Computational Linguistics I, Winter 2006. Marcus Kracht Solutions.

[A4.2] The strings of length at most 10 of $(a^*|b?)ca$ are:

ca, bca, aca, aaca, aaaca, aaaaca, aaaaaca, aaaaaaaca, aaaaaaaca, aaaaaaaca,

The strings of length at most 10 of $ab^+|ba^+$ are

ab, abb, abbb, abbbb, abbbbb, abbbbbb, abbbbbbb, abbbbbbbb, abbbbbbbbbbbbb ba, baa, baaa, baaaa, baaaaa,baaaaaa, baaaaaaa, baaaaaaaa, baaaaaaaaa

The strings of length at most 10 of $(aa^*b)^2$ are

abab, aabab, abaab, aaabab, aabaab, aaabab, aaaabab, aaabaab, aabaaab, abaaaab, aaaaabab, aaaabaab, aaabaaab, aabaaaab,abaaaaab, aaaaabab, aaaaabaab, aaaabaaab, aaabaaaab, aabaaaaab, abaaaaaab, aaaaaabab, aaaaabaab, aaaaabaaab, aaaabaaaab, aaabaaaaab, aabaaaaaab, abaaaaaab

[A4.3] Show that in general $L \cdot M = N$ iff (= if and only if) L = N//M iff $M = L \setminus N$. Solution. (\Rightarrow) Assume that $N = L \cdot M$. Let $\vec{x} \in L$. Then for every $\vec{y} \in M$, $\vec{x} \cap \vec{y} \in L \cdot M = N$, whence $L \subseteq N//M$, by definition. Furthermore, assume that $\vec{x} \in N//M$. Then there is $\vec{y} \in M$ such that $\vec{x} \cap \vec{y} \in N = L \cdot M$, whence $\vec{x} \in L$, so the two sets are equal. (\Leftarrow) Assume that L = N//M. We aim to show that $L \cdot M = N$. Let $\vec{x} \in L$. Then for all $\vec{y} \in M$: $\vec{x} \cap \vec{y} \in N$. \vec{x} was arbitrary, and so $L \cdot M \subseteq N$. Now pick $\vec{x} \in N$. Then $\vec{x} = \vec{y} \cap \vec{z}$ for some $\vec{y} \in L$ and $\vec{z} \in M$, showing $\vec{x} \in L \cdot M$. (The other equivalence is basically similar.)

[A4.4] Show that in general $(L^* \cdot M^*)^* = (L \cup M)^*$. Solution. We show first (a) $(L^* \cdot M^*)^* \subseteq (L \cup M)^*$. To establish this, it is enough to show that $(L^* \cdot M^*) \subseteq (L \cup M)^*$. To see this, note that $L \subseteq (L \cup M)^*$, whence $L^* \subseteq (L \cup M)^*$, and similarly $M^* \subseteq (L \cup M)^*$; finally, $L^* \cdot M^* \subseteq (L \cup M)^* \cdot (L \cup M)^* \subseteq (L \cup M)^*$. Next we show (b) $(L \cup M)^* \subseteq (L^* \cdot M^*)^*$. $L \cup M \subseteq (L^* \cdot M^*)$, since $L \subseteq L^* \subseteq L^* \cdot M^*$ (and similerly for M). Taking star on both sides preserves the inclusion. (We made use of the following principles: if $H \subseteq K$ then also $H^* \subseteq K^*$. It follows that if $H \subseteq K^*$ then $H^* \subseteq K^{**} = K^*$.)