Computational Linguistics I, Winter 2006. Marcus Kracht
To be submitted: Friday, February 17, 2006.
[A 4.1] Define a module of sets of strings and call it StringSet. Now define the following functions between string sets:

$L \cdot M$	$:=\left\{\vec{x}^{\wedge} \vec{y}: \vec{x} \in L, \vec{y} \in M\right\}$
L / M	$:=\{\vec{x}:$ exists $\vec{y} \in M: \vec{x} \wedge \vec{y} \in L\}$
$L / / M$	$:=\{\vec{x}:$ forall $\vec{y} \in M: \vec{x} \vec{y} \in L\}$
$L \backslash M$	$:=\{\vec{x}:$ exists $\vec{y} \in L: \vec{y} \vec{x} \in M\}$
$L \backslash \backslash M$	$:=\{\vec{x}:$ forall $\vec{y} \in L: \vec{y} \vec{x} \in M\}$

[A 4.2] Calculate the strings of length at most 10 of the following expressions: $\left(\mathrm{a}^{*} \mid \mathrm{b}\right.$? $) \mathrm{ca}, \mathrm{ab}^{+} \mid \mathrm{ba}^{+},\left(\mathrm{aa}{ }^{*} \mathrm{~b}\right)^{2}$.
[A 4.3] Show that in general $L \cdot M=N$ iff (= if and only if) $L=N / / M$ iff $M=L \backslash \backslash N$. Hint. This should follow directly from the definitions.
[A 4.4] Show that in general $\left(L^{*} \cdot M^{*}\right)^{*}=(L \cup M)^{*}$. Hint. One way to do this is as follows: Establish that (a) $\left(L^{*} \cdot M^{*}\right)^{*} \subseteq(L \cup M)^{*}$ and that (b) $(L \cup M)^{*} \subseteq\left(L^{*} \cdot M^{*}\right)^{*}$. Make use of the following principle: if $H \subseteq K^{*}$ then also $H^{*} \subseteq K^{*}$.

