Computational Linguistics I, Winter 2006. Marcus Kracht Solutions.
[A4.2] The strings of length at most 10 of $\left(\mathrm{a}^{*} \mid \mathrm{b}\right.$? $) \mathrm{ca}$ are:
ca,
bca,
aca,
aaca,
aaaca,
ааааса, aаaаaca,
aaaaaaca,
aaaaaaaca,
aaaaaaaaca
The strings of length at most 10 of $\mathrm{ab}^{+} \mid \mathrm{ba}^{+}$are
ab,
abb,
abbb,
abbbb,
abbbbb,
abbbbbb,
abbbbbbb,
abbbbbbbb,
abbbbbbbbb,
ba,
baa,
baaa,
baaaa, baaaaa,
baaaaaa,
baaaaaaa,
baaaaaaaa,
baaaaaaaaa

The strings of length at most 10 of $\left(\mathrm{aa}^{*} \mathrm{~b}\right)^{2}$ are
abab,
aabab,
abaab,
aaabab,
aabaab,
aaabab,
aaaabab,
aaabaab,
aabaaab,
abaaaab,
aaaaabab,
aaaabaab,
aaabaaab,
aabaaaab,
abaaaaab,
aaaaaabab,
aaaaabaab,
aaaabaaab,
aaabaaaab,
aabaaaaab,
abaaaaaab,
aaaaaabab,
aaaaabaab,
aaaaabaaab,
aaaabaaaab,
aaabaaaaab,
aabaaaaaab,
abaaaaaaab
[A4.3] Show that in general $L \cdot M=N$ iff (= if and only if) $L=N / / M$ iff $M=L \backslash \backslash N$. Solution. (\Rightarrow) Assume that $N=L \cdot M$. Let $\vec{x} \in L$. Then for every $\vec{y} \in M, \vec{x}\urcorner \vec{y} \in L \cdot M=N$, whence $L \subseteq N / / M$, by definition. Furthermore, assume that $\vec{x} \in N / / M$. Then there is $\vec{y} \in M$ such that $\vec{x} ` \vec{y} \in N=L \cdot M$, whence $\vec{x} \in L$, so the two sets are equal. (\Leftarrow) Assume that $L=N / / M$. We aim to show that $L \cdot M=N$. Let $\vec{x} \in L$. Then for all $\vec{y} \in M: \vec{x}\urcorner \vec{y} \in N . \vec{x}$ was arbitrary, and so $L \cdot M \subseteq N$. Now pick $\vec{x} \in N$. Then $\vec{x}=\vec{y} \backslash \vec{z}$ for some $\vec{y} \in L$ and $\vec{z} \in M$, showing $\vec{x} \in L \cdot M$. (The other equivalence is basically similar.)
[A4.4] Show that in general $\left(L^{*} \cdot M^{*}\right)^{*}=(L \cup M)^{*}$. Solution. We show first (a) $\left(L^{*} \cdot M^{*}\right)^{*} \subseteq(L \cup M)^{*}$. To establish this, it is enough to show that $\left(L^{*} \cdot M^{*}\right) \subseteq(L \cup M)^{*}$. To see this, note that $L \subseteq(L \cup M)^{*}$, whence $L^{*} \subseteq(L \cup M)^{*}$, and similarly $M^{*} \subseteq(L \cup M)^{*}$; finally, $L^{*} \cdot M^{*} \subseteq(L \cup$ $M)^{*} \cdot(L \cup M)^{*} \subseteq(L \cup M)^{*}$. Next we show (b) $(L \cup M)^{*} \subseteq\left(L^{*} \cdot M^{*}\right)^{*}$. $L \cup M \subseteq\left(L^{*} \cdot M^{*}\right)$, since $L \subseteq L^{*} \subseteq L^{*} \cdot M^{*}$ (and similerly for M). Taking star on both sides preserves the inclusion. (We made use of the following principles: if $H \subseteq K$ then also $H^{*} \subseteq K^{*}$. It follows that if $H \subseteq K^{*}$ then $H^{*} \subseteq K^{* *}=K^{*}$.)

