
Computational Linguistics I, Winter 2006. Marcus Kracht

To be submitted: Friday, February 3, 2006.

[A 2.1] Let l be a list of strings, and x a single string. The function zip l x is
defined as follows. If l = [y0; y1; . . . ; yn−1] then zip l x is

ya
0 xaya

1 x . . .a xayn−1

There are two ways to define this function (and I want you to try both):
by recursion, and by using a single call to a function provided by the
module List, that avoids recursion. (If you are curious what the code
of the definition is, take a look at the source code.)

[A 2.2] Let x be a string of 0 and 1. Such a string represents a number in the
following way. If x = cn−1cn−2 . . . c1c0 then the number is

c0 + 2c1 + 22c2 + . . . + 2n−2cn−2 + 2n−1cn−1

To facilitate its computation, I rewrite this as follows:

c0 + 2(c1 + 2(c2 + . . . + 2(cn−2 + 2cn−1) . . . ))

Write a function that computes the translation from the binary string
x to the number it represents.

[A 2.3] Write a module SNum that allows to manipulate sets of numbers.

[A 2.4] Write a function that tests whether a number is prime. There are at
least two solutions (give me only one). One is to try to divide the
number by all possible integers smaller than it and memorize whether
one of the divisions works without remainder. The other is to use the
type SNum and the functions of that module (that function call will
eliminate the need to do iteration or recursion).


