
Introduction to Computational Linguistics

Marcus Kracht
Department of Linguistics, UCLA

3125 Campbell Hall
450 Hilgard Avenue

Los Angeles, CA 90095–1543
kracht@humnet.ucla.edu

1 General Remarks

This lecture is an introduction to computational linguistics. As such it is also an
introduction to the use of the computer in general. This means that the course will
not only teach theoretical methods but also practical skills, namely programming.
In principle, this course does not require any knowledge of either mathematics or
programming, but it does require a level of sophistication that is acquired either
by programming or by doing some mathematics (for example, an introduction to
mathematical linguistics).

The course uses the language OCaML for programming. It is however not
an introduction into OCaML itself. It offers no comprehensive account of the
language and its capabilities but focuses instead on the way it can be used in
practical computations. OCaML can be downloaded from the official site at

http://caml.inria.fr/

together with a reference manual and a lot of other useful material. (The latest
release is version number 3.09.1 as of January 2006.) In particular, there is a
translation of an introduction into programming with OCaML which is still not
published and can therefore be downloaded from that site (see under OCaML
Light). The book is not needed, but helpful. I will assume that everyone has

1

2. Practical Remarks Concerning OCaML 2

a version of OCaML installed on his or her computer and has a version of the
manual. If help is needed in installing the program I shall be of assistance.

The choice of OCaML perhaps needs comment, since it is not so widely
known. In the last twenty years the most popular language in computational
linguistics (at least as far as introductions was concerned) was certainly Prolog.
However, its lack of imperative features make its runtime performance rather bad
for the problems that we shall look at (though this keeps changing, too). Much of
actual programming nowadays takes place in C or C++, but these two are not so
easy to understand, and moreover take a lot of preparation. OCaML actually is
rather fast, if speed is a concern. However, its main features that interest us here
are:

☞ It is completely typed. This is particularly interesting in a linguistics course,
since it offers a view into a completely typed universe. We shall actually
begin by explaining this aspect of OCaML.

☞ It is completely functional. In contrast to imperative languages, functional
languages require more explicitness in the way recursion is handled. Rather
than saying that something needs to be done, one has to say how it is done.

☞ It is object oriented. This aspect will not be so important at earlier stages,
but turns into a plus once more complex applications are looked at.

2 Practical Remarks Concerning OCaML

When you have installed OCaML, you can invoke the program in two ways:

➀ In Windows by clicking on the icon for the program. This will open an
interactive window much like the xterminal inUnix.

➁ by typingocaml after the prompt in a terminal window.

Either way you have a window with an interactive shell that opens by declaring
what version is running, like this:

(1) Objective Caml version 3.09.1

2. Practical Remarks Concerning OCaML 3

It then starts the interactive session by giving you a command prompt:#. It is then
waiting for you to type in a command. For example

(2) # 4+5;;

It will execute this and return to you as follows:

(3)
- : int = 9

#

So, it gives you an answer (the number 9), which is always accompanied by some
indication of the type of the object. (Often you find that you get only the type in-
formation, see below for reasons.) After that, OCaML gives you back the prompt.
Notice that your line must end in;; (after which you have to hit< return>, of
course). This will cause OCaML to parse it as a complete expression and it will
try to execute it. Here is another example.

(4) # let a = ’q’;;

In this case, the command says that it should assign the characterq to the object
with namea. Here is what OCaML answers:

(5) val a : char = ’q’

Then it will give you the prompt again. Notice that OCaML answers without
using the prompt,#. This is how you can tell your input from OCaMLs answers.
Suppose you type

(6) # Char.code ’a’;;

Then OCaML will answer

(7) - : int = 113

Then it will give you the prompt again. At a certain point this way of using
OCaML turns out to be tedious. For even though one can type in entire programs
this way, there is no way to correct mistakes once a line has been entered. There-
fore, the following is advisable to do.

First, you need to use an editor (I recommend to use either emacs or vim;
vim runs on all platforms, and it can be downloaded and installed with no charge

2. Practical Remarks Concerning OCaML 4

and with a mouseclick). Editors that Windows provides by default are not good.
Either they do not let you edit a raw text file (like Word or the like) or they do
not let you choose where to store data (like Notepad). So, go for an independent
editor, install it (you can get help on this too from us).

Using the editor, open a file< myfile > .ml (it has to have the extension.ml).
Type in your program or whatever part of it you want to store separately. Then,
whenever you want OCaML to use that program, type after the prompt:

(8) # #use "<myfile>.ml";;

(The line will contain two#, one is the prompt of OCaML, which obviously you
do not enter, and the other is from you! And no space in between the# and the
word use.) This will cause OCaML to look at the content of the file as if it had
been entered from the command line. OCaML will process it, and return a result,
or, which happens very frequently in the beginning, some error message, upon
which you have to go back to your file, edit it, write it, and load it again. You may
reuse the program, this will just overwrite the assignments you have made earlier.
Notice that the file name must be enclosed in quotes. This is because OCaML
expects a string as input for#use and it will interpret the string as a filename.
Thus, the extension, even though technically superfluous, has to be put in there as
well.

You may have stored your program in several places, because you may want
to keep certain parts separate. You can load them independently, but only insofar
as the dependencies are respected. If you load a program that calls functions that
have not been defined, OCaML will tell you so. Therefore, make sure you load the
files in the correct order. Moreover, if you make changes and load a file again, you
may have to reload every file that depends on it (you will see why if you try...).

Of course there are higher level tools available, but this technique is rather
effective and fast enough for the beginning practice.

Notice that OCaML goes through your program three times. First, it parses the
program syntactically. At this stage it will only tell you if the program is incorrect
syntactically. Everything is left associative, as we will discuss below. The second
time OCaML will check the types. If there is a type mismatch, it returns to you
and tells you so. After it is done with the types it is ready to execute the program.
Here, too, it may hit type mismatches (because some of them are not apparent at
first inspection), and, more often, run time errors such as accessing an item that

3. Welcome To The Typed Universe 5

isn’t there (the most frequent mistake).

3 Welcome To The Typed Universe

In OCaML, every expression is typed. There are certain basic types, but types can
also be created. The type is named by a string. The following are inbuilt types
(the list is not complete, you find a description in the user manual):

(9)

character char
string string

integer int

boolean bool

float float

There are conventions to communicate a token of a given type. Characters must be
enclosed in single quotes.’a’, for example refers to the charactera. Strings must
be enclosed in double quotes:"mail" denotes the stringmail. The distinction
matters: "a" is a string, containing the single lettera. Although identical in
appearance to the charactera, they must be kept distinct. The next type, integer
is typed in as such, for example10763. Notice that"10763" is a string, not
a number! Booleans have two values, typed in as follows:true and false.
Finally, float is the type of floating point numbers. They are distinct from integers,
although they may have identical values. For example,1.0 is a number of type
float, 1 is a number of type int. Type in1.0 = 1;; and OCaML will respond
with an error message:

1.0 = 1;;(10)

This expression has type int but is here used with type

float

And it will underline the offending item. It parses expressions from left to right
and stops at the first point where things do not match. First it sees a number of
type float and expects that to the right of the equation sign there also is a number
of type float. When it reads the integer it complains. For things can only be equal
via = if they have identical type.

The typing is very strict. Whenever something is declared to be of certain type,
it can only be used with operations that apply to things of that type. Moreover,

3. Welcome To The Typed Universe 6

OCaML immediately sets out to type the expression you have given. For example,
you wish to define a function which you namef, and which adds a number to
itself. This is what happens:

let f x = x + x;;(11)

val f : int −> int = <fun>

This says thatf is a function from integers to integers. OCaML knows this be-
cause+ is only defined on integers. Addition on float is+.:

let g x = x +. x;;(12)

val g : float −> float = <fun>

There exist type variables, which are’a, ’b and so on. If OCaML cannot infer
the type, or if the function is polymorphic (it can be used on more than one type)
it writes’a in place of a specific type.

let iden x = x;;(13)

val iden : ’a −> ’a = <fun>

There exists an option to make subtypes inherit properties from the supertype, but
OCaML needs to be explicitly told to do that. It will not doany type conversion
by itself.

Let us say something about types in general. Types are simply terms of a par-
ticular signature. For example, a very popular signature in Montague grammar
consists in just two so-calledtype constructors,→ and•. A type constructor is
something that makes new types from old types; both→ and• are binary type con-
structors. They require two types each. In addition to type constructors we need
basic types. (There are also unary type constructors, so this is only an example.)
The full definition is as follows.

Definition 1 (Types) Let B be a set, the set ofbasic types. ThenTyp→,•(B), the
set of typesover B, withtype constructors→ and•, is the smallest set such that

• B ⊆ Typ→,•(B), and

• if α, β ∈ Typ→,•(B) then alsoα→ β, α • β ∈ Typ→,•(B).

3. Welcome To The Typed Universe 7

Each type is interpreted by particular elements. Typically, the elements of different
types are different from each other. (This is when no type conversion occurs.
But see below.) Ifx is of typeα andy is of typeβ , α then x is distinct from
y. Here is how it is done. We interpret each type forb ∈ B by a setMb in
such a way thatMa ∩ Mb = ∅ if a , b. Notice, for example, that OCaML
has a basic typechar and a basic typestring, which get interpreted by the
set of ASCII–characters, and strings of ASCII–characters, respectively. We may
construe strings over characters as function from numbers to characters. Then,
even though a single character is thought of in the same way as the string of
length 1 with that character, they are now physically distinct. The stringk, for
example, is the functionf : {0} → Mchar such thatf (0) = k. OCaML makes
sure you respect the difference by displaying the string as"k" and the character
as’k’. The quotes are not part of the object, they tell you what its type is.

Given two typesα andβ we can form the type of functions fromα–objects to
β–objects. These functions have typeα→ β. Hence, we say that

(14) Mα→β = { f : f is a function fromMα to Mβ}

For example, we can define a functionf by saying thatf (x) = 2x+ 3. The way to
do this in OCaML is by issuing

let f x = (2 * x) + 3;;(15)

val f : int −> int = <fun>

Now we understand better what OCaML is telling us. It says that the value of the
symbolf is of typeint -> int because it maps integers to integers, and that
it is a function. Notice that OCaML inferred the type from the definition of the
function. We can take a look how it does that.

First, if x is an element of typeα → β andy is an element of typeα, thenx is
a function that takesy as its argument. In this situation the string forx followed
by the string fory (but separated by a blank) is well–formed for OCaML, and it is
of typeβ. OCaML allows you to enclose the string in brackets, and sometimes it
is even necessary to do so. Hence,f 43 is well–formed, as is(f 43) or even(f
(43)). Type that in and OCaML answers:

f 43;;(16)

- : int = 89

3. Welcome To The Typed Universe 8

The result is an integer, and its value is 89. You can give the functionf any term
that evaluates to an integer. It may contain function symbols, but they must be
defined already. Now, the functions* and+ are actually predefined. You can look
them up in the manual. It tells you that their type isint -> int -> int. Thus,
they are functions from integers to functions from integers to integers. Hence(2

* x) is an integer, becausex is an integer and2 is. Likewise,(2 * x) + 3 is an
integer.

Likewise, ifα andβ are types, so isα•β. This is theproduct type. It contains
the set of pairs〈x, y〉 such thatx is typeα andy of typeβ:

(17) Mα•β = Mα × Mβ = {〈x, y〉 : x ∈ Mα, y ∈ Mβ}

Like function types, product types do not have to be officially created to be used.
OCaML’s own notation is∗ in place of•, everything else is the same. Type in, for
example,(’a’, 7) and this will be your response:

(18) - : char * int = (’a’, 7);;

This means that OCaML has understood that your object is composed of two parts,
the left hand part, which is a character, and the right hand part, which is a number.

It is possible to explicitly define such a type. This comes in the form of a type
declaration:

type prod = int * int;;(19)

type prod = int * int

The declaration just binds the stringprod to the type of pairs of integers, called the
product typeint * int by OCaML. Since there is nothing more to say, OCaML
just repeats what you have said. It means it has understood you andprod is now
reserved for pairs of integers. However, such explicit definition hardly makes
sense for types that can be inferred anyway. For if you issuelet h = (3,4)

then OCaML will respondval h : int * int = (3,4), saying thath has
the product type. Notice that OCaML will not say thath is of typeprod, even if
that follows from the definition.

There is often a need to access the first and second components of a pair. For
that there exist functionsfst andsnd. These functions are polymorphic. For
every product typeα • β, they are defined andfst maps the element into its first
component, andsnd onto its second component.

3. Welcome To The Typed Universe 9

An alternative to the pair constructor is the constructor forrecords. The latter
is very useful. It is most instructive to look at a particular example:

type car = {brand : string; vintage : int;(20)

used : bool};;

This defines a type structure calledcar, which has three components: a brand, a
vintage and a usedness value. On the face of it, a record can be replicaed with
products. However, notice that records can have any number of entries, while a
pair must consist of exactly two. So, the record typecar can be replicated by
eitherstring * (int * bool) or by(string * int) * bool.

But there are also other differences. One is that the order in which you give
the arguments is irrelevant. The other is that the names of the projections can be
defined by yourself. For example, you can declare thatmycar is a car, by issuing

let mycar = {brand = "honda"; vintage = 1977;}(21)

used = false};;

This will bind mycar to the element of typecar. Moreover, the expression
mycar.brand has the valuehonda. (To communicate that, it has to be enclosed
in quotes, of course. Otherwise it is mistaken for an identifier.) It is not legal to
omit the specification of some of the values. Try this, for example:

let mycar = {brand = "honda"};;(22)

Some record field labels are undefined: vintage used;;

This is not a warning: the object named ”mycar” has not been defined.

mycar.brand;;(23)

Unbound value mycar

If you look carefully, you will see that OCaML has many more type construc-
tors, some of which are quite intricate. One is the disjunction, written|. We shall
use the more suggestive∪. We have

(24) Mα∪β = Mα ∪ Mβ

Notice that by definition objects of typeα are also objects of typeMα∪β. Hence
what we said before about types keeping everything distinct is not accurate. In

3. Welcome To The Typed Universe 10

fact, what is closer to the truth is that types offer a classifying system for objects.
Each type comes with a range of possible objects that fall under it. An objectx
is of typeα, in symbolsx : α, if and only if x ∈ Mα. The interpretation of basic
types must be given, the interpretation of complex types is inferred from the rules,
so far (14), (17) and (24). The basic types are disjoint by definition.

There is another constructor, the list constructor. Given a type, it returns the
type of lists over that type. You may think of them as sequences from the numbers
0,1, . . . ,n − 1 to members ofα. However, notice that this interpretation makes
them look like functions from integers toMα. We could think of them as members
of int −> α. However, this is not the proper way to think of them. OCaML
keeps lists as distinct objects, and it calls the type constructorlist. It is a postfix
operator (it is put after its argument). You can check this by issuing

type u = int list;;(25)

type int list

This binds the stringu to the type of lists of integers. As with pairs, there are ways
to handle lists. OCaML has inbuilt functions to do this. Lists are communicated
using[, ; and]. For example,[3;2;4] is a list of integers, whose first element
(calledhead) is 3, whose second element is 2, and whose third and last element is
4. [’a’;’g’;’c’] is a list of characters, and it is not astring, while["mouse"] is
a list containing just a single element, the stringmouse. There is a constant,[],
which denotes the empty list. The double colon denotes the function that appends
an element to a list: so3::[4;5] equals the list[3;4;5]. List concatenation is
denoted by@. The element to the left of the double colon will be the new head
of the list, the list to the right the so–calledtail . You cannot easily mix elements.
Try, for example, typing

let h = [3; "st"; ’a’];;(26)

This expression has type string but is here used with

type int

Namely, OCaML tries to type expression. To do this, it opens a list beginning
with 3, so it thinks this is a list of integers. The next item is a string, so no match
and OCaML complains. This is the way OCaML looks at it. (It could form the
disjunctive typeall = int | char | string and then take the object to be a
list of all objects. But it doesnot do that. It can be done somehow, but then
OCaML needs to be taken by the hand.)

4. Function Definitions 11

4 Function Definitions

Functions can be defined in OCaML in various ways. The first is to say explicitly
what it does, as in the following case.

(27) # let appen x = x’̂a’;;

This function takes a string and appends the lettera. Notice that OCaML interprets
the first identifier afterlet as the name of the function to be defined and treats the
remaining ones as arguments to be consumed. So they are bound variables.

There is another way to achieve the same, using a constructor much like the
λ-abstractor. For example,

(28) # let app = (fun x -> x’̂a’;;

Notice that to the left the variable is no longer present. The second method has
the advantage that a function likeapp can be used without having to give it a
name. You can replaceapp wherever it occurs by(fun x -> x’̂a’. The choice
between the methods is basically one of taste and conciseness.

The next possibility is to use a definition by cases. One method is to use
if· · · then· · · else, which can be iterated as often as necessary. OCaML provides
another method, namely the constructmatch· · · with. You can use it to match
objects with variables, pairs with pairs of variables, and list with and tail (iterated
to any degree needed).

Recursion is the most fundamental tool to defining a function. If you do logic,
one of the first things you get told is that just about any function on the integers
can be defined by recursion, in fact by what is known asprimitive recursion, from
only one function: the successor function! Abstractly, to define a function by
recursion is to do the following. Suppose thatf (x) is a function on one argument.
Then you have to say whatf (0), and second, you have to say whatf (n+ 1) is on
the basis of the valuef (n). Here is an example. The function that addsx to y,
written x+ y, can be defined by recursion as follows.

(29) 0+ y := y; (n+ 1)+ y := (n+ y) + 1

At first it is hard to see that this is indeed a definition by recursion. So, let us write
‘ s’ for the successor function; then the clauses are

(30) 0+ y := y; s(n) + y := s(n+ y)

4. Function Definitions 12

Indeed, to know the value off (0) = 0 + y you just look upy. The value of
f (n+ 1) := (s(n)) + y is defined using the valuef (n) = n+ y. Just take that value
and add 1 (that is, form the successor).

The principle of recursion is widespread and can be used in other circum-
stances as well. For example, a function can be defined over strings by recursion.
What you have to do is the following: you say what the value is of the empty
string, and then you say what the value is off (~xaa) on the basis off (~x), where~x
is a string variable anda a letter. Likewise, functions on lists can be defined by
recursion.

Now, in OCaML there is no type of natural numbers, just that of integers. Still,
definitions by recursion are very important. In defining a function by recursion
you have to tell OCaML that you intend such a definition rather than a direct
definition. For a definition by recursion means that the function calls itself during
evaluation. For example, if you want to define exponentiation for numbers, you
can do the following:

let rec expt n x(31)

if x = 0 then 1 else

n * (expt n (x-1));;

Type this and then sayexpt 2 4 and OCaML replies:

- : int = 16(32)

As usual, recursions need to be grounded, otherwise the program keeps calling
itself over and over again. If the definition was just given for natural numbers,
there would be no problem. But as we have said, there is no such type, just the
type of integeres. This lets you evaluate the function on arguments where it is not
grounded. In the present example negative numbers let the recursion loop forever.
This is why the above definition is not good. Negative arguments are accepted,
but never terminate (because the value on which the recursion is based is further
removed from the base, here 0). The evaluation ofexpt 2 -3 never terminates.
Here is what happens:

expt 2 (-3);;(33)

Stack overflow during evaluation (looping recursion?)

One way to prevent this is to check whether the second argument is negative, and
then rejecting the input. It is however good style to add a diagnostic so that you

5. Modules 13

can find out why the program rejects the input. To do this, OCaML lets you define
so–called exceptions. This is done as follows.

exception Input_is_negative;;(34)

Exceptions always succeed, and they succeed by OCaML typing their name. So,
we improve our definition as follows.

let rec expt n x(35)

if x < 0 then raise Input_is_negative else

if x = 0 then 1 else

n * (expt n (x-1))

;;

Now look at the following dialog:

expt 2 (-3)(36)

Exception: Input_is_negative

Thus, OCaML quits the computation and raises the exception that you have de-
fined (there are also inbuilt exceptions). In this way you can make every definition
total.

Recursive definitions of functions on strings or lists are automatically grounded
if you include a basic clause for the value on the empty string or the empty list,
respectively. It is a common source of error to omit such a clause. Beware! How-
ever, recursion can be done in many different ways. For strings, for example, it
does not need to be character by character. You can define a function that takes
away two characters at a time, or even more. However, you do need to make sure
that the recursion ends somewhere. Otherwise you will not get a reply.

5 Modules

Modules are basically convenient ways to package the programs. When the pro-
gram gets larger and larger, it is sometimes difficult to keep track of all the names
and identifiers. Moreover, one may want to identify parts of the programs that

5. Modules 14

can be used elsewhere. The way to do this is to use a module. The syntax is as
follows:

module name-of-module=(37)

struct

any sequence of definitions

end;;

For example, suppose we have defined a module calledSeminar. It contains
definitions of objects and functions and whatever we like, for example a function
next_speaker. In order to use this function outside of the module, we have to
write Seminar.next_speaker. It is useful at this point to draw attention to the
naming conventions (see the reference manual). Some names must start with a
lower–case letter (names of functions, objects and so on), while others must start
with an uppercase–letter. The latter are names of exceptions (see below), and
names of modules. So, the module may not be calledseminar. In the manual
you find a long list of modules that you can use, for example the moduleList.
You may look at the source code of this module by looking up where the libraries
are stored. On my PC they sit in

usr/local/lib/ocaml

There you find a file calledlist.ml (yes, the file is named with a lower case
letter!) and a filelist.mli. The first is the plain source code for the list module.
You can look at it and learn how to code the functions. The filelist.mli contains
the type interface. More on that later. The first function that you see defined is
length. This function you can apply to a list and get its length. The way you call
it is however byList.length, since it sits inside the moduleList. However, you
will search in vain for an explicit definition for such a module. Instead OCaML
creates this module from the filelist.ml. If you compile this file separately, its
content will be available for you in the form of a module whose name is obtained
from the filename by raising the initial letter to upper case (whence the file name
list.ml as opposed to the module nameList).

Lets look at the code. The way this is done is interesting.

let rec length_aux len = function

[] −> len

| a::l −> length_aux (len + 1) l(38)

5. Modules 15

let length l = length_aux 0 l

First, the function is defined via an auxiliary function. You expect therefore to
be able to use a functionList.length_aux. But you cannot. The answer to
the puzzle is provided by the filelist.mli. Apart form the commentary (which
OCaML ignores anyway) it only provides a list of functions and their types. This
is the type interface. It tells OCaML which of the functions defined inlist.ml
are public. By default all functions are public (for example, if you did not make
a type interface file). If a type interface exists, only the listed functions can be
used outside of the module. The second surprise is the definition of the function
length_aux. It uses only one argument, but at one occasion uses two! The
answer is that a function definition of the formlet f x = specifies thatx is
the first argument off , but the resulting type of the function may be a function
and so take further arguments. Thus, unless you have to, you need not mention
all arguments. However, dropping arguments must proceed from the rightmost
boundary. For example, suppose we have defined the functionexp x y, which
calculatesxy. The following function will yield [5; 25; 125] for the list [1;2;3]:

(39) let lexp l = List.map (exp 5) l

You may even define this function as follows:

(40) let lexp = List.map (exp 5)

However, if you want to define a function that raises every member of the list to
the fifth power, this requires more thought. For then we must abstract from the
innermost argument position. Here is a solution:

(41) let rexp = List.map (fun y -> exp y 5)

A more abstract version is this:

let switch f x y = f y x;;(42)

let lexp = List.map ((switch exp) 5)

The functionswitch switches the order of the function (in fact any function). The
so defined reversal can be applied in the same way as the original, with arguments
now in reverse order.

6. Sets and Functors 16

I have said above that a module also has a signature. You may explicitly define
signatures in the following way.

module typename-of-signature=(43)

sig

any sequence of type definitions

end;;

The way you tell OCaML that this is not a definition of a module is by saying
module type. This definition is abstract, just telling OCaML what kind of func-
tions and objects reside in a module of this type. The statements that you may put
there aretype andval. The first declares a ground type (which can actually also
be abstract!), and the second a derived type of a function. Both can be empty. If
you look intolist.mli you will find that it declares no types, only functions. To
see a complex example of types and type definitions, take a look atset.mli.

OCaML is partitioned into three parts: the core language, the basic language,
and extensions. Everything that does not belong to the core language is added in
the form of a module. The manual lists several dozens of such modules. When
you invoke OCaML it will automatically make available the core and everything
in the basic language. Since you are always free to add more modules, the manual
does not even attempt to list all modules, instead it lists the more frequent ones
(that come with the distribution).

6 Sets and Functors

Perhaps the most interesting type constructor is that of sets. In type theory we can
simply say that like for lists there is a unary constructor,s such that

(44) Ms(α) = ℘(Mα)

However, this is not the way it can be done in OCaML. The reason is that OCaML
needs to be told how the elements of a set are ordered. For OCaML will internally
store a set as a binary branching tree so that it can search for elements efficiently.
To see why this is necessary, look at the way we write sets. We write sets linearly.
This, however, means that we pay a price. We have to write, for example,{∅, {∅}}.
The two occurrences of∅ are two occurrences of the same set, but you have to

6. Sets and Functors 17

write it down twice since the set is written out linearly. In the same way, OCaML
stores sets in a particular way, here in form of a binary branching tree. Next,
OCaML demands from you that you order the elements linearly, in advance. You
can order them in any way you please, but given two distinct elementsa andb,
eithera < b or b < a must hold. This is needed to access the set, to define set
union, and so on. The best way to think of a set as being a list of objects ordered
in a strictly ascending sequence. If you want to access an element, you can say:
take the least of the elements. This picks out an element. And it picks out exactly
one. The latter is important because OCaML operates deterministically. Every
operation you define must be total and deterministic.

If elements must always be ordered—how can we arrange the ordering? Here
is how.

module OPStrings =(45)

struct

type t = string * string

let compare x y =

if x = y then 0

else if fst x > fst y || (fst x = fst y

&& snd x > snd y) then 1

else -1

end;;

(The indentation is just for aesthetic purposes and not necessary.) This is what
OCaML answers:

module OPStrings :(46)

sig type t = string * string val compare :

’a * ’b −> ’a * ’b −> int end

It says that there is now a module calledOPString with the followingsignature:
there is a typet and a functioncompare, and their types inside the signature are
given. A signature, by the way, is a set of functions together with their types. The
signature is given insidesig· · · end.

Now what is this program doing for us? It defines a module, which is a com-
plete unit that has its own name. We have given it the nameOPStrings. The

6. Sets and Functors 18

definition is given enclosed instruct· · · end;;. First, we say what entity we
make the members from. Here they are strings. Second, we define the function
compare. It must have integer values; its value is 0 if the two are considered
equal, 1 if the left argument precedes the right hand argument and -1 otherwise.
To define the predicatecompare we make use of two things: first, strings can be
compared; there is an ordering predefined on strings. Then we use the projection
functions to access the first and the second component.

Finally, to make sets of the desired kind, we issue

module PStringSet = Set.Make(OPStrings);;(47)

To this, OCaML answers with a long list. This is becauseMake is a functor. A
functor is a function that makes new modules from existing modules. They are
thus more abstract than modules. The functorMake, defined inside the module
Set, allows to create sets over entities of any type. It imports intoPStringSet
all set functions that it has predefined in the moduleSet, for exampleSet.add,
which adds an element to a set orSet.empty, which denotes the empty set. How-
ever, the functions are now calledPStringSet. For example, the empty set is
calledPStringSet.empty. Now, type

st = PStringSet.empty;;(48)

and this assignsst to the empty set. If you want to have the set{(cat, mouse)}
you can issue

PStringSet.add ("cat", "mouse") st;;(49)

Alternatively, you can say

PStringSet.add ("cat", "mouse") PStringSet.empty;;(50)

However, what will not work is if you type

let st = PStringSet.add ("cat", "mouse") st;;(51)

This is because OCaML does not have dynamic assignments like imperative lan-
guages. st has been assigned already. You cannot change its binding. How
dynamic assignments can be implemented will be explained later. We only men-
tion the following. The type of sets isPStringSet.t. It is abstract. If you want

7. Hash Tables 19

to actually see the set, you have to tell OCaML how to show it to you. One way
of doing that is to convert the set into a list. There is a function calledelements

that converts the set into a list. Since OCaML has a predefined way of com-
municating sets (which we explained above), you can now look at the elements
without trouble. However, what you are looking at are members of a list, not that
of the set from which the list was compiled. This can be a source of mistakes in
programming. Now if you type, say,

let h = PStringSet.element st;;(52)

OCaML will incidentally give you the list. It is important to realize that the pro-
gram has no idea how it make itself understood to you if you ask it for the value
of an object of a newly defined type. You have to tell it how you want it to show
you.

Also, once sets are defined, a comparison predicate is available. That is to say,
the sets are also ordered linearly byPStringSet.compare. This is useful, for it
makes it easy to define sets of sets. Notice thatPStringSet.compare takes its
arguments to the right. The argument immediately to its right is the one that shows
up to the right in infix notation. So,PStringSet.compare f g is the same asg
< f in normal notation. Beware!

7 Hash Tables

This section explains some basics about hash tables. Suppose there is a func-
tion, which is based on a finite look up table (so, there are finitely many possible
inputs) and you want to compute this function as fast as possible. This is the
moment when you want to consider using hash tables. They are some imple-
mentation of a fact look up procedure. You make the hash table using magical
incantations similar to those for sets. First you need to declare from what kind
of objects to what kind of objects the function is working. Also, you sometimes
(but not always) need to issue a function that assigns every input value a unique
number (calledkey). So, you define first a module of inputs, after which you issue
HashTbl.make. This looks as follows.

module HashedTrans =(53)

struct

8. Combinators 20

type t = int * char

let equal x y = (((fst x = fst y) && (snd x = snd y)))

let hash x = ((256 * (fst x)) + (int_of_char (snd x)))

end;;

module HTrans = Hashtbl.Make(HashedTrans);;

8 Combinators

Combinators are functional expressions that use nothing but application of a func-
tion to another. They can be defined without any symbols except brackets. Func-
tions can only be applied to one argument at a time. Iff is a function andx some
object, thenf x or (f x) denotes the result of applyingf to x. f x might be another
function, which can be applied to something else. Then (f x)y is the result of ap-
plying it to y. Brackets may be dropped in this case. Bracketing is left associative
in general. This is actually the convention that is used in OCaML.

The most common combinators areI, K andS. They are defined as follows.

Ix := x,(54)

Kxy := x,(55)

Sxyz:= xz(yz)(56)

This can be programmed straightforwardly as follows. (I give you a transcript of
a session with comments by OCaML.)

let i x = x;;(57)

val i : ’a −> ’a = <fun>

let k x y = x;;

val k : ’a −> ’b −> ’a = <fun>

let s x y z = x z(y z)

val s : (’a −> ’b −> ’c) −> (’a −> ’b) −> ’a −> ’c

= <fun>

Let us look carefully at what OCaML says. First, notice that it types every combi-
nator right away, using the symbols’a, ’b and so on. This is because as such they

8. Combinators 21

can be used on any input. Moreover, OCaML returns the type using the right (!)
associative bracketing convention. It drops as many brackets as it possibly can.
Using maximal bracketing, the last type is

(58) ((’a −> (’b −> ’c)) −> ((’a −> ’b) −> (’a −> ’c)))

Notice also that the type of the combinator is not entirely trivial. The argumentsx,
y andz must be of type(’a −> (’b −> ’c)), ’a −> ’b and’c, respectively.
Otherwise, the right hand side is not well–defined. You may check, however, that
with the type assignment given everything works well.

A few words on notation. Everything that you define and is not a concrete
thing (like a string or a digit sequence) is written as a plain string, and the string is
called anidentifier . It identifies the object. Identifiers must always be unique. If
you define an identifier twice, only the last assignment will be used. Keeping iden-
tifiers unique can be difficult, so there are ways to ensure that one does not make
mistakes. There are certain conventions on identifiers. First, identifiers for func-
tions are variables must be begin with a lower case letter. So, if you try to define
combinators namedI, K or S, OCaML will complain about syntax error. Second,
if you have a sequence of identifiers, you must always type a space between them
unless there is a symbol that counts as a separator (like brackets), otherwise the
whole sequence will be read as a single identifier. Evidently, separators cannot be
part of legal identifiers. For example, we typically writeSxyz= xz(yz). But to
communicate this to OCaML you must insert spaces between the variable identi-
fiers except where brackets intervene. It is evident that an identifier cannot contain
blanks nor brackets, otherwise the input is misread. (Read Page 89–90 on the is-
sue of naming conventions. It incidentally tells you that comments are enclosed
in (* and*), with no intervening blanks between these two characters.) Finally,
OCaML knows which is function and which is argument variable because the first
identifier afterlet is interpreted as the value to be bound, and the sequence of
identifiers up to the equation sign is interpreted as the argument variables.

Now, having introduced these combinators, we can apply them:

k i ’a’ ’b’;;(59)

− : char = ’b’

This is becauseKIa = I andIb = b. On the other hand, you may verify that

k (i ’a’) ’b’;;(60)

− : char = ’a’

8. Combinators 22

You can of course now define

let p x y = k i x y;;(61)

val p = ’a −> ’b −> ’b = <fun>

and this defines the functionpxy = y. Notice that you cannot ask OCaML to
evaluate a function abstractly. This is because it does not know that when you ask
k i x y the lettersx andy are variables. There are no free variables!

So, you can apply combinators to concrete values. You cannot calculate ab-
stractly using the inbuilt functions of OCaML. One thing you can do, however, is
check whether an expression is typable. For example, the combinatorSII has no
type. This is because no matter how we assign the primitive types, the function is
not well–defined. OCaML has this to say:

s i i;;(62)

This expression has type (’a −> ’b’) −> ’a −> ’b but

is used here with type (’a -> ’b) -> ’a

How does it get there? It matches the definition ofs and its first argumenti.
Since its first argument must be of type’a -> ’b -> ’c, this can only be the
case if’a = ’b -> ’c. Applying the function yields an expression of type(’a
-> ’b) -> ’a -> ’c. Hence, the next argument must have type(’b -> ’c)
-> ’b. This is what OCaML expects to find. It communicates this using’a
and’b in place of’b and’c, since these are variables and can be renamed at
will. (Yes, OCaML does use variables, but these are variables over types, not over
actual objects.) However, if this is the case, and the argument is actuallyi, then
the argument actually has type(’b -> ’c) -> ’b -> ’c. Once again, since
OCaML did some renaming, it informs us that the argument has type(’a ->

’b) -> ’a -> ’b. The types do not match, so OCaML rejects the input as not
well formed.

Now, even though OCaML does not have free variables, it does have variables.
We have met them already. Everylet–clause defines some function, but this
definition involves saying what it does on its arguments. We have definedi, k,
ands in this way. The identifiersx, y andz that we have used there are unbound
outside of thelet–clause. Now notice that upon the definition ofk, OCaML
issued its type as’a -> ’b -> ’a. This means that it is a function from objects

9. Objects and Methods 23

of type’a to objects of’b -> ’a. It is legitimate to apply it to just one object:

k "cat";;(63)

− : ’_a −> string = <fun>

This means that if you give it another argument, the result is a string (because the
result is"cat"). You can check this by assigning an identifier to the function and
applying it:

let katz = k "cat";;(64)

val katz : ’_a −> string = <fun>

katz "mouse";;

- : string = "cat"

Effectively, this means that you define functions by abstraction; in fact, this is
the way in which they are defined. However, the way in which you present the
arguments may be important. (However, you can define the order of the arguments
in any way you want. Once you have made a choice, you must strictly obey that
order, though.)

9 Objects and Methods

The role of variables is played in OCaMl byobjects. Objects are abstract data
structures, they can be passed around and manipulated. However, it is important
that OCaML has to be told every detail about an object, including how it is ac-
cessed, how it can communicate the identity of that object to you and how it can
manipulate objects. Here is a program that defines a natural number:

class number =(65)

object

val mutable x = 0

method get = x

method succ = x <- x + 1

method assign d = x <- d

end;;

9. Objects and Methods 24

This does the following: it defines a data typenumber. The object of this type
can be manipulated by three so–calledmethods: get, which gives you the value,
succ which adds 1 to the value, andassign which allows you to assign any
number you want to it. But it must be an integer; you may want to find out how
OCaML knows thatx must be integer. For this is what it will say:

class number :(66)

object

val mutable x : int

method assign int −> <unit>

method get : int

method succ : <unit>

end

Notice that it uses the type<unit>. This is the type that has no object associated
with it. You may think of it as the type of actions. Forsucc asks OCaML to add
the number 1 to the number.

Once we have defined the class, we can have as many objects of that class as
we want. Look at the following dialog.

let m = new number;;(67)

val m : number = <obj>

m#get;;

- : int = 0

The first line binds the identifierm to an object of classnumber. OCaML repeats
this. The third line asks for the value ofm. Notice the syntax: the value ofm is
not simplym itself. The latter is an object (it can have several parameters in it).
So, if you want to see the number you have just defined, you need to typem#get.
The reason why this works is that we have defined the methodget for that class.
If you define another object, saypi, then its value ispi#get. And the result of
this method is the number associated withm. Notice that the third line of the class
definition (66) asserts that the object contains some objectxwhich can be changed
(it is declared mutable) and which is set to 0 upon the creation of the object.

If you define another objectq and issue, for exampleq#succ and then ask for

10. Characters, Strings and Regular Expressions 25

the value you get 1:

let q = new number;;(68)

val q : number = <obj>

q#succ;;

- : unit = ()

q#get;;

- : int = 1

Notice the following. If you have defined an object which is a set, issuingmethod

get = xwill not help you much in seeing what the current value is. You will have
to say, for example,method get = PStringSet.elements x if the object is
basically a set of pairs of strings as defined above.

10 Characters, Strings and Regular Expressions

We are now ready to do some actual theory and implementation of linguistics.
We shall deal first with strings and then with finite state automata. Before we can
talk about strings, some words are necessary on characters. Characters are drawn
from a special set, which is also referred to as thealphabet. In principle the alpha-
bet can be anything, but in actual implementations the alphabet is always fixed.
OCaML, for example, is based on the character table of ISO Latin 1 (also referred
to as ISO 8859-1). It is included on the web page for you to look at. You may use
characters from this set only. In theory, any character can be used. However, there
arises a problem of communication with OCaML. There are a number of charac-
ters that do not show up on the screen, like carriage return. Other characters are
used as delimiters (such as the quotes). It is for this reason that one has to use
certain naming conventions. They are given on Page 90 – 91 of the manual. If
you write\ followed by 3 digits, this accesses the ASCII character named by that
sequence. OCaML has a module calledChar that has a few useful functions. The
functioncode, for example, converts a character into its 3–digit code. Its inverse
is the functionchr. TypeChar.code ’L’;; and OCaML gives you 76. So, the
string \076 refers to the characterL. You can try out that function and see that
it actually does support the full character set of ISO Latin 1. Another issue is of
course your editor: in order to put in that character, you have to learn how your
editor lets you do this. (In vi, you type either ¡Ctrl¡V and then the numeric code

10. Characters, Strings and Regular Expressions 26

as defined in ISO Latin 1 (this did not work when I tried it) or ¡Ctrl¡K and then
a two-keystroke code for the character (this did work for me). If you want to see
what the options are, type:digraphs or simply:dig in commmand mode and
you get the list of options.)

It is not easy to change the alphabet in dealing with computers. Until Uni-
code becomes standard, different alphabets must be communicated using certain
combinations of ASCII–symbols. For example, HTML documents use the com-
binationä for the symbol̈a. As far as the computer is concerned this is
a sequence of characters. But some programs allow you to treat this as a single
character. Practically, computer programs dealing with natural language read the
input first through a so–calledtokenizer. The tokenizer does nothing but deter-
mine which character sequence is to be treated as a single symbol. Or, if you wish,
the tokenizer translates strings in the standard alphabet into strings of an arbitrary,
user defined alphabet. The Xerox tools for finite state automata, for example, al-
low you to define any character sequence as a token. This means that if you have
a token of the formab the sequenceabc could be read as a string of length three,
a followed by b followed by c, or as a string of two tokens,ab followed by c.
Careful thought has to go into the choice of token strings.

Now we start with strings. OCaML has a few inbuilt string functions, and a
module calledString, which contains a couple of useful functions to manipulate
strings. Mathematically, a string of lengthn is defined as a function from the set
of numbers 0, 1, 2,. . . , n− 1 into the alphabet. The string"cat", for example, is
the functionf such thatf (0) = c, f (1) = a and f (2) = t. OCaML uses a similar
convention.

let u = "cat";;(69)

val u : string = "cat"

u.[1];;

char = ’a’

So, notice that OCaML starts counting with 0, as we generally do in this course.
The first letter inu is addressed asu.[0], the second asu.[1], and so on. Notice
that technicallyn = 0 is admitted. This is a string that has no characters in it. It
is called theempty string. Here is where the naming conventions become really
useful. The empty string can be denoted by"". Without the quotes you would not
see anything. And OCaML would not either. We define the following operations
on strings:

10. Characters, Strings and Regular Expressions 27

Definition 2 Let ~u be a string. The length of~u is denoted by|~u|. Suppose that
|~u| = m and |~v| = n. Then~ua~v is a string of length m+ n, which is defined as
follows.

(70) (~ua~v)(j) =

~u(j) if j < m,

~v(j −m) else.

~u is aprefix of~v if there is a~w such that~v = ~ua~w, and a postfix if there is a~w such
that~v = ~wa~u. ~u is asubstringif there are~w and~x such that~v = ~wa~va~x.

OCaML has a functionString.length that returns the length of a given string.
For example,String.length "cat"will give 3. Notice that by our conventions,
you cannot access the symbol with number 3. Look at the following dialog.

"cat".[2];;(71)

- : char = ’t’

"cat".[String.length "cat"];;

Exception: Invalid_argument "String.get".

The last symbol of the string has the number 2, but the string has length 3. If
you try to access an element that does not exist, OCaML raises the exception
Invalid_argument "String.get".

In OCaML, ^ is an infix operator for string concatenation. So, if we write
"tom"^"cat" OCaML returns"tomcat". Here is a useful abbreviation.~xn de-
notes the string obtained by repeating~x n–times. This can be defined recursively
as follows.

~x0 = ε(72)

~xn+1 = ~xna~x(73)

So,vux3 = vuxvuxvux.

A languageoverA is a set of strings overA. Here are a few useful operations
on languages.

L · M := {~x~y : ~x ∈ L, ~y ∈ M}(74a)

L/M := {~x : exists~y ∈ M: ~x~y ∈ L}(74b)

M\L := {~x : exists~y ∈ M: ~y~x ∈ L}(74c)

10. Characters, Strings and Regular Expressions 28

The first defines the language that contains all concatenations of elements from
the first, and elements from the second. This construction is also used in ‘switch-
board’ constructions. For example, define

(75) L := {John, my neighbour, . . . }

the set of noun phrases, and

(76) M := {sings, rescued the queen, . . . }

thenL · {�} · M (� denotes the blank here) is the following set:

{John sings, John rescued the queen,(77)

my neighbour sings, my neighbour rescued the queen, . . . }

Notice that (77) is actually not the same asL ·M. Secondly, notice that there is no
period at the end, and no uppercase formy. Thus, although we do get what looks
like sentences, some orthographic conventions are not respected.

The constructionL/M denotes the set of strings that will beL–strings if some
M–string is appended. For example, letL = {chairs, cars, cats, . . . } andM =
{s}. Then

(78) L/M = {chair, car, cat, . . . }

Notice that if L contains a word that does not end ins, then no suffix from M
exists. Hence

(79) {milk, papers}/M = {paper}

In the sequel we shall study first regular languages and then context free lan-
guages. Every regular language is context free, but there are also languages that
are neither regular nor context free. These languages will not be studied here.

A regular expression is built from letters using the following additional sym-
bols: 0,ε, ·, ∪, and∗. 0 andε are constants, as are the letters of the alphabet.·

and∪ are binary operations,∗ is unary. The language that they specify is given as
follows:

L(0) := ∅(80)

L(∅) := {∅}(81)

L(s · t) := L(s) · L(t)(82)

L(s∪ t) := L(s) ∪ L(t)(83)

L(s∗) := {xn : x ∈ L(s),n ∈ N}(84)

10. Characters, Strings and Regular Expressions 29

(N is the set of natural numbers. It contains all integers starting from 0.)· is often
omitted. Hence,st is the same ass · t. Hence,cat = c · a · t. It is easily seen
that every set containing exactly one string is a regular language. Hence, every
set containing a finite set of strings is also regular. With more effort one can show
that a set containing all but a finite set of strings is regular, too.

Notice that whereass is a term,L(s) is a language, the language of terms that
fall under the terms. In ordinary usage, these two are not distinguished, though.
We write a both for the stringa and the regular term whose language is{a}. It
follows that

L(a · (b ∪ c)) = {ab, ac}(85)

L((cb)∗a) = {a, cba, cbcba, . . . }(86)

A couple of abbreviations are also used:

s? := ε ∪ s(87)

s+ := s · s∗(88)

sn := s · s · · · · · s (n–times)(89)

We say thats ⊆ t if L(s) ⊆ L(t). This is the same as saying thatL(s∪ t) = L(t).
Regular expressions are used in a lot of applications. For example, if you are
searching for a particular string, saydepartment in a long document, it may
actually appear in two shapes,department or Department. Also, if you are
searching for two words in a sequence, you may face the fact that they appear on
different lines. This means that they are separated by any number of blanks and
an optional carriage return. In order not to loose any occurrence of that sort you
will want to write a regular expression that matches any of these occurrences. The
Unix commandegrep allows you to search for strings that match a regular term.
The particular constructors look a little bit different, but the underlying concepts
are the same.

Notice that there are regular expressions which are different but denote the
same language. We have in general the following laws. (A note of caution. These
laws are not identities between the terms; the terms are distinct. These are identi-
ties concerning the languages that these terms denote.)

s · (t · u) = (s · t) · u(90a)

s · ε = s ε · s= s(90b)

10. Characters, Strings and Regular Expressions 30

s · 0 = 0 0 · s= 0(90c)

s∪ (t ∪ u) = (s∪ t) ∪ u(90d)

s∪ t = t ∪ s(90e)

s∪ s= s(90f)

s∪ 0 = s 0∪ s= s(90g)

s · (t ∪ t) = (s · t) ∪ (s · u)(90h)

(s∪ t) · u = (s · u) ∪ (t · u)(90i)

s∗ = ε ∪ s · s∗(90j)

It is important to note that the regular terms appear as solutions of very simple
equations. For example, let the following equation be given. (· binds stronger
than∪.)

(91) X = a ∪ b · X

Here, the variableX denotes a language, that is, a set of strings. We ask: what set
X satisfies the equation above? It is a setX such thata is contained in it and if a
string~v is in X, so isba~v. So, since it containsa, it containsba, bba, bbba, and
so on. Hence, as you may easily verify,

(92) X = b∗a

is the smallest solution to the equation. (There are many more solutions, for ex-
ampleb∗a ∪ b∗. The one given is the smallest, however.)

Theorem 3 Let s and t be regular terms. Then the smallest solution of the equa-
tion X = t ∪ s · X is s∗ · t.

Now, s · t is the unique solution ofY = t,X = s · t; s ∪ t is the solution of
X = Y ∪ Z, Y = s, Z = t. Using this, one can characterize regular languages as
minimal solutions of certain systems of equations.

Let Xi, i < n, be variables. A regular equation has the form

(93) Xi = s0 · X0 ∪ s1 · X1 . . . ∪ sn−1 · Xn−1

(If si is 0, the termsi · Xi may be dropped.) The equation issimple if for all i < n,
si is either 0,ε, or a single letter. The procedure we have just outlined can be used
to convert any regular expression into a set of simple equations whose minimal
solution is that term. The converse is actually also true.

11. Interlude: Regular Expressions in OCaML 31

Theorem 4 Let E be a set of regular equations in the variables Xi, i < n, such
that Xi is exactly once to the left of an equation. Then there are regular terms si,
i < n, such that the least solution to E is Xi = L(si), i < n.

Notice that the theorem does not require the equations of the set to be simple. The
proof is by induction onn. We suppose that it is true for a set of equations inn−1
letters. Suppose now the first equation has the form

(94) X0 = s0 · X0 ∪ s1 · X1 . . . ∪ sn−1 · Xn−1

Two cases arise. Case (1).s0 = 0. Then the equation basically tells us what
X0 is in terms of theXi, 0 < i < n. We solve the set of remaining equations by
hypothesis, and we obtain regular solutionsti for Xi. Then we insert them:

(95) X0 = s1 · t1 ∪ s1 · t1 ∪ . . . ∪ sn−1 · tn−1

This is a regular term forX0. Case (2).s0 , 0. Then using Theorem 3 we can
solve the equation by

X0 = s∗0(s1 · X1 . . . ∪ sn−1 · Xn−1)(96)

= s∗0s1 · X1 ∪ s∗0s2 · X2 ∪ . . . ∪ s∗0sn−1 · Xn−1

and proceed as in Case (1).

The procedure is best explained by an example. Take a look at Table 1. It
shows a set of three equations, in the variablesX0, X1 andX2. (This is (I).) We
want to find out what the minimal solution is. First, we solve the second equation
for X1 with the help of Theorem 3 and get (II). The simplification is thatX1 is now
defined in terms ofX0 alone. The recursion has been eliminated. Next we insert
the solution we have forX1 into the equation forX2. This gives (III). Next, we
can also put into the first equation the solution forX2. This is (IV). Now we have
to solve the equation forX0. Using Theorem 3 again we get (V). NowX0 given
explicitly. This solution is finally inserted in the equations forX1 andX2 to yield
(VI).

11 Interlude: Regular Expressions in OCaML

OCaML has a module calledStr that allows to handle regular expressions, see
Page 397. If you have started OCaML via the commandocaml you must make

11. Interlude: Regular Expressions in OCaML 32

Table 1: Solving a set of equations

(I) X0 = ε ∪dX2

X1 = bX0 ∪dX1

X2 = cX1

(II) X0 = ε ∪dX2

X1 = d∗bX0

X2 = cX1

(III) X0 = ε ∪dX2

X1 = d∗bX0

X2 = cd∗bX0

(IV) X0 = ε ∪dcd∗bX0

X1 = d∗bX0

X2 = cd∗bX0

(V) X0 = dcd
∗b

X1 = d∗bX0

X2 = cd∗bX0

(VI) X0 = dcd∗b

X1 = d∗bdcd∗b

X2 = cd∗bdcd∗b

11. Interlude: Regular Expressions in OCaML 33

sure to bind the module into the program. This can be done interactively by

(97) # #load "str.cma";;

The module provides a typeregexp and various functions that go between strings
and regular expressions. The module actually ”outsources” the matching and uses
the matcher provided by the platform (POSIX in Unix). This has two immediate
effects: first, different platforms implement different matching algorithms and this
may result in different results of the same program; second, the syntax of the
regular expressions depends on the syntax of regular expressions of the matcher
that the platform provides. Thus, if you enter a regular expression, there is a two
stage conversion process. The first is that of the string that you give to OCaML
into a regular term. The conventions are described in the manual. The second
is the conversion from the regular term of OCaML into one that the platform
uses. This is why the manual does not tell you exactly what the exact syntax of
regular expressions is. In what is to follow, I shall describe the syntax of regular
expressions in Unix (they are based on Gnu Emacs).

A regular expression is issued to OCaML as a string. However, the string
itself is not seen by OCaML as a regular expression; to get the regular expres-
sion you have to apply the functionregexp (to do that, you must, of course, type
Str.regexp). It is worthwhile to look at the way regular expressions are defined.
First, the characters$^.*+?\[] are special and set aside. Every other symbol is
treated as a constant for the character that it is. (We have used the same sym-
bolic overload above. The symbola denotes not only the charactera but also the
regular expression whose associated language is{a}.) Now here are a few of the
definitions.

• . matches any character except newline

• * (postfix) translates into∗.

• + (postfix) translates into+.

• ? (postfix) translates into ?.

• ^ matches at the beginning of the line.

• $ matches at the end of line.

• \\(left (opening) bracket.

11. Interlude: Regular Expressions in OCaML 34

• \\) right (closing) bracket.

• \\| translates into∪.

Thus, (a ∪ b)+d? translates into\\(a\\|b\\)+d?. Notice that in OCaML there
is also a way to quote a character by using\ followed by the 3–digit code, and
this method can also be used in regular expressions. For example, the code of the
symbol+ is 43. Thus, if you are looking for a nonempty sequence of+, you have
to give OCaML the following string:\043+. Notice that ordinarily, that is, in a
string, the sequence\043 is treated in the same way as+. Here, however, we get
a difference. The sequence\043 is treated as a character, while+ is now treated
as an operation symbol. It is clear that this syntax allows us to define any regular
language over the entire set of characters, including the ones we have set aside.

There are several shortcuts. One big group concerns grouping together char-
acters. To do this, one can use square brackets. The square brackets eliminate
the need to use the disjunction sign. Also it gives additional power, as we shall
explain now. The expression[abx09] denotes a single character matching any
of the symbols occuring in the bracket. Additionally, we can use the hyphen to
denote from-to:[0-9] denotes the digits,[a-f] the lower case letters from ’a’
to ’f’, [A-F] the upper case letters from ’A’ to ’F’; finally,[a-fA-F] denotes the
lower and upper case letters from ’a’ to ’f’ (’A’ to ’F’). If the opening bracket is
immediately followed by a caret, the range is inverted: we now take anything that
is notcontained in the list. Notice that ordinarily, the hyphen is a string literal, but
when it occurs inside the square brackets it takes a new meaning. If we do want
the hyphen to be included in the character range, it has to be put at the beginning
or the end. If we want the caret to be a literal it must be placed last.

Now that we know how to write regular expressions, let us turn to the question
how they can be used. By far the most frequent application of matching against
a regular expression is not that of an exact match. Rather, one tries to find an
occurrence of a string that falls under the regular expression in a large file. For
example, if you are editing a file and you what to look to the wordownership in
a case insensitive way, you will have to produce a regular expression that matches
eitherownership or Ownership. Similarly, looking for a word in German that
may havëa or ae, ü next toue and so on as alternate spellings may prompt the
need to use regular expressions. The functions that OCaML provides are geared
towards this application. For example, the functionsearch_forward needs a
regular expression as input, then a string and next an integer. The integer specifies

11. Interlude: Regular Expressions in OCaML 35

the position in the string where the search should start. The result is an integer
and it gives the initial position of the next string that falls under the regular ex-
pression. If none can be found, OCaML raises the exceptionNot_found. If you
want to avoid getting the exception you can also usestring_match before to see
whether or not there is any string of that sort. It is actually superfluous to first
check to see whether a match exists and then actually performing the search. This
requires to search the same string twice. Rather, there are two useful functions,
match_beginning andmatch_end, which return the initial position (final posi-
tion) of the string that was found to match the regular expression. Notice that you
have to sayStr.match_beginning(), supplying an empty parenthesis.

There is an interesting difference in the way matching can be done. The Unix
matcher tries to match the longest possible substring against the regular expression
(this is calledgreedy matching), while the Windows matcher looks for the just
enough of the string to get a match (lazy matching). Say we are looking fora∗ in
the stringbcagaa.

(98)
let ast = Str.regexp "a*";;

Str.string_match ast "bcagaa" 0;;

In both versions, the answer is ”yes”. Moreover, if we ask for the first and the last
position, both version will give 0 and 0. This is because there is no way to match
more than zeroa at that point. Now try instead

(99) Str.string_match ast "bcagaa" 2;;

Here, the two algorithms yield different values. The greedy algorithm will say that
it has found a match between 2 and 3, since it was able to match one successive
a at that point. The lazy algorithm is content with the empty string. The empty
string matches, so it does not look further. Notice that the greedy algorithm does
not look for the longest occurrence in the entire string. Rather, it proceeds from
the starting position and tries to match from the successive positions against the
regular expression. If it cannot match at all, it proceeds to the next position. If it
can match, however, it will take the longest possible string that matches.

The greedy algorithm actually allows to check whether a string falls under a

11. Interlude: Regular Expressions in OCaML 36

regular expression. The way to do this is as follows.

(100)

let exact_match r s =

if Str.string_match r s 0

then ((Str.match_beginning () = 0)

&& (Str.match_end () = (String.length s)))

else false;;

The most popular application for which regular expressions are used are actually
string replacements. String replacements work in two stages. The first is the phase
of matching. Given a regular expressionsand a string~x, the pattern matcher looks
for a string that matches the expressions. It always looks for the first possible
match. Let this string be~y. The next phase is the actual replacement. This can be
a simple replacement by a particular string. Very often we do want to use parts of
the string~y in the new expression. An example may help.

An IP address is a sequence of the form~c.~c.~c.~c, where~c is a string representing
a number from 0 to 255. Leading zeros are suppressed, but~c may not be empty.
Thus, we may have192.168.0.1, 145.146.29.243, of 127.0.0.1. To define
the legal sequences, define the following string:

(101) [01][0−9][0−9]| 2[0−4][0−9]| 25[0−4]

This string can be converted to a regular expression usingStr.regexp. It matches
exactly the sequences just discussed. Now look at the following:

let x = "[01][0−9][0−9] \\| 2[0−4][0−9]\\| 25[0−4]"

let m = Str.regexp "\\("^x^"\\."^"\\)"^x^"\\.(102)

"^"\\("^x^"\\."^"\\)"

This expression matches IP addresses. The bracketing that I have introduced can
be used for the replacement as follows. The matcher that is sent to find a string
that matches a regular expression actually takes note for each bracketed expression
where it matched in the string that it is looking at. It will have a record that says,
for example, that the first bracket matched from position 1230 to position 1235,
and the second bracket from position 1237 to position 1244. For example, if your
data is as follows:

(103) . . . 129.23.145.110 . . .

12. Finite State Automata 37

Suppose that the first character is at position 1230. Then the string129.023

matches the first bracket and the string145.110 the second bracket. These strings
can be recalled using the functionmatched_group. It takes as input a number
and the original string, and it returns the string of thenth matching bracket. So, if
directly after the match on the string assigned tou we define

let s = "The first half of the IP address is(104)

"^(Str.matched_group 1 u)

we get the following value fors:

(105) "The first half of the IP address is 129.23

To use this in an automated string replacement procedure, the variables\\0, \\1,
\\2,...,\\9. After a successful match,\\0 is assigned to the entire string,\\1, to
the first matched string,\\2 to the second matched string, and so on. Atemplate
is a string that in place of characters also contains these variables (but nothing
more). The functionglobal_replace takes as input a regular expression, and
two strings. The first string is used as a template. Whenever a match is found it
uses the template to execute the replacement. For example, to cut the IP to its first
half, we write the template"\\1". If we want to replace the original IP address
by its first part followed by .0.1, then we use"\\.0.1". If we want to replace the
second part by the first, we use"\\1.\\".

12 Finite State Automata

A finite state automatonis a quintuple

(106) A = 〈A,Q, i0, F, δ〉

whereA, the alphabet, is a finite set,Q, the set ofstates, also is a finite set,
i0 ∈ Q is the initial state, F ⊆ Q is the set offinal or accepting statesand,
finally, δ ⊆ Q× A× Q is thetransition relation . We writex

a
→ y if 〈x,a, y〉 ∈ δ.

12. Finite State Automata 38

We extend the notation to regular expressions as follows.

x
0
−→ y :⇔ false(107a)

x
ε
−→ y :⇔ x = y(107b)

x
s∪t
−→ y :⇔ x

s
−→ y or x

t
−→ y(107c)

x
st
−→ y :⇔ existsz: x

s
−→ z andz

t
−→ y(107d)

x
s∗
−→ y :⇔ existsn: x

sn

−→ y(107e)

In this way, we can say that

(108) L(A) := {~x ∈ A∗ : there isq ∈ F: i0
~x
−→ q}

and call this thelanguage accepted byA. Now, an automaton ispartial if for
someq anda there is noq′ such thatq

a
→ q′.

Here is part of the listing of the file fstate.ml.

(109)

class automaton =

object

val mutable i = 0

val mutable x = StateSet.empty

val mutable y = StateSet.empty

val mutable z = CharSet.empty

val mutable t = Transitions.empty

method get_initial = i

method get_states = x

method get_astates = y

method get_alph = z

method get_transitions = t

method initialize_alph = z <− CharSet.empty

· · ·

method list_transitions = Transitions.elements t

end;;

12. Finite State Automata 39

There is a lot of repetition involved in this definition, so it is necessary only to
look at part of this. First, notice that prior to this definition, the program contains
definitions of sets of states, which are simply sets of integers. The type is called
StateSet. Similarly, the typeCharSet is defined. Also there is the type of
transition, which has three entries,first, symbol andsecond. They define the
state prior to scanning the symbol, the symbol, and the state after scanning the
symbol, respectively. Then a type of sets of transitions is defined. These are
now used in the definition of the object typeautomaton. These things need to
be formally introduced. The attributemutable shows that their values can be
changed. After the equation sign is a value that is set by default. You do not have
to set the value, but to prevent error it is wise to do so. You need a method to even
get at the value of the objects involved, and a method to change or assign a value
to them. The idea behind an object type is that the objects can be changed, and
you can change them interactively. For example, after you have loaded the file
fsa.ml typing#use "fsa.ml" you may issue

let a = new automaton;;(110)

Then you have created an object identified by the lettera, which is a finite state
automaton. The initial state is 0, the state set, the alphabet, the set of accepting
states is empty, and so is the set of transitions. You can change any of the values
using the appropriate method. For example, type

a#add_alph ’z’;;(111)

and you have added the letter ‘z’ to the alphabet. Similarly with all the other
components. By way of illustration let me show you how to add a transition.

a#add_transitions {first = 0; second = 2; symbol = ’z’};;(112)

So, effectively you can define and modify the object step by step.

If A is not partial it is calledtotal. It is an easy matter to make an automaton
total. Just add a stateq] and add a transition〈q,a,q]〉 when there was no transition
〈q,a,q′〉 for anyq′. Finally, add all transitions〈q],a,q]〉, q] is not accepting.

Theorem 5 LetA be a finite state automaton. Then L(A) is regular.

The idea is to convert the automaton into an equation. To this end, for every state
q let Tq := {x : i0

x
−→ q}. Then if〈r,a,q〉, we haveTq ⊇ a · Tr . In fact, if i , i0 we

12. Finite State Automata 40

have

(113) Tq =
⋃
〈r,a,q〉∈δ

Tr · a

If q = i0 we have

(114) Ti0 = ε ∪
⋃
〈r,a,q〉∈δ

Tr · a

This is a set of regular equations, and it has a solutionti for every q, so that
Tq = L(tq). Now,

(115) L(A) =
⋃
q∈F

Tq

which is regular.

On the other hand, for every regular term there is an automatonA that accepts
exactly the language of that term. We shall give an explicit construction of such
an automaton.

First, s = 0. Take an automaton with a single state, and putF = ∅. No
accepting state, so no string is accepted. Next,s = ε. Take two states, 0 and 1.
Let 0 be initial and accepting, andδ = {〈0,a,1〉, 〈1,a,1〉 : a ∈ A}. For s = a, let
Q = {0,1,2}, 0 initial, 1 accepting.δ = {〈0,a,1〉} ∪ {〈1,b,1〉 : b ∈ A} ∪ {〈0,b,2〉 :
b ∈ A − {a}} ∪ {〈2,b,2〉 : b ∈ A}. Next st. Take an automatonA acceptings,
and an automatonB acceptingt. The new states are the states ofA and the states
B (considered distinct) with the initial state ofB removed. For every transition
〈i0,a, j〉 of B, remove that transition, and add〈q,a, j〉 for every accepting state
of A. The accepting states are the accepting states ofB. (If the initial state was
accepting, throw in also the accepting states ofA.) Now for s∗. Make F ∪ {i0}
accepting. Add a transition〈u,a, j〉 for every〈i0,a, j〉 ∈ δ such thatu ∈ F. This
automaton recognizess∗. Finally, s∪ t. We construct the following automaton.

A ×B = 〈A,QA × QB, 〈iA0 , i
B
0 〉, F

A × FB, δA × δB〉(116)

δA × δB = {〈x0, x1〉
a
→ 〈y0, y1〉 : 〈x0,a, y0〉 ∈ δ

A, 〈x1,a, y1〉 ∈ δ
B}(117)

Lemma 6 For every string~u

(118) 〈x0, x1〉
~u
→A×B 〈y0, y1〉 ⇔ x0

~u
→A y0 and y0

~u
→B y1

12. Finite State Automata 41

The proof is by induction on the length of~u. It is now easy to see thatL(A×B) =

L(A)∩L(B). For~u ∈ L(A×B) if and only if 〈iA0 , i
B
0 〉

~u
→ 〈x0, x1〉, which is equivalent

to iA0
~u
→ x0 andiB0

~u
→ x1. The latter is nothing but~u ∈ L(A) and~u ∈ L(B).

Now, assume thatA andB are total. Define the setG := FA × QB ∪ QA ×
FB. MakeG the accepting set. Then the language accepted by this automaton is

L(A) ∪ L(B) = s∪ t. For supposeu is such that〈iA0 , i
B
0 〉

~u
→ q ∈ G. Then either

q = 〈q0, y〉 with q0 ∈ FA and then~u ∈ L(A), or q = 〈x,q1〉 with q1 ∈ FB. Then
~u ∈ L(B). The converse is also easy.

Here is another method.

Definition 7 Let L⊆ A∗ be a language. Then put

(119) Lp = {~x : there is~y such that~xa~y ∈ L}

Let s be a regular term. We define the prefix closure as follows.

0† := ∅(120a)

a† := {ε,a}(120b)

ε† := {ε}(120c)

(s∪ t)† := s† ∪ t†(120d)

(st)† := {su : u ∈ t†} ∪ s†(120e)

(s∗)† := s† ∪ {s∗u : u ∈ s†}(120f)

Notice the following.

Lemma 8 ~x is a prefix of some string from s iff ~x ∈ L(t) for some t∈ s†. Hence,

(121) L(s)p =
⋃
t∈s†

L(t)

Proof. Suppose thatt ∈ s†. We show thatL(t) is the union of allL(u) where
u ∈ s†. The proof is by induction ons. The cases= ∅ ands= ε are actually easy.
Next, lets= a wherea ∈ A. Thent = a or t = ε and the claim is verified directly.

12. Finite State Automata 42

Next, assume thats = s1 ∪ s2 and lett ∈ s†. Either t ∈ s†1 or t ∈ s†2. In
the first case,L(t) ⊆ L(s1)p by inductive hypothesis, and soL(t) ⊆ L(s)p, since
L(s) ⊇ L(s1) and soL(s)p ⊇ L(s1)p. Analogously for the second case. Now, if
~x ∈ L(s)p then either~x ∈ L(s1)p or L(s2)p and hence by inductive hypothesis~x ∈ u
for someu ∈ s†1 or someu ∈ s†2, sou ∈ s†, as had to be shown.

Next let s = s1 · s2 andt ∈ s†. Case 1.t ∈ s†1. Then by inductive hypothesis,
L(t) ⊆ L(s1)p, and sinceL(s1)p ⊆ L(s)p (can yous ee this?), we get the desired
conclusion. Case 2.t = s · u with u ∈ L(s2)†. Now, a string inL(t) is of the
form ~x~y, where~x ∈ L(s1) and~y ∈ L(u) ⊆ L(s2)p, by induction hypothesis. So,
~x ∈ L(s1)L(s2)p ⊆ L(s)p, as had to be shown. Conversely, if a string is inL(s)p

then either it is of the form~x ∈ L(s1)p or ~y~z, with ~y ∈ L(s1) and~z ∈ L(s2)p. In
the first case there is au ∈ s†1 such that~x ∈ L(u); in the second case there is a
u ∈ s†2 such that~z ∈ L(u) and~y ∈ L(s1). In the first caseu ∈ s†; in the second case,
~x ∈ L(s1u) ands1u ∈ s†. This shows the claim.

Finally, let s= s∗1. Then eithert ∈ s†1 or t = s∗1u whereu ∈ s†1. In the first case
we haveL(t) ⊆ L(s1)p ⊆ L(s)p, by inductive hypothesis. In the second case we
haveL(t) ⊆ L(s∗1)L(u) ⊆ L(s∗1)L(s1)p ⊆ L(s)p. This finishes one direction. Now,
suppose that~x ∈ L(s). Then there are~yi, i < n, and~z such that~yi ∈ L(s1) for
all i < n, and~z ∈ L(s1)p. By inductive hypothesis there is au ∈ L(s1) such that
~z ∈ L(u). Also~y0~y1 · · ·~yn−1 ∈ L(s∗1), so~x ∈ L(s∗1u), and the regular term is ins†. �

We remark here that for alls , ∅: ε ∈ s†; moreover,s ∈ s†. Both are easily
established by induction.

Let s be a term. Fort,u ∈ s† put t
a
→ u iff ta ⊆ u. (The latter means

L(ta) ⊆ L(u).) The start symbol isε.

(122)

A(s) := {a ∈ A : a ∈ s†}

δ(t,a) := {u : ta ⊆ u}

A(s) := 〈A(s), s†, ε, δ〉

canonical automaton of s. We shall show that the language recognized by the
canonical automaton iss. This follows immediately from the next theorem, which
establishes a somewhat more general result.

Lemma 9 In A(s), ε
~x
→ t iff ~x ∈ L(t). Hence, the language accepted by state t is

exactly L(t).

12. Finite State Automata 43

Proof. First, we show that ifε
~x
→ u then~x ∈ L(u). This is done by induction on

the length of~x. If ~x = ε the claim trivially follows. Now let~x = ~ya for some

a. Assume thatε
~x
→ u. Then there ist such thatε

~y
→ t

a
→ u. By inductive

assumption,~y ∈ L(t), and by definition of the transition relation,L(t)a ⊆ L(u).
Whence the claim follows. Now for the converse, the claim that if~x ∈ L(u) then

ε
~x
→ u. Again we show this by induction on the length of~x. If ~x = ε we are done.

Now let ~x = ~ya for somea ∈ A. We have to show that there is at ∈ s† such that

ta ⊆ u. For then by inductive assumption,ε
~y
→ t, and soε

~ya
→ u, by definition of

the transition relation.

Now for the remaining claim: if~ya ∈ L(u) then there is at ∈ s† such that
~y ∈ L(t) andL(ta) ⊆ L(u). Again induction this time onu. Notice right away that
u† ⊆ s†, a fact that will become useful. Case 1.u = b for some letter. Clearly,
ε ∈ s†, and puttingt := ε will do. Case 2. u = u1 ∪ u2. Thenu1 andu2 are
both in s†. Now, suppose~ya ∈ L(u1). By inductive hypothesis, there ist such
that L(ta) ⊆ L(u1) ⊆ L(u), so the claim follows. Similarly if~ya ∈ u2. Case 3.
u = u1u2. Subcase 2a.~y = ~y1~y2, with~y1 ∈ L(u1) and~y2 ∈ L(u2). Now, by inductive
hypothesis, there is at2 such thatL(t2a) ⊆ L(u2). Thent := u1t2 is the desired
term. Since it is inu†, it is also ins†. And L(ta) = L(u1t2a) ⊆ L(u1u2) = L(u).
Case 4.u = u∗1. Suppose~ya ∈ L(u). Then~y has a decomposition~z0~z1 · · ·~zn−1~v such
that~zi ∈ L(u1) for all i < n, and also~va is in L(u1). By inductive hypothesis, there
is a t1 such thatL(t1a) ⊆ L(u1), and~v ∈ L(t1). And~z0~z1 · · ·~zn−1 ∈ L(u). Now put
t := ut1. This has the desired properties. �

Now, as a consequence, ifL is regular, so isLp. Namely, take the automaton
A(s), wheres is a regular term ofL. Now change this automaton to makeevery
state accepting. This defines a new automaton which accepts every string that falls
under somet ∈ s†, by the previous results. Hence, it accepts all prefixes of string
from L.

We discuss an application. Syllables of a given language are subject to certain
conditions. One of the most famous constraints (presumed to be universal) is the
sonoricity hierarchy. It states that the sonoricity of phonemes in a syllable must
rise until the nucleus, and then fall. The nucleus contains the sounds of highest
sonoricity (which do not have to be vowels). The rising part is called theonsetand
the falling part therhyme. The sonoricity hierarchy translates into a finite state
automaton as follows. It has states〈o, i〉, and〈r, i〉, wherei is a number smaller

13. Complexity and Minimal Automata 44

than 10. The transitions are of the formq0
a
→ 〈o, i〉 if a has sonoricityi, q0

a
→ 〈r, i〉

if a has sonoricityi 〈o, i〉
a
→ 〈o, j〉 if a has sonoricityj ≥ i; 〈o, i〉

a
→ 〈r, j〉 if a has

sonoricity j > i, 〈r, i〉
a
→ 〈r, j〉 wherea has sonoricityj ≤ i. All states of the form

〈r, i〉 are accepting. (This accounts for the fact that a syllable must have a rhyme.
It may lack an onset, however.) Refinements of this hierarchy can be implemented
as well. There are also language specific constraints, for example, that there is no
syllable that begins with [N] in English. Moreover, only vowels, nasals and laterals
may be nuclear. We have seen above that a conjunction of conditions which each
are regular also is a regular condition. Thus, effectively (this has proved to be
correct over and over) phonological conditions on syllable and word structure are
regular.

13 Complexity and Minimal Automata

In this section we shall look the problem of recognizing a string by an automaton.
Even though computers are nowadays very fast, it is still possible to reach the
limit of their capabilities very easily, for example by making a simple task overly
complicated. Although finite automata seem very easy at first sight, to make the
programs run as fast as possible is a complex task and requires sophistication.

Given an automatonA and a string~x = x0x1 . . . xn−1, how long does it take to
see whether or not~x ∈ L(A)? Evidently, the answer depends on bothA and~x.
Notice that~x ∈ L(A) if and only if there areqi , i < n+ 1 such that

(123) i0 = q0
x0
→ q1

x1
→ q2

x2
→ q2 . . .

xn−1
→ xn ∈ F

Whether or notqi
xi
→ qi+1 just take constant time: it is equivalent to〈qi , xi ,qi+1〉 ∈

δ. The latter is a matter of looking upδ. Looking up takes time logarithmic in the
size of the input. But the input is bounded by the size of the automaton. So it take
roughly the same amount all the time.

A crude strategy is to just go through all possible assignments for theqi and
check whether they satisfy (123). This requires checking up to|An| many assign-
ments. This suggests that the time required is exponential in the length of the
string. In fact, far more efficient techniques exist. What we do is the following.
We start withi0. In Step 1 we collect all statesq1 such thati0

x0
→ q1. Call this the

setH1. In Step 2 we collect all statesq2 such that there is aq1 ∈ H1 andq1
x1
→ q2.

13. Complexity and Minimal Automata 45

In Step 3 we collect intoH3 all theq3 such that there exists aq2 ∈ H2 such that
q2

x3
→ q3. And so on. It is easy to see that

(124) i0
x0x1...x j
−→ qj+1 iff qj+1 ∈ H j+1

Hence,~x ∈ L(A) iff Hn ∩ F , ∅. For then there exists an accepting state inHn.
Here each step takes time quadratic in the number of states: for givenH j, we
computeH j+1 by doingQ many lookups for everyq ∈ H j. However, this number
is basically bounded for givenA. So the time requirement is down to a constant
depending onA times the length of~x. This is much better. However, in practical
terms this is still not good enough. Because the constant it takes to compute a
single step is too large. This is because we recompute the transitionH j to H j+1.
If the string is very long, this means that we recompute the same problem over
and over. Instead, we can precompute all the transitions. It turns out that we can
define an automaton in this way that we can use in the place ofA.

Definition 10 Let A = 〈A,Q, i0, F, δ〉 be an automaton. Put F℘ := {U ⊆ Q :
U ∩ F , ∅}. And let

(125) δ℘ = {〈H,a, J〉 : for all q ∈ H there is q′ ∈ J: q
a
→ q′}

Then

(126) A
℘ = 〈A, ℘(Q), {i0}, F

℘, δ℘〉

is called theexponential ofA.

Definition 11 An automaton isdeterministicif for all q ∈ Q and a∈ A there is at
most one q′ ∈ Q such that q

a
→ q′.

It is clear that for a deterministic and total automaton, all we have to do is to
look up the next state in (123), which exists and is unique. For these automata,
recognizing the language is linear in the string.

Theorem 12 For every automatonA, the exponentialA℘ is total and determinis-
tic. Moreover, L(A℘) = L(A).

13. Complexity and Minimal Automata 46

So, the recipe to attack the problem ‘~x ∈ L(A)?’ is this: first computeA℘ and then
check ‘~x ∈ L(A)?’. Since the latter is deterministic, the time needed is actually
linear in the length of the string, and logarithmic in the size of℘(Q), the state set
of A℘. Hence, the time is linear also in|Q|.

We mention a corollary of Theorem 12.

Theorem 13 If L ⊆ A∗ is regular, so is A∗ − L.

Proof. Let L be regular. Then there exists a total deterministic automatonA =

〈A,Q, i0, F, δ〉 such thatL = L(A). Now letB = 〈A,Q, i0,Q− F, δ〉. Then it turns

out thati0
~x
→B q if and only if i0

~x
→A q. Now, ~x ∈ L(B) if and only if there is a

q ∈ Q− F such thati0
~x
→ q if and only if there is noq ∈ F such thati0

~x
→ q if and

only if ~x < L(A) = L. This proves the claim. �

Now we have reduced the problem to the recognition by some deterministic
automaton, we may still not have done the best possible. It may turn out, namely,
that the automaton has more states than are actually necessary. Actually, there is
no limit on the complexity of an automaton that recognizes a given language, we
can make it as complicated as we want! The art, as always, is to make it simple.

Definition 14 Let L be a language. Given a string~x, let [~x]L = {~y : ~xa~y ∈ L}. We
also write~x ∼L ~y if [~x]L = [~y]L. Theindexof L is the number of distinct sets[~x]L.

Here is an example. The languageL = {ab, ac, bc} has the following index sets:

(127)

[ε]L = {ab, ac, bc}
[a]L = {b, c}
[b]L = {c}

[c]L = ∅
[ab]L = {ε}

Let us take a slightly different languageM = {ab, ac, bc, bb}.

(128)

[ε]M = {ab, ac, bb, bc}
[a]M = {b, c}
[c]M = ∅
[ab]M = {ε}

13. Complexity and Minimal Automata 47

It is easy to check that [b]M = [a]M. We shall see that this difference means that
there is an automaton checkingM can based on less states than any automaton
checking membership inL.

Given two index setI andJ, put I
a
→ J if and only if J = a\I . This is well–

defined. For letI = [~x]L. Then suppose that~xa is a prefix of an accepted string.
Then [~xa]L = {~y : ~xa~y ∈ L} = {~y : a~y ∈ I } = a\I . This defines a deterministic
automaton with initial elementL. Accepting sets are those which containε. We
call this theindex automatonand denote it byI(L).

Theorem 15 L(I(L)) = L.

Proof. By induction on~x we show thatL
~x
→ I if and only if [~x]L = I . If ~x = ε

the claim readsL = L if and only if [ε]L = L. But [ε]L = L, so the claim holds.

Next, let~x = ~ya. By induction hypothesis,L
~y
→ J if and only if [~y]L = I . Now,

J
a
→ J/a = [~ya]L. So,L

~x
→ J/a = [~x]L, as promised.

Now, ~x is accepted byI(L) if and only if there is a computation fromL to a set
[~y]L containingε. By the above this is equivalent toε ∈ [~x]L, which means~x ∈ L.
�

Given an automatonA and a stateq put

(129) [q] := {~x : there isq′ ∈ F: q
~x
→ q′}

It is easy to see that for everyq there is a string~x such that [q] ⊆ [~x]L. Namely, let

~x be such thati0
~x
→ q. Then for all~y ∈ [q], ~x~y ∈ L(A), by definition of [q]. Hence

[q] ⊆ [~x]L. Conversely, for every [~x]L there must be a stateq such that [q] ⊆ [~x]L.

Again,q is found as a state such thati0
~x
→ q. Suppose now thatA is deterministic

and total. Then for each string~x there is exactly one state [q] such that [q] ⊆ [~x]L.

Then obviously [q] = [~x]L. For if ~y ∈ [~x]L then~x~y ∈ L, whencei0
~x~y
−→ q′ ∈ F for

someq′. Since the automaton is deterministic,i0
~x
→ q

~y
→ q′, whence~y ∈ [q].

It follows now that the index automaton is the smallest deterministic and total
automaton that recognizes the language. The next question is: how do we make
that automaton? There are two procedures; one starts from a given automaton,
and the other starts from the regular term. Given an automaton, we know how to

13. Complexity and Minimal Automata 48

make a deterministic total automaton by using the exponentiation. On the other
hand, letA by an automaton. Call a relation∼ anet if

➊ from q ∼ q′ andq
a
→ r, q′

a
→ r ′ follows q′ ∼ r ′, and

➋ if q ∈ F andq ∼ q′ then alsoq′ ∈ F.

A net induces a partition of the set of states into sets of the form [q]∼ = {q′ : q′ ∼
q}. In general, apartition of Q is a setΠ of nonempty subsets ofQ such that any
two S,S′ ∈ Π which are distinct are disjoint; and every element is in one (and
therefore only one) member ofΠ.

Given a net∼, put

(130)

[q]∼ := {q′ : q ∼ q′}

Q/∼ := {[q]∼ : q ∈ Q}

F/∼ := {[q]∼ : q ∈ F}

[q′]∼ ∈ δ/ ∼ ([q]∼,a)⇔ there isr ∼ q′ : r ∈ δ(q,a)

A/ ∼ := 〈A,Q/ ∼, [i0]∼, F/ ∼, δ/ ∼〉

Lemma 16 L(A/ ∼) = L(A).

Proof. By induction on the length of~x the following can be shown: ifq ∼ q′ and

q
~x
→ r then there is ar ′ ∼ r such thatq′

~x
→ r ′. Now consider~x ∈ L(A/ ∼). This

means that there is a [q]∼ ∈ F/ ∼ such that [i0]∼
~x
→ [q]∼. This means that there is a

q′ ∼ q such thati0
~x
→ q′. Now, asq ∈ F, alsoq′ ∈ F, by definition of nets. Hence

~x ∈ L(A). Conversely, suppose that~x ∈ L(A). Theni0
~x
→ q for someq ∈ F. Hence

[i0]∼
~x
→ [q]∼, by an easy induction. By definition ofA/ ∼, [q]∼ is an accepting

state. Hence~x ∈ L(A/ ∼). �

All we have to do next is to fuse together all states which have the same index.
Therefore, we need to compute the largest net onA. The is done as follows. In
the first step, we putq ∼0 q′ iff q,q′ ∈ F or q,q′ ∈ Q− F. This need not be a net.

13. Complexity and Minimal Automata 49

Inductively, we define the following:

q ∼i+1 q′ :⇔q ∼i q′ and for alla ∈ A, for all r ∈ Q:(131)

if q
a
→ r there isr ′ ∼i r such thatq′

a
→ r ′

if q′
a
→ r there isr ′ ∼i r such thatq′

a
→ r

Evidently,∼i+1⊆∼i. Also, if q ∼i+1 q′ andq ∈ F then alsoq′ ∈ F, since this already
holds for∼0. Finally, if ∼i+1=∼i then∼i is a net. This suggests the following
recipe: start with∼0 and construct∼i one by one. If∼i+1=∼i, stop the construction.
It takes only finitely many steps to compute this and it returns the largest net on
an automaton.

Definition 17 LetA be a finite state automaton.A is calledrefinedif the only net
on it is the identity.

Theorem 18 Let A andB be deterministic, total and refined and every state in
each of the automata is reachable. Then if L(A) = L(B), the two are isomorphic.

Proof. Let A be based on the state setQA andB on the state setQB. Forq ∈ QA

write I (q) := {~x : q
~x
→ r ∈ F}, and similarly forq ∈ QB. Clearly, we have

I (iA0) = I (iB0), by assumption. Now, letq ∈ QA andq
a
→ r. ThenI (r) = a\I (q).

Hence, ifq′ ∈ QB andq′
a
→ r ′ and I (q) = I (q′) then alsoI (r) = I (r ′). Now we

construct a maph : QA → QB as follows. h(iA0) := iB0 . If h(q) = q′, q
a
→ r

andq′
a
→ r ′ thenh(r) := r ′. Since all states are reachable inA, h is defined on

all states. This map is injective sinceI (h(q)) = I (q) andA is refined. (Every
homomorphism induces a net, so if the identity is the only net,h is injective.) It is
surjective since all states inB are reachable andB is refined. �

Thus the recipe to get a minimal automaton is this: get a deterministic total
automaton forL and refine it. This yields an automaton which is unique up to
isomorphism.

13. Complexity and Minimal Automata 50

The other recipe is dual to Lemma 8. Put

0‡ := ∅(132a)

a‡ := {ε,a}(132b)

ε‡ := {ε}(132c)

(s∪ t)‡ := s‡ ∪ t‡(132d)

(st)‡ := {ut : u ∈ s‡} ∪ t‡(132e)

(s∗)‡ := s‡ ∪ {us∗ : u ∈ s‡}(132f)

Given a regular expressions, we can effectively compute the sets [~x]L. They are
either 0 or of the formt for t ∈ s‡. The start symbol iss, and the accepting states
are of the formt ∈ s‡, whereε ∈ t. However, beware that it is not clear a priori
for any two given termst, u whether orL(t) = L(u). So we need to know how we
can effectively decide this problem. Here is a recipe. Construct an automatonA

such thatL(A) = L(t) and an automatonL(B) = A∗ − L(u). We can assume that
they are deterministic. ThenA × B recognizesL(t) ∩ (A∗ − L(u)). This is empty
exactly whenL(t) ⊆ L(u). Dually we can construct an automaton that recognizes
L(u)∩(A∗−L(t)), which is empty exactly whenL(u) ⊆ L(t). So, everything turns on
the following question: can we decide for any given automatonA = 〈A,Q, i0, F, δ〉
whether or notL(A) is empty? The answer is simple: this is decidable. To see how

this can be done, notice thatL(A) , ∅ iff there is a word~x such thati0
~x
→ q ∈ F.

It is easy to see that if there is a word, then there is a word whose length is≤ |Q|.
Now we just have to search through all words of this size.

Theorem 19 The following problems are decidable for given regular terms t, u:
‘L (t) = ∅’, ‘L (t) ⊆ L(u)’ and ‘L(t) = L(u)’. �

It now follows that the index machine can effectively be constructed. The way to
do this is as follows. Starting withs, we construct the machine based on thet ∈ s‡.
Next we compute for givent′ whether the equivalenceL(t) = L(t′) holds for some
t , t′. Then we add a new statet′′. Every arc intot′′ is an arc that goes intot or
into t′; every arc leavingt′′ is an arc that leavest or t′. Eraset andt′.

Theorem 20 L is regular if and only if it has only finitely many index sets.

14. Digression: Time Complexity 51

14 Digression: Time Complexity

The algorithm that decides whether or not two automata accept the same language,
or whether the language accepted by an automaton is empty, takes exponential
time. All it requires us to do is to look through the list or words that are of length
≤ n and check whether they are accepted. IfA hasα many letters, there areαn

words of lengthn, and

(133) 1+ α + α2 + . . . + αn = (αn+1 − 1)/(α − 1)

many words of length≤ n. For simplicity we assume thatα = 2. Then (2n+1 −

1)/(2− 1) = 2n+1 − 1. Once again, let us simplify a little bit. Say that the number
of steps we need is 2n. Here is how fast the number of steps grows.

(134)

n 2n n 2n

1 2 11 2048
2 4 12 4096
3 8 13 8192
4 16 14 16384
5 32 15 32768
6 64 16 65536
7 128 17 131072
8 256 18 262144
9 512 19 524288

10 1024 20 1048576

Suppose that your computer is able to compute 1 million steps in a second. Then
for n = 10 the number of steps is 1024, still manageable. It only takes a mil-
lisecond (1/1000 of a second). Forn = 20, it is 1,048,576; this time you need 1
second. However, for each 10 you add in size, the number of steps multiplies by
more than 1000! Thus, forn = 30 the time needed is 18 minutes. Another 10
added and you can wait for months already. Given that reasonable applications
in natural language require several hundreds of states, you can imagine that your
computer might not even be able to come up with an answer in your lifetime.

Thus, even with problems that seem very innocent we may easily run out of
time. However, it is not necessarily so that the operations we make the computer
perform are really needed. Maybe there is a faster way to do the same job. Indeed,
the problem just outlined can be solved much faster than the algorithm just shown

14. Digression: Time Complexity 52

would lead one to believe. Here is another algorithm: call a stateq n–reachableif

there is a word of length≤ n such thati0
~x
→ q; call it reachableif it is n–reachable

for somen ∈ ω. L(A) is nonempty if someq ∈ F is reachable. Now, denote by
Rn the set ofn–reachable states.R0 := {i0}. In thenth step we computeRn+1 by
taking all successors of points inRn. If Rn+1 = Rn we are done. (Checking this
takes|Q| steps. Alternatively, we need to iterate the construction at most|Q| − 1
times. Because if at each step we add some state, thenRn grows by at least 1, so
this can happen only|Q| − 1 times, for thenRn has at least|Q| many elements.
On the other hand, it is a subset ofQ, so it can never have more elements.) Let
us now see how much time we need. Each step takesRn × |A| ≤ |Q| × |A| steps.
Sincen ≤ |Q|, we need at most|Q| − 1 steps. So, we needc · |A||Q|2 steps for some
constantc.

Consider however an algorithm that takesn2 steps.

(135)

n n2 n n2

1 1 11 121
2 4 12 144
3 9 13 169
4 16 14 196
5 25 15 225
6 36 16 256
7 49 17 289
8 64 18 324
9 81 19 361

10 100 20 400

For n = 10 it takes 100 steps, or a tenth of a millisecond, forn = 20 it takes 400,
and forn = 30 only 900, roughly a millisecond. Only if you double the size of the
input, the number of steps quadruple. Or, if you want the number of steps to grow
by a factor 1024, you have to multiply the length of the input by 32! An input of
even a thousand creates a need of only one million steps and takes a second on
our machine.

The algorithm described above is not optimal. There is an algorithm that is
even faster: It goes as follows. We start withR−1 := ∅ andS0 = {q0}. Next, S1

is the set of successors ofS0 minusR0, andR0 := S0. In each step, we have two
sets,Si andRi−1. Ri−1 is the set ofi−1–reachable points, andSi is the set of points
that can be reached from it it one step, but which are not inRi−1. In the next step

14. Digression: Time Complexity 53

we let Si+1 be the set of successors ofSi which are not inRi := Ri−1 ∪ Si. The
advantage of this algorithm is that it does not recompute the successors of a given
point over and over. Instead, only the successors of point that have recently been
added are calculated. It is easily seen that this algorithm computes the successors
of a point only once. Thus, this algorithm is not even quadratic but linear in|Q|!
And if the algorithm is linear — that is much better. Actually, you cannot get less
than that if the entire input matters. For the machine needs to take a look at the
input — and this take slinear time at least.

It is not always the case that algorithms can be made as fast as this one. The
problem of satisfiability of a given propositional formula is believed to take expo-
nential time. More exactly, it is inNP — though it may take polynomial time in
many cases. Regardless whether an algorithm takes a lot of time or not it is wise
to try an reduce the number of steps that it actually takes. This can make a big
difference when the application has to run on real life examples. Often, the best
algorithms are not so difficult to understand — one just has to find them. Here
is another one. Suppose you are given a list of numbers. Your task is to sort the
list in ascending order as fast as possible. Here is the algorithm that one would
normally use: scan the list for the least number and put it at the beginning of a new
list; then scan the remainder for the least number and put that behind the number
you already have, and so on. In stepn you have you original listL, reduced by
n− 1 elements, and a listL′ containingn− 1 elements. To find the minimal ele-
ment inL you do the following: you need two memory cells,C andP. C initially
contains the first element of the list andP := 1. Now take the second element
and see whether it is smaller than the content ofC; if so, you put it intoC, and
let P be the number of the cell; if not, you leaveC andP as is. You need to do
|L| − 1 comparisons, as you have to go through the entire list. When you are done,
P tells you which element to put intoM. Now you start again. The number of
comparisons is overall

(136) (|L| − 1)+ (|L| − 2)+ . . . + 2+ 1 = |L| · (|L| − 1)/2

This number grows quadratically. Not bad, but typically lists are very long, so we
should try the best we can.

Here is another algorithm. Divide the list into blocks of two. (There might be
a remainder of one element, but that does no harm.) We order these blocks. This
takes just one comparison between the two elements of the block. In the next step
we merge two blocks of two into one block of four. In the third step we merge

14. Digression: Time Complexity 54

two blocks of four into one block of eight, and so on. How many comparisons are
needed to merge two ordered listsM andN of lengthmandn, respectively, into a
list L of lengthm+ n? The answer is:m+ n− 1. The idea is as follows. We take
the first elements,M0 andN0. ThenL0 is the smaller of the two, which is then
removed from its list. The next element is again obtained by comparing the first
elements of the lists, and so on. For example, letM = [1,3,5] andN = [2,4,5].
We compare the first two elements. The smaller one is put intoL: the lists are
now

(137) M = [3,5],N = [2,4,5], L = [1]

Now, we compare the first elements ofM andN. The smallest element is 2 and is
put intoL:

(138) M = [3,5],N = [4,5], L = [1,2]

Now, this is how the algorithm goes on:

M = [5],N = [4,5], L = [1,2,3](139)

M = [5],N = [5], L = [1,2,3,4](140)

M = [] ,N = [5], L = [1,2,3,4,5](141)

M = [] ,N = [] , L = [1,2,3,4,5,5](142)

Each time we put an element intoL we need just one comparison, except for the
last element, which can be put in without further checking. If we want to avoid
repetitions then we need to check each element against the last member of the list
before putting it in (this increases the number of checks byn+m− 1).

In the first step we haven/2 many blocks, andn/4 many comparisons are
being made to order them. The next step takes 3n/4 comparisons, the third step
needs 7n/8, and so on. Let us round the numbers somewhat: each time we need
certainly less thann comparisons. How often do we have to merge? This number
is log2 n. This is the numberx such that 2x = n. So we need in totaln log2 n many
steps. We show this number in comparison ton andn2.

(143)

20 24 28 212 216

n 1 16 256 4096 65536
n log2 n 0 64 2048 59152 1048576
n2/2 1/2 128 32768 8388608 2147483648

15. Finite State Transducers 55

Consider again your computer. On an input of length 65536 (= 216) it takes one
second under the algorithm just described, while the naive algorithm would re-
quire it run for 2159 seconds, which is more than half an hour.

In practice, one does not want to spell out in painful detail how many steps
an algorithm consumes. Therefore, simplifying notation is used. One writes that
a problem is inO(n) if there is a constantC such that from somen0 on for an
input of lengthn the algorithm takesC · n steps to compute the solution. (One
says that the estimate holds for ‘almost all’ inputs if it holds only from a certain
point onwards.) This notation makes sense also in view of the fact that it is not
clear how much time an individual step takes, so that the time consumption cannot
not really be measured in seconds (which is what is really of interest for us). If
tomorrow computers can compute twice as fast, everything runs in shorter time.
Notice thatO(bn+ a) = O(bn) = O(n). It is worth understanding why. First,
assume thatn ≥ a. Then (b+1)n ≥ bn+n ≥ bn+a. This means that for almost all
n: (b+1)n ≥ bn+a. Next,O((b+1)n) = O(n), sinceO((b+1)n) effectively means
that there is a constantC such that for almost alln the complexity is≤ C(b+ 1)n.
Now putD := C(b+ 1). Then there is a constant (namelyD) such that for almost
all n the complexity is≤ Dn. Hence the problem is inO(n).

Also O(cn2 + bn+ a) = O(n2) and so on. In general, the highest exponent
wins by any given margin over the others. Polynomial complexity is therefore
measured only in terms of the leading exponent. This makes calculations much
simpler.

15 Finite State Transducers

Finite state transducers are similar to finite state automata. You think of them
as finite state automata that leave a trace of their actions in the form of a string.
However, the more popular way is to think of them as translation devices with
finite memory. Afinite state transducer is a sextuple

(144) T = 〈A, B,Q, i0, F, δ〉

whereA andB are alphabets,Q a finite set (the set ofstates), i0 the initial state,
F the set offinal statesand

(145) δ ⊆ ℘(Aε × Q× Bε × Q)

15. Finite State Transducers 56

(Here,Aε := A∪ {ε}, andε := B∪ {ε}.) We writeq
a:b
→ q′ if δ(a,q,b,q′) ∈ δ. We

say in this case thatT makes a transition fromq to q′ given inputa, and that it

outputsb. Again, it is possible to define this notation for strings. So, ifq
~u:~v
−→ q′

andq′
~x:~y
−→ q′′ then we writeq

~u~x:~v~y
−→ q′′.

It is not hard to show that a finite state transducer fromA to B is equivalent to
a finite state automaton overA× B. Namely, put

(146) A := 〈A× B,Q, i0, F, θ〉

whereq′ ∈ θ(q, 〈a,b〉) iff 〈a,q,b,q′〉 ∈ δ. Now define

(147) 〈~u,~v〉 · 〈~x, ~y〉 := 〈~u~x, ~x~y〉

Then one can show thatq
~x:~y
−→ q′ in T if and only if q

〈~x,~y〉
−→ q′ in A. Thus, the

theory of finite state automata can be used here. Transducers have been introduced
as devices that translate languages. We shall see many examples below. Here,
we shall indicate a simple one. Suppose that the input isA := {a, b, c, d} and
B := {0, 1}. We want to translate words overA into words overB in the following
way. a is translated by00, b by 01, c by 10 andd by 11. Here is how this is done.
The set of states is{0,1,2}. The initial state is 0 and the accepting states are{0}.
The transitions are

〈0, a,1, 0〉, 〈0, b,2, 0〉, 〈0, c,1, 1〉, 〈0, d,2, 1〉,(148)

〈1, ε,0, 0〉, 〈2, ε,0, 1〉

This means the following. Upon inputa, the machine enters state 1, and outputs
the letter0. It is not in an accepting state, so it has to go on. There is only one
way: it reads no input, returns to state 0 and outputs the letter0. Now it is back
to where is was. It has read the lettera and mapped it to the word00. Similarly it
mapsb to 01, c to 10 andd to 11.

Let us writeRT for the following relation.

(149) RT := {〈~x, ~y〉 : i0
~x:~y
−→ q ∈ F}

Then, for every word~x, put

(150) RT(~x) := {~y : ~x RT ~y}

15. Finite State Transducers 57

And for a setS ⊆ A∗

(151) RT[S] := {~y : exists~x ∈ S : ~x RT ~y}

This is the set of all strings overB that are the result of translation viaT of a string
in S. In the present case, notice that every string overA has a translation, but not
every string overB is the translation of a string. This is the case if and only if it
has even length.

The translation need not be unique. Here is a finite state machine that trans-
latesa into bc∗.

A := {a}, B := {b, c},Q := {0,1}, i0 := 0, F := {1},(152)

δ := {〈0, a,1, b〉, 〈1, ε,1, c〉}

This automaton takes as only input the worda. However, it outputs any ofb, bc,
bcc and so on. Thus, the translation of a given input can be highly underdeter-
mined. Notice also the following. For a languageS ⊆ A∗, we have the following.

(153) RT[S] =

bc∗ if a ∈ S

∅ otherwise.

This is because only the stringa has a translation. For all words~x , a we have
RT(~x) = ∅.

The transducer can also be used the other way: then it translates words overB
into words overA. We use the same machine, but now we look at the relation

(154) R`T(~y) := {~x : ~x RT ~y}

(This is the converse of the relationRT.) Similarly we define

R`T(~y) := {~x : ~x RT ~y}(155)

R`T[S] := {~x : exists~y ∈ S : ~x RT ~y}(156)

Notice that there is a transducerU such thatRU = R`
T
.

We quote the following theorem.

Theorem 21 (Transducer Theorem)LetT be a transducer from A to B, and let
L ⊆ A∗ be a regular language. Then RT[L] is regular as well.

16. Finite State Morphology 58

Notice however that the transducer can be used to translate any language. In fact,
the image of a context free language underRT can be shown to be context free as
well.

Let us observe that the construction above can be generalized. LetA andB be
alphabets, andf a function assigning each letter ofA a word overB. We extendf
to words overA as follows.

(157) f (~x · a) := ~x · f (a)

The translation functionf can be effected by a finite state machine in the following
way. The initial state isi0. On inputa the machine goes into stateqa, outputsε.
Then it returns toi0 in one or several steps, outputtingf (a). Then it is ready to take
the next input. However, there are more complex functions that can be calculated
with transducers.

16 Finite State Morphology

One of the most frequent applications of transducers is in morphology. Practically
all morphology is finite state. This means the following. There is a finite state
transducer that translates a gloss (= deep morphological analysis) into surface
morphology. For example, there is a simple machine that puts English nouns into
the plural. It has two states, 0, and 1; 0 is initial, 1 is final. The transitions are as
follows (we only use lower case letters for ease of exposition).

(158) 〈0, a,0, a〉, 〈0, b,0, b〉, . . . , 〈0, z,0, z〉, 〈0, ε,1, s〉.

The machine takes an input and repeats it, and finally attachess. We shall later
see how we can deal with the full range of plural forms including exceptional
plurals. We can also write a machine that takes a deep representation, such ascar

plus singular orcar plus plural and outputscar in the first case andcars in the
second. For this machine, the input alphabet has two additional symbols, say,r
ands, and works as follows.

(159) 〈0, a,0, a〉, 〈0, b,0, b〉, . . . , 〈0, z,0, z〉, 〈0,r,1, ε〉, 〈0,s,1, s〉.

This machine accepts oner ors at the end and transforms it intoε in the case
of r and intos otherwise. As explained above we can turn the machine around.

16. Finite State Morphology 59

Then it acts as a map from surface forms to deep forms. It will translatearm into
armr andarms into arms andarmsr. The latter may be surprising, but the
machine has no idea about the lexicon of English. It assumes thats can be either
the sign of plural or the last letter of the root. Both cases arise. For example,
the wordbus has as its last letter indeeds. Thus, in one direction the machine
synthesizes surface forms, and in the other direction it analyses them.

Now, let us make the machine more sophisticated. The regular plural is formed
by addinges, not justs, when the word ends insh: bushes, splashes. If the
word ends ins then the plural is obtained by addingses: busses, plusses. We
can account for this as follows. The machine will take the input and end in three
different states, according to whether the word ends ins, sh or something else.

(160)

〈0, a,0, a〉, 〈0, b,0, b〉, . . . , 〈0, z,0, z〉,
〈0, a,4, a〉, . . . , 〈0, r,4, r〉, 〈0, t,4, t〉,
. . . , 〈0, z,4, z〉, 〈0, s,2, s〉, 〈2, a,4, a〉,
. . . , 〈2, g,4, g〉, 〈2, h,3, h〉, 〈2, i,4, i〉,
. . . , 〈2, z,4, z〉, 〈2, ε,3, s〉, 〈3, ε,4, e〉,

〈4,r,1, ε〉, 〈4,s,1, s〉.

This does not exhaust the actual spelling rules for English, but it should suffice.
Notice that the machine, when turned around, will analyzebusses correctly as
buss, and also asbussesr. Once again, the mistake is due to the fact that
the machine does not know thatbusses is no basic word of English. Suppose
we want to implement that kind of knowledge into the machine. Then what we
would have to do is write a machine that can distinguish an English word from
a nonword. Such a machine probably requires very many states. It is probably
no exaggeration to say that several hundreds of states will be required. This is
certainly the case if we take into account that certain nouns form the plural dif-
ferently: we only mentionformulae (from formula, indices (from index),
tableaux (from tableau), men, children, oxen, sheep, mice.

Here is another task. In Hungarian, case suffixes come in different forms. For
example, the dative is formed by addingnak or nek. The form depends on the
following factors. If the root contains a back vowel (a, o, u) then the suffix is nak;
otherwise it isnek. The comitative suffix is another special case: when added, it
becomes a sequence of consonant plusal or el (the choice of vowel depends in
the same way as that ofnak versusnek). The consonant isv if the root ends in a
vowel; otherwise it is the same as the preceding one. (So:dob (‘drum’) dobnak

16. Finite State Morphology 60

(‘for a drum’) dobbal (‘with a drum’); szeg (‘nail’) szegnek (‘for a nail’) and
szeggel (‘with a nail’).) On the other hand, there are a handful of words that end
in z (ez ‘this’, az ‘that’) where the finalz assimilates to the following consonant
(ennek ‘to this’), except in the comitative where we haveezzel ‘with this’. To
write a finite state transducer, we need to record in the state two things: whether
or not the root contained a back vowel, and what consonant the root ended in.

Plural in German is a jungle. First, there are many ways in which the plural
can be formed: suffix s, suffix en, suffix er, Umlaut, which is the change (graphi-
cally) froma to ä, fromo to ö and fromu to ü of the last vowel; and combinations
thereof. Second, there is no way to predict phonologically which word will take
which plural. Hence, we have to be content with a word list. This means, trans-
lated into finite state machine, that we end up with a machine of several hundreds
of states.

Another area where a transducer is useful is in writing conventions. In English,
final y changes toi when a vowel is added:happy : happier, fly : flies. In
Hungarian, the palatal sound [dj] is writtengy. When this sound is doubled it
becomesggy and not, as one would expect,gygy. The wordhegy should be
the above rule becomehegygyel, but the orthography dictatesheggyel. (Actu-
ally, the spelling gets undone in hyphenation: you writehegy-<newline>gyel.)
Thus, the following procedure suggests itself: we define a machine that regular-
izes the orthography by reversing the conventions as just shown. This machine
translatesheggyel into hegygyel. Actually, it is not necessary thatgy is treated
as a digraph. We can define a new alphabet in whichgy is written by a single
symbol. Next, we take this as input to a second machine which produces the deep
morphological representations.

We close with an example from Egyptian Arabic. Like in many semitic lan-
guages, roots only consist of consonants. Typically, they have three consonants,
for examplektb ‘to write’ anddrs ‘to study’. To words are made by adding some
material in front (prefixation), some material after (suffixation) and some material
in between (infixation). Moreover, all these typically happenat the same time.

17. Using Finite State Transducers 61

Let’s look at the following list.

(161)

[katab] ‘he wrote’ [daras] ‘he studied’
[Pamal] ‘he did’ [na\al] ‘he copied’
[baktib] ‘I write’ [badris] ‘I study’
[baPmil] ‘I do’ [ban \il] ‘I copy’
[iktib] ‘write!’ [idris] ‘study!’
[iPmil] ‘do!’ [in \il] ‘copy!’
[kaatib] ‘writer’ [daaris] ‘studier’
[Paamil] ‘doer’ [naa\il] ‘copier’
[maktuub] ‘written’ [madruus] ‘studied’
[maPmuu] ‘done’ [man\uul] ‘copied’

Now, we want a transducer to translatekatab into a sequencektb plus 3rd, plus
singular plus past. Similarly with the other roots. And it shall translatebaktib
into ktb plus 1st, plus singular plus present. And so on. The transducer will take
the form CaCaC and translate it into CCC plus the markers 3rd, singular and past.
(Obviously, one can reverse this and ask the transducer to spell out the form CCC
plus 3rd, singular, past into CaCaC.)

17 Using Finite State Transducers

Transducers can be nondeterministic, and this nondeterminism we cannot always
eliminate. One example is the following machine. It has two states, 0 and 1, 0 is

initial, and 1 is accepting. It has the transitions 0
a:b
−→ 1 and 1

ε:a
−→ 1. This machine

acceptsa as input, together with any output stringban, n ∈ N. What runs does
this machine have? Even given inputa there are infinitely many runs:

0
a:b
−→ 1(162)

0
a:b
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

In addition, given a specific output, sometimes there are several runs on that given
pair. Here is an example. Again two states, 0 and 1, and the following transitions:

17. Using Finite State Transducers 62

0
a:b
−→ 1 and then 1

ε:b
−→ 1 and 1

a:ε
−→ 1. Now, for the pairaaa andbbbb there are

several runs:

0
a:b
−→ 1

a:ε
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1(163)

0
a:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

(There are more runs that shown.) In the case of the machine just shown, the
number of runs grows with the size of the input/output pair. There is therefore no
hope of fixing the number of runs a priori.

Despite all this, we want to give algorithms to answer the following questions:

☞ Given a transducerT and a pair~x : ~y of strings, is there a run ofT that
accepts this pair? (That is to say: is〈~x, ~y〉 ∈ RT?)

☞ Given~x, is there a string~y such that〈~x, ~y〉 ∈ RT?

☞ Given ~x, is there a way to enumerateRT(~x), that is to say, all~y such that
〈~x, ~y〉 ∈ RT?

Let us do these questions in turn. There are two ways to deal with nondetermin-
ism: we follow a run to the end and backtrack on need (depth first analysis); or we
store all partial runs and in each cycle try to extend each run if possible (breadth
first search). Let us look at them in turn.

Let is take the second machine. Assume that the transitions are numbered:

t(0) = 〈0, a,1, b〉(164)

t(1) = 〈1, a,1, ε〉(165)

t(2) = 〈1, ε,1, b〉(166)

This numbering is needed to order the transitions. We start with the initial state
0. Let inputaaa and outputbbbb be given. Initially, no part of input or output
is read. (Output is at present a bit of a misnomer because it is part of the input.)
Now we want to look for a transition that starts at the state we are in, and matches

17. Using Finite State Transducers 63

characters of the input and output strings. There is only one possibility: the tran-
sition t(0). This results in the following: we are now in state 1, and one character
from both strings has been read. The conjunction of facts (i) is in state 1, (ii) has
read one character from in put, (iii) has read one character from output we call
a configuration. We visualize this configuration by 1, a|aa : b|bbb. The bar is
placed right after the characters that have been consumed orread.

Next we face a choice: either we taket(1) and consume the inputa but no
output letter, or we taket(2) and consume the outputb but no input letter. Faced
with this choice, we take the transition with the least number, so we followt(1).
The configuration is now this: 1,aa|a : b|bbb. Now face the same choice again,
to do eithert(1) or t(2). We decide in the same way, choosingt(1), giving 1, aaa| :
b|bbb. Now, no more choice exists, and we can only proceed witht(2), giving
1, aaa| : bbb|b. One last time we dot(2), and we are done. This is exactly the first
of the runs. Now, backtracking can be one for any reason. In this case the reason
is: we want to findanother run. To do that, we go back to the last point where
there was an actual choice. This was the configuration 1, aa|a : b|bbb. Here,
we were able to choose betweent(1) andt(2) and we choset(1). In this case we
decide differently: now we taket(2), giving 1, aa|a : bb|bb. From this moment
we have again a choice, but now we fall back on our typical recipe: chooset(1)
whenever possible. This gives the third run above. If again we backtrack, it is
the last choice point within the run we are currently considering that we look at.
Where we choset(1) we now chooset(2), and we get this run:

0
a:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1(167)

Here is how backtracking continues to enumerate the runs:

0
a:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1(168)

0
a:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

ε:b
−→ 1

a:ε
−→ 1

0
a:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

ε:b
−→ 1

a:ε
−→ 1

a:ε
−→ 1

17. Using Finite State Transducers 64

In general, backtracking works as follows. Every time we face a choice, we pick
the available transition with the smallest number. If we backtrack we go back in
the run to the point where there was a choice, and then we change the previously
chosen next transition to the next up. From that point on we consistently choose
the least numbers again. This actually enumerates all runs. It is sometimes a
dangerous strategy since we need to guarantee that the run we are following ac-
tually terminates: this is no problem here, since every step consumes at least one
character.

Important in backtracking is that it does not give the solutions in one blow:
it gives us one at a time. We need to memorize only the last run, and then back-
tracking gives us the next if there is one. (If there is none, it will tell us. Basically,
there is none if going back we cannot find any point at which there was a choice
(because you can never choose lower number than you had chosen).)

Now let us look at the other strategy. It consists in remembering partial runs,
and trying to complete them. A partial run on a pair of strings simply is a sequence
of transitions that sucessfully maps the machine into some state, consuming some
part of the input string and some part of the outpu string. We do not require that
the partial run is part of a successful run, otherwise we would require to know
what we are about to find out: whether any of the partial runs can be completed.
We start with a single partial run: the empty run — no action taken. In the first
step we list all transitions that extend this by one step. There is only one,t(0). So,
the next set of runs ist(0). It leads to the situation 1, a|aa : b|bbb. From here we
can do two things:t(1) or t(2). We do both, and note the result:

Step 2(169)

t(0), t(1) : 1, aa|a : b|bbb

t(0), t(2) : 1, a|aa : bb|bb

In the next round we try to extend the result by one more step. In each of the two,
we can perform eithert(1) or t(2):

Step 3(170)

t(0), t(1), t(1) : 1, aaa| : b|bbb

t(0), t(1), t(2) : 1, aa|a : bb|bb

t(0), t(2), t(1) : 1, aa|a : bb|bb

t(0), t(2), t(2) : 1, a|aa : bbb|b

17. Using Finite State Transducers 65

In the fourth step, we have no choice in the first line: we have consumed the input,
now we need to chooset(2). In the other cases we have both options still.

Step 4(171)

t(0), t(1), t(1), t(2) : 1, aaa| : bb|bb

t(0), t(1), t(2), t(1) : 1, aaa| : bb|bb

t(0), t(1), t(2), t(2) : 1, aaa| : bbb|b

t(0), t(2), t(1), t(1) : 1, aaa| : bbb|b

t(0), t(2), t(1), t(2) : 1, aa|a : bbb|b

t(0), t(2), t(2), t(1) : 1, aa|a : bbb|b

t(0), t(2), t(2), t(2) : 1, a|aa : bbbb|

And so on.

It should be noted that remembering each and every run is actually excessive.
If two runs terminate in the same configuration (state plus pair of read strings),
they can be extended in the same way. Basically, the number of runs initially
shows exponential growth, while the number of configurations is quadratic in the
length of the smaller of the strings. So, removing this excess can be vital for
computational reaons. In Step 3 we had 4 runs and 3 different end situations, in
Step 4 we have 7 runs, but only 4 different end configurations.

Thus we can improve the algorithm once more as follows. We do not keep a
record of the run, only of its resulting configuration, which consists of the state
and positions at the input and the output string. In each step we just calculate the
possible next configurations for the situations that have recently been added. Each
step will advance the positions by at least one, so we are sure to make progress.
How long does this algorithm take to work? Let’s count. The configurations are
triples〈x, j, k〉, wherex is a state of the machine,i is the position of the character
to the right of the bar on the input string,k the position of the character to the right
of the bar on the output string. On〈~x, ~y〉 there are|Q| · |~x| · |~y| many such triples.
All the algorithm does is compute which ones are accessible from〈0,0,0〉. At
the end, it looks whether there is one of the form〈q, |~x |~y|〉, whereq ∈ F (q is
accepting). Thus the algorithm takes|Q| · |~x| · |~y| time, time propotional in both
lengths. (Recall here the discussion of Section 13. What we are computing is the
reachability relation in the set of configuations. This can be done in linear time.)

One might be inclined to think that the first algorithm is faster because it goes
into the run very quickly. However, it is possible to show that if the input is

17. Using Finite State Transducers 66

appropriately chosen, it might take exponential time to reach an answer. So, on
certain examples this algorithm is excessively slow. (Nevertheless, sometimes it
might be much faster that the breadth first algorithm.)

Now we look ata different problem: given an input string, what are the possible
output strings? We have already seen that there can be infinitely many, so one
might need a regular expression to list them all. Let us not do that here. Let
us look instead into ways of finding at least one output string. First, an artificial
example. The automaton has the following transitions.

0
a:c
−→ 1 0

a:d
−→ 2(172)

1
a:c
−→ 1 2

a:d
−→ 2

2
b:ε
−→ 3

0 is initial, and 1 and 3 are accepting. This machine has as input strings all strings
of the forma+b?. However, the relation it defines is this:

(173) {〈an, cn〉 : n > 0} ∪ {〈anb, d〉 : n > 0}

The translation of each given string is unique; however, it depends on the last
character of the input! So, we cannot simply think of the machine as taking each
character from the input and immediately returning the corresponding output char-
acter. We have to buffer the entire output until we are sure that the run we are
looking at will actually succeed.

Let us look at a real problem. Suppose we design a transducer for Arabic.
Let us say that the surface formkatab should be translated into the deep form
ktb+3Pf, but the formbaktib into ktb+1Pr. Given: input stringbaktib. Con-
figuration is now: 0,|baktib. No output yet. The first character isb. We face
two choices: consider it as part of a root (say, of a formbadan to be translated
asbdn+3Pf), or to consider it is the first letter of the prefixba. So far there is
nothing that we can do to eliminate either option, so we keep them both open. It
is only when we have reached the fourth letter,t, when the situation is clear: if
this was a 3rd perfect form, we should seea. Thus, the algorithm we propose
is this: try to find a run that matches the input string and then look at the output
string it defines. The algorithm to find a run for the input string can be done as
above, using depth first or breadth first search. Once again, this can be done in
quadratic time. (Basically, the possible runs can be compactly represented and
then converted into an output string.)

18. Context Free Grammars 67

18 Context Free Grammars

Definition 22 Let A be as usual an alphabet. Let N be a set of symbols, N disjoint
with A,Σ ⊆ N. Acontext free ruleover N as the set ofnonterminal symbolsand
A the set ofterminal symbolsis a pair 〈X, ~α〉, where X∈ N and~α is a string over
N ∪ A. We write X→ ~α for the rule. Acontext free grammaris a quadruple
〈A,N,Σ,R〉, where R is a finite set of context free rules. The setΣ is called the set
of start symbols

Often it is assumed that a context free grammar has just one start symbol, but in
actual practice this is mostly not observed. Notice that context free rules allow
the use of nonterminals and terminals alike. The implicit convention we use is as
follows. A string of terminals is denoted by a Roman letter with a vector arrow,
a mixed string containing both terminals and nonterminals is denoted by a Greek
letter with a vector arrow. (The vector is generally used to denote strings.) If the
difference is not important, we shall use Roman letters.

The following are examples of context free rules. The conventions that apply
here are as follows. Symbols in print are terminal symbols; they are denoted us-
ing typewriter font. Nonterminal symbols are produced by enclosing an arbitrary
string in brackets:< · · · >.

< digit >→ 0(174)

< digit >→ 1

< number>→< digit >

< number>→< number>< digit >

There are some conventions that apply to display the rules in a more compact
form. The vertical slash ‘|’ is used to merge two rules with the same left hand
symbol. So, whenX→ ~α andX→ ~γ are rules, you can writeX→ ~α | ~γ. Notice
that one speaks of one rule in the latter case, but technically we have two rules
now. This allows us to write as follows.

< digit >→ 0 | 1 | 2 | . . . | 9(175)

And this stands for ten rules. Concatenation is not written. It is understood that
symbols that follow each other are concatenated the way they are written down.

18. Context Free Grammars 68

A context free grammar can be seen as a statement about sentential structure,
or as a device to generate sentences. We begin with the second viewpoint. We
write ~α⇒ ~γ and say that~γ is derived from ~α in one stepif there is a ruleX→ ~η,
a single occurrence ofX in ~α such that~γ is obtained by replacing that occurrence
of X in ~α by ~η:

(176) ~α = ~σaXa~τ, ~γ = ~σa~ηa~τ

For example, if the rule is< number>→< number>< digit > then replacing
the occurrence of< number> in the string1 < digit >< number> 0 will give
1 < digit >< number>< digit > 0. Now write~α ⇒n+1 ~γ if there is a~ρ such that
~α ⇒n ~ρ and~ρ ⇒ ~γ. We say that~γ is derivable from ~α in n+ 1 steps. Using the
above grammar we have:

(177) < number>⇒4< digit >< digit >< digit >< number>

Finally, ~α ⇒∗ ~γ (~γ is derivable from ~α) if there is ann such that~α ⇒n ~γ.
Now, if X⇒∗ ~γ we say that~γ is astring of category X. Thelanguagegenerated
by G consists of allterminalstrings that have categoryS ∈ Σ. Equivalently,

(178) L(G) := {~x ∈ A∗ : there isS ∈ Σ : S⇒∗ ~x}

You may verify that the grammar above generates all strings of digits from the
symbol< number>. If you take this as the start symbol, the language will consist
in all strings of digits. If, however, you take the symbol< digit > as the start
symbol then the language is just the set of all strings of length one. This is because
even though the symbol< number> is present in the nonterminals and the rules,
there is no way to generate it by applying the rules in succession from< digit >. If
on the other hand,Σ contains both symbols then you get just the set of all strings,
since a digit also is a number. (A fourth possibility isΣ = ∅, in which case the
language is empty.)

There is a trick to reduce the set of start symbols to just one. Introduce a new
symbolS∗ together with the rules

(179) S∗ → S

for every S ∈ Σ. This is a different grammar but it derives the same strings.
Notice that actual linguistics is different. In natural language having a set of start

18. Context Free Grammars 69

symbols is very useful. There are several basic types of sentences (assertions,
questions, commands, and so on). These represent different sets of strings. It real
grammars (GPSG, HPSG, for example), one does not start from a single symbol
but rather from different symbols, one for each class of saturated utterance. This
is useful also for other reasons. It is noted that in answers to questions almost
any constituent can function as a complete utterance. To account for that, one
would need to enter a rule of the kind above for each constituent. But there is
a sense in which these constituents are not proper sentences, they are just parts
of constituents. Rather than having to write new rules to encompass the use of
these constituents, we can just place the burden on the start set. So, in certain
circumstances what shifts is the set of start symbols, the rule set however remains
constant.

A derivation is a full specification of the way in which a string has been gen-
erated. This may be given as follows. It is a sequence of strings, where each
subsequent string is obtained by applying a rule to some occurrence of a nonter-
minal symbol. We need to specify in each step which occurrence of a nonterminal
is targeted. We can do so by underlining it. For example, here is a grammar.

(180) A→ BA | AA, B→ AB | BB, A→ a, B→ b | bc | cb

Here is a derivation:

(181) A, BA, BBA, BBBA, BBBa, BcbBa, bcbBa, bcbbca

Notice that without underlining the symbol which is being replaced some infor-
mation concerning the derivation is lost. In the second step we could have applied
the ruleA → BA instead, yielding the same result. Thus, the following also is a
derivation:

(182) A, BA, BBA, BBBA, BBBa, BcbBa, bcbBa, bcbbca

(I leave it to you to figure out how one can identify the rule that has been applied.)
This type of information is essential, however. To see this, let us talk about the
second approach to CFGs, the analytic one. Inductively, on the basis of a deriva-
tion, we assign constituents to the strings. First, however, we need to fix some
notation.

Definition 23 Let ~x and~y be strings. Anoccurrenceof ~y in ~x is a pair 〈~u,~v〉 of
strings such that~x = ~u~y~v. We call~u the left context of~y in ~x and~v the right
context.

18. Context Free Grammars 70

For example, the stringaa has three occurrences inaacaaa: 〈ε, caaa〉, 〈aac, a〉
and〈aaca, ε〉. It is very important to distinguish a substring from its occurrences
in a string. Often we denote a particular occurrence of a substring by underlining
it, or by other means. In parsing it is very popular to assign numbers to the posi-
tions between (!) the letters. Every letter then spans two adjacent positions, and
in general a substring is represented by a pair of positions〈i, j〉 wherei ≤ j. (If
i = j we have on occurrence of the empty string.) Here is an example:

(183)
E d d y

0 1 2 3 4

The pair〈2,3〉 represents the occurrence〈Ed, y〉 of the letterd. The pair〈1,2〉
represents the occurrence〈E, dy〉. The pair〈1,4〉 represents the (unique) occur-
rence of the stringddy. And so on. Notice that the strings are representatives of
the strings, and they can represent the substring only in virtue of the fact that the
larger string is actually given. This way of talking recommends itself when the
larger string is fixed and we are only talking about its substrings (which is the case
in parsing). For present purposes, it is however less explicit.

Let us return to our derivation. The derivation may start with any string~α, but
it is useful to think of the derivation as having started with a start symbol. Now,
let the final string be~γ (again, it need not be a terminal string, but it is useful to
think that it is). We look at derivation (181). The last string isbcbbca. The last
step is the replacement ofB in bcbBa by bc. It is this replacement that means that
the occurrence〈bcb, a〉 of the stringbc is a constituent of categoryB.

(184) bcbbca

The step before that was the replacement of the firstB by b. Thus, the first occur-
rence ofb is a constituent of categoryb. The third last step was the replacement
of the secondB by cb, showing us that the occurrence〈b, bca〉 is a constituent
of categoryB. Then comes the replacement ofA by a. So, we have the following
first level constituents:〈ε, b〉, 〈b, bca〉, 〈bcb, a〉 and〈bcbbc, ε〉. Now we get to
the replacement ofB by BB. Now, the occurrence ofBB in the string corresponds
to the sequence of the occurrences〈b, bca〉 of cb and〈bcb, a〉 of bc. Their con-
catenation iscbbc, and the occurrence is〈b, a〉.

(185) bcbbca

We go one step back and find that, since now the firstB is replaced byBB, the new
constituent that we get is

(186) bcbbca

18. Context Free Grammars 71

which is of categoryB. In the last step we get that the entire string is of category
A under this derivation. Thus, each step in a derivation adds a constituent to the
analysis of the final string. The structure that we get is as follows. There is a
string~α and a setΓ of occurrences of substrings of~α together with a mapf that
assigns to each member ofΓ a nonterminal (that is, an element ofN). We call the
members ofΓ constituentsand f (C) thecategoryof C, C ∈ Γ.

By comparison, the derivation (182) imposes a different constituent structure
on the string. The different is that it is not (186) that is a constituent but rather

(187) bcbbca

It is however not true that the constituents identify the derivation uniquely. For
example, the following is a derivation that gives the same constituents as (181).

(188) A, BA, BBA, BBBA, BBBa, BBbca, bBbca, bcbbca

The difference between (181) and (188) are regarded inessential, however. Basi-
cally, only the constituent structure is really important, because it may give rise to
different meanings, while different derivations that yield the same structure will
give the same meaning.

The constituent structure is displayed by means oftrees. Recall the definition
of a tree. It is a pair〈T, <〉 where< is transitive (that is, ifx < y andy < z then
alsox < z), it has a root (that is, there is ax such that for ally , x: y < x) and
furthermore, ifx < y, z then eithery < z, y = z or y > z. We say thatx dominates
y if x > y; and that itimmediately dominatesy if it dominatesy but there is noz
such thatx dominatesz andz dominatesy.

Now, let us return to the constituent structure. LetC = 〈~γ1, ~γ2〉 and D =
〈~η1, ~η2〉 be occurrences of substrings. We say thatC is dominated by D, in sym-
bolsC ≺ D, if C , D and (1)~η1 is a prefix of~γ1 and (2)~η2 is a suffix of ~γ2. (It
may happen that~η1 = ~γ1 or that~η2 = ~γ2, but not both.) Visually, what the defini-
tion amounts to is that if one underlines the substring ofC and the substring ofD
then the latter line includes everything that the former underlines. For example,
let C = 〈abc, dx〉 and〈a, x〉. ThenC ≺ D, as they are different and (1) and (2) are
satisfied. Visually this is what we get.

(189) abccddx

Now, let the tree be defined as follows. The set of nodes is the setΓ. The relation
< is defined by≺.

19. Parsing and Recognition 72

The trees used in linguistic analysis are often ordered. The ordering is here
implicitly represented in the string. LetC = 〈~γ1, ~γ2〉 be an occurrences of~σ and
D = 〈~η1, ~η2〉 be an occurrence ofτ. We writeC @ D and say thatC precedesD
if ~γ1~σ is a prefix of~η1 (the prefix need not be proper). If one underlinesC andD
this definition amounts to saying that the line ofC ends before the line ofD starts.

(190) abccddx

HereC = 〈a, cddx〉 andD = 〈abcc, x〉.

19 Parsing and Recognition

Given a grammarG, and a string~x, we ask the following questions:

• (Recognition:) Is~x ∈ L(G)?

• (Parsing:) What derivation(s) does~x have?

Obviously, as the derivations give information about the meaning associated with
an expression, the problem of recognition is generally not of interest. Still, some-
times it is useful to first solve the recognition task, and then the parsing task. For if
the string is not in the language it is unnecessary to look for derivations. The pars-
ing problem for context free languages is actually not the one we are interested
in: what we really want is only to know which constituent structures are associ-
ated with a given string. This vastly reduces the problem, but still the remaining
problem may be very complex. Let us see how.

Now, in general a given string can have any number of derivations, even in-
finitely many. Consider by way of example the grammar

(191) A→ A | a

It can be shown that if the grammar has no unary rules and nor rules of the form
X → ε then a given string~x has an exponential number of derivations. We shall
show that it is possible to eliminate these rules (this reduction is not semantically
innocent!). Given a ruleX → ε and a rule that containsX on the right, say
Z → UXVX, we eliminate the first rule (X → ε); furthermore, we add all rules

19. Parsing and Recognition 73

obtained by replacing any number of occurrences ofX on the right by the empty
string. Thus, we add the rulesZ → UVX, Z → UXV andZ → UV. (Since other
rules may haveX on the left, it is not advisable to replace all occurrences ofX

uniformly.) We do this for all such rules. The resulting grammar generates the
same set of strings, with the same set of constituents, excluding occurrences of
the empty string. Now we are still left with unary rules, for example, the rule
X→ Y. Letρ be a rule havingY on the left. We add the rule obtained by replacing
Y on the left byX. For example, letY → UVX be a rule. Then we add the rule
X→ UVX. We do this for all rules of the grammar. Then we removeX→ Y.

These two steps remove the rules that do not expand the length of a string. We
can express this formally as follows. Ifρ = X → ~α is a rule, we call|~α| − 1 the
productivity of ρ, and denote it byp(ρ). Clearly, p(ρ) ≥ −1. If p(ρ) = −1 then
~α = ε, and if p(ρ) = 0 then we have a rule of the formX→ Y. In all other cases,
p(ρ) > 0 and we callρ productive.

Now, if ~η is obtained in one step from~γ by use ofρ, then |~η| = |~γ| + p(ρ).
Hence|~η| > |~γ| if p(ρ) > 0, that is, ifρ is productive. So, if the grammar only
contains productive rules, each step in a derivation increases the length of the
string, unless it replaces a nonterminal by a terminal. It follows that a string of
lengthn has derivations of length 2n−1 at most. Here is now a very simple minded
strategy to find out whether a string is in the language of the grammar (and to find
a derivation if it is): let~x be given, of lengthn. Enumerate all derivations of
length< 2n and look at the last member of the derivation. If~x is found once,
it is in the language; otherwise not. It is not hard to see that this algorithm is
exponential. We shall see later that there are far better algorithms, which are
polynomial of order 3. Before we do so, let us note, however, that there are
strings which have exponentially many different constituents, so that the task of
enumerating the derivations is exponential. However, it still is the case that we
can represent them is a very concise way, and this again takes only exponential
time.

The idea to the algorithm is surprisingly simple. Start with the string~x. Scan
the string for a substring~y which occurs to the right of a ruleρ = X → ~y. Then
write down all occurrencesC = 〈~u,~v〉 (which we now represent by pairs of posi-
tions — see above) of~y and declare them constituents of categoryX. There is an
actual derivation that defines this constituent structure:

(192) ~uX~v, ~u~y~v = ~x

19. Parsing and Recognition 74

We scan the string for each rule of the grammar. In doing so we have all possible
constituents for derivations of length 1. Now we can discard the original string,
and work instead with the strings obtained by undoing the last step. In the above
case we analyze~uX~v in the same way as we did with~x.

In actual practice, there is a faster way of doing this. All we want to know
is what substrings qualify as constituents of some sort. The entire string is in
the language if it qualifies as a constituent of categoryS for someS ∈ Σ. The
procedure of establishing the categories is as follows. Let~x be given, lengthn.
Constituents are represented by pairs [i, δ], wherei is the first position andi+δ the
last. (Hence 0< δ ≤ n.) We define a matrixM of dimension (n+1)×n. The entry
m(i, j) is the set of categories that the constituent [i, j] has given the grammarG.
(It is clear that we do not need to fill the entriesm(i, j) wherei + j > n. They
simply remain undefined or empty, whichever is more appropriate.) The matrix
is filled inductively, starting withj = 1. We put intom(i,1) all symbolsX such
thatX→ x is a rule of the grammar, andx is the string betweeni andi + 1. Now
assume that we have filledm(i, k) for all k < j. Now we fill m(i, j) as follows. For
every ruleX→ ~α check to see whether the string between the positionsi andi + k
has a decomposition as given by~α. This can be done by cutting the string into
parts and checking whether they have been assigned appropriate categories. For
example, assume that we have a rule of the form

(193) X→ AbuXV

Then~x = [i, j] is a string of categoryX if there are numbersk,m,n, p such that
[i, k] is of categoryA, [i + k,m] = bu (som= 2), [i + k+m,n] is of categoryX and
[i + k +m+ n, p] is of categoryV, and, finallyk +m+ n + p = k. This involves
choosing three numbers,k, n and p, such thatk + 2 + n + p = j, and checking
whether the entrym(i, k) containsA, whetherm(i+k+2,n) containsX and whether
m(i+k+2+n+ p) containsV. The latter entries have been computed, so this is just
a matter of looking them up. Now, givenk andn, p is fixed sincep = j −k−2−n.
There areO(k2) ways to choose these numbers. When we have filled the relevant
entries of the matrix, we look up the entrym(0,n). If it contains aS ∈ Σ the string
is in the language. (Do you see why?)

The algorithm just given is already polynomial. To see why, notice that in each
step we need to cut up a string into a given number of parts. Depending on the
numberν of nonterminals to the right, this takesO(nν−1) steps. There areO(n2)
many steps. Thus, in total we haveO(nν+1) many steps to compute, each of which

19. Parsing and Recognition 75

consumes time proportional to the size of the grammar. The best we can hope for
is to haveν = 2 in which case this algorithm needs timeO(n3). In fact, this can
always be achieved. Here is how. Replace the ruleX → AbuXV be the following
set of rules.

(194) X→ AbuY, Y→ XV.

Here,Y is assumed not to occur in the set of nonterminals. We remark without
proof that the new grammar generates the same language. In general, a rule of the
form X→ Y1Y2 . . .Yn is replaced by

(195) X→ Y1Z1,Z1→ Y2Z2, . . . ,Zn−2→ Yn−1Yn

So, given this we can recognize the language inO(n3) time!

Now, given this algorithm, can we actually find a derivation or a constituent
structure for the string in question? This can be done: start withm(0,n). It con-
tains aS ∈ Σ. Pick one of them. Now choosei such that 0< i < n and look up the
entriesm(0, i) andm(i,n− i). If they containA andB, respectively, and ifS→ AB
is a rule, then begin the derivation as follows:

(196) S,AB

Now underline one ofA or B and continue with them in the same way. This is
a downward search in the matrix. Each step requires linear time, since we only
have to choose a point to split up the constituent. The derivation is linear in the
length of the string. Hence the overall time is quadratic! Thus, surprisingly, the
recognition consumes most of the work. Once that is done, parsing is easy.

Notice that the grammar transformation adds new constituents. In the case
of the rule above we have added a new nonterminalY and added the rules (194).
However, it is easy to return to the original grammar: just remove all constituents
of categoryY. It is perhaps worth examining why adding the constituents saves
time in parsing. The reason is simply that the task of identifying constituents
occurs over and over again. The fact that a sequence of two constituents has been
identified is knowledge that can save time later on when we have to find such a
sequence. But in the original grammar there is no way of remembering that we
did have it. Instead, the new grammar provides us with a constituent to handle the
sequence.

19. Parsing and Recognition 76

Definition 24 A CFG is in standard form if all the rules have the form X→
Y1Y2 · · ·Yn, with X,Yi ∈ N, or X→ ~x. If in addition n= 2 for all rules of the first
form, the grammar is said to be inChomsky Normal Form.

There is an easy way to convert a grammar into standard form. Just introduce a
new nonterminalYa for each lettera ∈ A together with the rulesYa → a. Next
replace each terminala that cooccurs with a nonterminal on the right hand side of
a rule byYa. The new grammar generates more constituents, since letters that are
introduced together with nonterminals do not form a constituent of their own in
the old grammar. Such letter occurrences are calledsyncategorematic. Typical
examples of syncategorematic occurrences of letters are brackets that are inserted
in the formation of a term. Consider the following expansion of the grammar
(174).

< term>→ < number>| (<term>+<term>)(197)

| (<term>*<term>)

Here, operator symbols as well as brackets are added syncategorematically. The
procedure of elimination will yield the following grammar.

< term >→ < number >| Y(< term> Y+ < term> Y)(198)

| Y(< term> Y+ < term> Y)

Y(→(

Y) →)

Y+ →+

Y∗ →*

However, often the conversion to standard form can be avoided however. It is
mainly interesting for theoretic purposes.

Now, it may happen that a grammar uses more nonterminals than necessary.
For example, the above grammar distinguishesY+ from Y∗, but this is not neces-
sary. Instead the following grammar will just as well.

< term>→ < number>| Y(< term> Yo < term> Y)(199)

Y(→(

Y) →)

Yo→+ | *

20. Greibach Normal Form 77

The reduction of the number of nonterminals has the same significance as in the
case of finite state automata: it speeds up recognition, and this can be significant
because not only the number of states is reduced but also the number of rules.

Another source of time efficiency is the number of rules that match a given
right hand side. If there are several rules, we need to add the left hand symbol for
each of them.

Definition 25 A CFG isinvertible if for any pair of rules X→ ~α and Y→ ~α we
have X= Y.

There is a way to convert a given grammar into invertible form. The set of nonter-
minals is℘(N), the powerset of the set of nonterminals of the original grammar.
The rules are

(200) S→ T0T1 . . .Tn−1

whereS is the set of allX such that there areYi ∈ Ti (i < n) such thatX →
Y0Y1 . . .Yn−1 ∈ R. This grammar is clearly invertible: for any given sequence
T0T1 · · ·Tn−1 of nonterminals the left hand sideS is uniquely defined. What needs
to be shown is that it generates the same language (in fact, it generates the same
constituent structures, though with different labels for the constituents).

20 Greibach Normal Form

We have spoken earlier about different derivations defining the same constituent
structure. Basically, if in a given string we have several occurrences of nonter-
minals, we can choose any of them and expand them first using a rule. This is
because the application of two rules that target the same string but different non-
terminals commute:

(201)
· · ·X · · ·Y · · ·

· · · ~α · · ·Y · · · · · ·X · · ·~γ · · ·
· · · ~α · · ·~γ · · ·

This can be exploited in many ways, for example by always choosing a particular
derivation. For example, we can agree to always expand the leftmost nonterminal,
or always the rightmost nonterminal.

20. Greibach Normal Form 78

Recall that a derivation defines a set of constituent occurrences, which in turn
constitute the nodes of the tree. Notice that each occurrence of a nonterminal
is replaced by some right hand side of a rule during a derivation that leads to a
terminal string. After it has been replaced, it is gone and can no longer figure in a
derivation. Given a tree, alinearization is an ordering of the nodes which results
from a valid derivation in the following way. We writexC y if the constituent of
x is expanded before the constituent ofy is. One can characterize exactly what it
takes for such an order to be a linearization. First, it is linear. Second ifx > y then
alsoxC y. It follows that the root is the first node in the linearization.

Linearizations are closely connected with search strategies in a tree. We shall
present examples. The first is a particular case of the so–calleddepth–first search
and the linearization shall be calledleftmost linearization. It is as follows.xC y
iff x > y or x @ y. (Recall thatx @ y iff x precedesy. Trees are always considered
ordered.) For every tree there is exactly one leftmost linearization. We shall
denote the fact that there is a leftmost derivation of~α from X by X ``G ~α. We can
generalize the situation as follows. LetJ be a linear ordering uniformly defined
on the leaves of local subtrees. That is to say, ifB andC are isomorphic local trees
(that is, if they correspond to the same ruleρ) thenJ orders the leavesB linearly
in the same way asC orders the leaves ofC (modulo the unique (!) isomorphism).
In the case of the leftmost linearization the ordering is the one given by@. Now
a minute’s reflection reveals that every linearization of the local subtrees of a tree
induces a linearization of the entire tree but not conversely (there are orderings
which do not proceed in this way, as we shall see shortly).X `JG ~α denotes
the fact that there is a derivation of~α from X determined byJ. Now call π a
priorization forG = 〈S,N,A,R〉 if π defines a linearization on the local treeHρ,
for everyρ ∈ R. Since the root is always the first element in a linearization, we
only need to order the daughters of the root node, that is, the leaves. Let this
ordering beJ. We writeX `πG ~α if X `JG ~α for the linearizationJ defined byπ.

Proposition 26 Letπ be a priorization. Then X̀πG ~x iff X `G ~x.

A different strategy is thebreadth–first search. This search goes through the tree
in increasing depth. LetSn be the set of all nodesx with d(x) = n. For eachn,
Sn shall be ordered linearly by@. Thebreadth–first search is a linearization∆,
which is defined as follows. (a) Ifd(x) = d(y) then x ∆ y iff x @ y, and (b) if
d(x) < d(y) thenx ∆ y. The difference between these search strategies, depth–first
and breadth–first, can be made very clear with tree domains.

20. Greibach Normal Form 79

Definition 27 A tree domainis a set T of strings of natural numbers such that (i)
if ~x if a prefix of~y ∈ T then also~x ∈ T, (b) if ~x j ∈ T and i< j then also~xi ∈ T.
We define~x > ~y if ~x is a proper prefix of~y and~x @ ~y iff ~x = ~ui~v and~y = ~u j~w for
some sequences~u,~v, ~w and numbers i< j.

The depth–first search traverses the tree domain in the lexicographical order, the
breadth–first search in the numerical order. Let the following tree domain be
given.

00 10 11 20

0 1 2

ε

�
�
�
�

B
B

B
B

�
�

�
�

@
@

@
@

The depth–first linearization is

(202) ε,0,00,1,10,11,2,20

The breadth–first linearization, however, is

(203) ε,0,1,2,00,10,11,20

Notice that with these linearizations the tree domainω∗ cannot be enumerated.
Namely, the depth–first linearization begins as follows.

(204) ε,0,00,000,0000, . . .

So we never reach 1. The breadth–first linearization goes like this.

(205) ε,0,1,2,3, . . .

So, we never reach 00. On the other hand,ω∗ is countable, so we do have a
linearization, but it is more complicated than the given ones.

20. Greibach Normal Form 80

The first reduction of grammars we look at is the elimination of superfluous
symbols and rules. LetG = 〈S,A,N,R〉 be a CFG. CallX ∈ N reachable if
G ` ~αaXa~β for some~α and~β. X is calledcompletable if there is an~x such that
X⇒∗R ~x.

(206)
S → AB A → CB

B → AB A → x

D → Ay C → y

In the given grammarA, C andD are completable, andS, A, B andC are reachable.
SinceS, the start symbol, is not completable, no symbol is both reachable and
completable. The grammar generates no terminal strings.

Let N′ be the set of symbols which are both reachable and completable. If
S < N′ thenL(G) = ∅. In this case we putN′ := {S} andR′ := ∅. Otherwise, letR′

be the restriction ofR to the symbols fromA∪N′. This definesG′ = 〈S,N′,A,R′〉.
It may be that throwing away rules may make some nonterminals unreachable or
uncompletable. Therefore, this process must be repeated untilG′ = G, in which
case every element is both reachable and completable. Call the resulting grammar
Gs. It is clear thatG ` ~α iff Gs ` ~α. Additionally, it can be shown that every
derivation inG is a derivation inGs and conversely.

Definition 28 A CFG is calledslenderif either L(G) = ∅ and G has no nontermi-
nals except for the start symbol and no rules; or L(G) , ∅ and every nonterminal
is both reachable and completable.

Two slender grammars have identical sets of derivations iff their rule sets are iden-
tical.

Proposition 29 Let G and H be slender. Then G= H iff der(G) = der(H).

Proposition 30 For every CFG G there is an effectively constructible slender
CFG Gs = 〈S,Ns,A,Rs〉 such that Ns ⊆ N, which has the same set of deriva-
tions as G. In this case it also follows that LB(Gs) = LB(G). �

Definition 31 Let G= 〈S,N,A,R〉 be a CFG. G is inGreibach(Normal) Form if
every rule is of the formS→ ε or of the form X→ xa~Y.

20. Greibach Normal Form 81

Proposition 32 Let G be in Greibach Normal Form. If X̀G ~α then ~α has a
leftmost derivation from X in G iff ~α = ~ya~Y for some~y ∈ A∗ and~Y ∈ N∗ and~y = ε
only if ~Y = X.

The proof is not hard. It is also not hard to see that this property characterizes the
Greibach form uniquely. For if there is a rule of the formX → Ya~γ then there is
a leftmost derivation ofYa~γ from X, but not in the desired form. Here we assume
that there are no rules of the formX→ X.

Theorem 33 (Greibach) For every CFG one can effectively construct a grammar
Gg in Greibach Normal Form with L(Gg) = L(G).

Before we start with the actual proof we shall prove some auxiliary statements.
We call ρ an X–production if ρ = X → ~α for some~α. Such a production is
called left recursive if it has the formX → Xa~β. Let ρ = X → ~α be a rule;
defineR−ρ as follows. For every factorization~α = ~αa1Ya~α2 of ~α and every rule
Y → ~β add the ruleX → ~αa1

~βa~α2 to R and finally remove the ruleρ. Now
let G−ρ := 〈S,N,A,R−ρ〉. Then L(G−ρ) = L(G). We call this construction as
skipping the ruleρ. The reader may convince himself that the tree forG−ρ can be
obtained in a very simple way from trees forG simply by removing all nodesx
which dominate a local tree corresponding to the ruleρ, that is to say, which are
isomorphic toHρ. This technique works only ifρ is not anS–production. In this
case we proceed as follows. Replaceρ by all rules of the formS → ~β where~β
derives from~α by applying a rule. Skipping a rule does not necessarily yield a
new grammar. This is so if there are rules of the formX → Y (in particular rules
like X→ X).

Lemma 34 Let G = 〈S,N,A,R〉 be a CFG and let X→ Xa~αi, i < m, be all
left recursive X–productions as well as X→ ~β j, j < n, all non left recursive X–
productions. Now let G1 := 〈S,N ∪ {Z},A,R1〉, where Z< N ∪ A and R1 consists
of all Y–productions from R with Y, X as well as the productions

(207)
X→ ~β j j < n, Z→ ~αi i < m,
X→ ~βaj Z j < n, Z→ ~αai Z i < m.

Then L(G1) = L(G).

20. Greibach Normal Form 82

Proof. We shall prove this lemma rather extensively since the method is relatively
tricky. We consider the following priorization onG1. In all rules of the form
X → ~β j andZ → ~αi we take the natural ordering (that is, the leftmost ordering)
and in all rulesX→ ~β jZ as well asZ→ ~αiZ we also put the left to right ordering
except thatZ precedes all elements from~α j and~βi, respectively. This defines the
linearizationJ. Now, let M(X) be the set of all~γ such that there is a leftmost
derivation fromX in G in such a way that~γ is the first element not of the form
Xa~δ. Likewise, we defineP(X) to be the set of all~γ which can be derived fromX
priorized byJ in G1 such that~γ is the first element which does not containZ. We
claim thatP(X) = M(X). It can be seen that

(208) M(X) =
⋃
j<n

~β j · (
⋃
i<m

~αi)
∗ = P(X)

From this the desired conclusion follows thus. Let~x ∈ L(G). Then there exists a
leftmost derivationΓ = 〈Ai : i < n + 1〉 of ~x. (Recall that theAi are instances of
rules.) This derivation is cut into segmentsΣi, i < σ, of lengthki, such that

(209) Σi = 〈Aj :
∑
p<i

kp ≤ j < 1+
∑
p<i+1

ki〉

This partitioning is done in such a way that eachΣi is a maximal portion ofΓ of X–
productions or a maximal portion ofY–productions withY , X. TheX–segments
can be replaced by aJ–derivation̂Σi in G1, by the previous considerations. The
segments which do not containX–productions are alreadyG1–derivations. For
them we put̂Σi := Σi. Now let Γ̂ be result of stringing together thêΣi. This
is well–defined, since the first string of̂Σi equals the first string ofΣi, as the last
string ofΣ̂i equals the last string ofΣi. Γ̂ is aG1–derivation, priorized byJ. Hence
~x ∈ L(G1). The converse is analogously proved, by beginning with a derivation
priorized byJ. �

Now to the proof of Theorem 33. We may assume at the outset thatG is in
Chomsky Normal Form. We choose an enumeration ofN asN = {Xi : i < p}.
We claim first that by taking in new nonterminals we can see to it that we get a
grammarG1 such thatL(G1) = L(G) in which theXi–productions have the form
Xi → xa~Y or Xi → Xaj ~Y with j > i. This we prove by induction oni. Let i0 be

the smallesti such that there is a ruleXi → Xaj ~Y with j ≤ i. Let j0 be the largest

j such thatXi0 → Xaj ~Y is a rule. We distinguish two cases. The first isj0 = i0.
By the previous lemma we can eliminate the production by introducing some new

20. Greibach Normal Form 83

nonterminal symbolZi0. The second case isj0 < i0. Here we apply the induction
hypothesis onj0. We can skip the ruleXi0 → Xaj0

~Y and introduce rules of the form

(a) Xi0 → Xak ~Y
′ with k > j0. In this way the second case is either eliminated or

reduced to the first.

Now let P := {Zi : i < p} be the set of newly introduced nonterminals. It may
happen that for somej Z j does not occur in the grammar, but this does not disturb
the proof. Let finallyPi := {Z j : j < i}. At the end of this reduction we have rules
of the form

Xi → Xaj ~Y (j > i)(210a)

Xi → xa~Y (x ∈ A)(210b)

Zi → ~W (~W ∈ (N ∪ Pi)
+a(ε ∪ Zi))(210c)

It is clear that everyXp−1–production already has the formXp−1 → xa~Y. If some
Xp−2–production has the form (210a) then we can skip this rule and get rules of the
form Xp−2 → ~x~Y′. Inductively we see that all rules of the form can be eliminated
in favour of rules of the form (210b). Now finally the rules of type (210c). Also
these rules can be skipped, and then we get rules of the formZ → xa~Y for some
x ∈ A, as desired.

For example, let the following grammar be given.

(211)
S → SDA | CC A → a

D → DC | AB B → b

C → c

The productionS → SDA is left recursive. We replace it according to the above
lemma by

(212) S→ CCZ, Z→ DA, Z→ DAZ

Likewise we replace the productionD→ DC by

(213) D→ ABY, Y→ C, Y→ CY

With this we get the grammar

(214)

S → CC | CCZ A → a

Z → DA | DAZ B → b

D → AB | ABY C → c

Y → C | CY

21. Pushdown Automata 84

Next we skip theD–productions.

(215)

S → CC | CCZ A → a

Z → ABA | ABYA | ABAZ | ABYAZ B → b

D → AB | ABY C → c

Y → C | CY

NextD can be eliminated (since it is not reachable) and we can replace on the right
hand side of the productions the first nonterminals by terminals.

(216)
S → cC | cCZ

Z → aBA | aBYA | aBAZ | aBYZ

Y → c | cY

Now the grammar is in Greibach Normal Form.

21 Pushdown Automata

Regular languages can be recognized by a special machine, the finite state automa-
ton. Recognition here means that the machine scans the string left–to–right and
when the string ends (the machine is told when the string ends) then it says ‘yes’
if the string is in the language and ‘no’ otherwise. (This picture is only accurate
for deterministic machines; more on that later.)

There are context free languages which are not regular, for example{anbn : n ∈
N}. Thus devices that can check membership inL(G) for a CFG must therefore
be more powerful. The devices that can do this are calledpushdown automata.
They are finite state machines which have a memory in form of a pushdown. A
pushdown memory is potentially infinite. You can store in it as much as you like.
However, the operations that you can perform on a pushdown storage are limited.
You can see only the last item you added to it, and you can either put something
on top of that element, or you can remove that element and then the element that
was added before it becomes visible. This behaviour is also calledLIFO (last–
in–first–out) storage. It is realized for example when storing plates. You always
add plates on top, and remove from the top, so that the bottommost plates are only
used when there is a lot of people. It is easy to see that you can decide whether
a given string has the formanbn given an additional pushdown storage. Namely,
you scan the string from left to right. As long as you geta, you put it on the

21. Pushdown Automata 85

pushdown. Once you hit on ab you start popping theas from the pushdown, one
for eachb that you find. If the pushdown is emptied before the string is complete,
then you have morebs thana. If the pushdown is not emptied but the string is
complete, then you have moreas thanbs. So, you can tell whether you have a
string of the required form if you can tell whether you have an empty storage. We
assume that this is the case. In fact, typically what one does is to fill the storage
before we start with a special symbol#, theend-of-storage marker. The storage
is represented as a string over an alphabetD that contains#, thestorage alphabet.
Then we are only in need of the following operations and predicates:

➊ For eachd ∈ D we have an operation pushd : ~x 7→ ~xad.

➋ For eachd ∈ D we have a predicate topd which if true of~x iff ~x = ~yad.

➌ We have an operation pop :~xad 7→ ~x.

(If we do not have an end of stack marker, we also need a predicate ‘empty’, which
is true of a stack~x iff ~x = ε.

Now, notice that the control structure is a finite state automaton. It schedules
the actions using the stack as a storage. This is done as follows. We have two
alphabets,A, the alphabet of letters read from the tape, andI , the stack alphabet,
which contains a special symbol,#. Initially, the stack contains one symbol,#. A
transition instruction is a a quintuple〈s, c, t, s′, p〉, wheresands′ are states,c is a
character or empty (the character read from the string), andt is a character (read
from the top of the stack) and finallyp an instruction to either pop from the stack
or push a character (different from#) onto it. A PDA contains a set of instructions.
Formally, it is defined to be a quintuple〈A, I ,Q, i0, F, σ〉, whereA is the input
alphabet,I the stack alphabet,Q the set of states,i0 ∈ Q the start state,F ⊆ Q the
set of accepting states, andσ a set of instructions. IfA is reading a string, then it
does the following. It is initialized with the stack containing# and the initial state
i0. Each instruction is an option for the machine to proceed. However, it can use
that option only if it is in states, if the topmost stack symbol ist and if c , ε, the
next character must matchc (and is then consumed). The next state iss′ and the
stack is determined fromp. If p = pop, then the topmost symbol is popped, if it
is pusha, thena is pushed onto stack. PDAs can be nondeterministic. For a given
situation we may have several options. If given the current stack, the current state
and the next character there is at most one operation that can be chosen, we call

21. Pushdown Automata 86

the PDAdeterministic. We add here that theoretically the operation that reads the
top of the stack removes the topmost symbol. The stack really is just a memory
device. In order to look at the topmost symbol we actally need to pop it off the
stack. However, if we put it back, then this as if we had just ‘peeked’ into the top
of the stack. (We shall not go into the details here: but it is possible to peek into
any number of topmost symbols. The price one pays is an exponential blowup of
the number of states.)

We say that the PDAaccepts~x by state if it is in a final state at the end of~x.
To continue the above example, we put the automaton in an accepting state if after
poppingas the topmost symbol is#. Alternatively, we say that the PDAaccepts
~x by stack if the stack is empty after~x has been scanned. A slight modification of
the machine results in a machine that accepts the language by stack. Basically, it
needs to put onea less than needed on the stack and then cancel# on the last move.
It can be shown that the class of languages accepted by PDAs by state is the same
as the class of languages accepted by PDAs by stack, although for a given machine
the two languages may be different. We shall establish that the class of languages
accepted by PDAs by stack are exactly the CFGs. There is a slight problem in
that the PDAs might actually be nondeterministic. While in the case of finite state
automata there was a way to turn the machine into an equivalent deterministic
machine, this is not possible here. There are languages which are CF but cannot be
recognized by a deterministic PDA. An example is the language of palindromes:
{~x~xT : ~x ∈ A∗}, where~xT is the reversal of~x. For example,abddcT = cddba.
The obvious mechanism is this: scan the input and start pushing the input onto the
stack until you are half through the string, and then start comparing the stack with
the string you have left. You accept the string if at the end the stack is#. Since
the stack is popped in reverse order, you recognize exactly the palindromes. The
trouble is that there is no way for the machine to know when to shift gear: it cannot
tell when it is half through the string. Here is the dilemma. Let~x = abc. Then
abccba is a palindrome, but so isabccbaabccba andabccbaabccbaabccba. In
general,abccban is a palindrome. If you are scanning a word like this, there is no
way of knowing when you should turn and pop symbols, because the string might
be longer than you have thought.

It is for this reason that we need to review our notion of acceptance. First, we
say that arun of the machine is a series of actions that it takes, given the input. Al-
ternatively, the run specifies what the machine chooses each time it faces a choice.
(The alternatives are simply different actions and different subsequent states.) A

21. Pushdown Automata 87

machine is deterministic iff for every input there is only one run. We say that the
machine accepts the string if there is an accepting run on that input. Notice that
the definition of a run is delicate. Computers are not parallel devices, they can
only execute one thing at a time. They also are deterministic. The PDA has the
same problem: it chooses a particular run but has no knowledge of what the out-
come would have been had it chosen a different run. Thus, to check whether a run
exists on a input we need to emulate the machine, and enumerate all possible runs
and check the outcome. Alternatively, we keep a record of the run and backtrack.

Now back to the recognition problem. To show the theorem we use the Greibach
Normal Form. Observe the following. The Greibach Form always puts a terminal
symbol in front of a series of nonterminals. We define the following machine.
Its stack alphabet isN, the beginning of stack is the start symbol ofG. Now let
X → aY0Y1 · · ·Yn−1 be a rule. Then we translate this rule into the following ac-
tions. Whenever the scanned symbol isa, and whenever the topmost symbol of
the stack isX then pop that symbol from the stack and putYn−1 thenYn−2 thenYn−3

etc. on the stack. (To schedule this correctly, the machine needs to go through
several steps, since each step allows to put only one symbol onto the stack. But
we ignore that finesse here.) Thus the last symbol put on the stack isY0, which is
then visible. It can be shown that the machine ends with an empty stack on input
~x iff there is a leftmost derivation of~x that corresponds to the run.

Let us see an example. Take the grammar

(217)

0 S → cC

1 S → cCZ

2 Z → aBA

3 Z → aBYA

4 Z → aBAZ

5 Z → aBYZ

6 Y → c

7 Y → cY

8 A → a

9 B → b

10 C → c

We take the stringccabccaba. Here is a leftmost derivation (to the left we show

22. Shift–Reduce–Parsing 88

the string, and to the right the last rule that we applied):

(218)

S −

cCZ 1
ccZ 10
ccaBYZ 5
ccabYZ 9
ccabcYZ 7
ccabccZ 8
ccabccaBA 2
ccabccabA 9
ccabccaba 8

The PDA is parsing the string as follows. (We show the successful run.) The
stack is initialized toS (Line 1). It readsc and deletesS, but puts firstZ and then
C on it. The stack now isZC (leftmost symbol is at the bottom!). We are in Line
2. Now it readsc and deletesC from stack (Line 3). Then it readsa and pops
Z, but pushes firstZ, thenY and thenB (Line 4). Then it popsB on readingb,
pushing nothing on top (Line 5). It is clear that the strings to the left represent the
following: the terminal string is that part of the input string that has been read,
and the nonterminal string is the stack (in reverse order). As said, this is just one
of the possible runs. There is an unsuccessful run which starts as follows. The
stack isS. The machine readsc and decides to go with Rule 0: so it popsC but
pushes onlyC. Then it readsc, and is forced to go with Rule 10, popping off C,
but pushing nothing onto it. Now the stack is empty, and no further operation can
take place. That run fails.

Thus, we have shown that context free languages can be recognized by PDAs
by empty stack. The converse is a little trickier, we will not spell it out here.

22 Shift–Reduce–Parsing

We have seen above that by changing the grammar to Greibach Normal Form we
can easily implement a PDA that recognizes the strings using a pushdown of the
nonterminals. It is not necessary to switch to Greibach Normal Form, though. We
can translate directly the grammar into a PDA. Alos, grammar and automaton are
not uniquely linked to each other. Given a particular grammar, we can define quite

22. Shift–Reduce–Parsing 89

different automata that recognize the languages based on that grammar. The PDA
implements what is often called aparsing strategy. The parsing strategy makes
use of the rules of the grammar, but depending on the grammar in quite different
ways. One very popular method of parsing is the following. We scan the string,
putting the symbols one by one on the stack. Every time we hit a right hand side
of a rule we undo the rule. This is to do the following: suppose the top of the
stack contains the right hand side of a rule (in reverse order). Then we pop that
sequence and push the left–hand side of the rule on the stack. So, if the rule is
A → a and we geta, we first push it onto the stack. The top of the stack now
matches the right hand side, we pop it again, and then pushA. Suppose the top of
the stack contains the sequenceBA and there is a ruleS→ AB, then we pop twice,
removing that part and pushS. To do this, we need to be able to remember the top
of the stack. If a rule has two symbols to its right, then the top two symbols need
to be remembered. We have seen earlier that this is possible, if the machine is
allowed to do some empty transitions in between. Again, notice that the strategy
is nondeterministic in general, because several options can be pursued at each
step. (a) Suppose the top part of the stack isBA, and we have a ruleS→ AB. Then
either we push the next symbol onto the stack, or we use the rule that we have. (b)
Suppose the top part of the stack isBA and we have the rulesS → AB andC → A.
Then we may either use the first or the second rule.

The strongest variant is to always reduce when the right hand side of a rule is
on top of the stack. Despite not being always successful, this strategy is actually
useful in a number of cases. The condition under which it works can be spelled out
as follows. Say that a CFG istransparent if for every string~α and nonterminal
X ⇒∗ ~α, if there is an occurrence of a substring~γ, say~α = ~κ1~γ~κ2, and if there is
a ruleY → ~γ, then〈~κ1,~κ2〉 is a constituent occurrence of categoryY in ~α. This
means that up to inessential reorderings there is just one parse for any given string
if there is any. An example of a transparent language is arithmetical terms where
no brackets are omitted. Polish Notation and Reverse Polish Notation also belong
to this category. A broader class of languages where this strategory is successful
is the class of NTS–languages. A grammar has the NTS–property if whenever
there is a stringS⇒∗ ~κ1~γ~κ2 and ifY→ ~γ thenS⇒∗ ~κ1Y~κ2. (Notice that this does
not mean that the constituent is a constituent under the same parse; it says that one
can find a parse that ends inY being expanded in this way, but it might just be a
different parse.) Here is how the concepts differ. There is a grammar for numbers
that runs as follows.

< digit >→ 0 | 1 | · · · | 9(219)

22. Shift–Reduce–Parsing 90

< number>→ < digit >|< number >< number >

This grammar has the NTS–property. Any digit is of category< digit >, and a
number can be broken down into two numbers at any point. The standard defini-
tion is as follows.

< digit >→ 0 | 1 | · · · | 9(220)

< number>→ < digit >|< digit >< number>

This grammar is not an NTS–grammar, because in the expression

(221) < digt >< digit >< digit >

the occurrence〈< digit >, ε〉 of the string< digit >< digit > cannot be a
constituent occurrence under any parse. Finally, the language of strings has no
transparent grammar! This is because the string732 possesses occurrences of the
strings73 and32. These occurrences must be occurrences under one and the same
parse if the grammar is transparent. But they overlap. Contradiction.

Now, the strategy above is deterministic. It is easy to see that there is a non-
deterministic algorithm implementing this idea that actually defines a machine
parsing exactly the CFLs. It is a machine where you only have a stack, and sym-
bols scanned are moved onto the stack. The topk symbols are visible (with PDAs
we hadk = 1). If the lastm symbols,m ≤ k, are the right hand side of a rule,
you are entitled to replace it by the corresponding left hand side. (This style of
parsing is called shift–reduce parsing. One can show that PDAs can emulate a
shift–reduce parser.) The stack gets cleared bym− 1 symbols, so you might end
up seeing more of the stack after this move. Then you may either decide that once
again there is a right hand side of a rule which you want to replace by the left hand
side (reduce), or you want to see one more symbol of the string (shift). In general,
like with PDAs, the nondeterminism is unavoidable.

There is an important class of languages, the so–called LR(k)–grammars. These
are languages where the question whether to shift or to reduce can be based on a
lookahead ofk symbols. That is to say, the parser might not know directly if it
needs to shift or to reduce, but it can know for sure if it sees the nextk symbols (or
whatever is left of the string). One can show that for a language which there is an
LR(k)–grammar withk > 0 there also is a LR(1)–grammar. So, a lookahead of just
one symbol is enough to make an informed guess (at least with respect to some
grammar, which however need not generate the constituents we are interested in).

23. Some Metatheorems 91

If the lookahead is 0 and we are interested in acceptance by stack, then the PDA
also tells us when the string should be finished. Because in consuming the last
letter it should know that this is the last letter because it will erase the symbol# at
the last moment. Unlike nondeterministic PDAs which may have alternative paths
they can follow, a deterministic PDA with out lookahead must make a firm guess:
if the last letter is there it must know that this is so. This is an important class.
Language of this form have the following property: no proper prefix of a string
of the language is a string of the language. The languageB = {anbn : n ∈ N} of
balanced strings is in LR(0), while for exampleB+ is not (if contains the string
abab, which has a proper prefixab.)

23 Some Metatheorems

It is often useful to know whether a given language can be generated by geammars
of a given type. For example: how do we decide whether a language is regular?
The following is a very useful citerion.

Theorem 35 Suppose that L is a regular language. Then there exists a number
k such that every~x ∈ L of length at least k has a decomposition~x = ~u~v~w with
nonempty~v such that for all n∈ N:

(222) ~u~vn~w ∈ L

Before we enter the proof, let us see some consequences of this theorem. First,
we may choosen = 0, in which case we get~u~w ∈ L.

The proof is as follows. SinceL is regular, there is a fsaA such thatL = L(A).
Let k be the number of states ofA. Let ~x be a string of length at leastk. If ~x ∈ L
then there is an accepting run ofA on ~x:

(223) q0
x0
→ q1

x1
→ q2

x2
→ q3 · · · qn−1

xn−1
→ qn

This run visitsn + 1 states. ButA has at mostn states, so there is a state, which
has been visited twice. There arei and j such thati < j andqi = qj. Then put
~u := x0x1 · · · xi−1, ~v := xi xi+1 · · · xj−1 and~w := xj xj+1 · · · xn−1. We claim that there

23. Some Metatheorems 92

exists an accepting run for every string of the form~u~vq~w. For example,

q0
~u
→ qi = qj

~w
→ qn(224)

q0
~u
→ qi

~v
→ qj = qi

~w
→ xn(225)

q0
~u
→ qi

~v
→ qj = qi

~v
→ qj

~w
→ xn(226)

q0
~u
→ qi

~v
→ qj = qi

~v
→ qj = qi

~v
→ qj = qi

~w
→ xn(227)

There are examples of this kind in natural languages. An amusing example is from
Steven Pinker. In the days of the arms race one produced not onlymissiles

but alsoanti missile missile, to be used against missiles; and thenanti
anti missile missile missiles to attach anti missile missiles. And to at-
tack those, one neededanti anti anti missile missile missile missiles.
And so on. The general recipe for these expressions is as follows:

(228) (antia�)n(missilea�)namissile

We shall show that this is not a regular language. Suppose it is regular. Then there
is ak satisfying the conditions above. Now take the word (antia�)k(missilea�)kamissiile.
There must be a subword of nonempty length that can be omitted or repeated with-
out punishment. No such word exists: let us break the original string into a prefix
(antia�)k of length 5k and a suffix (missilea�)kamissile of length 8(k+1)−1.
The entire string has length 13k + 7. The string we take out must therefore have
length 13n. We assume for simplicity thatn = 1; the general argument is similar.
It is easy to see that it must contain the letters ofanti missile. Suppose, we
decompose the original string as follows:

(229) ~u = (antia�)k−1,~v = anti missilea�,

~w = (missilea�)k−1amissile

Then~u~w is of the required form. Unfortunately,

(230) ~u~v2~w = (antia�)k−naanti missile anti missilea�a

(missilea�)k−2amissile < L

Similarly for any other attempt to divide the string.

23. Some Metatheorems 93

This proof can be simplified using another result. Consider a mapµ : A→ B∗,
which assigns to each lettera ∈ A a string (possibly empty) of letters fromB. We
extendµ to strings as follows.

(231) µ(x0x1x2 · · · xn−1) = µ(x0)µ(x1)µ(x2) · · · µ(xn−1)

For example, letB = {c, d}, andµ(c) := antia� andµ(d) := missilea�. Then

µ(d) = missilea�(232)

µ(cdd) = anti missile missilea�(233)

µ(ccddd) = anti anti missile missile missilea�(234)

So if M = {ckdk+1 : k ∈ N} then the language above is theµ–image ofM (modulo
the blank at the end).

Theorem 36 Let µ : A → B∗ and L ⊆ A∗ be a regular language. Then the set
{µ(~v) : ~v ∈ L} ⊆ B∗ also is regular.

However, we can also do the following: letν be the map

(235) a 7→ c, n 7→ ε, t 7→ ε, i 7→ ε, m 7→ d, s 7→ ε, l 7→ ε, e 7→ ε,� 7→ ε

Then

(236) ν(anti) = c, ν(missile) = d, ν(�) = ε

So,M is also the image ofL underν. Now, to disprove thatL is regular it is enough
to show thatM is not regular. The proof is similar. Choose a numberk. We show
that the conditions are not met for thisk. And since it is arbitrary, the condition
is not met for any number. We take the stringckdk+1. We try to decompose it into
~u~v~w such that~u~vj~w ∈ M for any j. Three cases are to be considered. (a)~v = cp

for somep (which must be> 0):

(237) cc · · · c • c · · · c • c · · · cdd · · · d

Then~u~w = ck−pdk+1, which is not inM. (b)~v = dp for somep > 0. Similarly. (c)
~v = cpdq, with p,q > 0.

(238) cc · · · c • c · · · cd · · · d • dd · · · d

23. Some Metatheorems 94

Then~u~v2~w contains a substringdc, so it is not inM. Contradiction in all cases.
Hence,k does not satisfy the conditions.

A third theorem is this: ifL andM are regular, so isL∩M. This follows from
Theorem 13. For ifL and M are regular, so isA∗ − L, andA∗ − M. Then so is
(A∗ − L) ∪ (A∗ − M) and, again by Theorem 13,

(239) A∗ − ((A∗ − L) ∪ (A∗ − M)) = L ∩ M

This can be used in the following example. Infinitives of German are stacked
inside each other as follows:

Maria sagte, dass Hans die Kinder spielen ließ.(240)

Maria sagte, dass Hans Peter die Kinder spielen lassen(241)

ließ.

Maria sagte, dass Hans Peter Peter die Kinder spielen(242)

lassen lassen ließ.

Maria sagte, dass Hans Peter Peter Peter die Kinder(243)

spielen lassen lassen lassen ließ.

Call the language of these stringsH. Although it is from a certain point on hard to
follow what the sentences mean, they are grammatically impeccable. We shall this
language is not regular. From this we shall deduce that German as whole is not
regular; namely, we claim thatH is the intersection of German with the following
language

Maria sagte, dass Hans
a

(�aPeter)ka�adie Kinder spielen(244)
a(�alassen)ka�aließ.

Hence if German is regular, so isH. But H is not regular. The argument is similar
to the ones we have given above.

Now, there is a similar property of context free languages, known as the
Pumping Lemma or Ogden’s Lemma. I shall give only the weakest form of
it.

Theorem 37 (Pumping Lemma) Suppose that L is a context free language. Then
there is a number k≥ 0 such that every string~x ∈ L of length at least k possesses

23. Some Metatheorems 95

a decomposition~x = ~u~v~w~y~z with~v , ε or ~y , ε such that for every j∈ N (which
can be zero):

(245) ~u~vj~w~yj~z ∈ L

The condition~v , ε or ~y , ε must be put in, otherwise the claim is trivial: every
language has the property fork = 0. Simply put~u = ~x, ~v = ~w = ~y = ~z= ε. Notice
however that~u, ~w and~z may be empty.

I shall briefly indicate why this theorem holds. Suppose that~x is very large
(for example: letπ the maximum length of the right hand side of a production
andν = |N| the number of nonterminals; then putk > πν+1). Then any tree for
~x contains a branch leading from the top to the bottom and has length> ν + 1.
Along this branch you will find that some nonterminal label, sayA, must occur
twice. This means that the string is cut up in this way:

(246) x0x1 · · · xi−1 ◦ xi xi+1 · · · xj−1 • xj · · · x`−1 • x` · · · xm−1 ◦ xm · · · xk−1

where the pair of• encloses a substring of labelA and the◦ encloses another one.
So,

(247) xi xi+1 · · · xm−1 xj · · · x`−1

have that same nonterminal label. Now we define the following substrings:

~u := x0x1 · · · xi−1,~v := xi · · · xj−1, ~w := xj · · · x`−1,(248)

~y := x` · · · xm−1,~z := xm · · · xk−1

Then one can easily show that~u~vj~w~yj~z ∈ L for every j. We mention also the
following theorems.

Theorem 38 Let L be a context free language over A and M a regular language.
Then L∩ M is context free. Also, letµ : A→ B∗ be a function. Then the image of
L underµ is context free as well.

I omit the proofs. Instead we shall see how the theorems can be used to show that
certain languages are not context free. A popular example is{anbncn : n ∈ N}.
Suppose it is context free. Then we should be able to name ak ∈ N such that for
all strings~x of length at leastk a decomposition of the kind above exists. Now,

23. Some Metatheorems 96

we take~x = akbbck. We shall have to find appropriate~v and~y. First, it is easy
to see that~v~y must contain the same number ofa, b andc (can you see why?).
The product is nonempty, so at least onea, b andc must occur. We show that
~u~v2~w~y2~z < L. Suppose,~v containsa andb. Then~v2 contains ab before ana.
Contradiction. Likewise,~v cannot containa andc. So,~v contains onlya. Now
~y containsb andc. But then~y2 contains ac before ab. Contradiction. Hence,
~u~v2~w~y2~z < L.

Now, the Pumping Lemma is not an exact characterization. Here is a language
that satisfies the test but is not context free:

(249) C := {~x~x : ~x ∈ A∗}

This is known as the copy language. We shall leave it as an assignment to show
thatC fulfills the conclusion of the pumping lemma. We concentrate on showing
that it is not context free. The argument is a bit involved. Basically, we take a
string as in the pumping lemma and fix a decomposition so that~u~vj~w~yj~z ∈ C for
every j. The idea is now that no matter what stringy0y1 · · · yp−1 we are given, if it
contains a constituentA:

(250) y0g1 · · · yp−1 • yp · · · yq−1 • yj · · · yq−1

then we can insert the pair~v, ~y like this:

(251) y0y1 · · · yp−1 • xp · · · xj−1 ◦ yi · · · yj−1 • x` · · · xm−1yp · · · yq−1

Now one can show that since there are a limited number of nonterminals we are
bound to find a string which contains such a constituent where inserting the strings
is inappropriate.

Natural languages do contain a certain amount of copying. For example,
Malay (or Indonesian) forms the plural of a noun by reduplicating it. Chinese
has been argued to employ copying in yes-no questions.

