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Linear Context Free Rewrite Systems

Exercise 1.
Suppose that L ⊆ A∗ is a LCFRL and that v : A → B∗ is a map that assigns a B-string
to each letter of A. v is extended to A∗ by putting v(ε) := ε, and v(~xa) := v(~x)v(a).
Show that h[L] := {v(~x) : ~x ∈ L} is a LCFRL.

Exercise 2.
(Number names.) Assume that the largest primitive name for a number is million.
How can we express numbers larger than a million? By iteration: we say one million

million for billion, and one million million million for trillion and son on.
Consider now the legal expressions for numbers in English. They are formed as follows.
They are sequences

a1 (million )ila2 (million )i2a3 (million )i3 · · · (1)

where i1 > i2 > i3 and so on, and the ai are expressions for numbers less than a million
(for example seventeen thousand three hundred and sixty five). Write a program
that recognises the legal expressions, scanning them from left to right, and which returns
the number expressed by the number name, if it is legal, and some predefined exception
otherwise. Hint. The input to this function is a string and the output is a number (=
int).

Exercise 3.
Show that the language of number names satisfies the pumping lemma for context free
languages. (But the language is not context free!) For wizards. It does not, however,
satisfy Ogden’s Lemma (which is a strengthening).

Exercise 4.
Let ~x be a word of length n.

• How many substrings does ~x have?

• How many k-tuples of substrings does ~x have? (For wizards: what happens if we
require the substrings to be disjoint?)



Exercise 5.
Here is a simple proof to show that languages generated by a simple k-LMG G can be
recognised in PTIME. Let ~x be given. Step 1. Get all k-tuples of substrings of ~x that are
in the lexicon of G. Step 2. Compute the k-tuples of ~x that are constituents in increasing
length. Compute how many steps this algorithm takes.

Exercise 6.
Let G be a simple k-LMG whose lexicon does not contain the empty word. Let ~x be a
string of length n. Estimate the maximum number of steps needed to generate ~x. Give an
estimate of parsing complexity obtained by simply enumerating all derivations of suitable
length and see if they yield ~x.


