a point and the Conform places that point in the interior of the Ground.
Combining {21 with the Vector MOVE TO yields the meaning of English “into”.
Similarly, it yields the meaning of “out of” when combined it with MOVE FROM,
and “through” with MOVE VIA.

Talmy (ibid.) makes no claims about the universality of Conforms and makes
no effort to enumerate them. A notion such as containment (as invoked in £21) is
likely to be widely attested across languages, and support seems a likely candidate
as well. For the latter, I offer the symbol £23, indicating that the Ground Schema
is a point supported on the surface of the Ground. Here, though, cross-linguistic

b2 N1

differences are easily spotted. English “on”, “onto” and “off of” all are equally

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applicable in situations of both vertical and horizontal support. German, on
the other hand, distinguishes between horizontal support ‘an’ (A.1) and vertical

support ‘auf’ (A.2).

(A.1) Spieglein, Spieglein an der Wand. ..
mirror mirror on (horizontal support) the wall. ..
“Mirror, mirror, on the wall ...”

(A.2) Das Buch ist auf dem Tisch.
the book is on (vertical support) the table
“The book is on the table.”

Jackendoff (1996); Svenonius (2006) discusses “Axial Parts” and their relationship
to prepositional elements like “in front of”, “beside”, “behind”, “above”, “below”,
etc. The axial parts of an object “are regions of the object (or its boundary)
determined by their relation to the object’s axes. The up-down axis determines
top and bottom, the front-back axis determines front and back, and a complex set
of criteria distinguishing horizontal axes determines sides and ends” (Jackendoff,
1996, p. 14). Conforms based on these axes are also widely attested. I propose
symbols such as o for extents aligned the Ground’s positive front-back axis, & for

those aligned with its positive up-down axis, and ¢ for the negative vertical axis.

A.3 Productions

Table A.1 gives a short list of Conforms, each with a proposed symbol and an
English description of the relationship it establishes between the Ground Schema
and the Ground. Section A.3.1 shows some graph productions corresponding to
English prepositions, and Section A.3.2 shows some productions corresponding

to verbs.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conform | The schema is . ..the Ground

[21 ...a point on the inside of ...

(o ...a point supported on the surface of ...

u ..an extent aligned with the positive vertical axis of ...
] .. an extent aligned with the negative vertical axis of ...

Table A.1: A few more Conforms

A3.1 Prepositions(:>)
vector —{ =]

(A.3) “into” | path F—{ conform [H (22
vector —{*—]

(A4) “out of” | path F— conform H (=

I/X

(A.5) “onto” | path

(A.6) “off of” | path F—{ conform [H &

(A7) “up” |path F—{ conform [H &

(A.8) “down” | path /lconform Kl

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.2 Path verbs ((S]=)

Figure/—l vector —{—*]
(A.9) “enter” motion£ path F—— conform [(=1
event \I Ground \{Deicticl

\) motion I—I Move |

/ Figuryl vector [—{]
path [/ conform [H (21

event \l Ground | ™~ Deictic |
/ Figure/-[vector — =*]
(A.11) “mount” motion/ | path [F——— conform [H £

event u Ground I\I Deictic]
motion |—| Move |

/ Figure/—l vector — |
path ———l conform F o

event \I Ground | ™ Deictic |
/ Figure/-| vector |—| 5% |
(A.13) “ascend” motion/ path [F— conform H &

event \| Ground | ™| Deictic |
motion |—| Move I

Figure/-l vector I-—I I
/o
event Ground | ™ Deictic |

\‘ motion I——I Move I

motion

(A.10) “leave”

(Ab.12) “dismount” | ™°*1°"

motion

(A.14) “descend”

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Carnap, Rudolf (Oct. 1952). “Meaning postulates”. In: Philosophical Studies 3.5,
pp. 65-73.

Chomsky, Noam (1956). “Three models for the description of language”. In: IRE
Transactions on Information Theory 2, pp. 113-124.

— (1963). “Formal Properties of Grammars”. In: Handbook of Mathematical Psy-
chology. Ed. by R. D. Luce, R. Bush, and E. Galanter. Vol. 2. New York: Wiley,
pp. 323-418.

— (1981). Lectures in Government and Binding: The Pisa Lectures. Mouton de
Gruyter.

— (2002). Syntactic Structures. 2nd ed. New York: Mouton de Gruyter.

Comon, H. et al. (2007). Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-1ille3.fr/tata. release October, 12th 2007.

Croft, William et al. (2008). “Revising Talmy’s typological classification of com-
plex events.” Draft, available at http://www.unm.edu/ wcroft/Papers/
TalmyTypology-paper.pdf.

De Groote, Philippe and Christian Retoré (Aug. 1996). “On the Semantic Read-
ings of Proof Nets”. In: Formal Grammar. Ed. by Geert-Jan Kruijff, Glyn
Morrill, and Dick Oehrle. Prague: FoLLI, pp. 57-70.

Engelfriet, Joost (1980). “Formal language theory; perspectives and open prob-
lems”. In: ed. by Ronald V. Book. New York: Academic Press. Chap. Some
open questions and recent results on tree transducers and tree languages,
pp. 241-286.

Engelfriet, Joost and Sebastian Maneth (2002a). “Hierarchies of String Languages

Generated by Deterministic Tree Transducers”. In: Developments in Language

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theory 5. Ed. by Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa.
Vol. 2295. Lecture Notes in Computer Science. Berlin: Springer, pp. 228-238.

Engelfriet, Joost and Sebastian Maneth (2002b). “Output String Languages of
Compositions of Deterministic Macro Tree Transducers”. In: Journal of Com-
puter and System Sciences 64, pp. 350-395.

Engelfriet, Joost and Jan Joris Vereijken (Oct. 1997). “Context-Free Graph Gram-
mars and Concatenation of Graphs”. In: Acta Informatica 34.10, pp. 773-803.

Engelfriet, Joost and Heiko Vogler (1985). “Macro Tree Transducers”. In: Journal
of Computer and System Sciences 31, pp. 71-146.

Feder, Jerome (July 1971). “Plex Languages”. In: Information Sciences 3.3,
pp. 225-241.

Fodor, J. A. et al. (1980). “Against definitions”. In: Cognition 8.3, pp. 263 -367.

Girard, Jean-Yves (1987). “Linear Logic”. In: Theoretical Computer Science 50.1,
pp. 1-102.

Griidel, Erich and Martin Otto (1999). “On logics with two variables”. In: Theo-
retical Computer Science 224, pp. 73-113.

Guhe, Markus (2007). Incremental Conceptualization for Language Production.
Mahwah, New Jersey: Lawrence Erlbaum Associates.

Halliday, Michael Alexander Kirkwood (1970). “Language Structure and Lan-
guage Use”. In: New Horizons in Linguistics. Ed. by John Lyons. Pelican
Books. Harmondsworth: Penguin Books. Chap. 7, pp. 173-195.

— (1975). Learning how to mean: explorations in the development of language.
London: Edward Arnold.

Iordanskaja, Lidija, Richard Kittredge, and Alain Polguére (1991). “Lexical Se-
lection and Paraphrase in a Meaning-Text Generation Model”. In: Natural
Language Generation in Artificial Intelligence and Computational Linguis-

tics. Ed. by Cécile L. Paris, William R. Swartout, and William C. Mann. The

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, pp. 293-312.

Jackendoff, Ray (1996). “The Architecture of the Linguistic-Spatial Interface”. In:
Language and Space. Ed. by Paul Bloom et al. MIT Press. Chap. 1, pp. 1-30.

Jackendoff, Ray and Adele E. Goldberg (Sept. 2004). “The English Resultative
as a Family of Constructions”. In: Language 80.3, pp. 532-568.

Jakobson, Roman (1962). “Typological Studies and Their Contribution to Histor-
ical Comparative Linguistics”. In: Selected writings. Vol. 1. Mouton, pp. 523~
532.

Kirsch, R. (1964). “Computer Interpretation of English Text and Pattern Recog-
nition”. In: IEEFE Transactions on Electronic Computers 13.

Kiihnemann, Armin (1996). “A pumping lemma for output languages of macro
tree transducers”. In: Trees in Algebra and Programming — CAAP ’96. Ed.
by Héléne Kirchner. Vol. 1059. Lecture Notes in Computer Science. Berlin:
Springer, pp. 44-58.

Lamb, Sydney M. (1966). Outline of Stratificational Grammar. Wasington, D.C.:
Georgetown University Press.

Lambek, Joachim (Mar. 1958). “The Mathematics of Sentence Structure”. In: The
American Mathematical Monthly 65.3, pp. 154-170.

Lecomte, Alain (1993). “Towards efficient parsing with proof-nets”. In: Proceed-
ings of the Sixth Conference of the European Chapter of the Assoctation for
Computational Linguistics. Morristown, NJ, USA: Association for Computa-
tional Linguistics, pp. 269-276.

Levelt, Willem J. M. (1989). Speaking: From Intention to Articulation. ACL-MIT
Press Series in Natural-Language Processing. Cambridge, Massachusetts: The

MIT Press.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lutz, Rudi (1996). “Recent Advances in Parsing Technology”. In: ed. by H. Bunt
and M. Tomita. Kluwer Academic Publishers. Chap. 19, pp. 359-383.

Maneth, Sebastian (1999). “String Languages Generated by Total Determinis-
tic Macro Tree Transducers”. In: Foundations of Software Science and Com-
putation Structures. Ed. by Wolfgang Thomas. Vol. 1578. Lecture Notes in
Computer Science. Berlin: Springer, pp. 2568-272.

Mel’¢uk, Igor (1981). “Meaning-Text Models”. In: Annual Review of Anthropology
10, pp. 27-62.

— (1984). Dictionnaire ezplicatif et combinatoire du frangais contemporain.
Vol. 1. Recherches Lexico-Semantiques. Les Presses de ’Université de Mon-
tréal.

- (1988). “Semantic Description of Lexical Units in an Explanatory Combina-
torial Diction-ary: Basic Principles and Heuristic Criteria”’. In: International
Journal of Lexicography 1.3, pp. 165-188.

Merenciano, Josep M. and Glyn Morrill (1997). “Generation as deduction on la-
belled proof nets”. In: Logical Aspects of Computational Linguistics, LACL’96.
Lecture Notes in Artificial Intelligence 1328. Springer, pp. 310-328.

Miller, W. F. and A. C. Shaw (1968). Linguistic Methods in Picture Processing —
A Survey. Tech. rep. SLAC-PUB-469. Stanford, California: Stanford Linear
Accelerator Center.

Narasimhan, R. (1962). A linguistic approach to pattern recognition. Tech. rep.
21. Urbana: Digital Computer Laborator, University of Illinois.

— (1966). “Syntax-directed interpretation of classes of pictures”’. In: Communi-
cations of the ACM 9.3, pp. 166-173.

Pfaltz, John L. and Azriel Rosenfeld (1969). “Web Grammars”. In: Proceedings of

the International Joint Conference on Artificial Intelligence. Ed. by Donald

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E. Walker and Lewis M. Norton. The MITRE Corporation. Bedford, Mas-
sachusetts, pp. 609-619.

Pogodalla, Sylvain (Apr. 2000). “Generation in the Lambek calculus framework:
an approach with semantic proof nets”. In: Proceedings of the first conference
of the North American chapter of the Association for Computational Linguis-
tics. Vol. 4. ACM International Conference Proceeding Series. Seattle, pp. 70—
77.

Pratt-Hartmann, Ian (2003). “A Two-Variable Fragment of English”. In: Journal
of Logic, Language and Information 12.1, pp. 13-45.

— (2005). “Complexity of the Two-Variable Fragment with Counting Quanti-
fiers”. In: Journal of Logic, Language and Information 14.3, pp. 369-385.
Prince, Alan and Paul Smolensky (1993). Optimality Theory: Constraint Interac-
tion in Generative Grammar. Tech. rep. RuCCS-TR-2; CU-CS-696-93; ROA-

537. Rutgers University.

Reiter, Ehud and Robert Dale (2000). Building Natural Language Generation Sys-
tems. Studies in Natural Language Processing. Cambridge University Press.

Roorda, Dirk (May 1992). “Proof Nets for Lambek Calculus”. In: Journal of Logic
and Computation 2.2, pp. 211-231.

Stabler, Edward (1997). “Derivational Minimalism”. In: Lecture Notes in Com-
puter Science 1328, pp. 68-95.

Svenonius, Peter (2006). “The Emergence of Axial Parts”. In: Nordlyd: Tromsg-
Working Papers in Linguistics. Ed. by Peter Svenonius and Marina Pantcheva.
Vol. 33. 1. Tromsg: CASTL.

Talmy, Leonard (2000a). Concept Structuring Systems. Vol. 1. Toward a Cognitive
Semantics. MIT Press.

— (2000Db). Typology and Process in Concept Structuring. Vol. 2. Toward a Cog-

nitive Semantics. MIT Press.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Teich, Elke (1999). Systemic Functional Grammar in Natural Language Genera-
tion: Linguistic Description and Computational Representation. Communica-
tion in Artificial Intelligence. London and New York: Cassell.

Wadler, Philip (1993). “Mathematical Foundations of Computer Science 1993”.
In: vol. 711. Lecture Notes in Computer Science. Berlin / Heidelberg: Springer.
Chap. A taste of linear logic, pp. 185-210.

Zubizaretta, Maria Luisa and Eunjeong Oh (2007). On the syntactic composition

of manner and motion. Linguistic inquiry monographs. MIT Press.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

