Prof. Marcus Kracht: Ling 20. Fall 2007.
Assignment B [Week 2] (Do exercises for a total of 20 points only. If you do more, clearly indicate which exercises are to be counted.)
[B1.] (10 Points) Assume the following classification system for consonantal phonemes of English. It uses the following attributes and values: place with values: bilabial, dental, labiodental, alv(eolar), p(alato)alv(eolar), velar and glottal; mANNER with values stop, fric(ative), nas(al), and c(entral) approx(imant) and l (ateral) approx(imant), and voice with values + and -. (See Table 9.)
[a] Give 5 natural classes. Show the AVS and the set of phonemes it describes.
[b] Give at least two examples of classes that are not natural. (Indicate why you think that they are not natural.)
[c] The German stops are the same as the English ones. Assume that they are classified in the same way. Consider now the following data: at the end of a syllable in German, the following combinations of nasal and voiceless stop are legitimate (I give examples for your interest only): [$\mathfrak{\mathrm { t }}$] (singt), [mt] (Samt), [nt] (rennt), [mp] (Klumpfuß), [nk] (Fink). Illegitimate are: [np], [np], [nk], [mk]. This is standardly analysed as follows. The final stop forces the nasal to assimilate with respect to place (but dentals do not). Try to formulate a single rule that performs the assimilation. Do you see any problems in doing so? What solution can you offer instead?
[d] Look at the phonotactic restrictions for combinations of nasal and final stop in English. Which ones exist and which ones do not?
[B2.] (10 Points) In English, [k$]$ and $[\mathrm{k}]$ (plain velar and fronted velar stops, respectively) are allophones of the same phoneme. (Thus, in our definition, $/ \underset{+}{\mathrm{t}} /$ English $=/ \mathrm{k} /$ English. .) Consider the following data:

	['kıtn]	co	[kap]	crack	k]
en	[${ }_{\text {kin }}$]	cool	[kul]	lock	[klak]
e	[kek]	cope	[kop]	quick	[kwik]
cat	[${ }_{\text {kret] }}$	cook	[kvk]	extrac	[2 k 'stıækt]
lucky	['1Aki]	cup	[kıp]	Exxon	['eksan]

[a] What is the environment in which $[\underset{+}{\mathrm{k}}]$ is found?
[b] What is the environment in which [k] is found?
[c] Decide on the basis of your answer to the previous question which of the sounds is less marked. Write rules of realization for the phoneme.
[d] Look at the following data and write an improved version of your rule using features. [g] is a fronted voiced velar stop. You may use [+fronted] to distinguish $[\underset{+}{\mathrm{k}}]$ from $[\mathrm{k}]$ and $[\mathrm{g}]$ from $[\mathrm{g}]$.

gill	[gil]	got	[gat]	grog	[g.ag]
geese	[gis]	goose	[gus]	glimmer	['glimx]
ame	[gem]	go	[go]	Gwendolyne	['gwendələn]
ag	[gæg]	good	[gud]	eggs	[$¢ \mathrm{gz}$]
soggy	['sagi]	Gus	[g^{\prime} S]	Muggsy	['mıgzi]

[B3.] (5 Points) Define a feature height with five values: upper high, lower high, upper mid, lower mid, low. What natural classes of English front vowels do you find? Now define instead binary features, \pm high, \pm low, \pm upper. Here is how they correspond:

	high	low	upper
upper high	+	-	+
lower high	+	-	-
upper mid	+	+	+
lower mid	+	+	-
low	-	+	-

What natural classes of front vowels do you now get? What would change if we defined low instead as -high, +low, + upper?
[B4.] (5 Points) Why is vowel length not considered distinctive in English? How about consonant length?

