Computational Linguistics I, Winter 2006. Marcus Kracht To be submitted: Friday, February 17, 2006.

[A 4.1] Define a module of sets of strings and call it StringSet. Now define the following functions between string sets:

$L \cdot M$	$:= \{\vec{x}^{\frown}\vec{y} : \vec{x} \in L, \vec{y} \in M\}$
L/M	$:= \{ \vec{x} : \text{exists } \vec{y} \in M : \vec{x}^{\uparrow} \vec{y} \in L \}$
L//M	$:= \{ \vec{x} : \text{forall } \vec{y} \in M : \vec{x}^{\frown} \vec{y} \in L \}$
$L \backslash M$	$:= \{ \vec{x} : \text{exists } \vec{y} \in L : \vec{y} \vec{x} \in M \}$
$L \backslash \backslash M$	$:= \{ \vec{x} : \text{forall } \vec{y} \in L : \vec{y} \vec{x} \in M \}$

- [A 4.2] Calculate the strings of length at most 10 of the following expressions: (a*|b?)ca, ab+|ba+, (aa*b)².
- [A 4.3] Show that in general $L \cdot M = N$ iff (= if and only if) L = N//M iff $M = L \setminus N$. *Hint.* This should follow directly from the definitions.
- [A 4.4] Show that in general $(L^* \cdot M^*)^* = (L \cup M)^*$. *Hint.* One way to do this is as follows: Establish that (a) $(L^* \cdot M^*)^* \subseteq (L \cup M)^*$ and that (b) $(L \cup M)^* \subseteq (L^* \cdot M^*)^*$. Make use of the following principle: if $H \subseteq K^*$ then also $H^* \subseteq K^*$.