
SOME NOTES ON LOGIC AND QUANTIFIER
RAISING

MARCUS KRACHT

1. Predicate Logic

This note clarifies some of the concepts used in the lecture. I continue
to use typewriter fonts for actual symbols; this saves me the quotes.
In addition to typewriter font also boldface serves that purpose. This
will allow me to distinguish a token word like green from its formal
translation, which is green. Otherwise it is not possible to see that the
translation actually does something. Arbitrary strings are written us-
ing different fonts. Also, I prefer to write ‘every x’ in place of ‘everyx’
for the fact that the letter ‘x’ has an actual occurrence as a variable
rather than being part of the string that constitutes the quantifier.
The syntax of formulae is crucial, so I do not adopt a convention to
drop brackets. This means that I do not write ϕ→ψ but always (ϕ→ψ),
even when the brackets seem superfluous. They constitute parts of the
string that we have to write down. No convention on dropping brack-
ets is in place during this note! However, there will be a transition in
languages betwen Sections 3 and 4.

2. Truth and Evaluation

The language of predicate logic consists of the following symbols:

À Auxiliary symbols: (and).
Á Variables: typically x, y; often other conventions are em-

ployed, such as xi, where i is a number. This helps to prevent
running out of symbols. Computer languages actually allow
to use anything as a variable as long as it has no predefined
meaning.

Â Connectives: &, ¬, ∨, →,
Ã Quantifiers: ∀ and ∃ (and the generalised quantifiers).
Ä Constants: (any set we please)
Å Unary predicate letters: (any set we please)
Æ Binary predicate letters: (any set we please)

This set above is the alphabet, called A. The language is defined as
follows.

1

2 MARCUS KRACHT

Definition 1 (Formulae). The set of formulae over A is defined as
follows.

À If F is a unary predicate letter and x a variable or a constant,
then Fax is a formula.

Á If R is a binary predicate letter and x and y variables or con-
stants, then xaRay is a formula.

Â If ~x and ~y are formulae, then so are ¬a~x, (~x&~y), (~x∧~y), (~x∨~y),
and (~x→~y).

Ã If ~x is a formula and y a variable, then ∃y~x and ∀y~x are for-
mulae.

Notice that there are no brackets in combination with quantifiers
and negation. This is not an oversight. This is not very user friendly:
I have used a where we ordinarily write nothing. Erase it if it disturbs
you. Also, we often do not write ~x for formulae but ϕ, ψ and so
on. This is for the eye only. Writing ~x I remind you of the fact that
they are strings. Assuming that the symbols of A are letters far from
practical. In actual practice we use all kinds of strings as primitive
symbols. In this case, what I write as simple concatenation will have
to be replaced by concatenation with a blank inserted. So detail will be
exposed in Section 4. (If you have typed on a keyboard of a computers
or a typewriter you will actually understand that the blank is the space
bar and not simply nothing.)

Notice that there is not a single language but an infinite set of them.
This is because we may choose the constants and predicate letters. The
theory does not specify what they are. In predicate logic it is customary
to use structures to interpret formulae. A structure contains (a) a
domain, and (b) a function that assigns an interpretation to every
constant and every function. We write as follows: a structure is a pair
M = 〈D, I〉, where D is a set and I a function such that

(1) for every unary predicate letter F : I(F) ⊆ D.
(2) for every binary predicate letter R: I(F) ⊆ D ×D.

The phrase ‘what F stands for’ can be given a precise definition. First,
it is relative to a structure; second, given a structure M = 〈D, I〉,
‘what F stands for’ is I(F). Thus, if F is a constant (say, Maria), then
I(Maria) is some specific individual. If F is a unary predicate letter,
say runs (watch my use of ‘letter’ !), then it stands for I(runs), which
is a set of individuals; and finally, if it is a binary predicate letter, say
sees, then it stands for a relation between individuals, here I(sees).

Finally, an assignment is a function σ from the set of variables to
D. A model consists of a structure and an assignment. We write
〈M, σ〉 for the model. Given a formula ϕ and a model 〈M, σ〉, we write

SOME NOTES ON LOGIC AND QUANTIFIER RAISING 3

〈M, σ〉 � ϕ to say that ϕ is true in the model; or that it is trueσ in M.
Relative to a model we can say the following:

Definition 2 (Atomic Formulae). Let F be a unary predicate letter, R
a binary predicate letter, x, y variables, c and d constants, and 〈M, σ〉
a model.

(1) Fx is trueσ in M iff σ(x) ∈ I(F).
(2) Fc is trueσ in M iff I(c) ∈ I(F).
(3) xRy is trueσ in M iff 〈σ(x), σ(y)〉 ∈ I(R).
(4) xRd is trueσ in M iff 〈σ(x), I(d)〉 ∈ I(R).
(5) cRy is trueσ in M iff 〈I(c), σ(y)〉 ∈ I(R).
(6) cRd is trueσ in M iff 〈I(c), I(d)〉 ∈ I(R).

We say that ϕ is falseσ in M iff it is not trueσ in M.

Definition 3 (Connectives). Let ϕ, ψ be formulae and 〈M, σ〉 a model.

(1) ¬ϕ is trueσ in M iff ϕ is not trueσ in M;
(2) (ϕ&ψ) is trueσ in M iff both ϕ and ψ are trueσ in M;
(3) (ϕ∨ψ) is trueσ in M iff either ϕ or ψ is trueσ in M;
(4) (ϕ→ψ) is trueσ in M iff ϕ is not trueσ in M or ψ is trueσ in

M.

Definition 4 (Quantifiers). Let ϕ be a formula, x a variable and
〈M, σ〉 a model.

(1) ∃xϕ is trueσ in M iff there is an o ∈ D such that ϕ is trueσ[x/o]

in M;
(2) ∀xϕ is trueσ in M iff for every an o ∈ D: ϕ is trueσ[x/o] in M.

It is possible that if M′ was another structure, or σ′ another assign-
ment, ϕ is trueσ in M and not trueσ′ in M′. What is absolutely crucial
for these definitions that they do not yield contradictory results. In
other words, what we want is that ϕ is not both trueσ in M and falseσ

in M. To show that this is the case we establish what is known as
unique readability.

Lemma 5 (Unique Readability). Let ϕ be a formula. Then exactly
one of the following cases obtains:

(1) ϕ is atomic,
(2) ϕ = ¬χ for some χ;
(3) ϕ = (χ&χ) for some χ, χ′;
(4) ϕ = (χ∨χ) for some χ, χ′;
(5) ϕ = (χ→χ) for some χ, χ′;
(6) ϕ = ∀xχ for some x, χ;
(7) ϕ = ∃xχ for some x, χ.

4 MARCUS KRACHT

Moreover, the formulae χ, χ′, and the variable x are unique in the
arising case.

This means that when given ϕ, either it is atomic and it is uniquely
determined whether or not it is true. Or it is not atomic, and then it
is uniquely composed from immediate subformulae which are uniquely
determined. This guarantees that the structure of ϕ is unique even
though it is technically a string. The claim is not self-evident and
needs proof. I skip the proof in the interest of more urgent matters.

First, we shall say that a formula ϕ is a tautology if for every M
and every valuation: ϕ is trueσ in M. ϕ is satisfiable if there is a M
and a σ such that ϕ is trueσ. It is quite possible that ϕ may not be
satisfiable in a given M, but that does not exclude that it is satisfiable
in some other M′! Similarly, given M, ϕ may be falseσ and trueσ′ for
some σ′, which must be different from σ (by unique readability).

Tow formulae ϕ and χ are equivalent if for every M and every σ:
ϕ is trueσ iff χ is trueσ. Equivalently, (ϕ∨χ) as well as (χ∨ϕ) are
tautologies. (Can you see why?)

3. Quantification and Variables

I define what it means for a variable to occur free and bound. The
definition is based on the formula qua string. In a string, an occurrence
can be defined as some sequence of positions (see also my note on c-
command and scope).

Definition 6. Let ϕ be a formula. An occurrence of a variable x is
said to be free if is not contained in a formula of the form Qxψ where
Q is either ∃ or ∀. If it does not occur free it occurs bound.

Here is a formula:

(1) ∀x(xOy→∃yCy)

In this string, x occurs 2 times, and y occurs 3 times. The first occur-
rence of x is this one:

(2) ∀x(xOy→∃yCy)

The entire string contains the underlined occurrence, and it has the
property that it is of the form ∀xϕ where ϕ is a formula. So, the first
occurrence of x is bound. For the same reason the second occurrence
is also bound. Now, the first occurrence of y is this:

(3) ∀x(xOy→∃yCy)

It is not contained in formula of the form ∃yϕ, so it is free. The next
two occurrences of y on the other hand are bound. Thus, one and the

SOME NOTES ON LOGIC AND QUANTIFIER RAISING 5

same variable can occur both bound and free. Let fr(ϕ) denote the set
of variables that have a free occurrence in ϕ. Then for this formula,
fr(ϕ) = {y}.

There is an additional fact that one sometimes needs to take care
of, namely to see which occurrence of a variable is bound by which
occurrence of a quantifier. This may arise exactly when there are sev-
eral occurrences of Qx where x is a variable and Q a quantifier. For
example, in the following formula ∀x occurs twice.

(4) ∀x(xOy→∃xCx)

We say that a given occurrence of a variable x is bound by the oc-
currence of Qx whhich has smallest scope among those that contain
our fixed occurrence. Thus, the leftmost quantifier binds the first two
occurrences of x since it is the only one that contains them. However,
the two rightmost occurrences are not bound by the leftmost quantifier
but rather by the one following it.

Lemma 7 (Coincidence Lemma). Let ϕ be a formula, M a structure
and σ and σ′ two valuations into M such that σ(x) = σ′(x) whenever
x ∈ fr(ϕ). Then ϕ is trueσ iff ϕ is trueσ′.

I shall prove this claim. First, I show that it is true for all atomic
formulae. To this end, let Fx be an atomic formula. Then fr(Fx) =
{x}. Let σ and σ′ be assignments such that σ′(x) = σ(x). Then Fx
is trueσ iff σ(x) satisfies what F stands for iff σ′(x) satisfies what F
stands for iff Fx is trueσ′ . If the formula is xRy the proof is essentially
the same. Now, let the formula be (ϕ→ψ). Then it turns out that
fr((ϕ→ψ)) = fr(ϕ) ∪ fr(ψ). This is seen as follows: every occurrence of
a variable in (ϕ→ψ) can be uniquely traced to an occurrence of that
variable in either ϕ or ψ. If that occurrence is free in (ϕ→ψ) there is no
quantifier occurrence that binds the corresponding occurence in ϕ or
ψ. If that occurrence is bound in (ϕ→ψ) the corresponding occurrence
is also bound. Now let σ and σ′ be valuations such that σ(x) = σ(x′)
for all variables in fr((ϕ→ψ)). Then σ(x) = σ′(x) for all x ∈ fr(ϕ) and
for all x ∈ fr(ψ). Hence, ϕ is trueσ iff it is trueσ′ ; and ψ is trueσ iff it is
trueσ′ . Putting this together we get: (ϕ→ψ) is trueσ iff ϕ is trueσ and
ψ is trueσ iff ϕ is trueσ′ and ψ is trueσ′ iff (ϕ→ψ) is trueσ′ . Similarly
for (ϕ&ψ), (ϕ∨ψ) and ¬ϕ. Finally we treat the case of ∃xϕ. It is
easily seen that fr(∃xϕ) = fr(ϕ) − {x}. Assume that σ′ is such that
σ(y) = σ′(y) for all y ∈ fr(∃xϕ). Suppose that ∃xϕ is trueσ. Then there
is o such that ϕ is trueσ[x/o]. It turns out that σ[x/o](y) = σ′[x/o](y) for
every y ∈ fr(ϕ). Hence, by assumption on ϕ, ϕ is trueσ′[x/o], and thus

6 MARCUS KRACHT

that ∃xϕ is trueσ′ . The roles of σ and σ′ are interchangeable, whence
the equivalence holds in this case, too.

Let ϕ be such that fr(ϕ) = ∅. Such formulae are called sentences.

Lemma 8. Let ϕ be a sentence and M a structure. Then if there is
an assignment σ such that ϕ is trueσ in M then for all valuations σ′

into M ϕ is trueσ′.

This is easy to see. Under the assumptions, let σ′ be any valuation.
Then for all variables x ∈ fr(ϕ) it is true that σ(x) = σ′(x), since there
aren’t anyt such variables. By the Concidence Lemma, it follows now
that if σ′ is an arbitrary valuation then ϕ is trueσ′ .

Another important fact is this. First, some notation: ϕ[y/x] denotes
the result of replacing every free occurrence of x by y. Since x may
occur also bound, this will not necessarily remove every occurrence of
x. Also, be aware of the fact that [y/x] is not part of our language.
It just denotes some formula when given one. (For assignments, the
notation σ[x/o] means something different!)

If x does not occur free in ϕ then obviously ϕ[y/x] = ϕ, otherwise
they are different. Now, the formula ϕ[y/x] has y where x used to
occur freely. The two formulae are therefore not much different. We
are interested in the case where y does not occur free in ϕ. Now
suppose σ is an assignment, and let o = σ(x). Now σ[y/o] is such that
ϕ is trueσ[y/o] (by the Coincidence Lemma) and, moreover, ϕ[y/x] is
trueσ[y/o], since now x and y receive the same value and so it does not
matter whether you have x occur freely or y.

Lemma 9. Let ϕ be such that y does not occur free in ϕ. Then ϕ is
trueσ in M iff ϕ[y/x] is trueσ[y/σ(x)] in M.

Lemma 10 (Renaming of Bound Variables). Let ϕ a formula in which
y does not occur free and M a structure. Let Q = ∀ or Q = ∃. Then
for every assignment σ into M, Qxϕ is trueσ in M iff Qy(ϕ[y/x]) is
trueσ in M.

Before we begin, let us note that the roles of x and y are completely
symmetrical. x does not occur free in ϕ[y/x], and it turns out that
ϕ[y/x][x/y] = ϕ. (Can you see this?) Hence, we need to show only one
direction. We treat Q = ∀. Now suppose σ is an assignment and Qxϕ
is trueσ. Then there is an o such that ϕ is trueσ[x/o]. Then ϕ[y/x] is
trueσ[x/o][y/o]. But does not occur free in ϕ[y/x], so by the Coincidence
Lemma, ϕ[y/x] is trueσ[y/o]. Hence Qy(ϕ[y/x]) is trueσ.

SOME NOTES ON LOGIC AND QUANTIFIER RAISING 7

4. Quantifier Raising and Translation

Rather than formulating the truth conditions of a sentence, we pro-
vide a translation procedure from sentential structures into a language
formulae. It is different from the language used so far. It has gener-
alised quantifiers in place of just ∃ and ∀. Moreover, it has a different
bracketing convention. I shall not rehearse the exact definition of the
language here; this is done in the manuscript. I only depart from the
manuscript by enclosing negated statements into brackets, to ensure
unique readability.

The translation function is called τ . However, it will become appar-
ent below that in addition to τ we need auxiliary functions τx, for each
variable x. When we write τ ◦ this will denote either τ or any of the τx.

The base cases are provided by the atomic formulae. We assume
for the next definition we assume that F is an intransitive verb, G a
transitive verb, m, n variables or proper names. The convention for
proper names and verbs is as follows: they will be translated by τ
by the corresponding bold face version, with all inflections removed,
which is to say effectively that we leave open what exactly will go in
their place. This is up to lexical semantics. Variables will be translated
by themselves. Since the primitive symbols of the alphabet are actually
strings, we insert blanks to obtain unique segmentation. The blank is
denoted by 2. Thus, we have

À τ ◦(x) := x.
Á τ ◦([VP[DPm][V′F]]) := τ ◦(F)a2aτ ◦(m)
Â τ ◦([VP[DPm][V′F][DPn]]) := τ ◦(m)a2aτ ◦(F)a2aτ ◦(n)

Thus,

τ([VP[DPMaria][V′runs]]) = τ(runs)a2aτ(Maria)

= runa2amaria

= run maria

(5)

This is either true or false in a given structure (independently of the
assignment). It is true if I(maria) ∈ I(run). Next we specify the
translation for negation as follows. Negation can be at the left periph-
ery of a sentence, as follows:

(6) [S[Negnot]T]

Here, T abbreviates a constituent of category S. In this case, we put

(7) τ ◦([S[Negnot] T]) := (¬aτ ◦(T)a)

8 MARCUS KRACHT

This says the following: if we choose τ on the left, then on the right
we also have τ , and if we have τx on the left then we also have τx on
the right.

The rule of quantifier raising (QR) is formulated on structures. Its
input is an ordered tree with labels on the nodes, and it returns another
such tree. I draw the trees linearly. The input to QR is this structure:

(8) ...[S...[DPT]...]...

Here T is the tree dominated by the node with label DP. The output
is

(9) ...[S[DP,xT][S...[DPx]...]...

where x is a variable not already occurring in the input tree. The
output tree now contains occurrences of variables. These were not
part of the original sentence; they have been ‘smuggled in’ by applying
QR. The translation into logical form will translate the variables by
themselves. However, we also need to see what happens to the structure
labelled ‘DP, x’. Here, the variable is distributed over all nodes by using
τx in place of τ . (In the following, X may be either N or N′.)

τ ◦([S[DP,xT][SU]]) :=τ ◦([DP,xT])a2aτ ◦([SU])(10)

τ ◦([S[VPU]]) :=τ ◦([VPU])(11)

τ ◦([DP,x[DQ][XF]]) :=τx([DQ])a{aτx([XF])a}(12)

The base cases are:

τx([DV]) = τ(V)a2ax

τx([NW]) = τ(W)a2ax
(13)

The case where we have to apply τ in place of τx does not arise in
well-formed structures. Thus it is safe to declare that τ is undefined
for such input. Thus

τ x([DP,y[Devery][Ndog]])

=τ y([Devery])
a{aτ y([Ndog])

a}

=everya2aya{adoga2aya}
=every y{dog y}

(14)

(Notice that the spaces are inserted by the translation. Thus every-
thing except the linebreaks is predetermined!) This is an incomplete
expression. The remainder of that expression is supplied by the other
part of the tree.

SOME NOTES ON LOGIC AND QUANTIFIER RAISING 9

Adjectives are treated as follows (where X can be either N or N′):

(15) τ ◦([N′ [AdjA][XF]]) := τ ◦([AdjA])a2a&a2aτ ◦([XF])

If the structure is well-formed the function τ will not appear here, so
it is enough to specialize to τx:

(16) τx([N′ [AdjA][XF]]) := τx([AdjA])a2a&a2aτx([XF])

Finally, the translation of adjectives is the same as for nouns. We
agree here that τ(A) simply renders the typewriter font into boldface:
τ(brown) = dog.

τx([AdjA]) := τ(A)a2ax(17)

The last thing we need to address is the relative clauses. Here, matters
are somewhat more complicated. We assume that movement, even
before S-structure, does essentially the same as quantifier raising: it
moves a constituent, indexes it with a variable and leaves that variable
where the constituent has been. (Notice that we use variables where
syntactic theory uses indices. This is for all intents and purposes the
same thing. Variables are just a little easier to use here.) In particular,
the word who is assumed to have been moved from somewhere else.
The surface structure therefore looks more like this:

(18) boy [RC[C,xwho] Maria likes x]

It has been derived from

(19) boy [RC[C∅][S Maria likes who]]

Now, since the translation applies to LF it need not be concerned
with questions such as whether movement happened before or after S-
structure. It gets the structure in (18) rather than the structure in (19).
However, in case the relative clause sits in a quantified expression such
as every boy who Maria likes owns a house we need to see to it
that the association between variables and quantifiers is not broken.
Every quantifier sends down a variable to be put where one is needed.
Now, who Maria likes is like an adjective, but it has the form who

Maria likes x, with an occurrence of the variable already put in. The
translation does not perform substitutions of any kind, so it will not
rewrite the variable. Instead, what it will do is to assume the following
translation for who:

(20) τ y([C,xwho]) := (aya2a=a2axa)

This translation does the following. When it enters the clause in the
form of τ y it will add the condition that x is the same as y upon
which it is effectively the same whether we write x or y. In particular

10 MARCUS KRACHT

the occurrence of x at the trace position will not get replaced. This
replacement is now needless. We need one more set of rules (X either
N or N′):

τ ◦([N′ [XA][RCF]]) :=τ ◦([XA])a2a&a2aτ ◦([RCF])(21)

τ ◦([RC[C,xA][SF]]) :=τ ◦([C,xA])a2a&a2aτ ◦([SF])(22)

It is certainly possible to unify these rules into a couple of all purpose
rules, but I shall not perform this reduction.

Let us perform the translation on the sentence

(23) Every boy who two girls like owns a house.

First, who is assumed to have moved from object position, so we actu-
ally have the surface structure

(24) every boy [RC[C,xwho][Stwo girls like x]]owns a house.

Next we perform quantifier raising. This gives us (among other) this
structure:

(25) [S[DP,y every boy [S[RC[C,xwho][S[DP,ztwo girls][Sz like x]]]]]

[S[DP,ua house]y owns u]].

Call this structure U . We have U = [S[DP,yV] W], where [DP,yV] is on
the first line of (25) and W on the second. This is what we translate
using τ :

(26) τ(U) = τ([DP,yV])a2aτ(W)

Now, W = [S[DP,ua house]y owns u]].

τ([S[DP,ua house]y owns u]])

=τ([DP,ua house])a2aτ(y owns u)

=τ u(a)a{aτ u(house)a}a
2ay own u

=a u{house u} y own u

(27)

SOME NOTES ON LOGIC AND QUANTIFIER RAISING 11

Next we turn to the translation of V :

τ([DP,y every boy [S[RC[C,xwho][S[DP,ztwo girls][S

z like x]]]]])

=τ y(every)a{aτ y([N′boy)[S[RC[C,xwho][S[DP,ztwo girls][S

z like x]]]]])a}
=every y{τ y(boy)a2a&a2aτ y([RC[C,xwho][S[DP,ztwo girls][S

z like x]]])a}
=every y{boy y & τ y([C,xwho])

a2a&a2aτ y([S[DP,ztwo

girls][Sz like x]])a}
=every y{boy y & (y = x)a2a&a2aτ y([S[DP,ztwo

girls][Sz like x]])a}
=every y{boy y & (y = x) & τ y([DP,ztwo girls])a2a

τ y([Sz like x])a}
=every y{boy y & (y = x) & two z{girl z} z like x}

(28)

The overall translation is now

τ(U) =τ(V)a2aτ(W)

=every y{boy y & (y = x) & two z{girl z} z

like x}a
2aa u{house u} y own u

=every y{boy y & (y = x) & two z{girl z} z

like x} a u {house u} y own u

(29)

This is the translation, obtained in a completely mechanical manner.
It can be simplified (using logical equivalences) to

(30) every y{boy y & two z{girl z} z like y} a

u {house u} y own u

However, remember that this latter form is not what you get from the
translation, it is only equivalent to the result.

We need to address two questions: (a) Does it matter which variable
we choose when applying QR? Answer: No, as long as we always choose
an unused variable (or at least one that has not free occurrences). This
is due to the result above called ‘Renaming of Bound Variables’. (b)
Does it matter which quantifier we raise first? Answer: No, because
the competing QR can always be performed.

12 MARCUS KRACHT

Notice finally that there is a mismatch in constituent structure be-
tween the linguistic structures and the logical structures. The manu-
script spells out every x{ϕ} as a constituent. However, constituent
receive interpretation, and this string is not interpreted. Only the
string every x{ϕ}ψ is interpreted. Yet, at this point the distinction
is irrelevant. The translation procedure is such that it always yields a
formula at the end, one which can be interpreted.

Department of Linguistics, UCLA, 3125 Campbell Hall, Los Ange-
les, CA 90095-1543

