
The Mathematics of Language

Marcus Kracht
Department of Linguistics

UCLA
PO Box 951543

450 Hilgard Avenue
Los Angeles, CA 90095–1543

USA���������	��
��
���	�����������
���������
Printed Version

September 16, 2003

ii

Was dann nachher so schön fliegt . . .
wie lange ist darauf rumgebrütet worden.

Peter Rühmkorf: Phönix voran

Preface

The present book developed out of lectures and seminars held over many
years at the Department of Mathematics of the Freie Universität Berlin, the
Department of Linguistics of the Universität Potsdam and the Department of
Linguistics at UCLA. I wish to thank in particular the Department of Math-
ematics at the Freie Universität Berlin as well as the Freie Universität Berlin
for their support and the always favourable conditions under which I was
allowed to work. Additionally, I thank the DFG for providing me with a
Heisenberg–Stipendium, a grant that allowed me to continue this project in
between various paid positions.

I have had the privilege of support by Hans–Martin Gärtner, Ed Keenan,
Hap Kolb and Uwe Mönnich. Without them I would not have had the energy
to pursue this work and fill so many pages with symbols that create so much
headache. They always encouraged me to go on.

Lumme Erilt, Greg Kobele and Jens Michaelis have given me invalu-
able help by scrupulously reading earlier versions of this manuscript. Fur-
ther, I wish to thank Helmut Alt, Christian Ebert, Benjamin Fabian, Stefanie
Gehrke, Timo Hanke, Wilfrid Hodges, Gerhard Jäger, Makoto Kanazawa,
Franz Koniecny, Thomas Kosiol, Ying Lin, Zsuzsanna Lipták, István Németi,
Terry Parsons, Alexis–Manaster Ramer, Jason Riggle, Stefan Salinger, Ed
Stabler, Harald Stamm, Peter Staudacher, Wolfgang Sternefeld and Ngassa
Tchao for their help.

Los Angeles and Berlin, September 2003 Marcus Kracht

Introduction

This book is — as the title suggests — a book about the mathematical study
of language, that is, about the description of language and languages with
mathematical methods. It is intended for students of mathematics, linguis-
tics, computer science, and computational linguistics, and also for all those
who need or wish to understand the formal structure of language. It is a math-
ematical book; it cannot and does not intend to replace a genuine introduction
to linguistics. For those who are not acquainted with general linguistics we
recommend (Lyons, 1968), which is a bit outdated but still worth its while.
For a more recent book see (Fromkin, 2000). No linguistic theory is discussed
here in detail. This text only provides the mathematical background that will
enable the reader to fully grasp the implications of these theories and un-
derstand them more thoroughly than before. Several topics of mathematical
character have been omitted: there is for example no statistics, no learning
theory, and no optimality theory. All these topics probably merit a book of
their own. On the linguistic side the emphasis is on syntax and formal seman-
tics, though morphology and phonology do play a role. These omissions are
mainly due to my limited knowledge. However, this book is already longer
than I intended it to be. No more material could be fitted into it.

The main mathematical background is algebra and logic on the semantic
side and strings on the syntactic side. In contrast to most introductions to for-
mal semantics we do not start with logic — we start with strings and develop
the logical apparatus as we go along. This is only a pedagogical decision.
Otherwise, the book would start with a massive theoretical preamble after
which the reader is kindly allowed to see some worked examples. Thus we
have decided to introduce logical tools only when needed, not as overarching
concepts.

We do not distinguish between natural and formal languages. These two
types of languages are treated completely alike. I believe that it should not
matter in principle whether what we have is a natural or an artificial prod-
uct. Chemistry applies to naturally occurring substances as well as artificially
produced ones. All I will do here is study the structure of language. Noam
Chomsky has repeatedly claimed that there is a fundamental difference be-
tween natural and nonnatural languages. Up to this moment, conclusive evi-
dence for this claim is missing. Even if this were true, this difference should

x Introduction

not matter for this book. To the contrary, the methods established here might
serve as a tool in identifying what the difference is or might be. The present
book also is not an introduction to the theory of formal languages; rather, it
is an introduction to the mathematical theory of linguistics. The reader will
therefore miss a few topics that are treated in depth in books on formal lan-
guages on the grounds that they are rather insignificant in linguistic theory.
On the other hand, this book does treat subjects that are hardly found any-
where else in this form. The main characteristic of our approach is that we
do not treat languages as sets of strings but as algebras of signs. This is much
closer to the linguistic reality. We shall briefly sketch this approach, which
will be introduced in detail in Chapter 3.

A sign σ is defined here as a triple � e � c � m � , where e is the exponent of σ ,
which typically is a string, c the (syntactic) category of σ , and m its mean-
ing. By this convention a string is connected via the language with a set of
meanings. Given a set Σ of signs, e means m in Σ if and only if (= iff) there
is a category c such that � e � c � m � � Σ. Seen this way, the task of language
theory is not only to say which are the legitimate exponents of signs (as we
find in the theory of formal languages as well as many treatises on generative
linguistics which generously define language to be just syntax) but it must
also say which string can have what meaning. The heart of the discussion is
formed by the principle of compositionality, which in its weakest formulation
says that the meaning of a string (or other exponent) is found by homomor-
phically mapping its analysis into the semantics. Compositionality shall be
introduced in Chapter 3 and we shall discuss at length its various ramifica-
tions. We shall also deal with Montague Semantics, which arguably was the
first to implement this principle. Once again, the discussion will be rather ab-
stract, focusing on mathematical tools rather than the actual formulation of
the theory. Anyhow, there are good introductions to the subject which elim-
inate the need to include details. One such book is (Dowty et al., 1981) and
the book by the collective of authors (Gamut, 1991b). A system of signs is
a partial algebra of signs. This means that it is a pair � Σ � M � , where Σ is a
set of signs and M a finite set, the set of so–called modes (of composition).
Standardly, one assumes M to have only one nonconstant mode, a binary
function ! , which allows one to form a sign σ1 ! σ2 from two signs σ1 and σ2.
The modes are generally partial operations. The action of ! is explained by
defining its action on the three components of the respective signs. We give a

Introduction xi

simple example. Suppose we have the following signs."$#&%('�)+*-, � #&%�'.) � v� ρ �"$/
01%�23*-, � /
04%	2 � n � π �
Here, v and n are the syntactic categories (intransitive) verb and proper name,
respectively. π is a constant, which denotes an individual, namely Paul, and ρ
is a function from individuals to the set of truth values, which typically is the
set 5 0 � 1 6 . (Furthermore, ρ 7 x 8 , 1 if and only if x is running.) On the level
of exponents we choose word concatenation, which is string concatenation
(denoted by 9) with an intervening blank. (Perfectionists will also add the
period at the end...) On the level of meanings we choose function application.
Finally, let : be a partial function which is only defined if the first argument
is n and the second is v and which in this case yields the value t. Now we put� e1 � c1 � m1 ��!;� e2 � c2 � m2 � :

, � e 91 < 9 e2 � c1 : c2 � m2 7 m1 8=�
Then

"$/
04%	23* ! "�#>%�'�)�* is a sign, and it has the following form."$/
01%�23* ! "�#>%�'.)+* :
, � /
01%�2?#&%('�) � t � ρ 7 π 8=�

We shall say that this sentence is true if and only if ρ 7 π 8 , 1; otherwise we
say that it is false. We hasten to add that

"�/�04%�2@* ! "�/�04%	23* is not a sign. So,! is indeed a partial operation.
The key construct is the free algebra generated by the constant modes

alone. This algebra is called the algebra of structure terms. The structure
terms can be generated by a simple context free grammar. However, not ev-
ery structure term names a sign. Since the algebras of exponents, categories
and meanings are partial algebras, it is in general not possible to define a ho-
momorphism from the algebra of structure terms into the algebra of signs.
All we can get is a partial homomorphism. In addition, the exponents are
not always strings and the operations between them not only concatenation.
Hence the defined languages can be very complex (indeed, every recursively
enumerable language Σ can be so generated).

Before one can understand all this in full detail it is necessary to start off
with an introduction into classical formal language theory using semi Thue
systems and grammars in the usual sense. This is what we shall do in Chap-
ter 1. It constitutes the absolute minimum one must know about these matters.
Furthermore, we have added some sections containing basics from algebra,

xii Introduction

set theory, computability and linguistics. In Chapter 2 we study regular and
context free languages in detail. We shall deal with the recognizability of
these languages by means of automata, recognition and analysis problems,
parsing, complexity, and ambiguity. At the end we shall discuss semilinear
languages and Parikh’s Theorem.

In Chapter 3 we shall begin to study languages as systems of signs. Sys-
tems of signs and grammars of signs are defined in the first section. Then
we shall concentrate on the system of categories and the so–called categorial
grammars. We shall introduce both the Ajdukiewicz–Bar Hillel Calculus and
the Lambek–Calculus. We shall show that both can generate exactly the con-
text free string languages. For the Lambek–Calculus, this was for a long time
an open problem, which was solved in the early 1990s by Mati Pentus.

Chapter 4 deals with formal semantics. We shall develop some basic con-
cepts of algebraic logic, and then deal with boolean semantics. Next we shall
provide a completeness theorem for simple type theory and discuss various
possible algebraizations. Then we turn to the possibilities and limitations of
Montague Semantics. Then follows a section on partiality and presupposition.

In the fifth chapter we shall treat so–called PTIME languages. These are
languages for which the parsing problem is decidable deterministically in
polynomial time. The question whether or not natural languages are con-
text free was considered settled negatively until the 1980s. However, it was
shown that most of the arguments were based on errors, and it seemed that
none of them was actually tenable. Unfortunately, the conclusion that natu-
ral languages are actually all context free turned out to be premature again.
It now seems that natural languages, at least some of them, are not context
free. However, all known languages seem to be PTIME languages. Moreover,
the so–called weakly context sensitive languages also belong to this class. A
characterization of this class in terms of a generating device was established
by William Rounds, and in a different way by Annius Groenink, who intro-
duced the notion of a literal movement grammar. We shall study these types
of grammars in depth. In the final two sections we shall return to the question
of compositionality in the light of Leibniz’ Principle, and then propose a new
kind of grammars, de Saussure grammars, which eliminate the duplication of
typing information found in categorial grammar.

The sixth chapter is devoted to the logical description of language. This
approach has been introduced in the 1980s and is currently enjoying a revival.
The close connection between this approach and the so–called constraint–
programming is not accidental. It was proposed to view grammars not as

Introduction xiii

generating devices but as theories of correct syntactic descriptions. This is
very far away from the tradition of generative grammar advocated by Chom-
sky, who always insisted that language contains a generating device (though
on the other hand he characterizes this as a theory of competence). However,
it turns out that there is a method to convert descriptions of syntactic struc-
tures into syntactic rules. This goes back to ideas by Büchi, Wright as well
as Thatcher and Doner on theories of strings and theories of trees in monadic
second order logic. However, the reverse problem, extracting principles out of
rules, is actually very hard, and its solvability depends on the strength of the
description language. This opens the way into a logically based language hi-
erarchy, which indirectly also reflects a complexity hierarchy. Chapter 6 ends
with an overview of the major syntactic theories that have been introduced in
the last 25 years.

NOTATION. Some words concerning our notational conventions. We use
typewriter font for true characters in print. For example: A 04%.) is the German
word for ‘mouse’. Its English counterpart appears in (English) texts either asB�C %�)�D or as A C %�)�D , depending on whether or not it occurs at the beginning
of a sentence. Standard books on formal linguistics often ignore these points,
but since strings are integral parts of signs we cannot afford this here. In
between true characters in print we also use so–called metavariables (place-
holders) such as a (which denotes a single letter) and Ex (which denotes a
string). The notation F i is also used, which is short for the true letter F fol-
lowed by the binary code of i (written with the help of appropriately chosen
characters, mostly G and H). When defining languages as sets of strings we
distinguish between brackets that appear in print (these are I and J) and those
which are just used to help the eye. People are used to employ abbreviatory
conventions, for example K>L�M&L�N in place of IOK&L@IPM&L�N�J(J . Similarly, in logic
one uses Q	R1S@TPU4Q�VXW or even Q	R1S�U4Q�V in place of T$Q	R4SYTPU4Q�VXW�W . We shall follow
that usage when the material shape of the formula is immaterial, but in that
case we avoid using the true function symbols and the true brackets ‘ T ’ and
‘ J ’, and use ‘ 7 ’ and ‘ 8 ’ instead. For Q R SYTPU4Q V W is actually not the same asT�Q R S@TZU�Q V W(W . To the reader our notation may appear overly pedantic. How-
ever, since the character of the representation is part of what we are studying,
notational issues become syntactic issues, and syntactical issues simply can-
not be ignored. Notice that ‘ � ’ and ‘ � ’ are truly metalinguistic symbols that
are used to define sequences. We also use sans serife fonts for terms in for-
malized and computer languages, and attach a prime to refer to its denotation
(or meaning). For example, the computer code for a while–loop is written

xiv Introduction

semi–formally as []\&^`_ a i b 100 c(d x :
,

x ef7 x g i 8�d�c . This is just a string
of symbols. However, the notation hiaja1kl7nm$d�\&o k �=p4q(r&_ k 8 denotes the proposition
that John sees Paul, not the sentence expressing that.

Contents

1 Fundamental Structures 1
1 Algebras and Structures . 1
2 Semigroups and Strings . 16
3 Fundamentals of Linguistics 29
4 Trees . 43
5 Rewriting Systems . 52
6 Grammar and Structure . 66
7 Turing machines . 80

2 Context Free Languages 95
1 Regular Languages . 95
2 Normal Forms . 103
3 Recognition and Analysis . 117
4 Ambiguity, Transparency and Parsing Strategies 132
5 Semilinear Languages . 147
6 Parikh’s Theorem . 160
7 Are Natural Languages Context Free? 165

3 Categorial Grammar and Formal Semantics 177
1 Languages as Systems of Signs 177
2 Propositional Logic . 191
3 Basics of λ–Calculus and Combinatory Logic 207
4 The Syntactic Calculus of Categories 225
5 The AB–Calculus . 239
6 The Lambek–Calculus . 249
7 Pentus’ Theorem . 258
8 Montague Semantics I . 269

4 Semantics 281
1 The Nature of Semantical Representations 281
2 Boolean Semantics . 296
3 Intensionality . 308
4 Binding and Quantification 323
5 Algebraization . 332

xvi Contents

6 Montague Semantics II . 343
7 Partiality and Discourse Dynamics 354

5 PTIME Languages 367
1 Mildly–Context Sensitive Languages 367
2 Literal Movement Grammars 381
3 Interpreted LMGs . 393
4 Discontinuity . 401
5 Adjunction Grammars . 414
6 Index Grammars . 424
7 Compositionality and Constituent Structure 434
8 de Saussure Grammars . 447

6 The Model Theory of Linguistic Structures 461
1 Categories . 461
2 Axiomatic Classes I: Strings 470
3 Categorization and Phonology 485
4 Axiomatic Classes II: Exhaustively Ordered Trees 505
5 Transformational Grammar 515
6 GPSG and HPSG . 529
7 Formal Structures of GB . 540

Chapter 1
Fundamental Structures

1. Algebras and Structures

In this section we shall provide definitions of basic terms and structures which
we shall need throughout this book. Among them are the notions of algebra
and structure. Readers for whom these are entirely new are advised to read
this section only cursorily and return to it only when they hit upon something
for which they need background information.

We presuppose some familiarity with mathematical thinking, in particu-
lar some knowledge of elementary set theory and proof techniques such as
induction. For basic concepts in set theory see (Vaught, 1995) or (Just and
Weese, 1996; Just and Weese, 1997); for background in logic see (Goldstern
and Judah, 1995). Concepts from algebra (especially universal algebra) can
be found in (Burris and Sankappanavar, 1981) and (Grätzer, 1968), and in
(Burmeister, 1986) and (Burmeister, 2002) for partial algebras; for general
background on lattices and orderings see (Grätzer, 1971) and (Davey and
Priestley, 1990).

We use the symbols s for the union, t for the intersection of two sets.
Instead of the difference symbol M u N we use M v N. w denotes the empty
set. ℘7 M 8 denotes the set of subsets of M, ℘f in 7 M 8 the set of finite subsets
of M. Sometimes it is necessary to take the union of two sets that does not
identify the common symbols from the different sets. In that case one usesg . We define M g N :

,
M ex5 0 6ys N ex5 1 6 (e is defined below). This is

called the disjoint union. For reference, we fix the background theory of sets
that we are using. This is the theory z3{&| (Zermelo Fraenkel Set Theory with
Choice). It is essentially a first order theory with only two two place relation
symbols, � and

,
. (See Section 3.8 for a definition of first order logic.) We

define x } y by 7�~ z 8�7 z � x � x � y 8 . Its axioms are as follows.

1. Singleton Set Axiom. 7�~ x 8�7�� y 8�7�~ z 8�7 z � y � z
,

x 8 .
This makes sure that for every x we have a set 5 x 6 .

2. Powerset Axiom. 7�~ x 8�7�� y 8�7�~ z 8�7 z � y � z } x 8 .
This ensures that for every x the power set ℘7 x 8 of x exists.

2 Fundamental Structures

3. Set Union. 7�~ x 8�7�� y 8�7�~ z 8�7 z � y ��7�� u 8�7 z � u � u � x 8=8 .
u is denoted by � z � x z or simply by � x. The axiom guarantees its exis-
tence.

4. Extensionality. 7�~ x 8�7�~ y 8�7 x , y ��7�~ z 8�7 z � x � z � y 8=8 .
5. Replacement. If f is a function with domain x then the direct image of

x under f is a set. (See below for a definition of function.)

6. Weak Foundation.7�~ x 8�7 x �, w���7�� y 8�7 y � x ��7�~ z 8�7 z � x � z �� y 8=8=8
This says that in every set there exists an element that is minimal with
respect to � .

7. Comprehension. If x is a set and ϕ a first order formula with only y
occurring free, then 5 y : y � x � ϕ 7 y 8Z6 also is a set.

8. Axiom of Infinity. There exists an x and an injective function f : x � x
such that the direct image of x under f is not equal to x.

9. Axiom of Choice. For every set of sets x there is a function f : x � � x
with f 7 y 83� y for all y � x.

We remark here that in everyday discourse, comprehension is generally ap-
plied to all collections of sets, not just elementarily definable ones. This dif-
ference will hardly matter here; we only mention that in monadic second
order logic this stronger from of comprehension is expressible and also the
axiom of foundation.

Full Comprehension. For every class P and every set x, � y : y � x and x � P �
is a set.

Foundation is usually defined as follows

Foundation. There is no infinite chain x0 � x1 � x2 ������� .
In mathematical usage, one often forms certain collections of sets that can be
shown not to be sets themselves. One example is the collection of all finite
sets. The reason that it is not a set is that for every set x, 5 x 6 also is a set. The

Algebras and Structures 3

function x ���5 x 6 is injective (by extensionality), and so there are as many
finite sets as there are sets. If the collection of finite sets were a set, say y, its
powerset has strictly more elements than y by a theorem of Cantor. But this is
impossible, since y has the size of the universe. Nevertheless, mathematicians
do use these collections (for example, the collection of Ω–algebras). This is
not a problem, if the following is observed. A collection of sets is called a
class. A class is a set iff it is contained in a set as an element. (We use ‘iff’ to
abbreviate ‘if and only if’.)

In set theory, numbers are defined as follows.

(1.1)
0 :
, w

n g 1 :
, 5 k : k b n 6 , 5 0 � 1 � 2 �=�=�=��� n v 1 6

The set of so–constructed numbers is denoted by ω . It is the set of natural
numbers. In general, an ordinal (number) is a set that is transitively and
linearly ordered by � . (See below for these concepts.) For two ordinals κ and
λ , either κ � λ (for which we also write κ b λ) or κ

,
λ or λ � κ .

Theorem 1.1 For every set x there exists an ordinal κ and a bijective func-
tion f : κ � x.

f is also referred to as a well–ordering of x. The finite ordinals are exactly
the natural numbers defined above. A cardinal (number) is an ordinal κ
such that for every ordinal λ b κ there is no onto map f : λ � κ . It is not
hard to see that every set can be well–ordered by a cardinal number, and this
cardinal is unique. It is denoted by �M � and called the cardinality of M. The
smallest infinite cardinal is denoted by ℵ0. The following is of fundamental
importance.

Theorem 1.2 For two sets x, y exactly one of the following holds: � x �&b�� y � ,� x � , � y � or � x ���?� y � .
By definition, ℵ0 is actually identical to ω so that it is not really necessary to
distinguish the two. However, we shall do so here for reasons of clarity. (For
example, infinite cardinals have a different arithmetic than ordinals.) If M is
finite, its cardinality is a natural number. If �M � , ℵ0, M is called countable;
it is uncountable otherwise. If M has cardinality κ , the cardinality of ℘7 M 8
is denoted by 2κ . 2ℵ0 is the cardinality of the set of all real numbers. 2ℵ0 is
strictly greater than ℵ0 (but need not be the smallest uncountable cardinal).
We remark here that the set of finite sets of natural numbers is countable.

4 Fundamental Structures

If M is a set, a partition of M is a set P } ℘7 M 8 such that every member
of P is nonempty, � P

,
M and for all A � B � P such that A �, B, A t B

, w . If
M and N are sets, M e N denotes the set of all pairs � x � y � , where x � M and
y � N. A definition of � x � y � , which goes back to Kuratowski and Wiener, is
as follows.

(1.2) � x � y � :
, 5 x ��5 x � y 6�6

Lemma 1.3 � x � y � , � u � v � iff x
,

u and y
,

v.

Proof. By extensionality, if x
,

u and y
,

v then � x � y � , � u � v � . Now assume
that � x � y � , � u � v � . Then either x

,
u or x

, 5 u � v 6 , and 5 x � y 6 , u or 5 x � y 6 ,5 u � v 6 . Assume that x
,

u. If u
, 5 x � y 6 then x

, 5 x � y 6 , whence x � x, in
violation to foundation. Hence we have 5 x � y 6 , 5 u � v 6 . Since x

,
u, we must

have y
,

v. This finishes the first case. Now assume that x
, 5 u � v 6 . Then5 x � y 6 , u cannot hold, for then u

, 5�5 u � v 6>� y 6 , whence u ��5 u � v 6�� u. So,
we must have 5 x � y 6 , 5 u � v 6 . However, this gives x

, 5 x � y 6 , once again a
contradiction. So, x

,
u and y

,
v, as promised. <

With these definitions, M e N is a set if M and N are sets. A relation
from M to N is a subset of M e N. We write xRy if � x � y ��� R. Particularly
interesting is the case M

,
N. A relation R } M e M is called reflexive if

xRx for all x � M; symmetric if from xRy follows that yRx. R is called
transitive if from xRy and yRz follows xRz. An equivalence relation on M
is a reflexive, symmetric and transitive relation on M. A pair � M �ib]� is called
an ordered set if M is a set and b a transitive, irreflexive binary relation on
M. b is then called a (strict) ordering on M and M is then called ordered
by b . b is linear if for any two elements x � y � M either x b y or x

,
y

or y b x. A partial ordering is a relation which is reflexive, transitive and
antisymmetric; the latter means that from xRy and yRx follows x

,
y.

If R } M e N is a relation, we write R � :
, 5(� x � y � : yRx 6 for the so–called

converse of R. This is a relation from N to M. If S } N e P and T } M e N
are relations, put

R : S :
, 5(� x � y � : for some z : xRzSy 6(1.3)

R s T :
, 5(� x � y � : xRy or xT y 6

We have R : S } M e P and R s T } M e N. In case M
,

N we still make fur-
ther definitions. We put ∆M :

, 5(� x � x � : x � M 6 and call this set the diagonal

Algebras and Structures 5

on M. Now put

R0 :
,

∆M Rn � 1 :
,

R : Rn(1.4)

R � :
, �

0 i � ω
Ri R ¡ :

,¢�
i � ω

Ri

R � is the smallest transitive relation which contains R. It is therefore called
the transitive closure of R. R ¡ is the smallest reflexive and transitive relation
containing R.

A partial function from M to N is a relation f } M e N such that if
x f y and x f z then y

,
z. f is a function if for every x there is a y such

that x f y. We write y
,

f 7 x 8 to say that x f y and f : M � N to say that
f is a function from M to N. If P } M then f £ P :

,
f tx7 P e N 8 . Further,

f : M ¤ N abbreviates that f is a surjective function, that is, every y � N
is of the form y

,
f 7 x 8 for some x � M. And we write f : M ¥ N to say

that f is injective, that is, for all x � x k � M, if f 7 x 8 , f 7 x k 8 then x
,

x k . f is
bijective if it is injective as well as surjective. Finally, we write f : x �� y if
y
,

f 7 x 8 . If X } M then f ¦X § : , 5 f 7 x 8 : x � X 6 is the so–called direct image
of X under f . We warn the reader of the difference between f 7 X 8 and f ¦ X § .
For example, let suc : ω � ω : x �� x g 1. Then according to the definition
of natural numbers above we have suc 7 4 8 , 5 and suc ¦ 4 § , 5 1 � 2 � 3 � 4 6 , since
4
, 5 0 � 1 � 2 � 3 6 . Let M be an arbitrary set. There is a bijection between the set

of subsets of M and the set of functions from M to 2
, 5 0 � 1 6 , which is defined

as follows. For N } M we call χN : M �¨5 0 � 1 6 the characteristic function
of N if χN 7 x 8 , 1 iff x � N. Let y � N and Y } N; then put f © 1 7 y 8 :

, 5 x :
f 7 x 8 , y 6 and f © 1 ¦Y § :

, 5 x : f 7 x 8ª� Y 6 . If f is injective, f © 1 7 y 8 denotes the
unique x such that f 7 x 8 , y (if that exists). We shall see to it that this overload
in notation does not give rise to confusions.

Mn, n � ω , denotes the set of n–tuples of elements from M.

M1 :
,

M Mn � 1 :
,

Mn e M(1.5)

In addition, M0 :
,

1 7 , 51w«618 . Then an n–tuple of elements from M is an ele-
ment of Mn. Depending on need we shall write � xi : i b n � or � x0 � x1 �=�=�=�Z� xn © 1 �
for a member of Mn.

An n–ary relation on M is a subset of Mn, an n–ary function on M is
a function f : Mn � M. n

,
0 is admitted. A 0–ary relation is a subset of 1,

hence it is either the empty set or the set 1 itself. A 0–ary function on M is a
function c : 1 � M. We also call it a constant. The value of this constant is

6 Fundamental Structures

the element c 7�w¬8 . Let R be an n–ary relation and Ex � Mn. Then we write R 7�Ex 8
in place of Ex � R.

Now let F be a set and Ω : F � ω . The pair � F � Ω � , also denoted by Ω
alone, is called a signature and F the set of function symbols.

Definition 1.4 Let Ω : F � ω be a signature and A a nonempty set. Further,
let Π be a mapping which assigns to every f � F an Ω 7 f 8 –ary function on A.
Then we call the pair ­ :

, � A � Π � an Ω–algebra. Ω–algebras are in general
denoted by upper case German letters.

In order not to get drowned in notation we write f ® for the function Π 7 f 8 . In
place of denoting ­ by the pair � A � Π � we shall denote it somewhat ambigu-
ously by � A ��5 f ® : f � F 61� . We warn the reader that the latter notation may
give rise to confusion since functions of the same arity can be associated with
different function symbols. However, this problem shall not arise.

The set of Ω–terms is the smallest set TmΩ such that if f � F and ti � TmΩ,
i b Ω 7 f 8 , also f 7 t0 �=�=�=�i� tΩ ¯ f ° © 1 83� TmΩ. Terms are abstract entities; they are
not to be equated with functions nor with the strings by which we denote
them. To begin we define the level of a term. If Ω 7 f 8 , 0, then f 7�8 is a term
of level 0, which we also denote by ‘ f ’. If ti, i b Ω 7 f 8 , are terms of level ni,
then f 7 t0 �=�=�=�Z� tΩ ¯ f ° © 1 8 is a term of level 1 g max 5 ni : i b Ω 7 f 8Z6 . Many proofs
run by induction on the level of terms, we therefore speak about induction on
the construction of the term. Two terms u and v are equal, in symbols u

,
v,

if they have identical level and either they are both of level 0 and there is an
f � F such u

,
v
,

f 7�8 or there is an f � F , and terms si, ti, i b Ω 7 f 8 , such
that u

,
f 7 s0 �=�=�=�i� sΩ ¯ f ° © 1 8 and v

,
f 7 t0 �=�=�=�i� tΩ ¯ f ° © 1 8 as well as si

,
ti for all

i b Ω 7 f 8 .
An important example of an Ω–algebra is the so–called term algebra. We

choose an arbitrary set X of symbols, which must be disjoint from F . The
signature is extended to F s X such that the symbols of X have arity 0. The
terms over this new signature are called Ω–terms over X . The set of Ω–
terms over X is denoted by TmΩ 7 X 8 . Then we have TmΩ

,
TmΩ 7�w¬8 . For

many purposes (indeed most of the purposes of this book) the terms TmΩ are
sufficient. For we can always resort to the following trick. For each x � X add
a 0–ary function symbol x to F . This gives a new signature ΩX , also called
the constant expansion of Ω by X . Then TmΩX

can be canonically identified
with TmΩ 7 X 8 .

There is an algebra which has as its objects the terms and which interprets

Algebras and Structures 7

the function symbols as follows.

(1.6) Π 7 f 8 : � ti : i b Ω 7 f 8=���� f 7 t0 �=�=�=�Z� tΩ ¯ f ° © 1 8
Then ±@² Ω 7 X 8 :

, � TmΩ 7 X 8P� Π � is an Ω–algebra, called the term algebra
generated by X . It has the following property. For any Ω–algebra ­ and any
map v : X � A there is exactly one homomorphism v : TmΩ 7 X 8@�³­ such
that v £ X ,

v. This will be restated in Proposition 1.6.

Definition 1.5 Let ­ be an Ω–algebra and X } A. We say that X generates­ if A is the smallest subset which contains X and which is closed under all
functions f ® . If �X � , κ we say that ­ is κ–generated. Let ´ be a class of Ω–
algebras and ­µ�¶´ . We say that ­ is freely generated by X in ´ if for every· �¸´ and maps v : X � B there is exactly one homomorphism v : ­�� ·
such that v £ X ,

v. If �X � , κ we say that ­ is freely κ–generated in ´ .

Proposition 1.6 Let Ω be a signature, and let X be disjoint from F. Then the
term algebra over X, ±@² Ω 7 X 8 , is freely generated by X in the class of all
Ω–algebras.

The following is left as an exercise. It is the justification for writing ¹»º½¼¬7 κ 8
for the (up to isomorphism unique) freely κ–generated algebra of ´ . In vari-
eties such an algebra always exists.

Proposition 1.7 Let ´ be a class of Ω–algebras and κ a cardinal number. If­ and
·

are both freely κ–generated in ´ they are isomorphic.

Maps of the form σ : X � TmΩ 7 X 8 , as well as their homomorphic extensions
are called substitutions. If t is a term over X , we also write σ 7 t 8 in place of
σ 7 t 8 . Another notation, frequently employed in this book, is as follows. Given
terms si, i b n, we write ¦ si ¾ xi : i b n § t in place of σ 7 t 8 , where σ is defined as
follows.

(1.7) σ 7 y 8 :
,À¿ si if y

,
xi,

y else.

(Most authors write t ¦ si ¾ xi : i b n § , but this notation will cause confusion with
other notation that we use.)

Terms induce term functions on a given Ω–algebra ­ . Let t be a term with
variables xi, i b n. (None of these variables has to occur in the term.) Then

8 Fundamental Structures

t ® : An � A is defined inductively as follows (with Ea , � ai : i b Ω 7 f 8=�).
x ®i 7$Ea 8 :

,
ai(1.8) 7 f 7 t0 �=�=�=�Z� tΩ ¯ f ° © 1 8=8 ® 7$Ea 8 :

,
f ® 7 t ®0 7$Ea 8P�=�=�=�i� t ®Ω ¯ f ° © 1 7$Ea 8=8

We denote by Clon 7Á­�8 the set of n–ary term functions on ­ . This set is also
called the clone of n–ary term functions of ­ . A polynomial of ­ is a
term function over an algebra that is like ­ but additionally has a constant
for each element of A. (So, we form the constant expansion of the signature
with every a � A. Moreover, a (more exactly, a 7�8) shall have value a in A.)
The clone of n–ary term functions of this algebra is denoted by Poln 7Á­�8 . For
example, 7=7 x0 g x1 8�Â x0 8 is a term and denotes a binary term function in an
algebra for the signature containing only Â and g . However, 7 2 gÃ7 x0 Â x0 8=8 is a
polynomial but not a term. Suppose that we add a constant 1 to the signature,
with denotation 1 in the natural numbers. Then 7 2 gÄ7 x0 Â x0 8=8 is still not a term
of the expanded language (it lacks the symbol 2), but the associated function
actually is a term function, since it is identical with the function induced by
the term 7=7 1 g 1 8�gÅ7 x0 Â x0 8=8 .
Definition 1.8 Let ­ , � A ��5 f ® : f � F 61� and

·Æ, � B ��5 f Ç : f � F 61� be Ω–
algebras and h : A � B. h is called a homomorphism if for every f � F and
every Ω 7 f 8 –tuple Ex � AΩ ¯ f ° we have

(1.9) h 7 f ® 7ÈEx 8=8 , f Ç 7 h 7 x0 8P� h 7 x1 8P�=�=�=�Z� h 7 xΩ ¯ f ° © 1 8=8
We write h : ­É� ·

if h is a homomorphism from ­ to
·

. Further, we write
h : ­Å¤ ·

if h is a surjective homomorphism and h : ­µ¥ ·
if h is an injec-

tive homomorphism. h is an isomorphism if h is injective as well as surjective.·
is called isomorphic to ­ , in symbols ­�Ê, · if there is an isomorphism

from ­ to
·

. If ­ ,É· we call h an endomorphism of ­ ; if h is additionally
bijective then h is called an automorphism of ­ .

If h : A � B is an isomorphism from ­ to
·

then h © 1 : B � A is an isomor-
phism from

·
to ­ .

Definition 1.9 Let ­ be an Ω–algebra and Θ a binary relation on A. Θ is
called a congruence relation on ­ if Θ is an equivalence relation and for all
f � F and all Ex ��Ey � AΩ ¯ f ° we have:

(1.10) If xi Θyi for all i b Ω 7 f 8 then f ® 7�Ex 8 Θ f ® 7�Ey 8 .

Algebras and Structures 9

We also write Ex Θ Ey in place of ‘xi Θ yi for all i b Ω 7 f 8 ’. If Θ is an equivalence
relation put

(1.11) ¦ x § Θ :
, 5 y : xΘy 6

We call ¦ x § Θ the equivalence class of x. Then for all x and y we have ei-
ther ¦ x § Θ , ¦ y § Θ or ¦ x § Θ tË¦ y § Θ , w . Further, we always have x �Ä¦ x § Θ. If Θ
additionally is a congruence relation then the following holds: if yi �Ã¦ xi § Θ
for all i b Ω 7 f 8 then f ® 7ÈEy 8Y�x¦ f ® 7�Ex 8�§ Θ. Therefore the following definition is
independent of representatives.

(1.12) ¦ f ® § Θ 7=¦ x0 § Θ �Z¦ x1 § Θ �=�=�=�i�Z¦ xΩ ¯ f ° © 1 § Θ 8 :
, ¦ f ® 7ÈEx 8�§ Θ

Namely, let y0 �¸¦ x0 § Θ �=�=�=�Z� yΩ ¯ f ° © 1 ��¦ xΩ ¯ f ° © 1 § Θ. Then yi Θ xi for all i b Ω 7 f 8 .
Then because of (1.10) we immediately have f ®37�Ey 8 Θ f ®y7ÈEx 8 . This simply
means f ® 7�Ey 8Y��¦ f ® 7�Ex 8�§ Θ. Put

A ¾ Θ :
, 5(¦ x § Θ : x � A 6(1.13) ­ ¾ Θ :
, � A ¾ Θ ��5(¦ f ® § Θ : f � F 61�(1.14)

We call ­ ¾ Θ the factorization of ­ by Θ. The map hΘ : x ���¦ x § Θ is easily
proved to be a homomorphism.

Conversely, let h : ­Å� ·
be a homomorphism. Then put

(1.15) ker 7 h 8 :
, 5(� x � y �y� A2 : h 7 x 8 , h 7 y 8Z6

ker 7 h 8 is a congruence relation on ­ . Furthermore, ­ ¾ ker 7 h 8 is isomorphic
to
·

if h is surjective. A set B } A is closed under f � F if for all Ex � BΩ ¯ f °
we have f ®37�Ex 8Y� B.

Definition 1.10 Let � A ��5 f ® : f � F 61� be an Ω–algebra and B } A closed
under all f � F. Put f Ç :

,
f ®É£ BΩ ¯ f ° . The pair � B ��5 f Ç : f � F 61� is called

a subalgebra of ­ .

The product of the algebras ­ i, i � I, is defined as follows. The carrier set is
the set of functions α : I �¨� i � I Ai such that α 7 i 83� Ai for all i � I. Call this
set P. For an n–ary function symbol f put

(1.16) f Ì�7 α0 �=�=�=�i� αn © 1 8�7 i 8
:
, � f ® i 7 α0 7 i 8=8P� f ® i 7 α1 7 i 8=8P�=�=�=�P� f ® i 7 αn © 1 7 i 8=8=�

10 Fundamental Structures

The resulting algebra is denoted by ∏i � I ­ i. One also defines the product­Íe · in the following way. The carrier set is A e B and for an n–ary function
symbol f we put

(1.17) f ®»Î>Ç 7=� a0 � b0 �P�=�=�=�P�Z� an © 1 � bn © 1 �=8
:
, � f ® 7 a0 �=�=�=�i� an © 1 8P� f Ç 7 b0 �=�=�=�i� bn © 1 8=�

The algebra ­Ïe · is isomorphic to the algebra ∏i � 2 ­ i, where ­ 0 :
, ­ ,­ 1 :

,É·
. However, the two algebras are not identical. (Can you verify this?)

A particularly important concept is that of a variety or equationally defin-
able class of algebras.

Definition 1.11 Let Ω be a signature. A class of Ω–algebras is called a va-
riety if it is closed under isomorphic copies, subalgebras, homomorphic im-
ages, and (possibly infinite) products.

Let V :
, 5 xi : i � ω 6 be the set of variables. An equation is a pair � s � t � of Ω–

terms (involving variables from V). We introduce a formal symbol ‘
, , ,

’ and
write s

, , ,
t for this pair. An algebra ­ satisfies the equation s

, , ,
t iff for all

maps v :V � A, v 7 s 8 , v 7 t 8 . We then write ­ÄÐ s
, , ,

t. A class ´ of Ω–algebras
satisfies this equation if every algebra of ´ satisfies it. We write ´ÑÐ s

, , ,
t.

Proposition 1.12 The following holds for all classes ´ of Ω–algebras.

À ´ÑÐ s
, , ,

s.

Á If ´ÑÐ s
, , ,

t then ´ÑÐ t
, , ,

s.

Â If ´ÑÐ s
, , ,

t; t
, , ,

u then ´ÑÐ s
, , ,

u.

Ã If ´ÑÐ si
, , ,

ti for all i b Ω 7 f 8 then ´ÑÐ f 7�Es 8 , , , f 7 Et 8 .
Ä If ´ÒÐ s

, , ,
t and σ : V � TmΩ 7 V 8 is a substitution, then ´ÒÐ σ 7 s 8 , , ,

σ 7 t 8 .
The verification of this is routine. It follows from the first three facts that
equality is an equivalence relation on the algebra ±@² Ω 7 V 8 , and together with
the fourth that the set of equations valid in ´ form a congruence on ±@² Ω 7 V 8 .
There is a bit more we can say. Call a congruence Θ on ­ fully invariant if for
all endomorphisms h : ­Ä�¢­ : if x Θ y then h 7 x 8 Θ h 7 y 8 . The next theorem fol-
lows immediately once we observe that the endomorphisms of ±@² Ω 7 V 8 are

Algebras and Structures 11

exactly the substitution maps. To this end, let h : ±3² Ω 7 V 8»�Ó±@² Ω 7 V 8 . Then
h is uniquely determined by h £ V , since ±@² Ω 7 V 8 is freely generated by V . It
is easily computed that h is the substitution defined by h £ V . Moreover, ev-
ery map v : V �Ô±3² Ω 7 V 8 induces a homomorphism v : ±@² Ω 7 V 8��Ô±@² Ω 7 V 8 ,
which is unique. Now write Eq 7l´�8 :

, 5(� s � t � : ´ÑÐ s
, , ,

t 6 .
Corollary 1.13 Let ´ be a class of Ω–algebras. Then Eq 7l´�8 is a fully in-
variant congruence on ±3² Ω 7 V 8 .
Let E be a set of equations. Then put

(1.18) Õ _ Ö�7 E 8 :
, 5j­ : for all � s � t �@� E : ­ÅÐ s

, , ,
t 6

This is a class of Ω–algebras. Classes of Ω–algebras that have the formÕ _ Ö�7 E 8 for some E are called equationally definable.

Proposition 1.14 Let E be a set of equations. Then Õ _ Ö�7 E 8 is a variety.

We state without proof the following result.

Theorem 1.15 (Birkhoff) Every variety is an equationally definable class.
Furthermore, there is a biunique correspondence between varieties and fully
invariant congruences on the algebra ±@² Ω 7 ℵ0 8 .
The idea for the proof is as follows. It can be shown that every variety has free
algebras. For every cardinal number κ , ¹»º�¼×7 κ 8 exists. Moreover, a variety is
uniquely characterized by ¹»ºO¼×7 ℵ0 8 . In fact, every algebra is a subalgebra of
a direct image of some product of ¹»ºP¼Ø7 ℵ0 8 . Thus, we need to investigate
the equations that hold in the latter algebra. The other algebras will satisfy
these equations, too. The free algebra is the image of ±@² Ω 7 V 8 under the
map xi �� i. The induced congruence is fully invariant, by the freeness of¹»º ¼ 7 ℵ0 8 . Hence, this congruence simply is the set of equations valid in the
free algebra, hence in the whole variety. Finally, if E is a set of equations, we
write E Ð t

, , ,
u if ­ÅÐ t

, , ,
u for all ­��ÙÕ _ Ö�7 E 8 .

Theorem 1.16 (Birkhoff) E Ð t
, , ,

u iff t
, , ,

u can be derived from E by means
of the rules given in Proposition 1.12.

The notion of an algebra can be extended into two directions, both of
which shall be relevant for us. The first is the concept of a many–sorted alge-
bra.

12 Fundamental Structures

Definition 1.17 A sorted signature is a triple � F ��Ú�� Ω � , where F and Ú are
sets, the set of function symbols and of sorts, respectively, and Ω : F �ÛÚ �
a function assigning to each element of F its so–called signature. We shall
denote the signature by the letter Ω, as in the unsorted case.

So, the signature of a function is a (nonempty) sequence of sorts. The last
member of that sequence tells us what sort the result has, while the others tell
us what sort the individual arguments of that function symbol have.

Definition 1.18 A (sorted) Ω–algebra is a pair ­ , ��5 Aσ : σ ��Ú	6>� Π � such
that for every σ �ËÚ Aσ is a set and for every f � F such that Ω 7 f 8 , � σi :
i b n g 1 �
(1.19) Π 7 f 8 : Aσ0

e Aσ1
e¸Â=Â=ÂXe Aσn Ü 1

� Aσn

If
·Ô, ��5 Bσ : σ �ÝÚ
6>� Σ � is another Ω–algebra, a (sorted) homomorphism

from ­ to
·

is a set 5 hσ : Aσ � Bσ : σ �ÙÚ	6 of functions such that for each
f � F with signature � σi : i b n g 1 � :
(1.20) hσn 7 f ® 7 a0 �=�=�=�i� an © 1 8=8 , f Ç 7 hσ0

7 a0 8P�=�=�=�Z� hσn Ü 1
7 an © 1 8=8

A many–sorted algebra is an Ω–algebra of some signature Ω.

Evidently, if Ú , 5 σ 6 for some σ , then the notions coincide (modulo trivial
adaptations) with those of unsorted algebras. Terms are defined as before, but
now they are sorted. First, for each sort we assume a countably infinite set
Vσ of variables. Moreover, Vσ t Vτ

, w whenever σ �, τ . Now, every term is
given a unique sort in the following way.

À If x � Vσ , then x has sort σ .

Á f 7 t0 �=�=�=�i� tn © 1 8 has sort σn, if Ω 7 f 8 , � σi : i b n g 1 � and ti has sort σi
for all i b n.

The set of terms over V is denoted by TmΩ 7 V 8 . This can be turned into a
sorted Ω–algebra; simply let TmΩ 7 V 8 σ be the set of terms of sort σ . Again,
given a map v that assigns to a variable of sort σ an element of Aσ , there is a
unique homomorphism v from the Ω–algebra of terms into ­ . If t has sort σ ,
then v 7 t 83� Aσ . A sorted equation is a pair � s � t � , where s and t are of equal
sort. We denote this pair by s

, , ,
t. We write ­�Ð s

, , ,
t if for all maps v into­ , v 7 s 8 , v 7 t 8 . The Birkhoff Theorems have direct analogues for the many

sorted algebras, and can be proved in the same way.

Algebras and Structures 13

Sorted algebras are one way of introducing partiality. To be able to com-
pare the two approaches, we first have to introduce partial algebras. We shall
now return to the unsorted notions, although it is possible — even though not
really desirable — to introduce partial many–sorted algebras as well.

Definition 1.19 Let Ω be an unsorted signature. A partial Ω–algebra is a
pair � A � Π � , where A is a set and for each f � F: Π 7 f 8 is a partial function
from AΩ ¯ f ° to A.

The definitions of canonical terms split into different notions in the partial
case.

Definition 1.20 Let ­ and
·

be partial Ω–algebras, and h : A � B a map.
h is a weak homomorphism from ­ to

·
if for every Ea � AΩ ¯ f ° we have

h 7 f ® 7$Ea 8=8 , f Ç 7 h 7$Ea 8=8 if both sides are defined. h is a homomorphism if it is
a weak homomorphism and for every Ea � AΩ ¯ f ° if h 7 f ®ª7$Ea 8=8 is defined then so
is f Ç 7 h 7$Ea 8=8 . Finally, h is a strong homomorphism if it is a homomorphism
and h 7 f ®ª7�Ea 8=8 is defined iff f Ç¬7 h 7$Ea 8=8 is. ­ is a strong subalgebra of

·
if

A } B and the identity map is a strong homomorphism.

Definition 1.21 An equivalence relation Θ on A is called a weak congruence
of ­ if for every f � F and every Ea ��Ec � AΩ ¯ f ° if Ea Θ Ec and f ®y7$Ea 8 , f ®y7�Ec 8 are
both defined, then f ® 7$Ea 8 Θ f ® 7�Ec 8 . Θ is strong if in addition f ® 7$Ea 8 is defined
iff f ®y7ÈEc 8 is.

It can be shown that the equivalence relation induced by a weak (strong)
homomorphism is a weak (strong) congruence, and that every weak (strong)
congruence defines a surjective weak (strong) homomorphism.

Let v : V � A be a function, t
,

f 7 s0 �=�=�=�i� sΩ ¯ f ° © 1 8 a term. Then v 7 t 8 is

defined iff (a) v 7 si 8 is defined for every i b Ω 7 f 8 and (b) f ® is defined on� v 7 si 8 : i b n � . Now, we write �Á­¬� v �3Ð w s
, , ,

t if v 7 s 8 , v 7 t 8 in case both are
defined and equal; �Á­¬� v �ªÐ s s

, , ,
t if v 7 s 8 is defined iff v 7 t 8 is and if one is

defined the two are equal. An equation s
, , ,

t is said to hold in ­ in the weak
(strong) sense, if �Á­¬� v �YÐ w s

, , ,
t (�Á­¬� v �YÐ s s

, , ,
t) for all v : V � A. Proposi-

tion 1.12 holds with respect to Ð s but not with respect to Ð w. Also, algebras
satisfying an equation in the strong sense are closed under products, strong
homomorphic images and under strong subalgebras.

The relation between classes of algebras and sets of equations is called
a Galois correspondence. It is useful to know a few facts about such cor-
respondences. Let A, B be sets and R } A e B (A and B may in fact also be

14 Fundamental Structures

classes). The triple � A � B � R � is called a context. Now define the following
operators: Þ

: ℘7 A 8»� ℘7 B 8 : O ��Û5 y � B : for all x � O : x R y 6(1.21) ß
: ℘7 B 8»� ℘7 A 8 : P ��¨5 x � A : for all y � P : x R y 6(1.22)

One calls O

Þ
the intent of O } A and P

ß
the extent of P } B.

Theorem 1.22 Let � A � B � R � be a context. Then the following holds for all
O � O ¡ } A and all P� P ¡ } B.

À O } P

ß
iff O

Þ;à
P.

Á If O } O ¡ then O

Þ à
O ¡ Þ .

Â If P } P ¡ then P

ß à
P ¡ ß .

Ã O } O

Þ ß
.

Ä P } P

ß Þ
.

Proof. Notice that if � A � B � R � is a context, � B � A � R �3� also is a context, and
so we only need to show À, Á and Ã. À. O } P

ß
iff every x � O stands in

relation R to every member of P iff P } O

Þ
. Á. If O } O ¡ and y � O ¡ Þ , then

for every x � O ¡ : x R y. This means that for every x � O: x R y, which is the
same as y � O

Þ
. Ã. Notice that O

Þ à
O

Þ
by À implies O } O

Þ ß
. <

Definition 1.23 Let M be a set and H : ℘7 M 8�� ℘7 M 8 a function. H is called
a closure operator on M if for all X � Y } M the following holds.

À X } H 7 X 8 .
Á If X } Y then H 7 X 8�} H 7 Y 8 .
Â H 7 X 8 , H 7 H 7 X 8=8 .

A set X is called closed if X
,

H 7 X 8 .
Proposition 1.24 Let � A � B � R � be a context. Then O �� O

Þ ß
and P �� P

ß Þ
are

closure operators on A and B, respectively. The closed sets are the sets of the
form P

ß
for the first, and O

Þ
for the second operator.

Algebras and Structures 15

Proof. We have O } O

Þ ß
, from which O

Þ�à
O

Þ ß Þ
. On the other hand, O

Þ }
O

Þ ß Þ
, so that we get O

Þ ,
O

Þ ß Þ
. Likewise, P

ß ,
P

ß Þ ß
is shown. The claims

now follow easily. <
Definition 1.25 Let � A � B � R � be a context. A pair � O � P �;� ℘7 A 8Ye ℘7 B 8 is
called a concept if O

,
P

ß
and P

,
O

Þ
.

Theorem 1.26 Let � A � B � R � be a context. The concepts are exactly the pairs
of the form � P ß � P ß Þ � , P } B, or, alternatively, the pairs of the form � O Þ ß � O Þ � ,
O } A.

As a particular application we look again at the connection between classes of
Ω–algebras and sets of equations over Ω–terms. (It suffices to take the set of
Ω–algebras of size b κ for a suitable κ to make this work.) Let Õ _ Ö Ω denote
the class of Ω–algebras, á�â Ω the set of equations. The triple �ãÕ _ Ö Ω �iá�â Ω ��Ð�� is
a context, and the map

Þ
is nothing but á�â and the map

ß
nothing but Õ _ Ö . The

classes Õ�_ Ö�7 E 8 are the equationally definable classes, á�â�7l´�8 the equations
valid in ´ . Concepts are pairs �l´Ý� E � such that ´ , Õ _ Ö�7 E 8 and E

, á�â.7l´�8 .
Often we shall deal with structures in which there are also relations in

addition to functions. The definitions, insofar as they still make sense, are
carried over analogously. However, the notation becomes more clumsy.

Definition 1.27 Let F and G be disjoint sets and Ω : F � ω as well as
Ξ : G � ω functions. A pair ­ , � A �Èä�� is called an � Ω � Ξ � –structure if for
all f � F ä�7 f 8 is an Ω 7 f 8 –ary function on A and for each g � G ä�7 g 8 is a
Ξ 7 g 8 –ary relation on A. Ω is called the functional signature, Ξ the relational
signature of ­ .

Whenever we can afford it we shall drop the qualification ‘ � Ω � Ξ � ’ and sim-
ply talk of ‘structures’. If � A �Èä�� is an � Ω � Ξ � –structure, then � A �ÈäÅ£ F � is an
Ω–algebra. An Ω–algebra can be thought of in a natural way as a � Ω ��w¬� –
structure, where w is the empty relational signature. We use a convention
similar to that of algebras. Furthermore, we denote relations by upper case
Roman letters such as R, S and so on. Let ­ , � A ��5 f ® : f � F 6>��5 R ® : R � G 61�
and

·Ò, � B ��5 f Ç : f � F 6>��5 R Ç : R � G 61� be structures of the same signature.
A map h : A � B is called an isomorphism from ­ to

·
, if h is bijective and

for all f � F and all Ex � AΩ ¯ f ° we have

(1.23) h 7 f ® 7ÈEx 8=8 , f Ç 7 h 7�Ex 8=8

16 Fundamental Structures

as well as for all R � G and all Ex � AΞ ¯ R °
(1.24) R ® 7�Ex 8 å R Ç 7 h 7 x0 8P� h 7 x1 8P�=�=�=�Z� h 7 xΞ ¯ R ° © 1 8=8
Exercise 1. Since y ��æ5 y 6 is an embedding of x into ℘7 x 8 , we have � x ��ç�℘7 x 8j� . Show that �℘7 x 8j���Ï� x � for every set. Hint. Let f : x � ℘7 x 8 be any
function. Look at the set 5 y : y �� f 7 y 8Z6×} x. Show that it is not in im 7 f 8 .
Exercise 2. Let f : M � N and g : N � P. Show that if g : f is surjective, g
is surjective, and that if g : f is injective, f is injective. Give in each case an
example that the converse fails.

Exercise 3. In set theory, one writes NM for the set of functions from N to M.
Show that if �N � , n and �M � , m, then � NM � , mn. Deduce that � NM � , �Mn � .
Can you find a bijection between these sets?

Exercise 4. Show that for relations R � R k } M e N, S � S k } N e P we have7 R s R k 8�: S
, 7 R : S 8�s�7 R k : S 8(1.25a)

R :ª7 S s S k 8 , 7 R : S 8�s¸7 R : S k 8(1.25b)

Show by giving an example that analogous laws for t do not hold.

Exercise 5. Let ­ and
·

be Ω–algebras for some signature Ω. Show that if
h : ­Å¤ ·

is a surjective homomorphism then
·

is isomorphic to ­ ¾ Θ with
x Θ y iff h 7 x 8 , h 7 y 8 .
Exercise 6. Show that every Ω–algebra ­ is the homomorphic image of a
term algebra. Hint. Take X to be the set underlying ­ .

Exercise 7. Show that ­?e · is isomorphic to ∏i �1è 0 é 1 ê ­ i, where ­ 0
, ­ ,­ 1

,É·
. Show also that 7Á­Ée · 8�eìë is isomorphic to ­ÉeÝ7 · eìë»8 .

Exercise 8. Prove Proposition 1.7.

2. Semigroups and Strings

In formal language theory, languages are sets of strings over some alpha-
bet. We assume throughout that an alphabet is a finite, nonempty set, usually
called A. It has no further structure (but see Section 1.3), it only defines the
material of primitive letters. We do not make any further assumptions on the

Semigroups and Strings 17

size of A. The Latin alphabet consists of 26 letters, which actually exist in two
variants (upper and lower case), and we also use a few punctuation marks and
symbols as well as the blank. On the other hand, the Chinese ‘alphabet’ con-
sists of several thousand letters!

Strings are very fundamental structures. Without a proper understanding
of their workings one could not read this book, for example. A string over A is
nothing but the result of successively placing elements of A after each other. It
is not necessary to always use a fresh letter. If, for example, A

, 5 0 �lí���F���î
6 ,
then

0 í(í , í 0 F , F 0�0 í 0 are strings over A. We agree to use typewriter font
to mark actual symbols (= pieces of ink), while letters in different font are
only proxy for letters (technically, they are variables for letters). Strings are
denoted by a vector arrow, for example Ew, Ex, Ey and so on, to distinguish them
from individual letters. Since paper is of bounded length, strings are not really
written down in a continuous line, but rather in several lines, and on several
pieces of paper, depending on need. The way a string is cut up into lines
and pages is actually immaterial for its abstract constitution (unless we speak
of paragraphs and similar textual divisions). We wish to abstract from these
details. Therefore we define strings formally as follows.

Definition 1.28 Let A be a set. A string over A is a function Ex : n � A for
some natural number n. n is called the length of Ex and is denoted by �nEx � . Ex 7 i 8 ,
i b n, is called the ith segment or the ith letter of Ex. The unique string of
length 0 is denoted by ε . If Ex : m � A and Ey : n � A are strings over A thenEx 9 Ey denotes the unique string of length m g n for which the following holds:

(1.26) 7ÈEx 9 Ey 8�7 j 8 :
, ¿ Ex 7 j 8 if j b m,Ey 7 j v m 8 else.

We often write Ex Ey in place of Ex 9@Ey. In connection with this definition the set A
is called the alphabet, an element of A is also referred to as a letter. Unless
stated otherwise, A is finite and nonempty.

So, a string may also be written using simple concatenation. Hence we have0 í�F 9 í 0 F 0�,�0 í.Fïí 0 F 0 . Note that there no blank is inserted between the two
strings; for the blank is a letter. We denote it by < . Two words of a language
are usually separated by a blank possibly using additional punctuation marks.
That the blank is a symbol is felt more clearly when we use a typewriter. If
we want to have a blank, we need to press down a key in order to get it. For
purely formal reasons we have added the empty string to the set of strings.

18 Fundamental Structures

It is not visible (unlike the blank). Hence, we need a special symbol for it,
which is ε , in some other books also λ . We have

(1.27) Ex 9 ε
,

ε 9 Ex , Ex
We say, the empty string is the unit with respect to concatenation. For any
triple of strings Ex, Ey and Ez we have

(1.28) Ex 9 7�Ey 9 Ez 8 , 7�Ex 9 Ey 8 9 Ez
We therefore say that concatenation, 9 , is associative. More on that below.
We define the notation Ex i by induction on i.

(1.29)
Ex 0 :

,
εEx i � 1 :

, Ex i 9 Ex
Furthermore, we define ∏i n Exi as follows.

(1.30) ∏
i 0
Exi :
,

ε � ∏
i n � 1

:
, 7 ∏

i n
Exi 8 9 Exn

Note that the letter
0

is technically distinct from the string Ex : 1 � A : 0 �� 0
.

They are nevertheless written in the same way, namely
0
. If Ex is a string over

A and A } B, then Ex is a string over B. The set of all strings over A is denoted
by A ¡ .

Let b be a linear order on A. We define the so–called lexicographical
ordering (with respect to b) as follows. Put Ex b L Ey if there exist Eu, Ev and Ew
as well as a and b such that Ex , Eu 9 a 9 Ev, Ey , Eu 9 b 9 Ew and a b b. Notice thatEx b L Ey can obtain even if Ex is longer than Ey. Another important ordering is the
following one. Let µ 7 a 8 :

,
k if a is the kth symbol of A in the ordering b .

Further, put n :
, �A � . For Ex , x0x1 Â=Â=Â xp © 1 we associate the following number.

(1.31) Z 7ÈEx 8 :
, p © 1

∑
i ð 0
7 µ 7 xi 8(g 1 8�7 n g 1 8 p © i © 1

Now put Ex b N Ey if and only if Z 7�Ex 8�b Z 7ÈEy 8 . This ordering we call the nu-
merical ordering. Notice that both orderings depend on the choice of b . We
shall illustrate these orderings with A :

, 5 0 �lí�6 and
0 bËí . Then the numerical

ordering is as follows.Ex ε
0 í 0�0 0 í í 0 í�í 0�0(0 0(0 í 0 í 0 �=�=�

Z 7ÈEx 8 0 1 2 4 5 7 8 13 14 16

Semigroups and Strings 19

εññññ ò ò òò0óóóó ô ô ôô
íóóóó ô ô ôô0�0õõïö ö�=�=�

0 íõõïö ö�=�=� í
0õõXö ö�=�=� í�íõõ½ö ö�=�=�

Figure 1. The Tree A ÷
This ordering is linear. The map sending i � ω to the ith element in this se-
quence is known as the dyadic representation of the numbers. In the dyadic
representation, 0 is represented by the empty string, 1 by

0
, 2 by í , 3 by

0�0
and so on. (Actually, if one wants to avoid using the empty string here, one
may start with

0
instead.)

The lexicographical ordering is somewhat more complex. We illustrate it
for words with at most four letters.

ε ,
0
,

0�0
,

0(0�0
,

0�0(0�0
,
0(0�0 í ,0�0 í ,

0�0 í 0 , 0�0 í�í ,
0 í ,

0 í 0 , 0 í 0(0 ,0 í 0 í ,
0 í�í ,

0 í(í 0 , 0 í�í(í , í , í 0 ,í 0(0 , í 0�0(0 , í 0(0 í , í 0 í , í 0 í 0 , í 0 í(í ,í�í , í�í 0 , í�í 0�0 , í(í 0 í , í�í(í , í(í�í 0 ,í�í(í�í
In the lexicographical as well as the numerical ordering ε is the smallest
element. Now look at the ordered tree based on the set A ¡ . It is a tree in which
every node is n–ary branching (cf. Section 1.4). Then the lexicographical
ordering corresponds to the linearization obtained by depth–first search in this
tree, while the numerical ordering corresponds to the linearization obtained
by breadth–first search (see Section 2.2).

A monoid is a triple ø , � M � 1 ��:�� where : is a binary operation on M
and 1 an element such that for all x � y � z � M the following holds.

x : 1
,

x(1.32a)

1 : x
,

x(1.32b)

20 Fundamental Structures

x :ª7 y : z 8 , 7 x : y 8(: z(1.32c)

A monoid is therefore an algebra with signature Ω : 1 �� 0 �=Â&�� 2, which in
addition satisfies the above equations. An example is the algebra � 4 � 0 � max �
(recall that 4

, 5 0 � 1 � 2 � 3 6), or � ω � 0 ��g�� .
Proposition 1.29 Let ù;7 A 8 :

, � A ¡ � ε �=Â`� . Then ù;7 A 8 is a monoid.

The function which assigns to each string its length is a homomorphism fromù;7 A 8 onto the monoid � ω � 0 ��g¬� . It is surjective, since A is always assumed to
be nonempty. ù;7 A 8 are special monoids:

Proposition 1.30 The monoid ù;7 A 8 is freely generated by A.

Proof. Let ú , � N � 1 ��:�� be a monoid and v : A � N an arbitrary map. Then
we define a map v as follows.

(1.33)
v 7 ε 8 :

,
1

v 7�Ex 9 a 8 :
,

v 7�Ex 8(: v 7 a 8
This map is surely well defined. For the defining clauses are mutually exclu-
sive. Now we must show that this map is a homomorphism. To this end, let Ex
and Ey be words. We shall show that

(1.34) v 7ÈEx 9 Ey 8 , v 7ÈEx 8(: v 7ÈEy 8
This will be established by induction on the length of Ey. If it is 0, the claim
is evidently true. For we have Ey , ε , and hence v 7�Ex 9 Ey 8 , v 7ÈEx 8 , v 7�Ex 8�: 1

,
v 7�Ex 8�: v 7�Ey 8 . Now let �nEy �1� 0. Then Ey , Ew 9 a for some a � A.

(1.35)

v 7�Ex 9 Ey 8 , v 7ÈEx 9 Ew 9 a 8,
v 7ÈEx 9 Ew 8(: v 7 a 8, 7 v 7ÈEx 8(: v 7jEw 8=8�: v 7 a 8,
v 7ÈEx 8(:;7 v 7jEw 8�: v 7 a 8=8,
v 7ÈEx 8(: v 7ÈEy 8

This shows the claim. <
The set A is the only set that generates ù;7 A 8 freely. For a letter cannot

be produced from anything longer than a letter. The empty string is always
dispensable, since it occurs anyway in the signature. Hence any generating set

Semigroups and Strings 21

must contain A, and since A generates A ¡ it is the only minimal set that does
so. A non–minimal generating set can never freely generate a monoid. For
example, let X

, 5 0 �lí��lí(í 0 6 . X generates ù;7 A 8 , but it is not minimal. Hence
it does not generate ù;7 A 8 freely. For example, let v :

0 �� 0 �lí¶��Óí��lí�í 0 �� 0
.

Then there is no homomorphism that extends v to A ¡ . For then on the one
hand v 7�í(í 0 8 ,�0 , on the other v 7�í�í 0 8 , v 7�í�8 9 v 7�í	8 9 v 7 0 8 , í�í 0 .

The fact that A generates ù;7 A 8 freely has various noteworthy consequences.
First, a homomorphism from ù;7 A 8 into an arbitrary monoid need only be
fixed on A in order to be defined. Moreover, any such map can be extended
to a homomorphism into the target monoid. As a particular application we
get that every map v : A � B ¡ can be extended to a homomorphism fromù;7 A 8 to ù;7 B 8 . Furthermore, we get the following result, which shows that
the monoids ù;7 A 8 are up to isomorphism the only freely generated monoids
(allowing infinite alphabets). They reader may note that the proof works for
algebras of any signature.

Theorem 1.31 Let ø , � M ��:(� 1 � and ú , � N ��:(� 1 � be freely generated mo-
noids. Then either À or Á obtains.

À There is an injective homomorphism i : øû¥üú and a surjective ho-
momorphism h : úý¤Óø such that h : i

,
1M .

Á There exists an injective homomorphism i : úÔ¥þø and a surjective
homomorphism h : øæ¤Óú such that h : i

,
1N .

Proof. Let ø be freely generated by X , ú freely generated by Y . Then either�X ��çÿ�Y � or �Y �&ç��X � . Without loss of generality we assume the first. Then
there is an injective map p : X ¥ Y and a surjective map q : Y ¤ X such that
q : p

,
1X . Since X generates ø freely, there is a homomorphism p : ø�� ú

with p £ X
,

p. Likewise, there is a homomorphism q : ú � ø such that
q £ Y ,

q, since ú is freely generated by Y . The restriction of q : p to X is
the identity. (For if x � X then q : p 7 x 8 , q 7 p 7 x 8=8 , q 7 p 7 x 8=8 , x.) Since X
freely generates ø , there is only one homomorphism which extends 1X onø and this is the identity. Hence q : p

,
1M . It immediately follows that q is

surjective and p injective. Hence À obtains. If �Y �1ç��X � holds, Á is shown in
the same way. <
Theorem 1.32 In ù;7 A 8 the following cancellation laws hold.

À If Ex 9;Eu , Ey 9;Eu, then Ex , Ey.

22 Fundamental Structures

Á If Eu 9 Ex , Eu 9 Ey, then Ex , Ey.ExT is defined as follows.

(1.36)

�
∏
i n

xi � T

:
, ∏

i n
xn © 1 © i

ExT is called the mirror string of Ex. It is easy to see that 7�ExT 8 T , Ex. The reader
is asked to convince himself that the map Ex �� ExT is not a homomorphism if�A �1� 1.

Definition 1.33 Let Ex ��Ey � A ¡ . Then Ex is a prefix of Ey if Ey , Ex 9;Eu for someEu � A ¡ . Ex is called a postfix or suffix of Ey if Ey , Eu 9 Ex for some Eu � A ¡ . Ex is
called a substring of Ey if Ey , Eu 9yEx 93Ev for some Eu ��Ev � A ¡ .
It is easy to see that Ex is a prefix of Ey exactly if ExT is a postfix of EyT . Notice that
a given string can have several occurrences in another string. For example,0�0

occurs four times is
0�0(0�0(0

. The occurrences are in addition not always
disjoint. An occurrence of Ex in Ey can be defined in several ways. We may for
example assign positions to each letters. In a string x0x1 �=�=� xn © 1 the numbersb n g 1 are called positions. The positions are actually thought of as the
spaces between the letters. The ith letter, xi, occurs between the position i and
the position i g 1. The substring ∏i � j k xi occurs between the positions i and
k. The reason for doing it this way is that it allows us to define occurrences
of the empty string as well. For each i, there is an occurrence of ε between
position i and position i. We may interpret positions as time points in between
which certain events take place, here the utterance of a given sound. Another
definition of an occurrence is via the context in which the substring occurs.

Definition 1.34 A context is a pair C
, ��Ey �lEz � of strings. The substitution ofEx into C, in symbols C 7�Ex 8 , is defined to be the string Ey 9@Ex 9»Ez. We say that Ex

occurs in Ev in the context C if Ev , C 7�Ex 8 . Every occurrence of Ex in a string Ev
is uniquely defined by its context. We call C a substring occurrence of Ex in Ev.

Actually, given Ex and Ev, only one half of the context defines the other. How-
ever, as will become clear, contexts defined in this way allow for rather con-
cise statements of facts in many cases. Now consider two substring occur-
rences C, D in a given word Ez. Then there are various ways in which the
substrings may be related with respect to each other.

Semigroups and Strings 23

Definition 1.35 Let C
, �$Eu1 �=Eu2 � and D

, ��Ev1 ��Ev2 � be occurrences in Ez of the
strings Ex and Ey, respectively. We say that C precedes D if Eu1 9 Ex is a prefix ofEv1. C and D overlap if C does not precede D and D does not precede C. C is
contained in D if Ev1 is a prefix of Eu1 and Ev2 is a suffix of Eu2.

Notice that if Ex is a substring of Ey then every occurrence of Ey contains an oc-
currence of Ex; but not every occurrence of Ex is contained in a given occurrence
of Ey.

Definition 1.36 A (string) language over the alphabet A is a subset of A ¡ .
This definition admits that L

, w and that L
,

A ¡ . Moreover, ε � L also
may occur. The admission of ε is often done for technical reasons (like the
introduction of a zero).

Theorem 1.37 Suppose A is not empty, and �A �Xç ℵ0. Then there are exactly
2ℵ0 languages.

Proof. This is a standard counting argument. We establish that �A ¡ � , ℵ0.
The claim then follows since there are as many languages as there are subsets
of ℵ0, namely 2ℵ0 . If A is finite, we can enumerate A ¡ by enumerating the
strings of length 0, the strings of length 1, the strings of length 2, and so
on. If A is infinite, we have to use cardinal arithmetic: the set of strings of
length k of any finite k is countable, and A ¡ is therefore the countable union
of countable sets, again countable. <

One can prove the previous result directly using the following argument.
(The argument works even when C is countably infinite.)

Theorem 1.38 Let C
, 5 ci : i b p 6 , p � 2, be an arbitrary alphabet and

A
, 5 0 �lí.6 . Further, let v be the homomorphic extension of v : ci �� 0 i 9 í . The

map S �� v ¦ S § : ℘7 C ¡ 8�� ℘7 A ¡ 8 defined by V 7 S 8 , v ¦ S § is a bijection between
℘7 C ¡ 8 and those languages which are contained in the direct image of v.

The proof is an exercise. The set of all languages over A is closed under t ,s , and v , the relative complement with respect to A ¡ . Furthermore, we can

24 Fundamental Structures

define the following operations on languages.

L Â M :
, 51Ex 9 Ey : Ex � L ��Ey � M 6(1.37a)

L0 :
, 5 ε 6(1.37b)

Ln � 1 :
,

Ln Â L(1.37c)

L ¡ :
, �

n � ω
Ln(1.37d)

L � :
, �

0 n � ω
Ln(1.37e)

L ¾ M :
, 51Ey � A ¡ : 7���Ex � M 8�7ÈEy 9 Ex � L 8Z6(1.37f)

M u L :
, 51Ey � A ¡ : 7���Ex � M 8�7ÈEx 9 Ey � L 8Z6(1.37g)¡ is called the Kleene star. For example, L ¾ A ¡ is the set of all strings which

can be extended to members of L; this is exactly the set of prefixes of mem-
bers of L. We call this set the prefix closure of L, in symbols LP. Analogously,
LS :

,
A ¡ u L is the suffix or postfix closure of L. It follows that 7 LP 8 S is noth-

ing but the substring closure of L.
In what is to follow, we shall often encounter string languages with a spe-

cial distinguished symbol, the blank, typically written < . Then we use the
abbreviationEx �yEy :

, Ex 9 < 9 Ey L � M :
, 5XEx �yEy : Ex � L ��Ey � M 6(1.38)

Let L be a language over A, C
, ��Ex ��Ey � a context and Eu a string. We say that

C accepts Eu in L, and write Eu � L C, if C 7$Eu 8�� L. The triple � A ¡ � A ¡ e A ¡ ��� L � is
a context in the sense of the previous section. Let M } A ¡ and P } A ¡ e A ¡ .
Then denote by CL 7 M 8 the set of all C which accept all strings from M in
L (intent); and denote by ZL 7 P 8 the set of all strings which are accepted by
all contexts from P in L (extent). We call M (L–)closed if M

,
ZL 7 CL 7 M 8=8 .

The closed sets form the so–called distribution classes of strings in a lan-
guage. ZL 7 CL 7 M 8=8 is called the Sestier–closure of M and the map SL : M ��
ZL 7 CL 7 M 8=8 the Sestier–operator. From Proposition 1.24 we immediately get
this result.

Proposition 1.39 The Sestier–operator is a closure operator.

For various reasons, identifying terms with strings that represent them is
a dangerous affair. As is well–known, conventions for writing down terms

Semigroups and Strings 25

can be misleading, since they might be ambiguous. Therefore we defined the
term as an entity in itself. The string by which we denote the term is only as
a representative of that term.

Definition 1.40 Let Ω be a signature. A representation of terms (by means
of strings over A) is a relation R } TmΩ e A ¡ such that for each term t there
exists a string Ex with � t �$Ex �y� R. Ex is called a representative or representing
string of t with respect to R. Ex is called unambiguous if from � t �$Ex �P�Z� u ��Ex �+� R
it follows that t

,
u. R is called unique or uniquely readable if every Ex � A ¡

is unambiguous.

R is uniquely readable iff it is an injective function from TmΩ to A ¡ (and
therefore its converse a partial injective function). We leave it to the reader
to verify that the representation defined in the previous section is actually
uniquely readable. This is not self evident. It could be that a term possesses
several representing strings. Our usual way of denoting terms is in fact not
uniquely readable. For example, one writes �yg	�ªg�N even though this could
be a representative of the term g 7�g 7 2 � 3 8P� 4 8 or of the term g 7 2 ��gì7 3 � 4 8=8 . This
hardly matters, since the two terms denote the same number, but nevertheless
they are different terms.

There are many more conventions for writing down terms. We give a few
examples. (a) A binary symbol is typically written in between its arguments
(this is called the infix notation). So, we do not write L3I
���
�	J but I
�&L��	J . (b)
Outermost brackets may be omitted: I
�&L���J denotes the same term as �&L�� .
(c) The multiplication sign binds stronger than L . So, the following strings all
denote the same term.

(1.39) T
���@T
�����	W(W ���3T
�����
W T
���������
W ���������
In logic, it was customary to use dots in place of brackets. In this notation,Q	S���������Q means the same as the more common T$Q	S���W���Q . The dots are placed
to the left or right (sometimes both) of the operation sign. Ambiguity is re-
solved by using more than one dot, for example ‘ ’. (See (Curry, 1977) on this
notation.) Also, let : be a binary operation symbol, written in infix notation.
Suppose that ! defines a string for every term in the following way.!�7 x 8 :

,
x x basic!>7�:�7 x � y 8=8 :

, !>7 x 8(: y y basic(1.40) !�7�:�7 x � t 8=8 :
, !>7 x 8(:�T
!�7 t 8OW t complex

26 Fundamental Structures

If !>7 t 8 represents t, we say that : is left–associative. If on the other hand ρ 7 t 8
represents the term t, : is said to be right–associative.

ρ 7 y 8 :
,

x y basic

ρ 7�:�7 x � y 8=8 :
,

x : ρ 7 y 8 x basic(1.41) !>7�:�7 t � y 8=8 :
, T ρ 7 t 8OW�: ρ 7 y 8 t complex

Since the string T
�����	W���� represents a different term than ��������� (and both
have a different value) the brackets cannot be omitted. That we can do with-
out brackets is an insight we owe to the Polish logician Jan Łukasiewicz. In
his notation, which is also called Polish Notation (PN), the function symbol
is always placed in front of its arguments. Alternatively, the function symbol
may be consistently placed behind its arguments (this is the so–called Re-
verse Polish Notation, RPN). There are some calculators (in addition to the
programming language FORTH) which have implemented RPN. In place of
the (optional) brackets there is a key called ‘

D4'�"�D>#
’. It is needed to separate

two successive operands. For in RPN, the two arguments of a function follow
each other immediately. If nothing is put in between them, both the termsg 7 13 � 5 8 and g 7 1 � 35 8 would both be written H���K&L . To prevent this, ‘

D�'�"�D&#
’

is used to separate the first from the second input string. You therefore need
to enter into the computer H#� D4'�"�D&# K&L . (Here, the box is the usual way in
computer handbooks to turn a sequence into a ‘key’. In Chapter 3 we shall
deal again with the problem of writing down numbers.) Notice that in prac-
tice (i.e. as far as the tacit conventions go) the choice between Polish and
Reverse Polish Notation only affects the position of the function symbol, and
not the way in which arguments are placed with respect to each other. For
example, suppose there is a key

D%$'&
for the exponential function. Then to

get the result of 23, you enter � D4'�"�D&# � D%$'& on a machine using RPN andD�$�& � D�'�"�D&# ��(on a machine using PN. Hence, the relative order between
base (�) and exponent (�) remains. (Notice incidentally the need for typing in(or something else that indicates the end of the second operand in PN!) This
effect is also noted in natural languages: the subject precedes the object in
the overwhelming majority of languages irrespective of the place of the verb.
The mirror image of an VSO language is an SOV language, not OSV.

Now we shall show that Polish Notation is uniquely readable. Let F be a
set of symbols and Ω a signature over F . Each symbol f � F is assigned an
arity Ω 7 f 8 . Next, we define a set of strings over F , which we assign to the
various terms of TmΩ. PNΩ is the smallest set M of strings over F for which

Semigroups and Strings 27

the following holds.

For all f � F and for all Exi � M, i b Ω 7 f 8 :
f 93Ex0 9«Â=Â=Â�93ExΩ ¯ f ° © 1 � M.

(Notice the special case n
,

0. Further, notice that no special treatment is
needed for variables, by the remarks of the preceding section.) This defines
the set PNΩ, members of which are called well–formed strings. Next we
shall define which string represents which term. The string ‘ f ’, Ω 7 f 8 , 0,
represents the term ‘ f ’. If Exi represents ti, i b Ω 7 f 8 , then f 9@Ex0 9«Â=Â=Â�9@ExΩ ¯ f ° © 1
represents f 7 t0 �=�=�=�i� tΩ ¯ f ° © 1 8 . We shall now show that this relation is bijective.
(A different proof than the one used here can be found in Section 2.4, proof
of Theorem 2.61.) Here we use an important principle, namely induction over
the length of the string. The following is for example proved by induction on�nEx � .

À No proper prefix of �nEx � is a well–formed string.

Á If Ex is a well–formed string then Ex has length at least 1 and the following
holds.

(a) If � Ex � , 1, then Ex , f for some f � F with Ω 7 f 8 , 0.

(b) If �nEx ��� 1, then there are f and Ey such that Ex , f 9 Ey, and Ey is
the concatenation of exactly Ω 7 f 8 many uniquely defined well–
formed strings.

The proof is as follows. Let t and u be terms represented by Ex. Let � Ex � , 1.
Then t

,
u
,

f , for some f � F with Ω 7 f 8 , 0. A proper prefix is the empty
string, which is clearly not well formed. Now for the induction step. Let Ex
have length at least 2. Then there is an f � F and a sequence Eyi, i b Ω 7 f 8 , of
well–formed strings such that

(1.42) Ex , f 9 Ey0 9 Â=Â=Â 9 EyΩ ¯ f ° © 1

Therefore for each i b Ω 7 f 8 there is a term ui represented by Eyi. By Á, the
ui are uniquely determined by the Eyi. Furthermore, the symbol f is uniquely
determined, too. Now let Ezi, i b Ω 7 f 8 , be well–formed strings with

(1.43) Ex , f 9 Ez0 9 Â=Â=Â 9 EzΩ ¯ f ° © 1

28 Fundamental Structures

Then Ey0
, Ez0. For no proper prefix of Ez0 is a well–formed term, and no proper

prefix of Ey0 is a term. But they are prefixes of each other, so they cannot be
proper prefixes of each other, that is to say, they are equal. If Ω 7 f 8 , 1, we are
done. Otherwise we carry on in the same way, establishing by the same argu-
ment that Ey1

, Ez1, Ey2
, Ez2, and so on. The fragmentation of the string in Ω 7 f 8

many well–formed strings is therefore unique. By inductive hypothesis, the
individual strings uniquely represent the terms ui. So, Ex uniquely represents
the term f 7�Eu 8 . This shows Á.

Finally, we shall establish À. Look again at the decomposition (1.42). IfEu is a well–formed prefix, then Eu �, ε . Hence Eu , f 9yEv for some Ev which can
be decomposed into Ω 7 f 8 many well–formed strings Ewi. As before we shall
argue that Ewi

, Exi for every i b Ω 7 f 8 . Hence Eu , Ex, which shows that no
proper prefix of Ex is well–formed.

Notes on this section. Throughout this book the policy is to regard any lin-
guistic object as a string. Strings are considered the fundamental structures.
This in itself is no philosophical commitment, just a matter of convenience.
Moreover, when we refer to sentences qua material objects (signifiers) we
take them to be strings over the Latin alphabet. This again is only a matter
of convenience. Formal language theory very often treats words rather than
letters as units. If one does so, their composite nature has to be ignored. Yet,
while most arguments can still be performed (since a transducer can be used
to switch between these representations), some subtleties can get lost in this
abstraction. We should also point out that since alphabets must be finite, there
can be no infinite set of variables as a primitive set of letters, as is often as-
sumed in logic.

Exercise 9. Prove Theorem 1.38.

Exercise 10. (The ‘Typewriter Model’.) Fix an alphabet A. For each a � A as-
sume a unary symbol

)
a. Finally, let G be a zeroary symbol. This defines

the signature Ψ. Define a map t : TmΨ � A ¡ as follows. τ 7ÈG�8 :
,

ε , and
τ 7) a 7 s 8=8 :

,
τ 7 s 8 9 a. Show that τ is bijective. Further, show that there is no

term u over Ψ such that τ 7 u 7 x � y 8=8 , τ 7 x 8Z9 τ 7 y 8 , and not even a term v)x 7 y 8
such that τ 7 v)x 7 y 8=8 , Ex 9 τ 7 y 8 , for any given Ex � A � . On the other hand there
does exist a w)y such that τ 7 w)y 7 x 8=8 , τ 7 x 8�9yEy for any given Ey � A ¡ .
Exercise 11. Put Z ¡ 7ÈEx 8 :

,
∑i p µ 7 xi 8 np © i © 1. Now put Ex b N * Ey if and only if

Z ¡ 7ÈEx 8Yb Z ¡ 7ÈEy 8 . Show that b N * is transitive and irreflexive, but not total.

Exercise 12. Show that the postfix relation is a partial ordering, likewise the

Fundamentals of Linguistics 29

prefix and the subword relation. Show that the subword relation is the transi-
tive closure of the union of the postfix relation with the prefix relation.

Exercise 13. Let F , X and 5�I½�iJ&6 be three pairwise disjoint sets, Ω a signa-
ture over F . We define the following function from Ω–terms into strings over
F s X sì5�I��iJ&6 :
(1.44)

x � :
,

x

f 7 t0 �=�=�=�i� tΩ ¯ f ° © 1 8 � :
,

f 9 I 9 t �0 9 Â=Â=Â 9 t �Ω ¯ f ° © 1 9 J
(To be clear: we represent terms by the string that we have used in Section 1.1
already.) Prove the unique readability of this notation. Notice that this does
not already follow from the fact that we have chosen this notation to begin
with. (We might just have been mistaken ...)

Exercise 14. Give an exact upper bound on the number of prefixes (postfixes)
of a given string of length n, n a natural number. Also give a bound for the
number of subwords. What can you say about the exactness of these bounds
in individual cases?

Exercise 15. Let L � M } A ¡ . Define

L ¾=¾ M :
, 51Ey : 7�~�Ex � M 8�7ÈEy 9 Ex � L 8Z6(1.45a)

M u=u L :
, 51Ey : 7�~�Ex � M 8�7ÈEx 9 Ey � L 8Z6(1.45b)

Show the following for all L � M � N } A ¡ :
(1.46) M } L u=u N å L Â M } N å L } N ¾=¾ M
Exercise 16. Show that not all equivalences are valid if in place of u=u and ¾=¾
we choose u and ¾ . Which implications remain valid, though?

3. Fundamentals of Linguistics

In this section we shall say some words about our conception of language
and introduce some linguistic terminology. Since we cannot define all the
linguistic terms we are using, this section is more or less meant to get those
readers acquainted with the basic linguistic terminology who wish to read the

30 Fundamental Structures

Phonological Stratum

Morphological Stratum

Syntactical Stratum

Semantical Stratum

Figure 2. The Strata of Language

book without going through an introduction into linguistics proper. (However,
it is recommended to have such a book at hand.)

A central tool in linguistics is that of postulating abstract units and hier-
archization. Language is thought to be more than a mere relation between
sounds and meanings. In between the two realms we find a rather rich ar-
chitecture that hardly exists in formal languages. This architecture is most
clearly articulated in (Harris, 1963) and also (Lamb, 1966). Even though lin-
guists might disagree with many details, this basic architecture is assumed
even in most current linguistic theories. We shall outline what we think is
minimal consensus. Language is organized in four levels or layers, which
are also called strata, see Figure 2: the phonological stratum, the morpho-
logical stratum, the syntactic stratum and the semantical stratum. Each
stratum possesses elementary units and rules of combination. The phonolog-
ical stratum and the morphological stratum are adjacent, the morphological
stratum and the syntactic stratum are adjacent, and the syntactic stratum and
the semantic stratum are adjacent. Adjacent strata are interconnected by so–
called rules of realization. On the phonological stratum we find the mere
representation of the utterance in its phonetic and phonological form. The el-
ementary units are the phones. An utterance is composed from phones (more
or less) by concatenation. The terms ‘phone’, ‘syllable’, ‘accent’ and ‘tone’
refer to this stratum. In the morphological stratum we find the elementary
signs of the language (see Section 3.1), which are called morphs. These are
defined to be the smallest units that carry meaning, although the definition of

Fundamentals of Linguistics 31

‘smallest’ may be difficult to give. They are different from words. The word)�D(D)
is a word, but it is the combination of two morphs, the root

)4D�D
and

the ending of the third person singular present,
)
. The units of the syntactical

stratum are called lexes, and they more or less are the same as words. The
units of the semantical stratum are the semes.

On each stratum we distinguish concrete from abstract units. The concrete
forms represent substance, while the abstract ones represent the form only.
While the relationship between these two levels is far from easy, we will sim-
plify the matter as follows. The abstract units are seen as sets of concrete ones.
The abstraction is done in such a way that the concrete member of each class
that appears in a construction is defined by its context, and that substitution of
another member results simply in a non well–formed unit (or else in a virtu-
ally identical one). This definition is deliberately vague; it is actually hard to
make precise. The interested reader is referred to the excellent (Harris, 1963)
for a thorough discussion of the structural method. We shall also return to this
question in Section 6.3. The abstract counterpart of a phone is a phoneme.
A phoneme is simply a set of phones. The sounds of a single language are a
subset of the entire space of human sounds, partitioned into phonemes. This
is to say that two distinct phonemes of a languages are disjoint. We shall deal
with the relationship between phones and phonemes in Section 6.3. We use
the following notation. We enclose phonemes in slashes while square brack-
ets are used to name phones. So, if [p] denotes a phone then /p/ is a phoneme
containing [p]. (Clearly, there are infinitely many sounds that may be called
[p], but we pick just one of them.) An index is used to make clear which lan-
guage the phoneme belongs to. For phonemes are strictly language bound. It
makes little sense to compare phonemes across languages. Languages cut up
the sound continuum in a different way. For example, let [p] and [ph] be two
distinct phones, where [p] is a phone corresponding to the letter

&
in
)+&-,."

,
[ph] a phone corresponding to the letter

&
in
&�%�"

. Hindi distinguishes these
two phones as instantiations of different phonemes: ¾ p ¾ H t ¾ ph ¾ H

, w . En-
glish does not. So, ¾ p ¾ E

, ¾ ph ¾ E . Moreover, the context determines whether
what is written

&
is pronounced either as [p] or as [ph]. Actually, in English

there is no context in which both will occur. Finally, French does not even
have the sound [ph]. We give another example. The combination of the let-
ters F0/ is pronounced in two noticeably distinct ways in German. After [ı], it
sounds like [ç], for example in 1 , F0/ " [lıçt], but after [a] it sounds like [x] as
in 2 0 F#/ " [naxt]; the choice between these two variants is conditioned solely
by the preceding vowel. It is therefore assumed that German does not possess

32 Fundamental Structures

Table 1. German Plural Morphs

singular plural3 0�4�D�' 3 0�4�D4'
‘car’5 %�" C 5 %�" C) ‘car’6 %�) 6 %.)�)4D
‘bus’1 , F0/ " 1 , F#/ "�D&# ‘light’7 0�"�D&# 7980'"�D>#
‘father’2 0 F0/ " 2 80 F#/ "�D ‘night’

two phonemes but only one, written F0/ , which is pronounced in these two
ways depending on the context.

In the same way one assumes that German has only one plural morpheme
even though there is a fair number of individual plural morphs. Table 1 shows
some possibilities of forming the plural in German. The plural can be ex-
pressed either by no change, or by adding an

)
–suffix, an

D
–suffix (the redu-

plication of
)

in
6 %.)�)�D

is a phonological effect and needs no accounting for
in the morphology), an

D>#
–suffix, or by umlaut or a combination of umlaut

together with an
D
–suffix. (Umlaut is another name for the following change

of vowels:
0

becomes
80
, C becomes

8C , and
%

becomes
8%
. All other vowels

remain the same. Umlaut is triggered by certain inflectional or derivational
suffixes.) All these are clearly different morphs. But they belong to the same
morpheme. We therefore call them allomorphs of the plural morpheme. The
differentiation into strata allows to abstract away from irregularities. Moving
up one stratum, the different members of an abstraction class are not distin-
guished. The different plural morphs for example, are defined as sequences of
phonemes, not of phones. To decide which phone is to be inserted is the job
of the phonological stratum. Likewise, the word 1 , F#/ "�D&# is ‘known’ to the
syntactical stratum only as a plural nominative noun. That it consists of the
root morph 1 , F#/ " together with the morph

D>#
rather than any other plural

morph is not visible in the syntactic stratum. The difference between con-
crete and abstract carries over in each stratum in the distinction between a
surface and a deep sub–stratum. The morphotaxis has at deep level only the
root 1 , F0/ " and the plural morpheme. At the surface, the latter gets realized
as
D&#

. The step from deep to surface can be quite complex. For example, the
plural 2 80 F#/ "�D of 2 0 F#/ " is formed by changing the root vowel and adding

Fundamentals of Linguistics 33

the suffix
D
. (Which of the vowels of the root are subject to umlauted must

be determined by the phonological stratum. For example, the plural of
5 2�"�0>#

‘altar’ is
5 2�" 80�#�D

and not
85 2'"
0>#�D

or
85 2�" 80>#�D

!) As we have already said, on
the so–called deep morphological (sub–)stratum we find only the combina-
tion of two morphemes, the morpheme 2 0 F0/ " and the plural morpheme. On
the syntactical stratum (deep or surface) nothing of that decomposition is vis-
ible. We have one lex(eme), 2 80 F#/ "�D . On the phonological stratum we find a
sequence of 5 (!) phonemes, which in writing correspond to

'
,
80
, F0/ ,

"
andD

. This is the deep phonological representation. On the surface, we find the
allophone [ç] for the phoneme (written as) F0/ .

In Section 3.1 we shall propose an approach to language by means of
signs. This approach distinguishes only 3 dimensions: a sign has a realization,
it has a combinatorics and it has a meaning. While the meaning is uniquely
identifiable to belong to the semantic stratum, for the other two this is not
clear. The combinatorics may be seen as belonging to the syntactical stratum.
The realization of a sign, finally, could be spelled out either as a sequence of
phonemes, as a sequence of morphemes or as a sequence of lexemes. Each
of these choices is legitimate and yields interesting insights. However, notice
that choosing sequences of morphemes or lexemes is somewhat incomplete
since it further requires an additional algorithm that realizes these sequences
in writing or speaking.

Language is not only spoken, it is also written. However, one must distin-
guish between letters and sounds. The difference between them is foremost a
physical one. They use a different channel. A channel is a physical medium
in which the message is manifested. Language manifests itself first and fore-
most acoustically, even though a lot of communication is done in writing. We
principally learn a language by hearing and speaking it. Mastery of writing
is achieved only after we are fully fluent just speaking the language, even
though our views of language are to a large extent shaped by our writing cul-
ture (see (Coulmas, 2003) on that). (Sign languages form an exception that
will not be dealt with here.) Each channel allows — by its mere physical
properties — a different means of combination. A piece of paper is a two di-
mensional thing, and we are not forced to write down symbols linearly, as we
are with acoustical signals. Think for example of the fact that Chinese charac-
ters are composite entities which contain parts in them. These are combined
typically by juxtaposition, but characters are aligned vertically. Moreover,
the graphical composition internally to a sign is of no relevance for the ac-
tual sound that goes with it. To take another example, Hindi is written in a

34 Fundamental Structures

syllabic script, which is called Devanagari. Each simple consonantal letter
denotes a consonant plus

0
. Vowel letters may be added to these in case the

vowel is different from
0
. (There are special characters for word initial vow-

els.) Finally, to denote consonantal clusters, the consonantal characters are
melted into each other in a particular way. There is only a finite number of
consonantal clusters and the way the consonants are melted is fixed. The in-
dividual consonants are usually recognizable from the graphical complex. In
typesetting there is a similar phenomenon known as ligature. The graphemes:

and
,

melt into one when the first is before the second: ‘fi’. (Typewriters
have no ligature, for obvious reasons. So you get

: ,
.) Also, in mathematics

the possibilities of the graphical channel are widely used. We use indices,
superscripts, subscripts, underlining, arrows and so on. Many diagrams are
therefore not so easy to linearize. (For example, ;x is spelled out as

$ / 0�" ,
x as

$ í 0�# .) Sign languages also make use of the three–dimensional space,
which proves to require different perceptual skills than spoken language.

While the acoustic manifestation of language is in some sense essential
for human language, its written manifestation is typically secondary, not only
for the individual human being, as said above, but also from a cultural his-
toric point of view. The sounds of the language and the pronunciation of
words is something that comes into existence naturally, and they can hardly
be fixed or determined arbitrarily. Attempts to stop language from changing
are simply doomed to failure. Writing systems, on the other hand, are cul-
tural products, and subject to sometimes severe regimentation. The effect is
that writing systems show much greater variety across languages than sound
systems. The number of primitive letters varies between some two dozen and
a few thousand. This is so since some languages have letters for sounds (more
or less) like Finnish (English is a difficult case), others have letters for syl-
lables (Hindi, written in Devanagari) and yet others have letters for words
(Chinese). It may be objected that in Chinese a character always stands for a
syllable, but words may consist of several syllables, hence of several charac-
ters. Nevertheless, the difference with Devanagari is clear. The latter shows
you how the word sounds like, the former does not, unless you know charac-
ter by character how it is pronounced. If you were to introduce a new syllable
into Chinese you would have to create a new character, but not so in De-
vanagari. But all this has to be taken with care. Although French uses the
Latin alphabet it becomes quite similar to Chinese. You may still know how
to pronounce a word that you see written down, but from hearing it you are
left in the dark as to how to spell it. For example, the following words are

Fundamentals of Linguistics 35

pronounced completely alike:
01%

, / 04%�" ,
D�04%

,
D�01%�$

; similarly < D&#�) , < D&#%" ,< D>#�#�D , < D&#�#�D) .
In what is to follow, language will be written language. This is the current

practice in such books as this one; but it requires comment. We are using the
so–called Latin alphabet. It is used in almost all European countries, while
each country typically uses a different set of symbols. The difference is slight,
but needs accounting for (for example, when you wish to produce keyboards
or design fonts). Finnish, Hungarian and German, for example, use

80
,
8C and8%

. The letter = is used in the German alphabet (but not in Switzerland). In
French, one uses >F , also accents, and so on. The resource of single characters,
which we call letters, is for the European languages somewhere between 60
and 100. Besides each letter, both in upper and lower case, we also have
the punctuation marks and some extra symbols, not to forget the ubiquitous
blank. Notice, however, that not all languages have a blank (Chinese is a
case in point, and also the Romans did not use any blanks). On the other
hand, one blank is not distinct from two. We can either decide to disallow
two blanks in a row, or postulate that they are equal to one. (So, the structure
we look at is ù;7 A 8 ¾ 5 < , , , < 9 < 6 .) A final problem area to be considered
is our requirement that sign composition is additive. This means that every
change that occurs is underlyingly viewed as adding something that was not
there. This can yield awkward results. While the fact that German umlaut is
graphically speaking just the addition of two dots (

0
becomes

80
, C becomes

8C ,%
becomes

8%
), the change of a lower case letter to an upper case letter cannot

be so analysed. This requires another level of representation, one at which
the process is completely additive. This is harmless, if we only change the
material aspect (substance) rather than the form.

The counterpart of a letter in the spoken languages is the phoneme. Ev-
ery language utterance can be analyzed into a sequence of phonemes (plus
some residue about which we will speak briefly below). There is generally
no biunique correspondence between phonemes and letters. The connection
between the visible and the audible shape of language is everything but pre-
dictable or unambiguous in either direction. English is a perfect example.
There is hardly any letter that can unequivocally be related to a phoneme. For
example, the letter

4
represents in many cases the phoneme [g] unless it is

followed by / , in which case the two typically together represent a sound that
can be zero (as in

) C %�4 / " [sO:t]), or
:

(as in
2�01%�4 / "�D># ([la:ft@]). To add to

the confusion, the letters represent different sets of phones in different lan-
guages. (Note that it makes no sense to speak of the same phoneme in two

36 Fundamental Structures

different languages, as phonemes are abstractions that are formed within a
single language.) The letter

%
has many different manifestations in English,

German and French that are hardly compatible. This has prompted the in-
vention of an international standard, the so–called International Phonetic
Alphabet (IPA, see (IPA, 1999)). Ideally, every sound of a given language
can be uniquely transcribed into IPA such that anyone who is not acquainted
with the language can reproduce the utterances correctly. The transcription of
a word into this alphabet therefore changes whenever its sound manifestation
changes, irrespective of the spelling norm. Unfortunately, the transcription
must ultimately remain inconsequential, because even in the IPA letters stand
for sets of phones, but in every language the width of a phoneme (= the set of
phones it contains) is different. For example, if (English) ¾ p ¾ E contains both
(Hindi) ¾ p ¾ H and ¾ ph ¾ H , we either have to represent

&
in English by (at least)

two letters or else give up the exact correspondence.
The carriers of meaning are however not the sounds or letters (there is

simply not enough of them); it is certain sequences thereof. Sequences of
letters that are not separated by a blank or a punctuation mark other than ‘ ? ’
are called words. Words are units which can be analyzed further, for example
into letters, but for the most part we shall treat them as units. This is the reason
why the alphabet A in the technical sense will often not be the alphabet in the
sense of ‘stock of letters’ but in the sense of ‘stock of words’. However, since
most languages have infinitely many words (due to compounding), and since
the alphabet A must be finite, some care must be exercised in choosing the
alphabet. Typically, it will exclude the compound words, but it will have to
include all idioms.

We have analyzed words into sequences of letters or sounds, and sen-
tences into sequences of words. This implies that sentences and words can
always be so analyzed. This is what we shall assume throughout this book.
The individual occurrences of sounds (letters) are called segments. For ex-
ample, the (occurrences of the) letters

'
, C , and

"
are the segments of

' C " .
The fact that words can be segmented is called segmentability property. At
closer look it turns out that segmentability is an idealization. For example,
a question differs from an assertion in its intonation contour, which is the
rise and fall of the pitch during the utterance. The contour shows distribution
over the whole sentence but follows specific rules. It is of course different in
different languages. (Falling pitch at the end of a sentence, for example, may
accompany questions in English, but not in German.) Because of its nature,
intonation contour is called a suprasegmental feature. There are more, for

Fundamentals of Linguistics 37

example emphasis. Segmentability differs also with the channel. In writing, a
question is marked by a segmental feature (the question mark), but emphasis
is not. Emphasis is typically marked by underlining or italics. For example,
if we want to emphasize the word ‘board’, we write í C 0�# î or board. As can
be seen, every letter is underlined or set in italics, but underlining or ital-
ics is usually not something that is meant to emphasize those letters that are
marked by it; rather, it marks emphasis of the entire word that is composed
from them. We could have used a segmental symbol, just like quotes, but the
fact of the matter is that we do not. Disregarding this, language typically is
segmentable.

However, even if this is true, the idea that the morphemes of the language
are sequences of letters is largely mistaken. To give an extreme example,
the plural is formed in Bahasa Indonesia by reduplicating the noun. For ex-
ample, the word

04'�0.@
means ‘child’, the word

04'�0.@ ? 04'�0.@ therefore means
‘children’, the word C #
04'�4 means ‘man’, and C #�04'�4 ? C #
01'�4 means ‘men’.
Clearly, there is no sequence of letters or phonemes that can be literally said
to constitute a plural morph. Rather, it is the function f : A ¡ � A ¡ : Ex ��³Ex ?(Ex,
sending each string to its duplicate (with an interspersed hyphen). Actually,
in writing the abbreviation

01'�0.@ � and C #
04'�4 � is commonplace. Here, � is a
segmentable marker of plurality. However, notice that the words in the sin-
gular or the plural are each fully segmentable. Only the marker of plurality
cannot be identified with any of the segments. This is to some degree also
the case in German, where the rules are however much more complex, as we
have seen above. The fact that morphs are (at closer look) not simply strings
will be of central concern in this book.

Finally, we have to remark that letters and phonemes are not unstructured
either. Phonemes consist of various so–called distinctive features. These are
features that distinguish the phonemes from each other. For example, [p] is
distinct from [b] in that it is voiceless, while [b] is voiced. Other voiceless
consonants are [k], [t], while [g] and [d] are once again voiced. Such features
can be relevant for the description of a language. There is a rule of German
(and other languages, for example Russian) that forbids voiced consonants
to occur at the end of a syllable. For example, the word A 0�4 î ‘hunting’ is
pronounced ["ja:kt], not ["ja:gd]. This is so since [g] and [d] may not occur
at the end of the syllable, since they are voiced. Now, first of all, why do
we not write A 0'@�" then? This is so since inflection and derivation show that
when these consonants occur non–finally in the syllable they are voiced: we
have A 0�4 î D�' ["ya:kden] ‘huntings’, with [d] now in fact being voiced, and

38 Fundamental Structures

also B 0�4�D�' ["ya:g@n] ‘to hunt’. Second: why do we not propose that voiceless
consonants become voiced when syllable initial? Because there is plenty of
evidence that this does not happen. Both voiced and voiceless sounds may
appear at the beginning of the syllable, and those ones that are analyzed as
underlyingly voiceless remain so in whatever position. Third: why bother
writing the underlying consonant rather than the one we hear? Well, first of
all, since we know how to pronounce the word anyway, it does not matter
whether we write [d] or [t]. On the other hand, if we know how to write the
word, we also know a little bit about its morphological behaviour. What this
comes down to is that to learn how to write a language is to learn how the lan-
guage works. Now, once this is granted, we shall explain why we find [k] in
place of [g] and [t] in place of [d]. This is because of the internal organisation
of the phoneme. The phoneme is a set of distinctive features, one of which (in
German) is ¦DC voiced § . The rule is that when the voiced consonant may not
occur, it is only the feature ¦ g voiced § that is replaced by ¦ v voiced § . Every-
thing else remains the same. A similar situation is the relationship between
upper and lower case letters. The rule says that a sentence may not begin with
a lower case letter. So, when the sentence begins, the first letter is changed to
its upper case counterpart if necessary. Hence, letters too contain distinctive
features. Once again, in a dictionary a word always appears as if it would
normally appear elsewhere. Notice by the way that although each letter is by
itself an upper or a lower case letter, written language attributes the distinc-
tion upper versus lower case to the word not to the initial letter. Disregard-
ing some modern spellings in advertisements (like in Germany E '�"�D&#�F
D�4G, C ,D 6 %�)%,ï'	D
)�)

and so on) this is a reasonable strategy. However, it is neverthe-
less not illegitimate to call it a suprasegmental feature.

In the previous section we have talked extensively about representations
of terms by means of strings. In linguistics this is an important issue, which is
typically discussed in conjunction with word order. Let us give an example.
Disregarding word classes, each word of the language has one (or several)
arities. The finite verb hiaja has arity 2. The proper names H
q(r&_ and I q.JLK4rXh
on the other hand have arity 0. Any symbol of arity � 0 is called a functor
with respect to its argument. In syntax one also speaks of head and comple-
ment. These are relative notions. In the term hiaja&7MI q.JLK4rXhj�
H
q(r&_ 8 , the functor
or head is hiaja , and its arguments are H
q(r&_ and I q.JLK4rïh . To distinguish these
arguments from each other, we use the terms subject and object. I q.JNK4rïh is
the subject and H
q(r&_ is the object of the sentence. The notions ‘subject’ and
‘object’ denote so–called grammatical relations. The correlation between

Fundamentals of Linguistics 39

argument places and grammatical relations is to a large extent arbitrary, and
is of central concern in syntactical theory. Notice also that not all arguments
are complements. Here, syntactical theories diverge as to which of the argu-
ments may be called ‘complement’. In generative grammar, for example, it is
assumed that only the direct object is a complement.

Now, how is a particular term represented? The representation of hiaja is)�D(D)
, that of I q.JLK4rXh is A 0># F %�) and that of H
q(r&_ is

/�04%	2
. The whole term

(1.47) is represented by the string (1.48).hiaja&7MI q'JLK4rïhj�
H
q(r&_n8(1.47) A 0�# F %.)�)�D(D)É/�04%�2PO(1.48)

So, the verb appears after the subject, which in turn precedes the object. At
the end, a period is placed. However, to spell out the relationship between
a language and a formal representation is not as easy as it appears at first
sight. For first of all, the term should be something that does not depend on
the particular language we choose and which gives us the full meaning of the
term (so it is like a language of thought or an interlingua, if you wish). So
the above term shall mean that Marcus sees Paul. We could translate the En-
glish sentence (1.48) by choosing a different representation language, but the
choice between languages of representation should actually be immaterial as
long as they serve the purpose. This is a very rudimentary picture but it works
well for our purposes. We shall return to the idea of producing sentences from
terms in Chapter 3. Now look first at the representatives of the basic symbols
in some other languages.

(1.49)

hiaja I q.JLK4rXh H
q(r&_
German

)�,>D / " A 0�# F %.) /
04%	2
Latin < , î ,." A 0�# F %.) /
04%	24%.)
Hungarian

2PQ0'" B 0 A 0># F %�) /�Q0(2
Here is how (1.47) is phrased in these languages.A 0�# F %.)�)%,�D / "Ï/
04%	2RO(1.50) A 0�# F %.) /
01%�21% B < , î ,�"SO(1.51) A 0�# F %.)�2PQ0'" B 0?/�Q0�2'"SO(1.52)

English is called an SVO–language, since in transitive constructions the sub-
ject precedes the verb, and the verb in turn the object. This is exactly the infix

40 Fundamental Structures

notation. (However, notice that languages do not make use of brackets.) One
uses the mnemonic symbols ‘S’, ‘V’ and ‘O’ to define the following basic
6 types of languages: SOV, SVO, VSO, OSV, OVS, VOS. These names tell
us how the subject, verb and object follow each other in a basic transitive
sentence. We call a language of type VSO or VOS verb initial, a language
of type SOV or OSV verb final and a language of type SVO or OVS verb
medial. By this definition, German is SVO, Hungarian too, hence both are
verb medial and Latin is SOV, hence verb final. These types are not equally
distributed. Depending on the method of counting, 40 – 50 % of the world’s
languages are SOV languages, up to 40 % SVO languages and another 10 %
are VSO languages. This means that in the vast majority of languages the
order of the two arguments is: subject before object. This is why one does
not generally emphasize the relative order of the subject with respect to the
object. There is a bias against placing the verb initially (VSO), and a slight
bias to put it finally (SOV) rather than medially (SVO).

One speaks of a head final (head initial) language if a head is consis-
tently put at the end behind all of its arguments (at the beginning, before
all the arguments). One denotes the type of order by XH (HX), X being the
complement, H the head. There is no notion of a head medial language for the
reason that most heads only have one complement. It is often understood that
the direct object is the only complement of the verb. Hence, the word orders
SVO and VOS are head initial, OVS and SOV head final. (The orders VSO
and OSV are problematic since the verb is not adjacent to its object.) A verb
is a head, however a very important one, since it basically builds the clause.
Nevertheless, different heads may place their arguments differently, so a lan-
guage that is verb initial need not be head initial, a language that is verb final
need not be head final. Indeed, there are few languages that are consistently
head initial (medial, final). Japanese is rather consistently head final. Even a
relative clause precedes the noun it modifies. Hungarian is a mixed case: ad-
jectives precede nouns, there are no prepositions, only postpositions, but the
verb tends to precede its object.

For the interested reader we give some more information on the languages
shown above. First, Latin was initially an SOV language, however word order
was not really fixed (see (Lehmann, 1993) and (Bauer, 1995)). In fact, any of
the six permutations of the sentence (1.51) is grammatical. Hungarian is more
complex, again the word order shown in (1.52) is the least marked, but the
rule is that discourse functions determine word order. (Presumably this is true
for Latin as well.) German is another special case. Against all appearances

Fundamentals of Linguistics 41

there is all reason to believe that it is actually an SOV language. You can see
this by noting first that only the carrier of inflection appears in second place,
for example only the auxiliary if present. Second, in a subordinate clause all
parts of the verb including the carrier of inflection are at the end.A 0�# F %.)�)%,�D / "Ï/
04%	2RO(1.53)

Marcus sees Paul.A 0�# F %.)UTV,>2�2?/�04%�2Ñ)4D / D�'WO(1.54)

Marcus wants to see Paul.A 0�# F %.)UTV,>2�2?/�04%�2Ñ)4D / D�'X@ 8C '�'
D�'YO(1.55)

Marcus wants to be able to see Paul.

...,
T�D�,>2 A 0># F %.) /
01%�2)�,>D / "SO(1.56)

..., because Marcus sees Paul.

...,
T�D�,>2 A 0># F %.) /
01%�2)4D / D4'ZTV,>2�2RO(1.57)

..., because Marcus wants to see Paul.

...,
T�D�,>2 A 0># F %.) /
01%�2)4D / D4'Z@ 8C '�'	D4'XTV,>2�2PO(1.58)

..., because Marcus wants to be able to see Paul.

So, the main sentence is not always a good indicator of the word order. Some
languages allow for alternative word orders, like Latin and Hungarian. This
is not to say that all variants have the same meaning or significance; it is only
that they are equal as representatives of (1.47). We therefore speak of Latin
as having free word order. However, this only means that the head and the
argument can assume any order with respect to each other, not that simply all
permutations of the words mean the same.

Now, notice that subject and object are coded by means of so–called cases.
In Latin, the object carries accusative case, so we find

/�04%�21% B instead of/
01%�24%.)
. Likewise, in Hungarian we have

/�Q0(2�"
in place of

/�Q0(2
, the nomina-

tive. So, the way a representing string is arrived at is rather complex. We shall
return again to case marking in Chapter 5.

Natural languages also display so–called polyvalency. We say that a word
is polyvalent if it can have several arities (even with the same meaning). The
verb

" C # C 2�2 can be unary (= intransitive) as well as binary (= transitive
if the second argument is accusative, intransitive otherwise). This is not al-
lowed in our definition of signature. However, it can easily be modified to
account for polyvalent symbols.

42 Fundamental Structures

Notes on this section. The rule that spells out the letters F#/ in German
is more complex than the above explications show. For example, it is [x] in: 01% F#/ D�' but [ç] in [#
04% F#/ D�' . This may have two reasons: (a) There is a mor-
pheme boundary between

%
and F#/ in the second word but not in the first. This

morpheme boundary induces the difference. (b) The morpheme F#/ D�' is spe-
cial in that F0/ will always be realized as [ç]. The difference between (a) and
(b) is that while (a) defines a realization rule that uses only the phonological
representation, (b) uses morphological information to define the realization.
Mel’čuk defines the realization rules as follows. In each stratum, there are
rules that define how deep representations get mapped to surface represen-
tations. Across strata, going down, the surface representations of the higher
stratum get mapped into abstract representations of the lower stratum. (For
example, a sequence of morphemes is first realized as a sequence of morphs
and then spelled out as a sequence of phonemes, until, finally, it gets mapped
onto a sequence of phones.) Of course, one may also reverse the process.
However, adjacency between (sub-)strata remains as defined.

Exercise 17. Show that in Polish Notation, unique readability is lost when
there exist polyvalent function symbols.

Exercise 18. Show that if you have brackets, unique readability is guaranteed
even if you have polyvalency.

Exercise 19. We have argued that German is a verb final language. But is it
strictly head final? Examine the data given in this section as well as the data
given below.A C)�D : & : 2 8% F @�"ÿD�,ï'	DÑ) F#/ 8C '	D\F C)4D : 8%�# A 0>#G,&0PO(1.59)

Josef is.picking a beautiful rose for Mary] D�,X'�#G, F0/ ,�)#" î , F @
D># 0�2�) A C)4D : O(1.60)

Heinrich is fatter than Josef

Exercise 20. Even if languages do not have brackets, there are elements that
indicate clearly the left or right periphery of a constituent. Such elements are
the determiners

" / D and
0
(
'

). Can you name more? Are there elements in
English indicating the right periphery of a constituent? How about demon-
stratives like

" / ,�) or
" / 0�" ?

Exercise 21. By the definitions, Unix is head initial. For example, the com-

Trees 43

mand
2�&�#

precedes its arguments. Now study the way in which optional ar-
guments are encoded. (If you are sitting behind a computer on which Unix
(or Linux) is running, type B 01'Ò2.&�#

and you get a synopsis of the command
and its syntax.) Does the syntax guarantee unique readability? (For the more
linguistic minded reader: which type of marking strategy does Unix employ?
Which natural language you know of corresponds best to it?)

4. Trees

Strings can also be defined as pairs �_^ �_!ï� where ^ , � L �ib]� is a finite linearly
ordered set and ! : L � A a function, called the labelling function. Since L is
finite we have � L �ib���Ê, � n �i�+� for n :

, � L � . (Recall that n is a set that is linearly
ordered by � .) Replacing � L �ib]� by the isomorphic � n �i�+� , and eliminating
the redundant � , a string is often defined as a pair � n �_!ï� , where n is a natural
number. In what is to follow, we will very often have to deal with extensions
of relational structures (over a given signature Ξ) by a labelling function.
They have the general form � M �Èä��_!½� , where M is a set, ä an interpretation
and ! a function from M to A. These structures shall be called structures
over A or A–structures.

A very important notion in the analysis of language is that of a tree. A tree
is a special case of a directed graph. A directed graph is a structure � G �ib]� ,
where b } G2 is a binary relation. As is common usage, we shall write x ç y
if x b y or x

,
y. Also, x and y are called comparable if x ç y or y ç x. A

(directed) chain of length k is a sequence � xi : i b k g 1 � such that xi b xi � 1
for all i b k. An undirected chain of length k is a sequence � xi : i b k g 1 �
where xi b xi � 1 or xi � 1 b xi for all i b k. A directed graph is called connected
if for every two elements x and y there is an undirected chain from x to y. A
directed chain of length k is called a cycle of length k if xk

,
x0. A binary

relation is called cycle free if it only has cycles of length 0. A root is an
element r such that for every x x b ¡ r, where b ¡ is the reflexive, transitive
closure of b .

Definition 1.41 A directed acyclic graph (a DAG) is a pair ` , � G �ib]� such
that bÑ} G2 is an acyclic relation on G. If b is transitive, ` is called a
directed transitive acyclic graph (DTAG).

Definition 1.42 ` , � G �ib�� is called a forest if b is transitive and irreflexive
and if x b y and x b z then y and z are comparable. A forest with a root is

44 Fundamental Structures

called a tree.

In a connected rooted DTAG the root is comparable with every other ele-
ment since the relation is transitive. Furthermore, in presence of transitivityb is cycle free iff it is irreflexive. For if b is not irreflexive it has a cycle of
length 1. Conversely, if there is a cycle � xi : i b k g 1 � of length k � 0, we
immediately have x0 b xk

,
x0, by transitivity.

If x b y and there is no z such that x b z b y, x is called a daughter of y,
and y the mother of x, and we write x a y.

Lemma 1.43 Let � T �ib�� be a finite tree. If x b y then there exists a ;x such
that x çb;x a y and a ;y such that x ac;y ç y. ;x and ;y are uniquely determined
by x and y. <
The proof is straightforward. In infinite trees this need not hold. We define
x : y by x ç y or y ç x and say that x and y overlap. The following is also
easy.

Lemma 1.44 (Predecessor Lemma) Let ± be a finite tree and x and y nodes
which do not overlap. Then there exist uniquely determined u, v and w, such
that x ç u a w, y ç v a w and v �, u. <
A node branches n times downwards if it has exactly n daughters; and it
branches n times upwards if it has exactly n mothers. We say that a node
branches upwards (downwards) if it branches upwards or downwards at
least 2 times. A finite forest is characterized by the fact that it is transitive, ir-
reflexive and no node branches upwards. Therefore, in connection with trees
and forests we shall speak of ‘branching’ when we mean ‘downward branch-
ing’. x is called a leaf if there is no y b x, that is, if x branches 0 times. The
set of leaves of ` is denoted by b 7�`×8 .

Further, we define the following notation.d
x :
, 5 y : y ç x 6 e x :

, 5 y : y f x 6(1.61)

By definition of a forest, e x is linearly ordered by b . Also,
d

x together with
the restriction of b to

d
x is a tree.

A set P } G is called a path if it is linearly ordered by b and convex, that
is to say, if x � y � P then z � P for every z such that x b z b y. The length
of P is defined to be �P �Zv 1. A branch is a maximal path with respect to set

Trees 45

inclusion. The height of x in a DTAG, in symbols h g 7 x 8 or simply h 7 x 8 , is
the maximal length of a branch in

d
x. It is defined inductively as follows.

(1.62) h 7 x 8 :
, ¿ 0 if x is a leaf,

1 g max 5 h 7 y 8 : y a x 6 otherwise.

Dually we define the depth in a DTAG.

(1.63) d 7 x 8 :
,À¿ 0 if x is a root,

1 g max 5 d 7 y 8 : y h x 6 otherwise.

For the entire DTAG ` we set

(1.64) h 7�`Ø8 :
, 5 h 7 x 8 : x � T 6

and call this the height of ` . (This is an ordinal, as is easily verified.)

Definition 1.45 Let ` , � G �ib G � and i , � H �ib H � be directed graphs and
G } H. Then ` is called a subgraph of i if b G

, b H t G2.

If ` and i are DTAG, forests or trees, then ` is a sub–DTAG, subforest and
subtree of i , respectively. A subtree of i with underlying set

d
x is called a

constituent of i .

Definition 1.46 Let A be an alphabet. A DAG over A (or an A–DAG) is a pair��`��_!ï� such that ` , � G �ib]� is a DAG and ! : G � A an arbitrary function.

Alternatively, we speak of DAGs with labels in A, or simply of labelled
DAGs if it is clear which alphabet is meant. Similarly with trees and DTAGs.
The notions of substructures are extended analogously.

The tree structure in linguistic representations encodes the hierarchical re-
lations between elements and not their spatial or temporal relationship. The
latter have to be added explicitly. This is done by extending the signature by
another binary relation symbol, j . We say that x is before y and that y is
after x if x j y is the case. We say that x dominates y if x � y. The relationj articulates the temporal relationship between the segments. This is first of
all defined on the leaves, and it is a linear ordering. (This reflects the insis-
tance on segmentability. It will have to be abandoned once we do not assume
segmentability.) Each node x in the tree has the physical span of its segments.
This allows to define an ordering between the hierarchically higher elements

46 Fundamental Structures

as well. We simply stipulate that x j y iff all leaves below x are before all
leaves below y. This is not unproblematic if nodes can branch upwards, but
this situation we shall rarely encounter in this book. The following is an in-
trinsic definition of these structures.

Definition 1.47 An ordered tree is a triple � T �ibØ�
j]� such that the following
holds.

(ot1) � T �ib�� is a tree.

(ot2) j is a linear, strict ordering on the leaves of � T �ib�� .
(ot3) If x j z and y b x then also y j z.

If x j z and y b z then also x j y.

(ot4) If x is not a leaf and for all y b x y j z then also x j z.
If z is not a leaf and for all y b z x j y then also x j z.

The condition (ot2) requires that the ordering is coherent with the ordering
on the leaves. It ensures that x j y only if all leaves below x are before all
leaves below y. (ot3) is a completeness condition ensuring that if the latter
holds, then indeed x j y.

We agree on the following notation. Let x � G. Put ¦ x § :
,kd

x t b 7�`×8 . We
call this the extension of x. ¦ x § is linearly ordered by j . If a labelling function! is given in addition, we write k 7 x 8 :

, �=¦ x §��
jØ�_!�£	¦ x §l� and call this the asso-
ciated string of x. It may happen that two nodes have the same associated
string. The string associated with the entire tree is

(1.65) k 7�`×8 :
, � b 7�`Ø8P�
jØ�_! £ b 7�`Ø8=�

A constituent is called continuous if the associated string is convex with
respect to j . A set M is convex (with respect to j) if for all x � y � z � M: if
x j z j y then z � M as well.

For sets M, N of leaves put M j N iff for all x � M and all y � N we have
x j y. From (ot4) and (ot3) we derive the following:

(1.66) x j y å ¦ x §Vj�¦ y §
This property shows that the orderings on the leaves alone determines the
relation j uniquely.

Trees 47

Theorem 1.48 Let � T �ib]� be a tree and j a linear ordering on its leaves.
Then there exists exactly one relation j�k à j such that � T �ibØ�
j�k � is an or-
dered tree.

We emphasize that the ordering j]k cannot be linear if the tree has more than
one element. It may even happen that j]k , j . One can show that overlapping
nodes can never be comparable with respect to j . For let x : y, say x ç y. Let
u ç x be a leaf. Assume x j y; then by (ot3) u j y as well as u j u. This
contradicts the condition that j is irreflexive. Likewise y j x cannot hold.
So, nodes can only be comparable if they do not overlap. We now ask: is it
possible that they are comparable exactly when they do not overlap? In this
case we call j exhaustive. Theorem 1.49 gives a criterion on the existence
of exhaustive orderings. Notice that if M and N are convex sets, then so is
M t N. Moreover, if M t N

, w then either M j N or N j M. Also, M is
convex iff for all u: u j M or M j u.

Theorem 1.49 Let � T �ib]� be a tree and j a linear ordering on the leaves.
There exists an exhaustive extension of j iff all constituents are continuous.

Proof. By Theorem 1.48 there exists a unique extension, j k . Assume that
all constituents are continuous. Let x and y are nonoverlapping nodes. Then¦ x §(tx¦ y § , w . Hence ¦ x §�jý¦ y § or ¦ y §�jý¦ x § . since both sets are convex. So,
by (1.66) we have x j k y or y j k x. The ordering is therefore exhaustive.
Conversely, assume that j k is exhaustive. Pick x. We show that ¦ x § is convex.
Let u be a leaf and u �� ¦ x § . Then u does not overlap with x. By hypothesis,
u j�k x or x j�k u, whence ¦ u §Vj?¦ x § or ¦ x §Vj?¦ u § , by (1.66). This means nothing
but that either u j y for all y ��¦ x § or y j u for all y �x¦ x § . So, ¦ x § is convex. <
Lemma 1.50 (Constituent Lemma) Assume � T �ibØ�
jØ�_!ï� is an exhaustively
ordered A–tree. Furthermore, let p b q. Then there is a context C

, �$Eu ��Ev �
such that

(1.67) k 7 q 8 , C 7 k 7 p 8=8 , Eu 9 k 7 p 8 9 Ev
The converse does not hold. Furthermore, it may happen that C

, � ε � ε � — in
which case k 7 q 8 , k 7 p 8 — without q b p.

Proposition 1.51 Let � T �ibØ�
j�� be an ordered tree and x � T. x is 1–branch-
ing iff ¦ x § , ¦ y § for some y b x.

48 Fundamental Structures

Proof. Let x be a 1–branching node with daughter y. Then we have ¦ x § , ¦ y §
but x �, y. So, the condition is necessary. Let us show that is sufficient. Let
x be minimally 2–branching. Let u b x. There is a daughter z a x such that
u ç z, and there is z kla x different from z. Then ¦ u §Y}ý¦ z §@}Ñ¦ x § as well as¦ z k §	}µ¦ x § . All sets are nonempty and ¦ z k §jt�¦ z § , w . Hence ¦ z §nmµ¦ x § and so also¦ u §nm�¦ x § . <

We say that a tree is properly branching if it has no 1–branching nodes.
There is a slightly different method of defining trees. Let T be a set and a

a cycle free relation on T such that for every x there is at most one y such that
x a y. And let there be exactly one x which has no a –successor (the root).
Then put b :

, a � . � T �ib]� is a tree. And x a y iff x is the daughter of y. Let
D 7 x 8 be the set of daughters of x. Now let P be a relation such that (a) y P z
only if y and z are sisters, (b) P � , the transitive closure of P, is a relation that
linearly orders D 7 x 8 for every x, (c) for every y there is at most one z such that
y P z and at most one z k such that z k P y. Then put x j y iff there is z such that
(a) x b	;x a z for some ;x, (b) y bo;y a y for some ;y, (c) ;x P � ;y. a and P are the
immediate neighbourhood relations in the tree.

Proposition 1.52 Let � T �ibØ�
j]� be an exhaustively ordered tree. Then x j y
iff there are x k�f x and y k�f y which are sisters and x k�j y k .
Finally we mention a further useful concept, that of a constituent structure.

Definition 1.53 Let M be a set. A constituent structure over M is a system ë
of subsets of M with the following properties.

(cs1) 5 x 6]�¸ë for every x � M,

(cs2) wý���ë , M �¸ë ,

(cs3) if S � T �Ùë and S p T as well as T p S then S t T
, w .

Proposition 1.54 Let M be a nonempty set. There is a biunique correspon-
dence between finite constituent structures over M and finite properly branch-
ing trees whose set of leaves is 5�5 x 6 : x � M 6 .
Proof. Let � M ��ë»� be a constituent structure. Then ��ëY�
m]� is a tree. To see
this, one has to check that m is irreflexive and transitive and that it has a root.
This is easy. Further, assume that S m T � U . Then U t T

à
S �, w , because of

condition (cs2). Moreover, because of (cs3) we must have U } T or T } U .

Trees 49

This means nothing else than that T and U are comparable. The set of leaves
is exactly the set 5�5 x 6 : x � M 6 . Conversely, let ± , � T �ib]� be a properly
branching tree. Put M :

,
b 7l±�8 and ë :

, 5(¦ x § : x � T 6 . We claim that � M ��ë»� is a
constituent structure. For (cs1), notice that for every u � b 7�`×8 , ¦ u § , 5 u 6 �ìë .
Further, for every x ¦ x §��, w , since the tree is finite. There is a root r of ± , and
we have ¦ r § , M. This shows (cs2). Now we show (cs3). Assume that ¦ x §�pÅ¦ y §
and ¦ y §9p�¦ x § . Then x and y are incomparable (and different). Let u be a leaf
and u �Ý¦ x § , then we have u ç x. u ç y cannot hold since e u is linear, and then
x and y would be comparable. Likewise we see that from u ç y we get u q x.
Hence ¦ x §XtË¦ y § , w . The constructions are easily seen to be inverses of each
other (up to isomorphism). <

In general we can assign to every tree a constituent structure, but only
if the tree is properly branching it can be properly reconstructed from this
structure. The notion of a constituent structure can be extended straightfor-
wardly to the notion of an ordered constituent structure, and we can introduce
labellings.

We shall now discuss the representation of terms by means of trees. There
are two different methods, both widely used. Before we begin, we shall intro-
duce the notion of a tree domain.

Definition 1.55 Let T } ω ¡ be a set of finite sequences of natural numbers.
T is called a tree domain if the following holds.

(td1) If Ex 9 i � T then Ex � T.

(td2) If Ex 9 i � T and j b i then also Ex 9 j � T.

We assign to a tree domain T an ordered tree in the following way. The set
of nodes is T , (1) Ex bÅEy iff Ey is a proper prefix of Ex and (2) Ex jÅEy iff there are
numbers i � j and sequences Eu, Ev, Ew such that (a) i b j and (b) Ex , Eu 9 i 9 Ev, Ey ,Eu 9 j 9ØEw. (This is exactly the lexicographical ordering.) Together with these
relations, T is an exhaustively ordered finite tree, as is easily seen. Figure 3
shows the tree domain T

, 5 ε � 0 � 1 � 2 � 10 � 11 � 20 � 200 6 . If T is a tree domain
and Ex � T then put

(1.68) T ¾ Ex :
, 51Ey : Ex 9 Ey � T 6

This is the constituent below Ex. (To be exact, it is not identical to this con-
stituent, it is merely isomorphic to it. The (unique) isomorphism from T ¾ Ex
onto the constituent

d Ex is the map Ey ��³Ex 9@Ey.)

50 Fundamental Structures

200

20

2òòòò
ε

1ññññ
10 11

ññññ
0

Figure 3. A Tree Domain

Conversely, let � T �ib¬�
j]� be an exhaustively ordered tree. We define a tree
domain T β by induction on the depth of the nodes. If d 7 x 8 , 0, let xβ :

,
ε . In

this case x is the root of the tree. If xβ is defined, and y a daughter of x, then
put yβ :

,
xβ 9 i, if y is the ith daughter of x counting from the left (starting, as

usual, with 0). (Hence we have � xβ � , d 7 x 8 .) We can see quite easily that the
so defined set is a tree domain. For we have Eu � T β as soon as Eu 9 j � T β for
some j. Hence (td1) holds. Further, if Eu 9 i � T β , say Eu 9 i

,
yβ then y is the ith

daughter of a node x. Take j b i. Then let z be the jth daughter of x (counting
from the left). It exists, and we have zβ , Eu 9 j. Moreover, it can easily be
shown that the relations defined on the tree domain are exactly the ones that
are defined on the tree. In other words the map x �� xβ is an isomorphism.

Theorem 1.56 Let ± , � T �ibØ�
j]� be a finite, exhaustively ordered tree. The
function x �� xβ is an isomorphism from ± onto the associated tree domain�l± β �ibØ�
j�� . Furthermore, ±ÄÊ,or iff ± β , r β . <
Terms can be translated into labelled tree domains. Each term t is assigned
a tree domain tb and a labelling function tλ . The labelled tree domain as-
sociated with t is tm :

, � tb � tλ � . We start with the variables. xb :
, 5 ε 6 , and

xλ : ε �� x. Assume that the labelled tree domains tm
i , i b n v 1, are defined,

and put n :
,

Ω 7 f 8 . Let s :
,

f 7 t0 �=�=�=�Z� tn © 1 8 ; then

(1.69) sb :
, 5 ε 6�s �

i n

5 i 9 Ex : Ex � tb
i 6

Trees 51

Then sλ is defined as follows.

sλ 7 ε 8 :
,

f sλ 7 j 9 Ex 8 :
,

tλ
j 7�Ex 8(1.70)

This means that sm consists of a root named f which has n daughters, to which
the labelled tree domains of t0 �=�=�=�Z� tn © 1 are isomorphic. We call the repre-
sentation which sends t to tm the dependency coding. This coding is more
efficient that the following, which we call structural coding. We choose a
new symbol, T , and define by induction to each term t a tree domain t c and a
labelling function tµ . Put xc :

, 5 ε � 0 6 , xµ 7 ε 8 :
,Us

, xµ 7 0 8 :
,

x. Further let for
s
,

f 7 t0 �=�=�=�Z� tn © 1 8
(1.71)

sc :
, 5 ε � 0 6�s �

0 i n � 1

5 i 9 Ex : Ex � tc
i 6

sµ 7 ε 8 :
,Us

sµ 7 0 8 :
,

f

sµ 7=7 j g 1 8 9 Ex 8 :
,

tµ
j 7�Ex 8

(Compare the structural coding with the associated string in the notation with-
out brackets.) In Figure 4 both codings are shown for the term T
���3Tt����u	W�W
for comparison. The advantage of the structural coding is that the string as-
sociated to the labelled tree domain is also the string associated to the term
(with brackets dropped, as the tree encodes the structure anyway).

Notes on this section. A variant of the dependency coding of syntactic
structures has been proposed by Lucien Tesnière in (1982). He called tree
representations stemmata (sg. stemma). This notation (and the theory sur-
rounding it) became known as dependency syntax. See (Mel’čuk, 1988) for
a survey. Unfortunately, the stemmata do not coincide with the dependency
trees defined here, and this creates very subtle problems, see (Mel’čuk, 1988).
Noam Chomsky on the other hand proposed the more elaborate structural
coding, which is by now widespread in linguistic theory.

Exercise 22. Define ‘exhaustive ordering’ on constituent structures. Show
that a linear ordering on the leaves is extensible to an exhaustive ordering in
a tree iff it is in the related constituent structure.

Exercise 23. Let ± , � T �ib]� be a tree and j a binary relation such that x j y
only if x � y are daughters of the same node (that is, they are sisters). Further,
the daughter nodes of a given node shall be ordered linearly by j . No other

52 Fundamental Structures

� ñ ñ
ññ +ò ò òò �
K ñ ñ

ññ
Mòòòò �

K M

L ñ ñ
ññ s

� sòòòò svvvvvvv
sòòòò

s

Figure 4. Dependency Coding and Structural Coding

relations shall hold. Show that this ordering can be extended to an exhaustive
ordering on ± .

Exercise 24. Show that the number of binary branching exhaustively ordered
trees over a given string is exactly

(1.72) Cn
, 1

n g 1 w 2n
n x

These numbers are called Catalan numbers.

Exercise 25. Show that Cn b 1
n � 1 4n. (One can prove that y 2n

n z approximates
the series 4n{

πn in the limit. The latter even majorizes the former. For the exer-
cise there is an elementary proof.)

Exercise 26. Let L be finite with n elements and b a linear ordering on L.
Construct an isomorphism from � L �ib]� onto � n �i�+� .
5. Rewriting Systems

Languages are by Definition 1.36 arbitrary sets of strings over a (finite) al-
phabet. However, languages that interest us here are those sets which can
be described by finite means, particularly by finite processes. These can be
processes which generate strings directly or by means of some intermedi-

Rewriting Systems 53

ate structure (for example, labelled trees). The most popular approach is by
means of rewrite systems on strings.

Definition 1.57 Let A be a set. A semi Thue system over A is a finite set
T
, 5(��Exi ��Eyi � : i b m 6 of pairs of A–strings. If T is given, write Eu | 1

T Ev if there
are Es � Et and some i b m such that Eu , Es 93Exi 9 Et and Ev , Es 9@Eyi 9 Et. We write Eu | 0

T Ev
if Eu , Ev, and Eu | n � 1

T Ev if there is a Ez such that Eu | 1
T Ez | n

T Ev. Finally, we writeEu | ¡T Ev if Eu | n
T Ev for some n � ω , and we say that Ev is derivable in T from Eu.

We can define | 1
T also as follows. Eu | 1

T Ev iff there exists a context C and��Ex ��Ey �+� T such that Eu , C 7ÈEx 8 and Ev , C 7ÈEy 8 . A semi Thue system T is called a
Thue system if from �ÈEx ��Ey �3� T follows �ÈEy �$Ex �@� T . In this case Ev is derivable
from Eu iff Eu is derivable from Ev. A derivation of Ey from Ex in T is a finite
sequence ��Evi : i b n g 1 � such that Ev0

, Ex, Evn
, Ey and for all i b n we haveEvi | 1

T Evi � 1. The length of this derivation is n. (A more careful definition will
be given on Page 57.) Sometimes it will be convenient to admit Evi � 1

, Evi even
if there is no corresponding rule.

A grammar differs from a semi Thue system as follows. First, we intro-
duce a distinction between the alphabet proper and an auxiliary alphabet, and
secondly, the language is defined by means of a special symbol, the so called
start symbol.

Definition 1.58 A grammar is a quadruple G
, � S � N � A � R � such that N � A

are nonempty disjoint sets, S � N and R a semi Thue system over N s A such
that � Eγ � Eη �@� R only if Eγ �� A ¡ . We call S the start symbol, N the nonterminal
alphabet, A the terminal alphabet and R the set of rules.

Elements of the set N are also called categories. Notice that often the word
‘type’ is used instead of ‘category’, but this usage is dangerous for us in view
of the fact that ‘type’ is reserved here for types in the λ–calculus. As a rule,
we choose S

,\}
. This is not necessary. The reader is warned that

}
need not

always be the start symbol. But if nothing else is said it is. As is common
practice, nonterminals are denoted by upper case Roman letters, terminals by
lower case Roman letters. A lower case Greek letter signifies a letter that is
either terminal or nonterminal. The use of vector arrows follows the practice
established for strings. We write G ~ Eγ or ~ G Eγ in case that S | ¡R Eγ and say
that G generates Eγ . Furthermore, we write Eγ ~ G Eη if Eγ | ¡R Eη . The language
generated by G is defined by

(1.73) L 7 G 8 :
, 51Ex � A ¡ : G ~ìEx 6

54 Fundamental Structures

Notice that G generates strings which may contain terminal as well as nonter-
minal symbols. However, those that contain also nonterminals do not belong
to the language that G generates. A grammar is therefore a semi Thue system
which additionally defines how a derivation begins and how it ends.

Given a grammar G we call the analysis problem (or parsing problem)
for G the problem (1) to say for a given string whether it is derivable in G
and (2) to name a derivation in case that a string is derivable. The problem
(1) alone is called the recognition problem for G.

A rule � Eα � Eβ � is often also called a production and is alternatively writ-
ten Eα � Eβ . We call Eα the left hand side and Eβ the right hand side of the
production. The productivity p 7 ρ 8 of a rule ρ

, Eα � Eβ is the difference� Eβ �ivÄ� Eα � . ρ is called expanding if p 7 ρ 8�f 0, strictly expanding if p 7 ρ 8Y� 0
and contracting if p 7 ρ 8 b 0. A rule is terminal if it has the form Eα � Ex
(notice that by our convention, Ex � A ¡).

This notion of grammar is very general. There are only countably many
grammars over a given alphabet — and hence only countably many languages
generated by them —; nevertheless, the variety of these languages is bewil-
dering. We shall see that every recursively enumerable language can be gener-
ated by some grammar. So, some more restricted notion of grammar is called
for. Noam Chomsky has proposed the following hierarchy of grammar types.
(Here, Xε is short for X sì5 ε 6 .)

+ Any grammar is of Type 0.

+ A grammar is said to be of Type 1 or context sensitive if all rules are
of the form Eδ1X Eη2 � Eη1 Eα Eη2 and either (i) always Eα �, ε or (ii)

} � ε
is a rule and

}
never occurs on the right hand side of a production.

+ A grammar is said to be of Type 2 or context free if it is context sen-
sitive and all productions are of the form X � Eα .

+ A grammar is said to be of Type 3 or regular if it is context free and
all productions are of the form X � Eα where Eα � Aε Â Nε .

A context sensitive rule Eη1X Eη2 � Eη1 Eα Eη2 is also written

(1.74) X � Eα ¾ Eη1 Eη2

One says that X can be rewritten into Eα in the context Eη1 Eη2. A language
is said to be of Type i if it can be generated by a grammar of Type i. It is

Rewriting Systems 55

not relevant if there also exists a grammar of Type j, j �, i, that generates this
language in order for it to be of Type i. We give examples of grammars of
Type 3, 2 and 0.

EXAMPLE 1. There are regular grammars which generate number expres-
sions. Here a number expression is either a number, with or without sign, or a
pair of numbers separated by a dot, again with or without sign. The grammar
is as follows. The set of terminal symbols is 5XG	�ZH>���
���	��N	��K
���
��M	���	���
��L���?�� O 6 ,
the set of nonterminals is 5 7 ���	��[��_�.�ãA�6 . The start symbol is

7
and the produc-

tions are

(1.75)

7 � L��¶�+?%�«�+��×� G��¶��H��«�0���¶�1Â=Â=Â������¶�
[[¬� G���H����¶�XÂ=Â=Â����������� O AA�� G>Aì��H½A �0�4Aì�1Â=Â=Â����>Aì��G��4H��0�«�XÂ=Â=Â����
Here, we have used the following convention. The symbol ‘ � ’ on the right
hand side of a production indicates that the part on the left of this sign and the
one to the right are alternatives. So, using the symbol ‘ � ’ saves us from writing
two rules expanding the same symbol. For example,

7
can be expanded either

by L�� , ?�� or by � . The syntax of the language ALGOL has been written
down in this notation, which became to be known as the Backus–Naur Form.
The arrow was written ‘::

,
’. (The Backus–Naur form actually allowed for

context–free rules.)
EXAMPLE 2. The set of strings representing terms over a finite signature

with finite set X of variables can be generated by a context free grammar. Let
F
, 5+[i : i b m 6 and Ω 7 i 8 :

,
Ω 7�[i 8 .

(1.76)
s � [i

s Ω ¯ i ° 7 i b m 8
Since the set of rules is finite, so must be F . The start symbol is

s
. This

grammar generates the associated strings in Polish Notation. Notice that this
grammar reflects exactly the structural coding of the terms. More on that
later. If we want to have dependency coding, we have to choose instead the
following grammar.

(1.77)

} ��[j0
[j1
�=�=��[jΩ � i �nÜ 1[i ��[j0

[j1
�=�=��[jΩ � i �nÜ 1

56 Fundamental Structures

This is a scheme of productions. Notice that for technical reasons the root
symbol must be

}
. We could dispense with the first kind of rules if we are

allowed to have several start symbols. We shall return to this issue below.
EXAMPLE 3. Our example for a Type 0 grammar is the following, taken

from (Salomaa, 1973).

(1.78)

7 a 8 � R � 0 � R � 0 �����#�7 b 8 ����� � 0�07 c 8 � 0 � 0�0 �
0 � 0(07 d 8 ����� � � V � ���7 e 8 � � V � � V � � �%� V � � V �7 f 8 0�� V � 0 ��� � � �7 g 8 � � � � � � � � � � � �%� �� �#� � � �����R is the start symbol. This grammar generates the language 5 0 n2
: n � 0 6 .

This can be seen as follows. To start, with (a) one can either generate the
string

0
or the string

0 �%���.� . Let Eγi
,ý0 � Eδi ����� , Eδi �Í50�	� � 6 ¡ . We consider

derivations which go from Eγi to a terminal string. At the beginning, only (b)
or (d) can be applied. Let it be (b). Then we can only continue with (c) and
then we create a string of length 4 gÉ� Eδi � . Since we have only one letter, the
string is uniquely determined. Now assume that (d) has been chosen. Then we
get the string

0 � Eδi
� V � ��� . The only possibility to continue is using (e). This

moves the index 1 stepwise to the left and puts
�

before every occurrence of
an � . Finally, it hits

0
and we use (f) to get

0 �%� � ��� Eδ ki �%� ��� . Now there is no
other choice but to move the index 2 to the right with the help of (g). This
gives a string Eγi � 1

,µ0 � Eδi � 1 � � � with Eδi � 1
, � � � Eδ ki ��� . We have

(1.79) � Eδi � 1 � , � Eδi ��g�! x 7 Eδi 8(g 5

where ! x 7 δi 8 counts the number of � in Eδi. Since ! x 7 Eδi � 1 8 , ! x 7 Eδi 8�g 2, Eδ0
,

ε ,
we conclude that ! x 7 Eδi 8 , 2i and so � Eδi � , 7 i g 1 8 2 v 4, i � 0. Hence, � Eγi � ,7 i g 1 8 2, as promised.

In the definition of a context sensitive grammar the following must be
remembered. By intention, context sensitive grammars only consist of non-
contracting rules. However, since we must begin with a start symbol, there
would be no way to derive the empty string if no rule is contracting. Hence,
we do admit the rule

} � ε . But in order not to let other contracting uses of

Rewriting Systems 57

this rule creep in we require that
}

is not on the right hand side of any rule
whatsoever. Hence,

} � ε can only be applied once, at the beginning of the
derivation. The derivation immediately terminates. This condition is also in
force for context free and regular grammars although without it no more lan-
guages can be generated (see the exercises). For assume that in a grammar
G with rules of the form X � Eα there are rules where

}
occurs on the right

hand side of a production, and nevertheless replace
}

by Z in all rules which
are not not of the form

} � ε . Add also all rules
} � Eα k , where

} � Eα is a
rule of G and Eα k results from Eα by replacing

}
by Z. This is a context free

grammar which generates the same language, and even the same structures.
(The only difference is with the nodes labelled

}
or Z.)

The class of regular grammars is denoted by RG, the class of all context
free grammars by CFG, the class of context sensitive grammars by CSG and
the class of Type 0 grammars by GG. The languages generated by these gram-
mars is analogously denoted by RL, CFL, CSL and GL. The grammar classes
form a proper hierarchy.

(1.80) RG m CFG m CSG m GG

This is not hard to see. It follows immediately that the languages generated
by these grammar types also form a hierarchy, but not that the inclusions are
proper. However, the hierarchy is once again strict.

(1.81) RL m CFL m CSL m GL

We shall prove each of the proper inclusions. In Section 1.7 (Theorem 1.96)
we shall show that there are languages of Type 0 which are not of Type 1.
Furthermore, from the Pumping Lemma (Theorem 1.81) for CFLs it follows
that 5 0 n í n F n : n � ω 6 is not context free. However, it is context sensitive
(which is left as an exercise in that section). Also, by Theorem 1.65 below,
the language 5 0 n2

: n � ω 6 has a grammar of Type 1. However, this language
is not semilinear, whence it is not of Type 2 (see Section 2.6). Finally, it will
be shown that 5 0 n í n : n � ω 6 is context free but not regular. (See Exercise 51.)

Let ρ
, Eγ � Eη . We call a triple A

, � Eα � C � Eζ � an instance of ρ if C is
an occurrence of Eγ in Eα and also an occurrence of Eη in Eζ . This means that
there exist Eκ1 and Eκ2 such that C

, � Eκ1 � Eκ2 � and Eα , Eκ1 9 Eγ 9 Eκ2 as well asEζ , Eκ1 9 Eη 9 Eκ2. We call C the domain of A. A derivation of length n is a
sequence � Ai : i b n � of instances of rules from G such that Ai

, � Eαi � Ci � Eζi � for

58 Fundamental Structures

i b n and for every j b n v 1 Eα j � 1
, Eζ j . Eα0 is called the start of the derivation,Eζn © 1 the end. We denote by der 7 G � Eα 8 the set of derivations G from the stringEα and der 7 G 8 :

,
der 7 G � S 8 .

This definition has been carefully chosen. Let � Ai : i b n � be a deriva-
tion in G, where Ai

, � Eαi � Ci � Eαi � 1 � (i b n). Then we call � Eαi : i b n g 1 � the
(associated) string sequence. Notice that the string sequence has one more
element than the derivation. In what is to follow we shall often also call the
string sequence a derivation. However, this is not quite legitimate, since the
string sequence does not determine the derivation uniquely. Here is an exam-
ple. Let G consist of the rules

} � 5 6
,
5 � 5�5

and
6 � 5 6

. Take the string
sequence � } � 5 6 � 5�5 6 � . There are two derivations for this sequence.�=� } �Z� ε � ε �P� 5 6 �P�Z� 5 6 �Z� ε � 6 �P� 5�5 6 �=�(1.82a) �=� } �Z� ε � ε �P� 5 6 �P�Z� 5 6 �Z� 5 � ε �P� 5�5 6 �=�(1.82b)

After application of a rule ρ , the left hand side Eγ is replaced by the right
hand side, but the context parts Eκ1 and Eκ2 remain as before. It is intuitively
clear that if we apply a rule to parts of the context, then this application could
be permuted with the first. This is clarified in the following definition and
theorem.

Definition 1.59 Let � Eα �Z� Eκ1 � Eκ2 �P� Eβ � be an instance of the rule ρ
, Eη � Eϑ ,

and let � Eβ �Z� Eµ1 � Eµ2 �P� Eγ � be an instance of σ
, Eζ � Eξ . We call the domains of

these applications disjoint if either (a) Eκ1 9 Eϑ is a prefix of Eµ1 or (b) Eϑ 9 Eκ2 is
a suffix of Eµ2.

Lemma 1.60 (Commuting Instances) Let � Eα � C � Eβ � be an instance of ρ
,Eη � Eϑ , and � Eβ � D � Eγ � an instance of σ

, Eζ � Eξ . Suppose that the instances
are disjoint. Then there exists an instance � Eα � D kl� Eδ � of σ as well as an in-
stance � Eδ � C k � Eγ � of ρ , and both have disjoint domains.

The proof is easy and left as an exercise. Analogously, suppose that to the
same string the rule ρ can be applied with context C and the rule σ can be
applied with context D. Then if C precedes D, after applying one of them the
domains remain disjoint, and the other can still be applied (with the context
modified accordingly).

Rewriting Systems 59

We give first an example where the instances are not disjoint. Let the fol-
lowing rules be given.

(1.83)
5 � � � 5 � 5 � � 0� 6 � �>í � 0 � 0

There are two possibilities to apply the rules to
5 � 6 . The first has domain� ε � 6 � , the second the domain � 5 � ε � . The domains overlap and indeed the first

rule when applied destroys the domain of the second. Namely, if we apply
the rule

5 �×��� 5 we cannot reach a terminal string.

(1.84)
5 � 6 |�� 5 6 |�� 0 6

If on the other hand we first apply the rule � 6 ����í we do get one.

(1.85)
5 � 6 | 5 �>í�|�� 5 í�|�� 0 í�| 0 í

So much for noncommuting instances. Now take the string
5 �%� 6 . Again, the

two rules are in competition. However, this time none destroys the applica-
bility of the other.

(1.86)
5 ��� 6 | 5 �%�>í�|�� 5 ��í

(1.87)
5 ��� 6 |�� 5 � 6 |�� 5 ��í

As before we can derive the string
0 í . Notice that in a CFG every pair of rules

that are in competition for the same string can be used in succession with
either order on condition that they do not compete for the same occurrence of
a nonterminal.

Definition 1.61 A grammar is in standard form if all rules are of the formEX � EY, X �³Ex.

In other words, in a grammar in standard form the right hand side either
consists of a string of nonterminals or a string of terminals. Typically, one
restricts terminal strings to a single symbol or the empty string, but the dif-
ference between these requirements is actually marginal.

Lemma 1.62 For every grammar G of Type i there exists a grammar H of
Type i in standard form such that L 7 G 8 , L 7 H 8 .

60 Fundamental Structures

Proof. Put N k : , 5+2 a : a � A 6+s N and h : a ���2 a � X �� X : N s A � N1. For
each rule ρ let h 7 ρ 8 be the result of applying h to both strings. Finally, let
R k :

, 5 h 7 ρ 8 : ρ � R 6ysË5+2 a � a : a � A 6 , H :
, � } � N k � A � R k � . It is easy to

verify, using the Commuting Instances Lemma, that L 7 H 8 , L 7 G 8 . (See also
below for proofs of this kind.) <

We shall now proceed to show that the conditions on Type 0 grammars
are actually insignificant as regards the class of generated languages. First,
we may assume a set of start symbols rather than a single one. Define the
notion of a grammar ¡ (of Type i) to be a quadruple G

, � Σ � N � A � R � such
that Σ } N and for all S � Σ, � S � N � A � R � is a grammar (of Type i). Write
G ~ Eγ if there is an S � Σ such that S | ¡R Eγ . We shall see that grammars ¡
are not more general than grammars with respect to languages. Let G be a
grammar ¡ . Define G � as follows. Let S �Í�� A s N be a new nonterminal and
add the rules S �Ù� X to R for all X � Σ. It is easy to see that L 7 G �+8 , L 7 G 8 .
(Moreover, the derivations differ minimally.) Notice also that we have not
changed the type of the grammar.

The second simplification concerns the requirement that the set of termi-
nals and the set of nonterminals be disjoint. We shall show that it too can be
dropped without increasing the generative power. We shall sometimes work
without this condition, as it can be cumbersome to deal with.

Definition 1.63 A quasi–grammar is a quadruple � } � N � A � R � such that A
and N are finite and nonempty sets,

} � N, and R a semi Thue system over
N s A such that if � Eα � Eβ �3� R then Eα contains a symbol from N.

Proposition 1.64 For every quasi–grammar there exists a grammar which
generates the same language.

Proof. Let � } � N � A � R � be a quasi–grammar. Put N1 :
,

N t A. Then assume for
every a � N1 a new symbol

�
a. Put Y :

, 5 � a : a � N1 6 , N � :
, 7 N v N1 8�s Y ,

A � :
,

A. Now N � t A � , w . We put
} � :

,�}
if
} �� A and

} � :
,��%�

if
} � A.

Finally, we define the rules. Let Eα � be the result of replacing every occurrence
of an a � N1 by the corresponding

�
a. Then let

(1.88) R � :
, 5 Eα � � Eβ � : Eα � Eβ � R 6�sì5 � a � a : a � N1 6

Put G � :
, � } �j� N �j� A �½� R �P� . We claim that L 7 G �P8 , L 7 G 8 . To that end we define

a homomorphism h : 7 A s N 8 ¡ � 7 A � s N � 8 ¡ by h 7 a 8 :
,

a for a � A v N1,
h 7 a 8 :

,X�
a for a � N1 and h 7 X 8 :

,
X for all X � N v N1. Then h 7 } 8 ,�} �

Rewriting Systems 61

as well as h 7 R 8 } R � . From this it immediately follows that if G ~ Eα then
G � ~ h 7 Eα 8 . (Induction on the length of a derivation.) Since we can derive Eα
in G � from h 7 Eα 8 , we certainly have L 7 G 8Y} L 7 G �P8 . For the converse we have
to convince ourselves that an instance of a rule

�
a � a can always be moved

to the end of the derivation. For if Eα � Eβ is a rule then it is of type
�

b � b and
replaces a

�
b by b; and hence it commutes with that instance of the first rule.

Or it is of a different form, namely Eα � � Eβ � ; since a does not occur in Eα � ,
these two instances of rules commute. Now that this is shown, we conclude
from G � ~ Eα already G � ~ Eα � . This implies G ~ Eα . <

The last of the conditions, namely that the left hand side of a production
must contain a nonterminal, is also no restriction. For let G

, � } � N � A � R � be a
grammar which does not comply with this condition. Then for every terminal
a let a1 be a new symbol and let A1 :

, 5 a1 : a � A 6 . Finally, for each rule ρ
,Eα � Eβ let ρ1 be the result of replacing every occurrence of an a � A by a1 (on

every side of the production). Now set
} k : ,U} if

} �� A and
} k : ,�} V otherwise,

R k : , 5 ρ1 : ρ � R 6�s 5 a V � a : a � A 6 . Finally put G k : , � } k � N s A1 � A � R k � . It
is not hard to show that L 7 G k 8 , L 7 G 8 . These steps have simplified the notion
of a grammar considerably. Its most general form is � Σ � N � A � R � , where Σ } N
is the set of start symbols and R }�7 N s A 8 ¡ eÝ7 N s A 8 ¡ a finite set.

Next we shall show a general theorem for context sensitive languages. A
grammar is called noncontracting if either no rule is contracting or only the
rule

} � ε is contracting and in this case the symbol
}

never occurs to the
right of a production. Context sensitive grammars are contracting. However,
not all noncontracting grammars are context sensitive. It turns out, however,
that all noncontracting grammars generate context sensitive languages. (This
can be used also to show that the context sensitive languages are exactly those
languages that are recognized by a linearly space bounded Turing machine.)

Theorem 1.65 A language is context sensitive iff there is a noncontracting
grammar that generates it.

Proof. (|) Immediate. (�) Let G be a noncontracting grammar. We shall
construct a grammar G � which is context sensitive and such that L 7 G ��8 ,
L 7 G 8 . To this end, let ρ

,
X0X1 Â=Â=Â Xm © 1 � Y0Y1 Â=Â=Â Yn © 1, m ç n, be a produc-

tion. (As remarked above, we can reduce attention to such rules and rules of
the form X � a. Since the latter are not contracting, only the former kind
needs attention.) We assume m new symbols, Z0, Z1 �=�=�=�Z� Zm © 1. Let ρ � be the

62 Fundamental Structures

following set of rules.

(1.89)

X0X1 Â=Â=Â Xm © 1 � Z0X1 Â=Â=Â Xm © 1

Z0X1X2 Â=Â=Â Xm © 1 � Z0Z1X2 Â=Â=Â Xm © 1�=�=�
Z0Z1 Â=Â=Â Zm © 2Xm © 1 � Z0Z1 Â=Â=Â Zm © 1

Z0Z1 Â=Â=Â Zm © 1 � Y0Z1 Â=Â=Â Zm © 1

Y0Z1Z2 Â=Â=Â Zm © 1 � Y0Y1Z2 Â=Â=Â Zm © 1�=�=�
Y0Y1 Â=Â=Â Ym © 2Zm © 1 � Y0Y1 Â=Â=Â Yn © 1

Let G � be the result of replacing all non context sensitive rules ρ by ρ � .
The new grammar is context sensitive. Now let us be given a derivation in
G. Then replace every instance of a rule ρ by the given sequence of rules in
ρ � . This gives a derivation of the same string in G � . Conversely, let us be
given a derivation in G � . Now look at the following. If somewhere the rule
ρ � is applied, and then a rule from ρ �1 then the instances commute unless
ρ1
,

ρ and the second instance is inside that of that rule instance of ρ � .
Thus, by suitably reordering the derivation is a sequence of segments, where
each segment is a sequence of the rule ρ � for some ρ , so that it begins with EX
and ends with EY . This can be replaced by ρ . Do this for every segment. This
yields a derivation in G. <

Given that there are Type 0 languages that are not Type 0 (Theorem 1.96)
the following theorem shows that the languages of Type 1 are not closed
under arbitrary homomorphisms.

Theorem 1.66 Let
0 �líÝ�� A be (distinct) symbols. For every language L over

A of Type 0 there is a language M over A s�5 0 �lí�6 of Type 1 such that for
every Ex � L there is an i with

0 i í	Ex � M and every Ey � M has the form
0 i í	Ex

with Ex � L.

Proof. We put N � :
,

N sì5 5 � 6 � } �@6 . Let

(1.90) ρ
,

X0X1 Â=Â=Â Xm © 1 � Y0Y1 Â=Â=Â Yn © 1

be a contracting rule. Then put

(1.91) ρ � :
,

X0X1 Â=Â=Â Xm © 1 � 5 m © nY0Y1 Â=Â=Â Yn © 1

Rewriting Systems 63

ρ � is certainly not contracting. If ρ is not contracting then put ρ � :
,

ρ . Let
R � consist of all rules of the form ρ � for ρ � R as well as the following rules.

(1.92)

} � � 6 }
X
5 � 5

X 7 X � N � 86 5 � 0 66 � í
Let M :

,
L 7 G � 8 . Certainly, Ey � M only if Ey ,Í0 i í	Ex for some Ex � A ¡ . For strings

contain
6

(or í) only once. Further,
5

can be changed into
0

only if it occurs
directly before

6
. After that we get

6
followed by

0
. Hence í must occur

after all occurrences of
0

but before all occurrences of
6

. Now consider the
homomorphism v defined by v :

5 � 0 � 6 �lí.� } � �� ε and v : X �� X for X � N,
v : a �� a for a � A. If � Eαi : i b n � is a derivation in G � then � v 7 Eαi 8 : 0 b i b n �
is a derivation in G (if we disregard repetitions). In this way one shows that0 i í�Ex � M implies Ex � L 7 G 8 . Next, let Ex � L 7 G 8 . Let � Eαi : i b n � be a derivation
of Ex in G. Then do the following. Define Eβ0 :

,
S � and Eβ1

, 6 }
. Further,

let Eβi � 1 be of the form
6 5 ki Eαi for some ki which is determined inductively.

It is easy to see that Eβi � 1 ~ G � Eβi � 2, so that one can complete the sequence� Eβi : i b n g 1 � to a derivation. From
6 5 kn Ex one can derive

0 kn í�Ex. This shows
that

0 kn í	Ex � M, as desired. <
Now let v : A � B ¡ be a map. v (as well as the generated homomorphism

v) is called ε–free if v 7 a 8 �, ε for all a � A.

Theorem 1.67 Let L1 and L2 be languages of Type i, 0 ç i ç 3. Then the
following are also languages of Type i.

À L1 s L2, L1 Â L2, L ¡1 �
Á v ¦ L1 § , where v is ε–free.

If i �, 1 then v ¦ L1 § also is of Type i even if v is not ε–free.

Proof. Before we begin, we remark the following. If L } A ¡ is a language and
G
, � } � N � A � R � a grammar over A which generates L then for an arbitrary

B

à
A � } � N � B � R � is a grammar over B which generates L } B ¡ . Therefore we

may now assume that L1 and L2 are languages over the same alphabet. À is
seen as follows. We have G1

, � } 1 � N1 � A � R1 � and G2
, � } 2 � N2 � A � R2 � with

L 7 G1 8 , L 7 G2 8 . By renaming the nonterminals of G2 we can see to it that

64 Fundamental Structures

N1 t N2
, w . Now we put N3 :

,
N1 s N2 sÙ5 }% 6 (where

}% �� N1 s N2) and
R :
,

R1 s R2 s 5 }� � }
1 � }% � }

2 6 . This defines G3 :
, � }% � N3 � A � R3 � . This

is a grammar which generates L1 s L2. We introduce a new start symbol
} Î

together with the rules
} Î�� }

1
}

2 where
}

1 is the start symbol of G1 and G2
the start symbol of G2. This yields a grammar of Type i except if i

,
3. In this

case the fact follows from the results of Section 2.1. It is however not difficult
to construct a grammar which is regular and generates the language L1 Â L2.
Now for L ¡1. Let

}
be the start symbol for a grammar G which generates L1.

Then introduce a new symbol
} � as well as a new start symbol

} ¡ together
with the rules

(1.93)
} ¡ � ε � } � }%} �} � � } � }�} �

This grammar is of Type i and generates L ¡1. (Again the case i
,

3 is an ex-
ception that can be dealt with in a different way.) Finally, Á. Let v be ε–free.
We extend it by putting v 7 X 8 :

,
X for all nonterminals X . Then replace the

rules ρ
, Eα � Eβ by v 7 ρ 8 :

,
v 7 Eα 8�� v 7 Eβ 8 . If i

,
0 � 2, this does not change the

type. If i
,

1 we must additionally require that v is ε–free. For if EγX Eδ � Eγ Eα Eδ
is a rule and Eα is a terminal string we may have v 7 α 8 , ε . This is however
not the case if v is ε–free. If i

,
3 again a different method must be used. For

now — after applying the replacement — we have rules of the form X �³ExY
and X � Ex, Ex , x0x1 Â=Â=Â xn © 1. Replace the latter by X � x0Z0, Zi � xiZi � 1 and
Zn © 2 � xn © 1Y and Zn © 2 � xn © 1, respectively. <
Definition 1.68 Let A be a (possibly infinite) set. A nonempty set Ú�} ℘7 A ¡ 8
is called an abstract family of languages (AFL) over A if the following holds.

À For every L ��Ú there is a finite B } A such that L } B ¡ .
Á If h : A ¡ � A ¡ is a homomorphism and L �ÙÚ then also h ¦ L §��ÙÚ .

Â If h : A ¡ � A ¡ is a homomorphism and L �ÝÚ , B } A finite, then also
h © 1 ¦ L §½t B ¡ �ÙÚ .

Ã If L �ÙÚ and R is a regular language then L t R ��Ú .

Ä If L1 � L2 �ÙÚ then also L1 s L2 �ÙÚ and L1 Â L2 �ÙÚ .

We still have to show that the languages of Type i are closed with respect to
intersections with regular languages. A proof for the Types 3 and 2 is found

Rewriting Systems 65

in Section 2.1, Theorem 2.14. This proof can be extended to the other types
without problems.

The regular, the context free and the Type 0 languages over a fixed al-
phabet form an abstract family of languages. The context sensitive languages
fulfill all criteria except for the closure under homomorphisms. It is easy to
show that the regular languages over A form the smallest abstract family of
languages. More on this subject can be found in (Ginsburg, 1975).

Notes on this section. It is a gross simplification to view languages as sets
of strings. The idea that they can be defined by means of formal processes did
not become apparent until the 1930s. The idea of formalizing rules for trans-
forming strings was first formulated by Axel Thue (1914). The observation
that languages (in his case formal languages) could be seen as generated from
semi Thue systems, is due to Emil Post. Also, he has invented independently
what is now known as the Turing machine and has shown that this machine
does nothing but string transformations. The idea was picked up by Noam
Chomsky and he defined the hierarchy which is now named after him (see
for example (Chomsky, 1959), but the ideas have been circulating earlier). In
view of Theorem 1.66 it is unclear, however, whether grammars of Type 0 or
1 have any relevance for natural language syntax, since there is no notion of
a constituent that they define as opposed to context free grammars. There are
other points to note about these types of grammars. (Langholm, 2001) voices
clear discontentment with the requirement of a single start symbol, which is
in practice anyway not complied with.

Exercise 27. Let T be a semi Thue system over A and A } B. Then T is
also a semi Thue system T k over B. Characterize | ¡T ¡ } B ¡ e B ¡ by means of| ¡T } A ¡ e A ¡ . Remark. This exercise shows that with the Thue system we
also have to indicate the alphabet on which it is based.

Exercise 28. Let A be a finite alphabet. Every string Ex is the value of a con-
stant term ExE composed from constants a for every a � A, the symbol ε , and9 . Let T be a Thue system over A. Write T E :

, 51ExE , , , EyE : ��Ex ��Ey �+� T 6 . Let M
be consist of Equations (1.27) and (1.28). T E is an equational theory. Show
that Ex | ¡T Ey iff Ey | ¡T Ex iff T E s M ~ ExE , , , EyE .

Exercise 29. Prove the Commuting Instances Lemma.

Exercise 30. Show that every finite language is regular.

Exercise 31. Let G be a grammar with rules of the form X � Eα . Show that

66 Fundamental Structures

L 7 G 8 is context free. Likewise show that L 7 G 8 is regular if all rules have the
form X � α0 9 α1 where α0 � A sì5 ε 6 and α1 � N s 5 ε 6 .
Exercise 32. Let G be a grammar in which every rule distinct from X � a is
strictly expanding. Show that a derivation of a string of length n takes at most
2n steps.

Exercise 33. Show that the language 5 0 n í n : n � ω 6 is context free.

Exercise 34. Write a Type 1 grammar for the language 5 0 n í n F n : n � ω 6 and
one for 51Ex 9yEx : Ex � A ¡ 6 .
6. Grammar and Structure

Processes that replace strings by strings can often be considered as processes
that successively replace parts of structures by structures. In this section we
shall study processes of structure replacement. They can in principle operate
on any kind of structure. But we will restrict our attention to algorithms that
generate ordered trees. There are basically two kinds of algorithms: the first is
like the grammars of the previous section, generating intermediate structures
that are not proper structures of the language; and the second, which generates
in each step a structure of the language.

Instead of graphs we shall deal with so–called multigraphs. A directed
multigraph is a structure � V �Z� Ki : i b n �=� where is V a set, the set of ver-
tices, and Ki } V e V a disjoint set, the set of edges of type i. In our case
edges are always directed. We shall not mention this fact explicitly later on.
Ordered trees are one example among many of (directed) multigraphs. For
technical reasons we shall not exclude the case V

, w , so that ��w¶�Z��w : i b n �=�
also is a multigraph. Next we shall introduce a colouring on the vertices. A
vertex–colouring is a function µV : V � FV where FV is a nonempty set, the
set of vertex colours. Think of the labelling as being a vertex colouring on
the graph. The principal structures are therefore vertex coloured multigraphs.
However, from a technical point of view the different edge relations can also
be viewed as colourings on the edges. Namely, if v and w are vertices, we
colour the edge � v� w � by the set 5 i : � v� w �@� Ki 6 . This set may be empty.

Definition 1.69 An � FV � FE � –coloured multigraph or simply a γ–graph (over
FV and FE) is a triple � V � µV � µE � , where V is a (possibly empty) set and
µV : V � FV as well as µE : V e V � ℘7 FE 8 are functions.

Grammar and Structure 67

w

x y

z

p! !¢
1

£
2

!
¤2 ò ò òV¥

1 ¦1 !!§ñññ ¨ 2

ñ ñ ñV©2

` 1

!a

£
1

!b ¦2 ! c

` 2

w

x y

z! ñ ñ ñV©1 !¢
1

£
2

!

¤2
ò ò òV¥1 ¦1 !

!a

£
1

!b ¦2 ! c
ñ ñ ñV©2

` 3

Figure 5. Graph Replacement

Now, in full analogy to the string case we shall distinguish terminal and non-
terminal colours. For simplicity, we shall study only replacements of a single
vertex by a graph. Replacing a vertex by another structure means embedding
a structure into some other structure. We need to be told how to do so. Before
we begin we shall say something about the graph replacement in general. The
reader is asked to look at Figure 5. The graph ` 3 is the result of replacing in` 1 the encircled dot by ` 2. The edge colours are 1 and 2 (the vertex colours
pose no problems, so they are omitted here for clarity).

Let ` , � E � µE � µK � be a γ–graph and M1 and M2 be disjoint subsets of E
with M1 s M2

,
E . Put ø i

, � Mi � µ i
V � µ i

E � , where µ i
V :
,

µV £ Mi and µ i
E :
,

µE £ Mi e Mi. These graphs do not completely determine ` since there is
no information on the edges between them. We therefore define functions
in � out : M2 e FE � ℘7 M1 8 , which for every vertex of M2 and every edge
colour name the set of all vertices of M1 which lie on an edge with a vertex
that either is directed into M1 or goes outwards from M1.

in 7 x � f 8 :
, 5 y � M1 : f � µE 7=� y � x �=8Z6(1.94a)

out 7 x � f 8 :
, 5 y � M1 : f � µE 7=� x � y �=8Z6(1.94b)

It is clear that ø 1, ø 2 and the functions in and out determine ` completely.
In our example we have

in 7 p � 1 8 , 5 x 6 in 7 p � 2 8 , w(1.95)

out 7 p � 1 8 , w out 7 p � 2 8 , 5 w� y 6

68 Fundamental Structures

Now assume that we want to replace ø 2 by a different graph i . Then not
only do we have to know i but also the functions in � out : H e FE � ℘7 M1 8 .
This, however, is not the way we wish to proceed here. We want to formu-
late rules of replacement that are general in that they do not presuppose exact
knowledge about the embedding context. We shall only assume that the func-
tions in 7 x � f 8 and out 7 x � f 8 , x � H , are systematically defined from the sets
in 7 y � g 8 , out 7 y � g 8 , y � M2. We shall therefore only allow to specify how the
sets of the first kind are formed from the sets of the second kind. This we do
by means of four so–called colour functionals. A colour functional from i
to ø 2 is a map

(1.96) ¹ : H e FE � ℘7 M2 e FE 8
In our case a functional is a function from 5 a � b � c 6«e�5 1 � 2 6 to ℘7�5 p 6�e5 1 � 2 618 . We can simplify this to a function from 5 a � b � c 6@e«5 1 � 2 6 to℘7�5 1 � 2 618 .
The colour functionals are called ä�ä , ä�ª , ªìä and ª«ª . For the example of
Figure 5 we get the following colour functionals (we only give values when
the functions do not yield w).ä�ä : � b � 1 �+��Û5 1 6 ªìä : � a � 2 �+��Û5 1 6(1.97) ä�ª : w ª«ª : � c � 2 ����Û5 2 6
The result of substituting ø 2 by i by means of the colour functionals from¹ is denoted by `¶¦ i ¾ ø 2 : ¹�§ . This graph is the union of ø 1 and i together
with the functions in � and out � , which are defined as follows.

(1.98)

in � 7 x � f 8 :
, � � in 7 x � g 8 : g � ä�äY7 x � f 8=�s � � out 7 x � g 8 : g �¬ªìä+7 x � f 8=�

out � 7 x � f 8 :
, � � out 7 x � g 8 : g �¬ª«ª 7 x � f 8=�s � � in 7 x � g 8 : g � ä�ª�7 x � f 8=�

If g �xä�äY7 x � f 8 we say that an edge with colour g into x is transmitted as
an ingoing edge of colour f to y. If g �­ªìä�7 x � f 8 we say that an edge with
colour g going out from x is transmitted as an ingoing edge with colour f to
y. Analogously for ä�ª and ª«ª . So, we do allow for an edge to change colour
and direction when being transmitted. If edges do not change direction, we
only need the functionals ä�ä and ª«ª , which are then denoted simply by ä
and ª . Now we look at the special case where M2 consists of a single element,

Grammar and Structure 69

say x. In this case a colour functional simply is a function ¹ : H e FE �
℘7 FE 8 .
Definition 1.70 A context free graph grammar with edge replacement — a
context free γ–grammar for short — is a quintuple of the form

(1.99) Γ
, �¯®�� FV � FT

V � FE � R �
in which FV is a finite set of vertex colours, FE a finite set of edge colours,
FT

V } FV a set of so–called terminal vertex colours, ® a γ–graph over FV
and FE , the so–called start graph, and finally R a finite set of triples � X ��i��_°��
such that X � FV v FT

V is a nonterminal vertex colour, i a γ–graph over FV
and FE and ° is a matrix of colour functionals.

A derivation in a γ–grammar Γ is defined as follows. For γ–graphs ` and i
with the colours FV and FE , `±| 1

R i means that there is � X �ÈøÀ�_°�� � R such
that i , `¶¦ ø ¾#² : °�§ , where ² is a subgraph consisting of a single vertex x
having the colour X . Further we define | ¡R to be the reflexive and transitive
closure of | 1

R and finally we put Γ ~³` if ®X| ¡R ` . A derivation terminates
if there is no vertex with a nonterminal colour. We write Lγ 7 Γ 8 for the class
of γ–graphs that can be generated from Γ. Notice that the edge colours only
the vertex colours are used to steer the derivation.

We also define the productivity of a rule as the difference between the
cardinality of the replacing graph and the cardinality of the graph being re-
placed. The latter is 1 in context free γ–grammars, which is the only type
we shall study here. So, the productivity is always f�v 1. It equals v 1 if the
replacing graph is the empty graph. A rule has productivity 0 if the replacing
graph consists of a single vertex. In the exercises the reader will be asked to
verify that we can dispense with rules of this kind.

Now we shall define two types of context free γ–grammars. Both are con-
text free as γ–grammars but the second type can generate non–CFLs. This
shows that the concept of γ–grammar is more general. We shall begin with
ordinary CFGs. We can view them alternatively as grammars for string re-
placement or as grammars that replace trees by trees. For that we shall now
assume that there are no rules of the form X � ε . (For such rules generate
trees whose leaves are not necessarily marked by letters from A. This case
can be treated if we allow labels to be in Aε

,
A s�5 ε 6 , which we shall not do

here.) Let G
, � } � A � N � R � be such a grammar. We put FV :

,
A s�7 N e 2 8 . We

write X0 for � X � 0 � and X1 for � X � 1 � . FT
V :
,

A s N eÙ5 0 6 . FE :
, 5&bØ�
jØ6 . Fur-

thermore, the start graph consists of a single vertex labelled
} 1 and no edge.

70 Fundamental Structures

The rules of replacement are as follows. Let ρ
,

X � α0α1 Â=Â=Â αn © 1 be a rule
from G, where none of the αi is ε . Then we define a γ–graph i ρ as follows.
Hρ :

, 5 yi : i b n 6»sì5 x 6 . µV 7 x 8 , X0, µV 7 yi 8 , αi if αi � A and µV 7 yi 8 , α1
i

if αi � N.

(1.100)
µ © 1

E 7�5&b×618 :
, 5(� yi � x � : i b n 6>�

µ © 1
E 7�5�j×618 :

, 5(� yi � y j � : i b j b n 6>�
This defines i ρ . Now we define the colour functionals. For u � n we put

(1.101)
ä ρ 7 u �
j�8 :

, 5�j×6´ª ρ 7 u �
j]8 :
, 5�j×6ä ρ 7 u �ib�8 :

, 5&b×6´ª ρ 7 u �ib]8 :
, 5&b×6

Finally we put ρ γ :
, � X ��i ρ ��5½ä ρ �_ª ρ 61� . Rγ :

, 5 ρ γ : ρ � R 6 .
(1.102) γG :

, �¯®�� FE � FT
E � FT � Rγ �

We shall show that this grammar yields exactly those trees that we associate
with the grammar G. Before we do so, a few remarks are in order. The nonter-
minals of G are now from a technical viewpoint terminals since they are also
part of the structure that we are generating. In order to have any derivation
at all we define two equinumerous sets of nonterminals. Each nonterminal N
is split into the nonterminal N1 (which is nonterminal in the new grammar)
and N0 (which is now a terminal vertex colour). We call the first kind ac-
tive, nonactive the second. Notice that the rules are formulated in such a way
that only the leaves of the generated trees carry active nonterminals. A sin-
gle derivation step is displayed in Figure 6. In it, the rule �¬� 5 F 5 has been
applied to the tree to the left. The result is shown on the right hand side. It
is easy to show that in each derivation only leaves carry active nonterminals.
This in turn shows that the derivations of the γ–grammar are in one to one
correspondence with the derivations of the CFGs. We put

(1.103) LB 7 G 8 :
,

h ¦ Lγ 7 γG 8�§
This is the class of trees generated by γG, with X 0 and X1 mapped to X
for each X � N. The rules of G can therefore be interpreted as conditions
on labelled ordered trees in the following way. ë is called a local subtree
of
·

if (i) it has height 2 (so it does not possess inner nodes) and (ii) it
is maximal with respect to inclusion. For a rule ρ

,
X � Y0Y1 Â=Â=Â Yn © 1 we

Grammar and Structure 71

ñ ñ ñ ñ
ñ ññ

òòòò
òòò

!� 1 ñ ñ ñ ñ
ñ ññ

òòòò
òòò

!� 0ññññ ò ò òò5 1 F 5 1

Figure 6. Replacement in a Context Free Grammar

define Lρ :
, 5 yi : i b n 63s¸5 x 6 , b ρ :

, 5(� yi � x � : i b n 6 , j ρ :
, 5(� yi � y j � : i b

j b n 6 , and finally ! ρ 7 x 8 :
,

X , !>7 yi 8 :
,

Yi. ^ ρ :
, � Lρ �ib ρ �
j ρ �_! ρ � . Now, an

isomorphism between labelled ordered trees
· , � B �ib Ç �
j Ç �_! Ç � and ë ,� C �ib¶µ��
j·µ��_!�µ�� is a bijective map h : B � C such that h ¦ b Ç § , b¶µ , h ¦¸j Ç§ , j µ and ! µ 7 h 7 x 8=8 , ! Ç 7 x 8 for all x � B.

Proposition 1.71 Let G
, � } � N � A � R � . · � LB 7 G 8 iff every local tree of

·
is

isomorphic to an ^ ρ such that ρ � R.

Theorem 1.72 Let B be a set of trees over an alphabet A s N with terminals
from A. Then B

,
LB 7 G 8 for a CFG G iff there is a finite set 50^ i : i b n 6 of

trees of height 2 and an S such that
· � B exactly if

À the root carries label S,

Á a label is terminal iff the node is a leaf, and

Â every local tree is isomorphic to some ^ i.

We shall derive a few useful consequences from these considerations. It is
clear that γG generates trees that do not necessarily have leaves with terminal
symbols. However, we do know that the leaves carry labels either from A or
from N1 :

,
N e¸5 1 6 while all other nodes carry labels from N0 :

,
N e¸5 0 6 .

For a labelled tree we define the associated string sequence k 7 · 8 in the usual
way. This is an element of 7 A s N1 8 ¡ . Let v : A s¸7 N e 2 8»� A s N be defined
by v 7 a 8 :

,
a, a � A and v 7 X 0 8 :

,
v 7 X1 8 :

,
X for X � N.

72 Fundamental Structures

Lemma 1.73 Let γG ~ · and Eα ,
k 7 · 8 . Then Eα �x7 A s N1 8 ¡ and G ~ v 7 Eα 8 .

Proof. Induction over the length of the derivation. If the length is 0 thenEα ,Z} 1 and v 7 } 1 8 ,Z} . Since G ~ } this case is settled. Now let
·

be the
result of an application of some rule ρ γ on ë where ρ

,
X � Eγ . We then have

k 7�ë�8»�Ë7 A s N1 8 ¡ . The rule ρ γ has been applied to a leaf; this leaf corresponds
to an occurrence of X 1 in k 7�ë»8 . Therefore we have k 7�ë»8 , Eη1 9 X1 9 Eη2. Then
k 7 · 8 , Eη1 9 Eγ 9 Eη2. k 7 · 8 is the result of a single application of the rule ρ from
k 7�ë�8 . <
Definition 1.74 Let

·
be a labelled ordered tree. A cut through

·
is a max-

imal set that contains no two elements comparable by b . If
·

is exhaustively
ordered, a cut is linearly ordered and labelled, and then we also call the
string associated to this set a cut.

Proposition 1.75 Let γG ~ · and let Eα be a cut through
·

. Then G ~ v 7 Eα 8 .
This theorem shows that the tree provides all necessary information. If you
have the tree, all essential details of the derivation can be reconstructed (up
to commuting applications of rules). Now let us be given a tree

·
and let Eα

be a cut. We say that an occurrence C of Eγ in Eα is a constituent of category
X in

·
if this occurrence of Eγ in Eα is that cut defined by Eα on

d
x where

x carries the label X . This means that Eα , Eη1 9 Eγ 9 Eη2, C
, � Eη1 � Eη2 � , and

d
x

contains exactly those nodes that do not belong to Eη1 or Eη2. Further, let G be
a CFG. A substring occurrence of Eγ is a G–constituent of category X in Eα if
there is a γG–tree for which there exists a cut Eα such that the occurrence Eγ is
a constituent of category X . If G is clear from the context, we shall omit it.

Lemma 1.76 Let
·

be a γG–tree and Eα a cut through
·

. Then there exists
a tree ë with associated string Eγ and v 7 Eγ 8 , v 7 Eα 8 .
Lemma 1.77 Let G ~ Eα1 9 Eγ 9 Eα2, C

, � Eα1 � Eα2 � an occurrence of Eγ as a G–
constituent of category X. Then C is a G–constituent occurrence of X in
C 7 X 8 , Eα1 9 X 9 Eα2.

For a proof notice that if Eα1 9 Eγ 9 Eα2 is a cut and Eγ is a constituent of category
X therein then Eα1 9 X 9 Eα2 also is a cut.

Theorem 1.78 (Constituent Substitution) Suppose that C is an occurrence
of Eβ as a G–constituent of category X. Furthermore, let X ~ G Eγ . Then G ~
C 7 Eγ 8 , Eα1 9 Eγ 9 Eα2 and C is a G–constituent occurrence of Eγ of category X.

Grammar and Structure 73

Proof. By assumption there is a tree in which Eβ is a constituent of category
X in Eα1 9 Eβ 9 Eα2. Then there exists a cut Eα1 9 X 9 Eα2 through this tree, and by
Lemma 1.76 there exists a tree with associated string Eα1 9 X 9 Eα2. Certainly
we have that X is a constituent in this tree. However, a derivation X ~ G Eγ
can in this case be extended to a γG–derivation of Eα1 9 Eγ 9 Eα2 in which Eγ is a
constituent. <
Lemma 1.79 Let G be a CFG. Then there exists a number kG such that for
each derivation tree of a string of length f kG there are two constituents

d
y

and
d

z of identical category such that y ç z or z ç y, and the associated
strings are different.

Proof. To begin, notice that nothing changes in our claim if we eliminate the
unproductive rules. This does not change the constituent structure. Now let
π be the maximum of all productivities of rules in G, and ν :

, �N � . Then let
kG :

, 7 1 g π 8 ν g 1. We claim that this is the desired number. (We can assume
that π � 0. Otherwise G only generates strings of length 1, and then kG :

,
2

satisfies our claim.) For let Ex be given such that � Ex ��f kG. Then there exists in
every derivation tree a branch of length � ν . (If not, there can be no more than
πν leaves.) On this branch we have two nonterminals with identical label. The
strings associated to these nodes are different since we have no unproductive
rules. <

We say, an occurrence C is a left constituent part (right constituent
part) if C is an occurrence of a prefix (suffix) of a constituent. An occurrence
of Ex contains a left constituent part Ez if some suffix of Ex is a left constituent
part. We also remark that if Eu is a left constituent part and a proper substring
of Ex then Ex , Ev Ev1 Eu with Ev1 a possibly empty sequence of constituents and Ev a
right constituent part. This will be of importance in the sequel.

Lemma 1.80 Let G be a CFG. Then there exists a number k kG such that for
every derivation tree of a string Ex and every occurrence in Ex of a string Ez
of length f k kG Ez contains two different left or two different right constituent
parts Ey and Ey1 of constituents that have the same category. Moreover, Ey is a
prefix of Ey1 or Ey1 a prefix of Ey in case that both are left constituent parts, and Ey
is a suffix of Ey1 or Ey1 a suffix of Ey in case that both are right constituent parts.

Proof. Let ν :
, �N � and let π be the maximal productivity of a rule from G.

We can assume that π f 2. Put k kG :
, 7 2 g 2π 8 ν . We show by induction on

the number m that a string of length fµ7 2 g 2π 8 m has at least m left or at least

74 Fundamental Structures

m right constituent parts that are contained in each other. If m
,

1 the claim
is trivial. Assume that it holds for m f 1. We shall show that it also holds
for m g 1. Let Ez be of length fÏ7 2 g 2π 8 m � 1. Let Ex , ∏i 2π � 2 Exi for certainExi with length at least 7 2 g 2π 8 m. By induction hypothesis each Exi contains
at least m constituent parts. Now we do not necessarily have 7 2π g 2 8 m con-
stituent parts in Ex. For if Exi contains a left part then Ex j with j � i may contain
the corresponding right part. (There is only one. The sections in between con-
tain subwords of that constituent occurrence.) For each left constituent part
we count at most one (corresponding) right constituent part. In total we have
at least 7 1 g π 8 m f m g 1 constituent parts. However, we have to verify that
at least m g 1 of these are contained inside each other. Assume this is not the
case, for all i. Then Exi, i b 2π g 2, contains exactly m left or exactly m right
constituent parts. Case 1. Ex0 contains m left constituent parts inside each other.
If Ex1 also contains m left constituent parts inside each other, we are done. Now
suppose that this is not the case. Then Ex1 contains m right constituent parts
inside each other. Then we obviously get m entire constituents stacked inside
each other. Again, we would be done if Ex2 contained m right constituent parts
inside each other. If not, then Ex2 contains exactly m left constituent parts. And
again we would be done if these would not correspond to exactly m right part
that Ex3 contains. And so on. Hence we get a sequence of length π of con-
stituents which each contain m constituents stacked inside each other. Now
three cases arise: (a) one of the constituents is a left part of some constituent,
(b) one of the constituent is a right part of some constituent. (For if neither
is the case, we have a rule of arity � π , a contradiction.) In Case (a) we evi-
dently have m g 1 left constituent parts stacked inside each other, and in Case
(b) m g 1 right constituent parts. Case 2. Ex0 contains m right hand constituents
stacked inside each other. Similarly. This shows our auxiliary claim. Putting
m :
,

ν g 1 the main claim now follows. <
Theorem 1.81 (Pumping Lemma) Given a CFL L there exists a pL such
that for every string Ez � L of length at least pL and an occurrence of a stringEr of length at least pL in Ez, Ez possesses a decomposition

(1.104) Ez , Eu 9 Ex 9 Ev 9 Ey 9 Ew
such that the following holds.

À Ex 93Ey �, ε .

Á Either the occurrence of Ex or the occurrence of Ey is contained in the
specified occurrence of Er.

Grammar and Structure 75

Â 5>Eu 9 Ex i 9 Ev 9 Ey i 9 Ew : i � ω 6 } L.

(The last property is called the pumpability of the substring occurrences ofEx and Ey.) Alternatively, in place of Á one may require that � Ev ��ç pL. Further
we can choose pL in such a way that every derivable string Eγ with designated
occurrences of a string Eα of length f pS can be decomposed in the way given.

Proof. Let G be a grammar which generates L. Let pL be the constant defined
in Lemma 1.80. We look at a G–tree of Ez and the designated occurrence of Er.
Suppose that Er has length at least pL. Then there are two left or two right con-
stituent parts of identical category contained in Er. Without loss of generality
we assume that Er contains two left parts. Suppose that these parts are not fully
contained in Er. Then Er , Es Ex Es1 where Ex Es1 and Es1 are left constituent parts of
identical category, say X . Now �nEx �4� 0. There are Es2 and Ey such that Ev :

, Es1 Es2
and Ex Es1 Es2 Ey are constituents of category X .

Hence there exists a decomposition

(1.105) Ez , Eu 9 Ex 9 Ev 9 Ey 9 Ew
where Ev is a constituent of the same category as Ex Ev Ey satisfying À and Á. By
the Constituent Substitution Theorem we may replace the occurrence of Ex Ev Ey
by Ev as well as Ev by Ex Ev Ey. This yields Â, after an easy induction. Now let the
smaller constituent part be contained in Er but not the larger one. Then we have
a decomposition Er , Es Ex Ev Es1 such that Ev is a constituent part of category X andEx Ev Es1 a left constituent part of a constituent of category X . Then there exists aEs2 such that also Ex Ev Es1 Es2 is a constituent of category X . Now put Ey :

, Es1 Es2. Then
we also have Ey �, ε . The third case is if both parts are proper substrings of Er.
Also here we find the desired decomposition. If we want to have in place of
Á that Ev is as small as possible then notice that Ev already is a constituent. If it
has length fµ7 1 g π 8 ν then there is a decomposition of Ev such that it contains
pumpable substrings. Hence in place of Á we may require that � Ev ��ç pG. <

The Pumping Lemma can be stated more concisely as follows. For every
large enough derivable string Ex there exist contexts C, D, where C �, � ε � ε � ,
and a string Ey such Ex , D 7 C 7ÈEy 8=8 , and D 7 Ck 7�Ey 8=8 � L for every k � ω . The
strongest form of a pumping lemma is the following. Suppose that we have
two decompositions into pumping pairs Eu1 9 Ex1 9 Ev1 9 Ey1 9 Ew1, Eu2 9 Ex2 9 Ev2 9 Ey2 9 Ew2.
We say that the two pairs are independent if either (1a) Eu1 9@Ex1 9@Ev1 93Ey1 is a pre-
fix of Eu2, or (1b) Eu2 9 Ex2 9 Ev2 9 Ey2 is a prefix of Eu1, or (1c) Eu1 9 Ex1 is a prefix of Eu2
and Ey1 9¬Ew1 a suffix of Ew2, or (1d) Eu2 9yEx2 is a prefix of Eu1 and Ey2 9ØEw2 a suffix of

76 Fundamental StructuresEw1 and (2) each of them can be pumped any number of times independently
of the other.

Theorem 1.82 (Manaster-Ramer & Moshier & Zeitman) Let L be a CFL.
Then there exists a number mL such that if Ex � L and we are given kmL occur-
rences of letters in Ex there are k independent pumping pairs, each of which
contains at least one and at most mL of the occurrences.

This theorem implies the well–known Ogden’s Lemma (see (Ogden, 1968)),
which says that given at least mL occurrences of letters, there exists a pumping
pair containing at least one and at most mL of them.

Notice that in all these theorems we may choose i
,

0 as well. This means
that not only we can pump ‘up’ the string so that it becomes longer except
if i

,
1, but we may also pump it ‘down’ (i

,
0) so that the string becomes

shorter. However, one can pump down only once. Using the Pumping Lemma
we can show that the language 5 0 n í n F n : n � ω 6 is not context free.

For suppose the contrary. Then there is an m such that for all k f m the
string

0 k í k F k can be decomposed into

(1.106)
0 k í k F k , Eu 9 Ev 9 Ew 9 Ex 9 Ey

Furthermore there is an ! � k such that

(1.107)
0�¹ í ¹ F ¹�, Eu 9 Ev 2 9 Ew 9 Ex 2 9 Ey

The string Ev 9yEx contains exactly !@v k times the letters
0
, í and F . It is clear

that we must have Ev } 0 ¡ s�í ¡ sÝF ¡ . For if Ev contains two distinct letters,
say í and F , then Ev contains an occurrence of í before an occurrence of F
(certainly not the other way around). But then Ev 2 contains an occurrence ofF before an occurrence of í , and that cannot be. Analogously it is shown thatEy � 0 ¡ s¬í ¡ sÙF ¡ . But this is a contradiction. We shall meet this example of a
non–CFL quite often in the sequel.

The second example of a context free graph grammar shall be the so–
called tree adjunction grammars. We take an alphabet A and a set N of non-
terminals. A centre tree is an ordered labelled tree over A s N such that all
leaves have labels from A all other nodes labels from N. An adjunction tree
is an ordered labelled tree over A s N which is distinct from ordinary trees
in that of the leaves there is exactly one with a nonterminal label; this label
is the same as that of the root. Interior nodes have nonterminal labels. We
require that an adjunction tree has at least one leaf with a terminal symbol.

Grammar and Structure 77

ññññññññ
ò ò ò ò ò ò òò
�ññññ ò ò òò� F 0 5 0 5 0

� F
0 5 0

5 0
ñ ñ ññ òòòò

í ñ ñ
ñ ñ ññ

íòòòò
òòñ ñ ñ ñ

ñ ñ ññ

òòòò
òòòò�

�
Figure 7. Tree Adjunction

An unregulated tree adjunction grammar, briefly UTAG, over N and A,
is a quadruple �_º � N � A ��»]� where º is a finite set of centre trees over N and
A, and » a finite set of adjunction trees over N and A. An example of a tree
adjunction is given in Figure 7. The tree to the left is adjoined to a centre tree
with root X and associated string í���í ; the result is shown to the right. Tree
adjunction can formally be defined as follows. Let

· , � B �ibØ�
jØ�_!ï� be a tree
and ­ , � A �ibØ�
jØ� m � an adjunction tree. We assume that r is the root of ­

78 Fundamental Structures

and that s is the unique leaf such that m 7 r 8 , m 7 s 8 . Now let x be a node of B
such that !>7 x 8 , m 7 r 8 . Then the replacement of x by

·
is defined by naming

the colour functionals. These are

ä�ä ρ 7 y �
j]8 :
, ¿�5�jØ�ibØ6 if s j y,5�j×6 else.

ªìä ρ 7 y �
j]8 :
, w(1.108)

ä�ª ρ 7 y �
j]8 :
, ¿ 5&b×6 if y j s,w else.

ª«ª ρ 7 y �
j]8 :
, 5�j×6

ä�ä ρ 7 y �ib]8 :
, ¿�5&b×6 if y f s,w else.

ä�ª ρ 7 y �ib]8 :
, w(1.109) ªìä ρ 7 y �ib]8 :

, w ª«ª ρ 7 y �ib]8 :
, 5&b×6

Two things may be remarked. First, instead of a single start graph we have a
finite set of them. This can be remedied by standard means. Second, all vertex
colours are terminal as well as nonterminal. One may end the derivation at any
given moment. We have noticed in connection with grammars for strings that
this can be remedied. In fact, we have not defined context free γ–grammars
but context free quasi γ–grammars ¡ . However, we shall refrain from being
overly pedantic. Suffice it to note that the adjunction grammars do not define
the same kind of generative process if defined exactly as above.

Finally we shall give a graph grammar which generates all strings of the
form

0 n í n F n, n � 0. The idea for this grammar is due to Uwe Mönnich (1999).
We shall exploit the fact that we may think of terms as structures. We posit
a ternary symbol, [, which is nonterminal, and another ternary symbol,

:
,

which is terminal. Further, there is a binary terminal symbol 9 . The rules
are as follows. (To enhance readability we shall not write terms in Polish
Notation but by means of brackets.)

(1.110)
[�7 x � y � z 8Y�¼[�7 0 9 x �lí 9 y ��F 9 z 8P�[�7 x � y � z 8Y� : 7 x � y � z 8P�

These rules constitute a so–called term replacement system. The start term
is [.7 0 �lí.��F&8 . Now suppose that u � v is a rule and that we have derived a
term t such that uσ occurs in t as a subterm. Then we may substitute this

Grammar and Structure 79

occurrence by vσ . Hence we get the following derivations.

(1.111)

[�7 0 �lí���F&8»� : 7 0 �lí���F>8P�[�7 0 �lí���F&8»�¼[�7 0 9 0 �lí 9 í.��F 9 F>8� : 7 0 9 0 �lí 9 í.��F 9 F>8[�7 0 �lí���F&8»�¼[�7 0 9 0 �lí 9 í.��F 9 F>8�¼[�7 0 9 7 0 9 0 8O�lí 9 7�í 9 í
8O��F 9 7�F 9 F>8i8� : 7 0 9 7 0 9 0 8O�lí 9 7�í 9 í
8O��F 9 7�F 9 F>8i8
Notice that the terms denote graphs here. We make use of the dependency
coding. Hence the associated strings to these terms are

0 í�F , 0(0 í(í.F�F and0�0(0 í�í(í.F(F�F .
In order to write a graph grammar which generates the graphs for these

terms we shall have to introduce colours for edges. Put FE :
, 5 0 � 1 � 2 �
j¬�ib×6 ,

FV :
, 5+[.� : � 0 �lí���F(6 , and FT

V :
, 5 : � 0 �lí���F�6 . The start graph is as follows. It

has four vertices, p, q, r and s. (b is empty (!), and q j r j s.) The labelling
is p ��¼[, q �� 0

, r �� í and s ��ÛF .
(1.112) ! ñ ñ ñV©00 ! £1 í !òòò ½ 2F

![
There are two rules of replacement. The first can be written schematically
as follows. The root, x, carries the label [and has three incoming edges;
their colours are 0, 1 and 2. These come from three disjoint subgraphs, ` 0,` 1 and ` 2, which are ordered trees with respect to b and j and in which
there are no edges with colour 0, 1 and 2. In replacement, x is replaced by a
graph consisting of seven vertices, p, qi, ri and si, i b 2, where qi j r j j sk,

i � j � k b 2, and q
0� p, r

1� p and s
2� p. b , 5(� q1 � q0 �P�Z� r1 � r0 �P�Z� s1 � s0 �Z6 . The

colouring is

(1.113)
p ���[q0 ��É9 r0 ��É9 s0 ��É9

q1 �� 0
r1 �� í s1 ��ÛF

(With 5 p � q0 � r0 � s0 6 we reproduce the begin situation.) The tree ` 0 is attached
to q0 to the right of q1, ` 1 to r0 to the right of r1 and ` 2 to s0 to the right of

80 Fundamental Structures

s1. Additionally, we put x b p for all vertices x of the ` i. (So, the edge � x � p �
has colour b for all such x.) By this we see to it that in each step the union of
the relations b , 0, 1 and 2 is the intended tree ordering and that there always
exists an ingoing edge with colour 0, 1 and 2 into the root.

The second replacement rule replaces the root by a one vertex graph with
label

:
at the root. This terminates the derivation. The edges with label 0, 1

and 2 are transmitted under the name b . This completes the tree. It has the
desired form.

Exercise 35. Strings can also be viewed as multigraphs with only one edge
colour. Show that a CFG for strings can also be defined as a context free
γ–grammar on strings. We shall show in Section 2.6 that CFLs can also be
generated by UTAGs, but that the converse does not hold.

Exercise 36. Show that for every context free γ–grammar Γ there exists a
context free γ–grammar ∆ which has no rules of productivity v 1 and which
generates the same class of graphs.

Exercise 37. Show that for every context free γ–grammar there exists a con-
text free γ–grammar with the same yield and no rules of productivity ç 0.

Exercise 38. Define unregulated string adjunction grammars in a similar way
to UTAGs. Take note of the fact that these are quasi–grammars. Characterize
the class of strings generated by these grammars in terms of ordinary gram-
mars.

Exercise 39. Show that the language 5�Ew 9×Ew : Ew � A ¡ 6 is not context free
but that it satisfies the Pumping Lemma. (It does not satisfy the Interchange
Lemma (2.111).)

7. Turing machines

We owe to (Turing, 1936) and (Post, 1936) the concept of a machine which
is very simple and nevertheless capable of computing all functions that are
believed to be computable. Without going into the details of what makes a
function computable, it is nowadays agreed that there is no loss if we define
‘computable’ to mean computable by a Turing machine. The essential idea
was that computations on objects can be replaced by computations on strings.
The number n can for example be represented by n g 1 successive strokes on
a piece of paper. (So, the number 0 is represented by a single stroke. This is

Turing machines 81

really necessary.) In addition to the stroke we have a blank, which is used to
separate different numbers. The Turing machine, however powerful, takes a
lot of time to compute even the most basic functions. Hence we agree from
the start that it has an arbitrary, finite stock of symbols that it can use in
addition to the blank. A Turing machine is a physical device, consisting of a
tape which is infinite in both directions. That is, it contains cells numbered
by the set of integers (but the numbering is irrelevant for the computation).
Each cell may carry a symbol from an alphabet A or a blank. The machine
possesses a read and write head, which can move between the cells, one at
a time. Finally, it has finitely many states, and can be programmed in the
following way. We assign instructions for the machine that tell it what to do
on condition that it is in state q and reads a symbol a from the tape. These
instruction tell the machine whether it should write a symbol, then move the
head one step or leave it at rest, and subsequently change to a state q k .
Definition 1.83 A (nondeterministic) Turing machine is a quintuple

(1.114) T
, � A � L � Q � q0 � f �

where A is a finite set, the alphabet, L �� A is the so–called blank, Q a finite
set, the set of (internal) states, q0 � Q the initial state and

(1.115) f : AL e Q � ℘7 AL e�5&v 1 � 0 � 1 6 e Q 8
the transition function. If for all b � AL and q � Q � f 7 b � q 8j�4ç 1, the machine
is called deterministic.

Here, we have written AL in place of A s¸5 L 6 . Often, we use 1 or even ¾
as particular blanks. What this describes physically is a machine that has a
two–sided infinite tape (which we can think of as a function τ : ¿ � AL),
with a read/write head positioned on one of the cells. A computation step
is as follows. Suppose the machine scans the symbol a in state q and is on
cell i �³¿ . Then if � b � 1 � q k �y� f 7 a � q 8 , the machine may write b in place of a,
advance to cell i g 1 and change to state q k . If � b � 0 � q kÁ�@� f 7 a � q 8 the machine
may write b in place of a, stay in cell i and change to state q k . Finally, if� b �iv 1 � q k �+� f 7 a � q 8 , the machine may write b in place of a, move to cell i v 1
and switch to state q k . Evidently, in order to describe the process we need (i)
the tape, (ii) the position of the head of that tape, (iii) the state the machine is
currently in. We assume throughout that the tape is almost everywhere filled
by a blank. (The locution ‘almost all’ and ‘almost everywhere’ is often used

82 Fundamental Structures

in place ‘all but finitely many’ and ‘all but finitely many places’, respectively.)
This means that the content of the tape plus the information on the machine
may be coded by a single string, called configuration. Namely, if the tape is
almost everywhere filled by a blank, there is a unique interval ¦m � n § which
contains all non–blank squares and the head of the machine. Suppose that the
machine head is on Tape ! . Then let Ex1 be the string defined by the interval¦m �_!3v 1 § (it may be empty), and Ex2 the string defined by the interval ¦ !4� n § .
Finally, assume that the machine is in state q. Then the string Ex1 9 q 9 Ex2 is the
configuration corresponding to that phyical configuration. So, the state of the
machine is simply written behind the symbol of the cell that is being scanned.
(Obviously, A and Q are assumed to be disjoint.)

Definition 1.84 Let T
, � A ��1�� Q � q0 � f � be a Turing machine. A T–configu-

ration is a string Exq Ey � A ¡L e Q e A ¡L such that Ex does not begin and Ey does not
end with a blank.

This configuration corresponds to a situation that the tape is almost empty
(that is, almost all occurrences of symbols on it are blanks). The nonempty
part is a string Ex, with the head being placed somewhere behind the prefix Eu.
Since Ex , Eu Ev for some Ev, we insert the state the machine is in between Eu andEv. The configuration omits most of the blanks, whence we have agreed thatEuq Ev is the same configuration as ¾¶Euq Ev and the same Euq Ev ¾ .

We shall now describe the working of the machine using configurations.
We say, Ex 9 q 93Ey is transformed by T in one step into Ex1 9 q1 9@Ey1 and writeEx 9 q 9 Ey ~ T Ex1 9 q1 9 Ey1 if one of the following holds.

À Ex1
, Ex, and for some Ev and b and c we have Ey , b 9yEv and Ey1

,
c 9yEv, as

well as � c � 0 � q1 �Y� f 7 b � q 8 .
Á We have Ex1

, Ex 9 c and Ey , b 9 Ey1 as well as � c � 1 � q1 �Y� f 7 b � q 8 .
Â We have Ex , Ex1 9 c and Ey1

,
b 93Ey as well as � c �iv 1 � q1 �@� f 7 b � q 8 .

Now, for T–configurations Z and Z k we define Z ~ n
T Z k inductively by (a)

Z ~ 0
T Z k iff Z

,
Z k and (b) Z ~ n � 1

T Z k iff for some Z k k we have Z ~ n
T Z k k.~ T Z k .

It is easy to see that we can define a semi Thue system on configurations
that mimicks the computation of T . The canonical Thue system, C 7 T 8 , is
shown in Table 2. (x and y range over AL and q and q k over Q.) Notice that
we have to take care not to leave a blank at the left and right end of the
strings. This is why the definition is more complicated than expected. The

Turing machines 83

Table 2. The Canonical Thue System

C 7 T 8 :
, 5(��Euqx Ev �iEuyq k Ev � : � y � 1 � q k �@� f 7 x � q 8 ; Eu �, ε or y � A;Ev �, ε or x � A 6s 5(�$Euq �=Euyq k � : � y � 1 � q kÁ�Y� f 7¯¾�� q 8 ; Eu �, ε or y � A 6s 5(� qx Ev � q k Ev � : �¯¾¶� 1 � q k �@� f 7 x � q 8 ; Ev �, ε or x � A 6s 5(� q � q k�� : �¯¾¶� α � q k �@� f 7¯¾¶� q 8P� α �Ý5&v 1 � 0 � 1 6�6s 5(�$Euxq Ev �=Euq k y Ev � : � y �iv 1 � q k �Y� f 7 x � q 8 ;Eu �, ε or x � A; Ev �, ε or y � A 6s 5(� q Ev � q k y Ev � : � y �iv 1 � q k �@� f 7¯¾¶� q 8 ; Ev �, ε or y � A 6s 5(�$Euxq �=Euq k � : �¯¾¶�iv 1 � q k �@� f 7 x � q 8 ; Eu �, ε or x � A 6s 5(�$Euqx Ev �=Euq k y Ev � : � y � 0 � q k��@� f 7 x � q 8 ;Ev �, ε or x � y � A 6

alphabet of the semi Thue system is 7 Q s AL 8 ¡ . The following is easily shown
by induction.

Proposition 1.85 Let T be a Turing machine, C 7 T 8 be its associated semi
Thue system. Then for all T–configurations Z and Z k and for all n � 0: Z ~ n

T Z k
iff Z | n

C ¯ T ° Z k . Moreover, if Z is a T–configuration and Z | n
C ¯ T ° Eu for an

arbitrary string Eu �x7 Q s AL 8 ¡ , then Eu is a T–configuration and Z ~ n
T Eu.

Of course, the semi Thue system defines transitions on strings that are not
configurations, but this is not relevant for the theorem.

Definition 1.86 Let T be a Turing machine, Z a configuration and Ex � A ¡ .
Z is called an end configuration if there is no configuration Z k such that
Z ~ T Z k . T accepts Ex if there is an end configuration Z such that q0 9 Ex ~ ¡T Z.
The language accepted by T, L 7 T 8 , is the set of all strings from A ¡ which are
accepted by T .

It takes time to get used to the concept of a Turing machine and the languages
that are accepted by such machines. We suggest to the interested reader to
play a little while with these machines and see if he can program them to
compute a few very easy functions. A first example is the machine which
computes the successor function on binary strings. Assume our alphabet is5XG	�ZH�6 . We want to build a machine which computes the next string for Ex in
the numerical encoding (see Section 1.2 for its definition). This means that if

84 Fundamental Structures

Table 3. The Successor Machine

q0 G �� �ÈG
� 1 � q0 �H �� �=H>� 1 � q0 �¾ �� �¯¾¶�iv 1 � q1 �
q1 G �� �=H>�iv 1 � q2 �H �� �ÈG
�iv 1 � q1 �¾ �� �ÈG
�iv 1 � q3 �
q2 G �� �ÈG
�iv 1 � q2 �H �� �=H>�iv 1 � q2 �¾ �� �¯¾¶� 0 � q3 �
q3

the machine starts with q0 9 Ex it shall halt in the configuration q0 9 Ey where Ey is
the word immediately following Ex in the numerical ordering. (If in the sequel
we think of numbers rather than strings we shall simply think instead of the
string Ex of the number n, where Ex occupies the nth place in the numerical
ordering.)

How shall such a machine be constructed? We need four states, qi, i b 4.
First, the machine advances the head to the right end of the string, staying in
q0 until it reads ¾ . Finally, when it hits ¾ , it changes to state q1 and starts
moving to the left. As long as it reads H , it changes H to G and continues in
state q1, moving to the left. When it hits G , it replaces it by H , moves left and
changes to state q2. When it sees a blank, that blank is filled by G and the
machine changes to state q3, the final state. In q2, the machine simply keeps
moving leftwards until it hits a blanks and then stops in state q3. The machine
is shown in Table 3. (If you want a machine that computes the successor
in the binary encoding, you have to replace Line 6 by ¾���ü�=H&�iv 1 � q3 � .) In
recursion theory the notions of computability are defined for functions on the
set of natural numbers. By means of the function Z, which is bijective, these
notions can be transferred to functions on strings.

Definition 1.87 Let A and B be alphabets and f : A ¡ � B ¡ a function. f is
called computable if there is a deterministic Turing machine T such that for
every Ex � A ¡ there is a qt � Q such that q0 93Ex ~ ¡T qt 9 f 7�Ex 8 and qt 9 f 7ÈEx 8 is an
end configuration. Let L } A ¡ . L is called recursively enumerable if L

, w
or there is a computable function f : 5XG	�ZH>6 ¡ � A ¡ such that f ¦`5XG��ZH>6 ¡ § , L.

Turing machines 85

L is decidable if both L and A ¡ v L are recursively enumerable.

Lemma 1.88 Let f : A ¡ � B ¡ and g : B ¡ � C ¡ be computable functions.
Then g : f : A ¡ � C ¡ is computable as well.

The proof is a construction of a machine U from machines T and T k comput-
ing f and g, respectively. Simply write T and T k using disjoint sets of states,
and then take the union of the transition functions. However, make the transi-
tion function of T first such that it changes to the starting state of T k as soon
as the computation by T is finished (that is, whenever T does not define any
transitions).

Lemma 1.89 Let f : A ¡ � B ¡ be computable and bijective. Then f © 1 : B ¡ �
A ¡ also is computable (and bijective).

Write a machine that generates all strings of A ¡ in successive order (using the
successor machine, see above), and computes f 7�Ex 8 for all these strings. As
soon as the target string is found, the machine writes Ex and deletes everything
else.

Lemma 1.90 Let A and B be finite alphabets. Then there are computable
bijections f : A ¡ � B ¡ and g : B ¡ � A ¡ such that f

,
g © 1.

In this section we shall show that the recursively enumerable sets are exactly
the sets which are accepted by a Turing machine. Further, we shall show that
these are exactly the Type 0 languages. This establishes the first correspon-
dence result between types of languages and types of automata. Following
this we shall show that the recognition problem for Type 0 languages is in
general not decidable. The proofs proceed by a series of reduction steps for
Turing machines. First, we shall generalize the notion of a Turing machine.
A k–tape Turing machine is a quintuple � A � L � Q � q0 � f � where A, L, Q, and
q0 are as before but now

(1.116) f : Ak
L e Q � ℘7 Ak

L e�5&v 1 � 0 � 1 6 e Q 8
This means, intuitively speaking, that the Turing machine manipulates k tapes
in place of a single tape. There is a read and write head on each of the tapes.
In each step the machine can move only one of the heads. The next state
depends on the symbols read on all the tapes plus the current internal state.
The initial configuration is as follows. All tapes except the first are empty.

86 Fundamental Structures

The heads are anywhere on these tapes (we may require them to be in posi-
tion 0). On the first tape the head is immediately to the left of the input. The
k–tape machine has k v 1 additional tapes for recording intermediate results.
The reader may verify that we may also allow such configurations as initial
configurations in which the other tapes are filled with some finite string, with
the head immediately to the left of it. This does not increase the recognition
power. However, it makes the definition of a machine easier which computes
a function of several variables. We may also allow that the information to the
right of the head consists in a sequence of strings each separated by a blank
(so that when two successive blanks follow the machine knows that the input
is completely read). Again, there is a way to recode these machines using
a basic multitape Turing machine, modulo computable functions. We shall
give a little more detail concerning the fact that also k–tape Turing machines
(in whatever of the discussed forms) cannot compute more functions than
1–tape machines. For this define the following coding of the k tapes using
a single tape. We shall group 2k cells together to a macro cell. The (micro)
cell 2kp g 2m corresponds to the entry on cell p on Tape m. The (micro) cell
number 2kp g 2m g 1 only contains H or G depending on whether the head of
the machine is placed on cell p on tape m. (Hence, every second micro cell
is filled only with H or G .) Now given a k–tape Turing machine T we shall
define a machine U that simulates T under the given coding. This machine
operates as follows. For a single step of T it scans the actual string for the
positions of the read and write heads and remembers the symbols on which
they are placed (they can be found in the adjacent cell). Remembering this
information requires only finite amount of memory, and can be done using
the internal states. The machine scans the tape again for the head that will
have to be changed in position. (To identify it, the machine must be able to
do calculations modulo 2k. Again finite memory is sufficient.) It adjusts its
position and the content of the adjacent cell. Now it changes into the appro-
priate state. Notice that each step of T costs 2k ÂX�nEx � time for U to simulate,
where Ex is the longest string on the tapes. If there is an algorithm taking f 7 n 8
steps to compute then the simulating machine needs at most 2k 7 f 7 n 8�g n 8 2
time to compute that same function under simulation. (Notice that in f 7 n 8
steps the string(s) may acquire length at most f 7 n 8(g n.)

We shall use this to show that the nondeterministic Turing machines can-
not compute more functions than the deterministic ones.

Proposition 1.91 Let L
,

L 7 T 8 for a Turing machine. Then there is a deter-

Turing machines 87

ministic Turing machine U such that L
,

L 7 U 8 .
Proof. Let L

,
L 7 T 8 . Choose a number b such that � f 7 q � x 8j�1b b for all q � Q,

x � A. We fix an ordering on f 7 q � x 8 for all x and q. V is a 3–tape machine
that does the following. On the first tape V writes the input Ex. On the second
tape we generate all sequences Ep of numbers b b of length n, for increasing n.
These sequences describe the action sequences of T . For each sequence Ep ,
a0a1 Â=Â=Â an © 1 we copy Ex from Tape 1 onto Tape 3 and let V work as follows.

The head on Tape 2 is to the left of the sequence Ea. In the first step V
follows the a0th alternative for machine T on the 3rd tape and advances head
number 2 one step to the right. In the second step it follows the alternative a1
in the transition set of T and executes it on Tape 3. Then the head of Tape 2 is
advanced one step to the right. If an © 1 b b and the an © 1st alternative does not
exist for T but there is a computation for a0a1 Â=Â=Â an © 2a k for some a k
b an © 1,
V exits the computation on Tape 3 and deletes Ep on Tape 2. If an © 1

,
b, the

an © 1st alternative does not exist for T , and none exists for any a k b b, then V
halts. In this way V executes on Tape 3 a single computation of T for the input
and checks the prefixes for paths for which a computation exists. Clearly, V
is deterministic. It halts iff for some n T halts on some alternative sequences
of length n v 1. <

It is easy to see that we can also write a machine that enumerates all pos-
sible outputs of T for a given input.

Lemma 1.92 L is recursively enumerable iff L
,

L 7 T 8 for a Turing machine
T .

Proof. The case L
, w has to be dealt with separately. It is easy to construct

a machine that halts on no word. This shows the equivalence in this case.
Now assume that L �, w . Let L be recursively enumerable. Then there exists
a function f : 5XG��ZH>6 ¡ � A ¡ such that f ¦`5XG
�ZH>6 ¡ § , L and a Turing machine U
which computes f . Now we construct a (minimally) 3–tape Turing machine
V as follows. The input Ex will be placed on the first tape. On the second tape
V generates all strings Ey �Ý5XG	�ZH>6 ¡ starting with ε , in the numerical order. In
order to do this we use the machine computing the successors in this ordering.
If we have computed the string Ey on the second tape the machine computes
the value f 7�Ey 8 on the third tape. (Thus, we emulate machine T on the third
tape, with input given on the second tape.) Since f is computable, V halts on
Tape 3. Then it compares the string on Tape 3, f 7�Ey 8 , with Ex. If they are equal,
it halts, if not it computes the successor of Ey and starts the process over again.

88 Fundamental Structures

It is easy to see that L
,

L 7 V 8 . By the previous considerations, there is a one
tape Turing machine W such that L

,
L 7W 8 . Now conversely, let L

,
L 7 T 8

for some Turing machine T . We wish to show that L is recursively enumer-
able. We may assume, by the previous theorem, that T is deterministic. We
leave it to the reader to construct a machine U which computes a function
f : 5XG
�ZH>6 ¡ � A ¡ whose image is L. <
Theorem 1.93 The following are equivalent.

À L is of Type 0.

Á L is recursively enumerable.

Â L
,

L 7 T 8 for a Turing machine T .

Proof. We shall show À | Á and Â | À. The theorem then follows with
Lemma 1.92. Let L be of Type 0. Then there is a grammar � } � N � A � R � which
generates L. We have to construct a Turing machine which lists all strings that
are derivable from

}
. To this end it is enough to construct a nondeterministic

machine that matches the grammar. This machine always starts at input
}

and
in each cycle it scans the string for a left hand side of a rule and replaces that
substring by the right hand side. This shows Á. Now let L

,
L 7 T 8 for some

Turing machine. Choose the following grammar G: in addition to the alphabet
let � be the start symbol, G and H two nonterminals, and let each q � Q

�
q be

a nonterminal. The rules are as follows.�×�±��G��t��H×� � q0�
qb � c

�
r if � c � 1 � r �ª� f 7 b � q 8�

qb � � rc if � c � 0 � r �ª� f 7 b � q 8(1.117) �
qb � � rcb if � c �iv 1 � r �y� f 7 b � q 8�
qb � b if f 7 b � q 8 , w

Starting with � this grammar generates strings of the form
�

q0
Ex, where Ex is

a binary string. This codes the input for T . The additional rules code in a
transparent way the computation of T on the string. If the computation stops,
it is allowed to eliminate

�
q. If the string is terminal it will be generated by

G. In this way it is seen that L 7 G 8 , L 7 T 8 . <
Now we shall derive an important fact, namely that there exist undecidable

languages of Type 0. We first of all note that Turing machines can be regarded

Turing machines 89

as semi Thue systems, as we have done earlier. Now one can design a machine
U which takes two inputs, one being the code of a Turing machine T and the
other a string Ex, and U computes what T computes on Ex. Such a machine is
called a universal Turing machine. The coding of Turing machines can be
done as follows. We only use the letters

0
, í and F , which are, of course,

also contained in the alphabet B. Let A
, 5 0 i : i b n 6 . Then let γ 7 0 i 8 be the

number i in dyadic coding (over 5 0 �lí.6 , where
0

replaces G and í replacesH). The number 0 is coded by
0

to distinguish it from ε . Furthermore, we
associate the number n with the blank, 1 . The states are coded likewise; we
assume that Q

, 5 0 � 1 �=�=�=�Z� n v 1 6 for some n and that q0
,

0. Now we still
have to write down f . f is a subset of

(1.118) A À�e Q e A À e�5&v 1 � 0 � 1 6 e Q

Each element � a � q � b � m � r � of f can be written down as

(1.119) Ex 9 F 9 Eu 9 F 9�Eµ 9 F 9 Ey 9 F 9 Ev 9 F
where Ex , γ 7 a 8 , Eu , Z © 1 7 q 8 , Ey , γ 7 b 8 , Ev , Z © 1 7 r 8 . Further, we have Eµ ,É0 if
m
, v 1, Eµ , í if m

,
0 and Eµ ,�0 í if m

,
1. Now we simply write down f

as a list, the entries being separated by F(F . (This is not necessary, but is easier
to handle.) We call the code of T T � . The set of all codes of Turing machines
is decidable. (This is essential but not hard to see.) It should not be too hard
to see that there is a machine U with two tapes, which for two strings Ex and Ey
does the following. If Ey , T � for some T then U computes on Ex exactly as T
does. If Ey is not the code of a machine, U moves into a special state and stops.

Suppose that there is a Turing machine V which decides for given Ex and
T � wether or not Ex � L 7 T 8 . Now we construct a two tape machine W as
follows. The input is Ex, and it is given on both tapes. If Ex , T � for some
T then W computes T on Ex. (This is done by emulating V .) If T halts on Ex,
we send W into an infinite loop. If T does not halt, W shall stop. (If Ex is not
the code of a machine, the computation stops right away.) Now we have the
following: W � � L 7W 8 exactly if W � �� L 7W 8 . For W � � L 7W 8 exactly when
W stops if applied to W � . This however is the case exactly if W does not
stop. If on the other hand W � �� L 7W 8 then W does not stop if applied to W � ,
which we can decide with the help of machine V , and then W does halt on the
input W � . Contradiction. Hence, V cannot exist. There is, then, no machine
that can decide for any Turing machine (in code) and any input whether that
machine halts on that string. It is still conceivable that this is decidable for

90 Fundamental Structures

every T , but that we simply do not know how to extract such an algorithm for
given T . Now, in order to show that this too fails, we use the universal Turing
machine U , in its single tape version. Suppose that L 7 U 8 is decidable. Then
we can decide whether U halts on Ex 9 1 9 T � . Since U is universal, this means
that we can decide for given T and given Ex whether T halts on Ex. We have
seen above that this is impossible.

Theorem 1.94 (Markov, Post) There is a recursively enumerable set which
is not decidable.

So we also shown that the Type 1 languages are properly contained in the
Type 0 languages. For it turns out that the Type 1 languages are all decidable.

Theorem 1.95 (Chomsky) Every Type 1 language is decidable.

Proof. Let G be of Type 1 and let Ex be given. Put n :
, �nEx � and α :

, �A s N � .
If there is a derivation of Ex that has length � α n, there is a string that occurs
twice in it, since all occurring strings must have length ç n. Then there exists
a shorter derivation for Ex. So, Ex � L 7 G 8 iff it has a G–derivation of lengthç αn. This is decidable. <
Corollary 1.96 CSL m GL.

Chomsky (1959) credits Hilary Putnam with the observation that not all de-
cidable languages are of Type 1. Actually, we can give a characterization of
context sensitive languages as well. Say that a Turing machine is linearly
space bounded if given input Ex it may use only O 7i�nEx �n8 on each of its tapes.
Then the following holds.

Theorem 1.97 (Landweber, Kuroda) A language L is context sensitive iff
L
,

L 7 T 8 for some linear space bounded Turing machine T .

The proof can be assembled from Theorem 1.65 and the proof of Theo-
rem 1.93.

We briefly discuss so–called word problems. Recall from Section 1.5 the
definition of a Thue process T . Let A be an alphabet. Consider the monoidù;7 A 8 . The set of pairs � s � t ��� A ¡ e A ¡ such that s | ¡T t is a congruence onù;7 A 8 . Denote the factor algebra by øÂÁ�Ã�7 T 8 . (One calls the pair � A � T � a pre-
sentation of øÂÁ�Ã�7 T 8 .) It can be shown to be undecidable whether øÂÁ�Ã»7 T 8 is
the one element monoid. From this one deduces that it is undecidable whether

Turing machines 91

or not øÂÁ�Ã»7 T 8 is a finite monoid, whether it is isomorphic to a given finite
monoid, and many more.

Before we close this chapter we shall introduce a few measures for the
complexity of computations. In what is to follow we shall often have to deal
with questions of how fast and with how much space a Turing machine can
compute a given problem. Let f : ω � ω be a function, T a Turing machine
which computes a function g : A ¡ � B ¡ . We say that T needs O 7 f 8 –space
if there is a constant c such that for all but finitely many Ex � A ¡ there is a
computation of an accepting configuration qt 9 g 7�Ex 8 from q0 9 Ex in which every
configuration has length ç c e f 7i� Ex �n8 . For a multi tape machine we simply
add the lengths of all words on the tapes. We say that T needs O 7 f 8 –time
if for almost all Ex � A ¡ there is a k ç c e f 7i�nEx �n8 such that q0 9yEx ~ k

T q0 9 g 7ÈEx 8 .
We denote by DSPACE 7 f 8 (DTIME 7 f 8) the set of all functions which for
some k are computable by a deterministic k–tape Turing machine in O 7 f 8 –
space (O 7 f 8 –time). Analogously the notation NSPACE 7 f 8 and NTIME 7 f 8
is defined for nondeterministic machines. We always have

(1.120) DTIME 7 f 8@} NTIME 7 f 8@} NSPACE 7 f 8
as well as

(1.121) DSPACE 7 f 83} NSPACE 7 f 8
For a machine can fill at most k cells in k steps, regardless of whether it is de-
terministic or nondeterministic. This applies as well to multi tape machines,
since they can only write on one cell and move one head at a time.

The reason for not distinguishing between the time complexity f 7 n 8 and
the c f 7 n 8 (c a constant) is the following result.

Theorem 1.98 (Speed Up Theorem) Let f be a computable function and let
T be a Turing machine which computes f 7ÈEx 8 in at most g 7i�nEx �n8 steps (using at
most h 7i� Ex �n8 cells) where infn Ä ∞ g 7 n 8 ¾ n , ∞. Further, let c be an arbitrary real
number � 0. Then there exists a Turing machine U which computes f in at
most c Â g 7i� Ex �n8 steps (using at most c Â h 7i�nEx �n8 cells).

The proof results from the following fact. In place of the original alphabet
AL we may introduce a new alphabet B kL ¡ : , A s B s¸5 L k 6 , where each sym-
bol from B corresponds to a sequence of length k of symbols from AL. The
symbol L k then corresponds to Lk. The alphabet AL is still used for giving the

92 Fundamental Structures

input. The new machine, upon receiving Ex recodes the input and calculates
completely inside B kL.

Since to each single letter corresponds a block of k letters in the original
alphabet, the space requirement shrinks by the factor k. (However, we need
to ignore the length of the input.) Likewise, the time is cut by a factor k, since
one move of the head simulates up to k moves. However, the exact details are
not so easy to sum up. They can be found in (Hopcroft and Ullman, 1969).

Typically, one works with the following complexity classes.

Definition 1.99 PTIME is the class of functions computable in deterministic
polynomial time, NP the class of functions computable in nondeterministic
polynomial time. PSPACE is the class of functions computable in polyno-
mial space, EXPTIME (NEXPTIME) the class of functions computable in
deterministic (nondeterministic) exponential time.

Definition 1.100 A language L } A ¡ is in a complexity class Å iff χL �ÆÅ .

Notes on this section. In the mid 1930s, several people have independently
studied the notion of feasibility. Alonzo Church and Stephen Kleene have de-
fined the notion of λ–definablity and of a general recursive function, Emil
Post and Alan Turing the notion of computability by a certain machine, now
called the Turing machine. All three notions can be shown to identify the
same class of functions, as these people have subsequently shown. It is known
as Church’s Thesis that these are all the functions that humans can compute,
but for the purpose of this book it is irrelevant whether it is correct. We shall
define the λ–calculus later in Chapter 3, without going into the details al-
luded to here, however. It is to be kept in mind that the Turing machine is a
physical device. Hence, its computational capacities depend on the structure
of the space–time continuum. This is not any more a speculation. Quantum
computing exploits the different physical behaviour of quantum physics to do
parallel computation. This radically changes the time complexity of problems
(see (Deutsch et al., 2000)). This asks us to be cautious not to attach too much
significance to complexity results in connection with human behaviour since
we do not know too well how the brain works.

Exercise 40. Construct a Turing machine which computes the lexicographic
predecessor of a string, and which returns ε for input ε .

Exercise 41. Construct a Turing machine which, given a list of strings (each

Turing machines 93

string separated from the next by a single blank), moves the first string onto
the end of the list.

Exercise 42. Let T be a Turing machine over A. Show how to write a Turing
machine over 5XG	�ZH>6 which computes the same partial function over A under
a coding that assigns each letter of A a unique block of fixed length.

Exercise 43. In many definitions of a Turing machine the tape is only one
sided. Its cells can be numbered by natural numbers. This requires the in-
troduction of a special symbol Ç that marks the left end of the tape, or of a
predicate _ atÈ_É�Ê�a4o1c , which is true each time the head is at the left end of the
tape. The transitions are different depending on whether the machine is at the
left end of the tape or not. (There is an alternative, namely to stop the compu-
tation once that the left end is reached, but this is not recommended. Such a
machine can compute only very uninteresting functions.) Show that for a Tur-
ing machine with a one sided tape there is a corresponding Turing machine
in our sense computing the same function, and that for each Turing machine
in our sense there is a one sided machine computing the same function.

Exercise 44. Prove Lemma 1.90. Hint. Show first that it is enough to look at
the case �A � , 1.

Exercise 45. Show that L } A ¡ is decidable iff χL : A ¡ �ü5XG	�ZH>6 is com-
putable.

Chapter 2
Context Free Languages

1. Regular Languages

Type 3 or regular grammars are the most simple grammars in the Chomsky
Hierarchy. There are several characterizations of regular languages: by means
of finite state automata, by means of equations over strings, and by means of
so–called regular expressions. Before we begin, we shall develop a simple
form for regular grammars. First, all rules of the form X � Y can be elimi-
nated. To this end, the new set of rules will be

(2.1)
R � :

, 5 X � aY : X ~ G aY 6sì5 X �³Ex : X ~ G Ex �$Ex � Aε 6
It is easy to show that the grammar with R � in place of R generates the same
strings. We shall introduce another simplification. For each a � A we intro-
duce a new nonterminal Ua. In place of the rules X � a we now add the rules
X � aUa as well as Ua � ε . Now every rule with the exception of Ua � ε
is strictly expanding. This grammar is therefore not regular if ε � L 7 G 8 but
it generates the same language. However, the last kind of rules can be used
only once, at the end of the derivation. For the derivable strings all have the
form Ex 9 Y with Ex � A ¡ and Y � N. If one applies a rule Y � ε then the nonter-
minal disappears and the derivation is terminated. We call a regular grammar
strictly binary if there are only rules of the form X � aY or X � ε .

Definition 2.1 Let A be an alphabet. A (partial) finite state automaton is a
quintuple ­ , � A � Q � i0 � F � δ � such that Q is a finite set, i0 � Q, F } Q and
δ : Q e A � ℘7 Q 8 . Q is the set of states, i0 is called the initial state, F the set
of accepting states and δ the transition function. ­ is called deterministic if
δ 7 q � a 8 contains exactly one element for each q � Q and a � A.

δ can be extended to sets of states and strings in the following way (S } Q,
a � A).

δ 7 S � ε 8 :
,

S(2.2a)

δ 7 S � a 8 :
,É� � δ 7 q � a 8 : q � S �(2.2b)

δ 7 S �$Ex 9 a 8 :
,

δ 7 δ 7 S �$Ex 8P� a 8(2.2c)

96 Context Free Languages

With this defined, we can now define the accepted language.

(2.3) L 7Á­�8 , 51Ex : δ 7�5 i0 6>�$Ex 8�t F �, w«6­ is strictly partial if there is a state q and some a � A such that δ 7 q � a 8 , w .
An automaton can always be transformed into an equivalent automaton which
is not partial. Just add another state q Ë and add to the transition function the
following transitions.

(2.4) δ � 7 q � a 8 :
,Ò¿ δ 7 q � a 8 if δ 7 q � a 8 �, w and q �, q Ë ,

q Ë if δ 7 q � a 8 , w or q
,

q Ë .

Furthermore, q Ë shall not be an accepting state. In the case of a deterministic
automaton we have δ 7 q ��Ex 8 , 5 q kl6 for some q k . In this case we think of the
transition function as yielding states from states plus strings, that is, we now
have δ 7 q �$Ex 8 , q k . Then the definition of the language of an automaton ­ can
be refined as follows.

(2.5) L 7Á­�8 , 51Ex : δ 7 i0 �$Ex 8Y� F 6
For every given automaton there is a deterministic automaton that accepts the
same language. Put

(2.6) ­ d :
, � A �℘7 Q 8P��5 i0 6>� Fd � δ �

where Fd :
, 5 G } Q : G t F �, w«6 and δ is the transition function of ­

extended to sets of states.

Proposition 2.2 ­ d is deterministic and L 7Á­ d 8 , L 7Á­�8 . Hence every lan-
guage accepted by a finite state automaton is a language accepted by a de-
terministic finite state automaton.

The proof is straightforward and left as an exercise. Now we shall first show
that a regular language is a language accepted by a finite state automaton. We
may assume that G is (almost) strictly binary, as we have seen above. So, let
G
, � } � N � A � R � . We put QG :

,
N, i0 :

,\}
, FG :

, 5 X : X � ε � R 6 as well as

(2.7) δG 7 X � a 8 :
, 5 Y : X � aY � R 6

Now put ­ G :
, � A � QG � i0 � FG � δG � .

Regular Languages 97

Lemma 2.3 For all X � Y � N and Ex we have Y � δ 7 X �$Ex 8 iff X | ¡R Ex 9 Y .

Proof. Induction over the length of Ex. The case � Ex � , ε is evident. Let Ex ,
a � A. Then Y � δG 7 X � a 8 by definition iff X � aY � R, and from this we get
X | ¡R aY . Conversely, from X | ¡R aY follows that X � aY � R. For since
the derivation uses only strictly expanding rules except for the last step, the
derivation of aY from X must be the application of a single rule. This finishes
the case of length 1. Now let Ex , Ey 9 a. By definition of δG we have

(2.8) δG 7 X �$Ex 8 , δG 7 δG 7 X ��Ey 8P� a 8
Hence there is a Z such that Z � δG 7 X ��Ey 8 and Y � δG 7 Z � a 8 . By induction
hypothesis this is equivalent with X | ¡R Ey 9 Z and Z | ¡R aY . From this we
get X | ¡R Ey 9 a 9 Y

, Ex 9 Y . Conversely, from X | ¡R Ex 9 Y we get X | ¡R Ey 9 Z
and Z | ¡R aY for some Z, since G is regular. Now, by induction hypothesis,
Z � δG 7 X ��Ey 8 and Y � δG 7 Z � a 8 , and so Y � δG 7�Ex � X 8 . <
Proposition 2.4 L 7Á­ G 8 , L 7 G 8 .
Proof. It is easy to see that L 7 G 8 , 5XEx : G ~¶Ex 9 Y � Y � ε � R 6 . By Lemma 2.3Ex 9 Y � L 7 G 8 iff S | ¡R Ex 9 Y . The latter is equivalent with Y � δG 7 } �$Ex 8 . And
this is nothing but Ex � L 7Á­ G 8 . Hence L 7 G 8 , L 7Á­ G 8 . <

Given a finite state automaton ­ , � A � Q � i0 � F � δ � put N ® :
,

Q, S ® :
,

i0.
R ® consists of all rules of the form X � aY where Y � δ 7 X � a 8 as well as
all rules of the form X � ε for X � F . Finally, G ® :

, � S ® � N® � A � R ® � . G ® is
strictly binary and ­ G Ì , ­ . Therefore we have L 7 G ® 8 , L 7Á­�8 .
Theorem 2.5 The regular languages are exactly those languages that are
accepted by some deterministic finite state automaton. <
Now we shall turn to a further characterization of regular languages. A reg-
ular term over A is a term which is composed from A with the help of the
symbols 0 (0–ary), ε (0–ary), Â (binary), s (binary) and ¡ (unary). A regular
term defines a language over A as follows.

L 7 0 8 :
, w(2.9a)

L 7 ε 8 :
, 5 ε 6(2.9b)

L 7 a 8 :
, 5 a 6(2.9c)

L 7 R Â S 8 :
,

L 7 R 8
Â L 7 S 8(2.9d)

L 7 R s S 8 :
,

L 7 R 8�s L 7 S 8(2.9e)

L 7 R ¡P8 :
,

L 7 R 8=¡(2.9f)

98 Context Free Languages

(Commonly, one writes R in place of L 7 R 8 , a usage that we will follow in the
sequel to this section.) Also, R � :

,
R ¡ Â R is an often used abbreviation. Lan-

guages which are defined by a regular term can also be viewed as solutions
of some very simple systems of equations. We introduce variables (say X , Y
and Z) which are variables for subsets of A ¡ and we write down equations for
the terms over these variables and the symbols 0, ε , a (a � A), Â , s and ¡ . An
example is the equation X

, í s 0 X , whose solution is X
,�0 ¡ í .

Lemma 2.6 Assume R �, 0 and ε �� L 7 R 8 . Then R ¡ is the unique solution of
X
,

ε s R Â X.

Proof. The proof is by induction over the length of Ex. Ex � X means by defi-
nition that Ex � ε s R Â X . If Ex , ε then Ex � R ¡ . Hence let Ex �, ε ; then Ex � R Â X
and so it is of the form Eu0 9 Ex0 where Eu0 � R and Ex0 � X . Since Eu0 �, ε , Ex0
has smaller length than Ex. By induction hypothesis we therefore have Ex0 � R ¡ .
Hence Ex � R ¡ . The other direction is as easy. <
Lemma 2.7 Let C � D be regular terms, D �, 0 and ε �� L 7 D 8 . The equation

(2.10) X
,

C s D Â X
has exactly one solution, namely X

,
D ¡ Â C. <

We shall now show that regular languages can be seen as solutions of systems
of equations. A general system of string equations is a set of equations of the
form X j

,
Q s � i m T i where Q is a regular term and the T i have the form

R Â Xk where R is a regular term. Here is an example.

(2.11)
X0

,É0 ¡ sfFªÂ 0 Â�í Â X1
X1

, F s FªÂ�í 3 Â X0

Notice that like in other systems of equations a variable need not occur to the
right in every equation. Moreover, a system of equations contains any given
variable only once on the left. The system is called proper if for all i and j
we have ε �� L 7 T i

j 8 . We shall call a system of equations simple if it is proper
and Q as well as the T i

j consist only of terms made from elements of A using
ε and s . The system displayed above is proper but not simple.

Let now � } � N � A � R � be a strictly binary regular grammar. Introduce for
each nonterminal X a variable QX . This variable QX shall stand for the set of
all strings which can be generated from X in this grammar, that is, all strings

Regular Languages 99Ex for which X | ¡R Ex. This latter set we denote by ¦X § . We claim that the QX
so interpreted satisfy the following system of equations.

(2.12)
QY

, � 5 ε : Y � ε � R 6s � 5 a Â QX : Y � aX � R 6
This system of equations is simple. We show QY

, ¦Y § for all Y � N. The
proof is by induction over the length of the string. To begin, we show that
QY }Ò¦Y § . For let Ey � QY . Then either Ey , ε and Y � ε � R or we haveEy , a 93Ex with Ex � QX and Y � a 93Ex � R. In the first case Y � ε � R, whence
ε �Ä¦Y § . In the second case � Ex �>bÏ�nEy � and so by induction hypothesis Ex ��¦X § ,
hence X | ¡R Ex. Then we have Y | ¡R a 9yEx , Ey, from which Ey �Ë¦Y § . This shows
the first inclusion. Now we show that ¦Y §	} QY . To this end let Y | ¡R Ey. Then
either Ey , ε and so Y � ε � R or Ey , a 9yEx for some Ex. In the first case Ey � QY ,
by definition. In the second case there must be an X such that Y � aX � R
and X | ¡R Ex. Then � Ex ��bÑ� Ey � and therefore by induction hypothesis Ex � QX .
Finally, by definition of QY , Ey � QY , which had to be shown.

So, a regular language is the solution of a simple system of equations.
Conversely, every simple system of equations can be rewritten into a regular
grammar which generates the solution of this system. Finally, it remains to
be shown that regular terms describe nothing but regular languages. What we
shall establish is more general and derives the desired conclusion. We shall
show that every proper system of equations which has as many equations as
it has variables has as its solution for each variable a regular language. To
this end, let such a system X j

, � i m j
T i

j be given. We begin by eliminating
X0 from the system of equations. We distinguish two cases. (1) X0 appears in
the equation X0

, � i m0
T i

j only to the left. This equation is fixed, and called
the pivot equation for X0. Then we can replace X0 in the other equations
by � i m0

T i
j . (2) The equation is of the form X0

,
C s D Â X0, C a regular

term, which does not contain X0, D free of variables and ε �� L 7 D 8 . Then
X0
,

D ¡ Â C by Lemma 2.7. Now X0 does not occur and we can replace X0
in the other equations as in (1). The system of equations that we get is not
simple, even if it was simple at the beginning. We can proceed in this fashion
and eliminate step by step the variables from the right hand side (and putting
aside the corresponding pivot equations) until we reach the last equation. The
solution for Xn © 1 does not contain any variables at all and is a regular term.
The solution can be inserted into the other equations, and then we continue
with Xn © 2, then with Xn © 3, and so on. As an example, we take the following

100 Context Free Languages

system of equations.

(I) X0
, 0 s 0 Â X0 sÙí Â X1 s�FyÂ X2

X1
, FyÂ X0 s 0 Â X2

X2
, í s 0 Â X0 sÙí Â X1

(II) X0
, 0 � s 0 ¡ í Â X1 s 0 ¡ FyÂ X2

X1
, F 0 � s F 0 ¡ í Â X1 s 7�F 0 ¡ FYs 0 8�Â X2

X2
, í s 0(0 � sÄ7 0 � í sØí	8�Â X1 s 0 ¡ FyÂ X2

(III) X1
, 7�F 0 ¡ í	8 ¡ F 0 � s�7�F 0 ¡ í	8 ¡ 7�F 0 ¡ FYs 0 8�Â X2

X2
, 7�í s 0(0 � 8(s¸¦ 0 ¡ í�7�F 0 ¡ í	8 ¡ 7�F 0 ¡ FYs 0 8�s 0 ¡ F1§1Â X2

(IV) X2
, ¦ 0 ¡ í�7�F 0 ¡ í
8 ¡ 7�F 0 ¡ FYs 0 8(s 0 ¡ F1§ ¡ 7�í s 0�0 � 8

Now that X2 is known, X1 can be determined by inserting the regular term for
X2, and, finally, X0 is obtained by inserting the values for X2 and X1.

Theorem 2.8 (Kleene) Let L be a language over A. Then the following are
equivalent:

À L is regular.

Á L
,

L 7Á­�8 for a finite, deterministic automaton ­ over A.

Â L
,

L 7 R 8 for some regular term R over A.

Ã L is the solution for X0 of a simple system of equations over A with
variables Xi, i b m.

Further, there exist algorithms which (i) for a given automaton ­ compute a
regular term R such that L 7Á­�8 , L 7 R 8 ; (ii) for a given regular term R compute
a simple system of equations Σ over EX whose solution for a given variable X0
is exactly L 7 R 8 ; and (iii) which for a given simple system of equations Σ over5 Xi : i b m 6 compute an automaton ­ such that EX is its set of states and the
solution for Xi is exactly the set of strings which send the automaton from
state X0 into Xi. <
This is the most important theorem for regular languages. We shall derive
a few consequences. Notice we can turn a finite state automaton ­ into a
Turing machine T accepting the same language in linear time and no addi-
tional space. Therefore, the recognition problem for regular languages is in

Regular Languages 101

DTIME 7 n 8 and in DSPACE 7 n 8 . This also applies to the parsing problem, as
is easily seen.

Corollary 2.9 The recognition and the parsing problem are in DTIME 7 n 8
and DSPACE 7 n 8 .
Corollary 2.10 The set of regular languages over A is closed under inter-
section and relative complement. Further, for given regular terms R and S
one can determine terms U and V such that L 7 U 8 , A ¡ v L 7 R 8 and L 7 V 8 ,
L 7 R 8�t L 7 S 8 .
Proof. It is enough to do this construction for automata. Using Theorem 2.8
it follows that we can do it also for the corresponding regular terms. Let ­ ,� A � Q � i0 � F � δ � . Without loss of generality we may assume that ­ is determin-
istic. Then let ­×© :

, � A � Q � i0 � Q v F � δ � . We then have L 7Á­×©�8 , A ¡ v L 7Á­�8 .
This shows that for given ­ we can construct an automaton which accepts the
complement of L 7Á­�8 . Now let ­ k , � A � Q k � i k0 � F k � δ k � . Put

(2.13) ­ e«­ k : , � A � Q e Q k �Z� i0 � i k0 �P� F e F k � δ e δ k �
where

(2.14) 7 δ e δ k 8�7=� q � q k �P� a 8 :
, 5(� r� r k � : r � δ 7 q � a 8P� r k � δ k 7 q k � a 8Z6

It is easy to show that L 7Á­ e«­ k 8 , L 7Á­�8(t L 7Á­ k 8 . <
The proof of the next theorem is an exercise.

Theorem 2.11 Let L and M be regular languages. Then so are L ¾ M and
M u L. Moreover, LT , LP :

,
L ¾ A ¡ as well as LS :

,
A ¡ u L are regular.

Furthermore, the following important consequence can be established.

Theorem 2.12 Let ­ and
·

be finite state automata. Then it is decidable
whether L 7Á­�8 , L 7 · 8 .
Proof. Let ­ and

·
be given. By Theorem 2.8 we can compute a regular

term R with L 7 R 8 , L 7Á­�8 as well as a regular term S with L 7 S 8 , L 7 · 8 .
Then L 7Á­�8 , L 7 · 8 iff L 7 R 8 , L 7 S 8 iff 7 L 7 R 8�v L 7 S 8=8�sË7 L 7 S 8�v L 7 R 8=8 , w .
By Corollary 2.10 we can compute a regular term U such that

(2.15) L 7 U 8 , 7 L 7 R 8	v L 7 S 8=8�s¸7 L 7 S 8	v L 7 R 8=8
Hence L 7Á­�8 , L 7 · 8 iff L 7 U 8 , w . This is decidable by Lemma 2.13. <

102 Context Free Languages

Lemma 2.13 The problem ‘L 7 R 8 , w ’, where R is a regular term, is decid-
able.

Proof. By induction on R. If R
,

ε or R
,

a then L 7 R 8��, w . If R
,

0 then by
definition L 7 R 8 , w . Now assume that the problems ‘L 7 R 8 , w ’ and ‘L 7 S 8 ,w ’ are decidable. Notice that (a) L 7 R s S 8 , w iff L 7 R 8 , w and L 7 S 8 , w ,
(b) L 7 R Â S 8 , w iff L 7 R 8 , w or L 7 S 8 , w and (c) L 7 R ¡ 8 , w iff L 7 R 8 , w .
All three problems are decidable. <

We conclude with the following theorem, which we have used already in
Section 1.5.

Theorem 2.14 Let L be context free and R regular. Then L t R is context free.

Proof. Let be G
, � S � N � A � R � be a CFG with L 7 G 8 , L and ­ , � n � 0 � F � δ �

a deterministic automaton consisting of n states such that L 7Á­�8 , R. We may
assume that rules of G are of the form X � a or X � EY . We define new
nonterminals, which are all of the form iX j, where i � j b n and X � N. The
interpretation is as follows. X stands for the set of all strings Eα � A ¡ such that
X ~ G Eα . iX j stands for the set of all Eα such that X ~ G Eα and δ 7 i � Eα 8 , j. We
have a set of start symbols, consisting of all 0S j with j � F . As we already
know, this does not increase the generative power. A rule X � Y0Y1 Â=Â=Â Yk © 1 is
now replaced by the set of all rules of the form

(2.16) iX j � i Y i0
0
9 i0Y i1

1
9 �=�=� 9 ik Ü 2Y j

k © 1

Finally, we take all rules of the form iX j � a, δ 7 i � a 8 , j. This defines the
grammar Gr. We shall show: ~ Gr Ex iff ~ G Ex and Ex � L 7Á­�8 . (|) Let

·
be a Gr–

tree with associated string Ex. The map iX j �� X turns
·

into a G–tree. HenceEx � L 7 G 8 . Further, it is easily shown that δ 7 0 � x0x1 Â=Â=Â x j 8 , k j , where k j Ü 1 X k j

is the node dominating x j. Also, if �nEx � , n, then 0Skn is the top node and by
construction kn � F . Hence δ 7�Ex � 0 8;� F and so Ex � L 7Á­�8 . (�) Let Ex � L 7 G 8
and Ex � L 7Á­�8 . We shall show that Ex � L 7 Gr 8 . We take a G–tree

·
for Ex. We

shall now prove that one can replace the G–nonterminals in
·

in such a way
by Gr–nonterminals that we get a Gr–tree. The proof is by induction on the
height of a node. We begin with nodes of height 1. Let Ex , ∏i n xi; and let Xi
be the nonterminal above xi. Further let δ 7 0 � ∏i j xi 8 , ji. Then p0

,
0 and

pn � F . We replace Xi by piX pi Í 1 . We say that two nodes x and y connect if
they are adjacent and for the labels iX j of x and kY

¹
of y we have j

,
k. Let x

be a node of height n g 1 with label X and let x be mother of the nodes with

Normal Forms 103

labels Y0Y1 Â=Â=Â Yn © 1 in G. We assume that below x all nodes carry labels from
Gr in such a way that adjacent nodes connect. Then there exists a rule in Gr
such that X can be labelled with superscripts, the left hand superscript of Y0
to its left and the right hand superscript of Yn © 1 to its right. All adjacent nodes
of height n g 1 connect, as is easily seen. Further, the leftmost node carries
the left superscript 0, the rightmost node carries a right superscript pn, which
is an accepting state. Eventually, the root has superscripts as well. It carries
the label 0Spn , and so we have a Gr–tree. <
Exercise 46. Prove Theorem 2.11.

Exercise 47. Show that a language is regular iff it can be generated by a
grammar with rules of the form X � Y , X � Ya, X � a and X � ε . Such a
grammar is called left regular, in contrast to the grammars of Type 3, which
we also call right regular. Show also that it is allowed to add rules of the
form X �³Ex and X � Y Ex.

Exercise 48. Show that there is a grammar with rules of the form X � a,
X � aY and X � Ya which generates a nonregular language. This means
that a Type 3 grammar may contain (in general) only left regular rules or only
right regular rules, but not both.

Exercise 49. Show that if L and M are regular, then so are L ¾ M and M u L.

Exercise 50. Let L be a language over A. Define an equivalence relation Ê S
over A ¡ as follows. Ex Ê S Ey iff for all Ez � A ¡ we have Ex 9 Ez � L å Ey 9 Ez � L. L is
said to have finite index if there are only finitely many equivalence classes
with respect to Ê S. Show that L is regular iff it has finite index.

Exercise 51. Show that the language 5 0 n í n : n � ω 6 does not have finite
index. Hence it is not regular.

Exercise 52. Show that the intersection of a context sensitive language with
a regular language is again context sensitive.

Exercise 53. Show that L is regular iff it is accepted by a read only 1–tape
Turing machine.

2. Normal Forms

In the remaining sections of this chapter we shall deal with CFGs and their
languages. In view of the extensive literature about CFLs it is only possible

104 Context Free Languages

to present an overview. In this section we shall deal in particular with nor-
mal forms. There are many normal forms for CFGs, each having a different
purpose. However, notice that the transformation of a grammar into a normal
form necessarily destroys some of its properties. So, to say that a grammar
can be transformed into another is meaningless unless we specify exactly
what properties remain constant under this transformation. If, for example,
we are only interested in the language generated then we can transform any
CFG into Chomsky Normal Form. However, if we want to maintain the con-
stituent structures, then only the so–called standard form is possible. A good
exposition of this problem area can be found in (Miller, 1999).

Before we deal with reductions of grammars we shall study the relation-
ship between derivations, trees and sets of rules. To be on the safe side, we
shall assume that every symbol occurs at least once in a tree, that is, that the
grammar is slender in the sense of Definition 2.17. From the considerations
of Section 1.6 we conclude that for any two CFGs G

, � } � N � A � R � and G k ,� } kÁ� N k � A � R k � LB 7 G 8 , LB 7 G k 8 iff der 7 G 8 , der 7 G k 8 . Likewise we see that for
all X � N s N k der 7 G � X 8 , der 7 H � X 8 iff R

,
R k . Now let G

, � } � N � A � R � and
a sequence Γ

, � Eαi : i b n � be given. In order to test whether Γ is a G–string
sequence we have to check for each i b n v 1 whether Eαi � 1 can be derived
from Eαi with a single application of a rule. To this end we have to choose
an Eαi and apply a rule and check whether the string obtained equals Eαi � 1.
Checking this needs aG e�� Eαi � steps, where aG is a constant which depends
only on G. Hence for the whole derivation we need ∑i n aG � Eαi � steps. This
can be estimated from above by aG e n ef� Eαn © 1 � and if G is strictly expand-
ing also by aG ex� Eαn © 1 � 2. It can be shown that there are grammars for which
this is the best possible bound. In order to check for an ordered labelled tree
whether it can be generated by γG we need less time. We only need to check
for each node whether the local tree at x conforms to some rule of G. This
can be done in constant time. The time therefore only linearly depends on the
size of the tree.

There is a tight connection between derivations and trees. To begin, a
derivation has a unique tree corresponding to it. Simply translate the deriva-
tion in G into a derivation in γG. Conversely, however, there may exist many
derivations for the same tree. Their number can be very large. However, we
can obtain them systematically in the following way. Let

·
be an (exhaus-

tively ordered, labelled) tree. Call Î?} B2 a linearisation if Î is an irreflex-
ive, linear ordering and from x � y follows x Î y. Given a linearisation, a
derivation is found as follows. We begin with the element which is smallest

Normal Forms 105

with respect to Î . This is, as is easy to see, the root. The root carries the label}
. Inductively, we shall construct cuts Eαi through

·
such that the sequence� Eαi : i b n � is a derivation of the associated string. (Actually, the derivation

is somewhat more complex than the string sequence, but we shall not com-
plicate matters beyond need here.) The beginning is clear: we put Eα0 :

,X}
.

Now assume that Eαi has been established, and that it is not identical to the
associated string of

·
. Then there exists a node y with nonterminal label inEαi. (There is a unique correspondence between nodes of the cut and segments

of the strings Eαi.) We take the smallest such node with respect to Î . Let its
label be Y . Since we have a G–tree, the local tree with root y corresponds to
a rule of the form Y � Eβ for some Eβ . In Eαi y defines a unique instance of that
rule. Then Eαi � 1 is the result of replacing that occurrence of Y by Eβ . The new
string is then the result of applying a rule of G, as desired.

It is also possible to determine for each derivation a linearisation of the
tree which yields that derivation in the described manner. However, there can
be several linearisations that yield the same derivation.

Theorem 2.15 Let G be a CFG and
· � LB 7 G 8 . Further, let Î be a lineari-

sation of
·

. Then Î determines a G–derivation der 7ÏÎ]8 of the string which is
associated to

·
. If Ð is another linearisation of

·
then der 7ÏÐ]8 , der 7ÏÎ]8 is

the case iff Ð and Î coincide on the interior nodes of
·

. <
Linearisations can also be considered as top down search strategies on a tree.
We shall present examples. The first is a particular case of the so–called
depth–first search and the linearisation shall be called leftmost linearisa-
tion. It is as follows. x Î y iff x � y or x j y. For every tree there is exactly one
leftmost linearisation. We shall denote the fact that there is a leftmost deriva-
tion of Eα from X by X ~ ¹G Eα . We can generalize the situation as follows. LetÐ be a linear ordering uniformly defined on the leaves of local subtrees. That
is to say, if

·
and ë are isomorphic local trees (that is, if they correspond to

the same rule ρ) then Ð orders the leaves
·

linearly in the same way as Î
orders the leaves of ë (modulo the unique (!) isomorphism). In the case of
the leftmost linearisation the ordering is the one given by j . Now a minute’s
reflection reveals that every linearisation of the local subtrees of a tree in-
duces a linearisation of the entire tree but not conversely (there are orderings
which do not proceed in this way, as we shall see shortly). X ~�ÑG Eα denotes
the fact that there is a derivation of Eα from X determined by Ð . Now call π
a priorisation for G

, � } � N � A � R � if π defines a linearisation on the local treei ρ , for every ρ � R. Since the root is always the first element in a linearisa-

106 Context Free Languages

tion, we only need to order the daughters of the root node, that is, the leaves.
Let this ordering be Ð . We write X ~ π

G Eα if X ~ÒÑG Eα for the linearisation Ð
defined by π .

Proposition 2.16 Let π be a priorisation. Then X ~ π
G Ex iff X ~ G Ex.

A different strategy is the breadth–first search. This search goes through the
tree in increasing depth. Let Sn be the set of all nodes x with d 7 x 8 , n. For
each n, Sn shall be ordered linearly by j . The breadth–first search is a lin-
earisation ∆, which is defined as follows. (a) If d 7 x 8 , d 7 y 8 then x ∆ y iff
x j y, and (b) if d 7 x 8yb d 7 y 8 then x ∆ y. The difference between these search
strategies, depth–first and breadth–first, can be made very clear with tree do-
mains (see Section 1.4). The depth–first search traverses the tree domain in
the lexicographical order, the breadth–first search in the numerical order. Let
the following tree domain be given.

00 10 11 20

0 1 2

ε

Ó Ó ÓÓ	ÔÔ
ÔÔñ ñ ññ òòòò

The depth–first linearisation is

(2.17) ε � 0 � 00 � 1 � 10 � 11 � 2 � 20

The breadth–first linearisation, however, is

(2.18) ε � 0 � 1 � 2 � 00 � 10 � 11 � 20

Notice that with these linearisations the tree domain ω ¡ cannot be enumer-
ated. Namely, the depth–first linearisation begins as follows.

(2.19) ε � 0 � 00 � 000 � 0000 �=�=�=�
So we never reach 1. The breadth–first linearisation goes like this.

(2.20) ε � 0 � 1 � 2 � 3 �=�=�=�

Normal Forms 107

So, we never reach 00. On the other hand, ω ¡ is countable, so we do have a
linearisation, but it is more complicated than the given ones.

The first reduction of grammars we look at is the elimination of superflu-
ous symbols and rules. Let G

, � } � A � N � R � be a CFG. Call X � N reachable
if G ~ Eα 9 X 9 Eβ for some Eα and Eβ . X is called completable if there is an Ex
such that X | ¡R Ex.

(2.21)

} � 5 6 5 � Õ 66 � 5 6 5 � $Ö � 5�× Õ � ×
In the given grammar

5
, Õ and

Ö
are completable, and

}
,
5

,
6

and Õ are reach-
able. Since

}
, the start symbol, is not completable, no symbol is both reach-

able and completable. The grammar generates no terminal strings.
Let N k be the set of symbols which are both reachable and completable.

If
} �� N k then L 7 G 8 , w . In this case we put N k :

, 5 } 6 and R k : , w . Oth-
erwise, let R k be the restriction of R to the symbols from A s N k . This de-
fines G k , � } � N k�� A � R k � . It may be that throwing away rules may make some
nonterminals unreachable or uncompletable. Therefore, this process must be
repeated until G k , G, in which case every element is both reachable and
completable. Call the resulting grammar Gs. It is clear that G ~ Eα iff Gs ~ Eα .
Additionally, it can be shown that every derivation in G is a derivation in Gs

and conversely.

Definition 2.17 A CFG is called slender if either L 7 G 8 , w and G has no
nonterminals except for the start symbol and no rules; or L 7 G 8@�, w and every
nonterminal is both reachable and completable.

Two slender grammars have identical sets of derivations iff their rule sets are
identical.

Proposition 2.18 Let G and H be slender. Then G
,

H iff der 7 G 8 , der 7 H 8 .
Proposition 2.19 For every CFG G there is an effectively constructable slen-
der CFG Gs , � } � Ns � A � Rs � such that Ns } N, which has the same set of
derivations as G. In this case it also follows that LB 7 Gs 8 , LB 7 G 8 . <
Next we shall discuss the role of the nonterminals. Since these symbols do
not occur in L 7 G 8 , their name is irrelevant for the purposes of L 7 G 8 . To make
this precise we shall introduce the notion of a rule simulation. Let G and

108 Context Free Languages

G k be grammars with sets of nonterminals N and N k . Let Ê } N e N k be a
relation. This relation can be extended to a relation Ø?} 7 N s A 8 ¡ e�7 N k=s A 8 ¡
by putting Eα Ø Eβ if Eα and Eβ are of equal length and αi Ê βi for every i. A
relation Ê } N e N k is called a forward rule simulation or an R–simulation
if (0)

} Ê } k , (1) if X � Eα � R and X Ê Y then there exists a Eβ such thatEα Ø Eβ and Y � Eβ � R k , and (2) if Y � Eβ � R k and X Ê Y then there exists
an Eα such that Eα Ø Eβ and X � Eα � R. A backward simulation is defined
thus. (0) From

} Ê X follows X
,Ù} k and from Y Ê } k follows Y

,Ú}
, (1) if

X � Eα � R and Eα Ø Eβ then Y � Eβ � R k for some Y such that X Ê Y , and (2)
if Y � Eβ � R k and Eβ Ø Eα then X � Eα � R for some X such that X Ê Y .

We give an example of a forward simulation. Let G and G k be the follow-
ing grammars.

(2.22)

} � 5 } 6 � 5 6 } � 5 s 6 � 5 } Õ�� 5 Õ5 � í s � 5 s Õ«� 5 Õ6 � í 5 � 06 � íÕ � í
The start symbol is

}
in both grammars. Then the following is an R–simulation.

(2.23) Ê :
, 5(� 5 � 5 �P�Z� 6 � 6 �P�Z� } � } �P�Z� 6 ��Õ��P�Z� } � s �Z6

Together with Ê also the converse relation Ê � is an R–simulation. If Ê is an
R–simulation and � Eαi : i b n g 1 � is a G–derivation there exists a G k –derivation� Eβi : i b n g 1 � such that Eαi Ø Eβi for every i b n g 1. We can say more exactly
that if � Eαi � C � Eαi � 1 � is an instance of a rule from G where C

, � κ1 � κ2 � then
there is a context D

, � λ1 � λ2 � such that � Eβi � D � Eβi � 1 � is an instance of a rule
from G k . In this way we get that for every

· , � B �ibØ�
j¬�_!½�@� LB 7 G 8 there is
a ë , � B �ib¬�
jØ� µ �3� LB 7 G k 8 such that !>7 x 8 , µ 7 x 8 for every leaf and !�7 x 8 Ê
µ 7 x 8 for every nonleaf. Analogously to a rule simulation we can define a
simulation of derivation by requiring that for every G–derivation Γ there is a
G k –derivation ∆ which is equivalent to it.

Proposition 2.20 Let G1 and G2 be slender CFGs and Ê } N1 e N2 be an
R–simulation. Then for every G1–derivation � Eαi : i b n � there exists a G2–
derivation � Eβi : i b n � such that Eαi Ø Eβi, i b n. <
We shall look at two special cases of simulations. Two grammars G and G k are
called equivalent if there is a bijection b : N s A � N k s A such that b 7 x 8 , x

Normal Forms 109

for every x � A, b 7 S 8 , S k and b induces a bijection between G–derivations
and G k –derivations. This notion is more restrictive than the one which re-
quires that b is a bijection between the sets of rules. For it may happen that
certain rules can never be used in a derivation. For given CFGs we can easily
decide whether they are equivalent. To begin, we bring them into a form in
which all rules are used in a derivation, by removing all symbols that are not
reachable and not completable. Such grammars are equivalent if there is a
bijection b which puts the rules into correspondence. The existence of such a
bijection is easy to check.

The notion of equivalence just proposed is too strict in one sense. There
may be nonterminal symbols which cannot be distinguished. We say G is
reducible to G k if there is a surjective function b : N s A ¤ N k s A k such that
b 7 S 8 , S k , b 7 x 8 , x for every x � A and such that b maps every G–derivation
onto a G k –derivation, while every preimage under b of a G k –derivation is a G–
derivation. (We do not require however that the preimage of the start symbol
from G k is unique; only that the start symbol from G has one preimage which
is a start symbol of G k .)
Definition 2.21 G is called reduced if every grammar G k such that G is re-
ducible onto G k can itself be reduced onto G.

Given G we can effectively construct a reduced grammar onto which it can
be reduced. We remark that in our example above G k is not reducible onto G.
For even though Ê � is a function (with

5 �� 5 � 6 �� 6 ��ÕØ�� 6 � } �� } � s �� }
)

and
5 } 6

can be derived from
}

in one step,
5 s 6

cannot be derived from
}

in one step. Given G and the function Ê � the following grammar is reduced
onto G. } � 5 } 6 � 5 s 6 � 5 } Õ«� 5 s Õ«� 5 6 � 5 Õs � 5 } 6 � 5 s 6 � 5 } Õ«� 5 s Õ«� 5 6 � 5 Õ5 � 06 � íÕ×� í
(2.24)

Now let G be a CFG. We add to A two more symbols, namely I and J , not
already contained in A. Subsequently, we replace every rule X � Eα by the

110 Context Free Languages

rule X � I 9 Eα 9 J . The so–constructed grammar is denoted by Gb.

(2.25)

G Gb} � 5 } � } 6 � 5 6 } � I 5 } J���I } 6 JØ��I 5 6 J5 � 0 5 � I 0 J6 � í 6 � I�í�J
The grammar G generates the language

0 � í � . The string
0(0 í�í has several

derivations, which correspond to different trees.

(2.26)
� } � 5 } � 5 } 6 � 5�5 6�6 �=�=�=�i� 0�0 í(í��� } � } 6 � 5 } 6 � 5�5 6�6 �=�=�=�i� 0�0 í(í��

If we look at the analogous derivations in Gb we get the strings

(2.27) I(I 0 J�I�I(I 0 J�I�í�J�J.I�í»J(J�Jï� I�I(I 0 J�I�I 0 J.I�í»J(J�J.I�í»J(J
These are obviously distinct. Define a homomorphism e by e 7 a 8 :

,
a, if a � A,

e : J �� ε and e : J��� ε . Then it is not hard to see that

(2.28) L 7 G 8 , e ¦ L 7 Gb 8�§
Now look at the class of trees L 7 G 8 and forget the labels of all nodes which are
not leaves. Then the structure obtained shall be called a bracketing analysis
of the associated strings. The reason is that the bracketing analyses are in
one–to–one correspondence with the strings which L 7 Gb 8 generates. Now we
will ask ourselves whether for two given grammars G and H it is decidable
whether they generate the same bracketing analyses. We ask ourselves first
what the analogon of a derivation of G is in Gb. Let EγX Eη be derivable in G,
and let the corresponding Gb–string in this derivation be EγbX Eηb. In the next
step X is replaced by α . Then we get Eγ Eα Eη , and in Gb the string Eγb I Eα J Eδ b. If
we have an R–simulation to H then it is also an R–simulation from Gb to Hb

provided that it sends the opening bracket of Gb to the opening bracket of Hb

and the closing bracket of Gb to the closing bracket of Hb. It follows that if
there is an R–simulation from G to H then not only we have L 7 G 8 , L 7 H 8
but also L 7 Gb 8 , L 7 Hb 8 .
Theorem 2.22 We have L 7 Gb 8 , L 7 Hb 8 if there is an R–simulation from G
to H.

Normal Forms 111

The bracketing analysis is too strict for most purposes. First of all it is not
customary to put a single symbol into brackets. Further, it makes no sense
to distinguish between I(IOEx J�J and IPEx J , since both strings assert that Ex is a
constituent. We shall instead use what we call constituent analyses. These
are pairs ��Ex ��ë»� in which Ex is a string and ë an exhaustively ordered con-
stituent structure defined over Ex. We shall denote by Lc 7 G 8 the class of all
constituent analyses generated by G. In order to switch from bracketing anal-
yses to constituent analyses we only have to eliminate the unary rules. This
can be done as follows. Simply replace every rule ρ

,
Y � Eα , where � Eα �½� 1,

by the set ρ2 :
, 5 Z � Eα : Z | ¡ Y 6 . R Û :

, �«� ρ2 : ρ � R � . Finally, let G Û :
,� } � N � A � R Û � . Every rule is strictly productive and we have Lc 7 G 8 , Lc 7 G Û 8 .

(Exception needs to be made for
} � ε , as usual. Also, if necessary, we shall

assume that G Û is slender.)

Definition 2.23 A CFG is in standard form if every rule different from
} � ε

has the form X � EY with � EY ��� 1 or the form X � a. A grammar is in 2–
standard form or Chomsky Normal Form if every rule is of the form

} � ε ,
X � Y0Y1 or X � a.

(Notice that by our conventions a CFG in standard form contains the rule
X � ε for X

,\}
, but this happens only if

}
is not on the right hand side of a

rule.) We already have proved that the following holds.

Theorem 2.24 For every CFG G one can construct a slender CFG Gn in
standard form which generates the same constituent structures as G.

Theorem 2.25 For every CFG G we can construct a slender CFG Gc in
Chomsky Normal Form such that L 7 Gc 8 , L 7 G 8 .
Proof. We may assume that G is in standard form. Let ρ

,
X � Y0Y1 Â=Â=Â Yn © 1

be a rule with n � 2. Let Zρ
0
� Zρ

1
�=�=�=�i� Zρ

n © 2
be new nonterminals. Replace ρ by

the rules

(2.29) ρc
0 :
,

X � Y0Zρ
0 � ρc

1 :
,

Zρ
0 � Y1Zρ

1 �=�=�=�i�
ρc

n © 2 :
,

Zρ
n © 3 � Yn © 2Yn © 1

Every derivation in G of a string Eα can be translated into a derivation in
Gc by replacing every instance of ρ by a sequence ρ c

0 � ρc
1 �=�=�=�i� ρc

n © 1. For the
converse we introduce the following priorisation π on the rules. Let Z ρ

i
be

112 Context Free Languages

always before Yi. However, in Zρ
n © 3

� Yn © 2Yn © 1 we choose the leftmost pri-
orisation. We show G ~ ¹ Ex iff Gc ~ π Ex. For if � αi : i b p g 1 � is a leftmost
derivation of Ex in G, then replace every instance of a rule ρ by the sequence
ρc

0 , ρc
1 , and so on until ρ c

n © 2. This is a Gc–derivation, as is easily checked.
It is also a π–derivation. Conversely, let � β j : j b q g 1 � be a Gc–derivation
which is priorized with π . If βi � 1 is the result of an application of the rule ρ c

k ,
k b n v 2, then i g 2 b q g 1 and βi � 2 is the result of an application of ρ c

k � 1 on
βi � 1, which replaced exactly the occurrence Zk of the previous instance. This
means that every ρ c

k in a block of instances of ρ c
0 , ρc

1 �=�=�=�i� ρc
n © 2 corresponds to

a single instance of ρ . There exists a G–derivation of Ex, which can be obtained
by backward replacement of the blocks. It is a leftmost derivation. <

For example, the right hand side grammar is the result of the conversion
of the left hand grammar into Chomsky Normal Form.

(2.30)

} � 5 } 6�6 s � 5 6�6 } � 5 ��� 5 77 � 6%6� � }'�� � 6 �� � 6 ss ��Õ s Ö ��Õ Ö s �ÜÕ 3 ��Õ Ö3 � s Ö5 � 0 5 � 06 � í 6 � íÕ �ÛF Õ � FÖ � î Ö � î
Definition 2.26 A CFG is called invertible if from X � Eα � R and Y � Eα � R
it follows that X

,
Y .

For an invertible grammar the labelling on the leaves uniquely determines
the labelling on the entire tree. We propose an algorithm which creates an
invertible grammar from a CFG. For simplicity a rule is of the form X � EY
or X � Ex. Now we choose our nonterminals from the set ℘7 N 8�v 51w«6 . The
terminal rules are now of the form ÝÄ�³Ex, where Ý , 5 X : X �³Ex � R 6 . The
nonterminal rules are of the form Ý �ßÞ 0 Þ 1 Â=Â=Â�Þ n © 1 with

(2.31) Ý , 5 X : X � Y0Y1 Â=Â=Â Yn © 1 � R for some Yi �àÞ i 6
Further, we choose a start symbol, Σ, and we take the rules Σ � EÝ for everyEX , for which there are Xi �áÝ i with S � EX � R. This grammar we call Gi.

Normal Forms 113

It is not difficult to show that Gi is invertible. For let Þ 0 Þ 1 Â=Â=Â�Þ n © 1 be the
right hand side of a production. Then there exist Yi �àÞ i, i b n, and an X such
that X � EY is a rule in G. Hence there is an Ý such that ÝÅ� EÞ is in Gi.Ý is uniquely determined. Further, Gi is in standard form (Chomsky Normal
Form), if this is the case with G.

Theorem 2.27 Let G be a CFG. Then we can construct an invertible CFG
Gi which generates the same bracketing analyses as G. <
The advantage offered by invertible grammars is that the labelling can be
reconstructed from the labellings on the leaves. The reader may reflect on the
fact that G is invertible exactly if Gb is.

Definition 2.28 A CFG is called perfect if it is in standard form, slender,
reduced and invertible.

It is instructive to see an example of a grammar which is invertible but not
reduced.

(2.32)

G H} � 5 } � 6 } � 5 � 6 } � Õ } ��Õ5 � 0 Õ � 0 �ií6 � í
G is invertible but not reduced. To this end look at H and the map

5 ��âÕ ,6 ���Õ , } �� }
. This is an R–simulation. H is reduced and invertible.

Theorem 2.29 For every CFG we can construct a perfect CFG which gen-
erates the same constituent structures.

Finally we shall turn to the so–called Greibach Normal Form. This form most
important for algorithms recognizing languages by reading the input from left
to right. Such algorithms have problems with rules of the form X � Y 9 Eα , in
particular if Y

,
X .

Definition 2.30 Let G
, � } � N � A � R � be a CFG. G is in Greibach (Normal)

Form if every rule is of the form
} � ε or of the form X � x 9 EY .

Proposition 2.31 Let G be in Greibach Normal Form. If X ~ G Eα then Eα has
a leftmost derivation from X in G iff Eα , Ey 9 EY for some Ey � A ¡ and EY � N ¡
and Ey , ε only if EY , X.

114 Context Free Languages

The proof is not hard. It is also not hard to see that this property characterizes
the Greibach form uniquely. For if there is a rule of the form X � Y 9 Eγ then
there is a leftmost derivation of Y 9 Eγ from X , but not in the desired form. Here
we assume that there are no rules of the form X � X .

Theorem 2.32 (Greibach) For every CFG one can effectively construct a
grammar Gg in Greibach Normal Form with L 7 Gg 8 , L 7 G 8 .
Before we start with the actual proof we shall prove some auxiliary state-
ments. We call ρ an X–production if ρ

,
X � Eα for some Eα . Such a pro-

duction is called left recursive if it has the form X � X 9 Eβ . Let ρ
,

X � Eα
be a rule; define R © ρ as follows. For every factorisation Eα , Eα1 9 Y 9 Eα2 of Eα
and every rule Y � Eβ add the rule X � Eα1 9 Eβ 9 Eα2 to R and finally remove
the rule ρ . Now let G © ρ :

, � } � N � A � R © ρ � . Then L 7 G © ρ 8 , L 7 G 8 . We call this
construction as skipping the rule ρ . The reader may convince himself that the
tree for G © ρ can be obtained in a very simple way from trees for G simply by
removing all nodes x which dominate a local tree corresponding to the rule
ρ , that is to say, which are isomorphic to i ρ . (This has been defined in Sec-
tion 1.6.) This technique works only if ρ is not an

}
–production. In this case

we proceed as follows. Replace ρ by all rules of the form
} � Eβ where Eβ

derives from Eα by applying a rule. Skipping a rule does not necessarily yield
a new grammar. This is so if there are rules of the form X � Y (in particular
rules like X � X).

Lemma 2.33 Let G
, � } � N � A � R � be a CFG and let X � X 9 Eαi, i b m, be all

left recursive X–productions as well as X � Eβ j, j b n, all non left recursive
X–productions. Now let G1 :

, � } � N s¸5 Z 6>� A � R1 � , where Z �� N s A and R1

consists of all Y –productions from R with Y �, X as well as the productions

(2.33)
X � Eβ j j b n � Z � Eαi i b m �
X � Eβ j 9 Z j b n � Z � Eαi 9 Z i b m �

Then L 7 G1 8 , L 7 G 8 .
Proof. We shall prove this lemma rather extensively since the method is rela-
tively tricky. We consider the following priorisation on G1. In all rules of the
form X � Eβ j and Z � Eαi we take the natural ordering (that is, the leftmost

ordering) and in all rules X � Eβ jZ as well as Z � EαiZ we also put the left

Normal Forms 115

to right ordering except that Z precedes all elements from Eα j and Eβi, respec-
tively. This defines the linearisation Ð . Now, let M 7 X 8 be the set of all Eγ such
that there is a leftmost derivation from X in G in such a way that Eγ is the first
element not of the form X 9 Eδ . Likewise, we define P 7 X 8 to be the set of allEγ which can be derived from X priorized by Ð in G1 such that Eγ is the first
element which does not contain Z. We claim that P 7 X 8 , M 7 X 8 . It can be
seen that

(2.34) M 7 X 8 ,¢�
j n

Eβ j Â�7 �
i m

Eαi 8 ¡ , P 7 X 8
From this the desired conclusion follows thus. Let Ex � L 7 G 8 . Then there exists
a leftmost derivation Γ

, � Ai : i b n g 1 � of Ex. (Recall that the Ai are instances
of rules.) This derivation is cut into segments Σi, i b σ , of length ki, such that

(2.35) Σi
, � A j : ∑

p i
kp ç j b 1 g ∑

p i � 1
ki �

This partitioning is done in such a way that each Σi is a maximal portion of
Γ of X–productions or a maximal portion of Y –productions with Y �, X . The
X–segments can be replaced by a Ð –derivation ;Σi in G1, by the previous con-
siderations. The segments which do not contain X–productions are already
G1–derivations. For them we put ;Σi :

,
Σi. Now let ;Γ be result of stringing

together the ;Σi. This is well–defined, since the first string of ;Σi equals the first
string of Σi, as the last string of ;Σi equals the last string of Σi. ;Γ is a G1–
derivation, priorized by Ð . Hence Ex � L 7 G1 8 . The converse is analogously
proved, by beginning with a derivation priorized by Ð . <

Now to the proof of Theorem 2.32. We may assume at the outset that G is
in Chomsky Normal Form. We choose an enumeration of N as N

, 5 Xi : i b
p 6 . We claim first that by taking in new nonterminals we can see to it that we
get a grammar G1 such that L 7 G1 8 , L 7 G 8 in which the Xi–productions have
the form Xi � x 9 EY or Xi � X j 9 EY with j � i. This we prove by induction on
i. Let i0 be the smallest i such that there is a rule Xi � X j 9 EY with j ç i. Let
j0 be the largest j such that Xi0

� X j 9 EY is a rule. We distinguish two cases.
The first is j0

,
i0. By the previous lemma we can eliminate the production

by introducing some new nonterminal symbol Zi0
. The second case is j0 b i0.

Here we apply the induction hypothesis on j0. We can skip the rule Xi0
�

X j0
9 EY and introduce rules of the form (a) Xi0

� Xk 9 EY k with k � j0. In this
way the second case is either eliminated or reduced to the first.

116 Context Free Languages

Now let P :
, 5 Zi : i b p 6 be the set of newly introduced nonterminals. It

may happen that for some j Z j does not occur in the grammar, but this does
not disturb the proof. Let finally Pi :

, 5 Z j : j b i 6 . At the end of this reduction
we have rules of the form

Xi � X j 9 EY 7 j � i 8(2.36a)

Xi � x 9 EY 7 x � A 8(2.36b)

Zi � EW 7 EW �x7 N s Pi 8 � 9 7 ε s Zi 8=8(2.36c)

It is clear that every Xp © 1–production already has the form Xp © 1 � x 9 EY . If
some Xp © 2–production has the form (2.36a) then we can skip this rule and

get rules of the form Xp © 2 �ÓEx EY k . Inductively we see that all rules of the form
can be eliminated in favour of rules of the form (2.36b). Now finally the rules
of type (2.36c). Also these rules can be skipped, and then we get rules of the
form Z � x 9 EY for some x � A, as desired.

For example, let the following grammar be given.

(2.37)

} � } Ö 5 ��Õ�Õ 5 � 0Ö � Ö Õ�� 5 6 6 � íÕ � F
The production

} � } Ö 5
is left recursive. We replace it according to the above

lemma by

(2.38)
} ��Õ�Õ��
�ã�×� Ö 5 �ã�×� Ö 5 �

Likewise we replace the production
Ö � Ö Õ by

(2.39)
Ö � 5 6 � � � ��Õ	� � ��Õ �

With this we get the grammar

(2.40)

} � Õ%Õ���Õ%Õ�� 5 � 0� � Ö 5 � Ö 5 � 6 � íÖ � 5 6 � 5 6 � Õ � F� � Õ¶��Õ �
Next we skip the

Ö
–productions.

(2.41)

} � Õ%Õ���Õ%Õ�� 5 � 0� � 5 6 5 � 5 6 � 5 � 5 6 5 �«� 5 6 � 5 � 6 � íÖ � 5 6 � 5 6 � Õ � F� � Õ¶��Õ �

Recognition and Analysis 117

Next
Ö

can be eliminated (since it is not reachable) and we can replace on the
right hand side of the productions the first nonterminals by terminals.

(2.42)

} � F'Õ��ïF'Õ��� � 0 6 5 � 0 6 � 5 � 0 6 5 �«� 0 6 � �� � F¬�XF �
Now the grammar is in Greibach Normal Form.

Exercise 54. Show that for a CFG G it is decidable (a) whether L 7 G 8 , w ,
(b) whether L 7 G 8 is finite, (c) whether L 7 G 8 is infinite.

Exercise 55. Let Gi be the invertible grammar constructed from G as defined
above. Show that the relation Ê defined by

(2.43) Ý Ê Y å Y �ÆÝ
is a backward simulation from Gi to G.

Exercise 56. Let � B �ibØ�
j¬�_!½� be an ordered labelled tree. If x is a leaf then e x
is a branch and can be thought of in a natural way as a string �Ne x �i�¬�_!½� . Since
the leaf x plays a special role, we shall omit it. We say, a branch expression
of
·

is a string of the form �Ne x vÄ5 x 6>�i�Ø�_!ï� , x a leaf of
·

. We call it ζ 7 x 8 .
Show that the set of all branch expressions of trees from LB 7 G 8 is regular.

Exercise 57. Let G be in Greibach Normal Form and Ex a terminal string of
length n � 0. Show that every derivation of Ex has exactly the length n. How
long is a derivation for an arbitrary string Eα?

3. Recognition and Analysis

CFLs can be characterized by special classes of automata, just like regular
languages. Since there are CFLs that are not regular, automata that recognize
them cannot all be finite state automata. They must have an infinite memory.
The special way such a memory is organized and manipulated differentiates
the various kinds of nonregular languages. CFLs can be recognized by so–
called pushdown automata. These automata have a memory in the form of
a stack onto which they can put symbols and remove (and read them) one
by one. However, the automaton only has access to the symbol added most
recently. A stack over the alphabet D is a string over D. We shall agree that
the first letter of the string is the highest entry in the stack and the last letter

118 Context Free Languages

corresponds to the lowest entry. To denote the end of the stack, we need a
special symbol, which we denote by Ç . (See Exercise 43 for the necessity of
an end–of–stack marker.)

A pushdown automaton steers its actions by means of the highest entry
of the stack and the momentary memory state. Its actions consist of three
successive steps. (1) The disposal or removal of a symbol on the stack. (2)
The moving or not moving of the read head to the right. (3) The change into
a memory state (possibly the same one). If the automaton does not move the
head in (2) we call the action an ε–move. We write Aε in place of A sì5 ε 6 .
Definition 2.34 A pushdown automaton over A is a septuple

(2.44) ä , � Q � i0 � A � F � D �¯Ç	� δ �
where Q and D are finite sets, i0 � Q, Ç«� D and F } Q, as well as

(2.45) δ : Q e D e Aε � ℘7 Q e D ¡P8
a function such that δ 7 q � a � d 8 is always finite. We call Q the set of states, i0
the initial state, F the set of accepting states, D the stack alphabet, Ç the
beginning of the stack and δ the transition function.

We call å :
, � q � Ed � , where q � Q and Ed � D ¡ , a configuration. We now write

(2.46) � p � Ed � x��� p k � Ed k �
if for some Ed1

Ed , Z 9 Ed1, Ed k , Ee 9 Ed1 and � p kÁ��Ee ��� δ 7 p � Z � x 8 . We call this a
transition. We extend the function δ to configurations. � p k � Ed k ��� δ 7 p � Ed � x 8
is also used. Notice that in contrast to a pushdown automaton a finite state
automaton may not change into a new state without reading a new symbol.
For a pushdown automaton this is necessary in particular if the automaton
wants to clear the stack. If the stack is empty then the automaton cannot work
further. This means, however, that the pushdown automaton is necessarily
partial. The transition function can now analogously be extended to strings.
Likewise, we can define it for sets of states.

(2.47) å)x æ)yv��çå k å there exists å k k with å)x�çå k k)y�èå k
If å)x�çå�k we say that there is a ä –computation for Ex from å to å1k . Now

(2.48) L 7Nä 8 :
, 51Ex : for some q � F �lEz � D ¡ : � i0 �¯Ç��)x��� q �lEz �Z6

Recognition and Analysis 119

We call this the language which is accepted by ä by state. We call a push-
down automaton simple if from � q �lEz �@� δ 7 p � Z � a 8 follows � Ez 9 a ��ç 2. It is an
exercise to prove the next theorem.

Proposition 2.35 For every pushdown automaton ä there is a simple push-
down automaton ^ such that L 7_^�8 , L 7Nä 8 .
For this reason we shall tacitly assume that the automaton does not write arbi-
trary strings but a single symbol. In addition to L 7Nä 8 there also is a language
which is accepted by ä by stack.

(2.49) Ls 7Nä 8 :
, 5XEx : for some q � Q : � i0 �¯Ç��)x��� q � ε �Z6

The languages L 7Nä 8 and Ls 7Nä 8 are not necessarily identical for given ä . How-
ever, the set of all languages of the form L 7Nä 8 for some pushdown automaton
equals the set of all languages of the form Ls 7Nä 8 for some pushdown automa-
ton. This follows from the next theorem.

Proposition 2.36 For every pushdown automaton ä there is an ^ with L 7Nä 8 ,
Ls 7_^�8 as well as a pushdown automaton ø with Ls 7Nä 8 , L 7løÑ8 .
Proof. Let ä , � Q � i0 � A � F � D �¯Ç�� δ � be given. We add to Q two states, qi and
q f . qi shall be the new initial state and F é :

, 5 q f 6 . Further, we add a new
symbol ê which is the beginning of the stack of ^ . We define δ é 7 qi ��êP� ε 8 :

,5(� i0 �¯Ç�9Òê=�Z6 . There are no more δ é –transitions exiting qi. For q �, qi � q f and
Z �, ê δ é»7 q � Z �$Ex 8 :

,
δ ëY7 q � Z � x 8 , x � A. Further, if q � F and Z �, ê , we put

δ é 7 q � Z � ε 8 :
,

δ ë 7 q � Z � ε 81s¬5(� q f � ε �Z6 and otherwise δ é 7 q � Z � ε 8 :
,

δ ë 7 q � Z � ε 8 .
Finally, let δ é 7 q f � Z � x 8 :

, w for x � A and δ é 7 q f � Z � ε 8 :
, 5(� q f � ε �Z6 for Z �

D s¸5�êZ6 . Assume now Ex � L 7Nä 8 . Then there is a ä –computation � i0 �¯Ç��)x�� q � Ed � for some q � F and so we also have an ^ –computation � qi ��ê=�)x� � q f � Ed � .
Since � q f � Ed � ε� � q f � ε � we have Ex � Ls 7_^;8 . Hence L 7Nä 8@} Ls 7_^�8 . Now, con-

versely, let Ex � Ls 7_^;8 . Then � qi ��ê=�)x��� p � ε � for a certain p. Then ê is deleted
only at last since it happens only in q f and so p

,
q f . Further, we have� qi ��ê=�)x� � q � Ed 9 ê=� for some state q � F . This means that there is an ^ –com-

putation � i0 �¯Ç�9Òê=�)x�æ� q � Ed 9�ê=� . This, however, is also a ä –computation. This
shows that Ls 7_^;8;} L 7Nä 8 and so also the first claim. Now for the construc-
tion of ø . We add two new states, q f and qi, and a new symbol, ê , which

120 Context Free Languages

shall be the begin of stack of ø , and we put F ì :
, 5 q f 6 . Again we put

δ ìÄ7 qi ��êP� x 8 :
, w for x � A and δ ì 7 qi ��êP� ε 8 :

, 5(� i0 �¯Ç 9 ê=�Z6 . Also, we put
δ ì 7 q � Z � x 8 :

,
δ ë�7 q � Z � x 8 for Z �, ê and δ ì 7 q ��êP� ε 8 :

, 5(� q f � ε �Z6 , as well as
δ ìÄ7 q ��êP� x 8 :

, w for x � A. Further, δ ìÄ7 q f � Z � x 8 :
, w . This defines δ ì . Now

consider an Ex � Ls 7Nä 8 . There is a ä –computation � i0 �¯Ç��)x�¨� p � ε � for some p.
Then there exists an ^ –computation

(2.50) � qi ��ê=�)x��� p ��ê=� ε��� q f � ε �
Hence Ex � L 7løÑ8 . Conversely, let Ex � L 7løÑ8 . Then there exists an ^ –computa-

tion � qi ��ê=�)x�¨� q f � Ed � for some Ed. One can see quite easily that Ed , ε . Further,
this computation factors as follows.

(2.51) � qi ��ê=� ε��� i0 �¯Ç 9 ê=�)x��� p ��ê=� ε��� q f � ε �
Here p � Q, whence p �, q f � qi. But every ø –transition from i0 to p is also

a ä –transition. Hence there is a ä –computation � i0 �¯Ç��)x�þ� p � ε � . From this
follows Ex � Ls 7Nä 8 , and so Ls 7Nä 8 , L 7løÑ8 . <
Lemma 2.37 Let L be a CFL over A. Then there exists a pushdown automa-
ton ä such that L

,
Ls 7Nä 8 .

Proof. We take a CFG G
, � } � N � A � R � in Greibach Form with L

,
L 7 G 8 .

We assume that ε �� G. (If ε � L 7 G 8 , then we construct an automaton for
L 7 G 8�v 5 ε 6 and then modify it slightly.) The automaton possesses only one
state, i0, and uses N as its stack alphabet. The beginning of the stack is

}
.

(2.52) δ 7 i0 � X � x 8 :
, 5(� i0 � EY � : X � x 9 EY � R 6

This defines ä :
, ��5 i0 6>� i0 � A ��5 i0 6>� N � } � δ � . We show that L

,
Ls 7Nä 8 . To this

end recall that for every Ex � L 7 G 8 there is a leftmost derivation. In a grammar
in Greibach Form every leftmost derivation derives strings of the form Ey 9 EY .
Now one shows by induction that G ~ìEy 9 EY iff � i0 � EY �@� δ 7 i0 � } ��Ey 8 . <
Lemma 2.38 Let ä be a pushdown automaton. Then Ls 7Nä 8 is context free.

Proof. Let ä , � Q � i0 � A � F � D �¯Ç�� δ � be a pushdown automaton. We may as-
sume that it is simple. Put N :

,
Q e D e¸7 Q s¶5 } 618 , where

}
is a new symbol.

Recognition and Analysis 121}
shall also be the start symbol. We write a general element of N in the form¦ q � A � p § . Now we define R :

,
Rs s R0 s Rδ s Rε , where

(2.53)

Rs :
, 5 } ��¦ i0 �¯Ç�� q § : q � Q 6

R0 :
, 5(¦ p � Z � q §�� x : � r� ε �Y� δ 7 p � Z � x 8Z6

Rδ :
, 5(¦ p � Z � q §�� x ¦ r� Y � q § : � r� Y �Y� δ 7 p � Z � x 8Z6

Rε :
, 5(¦ p � Z � q §���¦ p k � X � r §�¦ r� Y � q § : � p k � XY �3� δ 7 p � Z � ε 8Z6

The grammar thus defined is called G 7Á­�8 . We claim that for every Ex � A ¡ ,
every p � q � Q and every Z � D

(2.54) ¦ p � Z � q §�~ G Ex å � q � ε �@� δ 7 p � Z ��Ex 8
This suffices for the proof. For if Ex � L 7 G 8 then we have ¦ i0 �¯Ç�� q §V~ G Ex and
so because of (2.54) � q � ε �3� δ 7 i0 �¯Ç��$Ex 8 , which means nothing but Ex � Ls 7Nä 8 .
And if the latter holds then we have ¦ i0 �¯Ç�� q §l~ G Ex and so

} ~ G Ex, which is
nothing else but Ex � L 7 G 8 .

Now we show (2.54). It is clear that (2.54) follows from (2.55).

(2.55) ¦ p � Z � q §�~ ¹G Ey 9 ¦ q0 � Y0 � q1 §�¦ q1 � Y1 � q2 §½Â=Â=ÂP¦ qm © 1 � Ym © 1 � q §å � q0 � Y0Y1 Â=Â=Â Ym © 1 �@� δ 7 p � Z ��Ey 8
(2.55) is proved by induction. <

On some reflection it is seen that for every automaton ä there is an au-
tomaton ^ with only one accepting state which accepts the same language.
If one takes ^ in place of ä then there is no need to use the trick with a new
start symbol. Said in another way, we may choose ¦ i0 �¯Ç�� q § as a start symbol
where q is the accepting state of ^ .

Theorem 2.39 (Chomsky) The CFLs are exactly the languages which are
accepted by a pushdown automaton, either by state or by stack.

From this proof we can draw some further conclusions. The first conclusion
is that for every pushdown automaton ä we can construct a pushdown au-
tomaton ^ for which Ls 7_^;8 , Ls 7Nä 8 and which contains no ε–moves. Also,
there exists a pushdown automaton ø such that Ls 7løÑ8 , Ls 7Nä 8 and which
contains only one state, which is at the same time an initial and an accepting
state. For such an automaton these definitions reduce considerably. Such an
automaton possesses as a memory only a string. The transition function can

122 Context Free Languages

be reduced to a function ζ from A e D ¡ into finite subsets of D ¡ . (We do not
allow ε–transitions.)

The pushdown automaton runs along the string from left to right. It recog-
nizes in linear time whether or not a string is in the language. However, the
automaton is nondeterministic.

Definition 2.40 A pushdown automaton ä , � Q � i0 � A � F � D �¯Ç�� δ � is determin-
istic if for every q � Q, Z � D and x � Aε we have � δ 7 q � Z � x 8j��ç 1 and for all
q � Q and all Z � D either (a) δ 7 q � Z � ε 8 , w or (b) δ 7 q � Z � a 8 , w for all
a � A. A language L is called deterministic if L

,
L 7Á­�8 for a deterministic

automaton ­ . The set of deterministic languages is denoted by ∆.

Deterministic languages are such languages which are accepted by a deter-
ministic automaton by state. Now, is it possible to build a deterministic au-
tomaton accepting that language just like regular languages? The answer is
negative. To this end we consider the mirror language 5XEx ExT : Ex � A ¡ 6 . This
language is surely context free. There are, however, no deterministic automata
that accept it. To see this one has to realize that the automaton will have to put
into the stack the string Ex ExT at least up to Ex in order to compare it with the re-
maining word, ExT . The machine, however, has to guess when the moment has
come to change from putting onto stack to removing from stack. The reader
may reflect that this is not possible without knowing the entire word.

Theorem 2.41 Deterministic languages are in DTIME 7 n 8 .
The proof is left as an exercise.

We have seen that also regular languages are in DTIME 7 n 8 . However,
there are deterministic languages which are not regular. Such a language is
L
, 51Ex F&ExT : Ex �ì5 0 �lí.6 ¡ 6 . In contrast to the mirror language L is deterministic.

For now the machine does not have to guess where the turning point is: it is
right after the symbol F .

Now there is the question whether a deterministic automaton can recog-
nize languages using the stack. This is not the case. For let L

,
Ls 7Nä 8 , for

some deterministic automaton ä . Then, if Ex Ey � L for some Ey �, ε then Ex �� L.
We say that L is prefix free if it has this property. For if Ex � L then there
exists a ä –computation from � q0 �¯Ç�� to � q � ε � . Further, since ä is determin-

istic: if � q0 �¯Ç��)x��å then å , � q � ε � . However, if the stack has been emptied
the automaton cannot work further. Hence Ex Ey �� L. There are deterministic
languages which are not prefix free. We present an important class of such

Recognition and Analysis 123

languages, the Dyck–languages. Let A be an alphabet. For each x � A let x be
another symbol. We write A :

, 5 x : x � A 6 . We introduce a congruence θ onù;7 A s A 8 . It is generated by the equations

(2.56) aa θ ε

for all a � A. (The analogous equations aa θ ε are not included.) A stringEx �Ä7 A s A 8 ¡ is called balanced if Ex θ ε . Ex is balanced iff Ex can be rewritten
into ε by successively replacing substrings of the form xx into ε .

Definition 2.42 Dr denotes the set of balanced strings over an alphabet con-
sisting of 2r symbols. A language is called a Dyck–language if it has the form
Dr for some r (and some alphabet A s A).

The language XML (Extensible Markup Language, an outgrowth of HTML)
embodies like no other language the features of Dyck–languages. For every
string Ex it allows to form a pair of tags í(Ex î (opening tag) and í�ï(Ex î (clos-
ing tag). The syntax of XML is such that the tags always come in pairs. The
tags alone (not counting the text in between) form a Dyck Language. What
distinguishes XML from other languages is that tags can be freely formed.

Proposition 2.43 Dyck–languages are deterministic but not prefix free.

The following grammars generate the Dyck–languages:

(2.57)
} � }�} � x } x � ε

Dyck–languages are therefore context free. It is easy to see that together withEx ��Ey � Dr also Ex Ey � Dr. Hence Dyck–languages are not prefix free. That they
are deterministic follows from some general results which we shall establish
later. We leave it to the reader to construct a deterministic automaton which
recognizes Dr. This shows that the languages which are accepted by a de-
terministic automaton by empty stack are a proper subclass of the languages
which are accepted by an automaton by state. This justifies the following
definition.

Definition 2.44 A language L is called strict deterministic if there is a deter-
ministic automaton ä such that L

,
Ls 7Nä 8 . The class of strict deterministic

languages is denoted by ∆s.

Theorem 2.45 L is strict deterministic if L is deterministic and prefix free.

124 Context Free Languages

Proof. We have seen that strict deterministic languages are prefix free. Now
let L be deterministic and prefix free. Then there exists an automaton ä which
accepts L by state. Since L is prefix free, this holds for every Ex � L, and for

every proper prefix Ey of Ex we have that if � q0 �¯Ç��)y� � q � EY � then q is not an ac-
cepting state. Thus we shall rebuild ä in the following way. Let δ1 7 q � Z � x 8 :

,
δ ë 7 q � Z � x 8 if q is not accepting. Further, let δ1 7 q � Z � x 8 :

, w if q � F and x � A;
let δ1 7 q � Z � ε 8 :

, 5(� q � ε �Z6 , Z � D. Finally, let ^ be the automaton which re-
sults from ä by replacing δ ë with δ1. ^ is deterministic as is easily checked.
Further, an ^ –computation can be factored into an ä –computation followed
by a deletion of the stack. We claim that L 7Nä 8 , Ls 7_^�8 . The claim then fol-
lows. So let Ex � L 7Nä 8 . Then there exists a ä –computation using Ex from � q0 �¯Ç��
to � q � EY � where q � F . For no proper prefix Ey of Ex there is a computation into
an accepting state since L is prefix free. So there is an ^ –computation with Ex
from � q0 �¯Ç�� to � q � EY � . Now � q � EY � ε��� q � ε � and so Ex � Ls 7_^;8 . Conversely, as-

sume Ex � Ls 7_^;8 . Then there is a computation � q0 �¯Ç��)x��� q � ε � . Let EY � D ¡ be

the longest string such that � q0 �¯Ç��)x�¨� q � EY � . Then the ^ –step before reaching� q � EY � is a ä –step. So there is a ä –computation for Ex from � q0 �¯Ç�� to � q � EY � ,
and so Ex � L 7Nä 8 . <

The proof of this theorem also shows the following.

Theorem 2.46 Let U be a deterministic CFL. Let L be the set of all Ex � U for
which no proper prefix is in U. Then L is strict deterministic.

For the following definition we make the following agreement, which shall
be used quite often in the sequel. We denote by ¯ k ° Eα the prefix of Eα of length
k in case Eα has length at least k; otherwise ¯ k ° Eα :

, Eα .

Definition 2.47 Let G
, � } � N � A � R � be a grammar and Π } ℘7 N s A 8 a par-

tition. We write α ð β if there is an M � Π such that α � β � M. Π is called
strict for G if the following holds.

À A � Π

Á For C � C k�� N and Eα � Eγ1 � Eγ2 �f7 N s A 8 ¡ : if C ð C k and C � Eα Eγ1 as well
as C k>� Eα Eγ2 � R then either

(a) Eγ1 � Eγ2 �, ε and ¯ 1 ° Eγ1 ð ¯ 1 ° Eγ2 or

(b) Eγ1
, Eγ2

,
ε and C

,
C k .

Recognition and Analysis 125

Definition 2.48 A CFG G is called strict deterministic if there is a strict
partition for G.

We look at the following example (taken from (Harrison, 1978)):

(2.58)

} � 0 5 � 0 6 Õ � íGÕ«� 05 � 0 5 0 �iíGÕ Ö � í Ö F¬�XF6 � 0 6 �ií Ö
Π
, 5�5 0 �lí���F�6>��5 } 6>��5 5 � 6 6>��5#Õ
� Ö 6�6 is a strict partition. The language gener-

ated by this grammar is 5 0 n í k 0 n � 0 n í k F k : k � n f 1 6 .
We shall now show that the languages generated by strict deterministic

grammars are exactly the strict deterministic languages. This justifies the
terminology in retrospect. To begin, we shall draw a few conclusions from
the definitions. If G

, � } � N � A � R � is strict deterministic and R k } R then
G k , � } � N � A � R k � is strict deterministic as well. Therefore, for a strict de-
terministic grammar we can construct a weakly equivalent strict determinis-
tic slender grammar. We denote by Eα | n

L Eγ the fact that there is a leftmost
derivation of length n of Eγ from Eα .

Lemma 2.49 Let G be a CFG with a strict partition Π. Then the following is
true. For C � C k�� N and Eα � Eγ1 � Eγ2 ��7 N s A 8 ¡ : if C ð C k and C | n

L Eα Eγ1 as well
as C k | n

L Eα Eγ2 then either

À Eγ1 � Eγ2 �, ε and ¯ 1 ° Eγ1 ð ¯ 1 ° Eγ2 or

Á Eγ1
, Eγ2

,
ε and C

,
C k .

The proof is an easy induction over the length of the derivation.

Lemma 2.50 Let G be slender and strict deterministic. Then if C | �L D Eα
we have C �ð D.

Proof. Assume C | n
L D Eα . Then because of Lemma 2.49 we have for all

k f 1: C | kn
L D Eγ for some Eγ . From this it follows that there is no terminating

leftmost derivation from C. This contradicts the fact that G is slender. <
It follows that a strict deterministic grammar is not left recursive, that is,

A | �L A Eα cannot hold. We can construct a Greibach Normal Form for G in
the following way. Let ρ

,
C � α Eγ be a rule. If α �� A then we skip ρ by

replacing it with the set of all rules C � Eη Eγ such that α � Eη � R. Then
Lemma 2.49 assures us that Π is a strict partition also for the new grammar.
This operation we repeat as often as necessary. Since G is not left recursive,
this process terminates.

126 Context Free Languages

Theorem 2.51 For every strict deterministic grammar G there is a strict de-
terministic grammar H in Greibach Normal Form such that L 7 G 8 , L 7 H 8 .
Now for the promised correspondence between strict deterministic languages
and strict deterministic grammars.

Lemma 2.52 Let L be strict deterministic. Then there exists a deterministic
automaton with a single accepting state which accepts L by stack.

Proof. Let ­ be given. We add a new state q into which the automaton
changes as soon as the stack is empty. <
Lemma 2.53 Let ­ be a deterministic automaton with a single accepting
state. Then G 7Á­�8 is strict deterministic.

Proof. Let ­ , � Q � i0 � A � F � D �¯Ç�� δ � . By the preceding lemma we may assume
that F

, 5 q f 6 . Now let G 7Á­�8 defined as in (2.53). Put

(2.59) α ð β : å ñòôó α � β � A
or α

, ¦ q � Z � q k §�� β , ¦ q � Z � q k k §
for some q � q kl� q k k�� Q � Z � D �

We show that ð is a strict partition. To this end, let ¦ q � Z � q k`§�� Eα Eγ1 and¦ q � Z � q k k §
� Eα Eγ2 be two rules. Assume first of all Eγ1 � Eγ2 �, ε . Case 1. Eα ,
ε .

Consider ζi :
, ¯ 1 ° Eγi. If ζ1 � A then also ζ2 � A, since ­ is deterministic. If

on the other hand ζ1 �� A then we have ζ1
, ¦ q � Y0 � q1 § and ζ2

, ¦ q � Y0 � q k1 § ,
and so ζ1 ð ζ2. Case 2. Eα �, ε . Let then η :

, ¯ 1 ° Eα . If η � A, then we now
have ζ1

, ¦ qi � Yi � qi � 1 § and ζ2
, ¦ qi � Yi � q ki � 1 § for some qi � qi � 1 � q ki � 1 � Q. This

completes this case.
Assume now Eγ1

,
ε . Then Eα Eγ1 is a prefix of Eα Eγ2. Case 1. Eα ,

ε . ThenEα Eγ2
,

ε , hence Eγ2
,

ε . Case 2. Eα �, ε . Then it is easy to see that Eγ2
,

ε .
Hence in both cases we have Eγ2

,
ε , and so q k , q k k . This shows the claim. <

Theorem 2.54 Let L be a strict deterministic language. Then there exists a
strict deterministic grammar G such that L 7 G 8 , L.

The strategy to put a string onto the stack and then subsequently remove it
from there has prompted the following definition. A stack move is a move
where the machine writes a symbol onto the stack or removes a symbol from
the stack. (So the stack either increases in length or it decreases.) The au-
tomaton is said to make a turn if in the last stack move it increased the stack
and now it decreases it or, conversely, in the last stack move it diminishes the
stack and now increases it.

Recognition and Analysis 127

Definition 2.55 A language L is called an n–turn language if there is a push-
down automaton which recognizes every string from L with at most n turns.
L is ultralinear if it is an n–turn language for some n � ω .

Notice that a CFL is n–turn exactly if there is an automaton which accepts L
and in which for every string Ex every computation needs at most n turns. For
given any automaton ä which recognizes L, we build another automaton ^
which has the same computations as ä except that they are terminated before
the n g 1st turn. This is achieved by adding a memory that counts the number
of turns.

We shall not go into the details of ultralinear languages. One case is worth
noting, that of 1–turn languages. A CFG is called linear if in every rule X �Eα the string Eα contains at most one occurrence of a nonterminal symbol. A
language is linear if it is generated by a linear grammar.

Theorem 2.56 A CFL is linear iff it is 1–turn.

Proof. Let G be a linear grammar. Without loss of generality a rule is of the
form X � aY or X � Ya. Further, there are rules of the form X � ε . We
construct the following automaton. D :

, 50Ç�6Ys N, where Ç is the beginning
of the stack, Q :

, 51g��ivØ� q 6 , i0 :
, g , F :

, 5 q 6 . Further, for x � A we put
δ 7�g¶� X � x 8 :

, 5(��g¶� Y �Z6 if X � xY � R and δ 7�g¶� X � ε 8 :
, 5(��g�� Y �Z6 if X �

Y x � R; let δ 7�vØ� Y � x 8 :
, 5(��vØ� ε �Z6 if X � Y x � R. And finally δ 7=��g¶� X � x �=8 :

,5(��vØ� ε �Z6 if X � x � R. Finally, δ 7�v¬�¯Ç	� ε 8 :
, 5(� q � ε �Z6 . This defines the au-

tomaton ä�7 G 8 . It is not hard to show that ä�7 G 8 only admits computations
without stack moves. For if the automaton is in state g the stack may not
decrease unless the automaton changes into the state v . If it is in v , the stack
may not increase and it may only be changed into a state v , or, finally, into
q. We leave it to the reader to check that L 7Nä�7 G 8=8 , L 7 G 8 . Therefore L 7 G 8 is
a 1–turn language. Conversely, let ä be an automaton which allows compu-
tations with at most one turn. It is then clear that if the stack is emptied the
automaton cannot put anything on it. The automaton may only fill the stack
and later empty it. Let us consider the automaton G 7Nä 8 as defined above.
Then all rules are of the form X � x EY with x � Aε . Let EY ,

Y0Y1 Â=Â=Â Yn © 1. We
claim that every Yi–production for i � 0 is of the form Yi � a or Yi � X . If not,
there is a computation in which the automaton makes two turns, as we have
indicated above. (This argument makes tacit use of the fact that the automa-
ton possesses a computation where it performs a transition to Yi

, ¦ p � X � q §
that is to say, that it goes from p to q where X is the topmost stack symbol.

128 Context Free Languages

If this is not the case, however, then the transitions can be eliminated without
harm from the automaton.) Now it is easy to eliminate the rules of the form
Yi � X by skipping them. Subsequent skipping of the rules Yi � a yields a
linear grammar. <

The automata theoretic analyses suggest that the recognition problem for
CFLs must be quite hard. However, this is not the case. It turns out that the
recognition and parsing problem are solvable in O 7 n3 8 steps. To see this, let
a grammar G be given. We assume without loss of generality that G is in
Chomsky Normal Form. Let Ex be a string of length n. As a first step we try
to list all substrings which are constituents, together with their category. If Ex
is a constituent of category S then Ex � L 7 G 8 ; if it is not, then Ex �� L 7 G 8 . In
order to enumerate the substrings we use an 7 n g 1 8�eË7 n g 1 8 –matrix whose
entries are subsets of N. Such a matrix is called a chart. Every substring
is defined by a pair � i � j � of numbers, where 0 ç i b j ç n g 1. In the cell� i � j � we enter all X � N for which the substring xixi � 1 Â=Â=Â x j © 1 is a constituent
of category X . In the beginning the matrix is empty. Put d :

,
i v j. Now

we start by filling the matrix starting at d
,

1 and counting up to d
,

n.
For each d, we go from i

,
0 until i

,
n v d. So, we begin with d

,
1 and

compute for i
,

0, i
,

1, i
,

2 and so on. Then we set d :
,

2 and compute
for i

,
0, i

,
1 etc. We consider the pair � d � i � . The substring xi Â=Â=Â xi � d is a

constituent of category X iff it decomposes into substrings Ey , xi Â=Â=Â xi � e andEz , xi � e � 1 Â=Â=Â xi � d such that there is a rule X � Y Z where Ey is a constituent of
category Y and Ez is a constituent of category Z. This means that the set of all
X � N which we enter at � i � i g d � is computed from all decompositions into
substrings. There are d v 1 ç n such decomposition. For every decomposition
the computational effort is limited and depends only on a constant cG whose
value is determined by the grammar. For every pair we need cG ÂZ7 n g 1 8 steps.
Now there exist y n2 z proper subwords. Hence the effort is bounded by cG Â n3.

In Figure 8 we have shown the computation of a chart based on the word0 í 0�0 í(í . Since the grammar is invertible any substring has at most one cate-
gory. In general, this need not be the case. (Because of Theorem 2.27 we can
always assume the grammar to be invertible.)

(2.60)

} � }%} � 5 6 � 6 55 � 5 } � } 5 � 06 � 6 } � } 6 �ií
The construction of the chart is as follows. Let C)x 7 i � j 8 be the set of all non-

terminals X such that X ~ G xixi � 1 Â=Â=Â x j © 1. Further, for two nonterminals X

Recognition and Analysis 129

0 í 0 0 í íòò òòòò òòòò
ò

òòòò
òòò

òòòò
òòòò

òòòò
òòòò

òò
òòòò

òòòò
òò

ñ ñ ñ ñ
ñ ñ ñ ñ

ññ

ñ ñ ñ ñ
ñ ñ ñ ñ

ññ

ñ ñ ñ ñ
ñ ñ ñ ñ

ñ ñ ñ ñ
ñ ññ

ñ ñ ñ ñ
ñ
ñ ñ ññ ñ ñ5 6 5 5 6 6} } w } w5 5 5 6w } }5 6}

Figure 8. A Chart for õ0ö�õ.õ0ö�ö
and Y X ÷ Y :

, 5 Z : Z � XY � R 6 and for sets ø���ùÀ} N let

(2.61) øÆ÷áù :
,µ� � X ÷ Y : X �¬ø�� Y �àù �

Now we can compute C)x 7 i � j 8 inductively. The induction parameter is j v i.
If j v i

,
1 then C)x 7 i � j 8 , 5 X : X � x � R 6 . If j v i � 1 then the following

equation holds.

(2.62) C)x 7 i � j 8 , �
i k j

C)x 7 i � k 8%÷ C)x 7 k � j 8
We always have j v k � k v i b j v i. Now let Ex � L 7 G 8 . How can we find a
derivation for Ex? To that end we use the fully computed chart. We begin withEx and decompose it in an arbitrary way; since Ex has the category

}
, there must

be a rule
} � XY and a decomposition into Ex of category X and Ey of category

Y . Or Ex , a � A and
} � a is a rule. If the composition has been found, then

we continue with the substrings Ex and Ey in the same way. Every decomposition
needs some time, which only depends on G. A substring of length i has i ç n
decompositions. In our analysis we have at most 2n substrings. This follows
from the fact that in a properly branching tree with n leaves there are at most
2n nodes. In total we need time at most dG Â n2 for a certain constant dG which
only depends on G.

From this it follows that in general even if the grammar is not in Chom-
sky Normal Form the recognition and analysis only needs O 7 n3 8 steps where

130 Context Free Languages

at the same time we only need O 7 n2 8 cells. For let G be given. Now trans-
form G into 2–standard form into the grammar G2. Since L 7 G2 8 , L 7 G 8 , the
recognition problem for G is solvable in the same amount of time as G2. One
needs O 7 n2 8 steps to construct a chart for Ex. One also needs an additional
O 7 n2 8 steps in order to create a G–tree for Ex and O 7 n 8 steps to turn this into a
derivation.

However, this is not already a proof that the problem is solvable in O 7 n3 8
steps and O 7 n2 8 space, for we need to find a Turing machine which solves the
problem in the same time and space. This is possible; this has been shown
independently by Cocke, Kasami and Younger.

Theorem 2.57 (Cocke, Kasami, Younger) CFLs have the following multi-
tape complexity.

À CFL } DTIME 7 n3 8 .
Á CFL } DSPACE 7 n2 8 .

Proof. We construct a deterministic 3 tape Turing machine which only needs
O 7 n2 8 space and O 7 n3 8 time. The essential trick consists in filling the tape.
Also, in addition to the alphabet A we need an auxiliary alphabet consisting
of
6

and ú as well as for every U } N a symbol ¦U § and a symbol ¦U § { . On
Tape 1 we have the input string, Ex. Put C 7 i � j 8 :

,
C)x 7 i � j 8 . Let Ex have length n.

On Tape 1 we construct a sequence of the following form.

(2.63) ú 6 n ú 6 n © 1 úyÂ=Â=Â�ú 6%6 ú 6 ú
This is the skeleton of the chart. We call a sequence of

6
s in between two ú s a

block. The first block is being filled as follows. The string Ex is deleted step by
step and the sequence

6 n is being replaced by the sequence of the C 7 i � i g 1 8 .
This procedure requires O 7 n2 8 steps. For every d from 1 to n v 1 we shall fill
the d g 1st block. So, let d be given. On Tape 2 we write the sequence

(2.64)
ú	¦C 7 0 � 1 8�§�¦C 7 0 � 2 8�§½Â=Â=Âï¦C 7 0 � d 8�§ 99Òú�¦C 7 1 � 2 8�§�¦C 7 1 � 3 8�§½Â=Â=Âï¦C 7 1 � d g 1 8�§l9«Â=Â=Â9 ú�¦C 7 n v d � n v d g 1 8�§�¦C 7 n v d � n v d g 2 8�§½Â=Â=ÂP¦C 7 n v d � n 8�§�ú

On Tape 3 we write the sequence

(2.65)
ú	¦C 7 0 � d 8�§�¦C 7 1 � d 8�§½Â=Â=Â½¦C 7 d v 1 � d 8�§ 99Òú�¦C 7 1 � d g 1 8�§�¦C 7 2 � d g 1 8�§½Â=Â=ÂP¦C 7 d � d g 1 8�§ã9«Â=Â=Â9 ú�¦C 7 n v d � n 8�§�¦C 7 n v d g 1 � n 8�§½Â=Â=ÂP¦C 7 n v 1 � n 8�§�ú

Recognition and Analysis 131

From this sequence we can compute the d g 1st block quite fast. The au-
tomaton has to traverse the first block on Tape 2 and the second block on
Tape 3 cogradiently and memorize the result of C 7 0 � j 8�÷ C 7 j � d g 1 8 . When it
reaches the end it has computed C 7 0 � d g 1 8 and can enter it on Tape 1. Now
it moves on to the next block on the second and the third tape and computes
C 7 1 � d g 2 8 . And so on. It is clear that the computation is linear in the length
of the Tape 2 (and the Tape 3) and therefore needs O 7 n2 8 time. At the end
of this procedure Tape 2 and 3 are emptied. Also this needs quadratic time.
At the end we need to consider that the filling of Tapes 2 and 3 needs O 7 n2 8
time. Then for every d the time consumption is at most O 7 n2 8 and in total
O 7 n3 8 . For this we first write ú and position the head of Tape 1 on the ele-
ment ¦C 7 0 � 1 8�§ . We write ¦C 7 0 � 1 8�§ onto Tape 2 and ¦C 7 0 � 1 8�§ { onto Tape 1. (So,
we ‘tick off’ the symbol. This helps us to remember what we did.) Now we
advance to ¦C 7 1 � 2 8�§ copy the result onto Tape 2 and replace it by ¦C 7 1 � 2 8�§ { .
And so on. This only needs linear time; for the symbols ¦C 7 i � i g 1 8�§ we rec-
ognize because they are placed before the ú . If we are ready we write ú onto
Tape 2 and move on Tape 1 on to the beginning and then to the first symbol
to the right of a ‘ticked off’ symbol. This is ¦C 7 1 � 2 8�§ . We copy this symbol
onto Tape 2 and tick it off. Now we move on to the next symbol to the right
of the symbol which has been ticked off, copy it and tick it off. In this way
Tape 2 is filled in quadratic time. At last the symbols that have been ticked
off are being ticked ‘on’, which needs O 7 n2 8 time. Analogously the Tape 3 is
filled. <
Exercise 58. Prove Proposition 2.35.

Exercise 59. Prove Theorem 2.41. Hint. Show that the number of ε–moves
of an automaton ­ in scanning of the string Ex is bounded by k ® ÂO�nEx � , where k ®is a number that depends only on ­ . Now code the behaviour of an arbitrary
pushdown automaton using a 2–tape Turing machine and show that to every
move of the pushdown automaton corresponds a bounded number of steps of
the Turing machine.

Exercise 60. Show that a CFL is 0–turn iff it is regular.

Exercise 61. Give an algorithm to code a chart onto the tape of a Turing ma-
chine.

Exercise 62. Sketch the behaviour of a deterministic Turing machine which
recognizes a given CFL using O 7 n2 8 space.

132 Context Free Languages

Exercise 63. Show that 5�Ew EwT : Ew � A ¡ 6 is context free but not deterministic.

Exercise 64. Construct a deterministic automaton which recognizes a given
Dyck–language.

Exercise 65. Prove Theorem 2.46.

4. Ambiguity, Transparency and Parsing Strategies

In this section we will deal with the relationship between strings and trees.
As we have explained in Section 1.6, there is a bijective correspondence be-
tween derivations in G and derivations in the corresponding graph grammar
γG. Moreover, every derivation ∆

, � Ai : i b p � of G defines an exhaustively
ordered tree

·
with labels in N s A whose associated string is exactly Eαp,

where Ap © 1
, � Eαp © 1 � Cp © 1 � Eαp � . If Eαp is not a terminal string, the labels of

the leaves are also not all terminal. We call such a tree a partial G–tree.

Definition 2.58 Let G be a CFG. Eα is called a G–constituent of category A
if A ~ G Eα . Let

·
be a G–tree with associated string Ex and Ey a substring ofEx. Assume further that Ey is a G–constituent of category A and Ex , D 7�Ey 8 . The

occurrence D of Ey in Ex is called an accidental G–constituent of category A
in
·

if it is not a G–constituent of category A in
·

.

We shall illustrate this terminology with an example. Let G be the following
grammar.

(2.66)

} � }%} � 5 6 � 6 55 � 5 } � } 5 � 06 � 6 } � } 6 �ií
The string Ex , 0 í 0(0 í�í has several derivations, which generate among other
the following bracketing analyses.

(2.67) 7 0 7�í�7 0 7=7 0 í�8�í	8=8=8=8P� 7=7 0 í�8�7=7=7 0 7 0 í�8=8�í	8=8=8
We now list all G–constituents which occur in Ex:5

:
0 � 0�0 í�� 0 í 0 �lí 0�0 � 0 í 0(0 í6

: í�� 0 í(í(2.68) }
:
0 í.� 0(0 í�í�� 0 í 0�0 í�í

Ambiguity, Transparency and Parsing Strategies 133

Some constituents occur several times, for example
0 í in � ε � 0�0 í�í
� and also

in � 0 í 0 �lí	� . Now we look at the first bracketing, 7 0 7�í�7 0 7=7 0 í�8�í	8=8=8=8 . The con-
stituents are

0
(contexts: � ε �lí 0(0 í(í
� , � 0 í�� 0 í�í	� , � 0 í 0 �lí(í��), í ,

0 í (for exam-
ple in the context: � 0 í 0 �lí��), 0 í(í in the context � 0 í 0 � ε � , 0(0 í(í , í 0(0 í�í and0 í 0�0 í(í . These are the constituents of the tree. The occurrence � ε � 0(0 í�í�� of0 í in

0 í 0 í(í is therefore an accidental occurrence of a G–constituent of cate-
gory

}
in that tree. For although

0 í is a G–constituent, this occurrence in the
tree is not a constituent occurrence of it. Notice that it may happen that Ey is a
constituent of the tree

·
but that as a G–constituent of category C it occurs

accidentally since its category in
·

is D �, C.

Definition 2.59 A grammar G is called transparent if no G–constituent oc-
curs accidentally in a G–string. A grammar which is not transparent will be
called opaque. A language for which no transparent grammar exists will be
called inherently opaque.

An example shall illustrate this. For any given signature Ω, Polish Notation
can be generated by a transparent grammar.

(2.69)
} �¼[Ω ¯ f ° } Ω ¯ f ° [Ω ¯ f ° � f

This defines the grammar ΠΩ for PNΩ. Moreover, given a string Ex generated
by this grammar, the subterm occurrences of Ex under a given analysis are in
one to one correspondence with the subcontituents of category

}
. An occur-

rence of an n–ary function symbol is a constituent of type [n. We shall show
that this grammar is not only unambiguous, it is transparent.

Let Ex , x0x1 Â=Â=Â xn © 1 be a string. Then let γ 7�Ex 8 :
,

∑i n γ 7 xi 8 , where for
every f � F , γ 7 f 8 :

,
Ω 7 f 8�v 1. (So, if Ω 7 f 8 , 0, γ 7 f 8 , v 1.) The proof of

the following is left as an exercise.

Lemma 2.60 Ex � PNΩ iff (a) γ 7ÈEx 8 , v 1 and (b) for every proper prefix Ey ofEx we have γ 7ÈEy 8Òf 0.

It follows from this theorem that no proper prefix of a term is a term. (How-
ever, a suffix of a term may again be a term.) The constituents are therefore
all the substrings that have the properties (a) and (b). We show that the gram-
mar is transparent. Now suppose that Ex contains an accidental occurrence of
a term Ey. Then this occurrence overlaps properly with a constituent Ez. With-
out loss of generality Ey , Eu 9 Ev and Ez , Ev 9 Ew (with Eu �XEw �, ε). It follows that
γ 7�Ev 8 , γ 7ÈEy 8
v γ 7$Eu 8yb 0 since γ 7$Eu 8Òf 0. Hence there exists a proper prefix Eu1

134 Context Free Languages

of Eu such that Eu1
, v 1. (In order to show this one must first conclude that

the set P 7ÈEx 8 :
, 5 γ 7jEp 8 : Ep is a prefix of Ex 6 is a convex set for every term Ex. See

Exercise 68.)

Theorem 2.61 The grammar ΠΩ is transparent. <
Now look at the languages

0 � í and
0 � . Both are regular. There is a trans-

parent regular grammar for
0 � í . It has the rules

} � 0 6
,
6 � 5 6 ��í .

0 � is
on the other hand inherently opaque. For any CFG must generate at least two
constituents of the form

0 p and
0 q, q � p. Now there exist two occurrences

of
0 p in

0 q which properly overlap. One of them must be accidental.

Proposition 2.62
0 � is inherently opaque. <

It can easily be seen that if L is transparent and ε � L, then L
, 5 ε 6 . Also, a

language over an alphabet consisting of a single letter can only be transpar-
ent if it contains no more than a single string. Many properties of CFGs are
undecidable. Transparency is different in this respect.

Theorem 2.63 (Fine) Let G be a CFG. It is decidable whether or not G is
transparent.

Proof. Let k be the constant from the Pumping Lemma (1.81). This constant
can effectively be determined. By Lemma 2.64 there is an accidental occur-
rence of a constituent iff there is an accidental occurrence of a right hand
side of a production. These are of the length p g 1 where p is the maximum
productivity of a rule from G. Further, because of Lemma 2.66 we only need
to check those constituents for accidental occurrences whose length does not
exceed p2 g p. This can be done in finite amount of time. <
Lemma 2.64 G is opaque iff there is a production ρ

,
A � Eα such that Eα

has an accidental occurrence in a partial G–tree.

Proof. Let Eϕ be a string of minimal length which occurs accidentally. And
let C be an accidental occurrence of Eϕ . Further, let Eϕ , Eγ1 Eα Eγ2, and let A � Eα
be a rule. Then two cases may occur. (A) The occurrence of Eα is accidental.
Then we have a contradiction to the minimality of Eϕ . (B) The occurrence ofEα is not accidental. Then Eη :

, Eγ1A Eγ2 also occurs accidentally in C 7 Eη 8 ! (We
can undo the replacement A � Eα in the string C 7 Eϕ 8 since Eα is a constituent.)
Also this contradicts the minimality of Eϕ . So, Eϕ is the right hand side of a
production. <

Ambiguity, Transparency and Parsing Strategies 135

Lemma 2.65 Let G be a CFG without rules of productivity v 1 and let Eα , Eγ
be strings. Further, assume that Eγ is a G–constituent of category A in whichEα occurs accidentally and in which Eγ is minimal in the following sense: there
is no Eη of category A with (1) � Eη ��bÑ� Eγ � and (2) Eη ~ G Eγ and (3) Eα occurs
accidentally in Eη . Then every constituent of length � 1 overlaps with the
accidental occurrence of Eα .

Proof. Let Eγ , Eσ1 Eη Eσ2, � Eη ��� 1, and assume that the occurrence of Eη is a
constituent of category A which does not overlap with Eα . Then Eα occurs
accidentally in Eδ :

, Eσ1 A Eσ2. Further, � Eδ �>b � Eγ � , contradicting the minimality
of Eγ . <
Lemma 2.66 Let G be a CFG where the productivity of rules is at least 0 and
at most p, and let Eα be a string of length n which occurs accidentally. Then
there exists a constituent Eγ of length ç np in which Eα occurs accidentally.

Proof. Let A ~ G Eγ be minimal in the sense of the previous lemma. Then we
have that every constituent of Eγ of length � 1 overlaps properly with Eα . HenceEγ has been obtained by at most n applications of rules of productivity � 0.
Hence � Eγ �4ç np. <

The property of transparency is stronger than that of unique readability,
also known as unambiguity, which is defined as follows.

Definition 2.67 A CFG G is called unambiguous if for every string Ex there
is at most one G–tree whose associated string is Ex. If G is not unambiguous, it
is called ambiguous. A CFL L is called inherently ambiguous if every CFG
generating it is ambiguous.

Proposition 2.68 Every transparent grammar is unambiguous.

There exist inherently ambiguous languages. Here is an example.

Theorem 2.69 (Parikh) The language L is inherently ambiguous.

(2.70) L :
, 5 0 n í n F m : n � m � ω 6�s 5 0 m í n F n : n � m � ω 6

Proof. L is context free and so there exists a CFG G such that L 7 G 8 , L.
We shall show that G must be ambiguous. There is a number k which satis-
fies the Pumping Lemma (1.81). Let n :

,
k! 7 : , ∏k

i ð 1 i 8 . Then there exists a
decomposition of

0 2n í 2n F 3n into

(2.71) Eu1 9 Ex1 9 Ev1 9 Ey1 9 Ez1

136 Context Free Languages

in such a way that �`Eu1 ��ç k. Furthermore, we may also assume that � Ev1 ��ç k.
It is easy to see that Ex1 Ey1 may not contain occurrences of

0
, í and F at the

same time. Since it contains
0
, it may not contain F . So we have Ex1

,µ0 p andEy1
, í p for some p. We consider a maximal constituent of (2.71) of the form0 q í q ¡ . Such a constituent must exist. (Ex1 93Ev1 9@Ey1 is of that form.) In it there

is a constituent of the form
0 q © i í q ¡ © i for some i b k. This follows from the

Pumping Lemma. Hence we can pump up
0 i and í i at the same time and get

strings of the form

(2.72)
0 2p � ki í 2p � ki F 3q

while there exists a constituent of the form
0 2p � ki © r í 2p � ki © s for certain r� s ç

k. In particular, for k :
,

p ¾ i we get

(2.73)
0 3p í 3p F 3q

Now we form a decomposition of
0 3n í 2n F 2n into

(2.74) Eu2 9 Ex2 9 Ev2 9 Ey2 9 Ez2

in such a way that � Ez2 �`�P�nEv2 �Xç k. Analogously we get a constituent of the formí 2p © s ¡ 9 F 2p © r ¡ for certain r kÁ� s k�ç k. These occurrences overlap. For the left
hand constituent contains 3p v s many occurrences of í and the right hand
constituent contains 3p v s k many occurrences of í . Since 3p v s g 3p v s k ,
6p v 7 s g s k 8 � 3p, these constituents must overlap. However, they are not
equal. But this is impossible. So G is ambiguous. Since G was arbitrary, L is
inherently ambigous. <

Now we discuss a property which is in some sense the opposite of the
property of unambiguity. It says that if a right hand side occurs in a con-
stituent, then under some different analysis this occurrence is actually a con-
stituent occurrence.

Definition 2.70 A CFG has the NTS–property if from C ~ G Eα1 9 Eβ 9 Eα2 and
B � Eβ � R follows: C ~ G Eα1 9 B 9 Eα2. A language is called an NTS–language
if it has an NTS–grammar.

The following grammar is not an NTS–grammar.

(2.75) �×� 0 ���û�×� 0
For we have �ü~ 0(0 but it does not hold that �ü~à� 0 . In general, regular gram-
mars are not NTS. However, we have

Ambiguity, Transparency and Parsing Strategies 137

Theorem 2.71 All regular languages are NTS–languages.

Proof. Assume that L is regular. Then there exists a finite state automaton­ , � A � Q � q0 � F � δ � such that L
,

L 7Á­�8 . Put N :
, 5 S ý>6�s 5 L 7 p � q 8 : p � q � Q 6 .

Further, put G :
, � } ý � N � A � R � , where R consists of

(2.76)

} ý � 1�7 q0 � q 8 7 q � F 81.7 p � q 8 � 1�7 p � r 8�1»7 r� q 81.7 p � q 8 � a 7 q � δ 7 p � a 8=8
Then we have 1�7 p � q 8þ~ G Ex iff q � δ 7 p ��Ex 8 , as is checked by induction. From
this follows that

} ýW~ G Ex iff Ex � L 7Á­�8 . Hence we have L 7 G 8 , L. It remains
to show that G has the NTS–property. To this end let 1�7 p � q 8�~ G Eα1 9 Eβ 9 Eα2

and 1.7 r� s 8ÿ~ G
Eβ . We have to show that 1�7 p � q 8þ~ G Eα1 9 1�7 r� s 8 9 Eα2. In order to

do this we extend the automaton ­ to an automaton which reads strings from
N s A. Here q � δ 7 p � C 8 iff for every string Ey with C ~ G Ey we have q � δ 7 p ��Ey 8 .
Then it is clear that q � δ 7 p ��1»7 p � q 8=8 . Then it still holds that 1.7 p � q 8þ~ G Eα iff
q � δ 7 p � Eα 8 . Hence we have r � δ 7 p � Eα1 8 and q � δ 7 s � Eα2 8 . From this follows
that 1.7 p � q 8þ~ G 1�7 p � r 8�1�7 r� s 8�1»7 s � q 8 and finally 1�7 p � q 8þ~ G Eα1 1.7 r� s 8 Eα2. <

If a grammar has the NTS–property, strings can be recognized very fast.
We sketch a pushdown automaton that recognizes L 7 G 8 . Scanning the string
from left to right it puts the symbols onto the stack. Using its states the au-
tomaton memorizes the content of the stack up to κ symbols deep, where κ is
the length of a longest right hand side of a production. If the upper part of the
stack matches a right hand side of a production A � Eα in the appropriate or-
der, then Eα is deleted from the stack and A is put on top of it. At this moment
the automaton rescans the upper part of the stack up to κ symbols deep. This
is done using a series of empty moves. The automaton pops κ symbols and
then puts them back onto the stack. Then it continues the procedure above. It
is important that the replacement of a right hand side by a left hand side is
done whenever first possible.

Theorem 2.72 Let G be an NTS–grammar. Then G is deterministic. Further-
more, the recognition and parsing problem are in DTIME 7 n 8 .
We shall deepen this result. To this end we abstract somewhat from the push-
down automata and introduce a calculus which manipulates pairs Eα ~ ~ ~ÝEx of
strings separated by a turnstile. Here, we think of Eα as the stack of the au-
tomaton and Ex as the string to the right of the reading head. It is not really

138 Context Free Languages

necessary to have terminal strings on the right hand side; however, the gener-
alization to arbitrary strings is easy to do. There are several operations. The
first is called shift. It simulates the reading of the first symbol.

(2.77) shift:
Eη ~ ~ ~ x EyEηx ~ ~ ~ Ey

Another operation is reduce.

(2.78) reduce ρ :
Eη Eα ~ ~ ~�ExEηX ~ ~ ~�Ex

Here ρ
,

X � Eα must be a G–rule. This calculus shall be called the shift–
reduce–calculus for G. The following theorem is easily proved by induction
on the length of a derivation.

Theorem 2.73 Let G be a CFG. Eα ~ G Ex iff there is a derivation of Eα ~ ~ ~ ε from
ε ~ ~ ~ Ex in the shift–reduce–calculus for G.

This strategy can be applied to every language. We take the following gram-
mar.

(2.79)

} � 5 } 6 �ïF5 � 06 � í
Then we have S ~ G

0(0 FXí(í . Indeed, we get a derivation shown in Table 4. Of
course the calculus does not provide unique solutions. On many occasions
we have to guess whether to shift or whether to reduce, and if the latter, then
by what rule. Notice namely that if some right hand side of a production is a
suffix of a right hand side of another production we have an option. We call
a k–strategy a function f which tells us for every pair Eα ~ ~ ~�Ex whether or not
we shall shift or reduce (and by which rule). Further, f shall only depend (1)
on the reduction rules which can be at all applied to Eα and (2) on the first k
symbols of Ex. We assume that in case of competition only one rule is chosen.
So, a k–strategy is a map R e � i k Ai to 5 s � r 6 . If Eα ~ ~ ~�Ex is given then we
determine the next rule application as follows. Let Eβ be a suffix of Eα which
is reducible. If f 7 Eβ � ¯ k ° Ex 8 , s, then we shift; if f 7 Eβ � ¯ k ° Ex 8 , r then we apply
reduction to Eβ . This is in fact not really unambigous. For a right hand side

Ambiguity, Transparency and Parsing Strategies 139

Table 4. A Derivation by Shifting and Reducing

ε ~ ~ ~ 0�0 FXí�í0 ~ ~ ~ 0 Fïí�í5 ~ ~ ~ 0 Fïí�í5 0 ~ ~ ~]FXí(í5�5 ~ ~ ~]FXí(í5�5 F ~ ~ ~ªí�í5�5 } ~ ~ ~ªí�í5�5 } íP~~~ªí5�5 } 6 ~ ~ ~ªí5 } ~ ~ ~ªí5 } í�~~~ ε5 } 6 ~ ~ ~ ε} ~ ~ ~ ε

of a production may be the suffix of a right hand side of another production.
Therefore, we look at another property.

(2.80) If ρ1
,

X1 � Eβ1 � R and ρ2
,

X2 � Eβ2 � R, ρ1 �, ρ2,

and if �nEy �1ç k then f 7 Eβ1 ��Ey 8 or f 7 Eβ2 ��Ey 8 is undefined.

Definition 2.74 A CFG G is called an LR 7 k 8 –grammar if not
} | � } and if

for some k � ω there is a k–strategy for the shift–and–reduce calculus for G.
A language is called an LR 7 k 8 –language if it is generated by some LR 7 k 8 –
grammar.

Theorem 2.75 A CFG is an LR 7 k 8 –grammar if the following holds: Sup-
pose that Eη1 Eα1 Ex1 and Eη2 Eα2 Ex2 have a rightmost derivation and that with p :

,� Eη1 Eα1 ��g k we have

(2.81) ¯ p ° Eη1 Eα1 Ex1
, ¯ p ° Eη2 Eα2 Ex2

Then Eη1
, Eη2, Eα1

, Eα2 and ¯ k ° Ex1
, ¯ k ° Ex2.

This theorem is not hard to show. It says that the strategy may be based indeed
only on the k–prefix of the string which is to be read. This is essentially the

140 Context Free Languages

property (2.80). One needs to convince oneself that a derivation in the shift–
reduce–calculus corresponds to a rightmost derivation, provided reduction is
scheduled as early as possible.

Theorem 2.76 LR 7 k 8 –languages are deterministic.

We leave the proof of this fact to the reader. The task is to show how to extract
a deterministic automaton from a strategy. The following is easy.

Lemma 2.77 Every LR 7 k 8 –language is an LR 7 k g 1 8 –language.

So we have the following hierarchy.

(2.82) LR 7 0 8Ë} LR 7 1 8Ë} LR 7 2 8Ë} LR 7 3 8(�=�=�
This hierarchy is stationary already from k

,
1.

Lemma 2.78 Let k � 0. If L is an LR 7 k g 1 8 –language then L also is an
LR 7 k 8 –language.

Proof. For a proof we construct an LR 7 k 8 –grammar G Û from an LR 7 k g 1 8 –
grammar G. For simplicity we assume that G is in Chomsky Normal Form.
The general case is easily shown in the same way. The idea behind the con-
struction is as follows. A constituent of G Û corresponds to a constituent of
G which has been shifted one letter to the right. To implement this idea we
introduce new symbols, ¦ a � X � b § , where a � b � A, X � N, and ¦ a � X � ε § , a � A.
The start symbol of G Û is the start symbol of G. The rules are as follows,
where a � b � c range over A.

(2.83)

} � ε if
} � ε � R �} � a ¦ a � } � ε § a � A �¦ a � X � b § � ¦ a � Y � c §.¦ c � Z � b § if X � Y Z � R �¦ a � X � ε §ü� ¦ a � Y � c §.¦ c � Z � ε § if X � Y Z � R �¦ a � X � b § � b if X � a � R �¦ a � X � ε §ü� ε if X � a � R �

By induction on the length of a derivation the following is shown.¦ a � X � b §�~ G
� Eα b å X ~ G a Eα(2.84a) ¦ a � X � ε §�~ G
� Eα å X ~ G a Eα(2.84b)

Ambiguity, Transparency and Parsing Strategies 141

From this we can deduce that G Û is an LR 7 k 8 –grammar. To this end let Eη1 Eα1 Ex1
and Eη2 Eα2 Ex2 be rightmost derivable in G Û , and let p :

, � Eη1 Eα1 �$g k as well as

(2.85) ¯ p ° Eη1 Eα1 Ex1
, ¯ p ° Eη2 Eα2 Ex2

Then a Eη1 Eα1 Ex1
, Eη k1 Eα k1b Ex1 for some a � b � A and some Eη k1, Eα k1 with a Eη1

, Eη k1c
for c � A and c Eα1

, Eα k1b. Furthermore, we have a Eη2 Eα2 Ex2
, Eη k2 Eα k2b Ex2, a Eη2

,Eη k2c and c Eα2
, Eα k2 for certain Eη k2 and Eα k2. Hence we have

(2.86) ¯ p � 1 ° Eη k1 Eα k1b Ex1
, ¯ p � 1 ° Eη k2 Eα k2b Ex2

and p g 1
, � Eη k1 Eα k1 �Pg k g 1. Furthermore, the left hand and the right hand

string have a rightmost derivation in G. From this it follows, since G is an
LR 7 k g 1 8 –grammar, that Eη k1 , Eη k2 and Eα k1 , Eα k2, as well as ¯ k � 1 ° b Ex1

, ¯ k � 1 ° b Ex2.
From this we get Eη1

, Eη2, Eα1
, Eα2 and ¯ k ° Ex1

, ¯ k ° Ex2, as required. <
Now we shall prove the following important theorem.

Theorem 2.79 Every deterministic language is an LR 7 1 8 –language.

The proof is relatively long. Before we begin we shall prove a few auxiliary
theorems which establish that strictly deterministic languages are exactly the
languages that are generated by strict deterministic grammars, and that they
are unambiguous and in LR 7 0 8 . This will give us the key to the general theo-
rem.

We still owe the reader a proof that strict deterministic grammars only
generate strict deterministic languages. This is essentially the consequence of
a property that we shall call left transparency. We say Eα occurs in Eη1 Eα Eη2
with left context Eη1.

Definition 2.80 Let G be a CFG. G is called left transparent if a constituent
may never occur in a string accidentally with the same left context. This
means that if Ex is a constituent of category C in Ey1 Ex Ey2 and if Ez :

, Ey1 Ex Ey3 is
a G–string then Ex also is a constituent of category C in Ez.

For the following theorem we need a few definitions. Let
·

be a tree and
n � ω a natural number. Then ¯ n ° · denotes the tree which consists of all
nodes above the first n leaves from the left. Let P the set of leaves of

·
, say

P
, 5 pi : i b q 6 , and let pi j p j iff i b j. Then put Nn :

, 5 pi : i b n 6 , and
On :

, e Nn. ¯ n ° · :
, � On � r�ibØ�
j]� , where b and j are the relations relativized

to On. If ! is a labelling function and ± , � · �_!ï� a labelled tree then let ¯ n ° ± :
,

142 Context Free Languages� ¯ n ° · �_!Ù£ On � . Again, we denote !Ù£ On simply by ! . We remark that the set
Rn :

, ¯ n ° · v ¯ n © 1 ° · is linearly ordered by b . We look at the largest element
z from Rn. Two cases arise. (a) z has no right sister. (b) z has a right sister.
In Case (a) the constituent of the mother of z is closed at the transition from¯ n © 1 ° · to ¯ n ° · . Say that y is at the right edge of ± if there is no z such that
y j z. Then e Rn consists exactly of the elements which are at the right edge
of ¯ n ° · and Rn consists of all those elements which are at the right edge of¯ n ° · but not contained in ¯ n © 1 ° · . Now the following holds.

Proposition 2.81 Let G be a strict deterministic grammar. Then G is left
transparent. Furthermore: let ± 1

, � · 1 �_! 1 � and ± 2
, � · 2 �_! 2 � be partial

G–trees such that the following holds.

À If Ci is the label of the root of ± i then C1 ð C2.

Á ¯ n ° k 7l± 1 8 , ¯ n ° k 7l± 2 8 .
Then there is an isomorphism f : ¯ n � 1 ° ·

1 ¤ ¯ n � 1 ° ·
2 such that ! 2 7 f 7 x 8=8 ,! 1 7 x 8 in case x is not at the right edge of ¯ n � 1 ° ·

1 and ! 2 7 f 7 x 8=89ð ! 1 7 x 8 other-
wise.

Proof. We show the theorem by induction on n. We assume that it holds for
all k b n. If n

,
0, it holds anyway. Now we show the claim for n. There exists

by assumption an isomorphism fn : ¯ n ° · 1 � ¯ n ° ·
2 satisfying the conditions

given above. Again, put Rn � 1 :
, ¯ n � 1 ° ·

1 v ¯ n ° · 1. At first we shall show that! 2 7 fn 7 x 8=8 , ! 1 7 x 8 for all x �� e Rn � 1. From this it immediately follows that! 2 7 fn 7 x 8=8SðÙ! 1 7 x 8 for all x ��e Rn � 1 v Rn � 1 since G is strict deterministic.
This claim we show by induction on the height of x. If h 7 x 8 , 0, then x is
a leaf and the claim holds because of the assumption that ± 1 and ± 2 have
the same associated string. If h 7 x 8ª� 0 then every daughter of x is in e Rn � 1.
By induction hypothesis therefore ! 2 7 fn 7 y 8=8 , ! 1 7 y 8 for every y a x. Since G
is strict deterministic, the label of x is uniquely fixed by this for ! 2 7 fn 7 x 8=8þð! 1 7 x 8 , by induction hypothesis. So we now have ! 2 7 fn 7 x 8=8 , ! 1 7 x 8 . This shows
the first claim. Now we extend fn to an isomorphism fn � 1 from ¯ n � 1 ° ·

1 onto¯ n � 1 ° ·
2 and show at the same time that ! 2 7 fn 7 x 8=8nð	! 1 7 x 8 for every x ��e Rn � 1.

This holds already by inductive hypothesis for all x �� Rn � 1. So, we only have
to show this for x � Rn � 1. This we do as follows. Let u0 be the largest node in
Rn � 1. Certainly, u0 is not the root. So let v be the mother of u0. fn is defined
on v and we have ! 2 7 fn 7 v 8=89ð�! 1 7 v 8 . By assumption, ! 2 7 fn 7 x 8=8 , ! 1 7 x 8 for all
x j u. So, we first of all have that there is a daughter x0 of fn 7 v 8 which is not

Ambiguity, Transparency and Parsing Strategies 143

in the image of fn. We choose x k0 minimal with this property. Then we put
fn � 1 7 u0 8 :

,
x0. Now we have ! 2 7 fn � 1 7 u0 8=89ðk! 1 7 u0 8 . We continue with u0 in

place of v. In this way we obtain a map fn � 1 from ¯ n ° ·
1 s Rn � 1

, ¯ n � 1 ° ·
1

to ¯ n � 1 ° ·
2 with ! 2 7 fn � 1 7 x 8=8SðX! 1 7 x 8 , if x � Rn � 1 and ! 2 7 fn � 1 7 x 8=8 , ! 1 7 x 8

otherwise. That fn � 1 is surjective is seen as follows. Suppose that uk is the
leaf of

·
1 in Rn � 1. Then xk

,
fn � 1 7 uk 8 is not a leaf in

·
2, and then there

exists a xk � 1 in ¯ n � 1 ° ·
2 v ¯ n ° · 2. We have ! 2 7 fn � 1 7 xk 8=8Gð ! 1 7 uk 8 . Let xp be the

leaf in L. By Lemma 2.50 ! 2 7 xp 8;�ðb! 2 7 xk 8 and therefore also ! 2 7 xp 8;�ð ! 1 7 uk 8 .
However, by assumption xp is the n g 1st leaf of

·
2 and likewise uk is the

n g 1st leaf of
·

1, from which we get ! 1 7 uk 8 , ! 2 7 xp 8 in contradiction to
what has just been shown. <
Theorem 2.82 Let G be a strict deterministic grammar. Then L 7 G 8 is unam-
biguous. Further, G is an LR 7 0 8 –grammar and L 7 G 8 is strict deterministic.

Proof. The strategy of shifting and reducing can be applied as follows: ev-
ery time we have identified a right hand side of a rule X � Eµ then this is
a constituent of category X and we can reduce. This shows that we have a
0–strategy. Hence the grammar is an LR 7 0 8 –grammar. L 7 G 8 is certainly un-
ambiguous. Furthermore, L 7 G 8 is deterministic, by Theorem 2.76. Finally,
we have to show that L 7 G 8 is prefix free for then by Theorem 2.45 it follows
that L 7 G 8 is strict deterministic. Now let Ex Ey � L 7 G 8 . If also Ex � L 7 G 8 , then by
Proposition 2.81 we must have Ey , ε . <

At first sight it appears that Lemma 2.78 also holds for k
,

0. The con-
struction can be extended to this case without trouble. Indeed, in this case we
get something of an LR 7 0 8 –grammar; however, it is to be noted that a strategy
for G Û does not only depend on the next symbol. Additionally, it depends on
the fact whether or not the string that is yet to be read is empty. The strategy
is therefore not entirely independent of the right context even though the de-
pendency is greatly reduced. That LR 7 0 8 –languages are indeed more special
than LR 7 1 8 –languages is the content of the next theorem.

Theorem 2.83 (Geller & Harrison) Let L be a deterministic CFL. Then the
following are equivalent.

À L is an LR 7 0 8 –language.

Á If Ex � L, Ex Ev � L and Ey � L then also Ey Ev � L.

Â There are strict deterministic languages U and V such that L
,

U Â V ¡ .

144 Context Free Languages

Proof. Assume À. Then there is an LR 7 0 8 –grammar G for L. Hence, if X � Eα
is a rule and if Eη Eα Ey is G–derivable then also Eη X Ey is G–derivable. Using
induction, this can also be shown of all pairs X , Eα for which X ~ G Eα . Now
let Ex � L and Ex Ev � L. Then

} ~ G Ex, and so by the previous ~ G
} Ev. Therefore,

since
} ~ G Ey we have ~ G Ey Ev. Hence Á obtains. Assume now Á. Let U be

the set of all Ex � L such that Ey �� L for every proper prefix Ey of Ex. Let V be
the set of all Ev such that Ex Ev � L for some Ex � U but Ex Ew �� L for every Ex � U
and every proper prefix Ew of Ev. Now, V is the set of all Ey � V ¡ v 5 ε 6 for
which no proper prefix is in V ¡ vf5 ε 6 . We show that U Â V ¡ , L. To this end
let us prove first that L } U Â V ¡ . Let Eu � L. We distinguish two cases. (a)
No proper prefix of Eu is in L. Then Eu � U , by definition of U . (b) There is
a proper prefix Ex of Eu which is in L. We choose Ex minimally. Then Ex � U .
Let Eu , Ex Ev. Now two subcases arise. (A) For no proper prefix Ew0 of Ev we
have Ex Ew0 � L. Then Ev � V , and we are done. (B) There is a proper prefixEw0 of Ev with Ex Ew0 � L. Let Ev , Ew0 Ev1. Then, by Á, we have Ex Ev1 � L. (In Á,
put Ex Ew0 in place of Ex and in place of Ey put Ex and for Ew put Ev1.) Ex Ev1 has
smaller length than Ex Ev. Continue with Ex Ev1 in the same way. At the end we
get a partition of Ev , Ew0 Ew1 Â=Â=Â1Ewn © 1 such that Ewi � V for every i b n. Hence
L } U Â V ¡ . We now show U Â V ¡ } L. Let Eu , Ex 9 ∏i n Ewi. If n

,
0, then Eu , Ex

and by definition of U we have Eu � L. Now let n � 0. With Á we can show
that Ex 9 ∏i n © 1 Ewi � L. This shows that Eu � L. Finally, we have to show that
U and V are deterministic. This follows for U from Theorem 2.46. Now letEx ��Ey � U . Then by Á P :

, 51Ev : Ex Ev � L 6 , 51Ev : Ey Ev � L 6 . The reader may convince
himself that P is deterministic. Now let V be the set of all Ev for which there
is no prefix in P vx5 ε 6 . Then P

,
V ¡ and because of Theorem 2.46 V is strict

deterministic. This shows Â. Finally, assume Â. We have to show that L is an
LR 7 0 8 –language. To this end, let G1

, � } � N1 � A � R1 � be a strict deterministic
grammar which generates U and G2

, � } 2 � N2 � A � R2 � a strict deterministic
grammar which generates V . Then let G3 :

, � } 3 � N1 s N2 s¶5 } 3 � } 4 6>� A � R3 � be
defined as follows.

(2.87) R3 :
,

R1 s R2 sì5 } 3 � }
1 � } 3 � }

1
}

4 � } 4 � }
2 � } 4 � }

2
}

4 6
It is not hard to show that G3 is an LR 7 0 8 –grammar and that L 7 G3 8 , L. <

The decomposition in Â is unique, if we exclude the possibility that V
, w

and if we require that U
, 5 ε 6 shall be the case only if V

, 5 ε 6 . In this way
we take care of the cases L

, w and L
,

U . The case U
,

V may arise. Then
L
,

U � . The semi Dyck languages are of this kind.

Ambiguity, Transparency and Parsing Strategies 145

Now we proceed to the proof of Theorem 2.79. Let L be deterministic.
Then put M :

,
L Âj5 $ 6 , where $ is a new symbol. M is certainly determin-

istic; and it is prefix free and so strict deterministic. It follows that M is
an LR 7 0 8 –language. Therefore there exists a strict deterministic grammar G
which generates M. From the next theorem we now conclude that L is an
LR 7 1 8 –language.

Lemma 2.84 Let G be an LR 7 0 8 –grammar of the form G
, � } � N s¶5 � 6>� A � R �

with R } N eì7=7 N s A 8 ¡ s�7 N s A 8 ¡ Â � 8 and L 7 G 8»} A ¡ � , and assume that there
is no derivation

} | R
}��

in G. Then let H :
, � } � N � A � R k � , where

R k : , 5 A � Eα : A � Eα � R � Eα ��7 N s A 8 ¡ 6(2.88) s 5 A � Eα : A � Eα � � R 6
Then H is an LR 7 1 8 –grammar and L 7 H 8�Â � , L 7 G 8 .
For a proof consider the following. We do not have

} | �L } in H . Further: if} | �L Eα in H then there exists a D such that
} | �L Eα D in G, and if

} | �L Eβ
in G then we have Eβ , Eα D and

} | �L Eα in H . From this we can immediately
conclude that H is an LR 7 1 8 –grammar.

Finally, let us return to the calculus of shifting and reducing. We generalize
this strategy as follows. For every symbol α of our grammar we add a symbol
α . This symbol is a formal inverse of α ; it signals that at its place we look
for an α but haven’t identified it yet. This means that we admit the following
transitions.

(2.89)
Eηαα ~ ~ ~�ExEη ~ ~ ~�Ex

We call this rule cancellation. We write for strings Eα also Eα . This denotes
the formal inverse of the entire string. If Eα ,

∏i n αi then α
,

∏i n αn © i.

Notice that the order is reversed. For example
5 6 , 6 9 5 . These new strings

allow to perform reductions on the left hand side even when only part of the
right hand side of a production has been identified. The most general rule is
this one.

(2.90)
EηX Eα ~ ~ ~�ExEη Eτ ~ ~ ~�Ex

This rule is called the LC–rule. Here X � Eα Eτ must be a G–rule. This means
intuitively speaking that vecα is an X if followed by Eτ . Since Eτ is not yet there

146 Context Free Languages

we have to write Eτ . The LC–calculus consists of the rules shift, reduce and
LC. Now the following holds.

Theorem 2.85 Let G be a grammar. Eα ~ G Ex holds iff there is a derivation of
ε ~ ~ ~ ε from Eα ~ ~ ~ÙEx in the LC–calculus.

A special case is Eα ,
ε . Here no part of the production has been identified,

and one simply guesses a rule. If in place of the usual rules only this rule is
taken, we get a strategy known as top–down strategy. In it, one may shift,
reduce and guess a rule. A grammar is called an LL 7 k 8 –grammar if it has
a deterministic recognition algorithm using the top–down–strategy in which
the next step depends on the first k symbols of Ex. The case k

,
0 is of little

use (see the exercises).
This method is however too flexible to be really useful. However, the fol-

lowing is an interesting strategy. The right hand side of a production is divided
into two parts, which are separated by a dot.

(2.91)

} � 5 OM} 6 �XF O5 � 0PO6 � í O
This dot fixes the part of the rule that must have been read when the corre-
sponding LC–rule is triggered. A strategy of this form is called generalized
left corner strategy. If the dot is at the right edge we get the bottom–up strat-
egy, if it is at the left edge we get the top–down strategy.

Exercise 66. Let R be a set of context free rules,
}

a symbol, N and A finite
sets, and G :

, � } � N � A � R � . Show that if | ¡R ε and G is transparent then G is
a CFG. Remark. Transparency can obviously be generalized to any grammar
that uses context free rules.

Exercise 67. Show Theorem 2.76.

Exercise 68. Prove Lemma 2.60. Show in addition: If Ex is a term then the set
P 7�Ex 8 :

, 5 γ 7�Ey 8 : Ey is a prefix of Ex 6 is convex.

Exercise 69. Show the following: If L is deterministic then also L ¾ 51Ex 6 as well
as 5XEx 61u L are deterministic. (See Section 1.2 for notation.)

Exercise 70. Show that a grammar is an LL 7 0 8 –grammar if it generates ex-
actly one tree.

Exercise 71. Give an example of an NTS–language which is not an LR 7 0 8 –
language.

Semilinear Languages 147

Table 5. The Generalized LC–Strategy} ~ ~ ~ 0�0 FXí�í} 0 ~ ~ ~ 0 Fïí�í} 5 ~ ~ ~ 0 Fïí�í6 } ~ ~ ~ 0 Fïí�í6 } 0 ~ ~ ~]FXí(í6 } 5 ~ ~ ~]FXí(í6 6 } ~ ~ ~]FXí(í6 6 } Fl~~~ªí�í6 6 } } ~ ~ ~ªí�í6 6 ~ ~ ~ªí�í6 6 í�~~~ªí6 6 6 ~ ~ ~ªí6 ~ ~ ~ªí6 í ~ ~ ~ ε6 6 ~ ~ ~ ε
ε ~ ~ ~ ε

5. Semilinear Languages

In this section we shall study semilinear languages. The notion of semilin-
earity is important in itself as it is widely believed that natural languages are
semilinear. Whether or not this is case, is still open (see Section 2.7). The
issue of semilinearity is important, because many grammar formalisms pro-
posed in the past only generate semilinear languages (or else are generally so
powerful that they generate every recursively enumerable set). Even though
semilinearity in natural languages is the rule rather than the exception, the
counterexamples show that the grammar formalisms do not account for natu-
ral language in a satisfactory way.

In this chapter we shall prove a theorem by Ginsburg and Spanier which
says that the semilinear subsets of ω n are exactly the sets definable in Pres-
burger Arithmetic. This theorem has numerous consequences, in linguistics
as well as in mathematics. The proof given here differs substantially from the
original one.

Definition 2.86 A commutative monoid or commutative semigroup with unit

148 Context Free Languages

is a structure � H � 0 ��g¬� in which the following holds for every x � y � z � H.

(2.92)

x g 0
,

x

x g 7 y g z 8 , 7 x g y 8�g z

x g y
,

y g x

Notice that because of associativity we may dispense with brackets. Alterna-
tively, any term can be arbitrarily bracketed without affecting its value. We
define the notation µ Â x as follows: 0 Â x :

,
0 and 7 µ g 1 8»Â x :

,
µ Â x g x.

(Later on we shall drop Â .) Then µ Â x0 g ν Â x0
, 7 µ g ν 8�Â x0, and µ ÂP7 ν Â x0 8 ,7 µν 8
Â x0, simply by definition. Furthermore, µ Âj7 x g y 8 , 7 µ Â x 8(gÅ7 µ Â y 8 , by

induction on µ . This can be generalized.

Lemma 2.87 In a commutative semigroup, the following holds.

µ Âj7 ∑
i m

νi Â xi 8 , ∑
i m
7 µνi 8�Â xi(2.93)

∑
i m

µi Â xi g ∑
i m

νi Â xi
, ∑

i m
7 µi g νi 8
Â xi(2.94)

Proof. Induction on m. The case m
,

1 has been dealt with. Now:

µ Âj7 ∑
i m � 1

νi Â xi 8 , µ Âj7 ∑
i m

νi Â xi g νm Â xm 8(2.95) ,
µ Âj7 ∑

i m
νi Â xi 8�g µ Âj7 νm Â xm 8, ∑

i m
7 µνi 8
Â xi gÅ7 µνm 8�Â xm, ∑

i m � 1
7 µνi 8
Â xi

Also

∑
i m � 1

µi Â xi g ∑
i m � 1

νi Â xi(2.96) , 7 ∑
i m

µi Â xi g µm Â xm 8�gÅ7 ∑
i m

νi Â xi g νm Â xm 8, 7 ∑
i m

µi Â xi g ∑
i m

νi Â xi 8(gÅ7 µm g νm 8
Â xm, ∑
i m
7 µi g νi 8 xi gÅ7 µm g νm 8
Â xm, ∑

i m � 1
7 µi g νi 8 xi

Semilinear Languages 149

This finishes the proof. <
We shall denote by M 7 A 8 set underlying the commutative monoid freely

generated by A. By construction, øÆ7 A 8 :
, � M 7 A 8P� 0 ��g�� is a commutative

semigroup with unit. What is more, øÆ7 A 8 is freely generated by A as a com-
mutative semigroup. We now look at the set ω n of all n–long sequences of
natural numbers, endowed with the operation g defined by

(2.97) � xi : i b n ��g � yi : i b n � :
, � xi g yi : i b n �

This also forms a commutative semigroup with unit. Here the unit is the se-
quence E0 consisting of n 0s. We denote this semigroup by Ωn. For the follow-
ing theorem we also need the so–called Kronecker symbol.

(2.98) δ i
j :
,Ò¿ 1 if i = j,

0 otherwise.

Theorem 2.88 Let A
, 5 ai : i b n 6 . Let h be the map which assigns to each

element ai the sequence Eei
, � δ i

j : j b n � . Then the homomorphism which
extends h is an isomorphism from øÆ7 A 8 onto Ωn.

Proof. Let θ be the smallest congruence relation on TmΩ 7 A 8 (with Ω : 0 ��
0 ��gÿ�� 2) which satisfies (2.92). It follows from Lemma 2.87 by induction
on the level of the term t that for t � TmΩ 7 A 8 there is a u θ t of the form

(2.99) u
, ∑

i n
ki Â ai

If (2.99) obtains, put q 7 t 8 :
, � ki : i b n � . Now, it is immediately seen that

θ
,

kerq, whence TmΩ 7 A 8 ¾ θ Ê, Ωn. On the other hand, TmΩ 7 A 8 ¾ θ Ê, øÆ7 A 8 ,
since it is easily shown that the first is also freely generated by A. Namely,
suppose that v : ai �� ni is a map from A into ú . Let v : TmΩ 7 A 8+� N be the
extension of v. Then, since ú is a monoid, θ } ker v, so that we can define a
map q : ±@² Ω 7 A 8��Óú such that v

,
q : hθ . <

This theorem tells us that free commutative semigroups can be thought of
as vectors of numbers. A general element of M 7 A 8 can be written down as
∑i n ki Â ai where ki � ω .

Now we shall define the map µ : A ¡ � M 7 A 8 by

(2.100)

µ 7 ε 8 , 0

µ 7 ai 8 , ai

µ 7�Ex 9 Ey 8 , µ 7�Ex 8�g µ 7�Ey 8

150 Context Free Languages

This map is a homomorphism of monoids and also surjective. It is not injec-
tive, except in the case where A consists of one element only. The map µ is
called the Parikh map. We have

(2.101) µ

�
∏
i k
Exi � , ∑

i k
µ 7�Exi 8

Definition 2.89 Two languages L � M } A ¡ are called letter equivalent if we
have µ ¦ L § , µ ¦M § .
Definition 2.90 Elements of M 7 A 8 will also be denoted using vector arrows.
Moreover, if Ex � ωn we write Ex 7 i 8 for the ith component of Ex. A set U } M 7 A 8
is called linear if for some α � ω and some Eu ��Evi � M 7 A 8
(2.102) U

, 5>Eu g ∑
i α

ki ÂiEvi : k0 �=�=�=�i� kα © 1 � ω 6
The Evi are called cyclic vectors of U. The smallest α for which U has such
a representation is called the dimension of U. U is said to be semilinear if
U is the finite union of linear sets. A language L } A ¡ is called semilinear if
µ ¦ S § is semilinear.

We can denote semilinear sets rather compactly as follows. If U and V are
subsets of M 7 A 8 then write U g V :

, 51Ex g Ey : Ex � U ��Ey � V 6 . Further, let Ex g
U :
, 51Ex g Ey : Ey � U 6 . So, vectors are treated as singleton sets. Also, we write

nU :
, 5 n Ex : n � ω 6 . Finally, we denote by ωU the union of all nU , n � ω .

With these abbreviations we write the set U from Definition 2.90 as follows.

(2.103) U
, Eu g ω Ev0 g ω Ev1 gÍÂ=Â=Âig ω Evα © 1

This in turn we abbreviate by

(2.104) U
, Eu g ∑

i α
ω Evi

Finally, for V
, 5XEvi : i b α 6

(2.105) Σ 7 U ;V 8 :
,

U g ∑
i α

ω Evi

Lemma 2.91 The following holds.

Semilinear Languages 151

À Σ 7 U ;V 8�s Σ 7 U k ;V 8 , Σ 7 U s U k ;V 8 .
Á Σ 7 U ;V 8�g Σ 7 U k ;V k 8 , Σ 7 U g U k ;V s V k 8 .
Â ωΣ 7 U ;V 8 , Σ 7�5 E0 6 ;U s V 8 .

Theorem 2.92 (Parikh) A language is semilinear iff it is letter equivalent to
a regular language.

Proof. 7¯|�8 It is enough to show this for linear languages. Suppose that π ¦ L § ,
Σ 7�5>Eu 6 ;V 8 , V

, 5XEvi : i b n 6 . Pick a string Ex and Eyi, i b n, such that π 7�Ex 8 , Eu
and π 7�Eyi 8 , Evi for all i b n. Put

(2.106) M :
, Ex 9 7 �

i n

Eyi 8 ¡
Clearly, M is regular and letter equivalent to L. 7¯�µ8 By induction on the
length of the regular term R we shall show that µ ¦ L 7 R 8�§ is semilinear. This is
clear for R

,
ai or R

,
ε . It is also clear for R

,
S1 s S2. Now let R

,
S1 Â S2.

Using the equations 7 S s T 8>Â U ,
S Â U s T Â U and U Â=7 S s T 8 , U Â S s U Â T , we

can assume that S1 and S2 are linear. Then by definition µ ¦ L 7 S1 8�§ , Σ 7�5>Eu 6 ;C1 8
and µ ¦ L 7 S2 8�§ , Σ 7�51Ev 6 ;C2 8 , for certain Eu, Ev, and sets C1 and C2. Then, using
Lemma 2.91, we get

(2.107) µ ¦ L 7 R 8�§ , Σ 7�5>Eu 6 ;C1 8(g Σ 7�5XEv 6 ;C2 8 , Σ 7�5>Eu g Ev 6 ;C1 s C2 8
Now, finally, R

,
S ¡ . If S

,
T s U , then R

, 7 T ¡ Â U ¡ 8 ¡ , so that we may again
assume that S is linear, say, S

,
Σ 7�5&Eu 6 ;C 8 for some Eu and C. By Lemma 2.91

(2.108) µ ¦ L 7 R 8�§ , ωΣ 7�5>Eu 6 ;C 8 , Σ 7�5 E0 6 ; 5>Eu 6�s C 8
Hence R too is linear. This ends the proof. <

We draw a useful conclusion from the definitions.

Theorem 2.93 Let A be a (possibly infinite) set. The set of semilinear lan-
guages over A form an AFL with the exception that the intersection of a semi-
linear language with a regular language need not be semilinear.

Proof. Closure under union, star and concatenation are immediate. We have
to show that semilinear languages are closed under homomorphisms and in-
verse homomorphisms. The latter is again trivial. Now let v : A � A ¡ be a

152 Context Free Languages

homomorphism. v induces a map κv : øÆ7 A 8Y�ÛøÆ7 A 8 . The image under κv
of a semilinear set is semilinear. For given a string Ex � A ¡ we have µ 7 v 7ÈEx 8=8 ,
κv 7 µ 7�Ex 8=8 , as is easily checked by induction on the length of Ex. Let M be linear,
say M

, Eu g ∑i k ω Â=Evi. Then

(2.109) κv ¦M § , κv 7$Eu 8(g ∑
i k

ωκv 7�Evi 8
From this the claim follows. Hence we have µ ¦ v ¦ L § § , κv ¦ µ ¦ L § § . The right
hand side is semilinear as we have seen. Finally, take the language L :

,5 0 2i í 2i
: i � ω 6�s 5�í j 0 j : j � ω 6 . L is semilinear. L t 0 ¡ í ¡ , 5 0 2i í 2i

: i � ω 6
is not semilinear, however. <

Likewise, a subset of ¿ n (� n) is called linear if it has the form

(2.110) Ev0 go¿ Ev1 go¿ Ev2 gÍÂ=Â=Â=go¿ Evm

for subsets of ¿ n as well as

(2.111) Ev0 g���Ev1 g�� Ev2 gÍÂ=Â=Â=g���Evm

for subsets of � n . The linear subsets of � n are nothing but the affine sub-
spaces. A subset of ωn (¿ n, � n) is called semilinear if it is the finite union of
linear sets.

Presburger Arithmetic is defined as follows. The basic symbols are � , � , � ,� and 	 m, m � ω vx5 0 � 1 6 . Then Presburger Arithmetic is the set of first order
sentences which are valid in ¿ :

, �_¿×� 0 � 1 ��g¶�ibØ�Z�¯ð m: 1 b m � ω �=� , where
a ð m b iff a v b is divisible by m (for FOL see Sections 3.8 and 4.4).

Negation can be eliminated. Notice namely that U@T�
 0=x1 W is equivalent toT�
 0
�
 1 W
�@T�
 1

�
 0 W , UYT�
 0
�
 1 W to T�
 0 �
 1 W
�YT�
 1

�
 0 W and U@T�
 0 	 m
 1 W is equiv-
alent to � 0 n m
 0 	 m T�
 1 � n W . Here, n is defined by 0 :

, � , n g 1 :
, T n ���(W .

We shall use
 0 �
 1 for T�
 0
�
 1 W
�YT�
 0 �
 1 W . Moreover, multiplication by a

given natural number also is definable: put 0t :
,

0, and 7 n g 1 8 t :
, T nt � t W .

Every term in the variables
 i, i b n, is equivalent to a term
 0 � ∑i n ai
 i,
where b � ai � ω , i b n. A subset S of ¿ n is definable if there is a formula
ϕ 7�
 0 ��
 1 �=�=�=�i��
 n © 1 8 such that

(2.112) S
, 5(� ki : i b n �3�Æ¿ n : ¿ Ð ϕ ¦ k0 � k1 �=�=�=�Z� kn © 1 §È6

The definable subsets of ¿ n are closed under union, intersection and comple-
ment and permutation of the coordinates. Moreover, if S }c¿ n � 1 is definable,

Semilinear Languages 153

so is its projection

(2.113) πn ¦ S § : , 5(� ki : i b n � : there is kn �³¿ such that� ki : i b n g 1 �3� S 6
The same holds for definable subsets of ω n, which are simply those definable
subsets of ¿ n that are included in ωn. Clearly, if S }±¿ n is definable, so is
S t ωn.

Lemma 2.94 Suppose that a g ∑i n pixi
,

b g ∑i n qixi is a linear equation
with rational numbers a, b, pi and qi (i b n). Then there is an equation

(2.114) g g ∑
i n

uixi
,

h g ∑
i n

vixi

with the same solutions, but with positive integer coefficients such that g Â h ,
0 and for every i b n: viui

,
0.

Proof. First, multiply with the least common denominator to transform the
equation into an equation with integer coefficients. Next, add v pixi to both
sides if pi b 0, unless qi b pi b 0, in which case we add v qixi. Now all co-
efficients are positive. Next, for every i b n, substract qixi from both sides if
pi � qi and pixi otherwise. These transformations preserve the set of solu-
tions. <

Call an equation reduced if it has the form

(2.115) g g ∑
i m

kixi
, ∑

m � i n
kixi

with positive integer coefficients g and ki, i b n. Likewise for an inequa-
tion. Evidently, modulo renaming of variables we can transform every ratio-
nal equation into reduced form.

Lemma 2.95 The set of solutions of a reduced equation is semilinear.

Proof. Let µ be the least common multiple of the ki. Consider a vector of the
form Eci é j , 7 µ ¾ ki 8�Eei g 7 µ ¾ k j 8=Ee j , where i b m and m ç j b n. Then if Ev is a
solution, so is Ev gÄEci é j and conversely. Put C :

, 5XEci é j : i b m ç j b n 6 and

(2.116) P :
, ¿ Eu : g g ∑

i m
ki Eu 7 i 8 , ∑

m � i n
ki Eu 7 i 8P�=Eu 7 i 8@b µ ¾ ki

�
Both P and C are finite. Moreover, the set of solutions is exactly Σ 7 P;C 8 . <

154 Context Free Languages

Lemma 2.96 The set of solutions of a reduced inequation is semilinear.

Proof. Assume that the inequation has the form

(2.117) g g ∑
i m

kixi ç ∑
m � i n

kixi

Define C and P as before. Let E :
, 5XEei : m ç i b n 6 . Then the set of solutions

is Σ 7 P;C s E 8 . If the inequation has the form

(2.118) g g ∑
i m

kixi f ∑
m � i n

kixi

The set of solutions is Σ 7 P;C s F 8 , where F :
, 51Eei : i b m 6 . <

Lemma 2.97 Let M }�� n be an affine subspace. Then M tü¿ n is a semilinear
subset of ¿ n.

Proof. Let Evi, i b m g 1, be vectors such that

(2.119) M
, Ev0 g���Ev1 g�� Ev2 gÍÂ=Â=Â�g�� Evm © 1

We can assume that the Evi are linearly independent. Clearly, since �ìEw ,�¬7 λ Ew 8 for any nonzero rational number λ , we can assume that Evi ��¿ n, i b m.
Now, put

(2.120) V :
, 51Ev0 g ∑

0 i m
λi Evi : 0 ç λi b 1 6

V t ¿ n is finite. Moreover, if Ev0 g ∑0 i m κi Evi � ¿ n then Ev0 g ∑0 i m κ ki Evi � ¿ n

if κi v κ ki �Æ¿ . Hence,

(2.121) M
,Û�)w � V 7ïEw go¿�Ev1 gÍÂ=Â=Â�go¿�Evm 8

This is a semilinear set. <
Lemma 2.98 Let M }o¿ n be a semilinear subset of ¿ n. Then M t ωn is semi-
linear.

Proof. It suffices to show this for linear subsets. Let Evi, i b m g 1, be vectors
such that

(2.122) M
, Ev0 go¿ Ev1 go¿ Ev2 gÍÂ=Â=Â�go¿ Evm © 1

Semilinear Languages 155

Put Ewi :
, v]Evi, 0 b i b m. Then

(2.123) M
, Ev0 g ω Ev1 g ω Ev2 gÍÂ=Â=Â=g ω Evm © 1 g ω Ew1 gÃÂ=Â=Â=g ω Ewm © 1

Thus, we may without loss of generality assume that

(2.124) M
, Ev0 g ω Ev1 g ω Ev2 gÍÂ=Â=Â=g ω Evm © 1

Notice, however, that these vectors are not necessarily in ω n. For i starting at
1 until n we do the following.

Let xi
j :
, Ev j 7 i 8 . Assume that for 0 b j b p we have xi

j f 0, and that for
p ç j b m we have xi

j � 0. (A renaming of the variables can achieve this.)
We introduce new cyclic vectors Ec j é k for 0 b j b p and p ç k b m. Let µ the
least common multiple of the � xi

s � , for all 0 b s b m where xi
s �, 0.

(2.125) Eci é j :
, 7 µ ¾ xi

j 8=Ev j gÅ7 µ ¾ xi
k 8=Evk

Notice that the s–coordinates of these vectors are positive for s b i, since this
is a positive sum of positive numbers. The ith coordinate of these vectors is
0. Suppose that the ith coordinate of

(2.126) Ew , Ev0 g ∑
0 j m

λ j Ev j

is f 0, where λ j � ω for all 0 b j b m. Suppose further that for some k f p we
have λk f vi

0 g m 7 µ ¾ � xi
k �n8 . Then there must be a j b p such that λ j fµ7 µ ¾ xi

j 8 .
Then put λ kr :

,
λr for r �, j � k, λ kj :

,
λ j v 7 µ ¾ xi

j 8 and λ kk :
,

λk gÃ7 µ ¾ xi
k 8 . Then

(2.127) Ew , Ec j é k g ∑
0 j m

λ kj Ev j

Moreover, λ kj ç λ j for all j b p, and λ kk b λk. Thus, by adding these cyclic
vectors we can see to it that the coefficients of the Evk for p ç k b m are
bounded. Now define P to be the set of all Ew which have a decomposition

(2.128) Ew , Ev0 g ∑
0 j m

λ j Ev j � ωn

where λ j b v j
0
g m � µ ¾ xi

j � for all 0 b j b m. Then

(2.129) M t ωn , �)u � P

� Eu g ∑
0 j p

λ j Ev j g ∑
0 j p � k m

κ j é k Ec j é k �

156 Context Free Languages

with all λ j , κ j é k f 0. Now we have achieved that all jth coordinates of vectors
are positive. <

The following is now immediate.

Lemma 2.99 Let M }�� n be an affine subspace. Then M t ω n is a semilinear
subset of ωn.

Lemma 2.100 The intersection of semilinear sets is again semilinear.

Proof. It is enough to show the claim for linear sets. So, let S0 and S1 be
linear. Then there are C0

, 5&Eui : i b m 6 and C1
, 51Evi : i b n 6 and Eu and Ev such

that S0
,

Σ 7�5>Eu 6 ;C0 8 and S1 :
,

Σ 7�5XEv 6 ;C1 8 . Notice that Ew � S0 t S1 iff there
are natural numbers κi (i b m) and λ j (j b n) such that

(2.130) Ew , Eu g ∑
i m

κi Eui
, Ev g ∑

i n
λi Evi

So, we have to show that the set of these Ew is semilinear.
The equations are now taken as linear equations with κi, i b m and λi,

i b n, as variables. Thus we have equations for m g n variables. We solve these
equations first in � m � n . The solutions form an affine subspace V }�� m � n Ê,� m � � n . By Lemma 2.99, V t ωm � n is semilinear, and so is its projection
onto ωm (or to ωn for that matter). Let it be � i p Li, where for each i b p,
Li } ωm is linear. Thus there is a representation of Li as

(2.131) Li
, Eθ g ω Eη0 gÍÂ=Â=Â=g ω Eηγ © 1

Now put

(2.132) Wi :
, 5>Eu g ∑

i m
Eκ 7 i 8PEui : Eκ � Li 6

From the construction we get that

(2.133) S0 t S1
,Ò�

i p

Wi

Define vectors Eqi :
,

∑ j m Eηi 7 j 8PEui, i b γ and Er :
, Ec g ∑ j m

Eθ 7 j 8PEui. Then

(2.134) Wi
, Er g ω Eq0 gÍÂ=Â=Â=g ω Eqγ © 1

So, the Wi are linear. This shows the claim. <

Semilinear Languages 157

Lemma 2.101 If S } ωn is semilinear, so is its projection πn ¦ S § .
We need one more prerequisite. Say that a first–order theory T has quantifier
elimination if for every formula ϕ 7�Ex 8 there exists a quantifier free formula
χ 7�Ex 8 such that T ~ ϕ 7�Ex 8�� � � χ 7ÈEx 8 . We follow the proof of (Monk, 1976).

Theorem 2.102 (Presburger) Presburger Arithmetic has quantifier elimina-
tion.

Proof. It is enough to show that for every formula T���
 R W ϕ 7�Ey ��
 R 8 with ϕ 7ÈEy � x 8
quantifier free there exists a quantifier free formula χ 7ÈEy 8 such that

(2.135) ¿ ÐÃT���Ey W�T���
 R W.T ϕ 7�Ey ��
 0 8�� � � χ 7�Ey 8OW
We may further eliminate negation (see the remarks above) and disjunctions
inside ϕ 7ÈEy � x 8 (since T��
 R W�T α � β W is equivalent with T(T��
 R W α W!�@T�T���
 R W β W .
Finally, we may assume that all conjuncts contain
 R . For if α does not con-
tain
�R free, T��
�R�W�T α S β W is equivalent to T α S@T��
�R&W β W . So, ϕ can be as-
sumed to be a conjunction of atomic formulae of the following form:

(2.136) T���
 R W.T�" i p ni
 R � ti S#" i q n ki
 R � t ki S�" i r n k ki
 R%$ t k kiS " i s n k k ki
 R 	 mi
t k k ki W

Since s 	 mt is equivalent with ns 	 mnt, so after suitable multiplication we may
see to it that all the ni, n ki, n k ki and n k k ki are the same number ν .

(2.137) T���
 R W.T " i p ν
 R � τi S " i q ν
 R � τ ki S " i r ν
 R
$ τ k kiS " i s ν
 R 	 mi
τ k k ki W

We may rewrite the formula in the following way (replacing ν
 R by
 R and
adding instead the condition that
 R is divisible by ν).

(2.138) T���
 R W.T�
 R 	 ν ��S#" i p
 R � τi S�" i q
 R � τ ki S#" i r
 R%$ τ k kiS " i s
(R!	 mi
τ k k ki W

Assume that p � 0. Then the first set of conjunctions is equivalent with the
conjunction of " i j p τi � τ j (which does not contain
�R) and
�R � τ0. We may
therefore eliminate all occurrences of

R by τ0 in the formula.

Thus, from now on we may assume that p
,

0. Furthermore, notice thatT�
(R � σ S�
�R � τ W is equivalent to T�
�R � σ S σ � τ W
�YT�
�R � τ S τ � σ W . This means that
we can assume q ç 1, and likewise that r ç 1. Next we show that we can
actually have s ç 1. To see this, notice the following.

158 Context Free Languages

Let u & v & w & x be integers, w & x ' 1, and let p be the least common multiple of
w and x. Then gcd (p) w & p) x *,+ 1, and so there exist integers m & n such that
1 + m � p) w - n � p) x. It follows that the following are equivalent.

À y . u (mod w * and y . v (mod x *
Á u . v (mod gcd (w & x */* and y . m (p) w * u - n (p) x * v (mod p * .

The Euclidean algorithm yields numbers m and n as required (see (Jones,
1955)). Now suppose that the first obtains. Then y v u

,
ew and y v v

,
f x for

some numbers e and f . Then u v v
,

f x v ew, which is divisible by gcd 7 x � w 8 .
So, u ð v 7 mod gcd 7 w� x 8=8 . Furthermore,

y v m 7 p ¾ w 8 u v n 7 p ¾ x 8 v , m 7 p ¾ w 8 y g n 7 p ¾ x 8 y(2.139) v m 7 p ¾ w 8 u v n 7 p ¾ x 8 v,
m 7 p ¾ w 8�7 y v u 8g n 7 p ¾ x 8�7 y v v 8,
m 7 p ¾ w 8 em g n 7 p ¾ x 8 f nð 0 7 mod p 8

So, the second holds. Conversely, if the second holds, then for some k we
have u v v

,
k gcd 7 w� x 8 . Then

y v u
,

y v m 7 p ¾ w 8 u v n 7 p ¾ x 8 u(2.140) ,
y v m 7 p ¾ w 8 u v n 7 p ¾ x 8 v v n 7 p ¾ x 8 k Â gcd 7 m � n 8ð 0 7 mod w 8

Analogously y ð v 7 mod x 8 is shown.
Using this equivalence we can reduce the congruence statements to a con-

junction of congruences where only one involves
 R .
This leaves us with 8 possibilities. If r

,
0 or s

,
0 the formula is actu-

ally trivially true. So, T��
�R�W.T�
(R � τ W , T���
�R(W�T υ �
�R&W , T��
�R�W.T�
(R � mξ W , as well
as T��
 R W�T�
 R � τ S�
 R 	 mξ W and T���
 R W�T υ �
 R S�
 R 	 mξ W can all be dropped or
replaced by 0 0 0 . Finally, T���
 R W�T�
 R � τ S υ �
 R W is equivalent with υ �,� � τ andT��
 R W.T�
 R � τ S υ �
 R S�
 R � mξ W is equivalent with � i m T τ �,�#� i � υ S τ ���#� i 	 mξ W .
This shows the claim. <
Theorem 2.103 (Ginsburg & Spanier) A subset of ω n is semilinear iff it is
definable in Presburger Arithmetic.

Semilinear Languages 159

Proof. (|) Every semilinear set is definable in Presburger Arithmetic. To see
this it is enough to show that linear sets are definable. For if M is a union of
Ni, i b p, and each Ni is linear and hence definable by a formula ϕi 7ÈEx 8 , then
M is definable by � i p ϕi 7�Ex 8 . Now let M

, Ev g ω Ev0 g Â=Â=Â=g ω Evm © 1 be linear.
Then put

(2.141) ϕ 7�Ex 8 :
, T��
 n W�T��
 n � 1 W(Â=Â=ÂXT���
 n � m © 1 W.T " i m � �
 n � iS " i n TPEv 7 i 8�� ∑ j m
 n � i Ev 7 i 8 j �
 i W�W

ϕ 7ÈEx 8 defines M. (�) Let ϕ 7�Ex 8 be a formula defining S. By Theorem 2.102,
there exists a quantifier free formula χ 7ÈEx 8 defining S. Moreover, as we have
remarked above, χ can be assumed to be negation free. Thus, χ is a disjunc-
tion of conjunctions of atomic formulae. By Lemma 2.100, the set of semilin-
ear subsets of ωn is closed under intersection of members, and it is also closed
under union. Thus, all we need to show is that atomic formulae define semi-
linear sets. Now, observe that
�R
	 m
	V is equivalent to T���
 � W.T�
(R �
	V�� m
 � W ,
which is semilinear, as it is the projection of
	R �
�V�� m
 � onto the first two
components. <
Exercise 72. Let �A � , 1. Show that ù;7 A 8 is isomorphic to øÆ7 A 8 . Derive from
this that there are only countably many semilinear languages over A.

Exercise 73. Let L } A ¡ . Call L almost periodical if there are numbers p
(the modulus of periodicity) and n0 such that for all Ex � L with length f n0
there is a string Ey � L such that �nEy � , � Ex ��g p. Show that a semilinear language
is almost periodical.

Exercise 74. Let A
, 5 0 �lí.6 . Further, let U :

,�0 ¡ s×í ¡ . Now let N } M 7 A 8 be
a set such that N v U is infinite. Show that there are 2ℵ0 many languages L
with µ ¦ L § , N. (The cardinality of A ¡ is ℵ0, hence there can be no more than
2ℵ0 such languages. The exercise consists in showing that there are no less of
them either.)

Exercise 75. Show that semilinear languages have the following pumping
property: For every semilinear set V } ω n there exists a number n such that ifEv � V has length f n, there exist Ew and Ex such that Ev , Ew gxEx and Ew g ω Ex } V .

Exercise 76. Let Ω } ω . Let VΩ } ω2 be defined by

(2.142) VΩ :
, 5(� m � n � : m �, n or m � Ω 6

Show that VΩ satisfies the pumping property of the previous exercise. Show

160 Context Free Languages

further that VΩ is semilinear iff Ω is.

Exercise 77. Show that for every sentence ϕ of Presburger Arithmetic it is
decidable whether or not it is true in ¿ . Hint. Use quantifiers elimination and
the fact that the elimination is constructive.

6. Parikh’s Theorem

Now we shall turn to the already announced embedding of context free tree
sets into tree sets generated by UTAGs. (The reader may wonder why we
speak of sets and not of classes. In fact, we shall tacitly assume that trees
are really tree domains, so that classes of finite trees are automatically sets.)
Let G

, � } � N � A � R � be a CFG. We want to define a tree adjunction grammarÕyc G
, �_º G � N � A ��» G � such that LB 7 G 8 , LB 7ãÕyc G 8 . We define º G to be the set

of all (ordered labelled) tree (domains)
·

which can be generated by LB 7 G 8
and which are centre trees and in which on no path not containing the root
some nonterminal symbol occurs twice. Since there are only finitely many
symbols and the branching is finite, this set is actually finite. Now we define» G . Let » G contain all adjunction trees

·
X , X � N, (modulo identification of

Y 0 � Y 1 with Y for all Y � N) such that (1)
·

X can be derived from X in γG,
(2) no symbol occurs twice along a path that does contain the root. Also » G is
finite. It is not hard to show that LB 7ãÕyc G 8Y} LB 7 G 8 . The reverse inclusion we
shall show by induction on the number of nodes in the tree (domain). Let

·
be in LB 7 G 8 . Either there is a path not containing the root along which some
symbol occurs twice, or there is not. In the second case the tree is in º G .
Hence

· � LB 7ãÕyc G 8 and we are done. In the first case we choose an x � B of
minimal height such that there is a y b x with identical label; let the label be
X . Consider the subtree

r
induced by the set 7 d x v d y 8�sì5 y 6 . We claim thatr �³» G . For this we have to show the following. (a)

r
is an adjunction tree,

(b)
r

can be deduced from X , (c) no symbol symbol occurs twice along a path
which does not contain x. Ad (a). A leaf of

r
is either a leaf of

·
or
,

y. In the
first case the label is a terminal symbol in the second case it is identical to that
of the root. Ad (b). If

·
is a tree of γG then

r
can be derived from X . Ad (c).

Let π be a path which does not contain x and let u � v � π nodes with identical
label and u b v. Then v b x, and this contradicts the minimality of x. Hence
all three conditions are met. So we can disembed

r
. This means that there is a

tree
· k such that

·
is derived from

· k by adjoining
r

. We have
· k(� LB 7 G 8

and by induction hypothesis
· k � LB 7ãÕªc G 8 . Hence

· � LB 7ãÕyc G 8 , which had

Parikh’s Theorem 161

to be shown.

Theorem 2.104 (Joshi & Levy & Takahashi) Every set of labelled ordered
tree domains generated by a CFG is also one generated by a UTAG. <
Now we shall prove Parikh’s Theorem for UTAGs. Let α be a letter and

·
a tree. Then σα 7 · 8 is the number of nodes whose label is α . If

·
is an

adjunction tree then the label of the root is not counted. Now let �_º � N � A ��» �
be a UTAG and º , 51ë i : i b α 6 , » , 5j­ j : j b β 6 .
Lemma 2.105 Let

· k result from
·

by adjoining the tree ­ . Then σα 7 · k 8 ,
σα 7 · 8(g σα 7Á­�8 .
The proof of this lemma is easy. From this it follows that we only need to
know for an arbitrarily derived tree how many times which tree has been
adjoined and what the starting tree was. So let

·
be a tree which resulted

from ë i by adjoining ­ j p j times, j b β . Then

(2.143) σα 7 · 8 , σα 7�ë i 8�g ∑
i β

p j Â σα 7Á­ j 8
Let now µ 7 · 8 :

,
∑a � A σa 7 · 8
Â a. Then

(2.144) µ 7 · 8 , µ 7�ë i 8�g ∑
i β

p j Â µ 7 · j 8
We define the following sets

(2.145) Σi :
,

µ 7�ë i 8�g ∑
j β

ωµ 7Á­ j 8
Then µ ¦ LB 7=�_º ��»]�Z8�§@}Å� i n Σi. However, equality need not always hold. We
have to notice the following problem. A tree ­ j can be adjoined to a tree

·
only if its root label actually occurs in the tree

·
. Hence not all values of� Σi are among the values under µ of a derived tree. However, if a tree can

be adjoined once it can be adjoined any number of times and to all trees that
result from this tree by adjunction. Hence we modify our starting set of trees
somewhat. We consider the set D of all pairs � k � W � such that k b α , W } β
and there is a derivation of a tree that starts with ë k and uses exactly the trees
from W . For � k � W �Y� D

(2.146) L 7 k � W 8 , µ 7�ë i 8(g ∑
j � W ω Â µ 7Á­ j 8

162 Context Free Languages

Then L :
, �¶� L 7 k � W 8 : � k � W �y� D � is semilinear. At the same time it is the

set of all µ 7 · 8 where
·

is derivable from �_º � N � A ��»]� .
Theorem 2.106 Let L be the language of an unregulated tree adjunction
grammar then L is semilinear. <
Corollary 2.107 (Parikh) Let L be context free. Then L is semilinear. <
This theorem is remarkable is many respects. We shall meet it again several
times. Semilinear sets are closed under complement (Theorem 2.103) and
hence also under intersection. We shall show, however, that this does not hold
for semilinear languages.

Proposition 2.108 There are CFLs L1 and L2 such that L1 t L2 is not semi-
linear.

Proof. Let M1 :
, 5 0 n í n : n � ω 6 and M2 :

, 5�í n 0 2n : n � ω 6 . Put

L1 :
, í M ¡1 0 ¡ L2 :

,
M �2(2.147)

Because of Theorem 1.67 L1 and L2 are context free. Now look at L1 t L2. It
is easy to see that the intersection consists of the following strings.

(2.148) í 0 2 �üí 0 2 í 2 0 4 �þí 0 2 í 2 0 4 í 4 0 8 �üí 0 2 í 2 0 4 í 4 0 8 í 8 0 16 �=�=�=�
The Parikh image is 5(7 2n � 2 v 2 8 0 g?7 2n � 1 v 1 8�í : n � ω 6 . This set is not
semilinear, since the result of deleting the symbol í (that is, the result of
applying the projection onto

0 ¡) is not almost periodical. <
We know that for every semilinear set N } M 7 A 8 there is a regular gram-

mar G such that µ ¦ L 7 G 8�§ , N. However G can be relatively complex. Now
the question arises whether the complete preimage µ © 1 ¦N § under µ is at least
regular or context free. This is not the case. However, we do have the follow-
ing.

Theorem 2.109 The full preimage of a semilinear set over a single letter
alphabet is regular.

This is the best possible result. The theorem becomes false as soon as we
have two letters.

Theorem 2.110 The full preimage of ω 7 0 gxí	8 is not regular; it is however
context free. The full preimage of ω 7 0 gÝí;gÃF>8 is not context free.

Parikh’s Theorem 163

Proof. We show the second claim first. Let

(2.149) W :
,

µ © 1 ¦ω 7 0 gÝí gÃF48�§
Assume that W is context free. Then the intersection with the regular lan-
guage

0 ¡ í ¡ F ¡ is again context free. This is precisely the set 5 0 n í n F n : n � ω 6 .
Contradiction. Now for the first claim. Denote by b 7ÈEx 8 the number of occur-
rences of

0
in Ex minus the number of occurrences of í in Ex. Then V :

, 51Ex :
b 7�Ex 8 , 0 6 is the full preimage of ω 7 0 g�í	8 . V is not regular; otherwise the
intersection with

0 ¡ í ¡ is also regular. However, this is 5 0 n í n : n � ω 6 . Con-
tradiction. However, V is context free. To show this we shall construct a CFG
G over A

, 5 0 �lí.6 which generates V . We have three nonterminals,
}
,
5

, and6
. The rules are

(2.150)

} � }%} � 5 6 � 6 55 � 5 } � } 5 � 06 � 6 } � } 6 �ií
The start symbol is

}
. We claim:

} ~ G Ex iff b 7�Ex 8 , 0,
5 ~ G Ex iff b 7�Ex 8 , 1 and6 ~ G Ex iff b 7ÈEx 8 , v 1. The directions from left to right are easy to verify. It

therefore follows that V } L 7 G 8 . The other directions we show by induction
on the length of Ex. It suffices to show the following claim.

If b (21x *	�×� 1 & 0 &43 1 � there are 1y and 1z such that 5 1y 56&�5 1z 5�785 1x 5 and such that 1x +91y 1z
as well as 5 b (�1y *�56&�5 b (:1z *�5<; 1.

Hence let Ex , ∏i n xi be given. Define k 7�Ex � j 8 :
,

b 7 ¯ j ° Ex 8 , and K :
, 5 k 7ÈEx � j 8 :

j b n g 1 6 . As is easily seen, K
, ¦m � m k § with m ç 0. Further, k 7ÈEx � n 8 , b 7ÈEx 8 .

(a) Let b 7ÈEx 8 , 0. Then put Ey :
,

x0 and Ez :
,

∏0 i n xi. This satisfies the
conditions. (b) Let b 7�Ex 8 , 1. Case 1: x0

,Ñ0
. Then put again Ey :

,
x0 andEz :

,
∏0 i n xi. Case 2: x0

, í . Then k 7�Ex � 1 8 , v 1 and there is a j such
that k 7�Ex � j 8 , 0. Put Ey :

,
∏i j xi, Ez :

,
∏ j � i n xi. Since 0 b j b n, we have�nEy �`�P� Ez �&bÿ� Ex � . Furthermore, b 7ÈEy 8 , 0 and b 7 Ez 8 , 1. (c) b 7ÈEx 8 , v 1. Similar to

(b). <
Exercise 78. Let �A � , 1 and Õ3c be a UTAG. Show that the language gener-
ated by Õyc over A ¡ is regular.

Exercise 79. Prove Theorem 2.109. Hint. Restrict your attention first to the
case that A

, 5 0 6 .

164 Context Free Languages

Exercise 80. Let N } M 7 A 8 be semilinear. Show that the full preimage is of
Type 1 (that is, context sensitive). Hint. It is enough to show this for linear
sets.

Exercise 81. In this exercise we sketch an alternative proof of Parikh’s The-
orem. Let A

, 5 0 i : i b n 6 be an alphabet. In analogy to the regular terms we
define semilinear terms. (a)

0
i, i b n, is a semilinear term, with interpreta-

tion 51Eei 6 . (b) If A and B are semilinear terms, so is A � B with interpretation5>Eu g Ev : Eu � A ��Ev � B 6 , A s B, with interpretation 5>Eu : Eu � A or Eu � B 6 and ωA
with interpretation 5 k Eu : k � ω �=Eu � A 6 . The first step is to translate a CFG
into a set of equations of the form Xi

,
Ci 7 X0 � X1 �=�=�=�i� Xq © 1 8 , q the number of

nonterminals, Ci semilinear terms. This is done as follows. Without loss of
generality we can assume that in a rule X � Eα , Eα contains a given variable
at most once. Now, for each nonterminal X let X � Eαi, i b p, be all the rules
of G. Corresponding to these rules there is an obvious equation of the form

(2.151) X
,

A s¸7 B � X 8 or X
,

A

where A and B are semilinear terms that do not contain X . The second step is
to prove the following lemma:

Let X + A =>(B ? X *
=>(C ? ωX * , with A, B and C semilinear terms not con-
taining X. Then the least solution of that equation is A = ωB = ωC. If B ? X is
missing from the equation, the solution is A = ωC, and if C ? ωX is missing
the solution is A = ωB.

Using this lemma it can be shown that the system of equations induced by G
can be solved by constant semilinear terms for each variable.

Exercise 82. Show that the UTAG ��51ë+6>��5 } 6>��5 0 �lí.��F���î
6>��5j­Ø61� generates ex-
actly the strings of the form Ex î	F n, where Ex is a string of n

0
’s and n í ’s such

that every prefix of Ex has at least as many
0
’s as í ’s.ë

î
} ­ 0 ñ ñ ññ

} ò ò òò }ññññí } ò ò òò F

Are Natural Languages Context Free? 165

Show also that this language is not context free. (This example is due to (Joshi
et al., 1975).)

7. Are Natural Languages Context Free?

We shall finish our discussion of CFLs by looking at some naturally arising
languages. We shall give examples of languages and constructions which are
definitely not context free. The complexity of natural languages has been
high on the agenda ever since the introduction of this hierarchy. Chomsky’s
intention was in part to discredit structuralism, which he identified with the
view that natural languages always are context free. By contrast, he claimed
that natural languages are not context free and gave many examples. It is
still widely believed that Chomsky had won his case. (For an illuminating
discussion read (Manaster-Ramer and Kac, 1990).)

It has emerged over the years that the arguments given by Noam Chomsky
and Paul Postal against the context freeness of natural languages were faulty.
Gerald Gazdar, Geoffrey Pullum and others have repeatedly found holes in
the argumentation. This has finally led to the bold claim that natural lan-
guages are all context free (see (Gazdar et al., 1985)). The first to deliver a
correct proof of the contrary was Riny Huybregts, only shortly later followed
by Stuart Shieber. (See (Huybregts, 1984) and (Shieber, 1985).) Counterev-
idence from Bambara was given by Culy (1987). Of course, it was hardly
doubted that from structural point of view natural languages are not con-
text free (see the analyses of Dutch and German within GB, for example, or
(Bresnan et al., 1987)), but it was not shown decisively that they are not even
weakly context free.

How is a proof the non context freeness of a language L possible? A typi-
cal method is this. Take a suitable regular language R and intersect it with L.
If L is context free, so is L t R. Now choose a homomorphism h and map the
language L t R onto a known non–CFL. We give an example from the paper
by Stuart Shieber. Look at (2.152) – (2.154). If one looks at the nested infini-
tives in Swiss German (first rows) we find that they are structured differently
from English (last rows) and High German (middle rows). (Instead of a gloss,
we offer the following parallels: î 0
)A@ î 0
)()B@Z" / 0'" , / 80�2 : DC@ / D�2 : D�'D@/ D�2.& ,

0�0�)�"(#n, F0/ DA@Ñ01'�)#"�#�D�, F0/ D�'C@Ú&�0�,X'�"
, / %�%�)E@] 04%.)>@ / C %.)�D , B D&#@\TV,1#A@±T�D

,
2 8C ' î @?2�0�)�)�D4'F@�2&D�"

, F#/ ,ï' î @ � ,X' î D>#B@ F0/ ,&2 î #�D�' .)A 01'Æ) 80�,�" �fî 0
)] 01'�)µD
) / %(%�)?0�0�)�"(#n, F0/ "�O(2.152)

166 Context Free LanguagesA 01'Æ)>0�4�" �fî 0
)�)] 04'.) î 0�)] 04%.)�04'.)�"(#�D�, F#/ "SOA 01'Æ)>0 ×)±" / 0�"] 01'�)Ù,�)U&�0�,X'�"G,X'�4Ù" / D / C %.)�DROA 01'Æ) 80�,�" �fî 0
) B D>#ÿD B] 04'�)ÉD) / %(%�) / 80�2 : D î(2.153) 0�0
)#"�#G, F#/ D�OA 01'Æ)>0�4�" �fî 0
)�)�TV,4#] 04'.) î 0
)] 04%.)�04'.)�"�#�D�, F#/ D4'/ D�2 : D4'WOA 01'Æ)>0 ×)±" / 0�"�T
D / D�2�&] 01'�)U&�0�,X'�"�" / D / C %.)�DROA 01'Æ) 80�,�" �fî 0
) B D># î * F#/ ,X' î D B] 01'�)�D
) / %�%.)(2.154) 2 8C ' îÚ/ 80(2 : D�0�0
)#"�#G, F#/ D�OA 01'Æ)>0�4�" �fî 0
)�)�TV,4# î ,>D � ,X' î D&#] 04'.) î 0
)] 04%.)04'�)#"�#�D�, F0/ D4' / D�2 : D�'ý2(0
)�)4D�'YOA 01'Æ)>0 ×)±" / 0�"�T
Dÿ2&D�"X" / D F#/ ,&2 î #�D4' / D�2.&] 04'.)&�0�,ï'�"X" / D / C %�)4D�O¡ A 04'Æ) 80�,." �xî 0�) B D&# î D] 01'�)�D) / %�%.) / 80(2 : D î(2.155) 0�0
)#"�#G, F#/ D�O¡ A 04'Æ) 80�,." �xî 0�) B D&# D B F#/ ,X' î D B] 01'�)µD
) / %�%.)(2.156) 2 8C ' îÚ/ 80(2 : D�0�0
)#"�#G, F#/ D�O
By asking who does what to whom (we let, the children help, Hans paints)
we see that the constituents are quite different in the three languages. Subject
and corresponding verb are together in English (see (2.157a)), in High Ger-
man they are on opposite sides of the embedded infinitive (see (2.157b), this
is called the nesting order). Swiss German, however, is still different. The
verbs follow each other in the reverse order as in German (so, they occur in
the order of the subjects, see (2.157c)). This is called the crossing order.

S1 V1 S2 V2 S3 V3 �=�=�(2.157a)

S1 S2 S3 �=�=� V3 V2 V1(2.157b)

S1 S2 S3 �=�=� V1 V2 V1 �=�=�(2.157c)

Now we assume — this is an empirical assumption, to be sure — that this is
the general pattern. It shall be emphasized that the processing of such sen-
tences becomes difficult with four or five infinitives. Nevertheless, the result-
ing sentences are considered grammatical.

Are Natural Languages Context Free? 167

Now we proceed as follows. The verbs require accusative or dative on
their complements. The following examples show that there is a difference
between dative and accusative. In (2.155) î D] 04'.) is accusative and the com-
plement of

0�0�)�"�#G, F0/ D , which selects dative. The resulting sentence is un-
grammatical. In (2.156),

D B F#/ ,X' î is dative, while
2 8C ' î selects accusative.

Again the sentence is ungrammatical. We now define the following regular
language (recall the definition of � from Section 1.2).

R :
, A 04' �) 80�,." 9 �'�3î 0�) � B D&#(2.158) ��7=7 D B 9 < s«î * s«î D 9 < 8 9 7�F#/ ,X' î 9 < s] 04'.) 9 < 8=8 ¡9 D) �þ/ %�%.)��7 2(0�0 9 < s 2 8C ' î 9 < s / 80(2 : D 9 < 8 ¡ 9 0�0�)�"�#G, F0/ D 9 O

This is defined over the standard alphabet. It is not hard to see (invoking the
Transducer Theorem, 6.40) that the corresponding language over the alphabet
of lexemes is also regular. We define the following mapping from the lexemes
(denoted by their strings). v sends î * , î D ,

2(0�0
and

2 8C ' î to
0
,
D B and / 80�2 : D

to î , everything else inculding the blank is mapped to ε . The claim is that

(2.159) h ¦ S t R § , 51Ex Ex : Ex � 0 Âj7 0 s«î(8i¡j6
To this end we remark that a verb is sent to î if it has a dative object and to0

if it has an accusative object. An accusative object is of the form î D N orî * N (N a noun) and is mapped to
0

by v. A dative object has the form
D B N,

N a noun, and is mapped onto î . Since the nouns are in the same order as the
associated infinitives we get the desired result.

In mathematics we find a phenomenon similar to Swiss German. Consider
the integral of a function. If f 7 x 8 is a function, the integral of f 7 x 8 in the
interval ¦ a � b § is denoted by

(2.160) G b

a
f 7 x 8 dx

This is not in all cases well formed. For example, H 1
0 x © 1dx is ill formed, since

there Riemann approximation leads to a sequence which is not bounded,
hence has no limit. Similarly, limn Ä ∞ 7�v 1 8 n does not exist. Notice that the
value range of x is written at the integral sign without saying with what vari-
able the range is associated. For example, let us look at

(2.161) G b

a
G d

c
f 7 x � y 8 dxdy

168 Context Free Languages

The rectangle over which we integrate the function is a ç x ç b and c ç y ç d.
Hence, the first integral sign corresponds to the operator dx, which occurs first
in the list. Likewise for three integrals:

(2.162) G b0

a0

G b1

a1

G b2

a2

f 7 x0 � x1 � x2 8 dx0dx1dx2

where the value range is ai ç xi ç bi for all i b 3. Consider the following
functions:

(2.163) f 7 x0 �=�=�=�Z� xn 8 :
, ∏

i n
xαi

i

with αi �Ë5&v 1 � 1 6 , i b n. Further, we allow for the interval ¦ ai � bi § either ¦ 0 � 1 §
or ¦ 1 � 2 § . Then an integral expression

(2.164) G b0

a0

G b1

a1

Â=Â=Â G bn Ü 1

an Ü 1

f 7 x0 � x1 �=�=�=�i� xn © 1 8 dx0dx1 Â=Â=Â dxn © 1

is well formed iff ai � 0 for all i b n such that αi
, v 1. The dependencies

are crossing, and the order of elements is exactly as in Swiss German (con-
sidering the boundaries and the variables). The complication is the mediating
function, which determines which of the boundary elements must be strictly
positive.

In (Kac et al., 1987), it is argued that even English is not context free. The
argument applies a theorem from (Ogden et al., 1985). If L is a language, let
Ln denote the set of strings that are in L and have length n. The following
theorem makes use of the fact that a string of length n possesses n 7 n g 1 8 ¾ 2
proper substrings and that n 7 n g 1 8 ¾ 2 b n2 for all n � 1. Denote by I c J the
smallest integer f c.

Theorem 2.111 (Interchange Lemma) Let L be a CFL. Then there exists a
real number cL such that for every natural number n � 0 and every set Q } Ln
there is a k f�I��Q � ¾ 7 cLn2 8KJ , and strings Exi, Eyi, Ezi, i b k, such that

À for all i b i b k: � Exi � , � Ex j � , �nEyi � , � Ey j � , and � Ezi � , � Ez j � .
Á for all i b k: �nEyi �`�P�nExi Ezi �1� 0,

Â for all i b k: Exi Eyi Ezi � Q, and

Ã for all i � j b k: Exi Ey j Ezi � Ln.

Are Natural Languages Context Free? 169

Proof. Let G be a CFG that generates L. Let cL :
, �N � . We show that cL satis-

fies the above conditions. Take any set Q } Ln. Then there is E } Q of cardi-
nality f 2 �Q � ¾ 7 n g 1 8 n and numbers k f 0 and ! � 0 such that every member
of E possesses a decomposition Ex Ey Ez where Ex has length k, Ey has length ! , and��Ex �lEz � is a constituent occurrence of Ey in the string. It is then clear that there
is a subset F } E of cardinality f 2 �Q � ¾ 7=7 n g 1 8 n �N �n8]�À�Q � ¾ 7 cLn2 8 such
that all ��Ex �lEz � are constituent occurrences of identical nonterminal category.
The above conditions are now satisfied for F . Moreover, �F �#fLI��Q � ¾ 7 cLn2 8KJ ,
which had to be shown. <

Note that if the sequence of numbers Ln ¾ n2 is bounded, then L satisfies
the conditions of the Interchange Lemma. For assume that there is a c such
that for all n we have Ln ¾ n2 ç c. Then cL :

,
sup 5�� Ln � ¾ n2 : n �CM 6�ç c. Then

for every n and every subset Q of Ln, I��Q � ¾ 7 cLn2 8KJÙçNI�� Ln � ¾ 7 cLn2 8KJÙç 1.
However, with k

,
1 the conditions above become empty.

Theorem 2.112 Let L } A ¡ be a language such that 7i� Ln � ¾ n2 8 n �PO is a bound-
ed sequence. Then L satisfies the conditions of the Interchange Lemma. This
is always the case if �A � , 1.

Kac, Manaster–Ramer and Rounds use constructions with
#�D
)0&
D F "G, < D�2 ×

shown below, in which there is an equal number of nouns and verb phrases to
be matched. In these constructions, the nth noun must agree in number with
the nth verb phrase.s / ,�)?2�01' îýF 04' í DÏD�$�&
D F "�D î " C)�D�2�2�,�"�)�D�2 : ¾(2.165) ¡ " / D B)�D�2 < D
)ÒOs / D)�DÚT C�C î) F 04' í DÏD�$�&
D F "�D î " C)�D�2�2 ¡ ,."�)4D�2 : ¾" / D B)4D�2 < D)�Os / ,�)?2�01' î 01' î " / D)4D�T C(C î) F 04' í DÏD%$'&	D F "�D î " C #�D�'�"(2.166) ,."�)4D�2 : 04' î)�D�2(2Ú" / D B)4D�2 < D) #�D
)0&	D F "G, < D�2 × O¡ s / ,�)µ2�04' î 04' î " / D
)�D�T C�C î) F 01' í DÏD�$�&	D F "�D î " C #�D4'�"(2.167) " / D B)4D�2 < D)É04' î)4D�2(2�,."�)4D�2 : #�D
)0&	D F "G, < D�2 × Os / ,�)?2�01' î 01' î " / D)4D�T C(C î)µ04' î " / ,�)?2�04' îÑF 01' í D(2.168) D%$�&
D F "�D î " C)�D�2�2Ú" / D B)�D�2 < D
)µ01' î #�D4'�"�" / D B)�D�2 < D)#�D)+&	D F "n, < D�2 × O
The problematic aspect of these constructions is illustrated by (2.168). There
need not be an exact match of NPs and VPs, and when there is no match,

170 Context Free Languages

agreement becomes obscured (though it follows clear rules). Now let

A :
, 7 " / ,�) � 2(04' î3s " / D)�D � T C(C î) 8.� 04' î(2.169) ��7 " / ,�) � 2�01' î 9 < s " / D)�D � T C�C î) 9 < 8 �9 F 04' ��í D � D%$�&
D F "�D îÿ� " C��7 #�D�'�" s)�D�2(2 8'��7 ,�"�)4D�2 : 9 < s " / D B)�D�2 < D) 9 < 8 �9 04' î�� 7 #�D4'�" s)4D�2�2 8.��7 ,."�)�D�2 : 9 < s " / D B)�D�2 < D
) 9 < 8 �9 #�D)+&	D F "n, < D�2 × 9 O

and let D be the set of strings of A that contain as many nouns as they contain
pronouns. B is that subset of D where the ith noun is

2(04' î iff the ith pronoun
is
,."�)�D�2 :

. The empirical fact about English is that the intersection of English
with D is exactly B. Based on this we show that English is not context free.
For suppose it were. Then we have a constant cL satisfying the Interchange
Lemma. (We ignore the blanks and the period from now on.) Let n be given.
Choose Q :

,
Bn, the set of strings of length n in B. Notice that �Bn �0f 2 ¯ n © 8 °RQ 2

for all n. Therefore, for some n, �Bn �&� 2n2cL so that I��Bn � ¾ cLn2 J�f 2. This
means that there are Ex1, Ex2, Ez1, Ez2 and Ey1 and Ey2 such that Bn contains Ex1 Ey1 Ez1
as well as Ex2 Ey2 Ez2, but Ex1 Ey2 Ez1 and Ex2 Ey1 Ez2 are also grammatical (and therefore
even in Bn). It is easy to see that this cannot be.

The next example in our series is modelled after the proof of the non con-
text freeness of ALGOL. It deals with a quite well known language, namely
predicate logic. Predicate logic is defined as a language over a set of relation
and function symbols of varying arity and a set of variables 5P
 i : i � ω 6 . In
order to be able to conceive of predicate logic as a language in our sense,
we code the variables as consisting of sequences
 Eα , where Eα �Ý5S�	���>6 ¡ . We
have
 Eα ,
 Eβ iff Eα , Eβ . (Leading zeros are not suppressed. The numbers are
usually put as subscripts, but we shall not do that here.) We restrict ourselves
to the language of pure equality. The alphabet is 5T���4���XT½�iW&� � ��
��/�
���&��S
��U	�¯�	6 .
The grammar rules are as follows.U �WVYT U W×��U@T U W×��T U W1S@T U W×��T U W#�3T U W]�TX(2.170) X¬�ZY � YV�� T[�\Y.W U �
T��%Y.W UY¬� $ �T
#]]×�^�#]¶�
�!]¶�T���%�

Are Natural Languages Context Free? 171

Here
U

stands for the set of formulae X for the set of prime formulae V for
the set of quantifier prefixes, Y the set of variables and _ for the set of strings
over � and � . Let Ex be a formula and C an occurrence of a variable
 Eα . We
now say that this occurrence of a variable is bound in Ex if it is an occurrence
D of a formula T Q
 Eα W4Ey in Ex with Q �Ë5T�.�4��6 which contains C. A formula is
called a sentence if every occurrence of a variable is bound.

Theorem 2.113 The set of sentences of predicate logic of pure equality is not
context free.

Proof. Let L be the set of sentences of pure equality of predicate logic.
Assume this set is context free. Then by the Pumping Lemma there is a k
such that every string of length f k has a decomposition Eu Ex Ev Ey Ew such thatEu Ex i Ev Ey i Ez � L for all i and �nEx Ev Ey �1ç k. Define the following formulae.

(2.171) T[�`
 Eα W.T�
 Eα �
 Eα W
All these formulae are sentences. If Eα is sufficiently long (for example, longer
than k) then there is a decomposition as given. Since Ex Ev Ey must have length ç kEx and Ey cannot both be disjoint to all occurrences of Eα . On the other hand, it
follows from this that Ex and Ey consist only of � and � , and so necessarily they
are disjoint to some occurrence of Eα . If one pumps up Ex and Ey, necessarily
one occurrence of a variable will end up being unbound. <

We can strengthen this result considerably.

Theorem 2.114 The set of sentence of predicate logic of pure equality is not
semilinear.

Proof. Let P be the set of sentences of predicate logic of pure equality. As-
sume that P is semilinear. Then let P1 be the set of sentences which contain
only one occurrence of a quantifier, and let this quantifier be � . µ ¦P1 § is the
intersection of µ ¦P § with the set of all vectors whose � –component is 1 and
whose � –component is 0. This is then also semilinear. Now we consider the
image of µ ¦ P1 § under deletion of all symbols which are different from
 , �
and � . The result is denoted by Q1. Q1 is semilinear. By construction of P1
there is an Eα �¸5S�
���>6 ¡ such that every occurrence of a variable is of the form
 Eα . If this variable occurs k times and if Eα contains p occurrences of � and
q occurrences of � we get as a result the vector k
 g kp � g kq � . It is easy
to see that k must be odd. For a variable occurs once in the quantifier and

172 Context Free Languages

elsewhere once to the left and once to the right of the equation sign. Now we
have among others the following sentences.

(2.172)
T���
 Eα W�T�
 Eα �
 Eα WT���
 Eα W�T(T�
 Eα �
 Eα W4SYT�
 Eα �
 Eα W�WT���
 Eα W�T(T�
 Eα �
 Eα 8�S@T(T�
 Eα �
 Eα W1S@T�
 Eα �
 Eα W(W�W

Since we may choose any sequence Eα we have

(2.173) Q1
, 5(7 2k g 3 8�7�
 g p �yg q �X8 : k � p � q � ω 6

Q1 is an infinite union of planes of the form 7 2k g 3 8�7�
3g ω �+g ω �18 . We show:
no finite union of linear planes equals Q1. From this we automatically get a
contradiction. So, assume that Q1 is the union of Ui, i b n, Ui linear. Then
there exists a Ui which contains infinitely many vectors of the form 7 2k g 3 8�
 .
From this one easily deduces that Ui contains a cyclic vector of the form m
 ,
m � 0. (This is left as an exercise.) However, it is clear that if v � Q1 then we
have m
ªg v �� Q1, and then we have a contradiction. <

Now we shall present an easy example of a ‘natural’ language which is
not semilinear. It has been proposed in somewhat different form by Arnold
Zwicky. Consider the number names of English. The stock of primitive names
for numbers is finite. It contains the names for digits (a D&# C up to

'V,X'
D
) the

names for the multiples of ten (
"�D4'

until
'V,X'
D�" ×

), the numbers from
D�2&D < D4'

and
"%T�D�2 < D until

'V,X'	D�"�D(D�'
as well as some names for the powers of ten:/ %(' î #�D î ,

" / C %.)>01' î , B ,>2�2�, C ' , í ,&2(2�, C ' , and a few more. (Actually, using
Latin numerals we can go to very high powers, but few people master these
numerals, so they will hardly know more than these.) Assume without loss
of generality that B ,&2�2�, C ' is the largest of them. Then there is an additional
recipe for naming higher powers, namely by stacking the word B ,&2(2�, C ' . The
number 106k is represented by the k–fold iteration of the word B ,>2�2�, C ' . For
example, the sequence

(2.174) C '	D B ,&2(2�, C ' B ,>2�2�, C ' B ,&2(2�, C ' B ,&2�2�, C '
names the number 1024. (It is also called C F "n,&2(2�, C ' , from Latin C F " C ‘eight’,
because there are eight blocks of three zeros.) For arbitrary numbers the
schema is as follows. A number in digital expansion is divided from right
to left into blocks of six. So, it is divided as follows:

(2.175) α0 g α1 e 106 g α2 e 1012 Â=Â=Â

Are Natural Languages Context Free? 173

where αi b 106 for all i. The associated number name is then as follows.

(2.176) Â=Â=Â�� Eη2 �cbed f#fgd%h%i��ebed f#f\d h%iÒ� Eη1 �ebcd�f�fgd h
i�� Eη0

where Eηi is the number name of αi. If αi
,

0 the ith block is omitted. Let Z be
the set of number names. We define a function ϕ as follows. ϕ 7 B ,&2�2�, C ' 8 , í ;
ϕ 7 < 8 :

,
ε , all other primitive names are mapped onto

0
. The Parikh image

of ϕ ¦ Z § is denoted by W . Now we have

(2.177) W
,kj

k0
0 g k1 í : k1 f wml k0 ¾ 9 n

2 xpo
Here, l k n is the largest integer ç k. We have left the proof of this fact to the
reader. We shall show that W is not semilinear. This shows that Z is also not
semilinear. Suppose that W is semilinear, say W

, � i n Ni where all the Ni
are linear. Let

(2.178) Ni
,

ui g ∑
j pi

ωvi
j

for certain ui and vi
j
,

λ i
j
0 g µ i

j í . Suppose further that for some i and j we
have λ i

j �, 0. Consider the set

(2.179) P :
,

ui g ωvi
j
, 5 ui g kλ i

j
0 g kµ i

j í : k � ω 6
Certainly we have P } Ni } W . Furthermore, we surely have µ i

j �, 0. Now
put ζ :

,
λ i

j ¾ µ i
j . Then

(2.180) P
, 5 ui g kµ i

j 7 0 g ζ í
8 : k � ω 6
Lemma 2.115 For every ε � 0 almost all elements of P have the form p

0 g
qí where q ¾ p ç ζ g ε .

Proof. Let ui
,

x
0 g y í . Then a general element of the set P is of the form7 x g kλ i

j 8 0 gÅ7 y g kµ i
j 8�í . We have to show that for almost all k the inequality

(2.181)
x g kλ i

j

y g kµ i
j
ç ε g ζ

is satisfied. Indeed, if k � x
µ i

jε
, then

(2.182)
x g kλ i

j

y g kµ j
i

ç x g kλ i
j

kµ i
j

,
ζ g x

kµ i
j
b ζ g x

µ i
jx ¾ µ i

jε
,

ζ g ε

This holds for almost all k. <

174 Context Free Languages

Lemma 2.116 Almost all points of P are outside of W.

Proof. Let n0 be chosen in such a way that y�q n0 Q 9 r
2 z � n0 7 ζ g 1 8 . Then for all

n f n0 we also have y q n Q 9 r2 z � n 7 ζ g 1 8 . Let p
0 g q íì� W with p f n0. Then

we have q
p � ζ g ε , and therefore p

0 g q íÝ�� P. Put H :
, 5 p

0 g q í : p f n0 6 .
Then P t H

, w . However W t�v H is certainly finite. Hence W t P is finite,
as required. <

Now have the desired contradiction. For on the one hand no vector is a
multiple of

0
; on the other hand there can be no vector m

0 g n í with n �, 0.
Hence W is not semilinear.

Notes on this section. The question concerning the complexity of vari-
able binding is discussed in (Marsh and Partee, 1987). It is shown there that
the language of sentences of predicate logic is not context free (a result that
was ‘folklore’) but that it is at least an indexed language. (Indexed languages
neeed not be semilinear.) On the other hand, it has been conjectured that if we
take V to the set of formulae in which every quantifier binds at least one free
occurrence of a variable, the language V is not even an indexed language. See
also Section 5.6. Philip Miller (1991) argues that Swedish and Norwegian are
not context free, and if right branching analyses are assumed, they are not
even indexed languages.

Exercise 83. Formalize the language of functions and integral expressions.
Prove that the language of proper integral expressions is not context free.

Exercise 84. Show the following: Let U be a linear set which contains in-
finitely many vectors of the form k

0
. Then there exists a cyclic vector of the

form m
0
, m � 0. Hint. Notice that the alphabet may consist of more than one

letter.

Exercise 85. Show that W has the claimed form.

Exercise 86. Show that the set V is not semilinear.

(2.183) V :
, j

k0
0 g k1 í : k1 ç w k0

2 xCo
Hint. Evidently, no linear set } V may contain a vector k í . Therefore the
following is well–defined.

(2.184) γ :
,

max
¿ µ i

j

λ i
j

: i b n � j b pi

�

Are Natural Languages Context Free? 175

Show now that for every ε � 0 almost all elements of W are of the form
x
0 g yí where y ç?7 γ g ε 8 x. If we put for example ε

,
1 we now get a con-

tradiction.

Exercise 87. Prove the unique readability of predicate logic. Hint. Since we
have strictly speaking not defined terms, restrict yourself to proving that the
grammar given above is unambiguous. You might try to show that it is also
transparent.

Exercise 88. Let Ω } ω . Put LΩ :
, 5 0 m í n : m �, n or m � Ω 6 . Then π ¦ LΩ § ,

VΩ, as defined in Exercise 76. Show that LΩ satisfies the properties of Theo-
rem 1.82 and of Theorem 2.111. It follows that there are 2ℵ0 many languages
over

0
and í that satisfy these criteria for context freeness and are not even

semilinear.

Chapter 3
Categorial Grammar and Formal Semantics

1. Languages as Systems of Signs

Languages are certainly not sets of strings. They are systems for commu-
nication. This means in particular that the strings have meaning, a meaning
which all speakers of the language more or less understand. And since natu-
ral languages have potentially infinitely many strings, there must be a way to
find out what meaning a given string has on the basis of finite information.
An important principle in connection with this is the so–called Principle of
Compositionality. It says in simple words that the meaning of a string only
depends on its derivation. For a CFG this means: if ρ

,
β � α0α1 Â=Â=Â αn © 1

is a rule and Eui a string of category αi then Ev :
, Eu0 Eu1 Â=Â=Â=Eun © 1 is a string of

category β and the meaning of Ev depends only on the meaning of the Eui and
ρ . In this form the principle of compositionality is still rather vague, and we
shall refine and precisify it in the course of this section. However, for now
we shall remain with this definition. It appears that we have admitted only
context free rules. This is a restriction, as we know. We shall see later how
we can get rid of it.

To begin, we shall assume that meanings come from some set M, which
shall not be specified further. As before, exponents are members of A ¡ , where
A is a finite alphabet. (Alternatives to this assumption will be discussed later.)

Definition 3.1 An interpreted (string) language over the alphabet A and
with meanings in M is a relation s¬} A ¡ e M. The string language asso-
ciated with s is

(3.1) L 72sï8 :
, 5XEx : there is m � M such that �ÈEx � m �Y�Cs16

The meanings expressed by s are

(3.2) M 72s½8 :
, 5 m : there is Ex � A ¡ such that ��Ex � m �Y�psX6

Alternatively, we may regard a language as a function from A ¡ to ℘7 M 8 .
Then L 7 f 8 :

, 51Ex : f 7�Ex 8×�, w¶6 is the string language associated with f and
M 7 f 8 :

, �·)x � A * f 7ÈEx 8 the set of expressed meanings of f . These definitions are

178 Categorial Grammar and Formal Semantics

not equivalent when it comes to compositionality. In the original definition,
any particular meaning of a composite expression is derived from some par-
ticular meanings of its parts, in the second the totality of meanings is derived
from the totality of the meanings of the parts.

We give an example. We consider the number terms as known from ev-
eryday life as for example T�T��%���	W����	W . We shall write a grammar with which
we can compute the value of a term as soon as its analysis is known. This
means that we regard an interpreted language as a set of pairs � t � x � where t is
an arithmetical term and x its value. Of course, the analysis does not directly
reveal the value but we must in addition to the rules of the grammar specify
in which way the value of the term is computed inductively over the analysis.
Since the nodes correspond to the subterms this is straightforward. Let T be
the following grammar.

(3.3) t � T t � t W��	T t`u%t W]�
T t � t W���T tgv t Wt �]¶�
T u]	W] � �¶�%�×���¶�XÂ=Â=Â��xw
(This grammar only generates terms which have ciphers in place of decimal
strings. But see Section 3.4.) Let now an arbitrary term be given. To this term
corresponds a unique number (if for a moment we disregard division by 0).
This number can indeed be determined by induction over the term. To this end
we define a partial interpretation map I, which if defined assigns a number to
a given term.

(3.4)

I 7½TOEx ��Ey W�8 :
,

I 7�Ex 8(g I 7ÈEy 8
I 7½TOEx u Ey W�8 :

,
I 7�Ex 8
v I 7ÈEy 8

I 7½TOEx �>Ey W�8 :
,

I 7�Ex 8»e I 7ÈEy 8
I 7½TOEx v Ey W�8 :

,
I 7�Ex 8�y I 7ÈEy 8

I 7½T u Ex W48 :
, v I 7ÈEx 8

I 7z��8 :
,

0
I 7K�48 :

,
1Â=Â=Â

I 7zw�8 :
,

9

If a function f is undefined on x we write f 7 x 8 ,�{
. We may also regard

{
as a value. The rules for

{
are then as follows. If at least one argument is

{
,

so is the value. Additionally, a ¾ 0 ,|{
for all a. If Ex is a term, then I 7�Ex 8 is

uniquely defined. For either Ex is a cipher from � to w or it is a negative cipher,

Languages as Systems of Signs 179

or Ex , TPEy1 ÷ Ey2 W for some uniquely determined Ey1, Ey2 and ÷ �¸50�	� u �Ï��� v 6 . In
this way one can calculate I 7ÈEx 8 if one knows I 7ÈEy1 8 and I 7�Ey2 8 . The value of a
term can be found by naming a derivation and then computing the value of
each of its subterms. Notice that the grammar is transparent so that only one
syntactical analysis can exist for each string.

The method just described has a disadvantage: the interpretation of a term
is in general not unique, for example if a string is ambiguous. (For example,
if we erase all brackets then the term �%������� has two values, 13 or 16.) As
explained above, we could take the meaning of a string to be a set of numbers.
If the language is unambiguous this set has at most one member. Further, we
have I 7�Ex 8y�, w only if Ex is a constituent. However, in general we wish to avoid
taking this step. Different meanings should arise only from different analyses.
There is a way to implement this idea no matter what the grammar is. Let U
be the grammar which results from T by deleting the brackets of T .

(3.5) t � t � t � t`u t � t � t � t`v%tt �]¶� u]] � �¶�%�×���¶�XÂ=Â=Â��xw
The strings of U can be viewed as images of a canonical transparent grammar.
This could be (3.3). However, for some reason that will become clear we shall
choose a different grammar. Intuitively, we think of the string as the image
of a term which codes the derivation tree. This tree differs from the structure
tree in that the intermediate symbols are not nonterminals but symbols for
rules. The derivation tree is coded by term in Polish Notation. For each rule
ρ we add a new symbol

F
ρ . In place of the rule ρ

,
A � Eα we now take

the rule A �^} ρ Eα . This grammar, call it V , is transparent (see Exercise 89).Ex � L 7 V 8 is called a derivation term. We define two maps ζ and ι . ζ yields a
string for each derivation term, and ι yields an interpretation. Both maps shall
be homomorphisms from the term algebra, though the concrete definition is
defined over strings. ζ can be uniformly defined by deleting the symbols} ρ . However, notice that the rules below yield values only if the strings are
derivation terms.

(3.6)
ζ 7~} ρ Eα0 Â=Â=Â Eαn © 1 8 :

,
ζ 7 α0 8 9 ζ 7 α1 8 9 Â=Â=Â 9 ζ 7 αn © 1 8

ζ 7 α 8 :
,

α

In the last line, α is different from all } ρ . We have assumed here that the
grammar has no rules of the form A � ε even though a simple adaptation can

180 Categorial Grammar and Formal Semantics

help here as well. Now on to the definition of ι . In the case at hand this is
without problems.

(3.7)

ι 7~}\� Eα0 � Eα1 8 :
,

ι 7 Eα0 8(g ι 7 Eα1 8
ι 7~}g� 2 Eα0 u Eα1 8 :

,
ι 7 Eα0 8
v ι 7 Eα1 8

ι 7~}`� Eα0 � Eα1 8 :
,

ι 7 Eα0 8»e ι 7 Eα1 8
ι 7~}g� Eα0 v Eα1 8 :

,
ι 7 Eα0 8�y ι 7 Eα1 8

ι 7~} � 1 u Eα 8 :
, v ι 7 Eα 8

Here we have put the derivation term into Polish Notation, since it is uniquely
readable. However, this only holds under the condition that every symbol is
unique. Notice, namely, that some symbols can have different meanings —
as in our example the minus symbol. To this end we have added an addi-
tional annotation of the symbols. Using a superscript we have distinguished
between the unary minus and the binary one. Since the actual language does
not do so (we write ‘ u ’ without distinction), we have written } � 1 if the rule
for the unary symbol has been used, and }m� 2 if the one for the binary symbol
has been used.

The mapping ι is a homomorphism of the algebra of derivation terms into
the algebra of real numbers with

{
, which is equivalent to a partial homomor-

phism from the algebra of terms to the algebra of real numbers. For exam-
ple the symbol } � is interpreted by the function g : � ý eC� ý ��� ý , where� ý :

, ��s 5 { 6 and
{

satisfies the laws specified above. In principle this alge-
bra can be replaced by any other which allows to interpret unary and binary
function symbols. We emphasize that it is not necessary that the interpreting
functions are basic functions of the algebras. It is enough if they are poly-
nomial functions (see (Hendriks, 2001) on this point). For example, we can
introduce a unary function symbol � whose interpretation is duplication. Now
2x
,

x g x, and hence the duplication is a polynomial function of the algebra�2� ��g¶�=Â�� 0 � 1 � , but not basic. However, the formal setup is easier if we inter-
pret each function symbol by a basic function. (It can always be added, if
need be.)

This exposition motivates a terminology which sees meanings and strings
as images of abstract signs under a homomorphism. We shall now develop
this idea in full generality. The basis is formed by an algebra of signs. Recall
from Section 1.1 the notion of a strong (partial) subalgebra. A strong subal-
gebra is determined by the set B. The functions on B are the restrictions of the
respective functions on A. Notice that it is not allowed to partialize functions

Languages as Systems of Signs 181

additionally. For example, � A � Ξ � with Ξ 7 f 8 , w is not a strong subalgebra of­ unless Π 7 f 8 , w .
A sign is a triple σ

, � e � c � m � where e is the exponent of σ , usually some
kind of string over an alphabet A, c the category of σ and m its meaning. Ab-
stractly, however, we shall set this up differently. We shall first define an alge-
bra of signs as such, and introduce exponent, category and meaning as values
of the signs under some homomorphisms. This will practically amount to the
same, however. So, we start by fixing a signature � F � Ω � . In this connection
the function symbols from F are called modes. Over this signature we shall
define an algebra of signs, of exponents, of categories and meanings. An al-
gebra of signs over � F � Ω � is simply a 0–generated partial algebra ­ over this
signature together with certain homomorphisms, which will be defined later.

Definition 3.2 A (partial) Ω–algebra ­ , � A � Π � is called n–generated if
there is an n–element subset X } A such that the smallest strong subalgebra
containing X is ­ .

Definition 3.3 The quadruple �Á­¬� ε � γ � µ � is called a sign grammar over the
signature Ω if ­ is a 0–generated partial Ω–algebra and ε : ­ ��� , γ : ­ �ë and µ : ­?�³ø homomorphisms to certain partial Ω–algebras such that
the homomorphism � ε � γ � µ � is injective and strong. ­ is called the algebra
of signs, � the algebra of exponents, ë the algebra of categories and ø the
algebra of meanings.

This means in particular:

+ Every sign σ is uniquely characterized by three things:� its so–called exponent ε 7 σ 8 ,� its (syntactical) category γ 7 σ 8 (which is also often called its
type),� its meaning µ 7 σ 8 .

+ To every function symbol f � F corresponds an Ω 7 f 8 –ary function f �
in � , an Ω 7 f 8 –ary function f

µ
in ë and an Ω 7 f 8 –ary function f ì inø .

+ Signs can be combined with the help of the function f ® any time their
respective exponents can be combined with the help of f � , their respec-
tive categories can be combined with f

µ
and their respective meanings

with f ì . (This corresponds to the condition of strongness.)

182 Categorial Grammar and Formal Semantics

In the sequel we shall write f ε in place of f � , f γ in place of f
µ

and f µ in
place of f ì . This will allow us to suppress mentioning which actual algebras
are chosen. If σ is a sign, then � ε 7 σ 8P� γ 7 σ 8P� µ 7 σ 8=� is uniquely defined by
σ , and on the other hand it uniquely defines σ as well. We shall call this
triple the realization of σ . Additionally, we can represent σ by a term in the
free Ω–algebra. We shall now deal with the correspondences between these
viewpoints.

Let ±3² Ω :
, � PNΩ ��5 g �%� Ω : g � F 61� , where PNΩ is the set of constant Ω–

terms written in Polish Notation and

(3.8) g �%� Ω 7�Ex0 �=�=�=�i�$ExΩ ¯ g ° © 1 8 :
,

g 9 ∏
i Ω ¯ g ° Exi±@² Ω is a freely 0–generated Ω–algebra. The elements of PNΩ are called

structure terms. We use � , � , � and so on as metavariables for structure terms.
We give an example. Suppose that 2 is a 0–ary mode and

}
a unary mode.

Then we have 2 �%� Ω
, 2 and

} �%� Ω : Ex �� } 93Ex. This yields the following strings
as representatives of structure terms.

(3.9) 2�� } 2�� }�} 2	� }�}%} 2	�=�=�=�
We denote by h : M

p� N the fact that h is a partial function from M to N.
We now define partial maps ε̇ : PNΩ

p� E , γ̇ : PNΩ
p� C and µ̇ : PNΩ

p� M
in the following way.

(3.10) ε̇ 7 g �%� Ω 7�� 0 �=�=�=�i�R� Ω ¯ g ° © 1 8=8 :
,

gε 7 ε̇ 7�� 0 8P�=�=�=�i� ε̇ 7�� Ω ¯ g ° © 1 8=8
Here, the left hand side is defined iff the right hand side is and then the two
are equal. If we have a 0–ary mode g, then it is a structure term ε̇ 7 g 8 , gε � E .
Likewise we define the other maps.

γ̇ 7 g �%� Ω 7�� 0 �=�=�=�i�R� Ω ¯ g ° © 1 8=8 :
,

gγ 7 γ̇ 7�� 0 8P�=�=�=�P� γ̇ 7�� Ω ¯ g ° © 1 8=8(3.11)

µ̇ 7 g �%� Ω 7�� 0 �=�=�=�i�R� Ω ¯ g ° © 1 8=8 :
,

gµ 7 µ̇ 7�� 0 8P�=�=�=�P� µ̇ 7�� Ω ¯ g ° © 1 8=8(3.12)

As remarked above, for every sign there is a structure term. The converse
need not hold.

Definition 3.4 We say, a structure term � is orthographically definite if ε̇ 7��&8
is defined. � is syntactically definite if γ̇ 7��&8 is defined and semantically defi-
nite if µ̇ 7��&8 is defined. Finally, � is definite if � is orthographically, syntacti-
cally as well as semantically definite.

Languages as Systems of Signs 183

­òòòò ½ ε
£

γ ñ ñ ññV©µ

� ε � γ � µ � ¦
� ë ø

�¸eìë�e¶øññññπ̈0 ¤π1 ò ò òòV¥π2

�9�4�
£

id

¤ υ
, � ε̇ � γ̇ � µ̇ �

¢

±3² Ω

Figure 9. Synopsis

Definition 3.5 The partial map υ :
, � ε̇ � γ̇ � µ̇ � is called the unfolding map.

The reader is referred to Figure 9 for a synopsis of the various algebras and
maps between them. In the sequel we shall often identify the structure term� with its image under the unfolding map. This will result in rather strange
types of definitions, where on the left we find a string (which is the structure
term, by convention) and on the right a triple. This abuse of the language
shall hopefully present no difficulty. ­ is isomorphic to the partial algebra
of all � ε̇ 7��&8P� γ̇ 7��&8P� µ̇ 7��&8=� , where � is a definite structure term. This we can
also look at differently. Let D be the set of definite structure terms. This set
becomes a partial Ω–algebra together with the partial functions g � � Ω £ D. We
denote this algebra by

�9�4�
.
�8�4�

is usually not a strong subalgebra of ±3² Ω.
For let j : � ���� be the identity map. Then we have j 7 g �����$7�� 0 �=�=�=�i�R� Ω ¯ g ° © 1 8=8 ,
g �%� Ω 7 j 7�� 0 8P�=�=�=�Z� j 7�� Ω ¯ g ° © 1 8=8 . The right hand side is always defined, the left
hand side need not be.

The homomorphism υ £ D (which we also denote by υ) is however strong.
Now look at the relation Θ :

, 5(��� 0 �R� 1 � : υ 7�� 0 8 , υ 7�� 1 8Z6 . Θ is a congruence
on

�9�4�
; for it clearly is an equivalence relation and if � i Θ � i for all i b Ω 7 f 8

184 Categorial Grammar and Formal Semantics

then f 7 E �(8 is defined iff f 7 E��8 is. And in this case we have f 7 E �(8 Θ f 7 E�
8 . We can
now put:

(3.13) f ® 7=�=¦ � i § Θ : i b Ω 7 f 8=�=8 :
, ¦ f 7=��� i : i b Ω 7 f 8=�=8�§ Θ

This is well–defined and we get an algebra, the algebra
�8�4� ¾ Θ. The following

is easy to see.

Proposition 3.6 ­ Ê, �8�4� ¾ Θ �
So,

�9�4� ¾ Θ is isomorphic to the algebra of signs. For every sign there is a
structure term, but there might also be several. As an instructive example we
look at the sign system of triples of the form ���Ò� T � 285 � , where � is the
arrangement of hands of an ordinary clock (here showing 4:45), T a fixed
letter, and 285 the number of minutes past midnight/noon that is symbolized
by this arrangement. So, the above triple is a sign of the language, while���Ò� T � 177 � is not, since the hands show 3:10, which equals 190 minutes,
not 177. We propose two modes: � (the zero, 0–ary) and � (the successor
function, unary). So, the unfolding of � is ���Ò� T � 0 � , and the unfolding of � is
the advancement by one minute. Then υ 7��(8 is a total function, and we have

(3.14) υ 72�
8 , υ 7�� 720 �
8
From this one easily gets that for every structure term � , υ 7��&8 , υ 7�� 720 �&8 .
Hence every sign has infinitely many structure terms, and so is inherently
structurally ambiguous. If instead we take as meanings the natural numbers
(say, the minutes that elapsed since some fixed reference point) and � µ :

,
0

as well as � µ :
,

λn � n g 1 then every structure term represents a different
sign! However, still there are only 720 exponents. Only that every exponent
has infinitely many meanings.

We shall illustrate the concepts of a sign grammar by proceeding with our
initial example. Our alphabet is now

(3.15) R :
, 5S�
���&�=�=�=�Z�/w	�¯��� u �Ï��� v �XT½�iW&6

The algebra � consists of R ¡ together with some functions that we still have
to determine. We shall now begin to determine the modes. They are },� , }g� 2 ,} � , }`� , which are binary,

F � 1 , Y , which are unary, and — finally — ten 0–ary
modes, namely]�R ,]	VX�=�=�=�Z�/]�� .

We begin with the 0–ary modes. These are, by definition, signs. For their
identification we only need to know the three components. For example, to

Languages as Systems of Signs 185

the mode](R corresponds the triple �z�	�/]
� 0 � . This means: the exponent of the
sign] R (what we get to see) is the digit � ; its category is] , and its meaning
the number 0. Likewise with the other 0–ary modes. Now on to the unary
modes. These are operations taking signs to make new signs. We begin with}`� 1 . On the level of strings we get the polynomial } ε� 1 , which is defined as
follows.

(3.16) } ε� 1 7�Ex 8 :
, T u Ex W

On the level of categories we get the function

(3.17) } γ� 1 7 c 8 :
, ¿ t if c

,] ,{
otherwise.

Here
{

is again the symbol for the fact that the function is not defined. Finally
we have to define } µ� 1 . We put

(3.18) } µ� 1 7 x 8 :
, v x

Notice that even if the function x ���v x is iterable, the mode } � 1 is not. This
is made impossible by the categorial assignment. This is an artefact of the
example. We could have set things up differently. The mode Y finally is de-
fined by the following functions. Y ε 7�Ex 8 :

, Ex, Y µ 7 x 8 :
,

x and Y γ 7 c 8 :
, } � 1 7 c 8 .

Finally we turn to the binary modes. Let us look at },� . } µ� is the partial (!)
binary function y on � . Further, we put

(3.19) } ε� 7�Ex ��Ey 8 :
, TPEx v Ey W

as well as

(3.20)
F γ� 7 c � d 8 :

, ¿ t if c
,

d
, t ,{

otherwise.

The string } �x} �]�¡!]#¢!]�£ defines — as is easily computed — a sign whose
exponent is T(T
�%���	W���u�W . By contrast, }m�
]��S] R does not represent a sign. It is
syntactically definite but not semantically, since we may not divide by 0.

Definition 3.7 A linear system of signs over the alphabet A, the set of cate-
gories C and the set of meanings M is a set Σ } A ¡ e C e M. Further, let � be
a category. Then the interpreted language of Σ with respect to this category

}
is defined by

(3.21) �	7 Σ 8 :
, 5(��Ex � m � : ��Ex �4�
� m �Y� Σ 6

186 Categorial Grammar and Formal Semantics

We added the qualifying phrase ‘linear’ to distinguish this from sign systems
which do not generally take strings as exponents. (For example, pictograms
are nonlinear.)

A system of signs is simply a set of signs. The question is whether one
can define an algebra over it. This is always possible. Just take a 0–ary mode
for every sign. Since this is certainly not as intended, we shall restrict the
possibilities as follows.

Definition 3.8 Let Σ } E e C e M be a system of signs. We say that Σ is
compositional if there is a finite signature Ω and partial Ω–algebras � ,� E ��5 f � : f � F 61� , ë , � C ��5 f

µ
: f � F 61� , ø , � M ��5 f ì : f � F 61� such that

all functions are computable and Σ is the carrier set of the 0–generated par-
tial (strong) subalgebra of signs from ��e ëÙe�ø . Σ is weakly compositional
if there is a compositional system Σ k such that Σ

,
Σ kPt E e C e M.

Notice that Σ k
} E k>e C k&e M k for certain sets E k , C k and M k . We remark that
a partial function f : Mn p� M in the sense of the definition above is a com-
putable total function f ý : Mný � Mý such that f ý¸£ Mn , f . So, the compu-
tation always halts, and we are told at its end whether or not the function is
defined and if so what the value is.

Two conditions have been made: the signature has to be finite and the
functions on the algebras computable. We shall show that however strong
they appear, they do not really restrict the class of sign systems in comparison
to weak compositionality.

We start by drawing some immediate conclusions from the definitions. If
σ is a sign we say that � ε 7 σ 8P� γ 7 σ 8P� µ 7 σ 8=� (no dots!) is its realization. We
have introduced the unfolding map υ above.

Proposition 3.9 Let �Á­¬� ε � γ � µ � be a compositional sign grammar. Then the
unfolding map is computable.

Simply note that the unfolding of a structure term can be computed induc-
tively. This has the following immediate consequence.

Corollary 3.10 Let Σ be compositional. Then Σ is recursively enumerable.

This is remarkable inasmuch as the set of all signs over E e C e M need not
even be enumerable. For typically M contains uncountably many elements
(which can of course not all be named by a sign)!

Theorem 3.11 A system of signs is weakly compositional iff it is recursively
enumerable.

Languages as Systems of Signs 187

Proof. Let Σ } E e C e M be given. If Σ is weakly compositional, it also is
recursively enumerable. Now, let us assume that Σ is recursively enumerable,
say Σ

, 5(� ei � ci � mi � : 0 b i � ω 6 . (Notice that we start counting with 1.) Now
let
7

be a symbol and ∆ :
, 5(� 7 n � 7 n � 7 n � : n � ω 6 a system of signs. By prop-

erly choosing
7

we can see to it that ∆ t Σ
, w and that no

7 n occurs in E , C
or M. Let F :

, 5#� R ��� V ������6 , Ω 7�� R 8 :
,

0, Ω 7�� V 8 :
,

1 and Ω 7����48 :
,

1.

(3.22)

� R :
, � 7 � 7 � 7 �P�� V 7 σ 8 :
, ¿×� 7 i � 1 � 7 i � 1 � 7 i � 1 � if σ

, � 7 i � 7 i � 7 i � ,{
otherwise,

� � 7 σ 8 :
, ¿×� ei � ci � mi � if σ

, � 7 i � 7 i � 7 i � ,{
otherwise.

This is well–defined. Further, the functions are all computable. For example,
the map

7 i �� ei is computable since it is the concatenation of the computable
functions

7 i �� i, i �� � ei � ci � mi � with � ei � ci � mi �.�� ei. We claim: the system of
signs generated is exactly ∆ s Σ. For this we notice first that a structure term is
definite iff it has the following form. (a) t

, � iV � R , or (b) t
, ���.� iV � R . In Case

(a) we get the sign � 7 i � 1 � 7 i � 1 � 7 i � 1 � , in Case (b) the sign � ei � 1 � ci � 1 � mi � 1 � .
Hence we generate exactly ∆ s Σ. So, Σ is weakly compositional. <

Notice that the algebra of exponents uses additional symbols which are
only used to create new objects which are like natural numbers. The just
presented algebra is certainly not very satisfying. (It is also not composi-
tional.) Hence one has sought to provide a more systematic theory of cat-
egories and their meanings. A first step in this direction are the categorial
grammars. To motivate them we shall give a construction for CFGs that dif-
fers markedly from the one in Theorem 3.11. The starting point is once again
an interpreted language s , 5(��Ex � f 7�Ex 8=� : Ex � L 6 , where L is context free and f
computable. Then let G

, � } � N � A � R � be a CFG with L 7 G 8 , L. Put A k : , A,
C k :

,
N s�5 } �Y6 and M k :

,
M s A ¡ . For simplicity we presuppose that G is

already in Chomsky Normal Form. For every rule ρ of the form ρ
,

A � Ex
we take a 0–ary mode

F
ρ , which is defined as follows:

(3.23)
F

ρ :
, ��Ex � A �$Ex �

For every rule ρ of the form ρ
,

A � B C we take a binary mode
F

ρ defined

188 Categorial Grammar and Formal Semantics

by

(3.24)
F

ρ 7=��Ex � B �$Ex �P�Z��Ey � C ��Ey �=8 :
, ��Ex Ey � A ��Ex Ey �

Finally we choose a unary mode
}
:

(3.25)
} 7=��Ex � } �$Ex �=8 :

, ��Ex � } � � f 7�Ex 8=�
Then s is indeed the set of signs with category

} � . As one can see, this al-
gebra of signs is more perspicuous. The strings are just concatenated. The
meanings, however, are not the ones we expect to see. And the category as-
signment is unstructured. This grammar is not compositional, since it still
uses nonstandard meanings. Hence once again some pathological examples,
which will show that there exist nonrecursive compositional systems of signs.

Suppose that ∆ is a decidable system of signs. This means that there are
countable sets E , C and M such that either (i) ∆

,
E e C e M, or (ii) ∆

, w ,
or (iii) there are two computable functions,

(3.26) d ¤ : ω ¤ ∆ � d � : ω ¤ 7 E e C e M v ∆ 8
In particular, E , C and M are finite or countable. Also, we can find a bijec-
tion δ ¤ : κ � ∆, where κ

, �∆ � . (Simply generate a list d ¤ 7 i 8 for i
,

0 � 1 �=�=�=�
and skip repeated items.) Its inverse is also computable. Now we look at the
projections π0 : � e � c � m ���� e, π1 : � e � c � m �»�� c and π2 : � e � c � m ���� m.

Definition 3.12 Let ∆ be a system of signs. ∆ is called enumerative if the
projections π0, π1, and π2 are either bijective and computable or constant.

Here is an enumerative subsystem of English. Take E to be the set of number
names of English (see Section 2.7), C

, 5 ν 6 , where ν is the category of
numbers, and M

,
ω . Now let ¥ be the set of signs �ÈEx � ν � n � , where Ex names

the number n in English. It is straightforward to check that ¥ is enumerative.
Let ∆ be enumerative. We introduce two modes, � (zeroary) and � (unary)

and say that

(3.27)
� :
,

δ ¤X7 0 8��7 σ 8 :
,

δ ¤ 7 δ © 1¤ 7 σ 8�g 1 8
This generates ∆, as is easily verified. This, however, is not compositional,
unless we can show that the � can be defined componentwise. Therefore put

(3.28) � ε 7 e 8 :
, ¿ e if π0 is constant,

π0 7���7 π © 1
0 7 e 8=8=8 otherwise.

Languages as Systems of Signs 189

This is computable if it is decidable whether or not e is in the image of π0.
So, the set π0 ¦ ∆ § must be decidable. Similarly � γ and � µ are defined, and are
computable if π1 ¦∆ § and π2 ¦∆ § , respectively, are decidable.

Definition 3.13 ∆ is called modularly decidable if ∆, π0 ¦ ∆ § , π1 ¦ ∆ § and π2 ¦∆ §
are decidable.

Theorem 3.14 Suppose that ∆ is modularly decidable and enumerative. Then
∆ is compositional. <
Theorem 3.15 (Extension) Let Σ } E e C e M be a recursively enumerable
set of signs. Let ∆ } Σ be modularly decidable and enumerative. Assume
that E is finite iff π0 is constant on ∆; similarly for C and M. Then Σ is
compositional.

Proof. We first assume that E , C and M are all infinite. By Theorem 3.14, ∆ is
compositional. Further, Σ is recursively enumerable. So there is a computable
function ξ : ω ¤ Σ. Moreover, δ © 1¤ is also computable, and so ξ : δ © 1¤ : ∆ ¤ Σ
is computable. Add a unary mode

U
to the signature and letU ε 7 e 8 :

,
π0 7=7 ξ : δ © 1¤ 8�7 π © 1

0 7 e 8=8=8U ε 7 c 8 :
,

π1 7=7 ξ : δ © 1¤ 8�7 π © 1
1 7 c 8=8=8(3.29) U ε 7 m 8 :

,
π2 7=7 ξ : δ © 1¤ 8�7 π © 1

2 7 m 8=8=8
(On all other inputs the functions are not defined.) This is well–defined and
surjective. ��[ε � U γ � U µ � is partial, computable, and defined only on ∆. Its full
image is Σ. Now assume that one of the projections, say π0, is constant. Then
E is finite, by assumption on Σ, say E

, 5 ei : i b n 6 for some n. Then put
Σi :
,

Σ t¸7�5 ei 6 e C e M 8 . Σi is also recursively enumerable. We do the proof
as before, with an enumeration ξi : ω ¤ Σi in place of ξ . Assume n new unary
modes, ¦ i, and put¦ ε

i 7 e 8 :
,

ei¦ ε
i 7 c 8 :

,
π1 7=7 ξi : δ © 1¤ 8�7 π © 1

1 7 c 8=8=8(3.30) ¦ ε
i 7 m 8 :

,
π2 7=7 ξi : δ © 1¤ 8�7 π © 1

2 7 m 8=8=8
All ��¦ ε

i ��¦ γ
i
��§ µ

i
� are computable, partial, and defined exactly on ∆, which they

map onto Σi. <

190 Categorial Grammar and Formal Semantics

In this construction all occurring signs are in Σ. Still, we do want to say
that the grammar just constructed is compositional. Namely, if we apply

U ε

to the string Ex we may get a string that may have nothing to do with Ex at
all. Evidently, we need to further restrict our operations, for example, by not
allowing arbitrary string manipulations. We shall deal with this problem in
Section 5.7.

Compositionality in the weak sense defines semantics as an autonomous
component of language. When a rule is applied, the semantics may not ‘spy’
into the phonological form or the syntax to see what it is supposed to do.
Rather, it acts autonomously, without that knowledge. Its only input is the
semantics of the argument signs and the mode that is being applied. In a sim-
ilar way syntax is autonomous from phonology and semantics. That this is
desirable has been repeatedly argued for by Noam Chomsky. It means that
syntactic rules apply regardless of the semantics or the phonological form. It
is worthwile to explain that our notion of compositionality not only makes se-
mantics autonomous from syntax and phonology, but also syntax autonomous
from phonology and semantics and phonology autonomous from syntax and
semantics.

Notes on this section. The notion of sign defined here is the one that is
most commonly found in linguistics. In essence it goes back to de Saussure
(1965), published posthumously in 1916, who takes a linguistic sign to con-
sist of a signifier and denotatum (see also Section 5.8). De Saussure therewith
diverged from Peirce, for whom a sign was a triadic relation between the sig-
nifier, the interpreting subject and the denotatum. (See also (Lyons, 1978) for
a discussion.) On the other hand, following the mainstream we have added to
de Saussure signs the category, which is nothing but a statement of the com-
binatorics of that sign. This structure of a sign is most clearly employed, for
example, in Montague Grammar and in the Meaning–to–Text framework of
Igor Mel’čuk (see for example (Mel’čuk, 2000)). Other theories, for example
early HPSG and Unification Categorial Grammar also use the tripartite dis-
tinction between what they call phonology, syntax and semantics, but signs
are not triples but much more complex in structure.

The distinction between compositionality and weak compositionality turns
on the question whether the generating functions should work inside the lan-
guage or whether they may introduce new objects. We strongly opt for the
former not only because it gives us a stronger notion. The definition in its
informal rendering makes reference to the parts of an expression and their
meanings — and in actual practice the parts from which we compose an ex-

Propositional Logic 191

pression do have meanings, and it is these meanings we employ in forming
the meaning of a complex expression.

Exercise 89. Let G
, � } � N � A � R � be a CFG. Put N k : , N s 5 F ρ : ρ � R 6 , and

R” :
, 5 X � F

ρ Eα : ρ
,

X � Eα � R 6 , G k :
, � } � N k � A � R k � . Show that G k is

transparent.

Exercise 90. Show that English satisfies the conditions of Theorem 3.15.
Hence English is compositional!

Exercise 91. Construct an undecidable set ∆ such that its projections π0 ¦∆ § ,
π1 ¦∆ § and π2 ¦∆ § are decidable. Construct a ∆ which is decidable but not its
projection π0 ¦∆ § .
Exercise 92. Show that the functions postulated in the proof of Theorem 3.15,
zγ and mγ , do exist if Σ is recursively enumerable.

Exercise 93. Say that Σ } E e C e M is extra weakly compositional if
there exists a finite signature Ω and Ω–algebras �Yk , ë�k and øÏk over sets
E k à E , C k à C and M k à M, respectively, such that Σ is the carrier set of
the 0–generated partial subalgebra of �+k�e�ë�k�e øÏk which belong to the set
E e C e M. (So, the definition is like that of weak compositionality, only that
the functions are not necessarily computable.) Show that Σ is extra weakly
compositional iff it is countable. (See also (Zadrozny, 1994).)

2. Propositional Logic

Before we can enter a discussion of categorial grammar and type systems, we
shall have to introduce some techniques from propositional logic. We seize
the opportunity to present boolean logic using our notions of the previous
section. The alphabet is defined to be AP :

, 5�Q��/�
���&�XTj�iW(�4¨ ¨ ¨¶�¯�	6 . Further, let
T :
, 5 P 6 , and M :

, 5 0 � 1 6 . Next, we define the following modes. The zeroary
modes are

(3.31) ©n)α :
, ��Q Eα � P� 0 �P�«ªn)α :

, ��Q Eα � P� 1 �P�­¬`® :
, ��¨¨ ¨¶� P� 0 �

Here, Eα ranges over (possibly empty) sequences of � and � . (So, the signature
is infinite.) Further, let ¯ be the following function:

(3.32)
¯ 0 1
0 1 1
1 0 1

192 Categorial Grammar and Formal Semantics

The binary mode Ag° of implication formation is spelled out as follows.

(3.33) A ° 7=��Ex � P� η �P�Z�ÈEy � P� θ �=8 :
, �½TPEx ��Ey W(� P� η ¯ θ �

The system of signs generated by these modes is called boolean logic and is
denoted by Σ ± . To see that this is indeed so, let us explain in more conven-
tional terms what these definitions amount to. First, the string language L we
have defined is a subset of A ¡P, which is generated as follows.

À If Eα �¸5S�����>6 ¡ , then Q Eα � L. These sequences are called propositional
variables.

Á ¨ ¨ ¨ � L.

Â If Ex ��Ey � L then TOEx ��Ey W�� L.Ex is also called a well–formed formula (wff) or simply a formula iff it be-
longs to L. There are three kinds of wffs.

Definition 3.16 Let Ex be a well–formed formula. Ex is a tautology if ��Ex � P� 0 �ª��
Σ ± . Ex is a contradiction if ��Ex � P� 1 ���� Σ ± . If Ex is neither a tautology nor a
contradiction, it is called contingent.

The set of tautologies is denoted by Taut ±�7_���4¨¨ ¨¬8 , or simply by Taut ± if the
language is clear from the context. It is easy to see that Ex is a tautology iffTPEx �\¨�8 is a contradiction. Likewise, Ex is a contradiction iff TOEx �g¨¬8 is a tautol-
ogy. We now agree on the following convention. Lower case Greek letters are
proxy for well–formed formulae, upper case Greek letters are proxy for sets
of formulae. Further, we write ∆;ϕ instead of ∆ s�5 ϕ 6 and ϕ ; χ in place of5 ϕ � χ 6 .

Our first task will be to present a calculus with which we can generate all
the tautologies of Σ ± . For this aim we use a so–called Hilbert style calculus.
Define the following sets of formulae.

(3.34)

(a0) T ϕ �3T ψ � ϕ W�W
(a1) T�T ϕ �@T ψ � χ W�W#�3T�T ϕ � ψ W��@T ϕ � χ W&W�W
(a2) T�¨¨ ¨ü� ϕ W
(a3) T�T(T ϕ �g¨¨¨«W��\¨¨¨¶W�� ϕ W

The logic axiomatized by (a0) – (a3) is known as classical or boolean logic,
the logic axiomatized by (a0) – (a2) as intuitionistic logic. To be more pre-
cise, (a0) – (a3) each are sets of formulae. For example:

(3.35) (a0)
, 5�T ϕ �@T ψ � ϕ W�W : ϕ � ψ � L 6

Propositional Logic 193

We call (a0) an axiom schema and its elements instances of (a0). Likewise
with (a1) – (a3).

Definition 3.17 A finite sequence Π
, � δi : i b n � of formulae is a ² –proof

of ϕ if (a) δn © 1
,

ϕ and (b) for all i b n either (b1) δi is an instance of (a0) –
(a3) or (b2) there are j � k b i such that δk

, T δ j � δi W . The number n is called
the length of Π. We write ~ ± ϕ if there is a ² –proof of ϕ .

The formulae (a0) – (a3) are called the axioms of this calculus. Moreover,
this calculus uses a single inference rule, which is known as Modus Ponens.
It is the inference from T ϕ � χ W and ϕ to χ . The easiest part is to show that
the calculus generates only tautologies.

Lemma 3.18 If ~ ± ϕ then ϕ is a tautology.

The proof is by induction on the length of the proof. The completeness part
is somewhat harder and requires a little detour. We shall extend the notion of
proof somewhat to cover proofs from assumptions.

Definition 3.19 A ² –proof of ϕ from ∆ is a finite sequence Π
, � δi : i b n �

of formulae such that (a) δn © 1
,

ϕ and (b) for all i b n either (b1) δi is an
instance of (a0) – (a3) or (b2) there are j � k b i such that δk

, T δ j � δi W or
(b3) δi � ∆. We write ∆ ~ ± ϕ if there is a ² –proof of ϕ from ∆.

To understand this notion of a hypothetical proof, we shall introduce the no-
tion of an assignment. It is common to define an assignment to be a function
from variables to the set 5 0 � 1 6 . Here, we shall give an effectively equivalent
definition.

Definition 3.20 An assignment is a maximal subset A of

(3.36) 5P©V)α : Eα �f7z�ys³�18�¡j6�sì5<ªG)α : Eα �x7z�ªs³�X8�¡j6
such that for no Eα both ©n)α �zªV)α � A.

(So, an assignment is a set of zeroary modes.) Each assignment defines a
closure under the modes ¬ ® and ¬ ° , which we denote by Σ ± 7 A 8 .
Lemma 3.21 Let A be an assignment and ϕ a well–formed formula. Then
either � ϕ � P� 0 �Y� Σ ± 7 A 8 or � ϕ � P� 1 �Y� Σ ± 7 A 8 , but not both.

The proof is by induction on the length of Ex. We say that an assignment A
makes a formula ϕ true if � ϕ � P� 1 �Y� Σ ± 7 A 8 .

194 Categorial Grammar and Formal Semantics

Definition 3.22 Let ∆ be a set of formulae and ϕ a formula. We say that ϕ
follows from (or is a consequence of) ∆ if for all assignments A: if A makes
all formulae of ∆ true then it makes ϕ true as well. In that case we write
∆ Ð ϕ .

Our aim is to show that the Hilbert calculus characterizes this notion of con-
sequence:

Theorem 3.23 ∆ ~ ± ϕ iff ∆ Ð ϕ .

Again, the proof has to be deferred until the matter is sufficiently simplified.
Let us first show the following fact, known as the Deduction Theorem (DT).

Lemma 3.24 (Deduction Theorem) ∆;ϕ ~ ± χ iff ∆ ~ ± T ϕ � χ W .
Proof. The direction from right to left is immediate and left to the reader.
Now, for the other direction suppose that ∆;ϕ ~ ± χ . Then there exists a proof
Π
, � δi : i b n � of χ from ∆;ϕ . We shall inductively construct a proof Π k ,� δ kj : j b m � of T ϕ � χ W from ∆. The construction is as follows. We define Πi

inductively.

(3.37) Π0 :
,

ε � Πi � 1 :
,

Π 9i Σi �
where Σi, i b n, is defined as given below. Furthermore, we will verify in-
ductively that Πi � 1 is a proof of its last formula, which is T ϕ � δi W . Then
Π k :

,
Πn will be the desired proof, since δn © 1

,
χ . Choose i b n. Then

either (1) δi � ∆ or (2) δ is an instance of (a0) – (a3) or (3) δi
,

ϕ or
(4) there are j � k b i such that δk

, T δ j � δi W . In the first two cases we put
Σi :
, � δi �XT δi �3T ϕ � δi W�W&�XT ϕ � δi W�� . In Case (3) we put

Σi :
, �½T(T ϕ �@T�T ϕ � ϕ W�� ϕ W(W��@T�T ϕ �@T ϕ � ϕ W�W��@T ϕ � ϕ W�W&W½�(3.38) T ϕ �3T(T ϕ � ϕ W�� ϕ W�Wï�T�T ϕ �@T ϕ � ϕ W�W��@T ϕ � ϕ W�W½�T ϕ �3T ϕ � ϕ W(W4�T ϕ � ϕ WX�

Σi is a proof of T ϕ � ϕ W , as is readily checked. Finally, Case (4). There are
j � k b i such that δk

, T δ j � δi W . Then, by induction hypothesis, T ϕ � δ j W and

Propositional Logic 195T ϕ � δk W , T ϕ �@T δ j � δi W�W already occur in the proof. Then put

Σi :
, �½T(T ϕ �@T δ j � δi W(W��@T�T ϕ � δ j W��@T ϕ � δi W�W�W>�(3.39) T�T ϕ � δ j W��@T ϕ � δi W�W>�T ϕ � δi W4�

It is verified that Πi � 1 is a proof of T ϕ � δi W . <
A special variant is the following.

Lemma 3.25 (Little Deduction Theorem) For all ∆ and ϕ: ∆ ~ ± ϕ if and
only if ∆; T ϕ �g¨¨ ¨�WY~ ± ¨ ¨ ¨ .

Proof. Assume that ∆ ~ ± ϕ . Then there is a proof Π of ϕ from ∆. It follows
that Π 9 �½T ϕ �g¨¨¨«W&�4¨ ¨ ¨¬� is a proof of ¨ ¨ ¨ from ∆; T ϕ �\¨¨ ¨¶W . Conversely, assume
that ∆; T ϕ �g¨¨ ¨�W ~ ± ¨ ¨ ¨ . Applying DT we get ∆ ~ ± T�T ϕ �g¨¨ ¨¶W#�g¨¨ ¨¶W . Using (a3)
we get ∆ ~ ± ϕ . <
Proposition 3.26 The following holds.

À ϕ ~ ± ϕ .

Á If ∆ } ∆ k and ∆ ~ ± ϕ then also ∆ k ~ ± ϕ .

Â If ∆ ~ ± ϕ and Γ;ϕ ~ ± χ then Γ;∆ ~ ± χ .

This is easily verified. Now we are ready for the proof of Theorem 3.23.
An easy induction on the length of a proof establishes that if ∆ ~ ± ϕ then
also ∆ Ð ϕ . (This is called the correctness of the calculus.) So, the converse
implication, which is the completeness part needs proof. Assume that ∆ ´ ±

ϕ .
We shall show that also ∆ µ ϕ . Call a set Σ consistent (in ~ ±) if Σ ´ ± ¨ ¨ ¨ .

Lemma 3.27 À Let ∆; T ϕ � χ W be consistent. Then either ∆; T ϕ �\¨ ¨ ¨�W is
consistent or ∆; χ is consistent.

Á Let ∆; T�T ϕ � χ W#�g¨¨¨�W be consistent. Then also ∆;ϕ ; T χ �g¨ ¨¨«W is consistent.

Proof. À. Assume that both ∆; T ϕ �g¨ ¨¨«W and ∆; χ are inconsistent. Then we
have ∆; T ϕ �g¨¨ ¨¶WS~ ± ¨ ¨ ¨ and ∆; χ ~ ± ¨ ¨ ¨ . So ∆ ~ ± T�T ϕ �\¨¨¨«W��\¨¨¨¶W by DT and, us-
ing (a3), ∆ ~ ± ϕ . Hence ∆; T ϕ � χ W ~ ± ϕ and so ∆; T ϕ � χ W ~ ± χ . Because
∆; χ ~ ± ¨ ¨ ¨ , we also have ∆; T ϕ � χ WR~ ± ¨ ¨ ¨ , showing that ∆; T ϕ � χ W is inconsis-
tent. Á. Assume ∆;ϕ ; T χ �g¨¨ ¨¶W is inconsistent. Then ∆;ϕ ; T χ �g¨ ¨¨«Wü~ ± ¨ ¨ ¨ . So,

196 Categorial Grammar and Formal Semantics

∆;ϕ ~ ± T�T χ �g¨¨ ¨¶W#�g¨¨ ¨¶W , by applying DT. So, ∆;ϕ ~ ± χ , using (a3). Applying
DT we get ∆ ~ ± T ϕ � χ W . Using (a3) and DT once again it is finally seen that
∆; T�T ϕ � χ W��g¨¨ ¨«W is inconsistent. <

Finally, let us return to our proof of the completeness theorem. We assume
that ∆ ´ ± ϕ . We have to find an assignment A that makes ∆ true but not ϕ . We
may also apply the Little DT and assume that ∆; T ϕ �g¨ ¨ ¨�W is consistent and find
an assignment that makes this set true. The way to find such an assignment is
by applying the so–called downward closure of the set.

Definition 3.28 A set ∆ is downward closed iff (1) for all T ϕ � χ W]� ∆ eitherT ϕ �g¨¨ ¨¶W×� ∆ or χ � ∆ and (2) for all formulae T�T ϕ � χ W��g¨ ¨¨«W×� ∆ also ϕ � ∆
and T χ �g¨¨¨¶W�� ∆.

Now, by Lemma 3.27 every consistent set has a consistent closure ∆ ¡ . (It is
an exercise for the diligent reader to show this. In fact, for infinite sets a little
work is needed here, but we really need this only for finite sets.) Define the
following assignment.

A :
, 5(��Q Eα � P� 1 � : T�Q Eα �\¨¨¨¶W does not occur in ∆ ¡�6(3.40) sì5(��Q Eα � P� 0 � : T�Q Eα �\¨¨¨¶W does occur in ∆ ¡�6

It is shown by induction on the formulae of ∆ ¡ that the so–defined assignment
makes every formula of ∆ ¡ true. Using the correspondence between syntactic
derivability and semantic consequence we immediately derive the following.

Theorem 3.29 (Compactness Theorem) Let ϕ be a formula and ∆ a set of
formulae such that ∆ Ð ϕ . Then there exists a finite set ∆ k4} ∆ such that ∆ kjÐ ϕ .

Proof. Suppose that ∆ Ð ϕ . Then ∆ ~ ± ϕ . Hence there exists a proof of ϕ
from ∆. Let ∆ k be the set of those formulae in ∆ that occur in that proof. ∆ k
is finite. Clearly, this proof is a proof of ϕ from ∆ k , showing ∆ k�~ ± ϕ . Hence
∆ k>Ð ϕ . <

Usually, one has more connectives than just ¨ ¨ ¨ and � . Now, two effectively
equivalent strategies suggest themselves, and they are used whenever conve-
nient. The first is to introduce a new connective as an abbreviation. So, we
might define (for well–formed formulae)¶ ϕ :

,
ϕ �g¨¨¨(3.41)

ϕ · χ :
, T ϕ �g¨¨ ¨«W#� χ(3.42)

ϕ � χ :
, T ϕ �3T χ �g¨¨¨�W(W��\¨¨¨(3.43)

Propositional Logic 197

After the introduction of these abbreviations, everything is the same as be-
fore, because we have not changed the language, only our way of referring
to its strings. However, we may also change the language by expanding the
alphabet. In the cases at hand we will add the following unary and binary
modes (depending on which symbol is to be added):¬\¸�7=��Ex � P� η �=8 :

, �½TZU�Ex W&� P�iv η �(3.44) ¬g¹�7=��Ex � P� η �P�Z�ÈEy � P� θ �=8 :
, �½TPEx ��Ey W(� P� η s θ �(3.45) ¬gº�7=��Ex � P� η �P�Z�ÈEy � P� θ �=8 :
, �½TPEx S�Ey W(� P� η t θ �(3.46)

(3.47)
s 0 1
0 0 1
1 1 1

t 0 1
0 0 0
1 0 1

v
0 1
1 0

For S , � and U we need the postulates shown in (3.48), (3.49) and (3.50),
respectively: T ϕ �@T ψ �@T ϕ S ψ W�W(W1��T ϕ �3T ψ �3T ψ S ϕ W�W�WX�(3.48) T�T ϕ S ψ W�� ϕ W4��T�T ϕ S ψ W�� ψ WT ϕ �3T ϕ � ψ W�W4��T ψ �@T ϕ � ψ W(W>�(3.49) T�T(T ϕ � ψ W#� χ W#�3T ϕ � χ W(WX��T(T�T ϕ � ψ W#� χ W#�3T ψ � χ W�WT�T ϕ � ψ W��3T(TPU ψ W��@TPU ϕ W�W(WX��T ϕ �3TZU@TZU ϕ W(W�W(3.50)

Notice that in defining the axioms we have made use of � alone. The formula
(3.51) is derivable.

(3.51) T(TPUYTPU ϕ W�W#� ϕ W
If we eliminate the connective ¨ ¨ ¨ and define ∆ ~ ϕ as before (eliminating the
axioms (a2) and (a3), however) we get once again intuitionistic logic, unless
we add (3.51). The semantics of intuitionistic logic is too complicated to be
explained here, so we just use the Hilbert calculus to introduce it. We claim
that with only (a0) and (a1) it is not possible to prove all formulae of Taut ±
that use only � . A case in point is the formula

(3.52) T(T�T ϕ � χ W�� ϕ W�� ϕ W
which is known as Peirce’s Formula. Together with Peirce’s Formula, (a0)
and (a1) axiomatize the full set of tautologies of boolean logic in � . The

198 Categorial Grammar and Formal Semantics

calculus based on (a0) and (a1) is called » and we write ∆ ~½¼ χ to say that
there is a proof in the Hilbert calculus of χ from ∆ using (a0) and (a1).

Rather than axiomatizing the set of tautologies we can also axiomatize the
deducibility relation itself. This idea goes back to Gerhard Gentzen, who used
it among other to show the consistency of arithmetic (which is of no concern
here). For simplicity, we stay with the language with only the arrow. We shall
axiomatize the derivability of intuitionistic logic. The statements that we are
deriving now have the form ‘∆ ~ ~ ~ ϕ’ and are called sequents. ∆ is called the
antecedent and ϕ the succedent of that sequent. The axioms are

(3.53) (ax) ϕ ~ ~ ~ ϕ

Then there are the following rules of introduction of connectives:

(3.54) (I �)
∆;ϕ ~ ~ ~ χ

∆ ~ ~ ~ÍT ϕ � χ W (� I)
∆ ~ ~ ~ ϕ ∆;ψ ~ ~ ~ χ

∆; T ϕ � ψ W�~~~ χ

Notice that these rules introduce occurrences of the arrow. The rule (I �) in-
troduces an occurrence on the right hand side of ~ ~ ~ , while (� I) puts an occur-
rence on the left hand side. (The names of the rules are chosen accordingly.)
Further, there are the following so–called rules of inference:

(3.55) (cut)
∆ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ χ

∆;Θ ~ ~ ~ χ (mon)
∆ ~ ~ ~ ϕ

∆;Θ ~ ~ ~ ϕ

The sequents above the line are called the premisses, the sequent below the
lines the conclusion of the rule. Further, the formulae that are introduced by
the rules (� I) and (I �) are called main formulae, and the formula ϕ in (cut)
the cut–formula. Let us call this the Gentzen calculus. It is denoted by ¾ .

Definition 3.30 Let ∆ ~ ~ ~ ϕ be a sequent. A (sequent) proof of length n of
∆ ~ ~ ~ ϕ in ¾ is a sequence Π

, � Σi ~ ~ ~ χi : i b n g 1 � such that (a) Σn
,

∆,
χn
,

ϕ , (b) for all i b n g 1 either (ba) Σi ~ ~ ~ χi is an axiom or (bb) Σi ~ ~ ~ χi
follows from some earlier sequents by application of a rule of ¾ .

It remains to say what it means that a sequent follows from some other se-
quents by application of a rule. This, however, is straightforward. For exam-
ple, ∆ ~ ~ ~ÅT ϕ � χ W follows from the earlier sequents by application of the rule
(I �) if among the earlier sequents we find the sequent ∆;ϕ ~ ~ ~ χ . We shall
define also a different notion of proof, which is based on trees rather than
sequences. In doing so, we shall also formulate a somewhat more abstract
notion of a calculus.

Propositional Logic 199

Definition 3.31 A finitary rule is a pair ρ
, � M ��® � , where M is a finite

set of sequents and ® a single sequent. (These rules are written down using
lower case Greek letters as schematic variables for formulae and upper case
Greek letters as schematic variables for sets of formulae.) A sequent calculusÚ is a set of finitary rules. An Ú –proof tree is a triple ¿ , � T �
hØ�_!ï� such
that � T �
a]� is a tree and for all x: if 5 yi : i b n 6 are the daughters of T ,��5�!>7 yi 8 : i b n 6>�_!>7 x 8=� is an instance of a rule of Ú . If r is the root of ¿ , we say
that ¿ proves !>7 r 8 in Ú . We write

(3.56) ÀÁ ∆ ~ ~ ~ ϕ

to say that the sequent ∆ ~ ~ ~ ϕ has a proof in Ú .

We start with the only rule for ¨ ¨ ¨ , which actually is an axiom.

(3.57) (¨ ¨ ¨ I) ¨ ¨ ¨�~~~ ϕ

For negation we have these rules.

(3.58) (U I)
∆ ~ ~ ~ ϕ

∆; TPU ϕ W�~~ ~p¨¨¨ (I U)
∆;ϕ ~ ~ ~Â¨¨¨
∆ ~ ~ ~ÃTZU ϕ W

The following are the rules for conjunction.

(3.59) (S I)
∆;ϕ ;ψ ~ ~ ~ χ

∆; T ϕ S ψ W�~~ ~ χ (I S)
∆ ~ ~ ~ ϕ ∆ ~ ~ ~ ψ

∆ ~ ~ ~ÃT ϕ S ψ W
Finally, these are the rules for � .

(3.60)
(� I)

∆;ϕ ~ ~ ~ χ ∆;ψ ~ ~ ~ χ
∆; T ϕ � ψ W�~~ ~ χ

(I1 �)
∆ ~ ~ ~ ϕ

∆ ~ ~ ~ÃT ϕ � ψ W (I2 �)
∆ ~ ~ ~ ψ

∆ ~ ~ ~ÃT ϕ � ψ W
Let us return to the calculus ¾ . We shall first of all show that we can weaken
the rule system without changing the set of derivable sequents. Notice that
the following is a proof tree.

(3.61)
ϕ ~ ~ ~ ϕ ψ ~ ~ ~ ψT ϕ � ψ W ;ϕ ~ ~ ~ ψT ϕ � ψ WS~~ ~ T ϕ � ψ W

This shows us that in place of the rule (ax) we may actually use a restricted
rule, where we have only Q i ~ ~ ~ÙQ i. Call such an instance of (ax) primitive.
This fact may be used for the following theorem.

200 Categorial Grammar and Formal Semantics

Lemma 3.32 ÃÁ ∆ ~ ~ ~ÍT ϕ � χ W iff ÃÁ ∆;ϕ ~ ~ ~ χ .

Proof. From right to left follows using the rule (I �). Let us prove the other di-
rection. We know that there exists a proof tree for ∆ ~ ~ ~ T ϕ � χ W from primitive
axioms. Now we trace backwards the occurrence of T ϕ � χ W in the tree from
the root upwards. Obviously, since the formula has not been introduced by
(ax), it must have been introduced by the rule (I �). Let x be the node where
the formula is introduced. Then we remove x from the tree, thereby also re-
moving that instance of (I �). Going down from x, we have to repair our proof
as follows. Suppose that at y b x we have an instance of (mon). Then instead
of the proof part to the left we use the one to the right.

(3.62)
Σ ~ ~ ~ÍT ϕ � χ W

Σ;Θ ~ ~ ~ T ϕ � χ W Σ;ϕ ~ ~ ~ χ
Σ;Θ;ϕ ~ ~ ~ χ

Suppose that we have an instance of (cut). Then our specified occurrence ofT ϕ � χ W is the one that is on the right of the target sequent. So, in place of the
proof part on the left we use the one on the right.

(3.63)
∆ ~ ~ ~ ψ Θ;ψ ~ ~ ~ÃT ϕ � χ W

∆;Θ ~ ~ ~ÃT ϕ � χ W ∆ ~ ~ ~ ψ Θ;ϕ ;ψ ~ ~ ~ χ
∆;Θ;ϕ ~ ~ ~ χ

Now suppose that we have an instance of (� I). Then this instance must be as
shown to the left. We replace it by the one on the right.

(3.64)
∆ ~ ~ ~ τ ∆;ψ ~ ~ ~ÍT ϕ � χ W

∆; T τ � ψ W�~~~ÃT ϕ � χ W ∆ ~ ~ ~ τ ∆;ϕ ;ψ ~ ~ ~ χ
∆; T τ � ψ W ;ϕ ~ ~ ~ χ

The rule (� I) does not occur below x, as is easily seen. This concludes the
replacement. It is verified that after performing these replacements, we obtain
a proof tree for ∆;ϕ ~ ~ ~ χ . <
Theorem 3.33 ∆ ~Ä¼ ϕ iff ÃÁ ∆ ~ ~ ~ ϕ .

Proof. Suppose that ∆ ~ ¼ ϕ . By induction on the length of the proof we shall

show that ÃÁ ∆ ~ ~ ~ ϕ . Using DT we may restrict ourselves to ∆
, w . First, we

shall show that (a0) and (a1) can be derived. (a0) is derived as follows.

(3.65)

ϕ ~ ~ ~ ϕ
ϕ ;ψ ~ ~ ~ ϕ

ϕ ~ ~ ~ÃT ψ � ϕ W~ ~ ~ÃT ϕ �3T ψ � ϕ W�W

Propositional Logic 201

For (a1) we need a little more work.

(3.66)

ψ ~ ~ ~ ψ χ ~ ~ ~ χ
ϕ ~ ~ ~ ϕ ψ ; T ψ � χ W�~~ ~ χ

ϕ ~ ~ ~ ϕ ϕ ; T ϕ � ψ W ; T ψ � χ WY~~~ χT ϕ �@T ψ � χ W�W ; T ϕ � ψ W ;ϕ ~ ~ ~ χ

If we apply (I �) three times we get (a1). Next we have to show that if we
have ÃÁ w�~~~ ϕ and ÃÁ w�~~~ T χ � ϕ W then ÃÁ w�~~~ χ . By DT, we also haveÃÁ ϕ ~ ~ ~ χ and then a single application of (cut) yields the desired conclusion.

This proves that ÃÁ wÚ~~~ ϕ . Now, conversely, we have to show that ÃÁ ∆ ~ ~ ~ ϕ
implies that ∆ ~Ä¼ ϕ . This is shown by induction on the height of the nodes
in the proof tree. If it is 1, we have an axiom: however, ϕ ~ ¼ ϕ clearly holds.
Now suppose the claim is true for all nodes of depth b i and let x be of depth
i. Then x is the result of applying one of the four rules. (� I). By induction
hypothesis, ∆ ~Å¼ ϕ and ∆;ψ ~Ä¼ χ . We need to show that ∆; T ϕ � ψ W·~Æ¼ χ .
Simply let Π1 be a proof of ϕ from ∆, Π2 a proof of χ from ∆;ψ . Then Π3 is
a proof of χ from ∆; T ϕ � ψ W .
(3.67) Π3 :

,
Π 91 �½T ϕ � ψ W>� ψ � 9 Π2

(I �). This is straightforward from DT. (cut). Suppose that Π1 is a proof of ϕ
from ∆ and Π2 a proof of χ from Θ;ϕ . Then Π 91 Π2 is a proof of χ from ∆;ϕ ,
as is easily seen. (mon). This follows from Proposition 3.26. <

Call a rule ρ admissible for a calculus Ú if any sequent ∆ ~ ~ ~ ϕ that is
derivable in Ú g ρ is also derivable in Ú . Conversely, if ρ is admissible in Ú ,
we say that ρ is eliminable from ÚYg ρ . We shall show that (cut) is eliminable
from ¾ , so that it can be omitted without losing derivable sequents. As cut–
elimination will play a big role in the sequel, the reader is asked to watch the
procedure carefully.

Theorem 3.34 (Cut Elimination) (cut) is eliminable from ¾ .

Proof. Recall that (cut) is the following rule.

(3.68) (cut)
∆ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ χ

∆;Θ ~ ~ ~ χ

Two measures are introduced. The degree of (3.68) is

(3.69) d :
, �∆ ��g �Θ ��g �ϕ �$g � χ �

202 Categorial Grammar and Formal Semantics

The weight of (3.68) is 2d . The cut–weight of a proof tree ¿ is the sum
over all weights of occurrences of cuts (= instances of (cut)) in it. Obviously,
the cut–weight of a proof tree is zero iff there are no cuts in it. We shall
now present a procedure that operates on proof trees in such a way that it
reduces the cut–weight of every given tree if it is nonzero. This procedure is
as follows. Let ¿ be given, and let x be a node carrying the conclusion of an
instance of (cut). We shall assume that above x no instances of (cut) exist.
(Obviously, x exists if there are cuts in ¿ .) x has two mothers, y1 and y2. Case
(1). Suppose that y1 is a leaf. Then we have !>7 y1 8 , ϕ ~ ~ ~ ϕ , !>7 y2 8 , Θ;ϕ ~ ~ ~ χ
and !>7 x 8 , Θ;ϕ ~ ~ ~ χ . In this case, we may simply skip the application of cut
by dropping the nodes x and y1. This reduces the degree of the cut by 2 Â½�ϕ � ,
since this application of (cut) has been eliminated without trace. Case (2).
Suppose that y2 is a leaf. Then !�7 y2 8 , χ ~ ~ ~ χ , !>7 y1 8 , ∆ ~ ~ ~ ϕ , whence ϕ

,
χ

and !�7 x 8 , ∆ ~ ~ ~ ϕ
, !�7 y1 8 . Eliminate x and y2. This reduces the cut–weight

by the weight of that cut. Case (3). Suppose that y1 has been obtained by
application of (mon). Then the proof is as shown on the left.

(3.70)
∆ ~ ~ ~ ϕ

∆;∆ k.~~ ~ ϕ Θ;ϕ ~ ~ ~ χ
∆;∆ k ;Θ ~ ~ ~ χ

∆ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ χ
∆;Θ ~ ~ ~ χ

∆;∆ k ;Θ ~ ~ ~ χ

We may assume that ∆ k � 0. We replace the local tree by the one on the right.
The cut weight is reduced by

(3.71) 2 Ç∆ Ç � Ç∆ ¡ Ç � ÇΘ Ç � Çϕ Ç � Ç χ ÇZv 2 Ç∆ Ç � ÇΘ Ç � Çϕ Ç � Ç χ Ç4� 0

Case (4). !�7 y2 8 has been obtained by application of (mon). This is similar to
the previous case. Case (5). !>7 y1 8 has been obtained by (� I). Then the main
formula is not the cut formula.

(3.72)
∆ ~ ~ ~ ρ ∆;τ ~ ~ ~ ϕ

∆; T ρ � τ W�~~ ~ ϕ Θ;ϕ ~ ~ ~ χ
∆;Θ; T ρ � τ WS~~~ χ

And the cut can be rearranged as follows.

(3.73)
∆ ~ ~ ~ ρ ∆;τ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ χ

∆;Θ ~ ~ ~ ρ ∆;Θ;τ ~ ~ ~ χ
∆;Θ; T ρ � τ W�~~~ χ

Propositional Logic 203

Here, the degree of the cut is reduced by �ÈT ρ � τ W(�jv � τ �(� 0. Thus the cut–
weight is reduced as well. Case (6). !>7 y2 8 has been obtained by (� I). Assume
ϕ �, T ρ � τ W .
(3.74)

Θ;ϕ ~ ~ ~ ρ Θ;ϕ ;τ ~ ~ ~ χ
∆ ~ ~ ~ ϕ Θ;ϕ ; T ρ � τ W�~~~ χ

∆;Θ; T ρ � τ WS~~~ χ

In this case we can replace the one cut by two as follows.

(3.75)
∆ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ ρ

∆;Θ ~ ~ ~ ρ
∆ ~ ~ ~ ϕ Θ;ϕ ;τ ~ ~ ~ χ

∆;Θ;τ ~ ~ ~ χ

If we now apply (� I), we get the same sequent. The cut–weight has been
diminished by

(3.76) 2 Ç∆ Ç � ÇΘ Ç � Ç ρ Ç � Ç τ Ç � 3 v 2 Ç∆ Ç � ÇΘ Ç � Ç ρ Ç v 2 Ç∆ Ç � ÇΘ Ç � Ç τ Ç � 0

(See also below for the same argument.) Suppose however ϕ
, T ρ � τ W«�� Θ.

Then either ϕ is not the main formula of !>7 y1 8 , in Case (1), (3), (5), or it
actually is the main formula, and then we are in Case (7), to which we now
turn. Case (7). !�7 y1 8 has been introduced by (I �). If the cut formula is not
the main formula, we are in cases (2), (4), (6) or (8), which we dealt with
separately. Suppose however the main formula is the cut formula. Here, we
cannot simply permute the cut unless !>7 y2 8 is the result of applying (� I). In
this case we proceed as follows. ϕ

, T ρ � τ W for some ρ and τ . The local
proof is as follows.

(3.77)
∆;ρ ~ ~ ~ τ Θ ~ ~ ~ ρ Θ;τ ~ ~ ~ χ

∆ ~ ~ ~ T ρ � τ W Θ; T ρ � τ W�~~ ~ χ
∆;Θ ~ ~ ~ χ

This is rearranged in the following way.

(3.78)
∆;ρ ~ ~ ~ τ Θ ~ ~ ~ ρ Θ;τ ~ ~ ~ χ

∆;Θ ~ ~ ~ τ ∆;Θ;τ ~ ~ ~ χ
∆;Θ ~ ~ ~ χ

This operation eliminates the cut in favour of two cuts. The overall degree
of these cuts may be increased, but the weight has been decreased. Let d :

,

204 Categorial Grammar and Formal Semantics�∆;Θ � , p :
, �ÈT ρ � τ W�� . Then the first cut has weight 2d � p � Ç χ Ç . The two other

cuts have weight

(3.79) 2d � Ç ρ Ç � Ç τ Ç g 2d � Ç τ Ç � Ç χ Ç ç 2d � Ç ρ Ç � Ç τ Ç � Ç χ Ç b 2d � p � Ç χ Ç
since p �É� ρ �ÈgÃ� τ �ï� 0. (Notice that 2a � c g 2a � d , 2a ÂZ7 2c g 2d 8�ç 2a Â 2c � d ,
2a � c � d if c � d � 0.) Case (8). !>7 y2 8 has been obtained by (I �). Then χ

,T ρ � τ W for some ρ and τ . We replace the left hand proof part by the right
hand part, and the degree is reduced by �ÈT ρ � τ W��ZvÃ� τ �X� 0.

(3.80)
Θ;ϕ ;ρ ~ ~ ~ τ

∆ ~ ~ ~ ϕ Θ;ϕ ~ ~ ~ÃT ρ � τ W
∆;Θ ~ ~ ~ÃT ρ � τ W ∆ ~ ~ ~ ϕ Θ;ρ ;ϕ ~ ~ ~ τ

∆;Θ;ρ ~ ~ ~ τ
∆;Θ ~ ~ ~ÃT ρ � τ W

So, in each case we managed to decrease the cut–weight. This concludes the
proof. <

Before we conclude this section we shall mention another deductive cal-
culus, called Natural Deduction. It uses proof trees, but is based on the De-
duction Theorem. First of all notice that we can write Hilbert style proofs also
in tree format. Then the leaves of the proof tree are axioms, or assumptions,
and the only rule we are allowed to use is Modus Ponens.

(3.81) (MP)
T ϕ � ψ W ϕ

ψ

This, however, is a mere reformulation of the previous calculus. The idea
behind natural deduction is that we view Modus Ponens as a rule to elimi-
nate the arrow, while we add another rule that allows to introduce it. It is as
follows.

(3.82) (I �)
ψT ϕ � ψ W

However, when this rule is used, the formula ϕ may be eliminated from the
assumptions. Let us see how this goes. Let x be a node. Let us call the set
A 7 x 8 :

, 5(� y �_!>7 y 8=� : y � x � y leaf 6 the set of assumptions of x. If (I �) is used
to introduce T ϕ � ψ W , any number of assumptions of x that have the form� y � ϕ � may be retracted. In order to know what assumption has been effec-
tively retracted, we check mark the retracted assumptions by a superscript

Propositional Logic 205

(e. g. ϕ
{

). Here are the standard rules for the other connectives. The fact that
the assumption ϕ is or may be removed is annotated as follows:

(3.83) (I �)

¦ ϕ §
...

ψT ϕ � ψ W (E �)
T ϕ � ψ W ϕ

ψ

Here, ¦ ϕ § means that any number of assumptions of the form ϕ above the node
carrying ϕ may be check marked when using the rule. (So, it does not mean
that it requires these formulae to be assumptions.) The rule (E �) is nothing
but (MP). First, conjunction.

(3.84) (I S)
ϕ ψT ϕ S ψ W (E1 S) T ϕ S ψ W

ϕ (E2 S)
T ϕ S ψ W

ψ

The next is ¨ ¨ ¨ :

(3.85) (E ¨ ¨ ¨)
¨ ¨
ϕ̈

For negation we need some administration of the check mark.

(3.86) (I U)

¦ ϕ §
...¨ ¨ ¨TPU ϕ W (E U)

ϕ TPU ϕ W¨ ¨ ¨
So, using the rule (I U) any number of assumptions of the form ϕ may be
check marked. Disjunction is even more complex.

(3.87)

(I1 �)
ϕT ϕ � ψ W (I2 �)

ψT ϕ � ψ W
(E �)

¦ϕ §¨¦ψ §
...

...T ϕ � ψ W χ χ
χ

206 Categorial Grammar and Formal Semantics

In the last rule, we have three assumptions. As we have indicated, whenever
it is used, we may check mark any number of assumptions of the form ϕ in
the second subtree and any number of assumptions of the form ψ in the third.

We shall give a characterization of natural deduction trees. A finitary rule
is a pair ρ

, ��5 χi ¦ Ai § : i b n 6>� ϕ � , where for i b n, χi is a formula, Ai a finite
set of formulae and ϕ a single formula. A natural deduction calculus ú is
a set of finitary rules. A proof tree for ú is a quadruple ¿ , � T �
h¬�_!1�[È�� such
that � T �
a]� is a tree, ÈË} T a set of leaves and ¿ is derived in the following
way. (Think of È as the set of leaves carrying discharged assumptions.)

+ ¿ , ��5 x 6>��w¶�_!4��w¬� , where ! : x �� ϕ .

+ There is a rule ��5 χi ¦Ai § : i b n 6>� γ � , and ¿ is formed from trees É i, i b n,
with roots si, by adding a new root node r, such that !PÊ

i
7 yi 8 , χi, i b n,!TË.7 x 8 , γ . Further, ÈmË , � i n È Ê i

s � i n Ni, where Ni is a set of leaves
of É i such that for all i b n and all x � Ni: !TÊ i

7 x 8y� Ai.

(Notice that the second case includes n
,

0, in which case ¿ , ��5 x 6>��w¶�_!4��5 x 61�
where !�7 x 8 is simply an axiom.) We say that ¿ proves !�7 r 8 in ú from 5�!�7 x 8 :
x leaf � x ��ÌÈ�6 . Here now is a proof tree ending in (a0).

(3.88)
ϕ
{T ψ � ϕ WT ϕ �@T ψ � ϕ W(W

Further, here is a proof tree ending in (a1).

(3.89)

T ϕ �@T ψ � χ W�W { ϕ
{ T ϕ � ψ W { ϕ

{T ψ � χ W ψ
χT ϕ � χ WT(T ϕ � ψ W��@T ϕ � χ W(WT(T ϕ �3T ψ � χ W(W��3T(T ϕ � ψ W#�3T ϕ � χ W�W�W

A formula depends on all its assumptions that have not been retracted in the
following sense.

Lemma 3.35 Let ¿ be a natural deduction tree with root x. Let ∆ be the set
of all formulae ψ such that � y � ψ � is an unretracted assumption of x and let
ϕ :
, !�7 x 8 . Then ∆ ~ ¼ ϕ .

Basics of λ–Calculus and Combinatory Logic 207

Proof. By induction on the derivation of the proof tree. <
The converse also holds. If ∆ ~Æ¼ ϕ then there is a natural deduction proof

for ϕ with ∆ the set of unretracted assumptions (this is Exercise 99).
Notes on this section. Proofs are graphs whose labels are sequents. The

procedure that eliminates cuts can be described using a graph grammar. Un-
fortunately, the replacements also manipulate the labels (that is, the sequents),
so either one uses infinitely many rules or one uses schematic rules.

Exercise 94. Show (a) T ϕ �@T ψ � χ W�W ~ ± T ψ �3T ϕ � χ W�W and (b) T ϕ S ψ W�~ ¼ ¡T ψ S ϕ W , where »Yk is » with the axioms for S added.

Exercise 95. Show that a set Σ is inconsistent iff for every ϕ : Σ ~ ± ϕ .

Exercise 96. Show that a Hilbert style calculus satisfies DT for � iff the
formulae (a0) and (a1) are derivable in it. (So, if we add, for example, the
connectives U , S and � together with the corresponding axioms, DT remains
valid.)

Exercise 97. Define ϕ Ø ψ by ϕ ~Æ¼ ψ and ψ ~Ä¼ ϕ . Show that if ϕ Ø ψ then
(a) for all ∆ and χ : ∆;ϕ ~ ¼ χ iff ∆;ψ ~ ¼ χ , and (b) for all ∆: ∆ ~ ¼ ϕ iff
∆ ~Ä¼ ψ .

Exercise 98. Let us call Í o0É the Hilbert calculus for � , ¨ ¨ ¨ , U , � and S . Fur-
ther, call the Gentzen calculus for these connectives s . Show that ∆ ~ÏÎ Ð4Ñ ϕ iffÒÁ ∆ ~ ~ ~ ϕ .

Exercise 99. Show the following claim: If ∆ ~�¼ ϕ then there is a natural de-
duction proof for ϕ with ∆ the set of unretracted assumptions.

Exercise 100. Show that the rule of Modus Tollens is admissible in the natural
deduction calculus defined above (with added negation).

(3.90) Modus Tollens:
T ϕ � ψ W TPU ψ WTPU ϕ W

3. Basics of λ–Calculus and Combinatory Logic

There is a fundamental difference between a term and a function. The term
x2 g 2xy is something that has a concrete value if x and y have a concrete
value. For example, if x has value 5 and y has value 2 then x2 g 2xy

,
25 g

20
,

45. However, the function f : ¿ eÆ¿Í� ¿ : � x � y �y�� x2 g 2xy does not

208 Categorial Grammar and Formal Semantics

need any values for x and y. It only needs a pair of numbers to yield a value.
That we have used variables to define f is of no concern here. We would have
obtained the same function had we written f : � x � u �y�� x2 g 2xu. However,
the term x2 g 2xu is different from the term x2 g 2xy. For if u has value 3, x
has value 5 and y value 2, then x2 g 2xu

,
25 g 30

,
55, while x2 g 2xy

,
45.

To accommodate this difference, the λ–calculus has been developed. The λ–
calculus allows to define functions from terms. In the case above we may
write f as

(3.91) f :
,

λxy � x2 g 2xy

This expression defines a function f and by saying what it does to its argu-
ments. The prefix ‘λxy’ means that we are dealing with a function from pairs� m � n � and that the function assigns this pair the value m2 g 2mn. This is the
same as what we have expressed with � x � y �;�� x2 g 2xy. Now we can also
define the following functions.

(3.92) λx � λy � x2 g 2xy � λy � λx � x2 g 2xy

The first is a function which assigns to every number m the function λy �m2 g
2my; the latter yields the value m2 g 2mn for every n. The second is a function
which gives for every m the function λx � x2 g 2xm; this in turn yields n2 g 2nm
for every n. Since in general m2 g 2mn �, n2 g 2nm, these two functions are
different.

In λ–calculus one usually does not make use of the simultaneous abstrac-
tion of several variables, so one only allows prefixes of the form ‘λx’, not
those of the form ‘λxy’. This we shall also do here. We shall give a general
definition of λ–terms. Anyhow, by introducing pairing and projection (see
Section 3.6) simultaneous abstraction can be defined. The alphabet consists
of a set F of function symbols (for which a signature Ω needs to be given as
well), Ó , the variables V :

, 5 $ i : i � ω 6 the brackets I , J and the period ‘
O
’.

Definition 3.36 The set of λ–terms over the signature Ω, the set of λΩ–
terms for short, is the smallest set TmλΩ 7 V 8 for which the following holds:

À Every Ω–term is in TmλΩ 7 V 8 .
Á If M � N � TmλΩ 7 V 8 then also I MN J�� TmλΩ 7 V 8 .
Â If M � TmλΩ and x is a variable then I�Ó x

O
M J]� TmλΩ 7 V 8 .

Basics of λ–Calculus and Combinatory Logic 209

If the signature is empty or clear from the context we shall simply speak of
λ–terms.

Since in Á we do not write an operator symbol, Polish Notation is now am-
biguous. Therefore we follow standard usage and use the brackets I and J .
We agree now that x, y and z and so on are metavariables for variables (that
is, for elements of V). Furthermore, upper case Roman letters like M, N are
metavariables for λ–terms. One usually takes F to be w , to concentrate on the
essentials of functional abstraction. If F

, w , we speak of pure λ–terms. It
is customary to omit the brackets if the term is bracketed to the left. Hence
MNOP is short for I(I�I MN J O J P J and Ó x

O
MN short for I�I�Ó x

O I MN J�J (and
distinct from I�I�Ó x

O
M J N J). However, this abbreviation has to be used with

care since the brackets are symbols of the language. Hence
�RS
�RS
�R is not a
string of the language but only a shorthand for T(T�
 R
 R WS
 R W , a difference that
we shall ignore after a while. Likewise, outer brackets are often omitted and
brackets are not stacked when several λ–prefixes appear. Notice that I $ R $ R(J
is a term. It denotes the application of

$ R to itself. We have defined occur-
rences of a string Ex in a string Ey as contexts �$Eu ��Ev � where Eu Ex Ev , Ey. Ω–terms
are thought to be written down in Polish Notation.

Definition 3.37 Let x be a variable. We define the set of occurrences of x in
a λΩ–term inductively as follows.

À If M is an Ω–term then the set of occurrences of x in the λΩ–term M
is the set of occurrences of the variable x in the Ω–term M.

Á The set of occurrences of x in I MN J is the union of the set of pairs�½I�Eu ��EvN JX� , where �$Eu ��Ev � is an occurrence of x in M and the set of pairs�½I M Eu ��Ev J�� , where ��Eu ��Ev � is an occurrence of x in N.

Â The set of occurrences of x in I�Ó x
O
M J is the set of all �½I�Ó x

O Eu ��Ev J�� ,
where ��Eu ��Ev � is an occurrence of x in M.

So notice that — technically speaking — the occurrence of the string x in the
λ–prefix of I�Ó x

O
M J is not an occurrence of the variable x. Hence

$ R does
not occur in I�Ó x R O�$ V J as a λΩ–term although it does occur in it as a string!

Definition 3.38 Let M be a λ–term, x a variable and C an occurrence of x
in M. C is a free occurrence of x in M if C is not inside a term of the formI�Ó x

O
N J for some N; if C is not free, it is called bound. A λ–term is called

closed if no variable occurs free in it. The set of all variables having a free
occurrence in M is denoted by fr 7 M 8 .

210 Categorial Grammar and Formal Semantics

A few examples shall illustrate this. In M
, I�Ó $ R O I $ R $ V1J�J the variable$ R occurs only bound, since it only occurs inside a subterm of the formI�Ó $ R O N J (for example N :

, I $ R $ V4J). However,
$ V occurs free. A variable

may occur free as well as bound in a term. An example is the variable
$ R inI $ R I�Ó $ R O�$ R J�J .

Bound and free variable occurrences behave differently under replace-
ment. If M is a λ–term and x a variable then denote by ¦N ¾ x § M the result
of replacing x by N. In this replacement we do not simply replace all occur-
rences of x by N; the definition of replacement requires some care.

¦N ¾ x § y :
,À¿ N if x

,
y,

y otherwise.
(3.93a) ¦N ¾ x § f 7�Es 8 :

,
f 7=¦N ¾ x § s0 �=�=�=�i�Z¦N ¾ x § sΩ ¯ f ° © 1 8(3.93b) ¦N ¾ x §OI MM k J :

, Iï7=¦N ¾ x § M 8�7=¦N ¾ x § M k 8OJ(3.93c) ¦N ¾ x §OI�Ó x
O
M J :

, I�Ó x
O
M J(3.93d) ¦N ¾ x §OI�Ó y

O
M J :

, I�Ó y
O ¦N ¾ x § M J(3.93e)

if y �, x and: y �� fr 7 N 8 or x �� fr 7 M 8¦N ¾ x §OI�Ó y
O
M J :

, I�Ó z
O ¦N ¾ x §�¦ z ¾ y § M J(3.93f)

if y �, x � y � fr 7 N 8 and x � fr 7 M 8
In (3.93f) we have to choose z in such a way that it does not occur freely
in N or M. In order for substitution to be uniquely defined we assume that
z
,Ù$

i, where i is the least number such that z satisfies the conditions. The
precaution in (3.93f) of an additional substitution is necessary. For let y

,±$ V
and M

,k$ R . Then without this substitution we would get

(3.94) ¦ $ V ¾ $ R §OI�Ó $ R O�$ V J , I�Ó $ V O ¦ $ V ¾ $ R § $ R J , I�Ó $ V O�$ V J
This is clearly incorrect. For I�Ó $ V O�$ R J is the function which for given a
returns the value of

$ R . However, I�Ó $ V O�$ V J is the identity function and so it
is different from that function. Now the substitution of a variable by another
variable shall not change the course of values of a function.

M
, , ,

M(3.95a)

M
, , ,

N | N
, , ,

M(3.95b)

M
, , ,

N � N , , ,
L | M

, , ,
L(3.95c)

Basics of λ–Calculus and Combinatory Logic 211

M
, , ,

N | I ML J , , , I NL J(3.95d)

M
, , ,

N | I LM J , , , I LN J(3.95e) I�Ó x �M J , , , I�Ó y ��¦ y ¾ x § M J y �� fr 7 M 8 7 α–conversion)(3.95f) I�Ó x �M J N , , , ¦N ¾ x § M 7 β–conversion 8(3.95g) I�Ó x �M J , , , M x �� fr 7 M 8 7 η–conversion 8(3.95h)

M
, , ,

N | I�Ó x �M J , , , I�Ó x � N J 7 ξ –rule 8(3.95i)

We shall present the theory of λ–terms which we shall use in the sequel. It
consists in a set of equations M

, , ,
N, where M and N are terms. These are

subject to the laws above. The theory axiomatized by (3.95a) – (3.95g) and
(3.95i) is called Ô , the theory axiomatized by (3.95a) –(3.95i) Ô
Õ . Notice that
(3.95a) – (3.95e) simply say that

, , ,
is a congruence. A different rule is the

following so–called extensionality rule.

Mx
, , ,

Nx | M
, , ,

N (ext)(3.96)

It can be shown that Ô@g (ext)
, Ô
Õ . The model theory of λ–calculus is some-

what tricky. Basically, all that is assumed is that we have a domain D together
with a binary operation ! that interprets function application. Abstraction is
defined implicitly. Call a function β : V � D a valuation. Now define ¦M § β
inductively as follows.¦ $ i § β :

,
β 7 $ i 8(3.97a) ¦�I MN J�§ β :

, ¦M § β 7=¦N § β 8(3.97b) ¦�I�Ó x �M Jï§ β ! a :
, ¦M § β Ö x: ð a ×(3.97c)

(Here, a � D.) (3.97c) does not fix the interpretation of I�Ó x �M J uniquely on
the basis of the interpretation of M. If it does, however, the structure is called
extensional. We shall return to that issue below. First we shall develop some
more syntactic techniques for dealing with λ–terms.

Definition 3.39 Let M and N be λ–terms. We say, N is obtained from M
by replacement of bound variables or by α–conversion and write M Á

α N
if there is a subterm I�Ó y

O
L J of M and a variable z which does not oc-

cur in L such that N is the result of replacing an occurrence of I�Ó y
O
L J byI�Ó z

O ¦ z ¾ y § L J . The relation Ø α is the transitive closure of Á α . N is congruent
to M, in symbols M ð α N, if both M Ø α N and N Ø α M.

212 Categorial Grammar and Formal Semantics

Similarly the definition of β–conversion.

Definition 3.40 Let M be a λ–term. We write M Á
β N and say that M con-

tracts to N if N is the result of a single replacement of an occurrence ofI�I�Ó x
O
L J P J in M by IX¦P ¾ x § L J . Further, we write M Ø β N if N results from M

by a series of contractions and M ð β N if M Ø β N and N Ø β M.

A term of the form I(I�Ó x
O
M J N J is called a redex and ¦N ¾ x § M its contrac-

tum. The step from the redex to the contractum represents the evaluation of
a function to its argument. A λ–term is evaluated or in normal form if it
contains no redex.

Similarly for the notation Á
αβ , Ø αβ and ð αβ . Call M and N αβ–equiva-

lent (αβη–equivalent) if � M � N � is contained in the least equivalence rela-
tion containing Ø αβ (Ø αβη 8 .
Proposition 3.41 Ô ~ M

, , ,
N iff M and N are αβ–equivalent. Ô
Õ�~ M

, , ,
N

iff M and N are αβη–equivalent.

If M Ø αβ N and N is in normal form then N is called a normal form of M.
Without proof we state the following theorem.

Theorem 3.42 (Church, Rosser) Let L � M � N be λ–terms such that L Ø αβ M
and L Ø αβ N. Then there exists a P such that M Ø αβ P and N Ø αβ P.

The proof can be found in all books on the λ–calculus. This theorem also
holds for Ø αβη .

Corollary 3.43 Let N and N k be normal forms of M. Then N ð α N k .
The proof is simple. For by the previous theorem there exists a P such that
N Ø αβ P and N k4Ø αβ P. But since N as well as N k do not contain any redex and
α–conversion does not introduce any redexes then P results from N and N k
by α–conversion. Hence P is α–congruent with N and N k and hence N and
N k are α–congruent.

Not every λ–term has a normal form. For exampleI�I�Ó $ R O I $ R $ R J�J�I�Ó $ R O I $ R $ R J�J(J(3.98) Ø β I�I�Ó $ R O I $ R $ R J�J�I�Ó $ R O I $ R $ R J�J(J

Basics of λ–Calculus and Combinatory Logic 213

Or I�I�Ó $ R O I�I $ R $ R J $ V J(J�I�Ó $ R O I(I $ R $ R J $ V J(J�J(3.99) Ø β I�I(I�Ó $ R O I�I $ R $ R J $ V J�J.I�Ó $ R O I�I $ R $ R J $ V J�J�J $ V JØ β I�I(I�I�Ó $ R O I(I $ R $ R�J $ V4J(J�I�Ó $ R O I(I $ R $ R(J $ V1J(J�J $ V4J $ V4J
The typed λ–calculus differs from the calculus which has just been presented
by an important restriction, namely that every term must have a type.

Definition 3.44 Let B be a set. The set of types over B, Typ Ä 7 B 8 , is the small-
est set M for which the following holds.

À B } M.

Á If α � M and β � M then α � β � M.

In other words: types are simply terms in the signature 51�?6 with Ω 7���8 , 2
over a set of basic types. Each term is associated with a type and the struc-
ture of terms is restricted by the type assignment. Further, all Ω–terms are
admitted. Their type is already fixed. The following rules are valid.

À If I MN J is a term of type γ then there is a type α such that M has the
type α � γ and N the type γ .

Á If M has the type γ and xα is a variable of type α then I�Ó xα
O
M J is of

type α � γ .

Notice that for every type α there are countably many variables of type α .
More exactly, the set of variables of type α is V α :

, 5 $ i
α : i � ω 6 . We shall

often use the metavariables xα , yα and so on. If α �, β then also xα �, xβ
(they represent different variables). With these conditions the formation of
λ–terms is severely restricted. For example I�Ó $ R O I $ R $ R J�J is not a typed
term no matter which type

$ R has. One can show that a typed term always
has a normal form. This is in fact an easy matter. Notice by the way that if the
term I $ R1L $ V4J has type α and

$ R and
$ V also have the type α , the functionI�Ó $ R O I�Ó $ V O I $ RïL $ V1J�J(J has the type α ��7 α � α 8 . The type of an Ω–term

is the type of its value, in this case α . The types are nothing but a special
version of sorts. Simply take Typ Ä 7 B 8 to be the set of sorts. However, while
application (written !) is a single symbol in the typed λ–calculus, we must
now assume in place of it a family of symbols ! β

α of signature � α � β � α � β �

214 Categorial Grammar and Formal Semantics

for every type α � β . Namely, M ! β
α N is defined iff M has type α � β and

N type α , and the result is of sort (= type) β . While the notation within
many sorted algebras can get clumsy, the techniques (ultimately derived from
the theory of unsorted algebras) are very useful, so the connection is very
important for us. Notice that algebraically speaking it is not Ó but Ó $ α that
is a member of the signature, and once again, in the many sorted framework,Ó $ α turns into a family of operations Ó β $

α of sort � β � α � β � . That is to say,Ó β $
α is a function symbol that only forms a term with an argument of sort (=

type) β and yields a term of type α � β .
We shall now present a model of the λ–calculus. We begin by studying

the purely applicative structures and then turn to abstraction after the intro-
duction of combinators. In the untyped case application is a function that is
everywhere defined. The model structures are therefore so–called applicative
structures.

Definition 3.45 An applicative structure is a pair ­ , � A ��!�� where ! is a
binary operation on A. If ! is only a partial operation, � A ��!�� is called a
partial applicative structure. ­ is called extensional if for all a � b � A:

(3.100) a
,

b iff for all c � A : a ! c
,

b ! c

Definition 3.46 A typed applicative structure over a given set of basic types
B is a structure ��5 Aα : α � Typ Ä 7 B 8Z6>��!�� such that (a) Aα is a set for every
α , (b) Aα t Aβ

, w if α �, β and (c) a ! b is defined iff there are types α � β
and α such that a � Aα Ä β and b � Aα , and then a ! b � Aβ .

A typed applicative structure defines a partial applicative structure. Namely,
put A :

, � α Aα ; then ! is nothing but a partial binary operation on A. The
typing is then left implicit. (Recovering the types of elements is not a trivial
affair, see the exercises.) Not every partial applicative structure can be typed,
though.

One important type of models are those where A consists of sets and ! is
the usual functional application as defined in sets. More precisely, we want
that Aα is a set of sets for every α . So if the type is associated with the set S
then a variable may assume as value any member of S. So, it follows that if
β is associated with the set T and M has the type β then the interpretation ofI�Ó $ α �M J is a function from S to T . We set the realization of α � β to be the
set of all functions from S to T . This is an arbitrary choice, a different choice
(for example a suitable subset) would do as well.

Basics of λ–Calculus and Combinatory Logic 215

Let M and N be sets. Then a function from M to N is a subset F of the
cartesian product M e N which satisfies certain conditions (see Section 1.1).
Namely, for every x � M there must be a y � N such that � x � y � � F and if� x � y �3� F and � x � y k��Y� F then y

,
y k . (For partial functions the first condition

is omitted. Everything else remains. For simplicity we shall deal only with
totally defined functions.) Normally one thinks of a function as something
that gives values for certain arguments. This is not so in this case. F is not a
function in this sense, it is just the graph of a function. In set theory one does
not distinguish between a function and its graph. We shall return to this later.
How do we have to picture F as a set? Recall that we have defined

(3.101) M e N
, 5(� x � y � : x � M � y � N 6

This is a set. Notice that M e�7 N e O 8y�, 7 M e N 8.e O. However, the mapping

(3.102) Ù : � x �Z� y � z �=�Y����=� x � y �P� z � : M eÝ7 N e O 8.��7 M e N 8»e O

is a bijection. Its inverse is the mapping

(3.103) Ú : �=� x � y �P� z �Y���� x �Z� y � z �=� : 7 M e N 8�e O � M eË7 N e O 8
Finally we put

(3.104) M � N :
, 5 F } M e N : F a function 6

Elsewhere we have used the notation NM for that set. Now functions are also
sets and their arguments are sets, too. Hence we need a map which applies a
function to an argument. Since it must be defined for all cases of functions
and arguments, it must by necessity be a partial function. If x is a function
and y an arbitrary object, we define q&p(p(7 x � y 8 as follows.

(3.105) q(p(p�7 x � y 8 :
, ¿ z if � y � z �@� x,{

if no z exists such that � y � z �3� x.q(p&p is a partial function. Its graph in the universe of sets is a proper class,
however. It is the class of pairs �=� F � x �P� y � , where F is a function and � x � y �»� F .

Note that if F � M ��7 N � O 8 then

(3.106) F } M eË7 N � O 8Y} M eÝ7 N e O 8

216 Categorial Grammar and Formal Semantics

Then Ù ¦F §	}�7 M e N 8»e O, and one calculates that Ù ¦ F §	}µ7 M e N 8.� O. In
this way a unary function with values in N � O becomes a unary function
from M e N to O (or a binary function from M, N to O). Conversely, one can
see that if F �f7 M e N 8�� O then Ú ¦F §�� M ��7 N � O 8 .
Theorem 3.47 Let Vω be the set of finite sets. Then � Vω ��q(p(p4� is a partial
applicative structure.

In place of Vω one can take any Vκ where κ is an ordinal. However, only if κ
is a limit ordinal (that is, an ordinal without predecessor), the structure will be
combinatorially complete. A more general result is described in the following
theorem for the typed calculus. Its proof is straightforward.

Theorem 3.48 Let B be the set of basic types and Mb, b � B, arbitrary sets.
Let Mα be inductively defined by Mα Ä β :

, 7 Mβ 8 Mα . Then

(3.107) ��5 Mα : α � Typ Ä 7 B 8Z6>��q&p(p��
is a typed applicative structure. Moreover, it is extensional.

For a proof of this theorem one simply has to check the conditions.
In categorial grammar, with which we shall deal in this chapter, we shall

use λ–terms to name meanings for symbols and strings. It is important how-
ever that the λ–term is only a formal entity (namely a certain string), and
it is not the meaning in the proper sense of the word. To give an example,I�Ó $ R O I�Ó $ V O�$ R4L $ V4J(J is a string which names a function. In the set uni-
verse, this function is a subset of MÏ� 72MÏ�ÛMª8 . For this reason one has
to distinguish between equality

,
and the symbol(s) ð /

, , ,
. M

,
N means

that we are dealing with the same strings (hence literally the same λ–terms)
while M ð N means that M and N name the same function. In this senseI�Ó $ R O I�Ó $ V O�$ R L $ V J(J�I $ R J.I $ �&J]�,c$ R L $ � , but they also denote the same value.
Nevertheless, in what is to follow we shall not always distinguish between a
λ–term and its interpretation, in order not to make the notation too opaque.

The λ–calculus has a very big disadvantage, namely that it requires some
caution in dealing with variables. However, there is a way to avoid having to
use variables. This is achieved through the use of combinators. Given a set V
of variables and the zeroary constants

}
, � , E , combinators are terms over the

signature that has only one more binary symbol, ! . This symbol is generally
omitted, and terms are formed using infix notation with brackets. Call this
signature Γ.

Basics of λ–Calculus and Combinatory Logic 217

Definition 3.49 An element of TmΓ 7 V 8 is called a combinatorial term. A
combinator is an element of TmΓ 7�w¬8 .
Further, the redex relation Ø is defined as follows.E X Ø X(3.108a) � XY Ø X(3.108b) }

XYZ Ø XZ 7 YZ 8(3.108c)

X Ø X(3.108d)

if X Ø Y and Y Ø Z then X Ø Z(3.108e)

if X Ø Y then T XZ WmØØT Y Z W(3.108f)

if X Ø Y then T ZX WmØØT ZY W(3.108g)

Combinatory logic (|ÆÜ) is (3.108a) – (3.108e). It is an equational theory if
we read Ø simply as equality. (The only difference is that Ø is not symmetric.
So, to be exact, the rule ‘if X

, , ,
Y then Y

, , ,
X ’ needs to be added.) We note

that there is a combinator | containing only � and
}

such that |BØ·E (see
Exercise 104). This explains why E is sometimes omitted.

We shall now show that combinators can be defined by λ–terms and vice
versa. First, defineÍ : , I�Ó $ R O�$ R J(3.109a) Ý

:
, I�Ó $ R O I�Ó $ V O�$ R J(J(3.109b) Þ

:
, I�Ó $ R O I�Ó $ V O I�Ó $ � O�$ R $ � I $ V $ � J(J�J�J(3.109c)

Define a translation λ by Xλ :
,

X for X � V ,
} λ :

, Þ
, � λ :

, Ý
, E λ :

, Í . Then
the following is proved by induction on the length of the proof.

Theorem 3.50 Let C and D be combinators. If C Ø D then Cλ Ø β Dλ . Also, if|ÆÜ¶~ C
, , ,

D then Ô ~ Cλ , , , Dλ .

The converse translation is more difficult. We shall define first a function ¦ x §
on combinatory terms. (Notice that there are no bound variables, so var 7 M 8 ,
fr 7 M 8 for any combinatorial term M.)¦ x § x :

, E��(3.110a) ¦ x § M :
, � M � if x �� var 7 M 8 .(3.110b) ¦ x § Mx :
,

M � if x �� var 7 M 8 .(3.110c) ¦ x § MN :
,\} IX¦ x § M §�J�IX¦ x § N J>� otherwise.(3.110d)

218 Categorial Grammar and Formal Semantics

(So, (3.110d) is applied only if (3.110b) and (3.110c) cannot be applied.) For
example ¦ $ V § $ V $ R ,X} Iï¦ $ V § $ V J.IX¦ $ V § $ R J ,X} E»IÏ� $ R J . Indeed, if one applies
this to

$ V , then one gets

(3.111)
} E»IÏ� $ R(J $ V Ø�E $ V�IM� $ R $ V4JeØ $ V
IÏ� $ R $ V1JcØ $ V $ R

Further, one has

(3.112) ß :
, ¦ $ V §OIX¦ $ R § $ V $ R J , ¦ $ V § } E»IÏ� $ R J ,\} IM�ªI } E�J�J0�

The reader may verify that ß $ R $ V,Ø $ V $ R . Now define κ by xκ :
,

x, x � V ,I MN J κ :
, I Mκ Nκ J and I�Ó x � N J κ :

, ¦ x § Nκ .

Theorem 3.51 Let C be a closed λ–term. Then Ô¶~ C
, , ,

Cκ .

Now we have defined translations from λ–terms to combinators and back. It
can be shown, however, that the theory Ô is stronger than |ÆÜ under translation.
Curry found a list Aβ of five equations such that Ô is as strong as |ÅÜyg Aβ
in the sense of Theorem 3.52 below. Also, he gave a list Aβη such that |ÅÜ@g
Aβη is equivalent to Ô
Õ , Ôyg (ext). Aβη also is equivalent to the first–order
postulate (ext): 7�~ xy 8�7=7�~ z 8�7 x ! z

, , ,
y ! z 8»� x

, , ,
y 8 .

Theorem 3.52 (Curry) Let M and N be λ–terms.

À If Ô¶~ M
, , ,

N then |ÆÜYg Aβ ~ Mκ , , , Nκ .

Á If Ô
Õ·~ M
, , ,

N then |ÆÜYg Aβη ~ Mκ , , , Nκ .

There is also a typed version of combinatorial logic. There are two basic
approaches. The first is to define typed combinators. The basic combinators
now split into infinitely many typed versions as follows.

(3.113)

Combinator TypeE α α � α� α é β α ��7 β � α 8}
α é β é γ 7 α ��7 β � γ 8=8���7=7 α � β 8»��7 α � γ 8=8

Together with ! they form the typed signature Γτ . For each type there are
countably infinitely many variables of that type in V . Typed combinatorial
terms are elements of TmΓτ 7 V 8 , and typed combinators are elements of
TmΓτ . Further, if M is a combinator of type α � β and N a combinator

Basics of λ–Calculus and Combinatory Logic 219

of type α then I MN J is a combinator of type β . In this way, every typed
combinatorial term has a unique type.

The second approach is to keep the symbols E , � and
}

and to let them
stand for any of the above typed combinators. In terms of functions, E takes
an argument N of any type α and returns N (of type α). Likewise, � is defined
on any M, N of type α and β , respectively, and � MN

,
M of type α . Also,� M is defined and of type β � α . Basically, the language is the same as in

the untyped case. A combinatorial term is stratified if for each variable and
each occurrence of E , � ,

}
there exists a type such that if that (occurrence of

the) symbol is assigned that type, the resulting string is a typed combinatorial
term. (So, while each occurrence of E , � and

}
, respectively, may be given

a different type, each occurrence of the same variable must have the same
type.) For example, ² :=

} IÏ� } J+� is stratified, while
} E�E is not.

We show the second claim first. Suppose that there are types α , β , γ , δ , ε
such that T�T�� α é β é γ à δ W à ε W is a typed combinator.

(3.114)
I�I } α é β é γ E δ J E ε J7 α ��7 β � γ 8=8 δ � δ ε � ε��7=7 α � β 8���7 α � γ 8=8

Then, since
}

α é β é γ is applied to E δ we must have δ � δ
,

α �þ7 β � γ 8 ,
whence α

, 7 β � γ 8 . So, T�� α é β é γ à δ W has the type

(3.115) 7=7 β � γ 8»� β 8���7=7 β � γ 8»� γ 8
This combinator is applied to E ε , and so we have 7 β � γ 8y� β

,
ε � ε ,

whence β � γ
,

ε
,

β , which is impossible. So,
} E%E is not stratified. On the

other hand, ² is stratified. Assume types such that
}

ζ é η é θ IM� α é β } γ é δ é ε J0� ι é κ is a
typed combinator. First, � α é β is applied to

}
γ é δ é ε . This means that

(3.116) α
, 7 γ ��7 δ � ε 8=8»��7=7 γ � δ 8���7 γ � ε 8=8

The result has type

(3.117) β ��7=7 γ ��7 δ � ε 8=8���7=7 γ � δ 8»��7 γ � ε 8=8=8
This is the argument of

}
ζ é η é θ . Hence we must have

(3.118) ζ ��7 η � θ 8,
β ��7=7 γ ��7 δ � ε 8=8»��7=7 γ � δ 8»��7 γ � ε 8=8=8

220 Categorial Grammar and Formal Semantics

So, ζ
,

β , η
,

γ � 7 δ � ε 8 , θ
, 7 γ � δ 8+�æ7 γ � ε 8 . The resulting type

is 7 ζ � η 8���7 ζ � θ 8 . This is applied to � ι é κ of type ι ��7 κ � ι 8 . For this
to be well–defined we must have ι � 7 κ � ι 8 , ζ � η , or ι

,
ζ
,

β and
κ � ι

,
η
,

γ �ü7 δ � ε 8 . Finally, this results in κ
,

γ , ι
,

β
,

δ � ε .
So, α , γ , δ and ε may be freely chosen, and the other types are immediately
defined.

It is the second approach that will be the most useful for us later on. We
call combinators implicitly typed if they are thought of as typed in this way.
(In fact, they simply are untyped terms.) The same can be done with λ–terms,
giving rise to the notion of a stratified λ–term. In the sequel we shall not
distinguish between combinators and their representing λ–terms.

Finally, let us return to the models of the λ–calculus. Recall that we have
defined abstraction only implicitly, using Definition (3.97c) repeated below:

(3.119) ¦�I�Ó x �M Jï§ β ! a :
, ¦M § β Ö x: ð a ×

In general, this object need not exist, in which case we do not have a model
for the λ–calculus.

Definition 3.53 An applicative structure ­ is called combinatorially com-
plete if for every term t in the language with free variables from 5 $ i : i b n 6
there exists a y such that for all bi � A, i b n:

(3.120) 7$Â=Â=ÂO7=7 y ! b0 8�! b1 8�!3Â=Â=Âi! bn © 1 8 , t 7 b0 �=�=�=�i� bn © 1 8
This means that for every term t there exists an element which represents this
term:

(3.121) I�Ó $ R O I�Ó $ V O Â=Â=Â O I�Ó $ n © 1
O
t 7 $ R �=�=�=�i� $ n © 1 8OJ+Â=Â=ÂZJ�J

Thus, this defines the notion of an applicative structure in which every ele-
ment can be abstracted. It is these structures that can serve as models of the
λ–calculus. Still, no explicit way of generating the functions is provided. One
way is to use countably many abstraction operations, one for every number
i b ω (see Section 4.5). Another way is to translate λ–terms into combinatory
logic using ¦ v § for abstraction. In view of the results obtained above we get
the following result.

Theorem 3.54 (Schönfinkel) ­ is combinatorially complete iff there are el-
ements k and s such that

(3.122) 7=7 k ! a 8(! b 8 , a 7=7=7 s ! a 8(! b 8(! c 8 , 7 a ! c 8(!;7 b ! c 8

Basics of λ–Calculus and Combinatory Logic 221

Definition 3.55 A structure ­ , � A ��!(�Ká��ÈhP� is called a combinatory algebra
if ­ Ðpá
! x ! y

, , ,
x �Èh(! x ! y ! z

, , ,
x ! z !+7 y ! z 8 . It is a λ–algebra (or extensional)

if it satisfies Aβ (Aβη) in addition.

So, the class of combinatory algebras is an equationally definable class. (This
is why we have not required �A ��� 1, as is often done.) Again, the partial
case is interesting. Hence, we can use the theorems of Section 1.1 to create
structures. Two models are of particular significance. One is based on the
algebra of combinatorial terms over V modulo derivable identity, the other
is the algebra of combinators modulo derivable identity. Indirectly, this also
shows how to create models for the λ–calculus. We shall explain a different
method below in Section 4.5.

Call a structure � A ��!(�Ká4�ÈhP� a partial combinatory algebra if (i) h�! x ! y is
always defined and (ii) the defining equations hold in the intermediate sense,
that is, if one side is defined so is the other and they are equal (cf. Section 1.1).
Consider once again the universe Vω . Defineâ

:
, 5(� x �Z� y � x �=� : x � y � Vω 6(3.123) � :
, 5(� x �Z� y �Z� z ��q(p&p	7Èq(p(p�7 x � z 8P��q(p&p
7 y � z 8=8=�=� : x � y � z � Vω 6(3.124)� Vω ��q&p(p&� â �R�&� is not a partial combinatory algebra because q(p&p�7Èq(p(p�7 â � x 8P� y 8

is not always defined. So, the equation 7 k ! x 8	! y
, , ,

x does not hold in the
intermediate sense (since the right hand is obviously always defined). The
defining equations hold only in the weak sense: if both sides are defined, then
they are equal. Thus, Vω is a useful model only in the typed case.

In the typed case we need a variety of combinators. More exactly: for all
types α , β and γ we need elements á δ � Aδ , δ

,
α �¨7 β � α 8 and h η � Aη ,

η
, 7 α � 7 β � γ 8=8Y��7=7 α � β 8Y��7 α � γ 8=8 such that for all a � Aα and

b � Aβ we have

(3.125) 7�á δ ! a 8�! b
,

a

and for every a � Aα Ä�¯ β Ä γ ° , b � Aα Ä β and c � Aα we have

(3.126) 7=7lh η ! a 8�! b 8�! c
, 7 a ! c 8�!ª7 b ! c 8

We now turn to an interesting connection between intuitionistic logic and
type theory, known as the Curry–Howard–Isomorphism. Write M : ϕ if M is
a λ–term of type ϕ . Notice that while each term has exactly one type, there

222 Categorial Grammar and Formal Semantics

Table 6. Rules of the Labelled Calculus

(axiom) x : ϕ ~ ~ ~ x : ϕ (M)
Γ ~ ~ ~ M : ϕ

Γ � x : χ ~ ~ ~ M : ϕ

(cut)
Γ ~ ~ ~ M : ϕ ∆ � x : ϕ � Θ ~ ~ ~ N : χ

∆ � Γ � Θ ~ ~ ~Ý¦M ¾ x § N : B

(E �)
Γ ~ ~ ~ M : T ϕ � χ W ∆ ~ ~ ~ N : ϕ

Γ � ∆ ~ ~ ~ÃI MN J : χ

(I �)
Γ � x : ϕ ~ ~ ~ M : χ

Γ ~ ~ ~ I�Ó x
O
M J : T ϕ � χ W

are infinitely many terms having the same type. The following is a Gentzen–
calculus for statements of the form M : ϕ . Here, Γ, ∆, Θ denote arbitrary sets
of such statements, x, y individual variables (of appropriate type), and M, N
terms. The rules are shown in Table 6. First of all notice that if we strip off
the labelling by λ–terms we get a natural deduction calculus for intuitionistic
logic (in the only connective �). Hence if a sequent 5 Mi : ϕi : i b n 6Y~~~ N : χ
is derivable then ÃÁ 5 ϕi : i b n 6¶~~~ χ , whence 5 ϕi : i b n 6W~ ¼ χ . Conversely,
given a natural deduction proof of 5 ϕi : i b n 6�~~~ χ , we can decorate the proof
with λ–terms by assigning the variables at the leaves of the tree for the axioms
and then descending it until we hit the root. Then we get a proof of the sequent5 Mi : ϕi : i b n 6S~~ ~ N : χ in the above calculus.

Now we interpret the intuitionistic formulae in this proof calculus as types.
For a set Γ of λ–terms over the set B of basic types we put

(3.127) �Γ � : , 5 ϕ � Typ Ä 7 B 8 : there is M � Γ of type ϕ 6
Definition 3.56 For a set Γ of types and a single type ϕ over a set B of basic
types we put Γ ~ λλλ ϕ if there is a term M of type ϕ such that every type of a
variable occurring free in M is in Γ.

Returning to our calculus above we notice that if

(3.128) 5 Mi : ϕi : i b n 6S~~ ~ N : χ

is derivable, we also have 5 ϕi : i b n 6Y~ λλλ χ . This is established by induction
on the proof. Moreover, the converse also holds (by induction on the deriva-
tion). Hence we have the following result.

Basics of λ–Calculus and Combinatory Logic 223

Theorem 3.57 (Curry) Γ ~ λλλ ϕ iff Γ ~Ä¼ ϕ .

The correspondence between intuitionistic formulae and types has also been
used to obtain a rather nice characterization of shortest proofs. Basically, it
turns out that a proof of Γ ~ ~ ~ N : ϕ can be shortened if N contains a redex.
Suppose, namely, that N contains the redex I(I�Ó x

O
M J U J . Then, as is easily

seen, the proof contains a proof of ∆ ~ ~ ~ I�Ó x
O
M J U J : χ . This proof part can

be shortened. To simplify the argument here we assume that no use of (cut)
and (M) has been made. Observe that we can assume that this very sequent
has been introduced by the rule (I �) and its left premiss by the rule (E �) and
∆
,

∆ k s ∆ k k .
(3.129)

∆ k�� x : ψ ~ ~ ~ M : χ
∆ k ~ ~ ~ÃI�Ó x

O
M J : T ψ � χ W ∆ k k ~ ~ ~ U : ψ

∆ k � ∆ k k ~ ~ ~ I�I�Ó x
O
M J U J : χ

Then a single application of (cut) gives this:

(3.130)
∆ k k'~~ ~ U : ψ ∆ kÁ� x : ψ ~ ~ ~ M : χ

∆ k � ∆ k k ~ ~ ~Ý¦M ¾ x §U : χ

While the types and the antecedent have remained constant, the conclusion
now has a term associated to it that is derived from contracting the redex.
The same can be shown if we take intervening applications of (cut) and (M),
but the proof is more involved. Essentially, we need to perform more com-
plex proof transformations. There is another simplification that can be made,
namely when the derived term is explicitly α–converted. Then we have a
sequent of the form Γ ~ ~ ~ÅI�Ó x

O
Mx J : T ϕ � χ W . Then, again putting aside inter-

vening occurrences of (cut) and (M), the proof is as follows.

(3.131)
Γ ~ ~ ~ÍI�Ó x

O
Mx J : ϕ � χ y : ϕ ~ ~ ~ y : ϕ
Γ � y : ϕ ~ ~ ~ÃI My J : χ

Γ ~ ~ ~ I�Ó y
O
My J : T ϕ � χ W

This proof part can be eliminated completely, leaving only the proof of the
left hand premiss. An immediate corollary of this fact is that if the sequent5 xi : ϕi : i b n 6Y~~~ N : χ is provable for some N, then there is an N k obtained
from N by a series of α–/β– and η–normalization steps such that the sequent5 xi : ϕi : i b n 6·~~~ N k : χ is also derivable. The proof of the latter formula is
shorter than the first on condition that N contains a subterm that can be β– or
η–reduced.

224 Categorial Grammar and Formal Semantics

Notes on this section. λ–abstraction already appeared in (Frege, 1962)
(written in 1891). Frege wrote

éã . f (ã). The first to study abstraction system-
atically was Alonzo Church (see (Church, 1933)). Combinatory logic on the
other hand has appeared first in the work of Moses Schönfinkel (1924) and
Haskell Curry (1930). The typing is reminiscent of Husserl’s semantic cat-
egories. More on that in Chapter 4. Suffice it to say that two elements are
of the same semantic category iff they can meaningfully occur in the same
terms. There are exercises below on applicative structures that demonstrate
that Husserl’s conception characterizes exactly the types up to renaming of
the basic types.

Exercise 101. Show that in z@{(| , M eÝ7 N e O 8;�, 7 M e N 8»e O.

Exercise 102. Find combinators ä and | such that ä XYZ Ø X 7 ZYZ 8 and| XYZ Ø XZY .

Exercise 103. Determine all types of ä and | of the previous exercise.

Exercise 104. We have seen in Section 3.2 that T ϕ � ϕ W can be derived from
(a0) and (a1). Use this proof to give a definition of E in terms of � and

}
.

Exercise 105. Show that any combinatorially complete applicative structure
with more than one element is infinite.

Exercise 106. Show that ! , â and � defined on Vω are proper classes in Vω .
Hint. It suffices to show that they are infinite. However, there is a proof that
works for any universe Vκ , so here is a more general method. Say that C } Vκ
is rich if for every x � Vκ , x � � C. Show that no set is rich. Next show that ! ,â

and � are rich.

Exercise 107. Let ��5 Aα : α � Typ Ä 7 B 8Z6>��!�� be a typed applicative structure.
Now define the partial algebra � A ��!�� where A :

, � α Aα . Show that if the ap-
plicative structure is combinatorially complete, the type assignment is unique
up to permutation of the elements of B. Show also that if the applicative struc-
ture is not combinatorially complete, uniqueness fails. Hint. First, establish
the elements of basic type, and then the elements of type b � c, where b � c � C
are basic. Now, an element of type b � c can be applied to all and only the
elements of type c. This allows to define which elements have the same basic
type.

Exercise 108. Let V :
, 5 & Eα : Eα ��5XG	�ZH>6 ¡ 6 . Denote the set of all types of com-

binators that can be formed over the set V by C. Show that C is exactly the

The Syntactic Calculus of Categories 225

set of intuitionistically valid formulae, that is, the set of formulae derivable in~å¼ .

4. The Syntactic Calculus of Categories

Categorial grammars — in contrast to phrase structure grammars — specify
no special set of rules, but instead associate with each lexical element a finite
set of context schemata. These context schemata can either be defined over
strings or over structure trees. The second approach is older and leads to the
so called Ajdukiewicz–Bar Hillel–Calculus (Õæ²), the first to the Lambek–
Calculus (Ü). We present first the calculus Õç² .

We assume that all trees are strictly binary branching with exception of the
preterminal nodes. Hence, every node whose daughter is not a leaf has exactly
two daughters. The phrase structure rule X � Y Z licenses the expansion of
the symbol X to the sequence Y Z. In categorial grammar, the category Y
represents the set of trees whose root has label Y , and the rule says that trees
with root label Y and Z, respectively, may be composed to a tree with root
X . The approach is therefore from bottom to top rather than top to bottom.
The fact that a tree of the named kind may be composed is coded by the so
called category assignment. To this end we first have to define categories.
Categories are simply terms over a signature. If the set of proper function
symbols is M and the set of 0–ary function symbols is C we write CatM 7 C 8
rather than TmM 7 C 8 for the set of terms over this signature. The members are
called categories while members of C are called basic categories. In the AB–
Calculus we have M

, 5!è
� v 6 . (Ü also has ! .) Categories are written in infix
notation. So, we write T�é v
ê W in place of v é ê . Categories will be denoted
by lower case Greek letters, basic categories by lower case Latin letters. If
C
, 5!é�� ê �[ë(6 then T�T�é v
ê W%è\ë�W , Txë v é	W are categories. Notice that we take the

actual strings to be the categories. This convention will soon be relaxed. Then
we also use left associative bracketing as with λ–terms. So, é ¾ ê ¾ ë ¾ ê ¾ é will
be short for T�T(T�T�é v
ê W v ë�W v!ê W v é	W . (Notice the change in font signals that
the way the functor is written down has been changed.) The interpretation
of categories in terms of trees is as follows. A tree is understood to be an
exhaustively ordered strictly binary branching tree with labels in Cat ì é �(7 C 8 ,
which results from a constituent analysis. This means that nonterminal nodes
branch exactly when they are not preterminal. Otherwise they have a single
daughter, whose label is an element of the alphabet. The labelling function !

226 Categorial Grammar and Formal Semantics

must be correct in the sense of the following definition.

(3.132) ñ ñ ñ òòò
δ

γ T γ è δ W ñ ñ ñ òòò
δ

T δ v γ W γ

Call a tree 2–standard if a node is at most binary branching, and if it is
nonbranching iff it is preterminal.

Definition 3.58 Let A be an alphabet and ζ : Aε � ℘7 Cat ì é ��7 C 8=8 be a func-
tion for which ζ 7 a 8 is always finite. Then ζ is called a category assign-
ment. Let ± , � T �ibØ�
jØ� t � be a 2–standard tree with labels in Cat ì é �(7 C 8 .± is correctly ζ–labelled if (1) for every nonbranching x with daughter y!>7 x 8ª� ζ 7N!>7 y 8=8 , and (2) for every branching x which immediately dominates
y0, y1 and y0 j y1 we have: !�7 y0 8 , TÏ!>7 x 8 v !>7 y1 8OW or !>7 y1 8 , TM!�7 y0 8Kè.!>7 x 8OW .
Definition 3.59 The quadruple K

, � S � C � A � ζ � is an AB–grammar if A and
C are finite sets, the alphabet and the set of basic categories, respectively,
S � C, and ζ : A � ℘7 Cat ì é ��7 C 8=8 a category assignment. The set of labelled
trees that is accepted by K is denoted by LB 7 K 8 . It is the set of 2–standard
correctly ζ–labelled trees with labelling ! : T � Cat ì é ��7 C 8 such that the root
carries the label S.

We emphasize that for technical reasons also the empty string must be as-
signed a category. Otherwise no language which contains the empty string is
a language accepted by a categorial grammar. We shall ignore this case in the
sequel, but in the exercises will shed more light on it.

AB–grammars only allow to define the mapping ζ . For given ζ , the set
of trees that are correctly ζ–labelled are then determined and can be enumer-
ated. To this end we need to simply enumerate all possible constituents. Then
for each preterminal x we choose an appropriate label γ � ζ 7N!�7 y 8=8 , where
y a x. The labelling function therefore is fixed on all other nodes. In other
words, the AB–grammars (which will turn out to be variants of CFGs) are
invertible. The algorithm for finding analysis trees is not very effective. How-
ever, despite this we can show that already a CFG generates all trees, which
allows us to import the results on CFGs.

Theorem 3.60 Let K
, � } � C � A � ζ � be an AB–grammar. Then there exists a

CFG G such that LB 7 K 8 , LB 7 G 8 .

The Syntactic Calculus of Categories 227

Proof. Let N be the set of all subterms of terms in ζ 7 a 8 , a � A. N is clearly
finite. It can be seen without problem that every correctly labelled tree only
carries labels from N. The start symbol is that of K. The rules have the form

γ � T γ v δ W δ(3.133)

γ � δ T δ è γ W(3.134)

γ � a 7 γ � ζ 7 a 8=8(3.135)

where γ , δ run through all symbols of N and a through all symbols from A.
This defines G :

, � } � N � A � R � . If ±Ã� LB 7 G 8 then the labelling is correct, as is
easily seen. Conversely, if ±Å� LB 7 K 8 then every local tree is an instance of
a rule from G, the root carries the symbol

}
, and all leaves carry a terminal

symbol. Hence ± � LB 7 G 8 . <
Conversely every CFG can be converted into an AB–grammar; however,

these two grammars need not be strongly equivalent. Given L, there exists a
grammar G in Greibach Normal Form such that L 7 G 8 , L. We distinguish
two cases. Case 1. ε � L. We assume that

}
is never on the right hand side of

a production. (This can be installed keeping to Greibach Normal Form; see
the exercises.) Then we choose a category assignment as in Case 2 and add
ζ 7 ε 8 :

, 5 } 6 . Case 2. ε �� L. Now define

(3.136) ζG 7 a 8 :
, 5 X ¾ Yn © 1 ¾ Â=Â=Â ¾ Y1 ¾ Y0 : X � a 9 ∏

i n
Yi � R 6

Put K :
, � } � NG � A � ζG � . We claim that L 7 K 8 , L 7 G 8 . To this end we shall

transform G by replacing the rules ρ
,

X � a 9 ∏i n Yi by the rules

(3.137) Zρ
0 � aY0 � Zρ

1 � Z0Y1 � �=�=�i� Zρ
n © 1 � Yn © 2Yn © 1

This defines the grammar H . We have L 7 H 8 , L 7 G 8 . Hence it suffices to show
that L 7 K 8 , L 7 H 8 . In place of K we can also take a CFG F; the nonterminals
are NF . We show now that that F and H generate the same trees modulo the
R–simulation Ê } NH e NF , which is defined as follows. (a) For X � NG we
have X Ê Y iff X

,
Y . (b) Zρ

i Ê W iff W
,

X ¾ Yn © 1 ¾ Â=Â=Â ¾ Yi � 1 and ρ
,

X �
Y0 9 Y1 9 Â=Â=Â 9 Yn © 1 for certain Y j, i b j b n. To this end it suffices to show that
the rules of F correspond via Ê to the rules of H . This is directly calculated.

Theorem 3.61 (Bar–Hillel & Gaifman & Shamir) Let L be a language. L
is context free iff L

,
LB 7 K 8 for some AB–grammar. <

228 Categorial Grammar and Formal Semantics

Notice that we have used only v . It is easy to see that è alone would also have
sufficed.

Now we look at Categorial Grammar from the standpoint of the sign gram-
mars. We introduce a binary operation ‘ Â ’ on the set of categories which sat-
isfies the following equations.

(3.138) T γ v δ W@Â δ , γ � δ Â>T δ è γ W , γ

Hence δ Â η is defined only when η
, T δ è γ W or δ

, T γ v η W for some γ . Now
let us look at the construction of a sign algebra for CFGs of Section 3.1.
Because of the results of this section we can assume that the set T k is a subset
of Cat ì é ��7 C 8 which is closed under Â . Then for our proper modes we may
proceed as follows. If a is of category γ then there exists a context free rule
ρ
,

γ � a and we introduce a 0–ary mode
F

ρ :
, � a � γ � a � . The other rules can

be condensed into a single mode

(3.139)
5 7=��Ex � γ �$Ex �P�Z��Ey � β ��Ey �=8 :

, �ÈEx Ey � γ Â β �$Ex Ey �
(Notice that í is actually a structure term, so should actually write υ 7�í�8 is
place of it. We will not do so, however, to avoid clumsy notation.)

However, this still does not generate the intended meanings. We still have
to introduce

} � as in Section 3.1. We do not want to do this, however. Instead
we shall deal with the question whether one can generate the meanings in a
more systematic fashion. In general this is not possible, for we have only as-
sumed that f is computable. However, in practice it appears that the syntactic
categories are in close connection to the meanings. This is the philosophy
behind Montague Semantics.

Let an arbitrary set C of basic categories be given. Further, let a set B of
basic types be given. From B we can form types in the sense of the typed λ–
calculus and from C categories in the sense of categorial grammar. We shall
require that these two are connected by a homomorphism from the algebra of
categories to the algebra of types. Both are realized over strings. So, for each
basic category c � C we choose a type γc. Then we put

σ 7 c 8 :
,

γc

σ 7½T γ v δ W48 :
, T σ 7 δ 8�� σ 7 γ 8OW(3.140)

σ 7½T δ è γ W48 :
, T σ 7 δ 8�� σ 7 γ 8OW

Let now ­ , ��5 Aα : α � Typ ° 7 B 8Z6>��!�� be a typed applicative structure. σ de-
fines a realization of B in ­ by assigning to each category γ the set Aσ ¯ γ ° ,

The Syntactic Calculus of Categories 229

which we also denote by I γ J . We demonstrate this with our arithmetical
terms. The applicative structure shall be based on sets, using q(p&p as the inter-
pretation of function application. This means that A î α ° β ï , Aα � Aβ . Con-
sequently, I�T γ v δ W%J , I�T δ è γ W%J , I δ J¬�ÛI γ J . There is the basic category� , and it is realized by the set of numbers from 0 to 9. Further, there is the
category

s
which gets realized by the rational numbers � — for example.I.�gJ :

, 5 0 � 1 �=�=�=�P� 9 6(3.141) I s J :
, �g : �ýeÂ�Ñ�ð� is a binary function. We can redefine it as shown in Sec-

tion 3.3 to an element of � � 7��É�ñ� 8 , which we also denote by g . The syn-
tactic category which we assign to g has to match this. We choose T(T t è t W v t W .Now we have

(3.142) I�T�T t è t W v t WSJ , �?��7��?�^� 8
as desired. Now we have to see to it that the meaning of the string K>L�M is
indeed 12. To this end we require that if L is combined with M to the con-
stituent L�M the meaning of L (which is a function) is applied to the number 7.
So, the meaning of L�M is the function x �� x g 7 on � . If we finally group L�M
and K together to a constituent then we get a constituent of category

s
whose

meaning is 12.
If things are arranged in this way we can uniformly define two modes forÕæ² ,
5\ò

and
5#ó

.5 ò 7=��Ex � α � M �P�Z��Ey � β � N �=8 :
, ��Ex Ey � α Â β � MN �(3.143a) 5\ó 7=��Ex � α � M �P�Z��Ey � β � N �=8 :
, ��Ex Ey � α Â β � NM �(3.143b)

We further assume that if a � A has category α then there are only finitely
many M �ÂI α J which are meanings of a of category α . For each such mean-
ing M we assume a 0–ary mode � a � α � M � . Therewith Õç² is completely stan-
dardized. In the respective algebras ù , ± and ø there is only one binary
operation. In ù it is the concatenation of two strings, in ± it is cancellation,
and in ø function application. The variability is not to be found in the proper
modes, only in the 0–ary modes, that is, the lexicon. Therefore one speaks of
Categorial Grammar as a ‘lexical’ theory; all information about the language
is in the lexicon.

230 Categorial Grammar and Formal Semantics

Definition 3.62 A sign grammar �Á­¬� ε � γ � µ � is called an AB–sign grammar
if the signature consists of the two modes

5 ò
and

5 ó
and finitely many 0–ary

modes A i, i b n such that

À A υ
i
, ��Exi � γi � Ni � , i b n,

Á ù , � A ¡ � 9 �Z��Exi : i b n �=� ,
Â ± , � Cat ì é ��7 C 8P�=Â �Z� γi : i b n �=� for some set C,

Ã ø , ��5 Mα : α � Typ Ä 7 B 8Z6>��!(�Z� Ni : i b n �=� is an expansion of a typed
applicative structure by constants,

Ä and Ni � Mσ ¯ γi ° , i b n.

Notice that the algebra of meanings is partial and has as its unique operation
function application. (This is not defined if the categories do not match.) As
we shall see, the concept of a categorial grammar is somewhat restrictive with
respect to the language generated (it has to be context free) and with respect
to the categorial symbols, but it is not restrictive with respect to meanings.

We shall give an example. We look at our alphabet of ten digits. Every
nonempty string over this alphabet denotes a unique number, which we name
by this very sequence. For example, the sequence M���H denotes the number
721, which in binary is H1G�H(H1G�H1G�G�H or 1gô�1�1gô�1gô#ô�1 . We want to write an AB–
grammar which couples a string of digits with its number. This is not as easy
as it appears at first sight. In order not to let the example appear trivial we
shall write a grammar for binary numbers, with 1 in place of 1 and ô in place
of 0. To start, we need a category � as in the example above. This category is
realized by the set of natural numbers. Every digit has the category � . So, we
have the following 0–ary modes.

(3.144) � R :
, ��ô�� Z � 0 � � V :

, ��1�� Z � 1 �
Now we additionally agree that digits have the category]\è�] . With this the
number 1gô�1 is analyzed in this way.

(3.145)

1 ô 1] T�]\è�]	W T�]#è�]	W]]

The Syntactic Calculus of Categories 231

This means that digits are interpreted as functions from ω to ω . As one easily
finds out these are the functions λx0 � 2x0 g k, k �x5 0 � 1 6 . Here k must be the
value of the digit. So, we additionally need the following zeroary modes.A R :

, �ÈG
�XT�]#è�]�W>� λx0 � 2x0 �(3.146) A V :
, �=H>�XT�]#è�]�W>� λx0 � 2x0 g 1 �(3.147)

(Notice that we write λx0 � 2x0 and not I�Ó $ R O I
��� $ R J�J , since the latter is a
string, while the former is actually a function in a particular algebra.) How-
ever, the grammar does not have the ideal form. For every digit has two dif-
ferent meanings which do not need to have anything to do with each other.
For example, we could have introduced the following mode in place of — or
even in addition to — A V .
(3.148) AG� :

, �ÈG
�XT�]#è�]�W>� λx0 � 2x0 g 1 �
We can avoid this by introducing a second category symbol,

s
, which stands

for a sequence of digits, while � only stands for digits. In place of A R we now
define the empty modes 2
R , and 2�V :2 R :

, � ε �XT tgv]�W�� λx0 � x0 �(3.149) 2�V :
, � ε �XT�T t`v t W v]�W4� λx1 � λx0 � 2x1 g x0 �(3.150)

For example, we get 1`ô'1 as the exponent of the term

(3.151) í ò í ò � V í ò í ò � V í ò � R] V] R] V
The meaning of this term is calculated as follows.7�í ò í ò � V í ò í ò � V í ò � R] V] R] V 8 µ, 2 µV 7�2 µV 7�2 µR 7�� µV 8=8�7�� µR 8=8�7�� µV 8, 2 µV 7�2 µV 7=7�2 µR 7 1 8=8�7 0 8=8�7 1 8, 2 µV 7�2 µV 7=7 λx0 � x0 8�7 1 8=8�7 0 8=8�7 1 8, 2 µV 7�2 µV 7 1 8�7 0 8=8�7 1 8, 2 µV 7=7 λx1 � λx0 ��7 2x1 g x0 8=8�7 1 8�7 0 8=8�7 1 8, 2 µV 7 2 8�7 1 8, 7 λx1 � λx0 ��7 2x1 g x0 8=8�7 2 8�7 1 8,

5

(3.152)

232 Categorial Grammar and Formal Semantics

This solution is far more elegant than the first. Despite of this, it too is not
satisfactory. We had to postulate additional modes which one cannot see on
the string. Also, we needed to distinguish strings from digits. For comparison
we show a solution that involves restricting the concatenation function. Put

(3.153) Ex { Ey :
,À¿ Ex 93Ey if Ey � A,

undefined otherwise.

Now take a binary symbol
/

and set

(3.154)
/ 7=��Ex ���	� m �P�Z�ÈEy ���	� n �=8 , ��Ex { Ey ���	� 2m g n �

One could also define two unary modes for appending a digit. But this would
mean making the empty string an exponent for 0, or else it requires another
set of two digits to get started. A further problem is the restricted functionality
in the realm of strings. With the example of the grammar T of the previous
section we shall exemplify this. We have agreed that every term is enclosed
by brackets, which merely are devices to help the eye. These brackets are
now symbols of the alphabet, but void of real meaning. To place the brackets
correctly, some effort must be made. We propose the following grammar.ô V :

, �_�	�XT�T t è
õ�W v%t W�� λx1 � λx0 � x0 g x1 �ô � :
, � u �XT�T t è
õ�W v%t W�� λx1 � λx0 � x0 v x1 �ô ¡ :
, � v �XT�T t è
õ�W v%t W�� λx1 � λx0 � x0 ¾ x1 �ô ö :
, �����XT�T t è
õ�W v%t W�� λx1 � λx0 � x0x1 �ô�¢ :
, � u �Z7�õ v%t W>� λx0 ��v x0 �(3.155) ô�÷ :
, �½Ij�XT�ø v õ»W>� λx0 � x0 �ô�£ :
, ��J&�XT�øgè t W>� λx0 � x0 �� R :
, �2ø�� t � 0 �� V :
, ��ù�� t � 1 �

The conception is that an operation symbol generates an unbracketed term
which needs a left and a right bracket to become a ‘real’ term. A semantics
that fits with this analysis will assign the identity to all these. We simply
take � for all basic categories. The brackets are interpreted by the identity
function. If we add a bracket, nothing happens to the value of the term. This
is a viable solution. However, it amplifies the set of basic categories without
any increase in semantic types as well.

The Syntactic Calculus of Categories 233

The application of a function to an argument is by far not the only pos-
sible rule of composition. In particular Peter Geach has proposed in (Geach,
1972) to admit further rules of combination. This idea has been realized on
the one hand in the Lambek–Calculus, which we will study later, and also in
combinatory categorial grammars. The idea to the latter is as follows. Each
mode in Categorial Grammar is interpreted by a semantical typed combina-
tor. For example,

5 ó
acts on the semantics like the combinator ß (defined in

Section 3.3) and
5 ò

is interpreted by the combinator E . This choice of com-
binators is — seen from the standpoint of combinatory logic — only one of
many possible choices. Let us look at other possibilities. We could add to
the ones we have also the functions corresponding to the following closed
λ–term.

(3.156) ² :
, I�Ó $ R O I�Ó $ V O I�Ó $ � O I $ R�I $ V $ � J(J�J(J�J² MN is nothing but function composition of the functions M and N. For

evidently, if
$ � has type γ then

$ V must have the type β � γ for some β and$ R the type α � β for some α . Then ² $ R $ 1 Ø×I�Ó $ � O I $ R I $ V $ ��J(J�J is of type
α � γ . Notice that for each α , β and γ we have a typed λ–term ² α é β é γ .

(3.157) ² α é β é γ :
, I�Ó $ Rα Ä β

O I�Ó $ Vβ Ä γ
O I�Ó $ �α O I $ Rα Ä β I $ Vβ Ä γ

$ �
γ J�J(J�J(J

However, as we have explained earlier, we shall not use the explicitly typed
terms, but rather resort to the implicitly typed terms (or combinators). We
define two new category products ú and û byT γ v β W,úËT β v α W :

, T γ v α W(3.158a) T β v α W,ûËT β è γ W :
, T γ v α W(3.158b) T γ v β W ú T α è β W :
, T α è γ W(3.158c) T α è β W,ûËT β è γ W :
, T α è γ W(3.158d)

Further, we define two new modes,
6 ò

and
6 ó

, as follows:6 ò 7=��Ex � α � M �P�Z��Ey � β � N �=8 :
, ��Ex 9 Ey � α ú β ��² MN �(3.159) 6 ó 7=��Ex � α � M �P�Z��Ey � β � N �=8 :
, ��Ex 9 Ey � α û β ��² NM �(3.160)

Here, it is not required that the type of M matches α in any way, or the type
of N the category β . In place of ² NM we could have used ü MN, where

(3.161) ü :
, I�Ó $ R O I�Ó $ V O I�Ó $ � O I $ V I $ R $ �(J(J�J�J(J

234 Categorial Grammar and Formal Semantics

We denote by CCG 7K²�8 the extension of Õæ² by the implicitly typed combi-
nator ² . This grammar not only has the modes

5 ò
and

5 ó
but also the modes6 ò

and
6 ó

. The resulting tree sets are however of a new kind. For now, if x is
branching with daughters y0 and y1, x can have the category α ¾ γ if y0 has the
category α ¾ β and y1 the category β ¾ γ . In the definition of the products ú
and û there is a certain arbitrariness. What we must expect from the seman-
tic typing regime is that the type of σ 7 α ú β 8 and σ 7 β û α 8 equals η � θ if
σ 7 α 8 , ζ � θ and σ 7 β 8 , η � ζ for some η , ζ and θ . Everywhere else the
syntactic product should be undefined. However, in fact the syntactic prod-
uct has been symmetrified, and the directions specified. This goes as follows.
By applying a rule a category (here ζ) is cancelled. In the category η ¾ θ the
directionality (here: right) is viewed as a property of the argument, hence of
θ . If θ is not cancelled, we must find θ being selected to the right again. If,
however, it is cancelled from η ¾ θ , then the latter must be to the left of its
argument, which contains some occurrence of θ (as a result, not as an argu-
ment). This yields the rules as given. We leave it to the reader to show that
the tree sets that can be generated from an initial category assignment ζ are
again all context free. Hence, not much seems to have been gained. We shall
next study another extension, CCG 7ÏH.8 . Here

(3.162) H :
, I�Ó $ R O I�Ó $ V O I�Ó $ � O I�Ó $ ¡ O I $ R I $ V $ �(J $ ¡�J(J�J(J�J

In order for this to be properly typed we may freely choose the type of
$ � and$ ¡ , say β and γ . Then

$ V is of type γ � 7 β � δ 8 for some δ and
$ R of type

δ � α for some α .
$ V stands for an at least binary function,

$ R for a function
that needs at least one argument. If the combinator is defined, the mode is
fixed if we additionally fix the syntactic combinatorics. To this end we define
the products ý , þ as in Table 7. Now we define the following new modes:/ ò 7=��Ex � α � M �P�Z��Ey � β � N �=8 :

, ��Ex 9 Ey � α ý β �
H MN �(3.163) / ó 7=��Ex � α � M �P�Z��Ey � β � N �=8 :
, ��Ex 9 Ey � α þ β �
H NM �(3.164)

We shall study this type of grammar somewhat closer. We take the following
modes. A�R :

, � 5 �XT�TTë v é
W v ë�W�� λx0 � λx1 � x0 g x1 �A.V :
, � 6 �XT�TTë v
ê W v ë�W�� λx0 � λx1 � x0x1 �A�� :
, � 0 �4é
� 1 �(3.165)

The Syntactic Calculus of Categories 235

Table 7. The Products ÿ and �T α v δ W ý T(T δ v β W v γ W :
, T�T α v β W v γ WT(T δ v β W v γ W þ T δ è α W :
, T�T α v β W v γ WT α v δ W ý T(T β è δ W v γ W :
, T�T β è α W v γ WT(T β è δ W v γ W þ T δ è α W :
, T�T β è α W v γ WT α v δ W ý T γ èYT δ v β W�W :
, T γ è+T α v β WX8T γ èYT δ v β W�W þ T δ è α W :
, T γ è+T α v β W(WT α v δ W ý T γ èYT β è δ W�W :
, T γ è+T β è α W(WT γ èYT β è δ W�W þ T δ è α W :
, T γ è+T β è α W(W

Ag¡ :
, ��í.� ê � 2 �A ö :
, ��Õ
�XTxë v é	W>� λx0 � x0 �

Take the string
5 6 5 Õ 0�0 í 0 . It has two analyses, shown in Figure 10. In both

analyses the meaning is 5. In the first analysis only the mode
5 ò

has been
used. The second analysis uses the mode

/ ò
. Notice that in the course of the

derivation the categories get larger and larger (and therefore also the types).

Theorem 3.63 There exist CCG 7ÏH�8 –grammars which generate non context
free tree sets.

We shall show that the grammar just defined is of this kind. To this end we
shall make a few more considerations.

Lemma 3.64 Let α
,

η1 ¾ η2 ¾ η3, β
,

η3 ¾ η4 ¾ η5 and γ
,

η5 ¾ η6 ¾ η7. Then

(3.166) α ý 7 β ý γ 8 , 7 α ý β 8 ý γ

Proof. Proof by direct computation. For example, α ý β
,

η1 ¾ η2 ¾ η3 ¾ η4 ¾ η5.<
In particular, ý is associative if defined (in contrast to ‘ Â ’). Now, let us look

at a string of the form Ex Õ 0 Ey, where Ex ��7 5 s 6 8 ¡ , Ey � 7 0 sØí
8 ¡ and h 7ÈEx 8 , Ey T ,
where h :

5 �� 0 � 6 �� í . An example is the string
5�5 6 5 Õ 0 í 0�0(0 . Then with the

exception of Ex Õ all prefixes are constituents. For prefixes of Ex are constituents,
as one can easily see. It follows easily that the tree sets are not context free.
For if Ex �, Ey then Ex Õ 0 h 7ÈEy T 8 is not derivable. However, Ex Õ 0 h 7�Ex T 8 is derivable.
If the tree set was context free, there cannot be infinitely many such Ex, a
contradiction.

236 Categorial Grammar and Formal Semantics5 6 5 Õ 0 0 í 0T�TTë v é	W v ë�W T(Txë v
ê W v ë�W T�TTë v é	W v ë�W TTë v é	W é é ê é
...

... T(Txë v é	W v ë�W ë ...
...

...
...

... Txë v é	W é ...
...

... T�Txë v
ê W v ë�W ë ...
...

... Txë v
ê W ê ...T�TTë v é	W v ë�W ë ...Txë v é
W éë5 6 5 Õ 0 0 í 0T(Txë v é	W v ë�W T�TTë v
ê W v ë�W T(Txë v é	W v ë�W TTë v é
W é é ê é
... T�T(Txë v!ê W v é	W v ë�W TTë v é	W é ...

...
...T�T(T�TTë v é
W v!ê W v é	W v ë�W ë ...

...
...T(T�Txë v é
W v
ê W v é	W é ...
...T�TTë v é
W v!ê W ê ...TTë v é	W éë

Figure 10. Two Analyses of �������'õ.õ0ö�õ
So, we have already surpassed the border of context freeness. However,

we can push this up still further. Let ú be the following grammar.2 R :
, � 5 �XTxë èYTxë v é
W�W�� λx0 � λx1 � x0 g x1 �2 V :
, � 6 �XTxë èYTxë v
ê W�W�� λx0 � λx1 � x0 Â x1 �2 � :
, � 0 �4é
� 1 �(3.167) 2\¡ :
, ��í.� ê � 2 �2 ö :
, ��Õ
�[ë�� λx0 � x0 �

Theorem 3.65 ú generates a non context free language.

Proof. Let L be the language generated by ú . Put M :
, Õ�7 5 s 6 8 ¡ 7 0 s í	8 ¡ . If L

is context free, so is L t M (by Theorem 2.14). Define h by h 7 5 8 :
,

h 7 0 8 :
,Å0

,

The Syntactic Calculus of Categories 237

h 7 6 8 :
,

h 7�í�8 :
, í as well as h 7�Õ�8 :

,
ε . We show:

(3.168) Ex � L t M iff (a) Ex � L and (b) h 7�Ex 8 , Ey Ey for some Ey �f7 0 sØí
8 ¡
Hence h ¦ L t M § , 51Ey Ey : Ey �Í7 0 s�í�8 ¡ 6 . The latter is not context free. From
this follows by Theorem 1.67 that L t M is not context free, hence L is not
context free either. Now for the proof of (3.168). If ∆

, � δi : i b n � then letë ¾ ∆ denote the category ë ¾ δ0 ¾ δ1 ¾ Â=Â=Â ¾ δn © 1. Then we have:

(3.169) ë&u�74ë ¾ ∆1 8 ý�ë�u�74ë ¾ ∆2 8 , ë>u�74ë ¾ ∆2;∆1 8
Now let Õ�Ex Ey be such that Ex �Ä7 5 s 6 8 ¡ and Ey �Ä7 0 s�í	8 ¡ . It is not hard to see
that then Õ�Ex is a constituent. (Basically, one can either multiply or apply. The
complex categories cannot be applied to the right, they can only be applied
to the left, so this can happen only with Õ . If one applies TTë�è+Txë v é	W(W to ë
one gets TTë v é	W , which cannot be multiplied by ý with any other constituent
formed. It cannot be applied either (assuming that the string is not Õ 5 0 , in
which case Õ 5 does become a constituent under this analysis), because noth-
ing on the right of it has category

0
. Now let Ex :

,
x0x1 Â=Â=Â xn © 1. Further, let

di :
,Ï0

if xi
, 5

and di :
, í if xi

, 6
, i b n. Then the category of Ex equalsë&u�74ë ¾ ∆ 8 with ∆

, � dn © i © 1 : i b n � . Hence Õ�Ex is a constituent of category ë ¾ ∆.
This means, however, that y0 has the category d0 (because d0 is the last in the
list hence the first to be discharged), y1 the category d1 and so on. But if yi has
the category di then h 7 xi 8 , yi, as is easily checked. This yields that h 7�Ex 8 , Ey.
If on the other hand this is the case, the string is derivable. <

Hence we now have a grammar which generates a non context free lan-
guage. CCGs are therefore stronger than AB–grammars.

There is a still different way to introduce CCGs. There we do not enlarge
the set of combinatorial rules but instead introduce empty modes.

(3.170)

6 R :
, � ε � γ ¾ α ¾ 7 γ ¾ β 8 ¾ 7 β ¾ α 8P��²��6 V :
, � ε �Z7 α u γ 8 ¾ 7 γ ¾ β 8 ¾ 7 α u β 8P��²��6 � :
, � ε � γ ¾ α ¾ 7 β u γ 8 ¾ 7 β ¾ α 8P��ü �6 ¡ :
, � ε �Z7 α u γ 8 ¾ 7 β u γ 8 ¾ 7 α u γ 8P��ü �

Here we do not have four but infinitely many modes, one for each choice
of α , β and γ . Only in this way it is possible to generate non context free
languages. Lexical elements that have a parametric (= implicitly typed) set
of categories (together with parametric meanings) are called polymorphic.

238 Categorial Grammar and Formal Semantics

Particularly interesting cases of polymorphic elements are the logical con-
nectors,

04' î and
' C " . Syntactically, they have the category 7 α u α 8 ¾ α and

α ¾ α , respectively, where α can assume any (non parametric) category. This
means that two constituents of identical category can be conjoined by

04' î to
another constituent of the same category, and every constituent can be turned
by
' C " to a constituent of identical category.
Notes on this section. Although we have said that the meanings shall be

functions in an applicative structure, we sometimes put strings in their place.
These strings only denote these functions. This is not an entirely harmless af-
fair. For example, the string I�Ó $ R O�$ R L�H(J and the string I�Ó $ V O�$ V L�H(J denote
the same function. In fact, for reduced terms terms uniqueness holds only up
to renaming of bound variables. It is standard practice in λ–calculus to con-
sider λ–terms ‘up to renaming of bound variables’ (see (Pigozzi and Salibra,
1995) for a discussion). A possible remedy might be to use combinators. But
here the same problem arises. Different strings may denote the same function.
This is why normalisation becomes important. On the other hand, strings as
meanings have the advantage to be finite, and thus may function as objects
that can be stored (like codes of a Turing machine, see the discussion of Sec-
tion 4.1).

Exercise 109. Let ζ : Aε � ℘7 Cat ì é ��7 C 8=8 be a category assignment. Show
that the correctly labelled trees form a context free tree set.

Exercise 110. Show that for every CFG there exists a weakly equivalent
grammar in Greibach Normal Form, where the start symbol

}
does not oc-

cur on the right hand side of a production.

Exercise 111. Let ζ : Aε � ℘7 Cat ì é ��7 C 8=8 be a category assignment. Further,
let
}

be the distinguished category. ζ k is called normal if ζ 7 ε 8 ,�} and no
ζ 7 a 8 contains an α of the form γ ¾ β0 ¾ Â=Â=Â ¾ βn © 1 with βi

,�}
for some i b n.

Show that for any ζ there is a normal ζ k such that ζ k and ζ have the same
language.

Exercise 112. Let L } A ¡ be context free and f : A ¡ � M a computable func-
tion. Write an AB–sign grammar whose interpreted language is 5(��Ex � f 7ÈEx 8=� :Ex � L 6 .
Exercise 113. Let �Á­¬� ε � γ � µ � be an AB–sign grammar. Show for all signs��Ex � α � M � generated by that grammar: M has the type σ 7 α 8 . Hint. Induction
on the length of the structure term.

The AB–Calculus 239

Exercise 114. Show that the CCG 7K²+8 grammars only generate context free
string languages, even context free tree sets. Hint. Show the following: if A is
an arbitrary finite set of categories, then with ² one can generate at most �A � n
many categories.

Exercise 115. Suppose we defined a product : on categories as follows. α : β
is defined whenever (a) α ú β is defined (and has the same value), or (b) α û β
is defined (and has the same value). Show that this does not allow to unam-
biguously define the semantics. (Additional question: why does this problem
not arise with Â ?) Hint. Take α

,
β
, T γ v γ W .

5. The AB–Calculus

We shall now present a calculus to derive all the valid derivability statements
for AB–grammars. Notice that the only variable element is the elementary
category assignment. We choose an alphabet A and an elementary category
assignment ζ . We write ¦α § ζ for the set of all unlabelled binary constituent
structures over A that have root category α under some correct ζ–labelling.
As ζ is completely arbitrary, we shall deal here only with the constituent
structures obtained by taking away the terminal nodes. This eliminates ζ and
A, and leaves a class of purely categorial structures, denoted by ¦α § . Since
AB–grammars are invertible, for any given constituent structure there exists
at most one labelling function (with the exception of the terminal labels).
Now we introduce a binary symbol : , which takes as arguments correctly
ζ–labelled constituent structures. Let � X � ² �_!½� and � Y ���f� m � such constituent
structures and X t Y

, w . Then let� X � ² �_!ï�(:;� Y ���x� m � :
, � X s Y � ² s	��sì5 X s Y 6>� n �(3.171)

n 7 z 8 :
, ñ
ò
ó !�7 z 8 if z � ² �

m 7 z 8 if z ���x�!�7 X 8
Â m 7 Y 8 if z
,

X s Y .

(3.172)

(In principle, : is well defined also if the constituent structures are not binary
branching.) In case where X t Y �, w one has to proceed to the disjoint sum.
We shall not spell out the details. With the help of : we shall form terms over
A, that is, we form the algebra freely generated by A by means of : . To every

240 Categorial Grammar and Formal Semantics

term we inductively associate a constituent structure in the following way.

αk :
, ��5 0 6>��5�5 0 6�6>�Z��5 0 6>� α �=�(3.173a) 7 s : t 8 k :
,

sk : tk(3.173b)

Notice that : has been used with two meanings. Finally, we take a look at¦α § . It denotes classes of binary branching constituent structures over A. The
following holds.¦α ¾ β §ï:ª¦ β §.}µ¦α §(3.174a) ¦ β §ï:ª¦ β u α §.}µ¦α §(3.174b)

We abstract now from A and ζ . In place of interpreting : as a constructor
for constituent structures over A we now interpret it as a constructor to form
constituent structures over Cat ì é ��7 C 8 for some given C. We call a term from
categories with the help of : a category complex. Categories are denoted
by lower case Greek letters, category complexes by upper case Greek letters.
Inductively, we extend the interpretation ¦ v § to structures as follows.

(3.175) ¦ Γ : ∆ § : , ¦Γ §½:;¦∆ §
Next we introduce yet another symbol, ~ ~ ~ . This is a relation between structures
and categories. If Γ is a structure and α a category then Γ ~ ~ ~ α denotes the
fact that for every interpretation in some alphabet A with category assignment
ζ ¦ Γ §.}�¦α § . We call the object Γ ~ ~ ~ α a sequent. The interpretation that we
get in this way we call the cancellation interpretation. Here, categories are
inserted as concrete labels which are assigned to nodes and which are subject
to the cancellation interpretation.

We shall now introduce two different calculi, one of which will be shown
to be adequate for the cancellation interpretation. In formulating the rules we
use the following convention. Γ ¦α § above the line means in this connection
that Γ is a category complex in which we have fixed a single occurrence of α .
When we write, for example, Γ ¦∆ § below the line, then this denotes the result
of replacing that occurrence of α by ∆.

(3.176)

(ax) α ~ ~ ~ α (cut)
Γ ~ ~ ~ α ∆ ¦α §�~~~ β

∆ ¦ Γ §�~~~ β

(I– v)
Γ : α ~ ~ ~ β
Γ ~ ~ ~ β ¾ α (v –I)

Γ ~ ~ ~ α ∆ ¦ β §�~~ ~ γ
∆ ¦ β ¾ α : Γ §�~~~ γ

(I– è)
α : Γ ~ ~ ~ β
Γ ~ ~ ~ α u β (è –I)

Γ ~ ~ ~ α ∆ ¦ β §�~~ ~ γ
∆ ¦ Γ : α u β §�~~~ γ

The AB–Calculus 241

We denote the above calculus by Õæ²�g (cut), and by Õæ² the calculus without
(cut). Further, the calculus consisting of (ax) and the rules (è –I) and (v –I) is
called Õæ² © .

Definition 3.66 Let M be a set of category constructors. A categorial se-
quent grammar is a quintuple

(3.177) G
, � } � C � ζ � A ��Ú��

where C is a finite set, the set of basic categories,
} � C the so called distin-

guished category, A a finite set, the alphabet, ζ : A � ℘7 CatM 7 C 8=8 a cate-
gory assignment, and Ú a sequent calculus. We write ~ G Ex if for some category

complex Γ whose associated string via ζ is Ex we have ÀÁ Γ ~ ~ ~ } .
We stress here that the sequent calculi are calculi to derive sequents. A se-
quent corresponds to a grammatical rule, or, more precisely, the sequent Γ ~ ~ ~ α
expresses the fact that a category complex of type Γ is a constituent that has
the category α by the rules of the grammar. The rules of the sequent calculus
can then be seen as metarules, which allow to pass from one valid statement
concerning the grammar to another.

Proposition 3.67 (Correctness) If Γ ~ ~ ~ α is derivable in Õæ² © then ¦Γ §�}É¦α § .Õæ² is strictly stronger than Õæ² © . Notice namely that the following sequent is
derivable in Õæ² :

(3.178) α ~ ~ ~Ë7 β ¾ α 8=u β
In natural deduction style calculi this corresponds to the following unary rule:

(3.179)
α7 β ¾ α 8=u β

This rule is known as type raising, since it allows to proceed from the cat-
egory α to the “raised” category 7 β ¾ α 8=u β . Perhaps one should better call it
category raising, but the other name is standard. To see that it is not derivable
in Õæ² © we simply note that it is not correct for the cancellation interpretation.
We shall return to the question of interpretation of the calculus Õæ² in the next
section.

An important property of these calculi is their decidability. Given Γ and α
we can decide in finite time whether or not Γ ~ ~ ~ α is derivable.

242 Categorial Grammar and Formal Semantics

Theorem 3.68 (Cut Elimination) There exists an algorithm to construct a
proof of a sequent Γ ~ ~ ~ α in Õæ² from a proof of Γ ~ ~ ~ α in Õæ²Øg (cut). Hence
(cut) is admissible for Õæ² .

Proof. We presented a rather careful proof of Theorem 3.34, so that here we
just give a sketch to be filled in accordingly. We leave it to the reader to verify
that each of the operations reduces the cut–weight. We turn immediately to
the case where the cut is on a main formula of a premiss. The first case is that
the formula is introduced by (I– v).

(3.180)
Γ : α ~ ~ ~ β
Γ ~ ~ ~ β ¾ α ∆ ¦ β ¾ α §�~~ ~ γ

∆ ¦ Γ §�~~~ γ

Now look at the rule instance that is immediately above ∆ ¦ β ¾ α §�~ ~ ~ γ . There
are several cases. Case (0). The premiss is an axiom. Then γ

,
β ¾ α , and the

cut is superfluous. Case (1). β ¾ α is a main formula of the right hand premiss.
Then ∆ ¦ β ¾ α § , Θ ¦ β ¾ α : Ξ § for some Θ and Ξ, and the instance of the rule
was as follows.

(3.181)
Ξ ~ ~ ~ α Θ ¦ β §�~~~ γ

Θ ¦ β ¾ α : Ξ §�~~ ~ γ

Now we can restructure (3.181) as follows.

(3.182)
Γ : α ~ ~ ~ β Θ ¦ β §�~~ ~ γ

Θ ¦ Γ : α §�~~~ γ Ξ ~ ~ ~ α
Θ ¦ Γ : Ξ §�~~~ γ

Now we assume that the formula is not a main formula of the right hand
premiss. Case (2). γ

,
ζ ¾ ε and the premiss is obtained by application of

(I– v).

(3.183)
∆ ¦ β ¾ α §½: ε ~ ~ ~ ζ

∆ ¦ β ¾ α § ~ ~ ~ ζ ¾ ε
We replace (3.183) by

(3.184)

Γ : α ~ ~ ~ β
Γ ~ ~ ~ β ¾ α ∆ ¦ β ¾ α §ï: ε ~ ~ ~ ζ

∆ ¦ Γ §ï: ε ~ ~ ~ ζ
∆ ¦Γ §�~~ ~ ε ¾ ζ

The AB–Calculus 243

Case (3). γ
,

ε u ζ and has been obtained by applying the rule (I– è). Then
proceed as in Case (2). Case (4). The application of the rule introduces a
formula which occurs in ∆. This case is left to the reader.

Now if the left hand premiss has been obtained by (è –I), then one proceeds
quite analogously. So, we assume that the left hand premiss is created by an
application of (è –I).

(3.185)
Γ ~ ~ ~ α ∆ ¦ β §�~~~ γ
∆ ¦ β ¾ α : Γ §�~~ ~ γ Θ ¦ γ §�~~~ δ

Θ ¦∆ ¦ β ¾ α : Γ § §�~~ ~ δ

We can restructure (3.185) as follows.

(3.186)
∆ ¦ β §�~~~ γ Θ ¦ γ §�~~~ δ

Γ ~ ~ ~ α Θ ¦∆ ¦ β § §�~~~ δ
Θ ¦∆ ¦ β ¾ α : Γ § §�~~ ~ δ

Also here one calculates that the degree of the new cut is less than the degree
of the old cut. The case where the left hand premiss is created by (è –I) is
analogous. All cases have now been looked at. <
Corollary 3.69 Õæ²]g (cut) is decidable. <Õæ² gives a method to test category complexes for their syntactic category. We
expect that the meanings of the terms are likewise systematically connected
with a term and that we can determine the meaning of a certain string once
we have found a derivation for it. We now look at the rules of Õæ² to see how
they can be used as rules for deducing sign–sequents. Before we start we
shall distinguish two interpretations of the calculus. The first is the intrinsic
interpretation: every sequent we derive should be correct, with all basic parts
of it belonging to the original lexicon. The second is the global interpretation:
the sequents we derive should be correct if the lexicon was suitably expanded.
This only makes a difference with respect to signs with empty exponent. If a
lexicon has no such signs the intrinsic interpretation bans their use altogether,
but the global interpretation leaves room for their addition. Adding them,
however, will make more sequents derivable that are based on the original
lexicon only.

We also write Ex : α : M for the sign ��Ex � α � M � . If Ex, α or M is irrele-
vant in the context it is omitted. For the meanings we use λ–terms, which
are however only proxy for the ‘real’ meanings (see the discussion at the

244 Categorial Grammar and Formal Semantics

end of the preceding section). Therefore we now write 7 λx � xy 8 in place ofI λ $ R O I $ R $ V J(J . A sign complex is a term made of signs with the help of : .
Sequents are pairs Γ ~ ~ ~ τ where Γ is a sign complex and τ a sign. σ maps
categories to types, as in Section 3.4. If Ex : α : M is derivable, we want that
M is of type σ 7 α 8 . Hence, the rules of Õæ² should preserve this property. We
define first a relation � between sign complexes. It proceeds by means of the
following rules.

Γ ¦ Ex : α ¾ β : M :+Ey : β : N §�h Γ ¦nEx 9 Ey : α : 7 MN 8�§(3.187)

Γ ¦ Ex : β : M :+Ey : β u α : N §�h Γ ¦nEx 9 Ey : α : 7 NM 8�§(3.188)

Since M and N are actually functions and not λ–terms, one may exchange
any two λ–terms that denote the same function. However, if one considers
them being actual λ–terms, then the following rule has to be added:

(3.189) Γ ¦ Ex : α : M §Gh Γ ¦ Ex : α : N § if M ð N

For Γ a sign complex and σ a sign put Γ � σ iff Γ h ¡ σ . We want to design
a calculus that generates all and only the sequents Γ ~ ~ ~ σ such that Γ � σ .

To begin, we shall omit the strings and deal with the meanings. Later we
shall turn to the strings, which pose independent problems. The axioms are
as follows.

(3.190) (ax) α : M ~ ~ ~ α : M

where M is a term of type σ 7 α 8 . (cut) looks like this.

(3.191) 7 cut 8 Γ ~ ~ ~ α : N ∆ ¦α : xη §�~~~ β : M
∆ ¦ Γ §�~~ ~ β : ¦N ¾ xη § M

So, if ∆ ¦α : xη § is a sign complex containing an occurrence of α : xη , then
the occurrence of this sign complex is replaced and with it the variable xη in
M. So, semantically speaking cut is substitution. Notice that since we cannot
tell which occurrence in M is to be replaced, we have to replace all of them.
We will see that there are reasons to require that every variable has exactly
one occurrence, so that this problem will never arise. (We could make this a
condition on (cut). But see below for the fate of (cut).) The other rules are
more complex.

(3.192) (v –I)
Γ ~ ~ ~ α : M ∆ ¦ β : xζ §�~~~ γ : N

∆ ¦ β ¾ α : xη Ä ζ : Γ §�~~ ~ γ : ¦ 7 xη Ä ζ M 8 ¾ xζ § N

The AB–Calculus 245

This corresponds to the replacement of a primitive constituent by a complex
constituent or the replacement of a value M 7 x 8 by the pair � M � x � . Here, the
variable xη Ä ζ is introduced, which stands for a function from objects of type
η to objects of type ζ . The variable xζ has, however, disappeared. This is
a serious deficit of the calculus (which has other advantages, however). We
shall below develop a different calculus. Analogously for the rule (è –I).

(3.193)
(E– v)

Γ ~ ~ ~ α : M ∆ ~ ~ ~ β ¾ α : N
∆ : Γ ~ ~ ~ β : 7 NM 8

(E– è)
Γ ~ ~ ~ α : M ∆ ~ ~ ~ α u β : N

Γ : ∆ ~ ~ ~ β : 7 NM 8
Lemma 3.70 The rule (E– v) is derivable from (cut) and (v –I). Likewise, the
rule (E– v) is derivable from (cut) and (v –I).

Proof. The following is an instance of (v –I).

(3.194)
β : xζ ~ ~ ~ β : xζ α : xη ~ ~ ~ α : xη

α ¾ β : xζ Ä η : β : xζ ~ ~ ~ α : xη

Now two cuts, with α : M ~ ~ ~ α : M and with β : N ~ ~ ~ β : N, give (E– v). <
Thus, the rules (3.187) and (3.188) are accounted for.
The rules (I– v) and (I– è) can be interpreted as follows. Assume that Γ is

a constituent of category α ¾ β .

(3.195) (I– v)
Γ : α : xη ~ ~ ~ β : M

Γ ~ ~ ~ β ¾ α : 7 λxη �M 8
Here, the meaning of Γ is of the form M and the meaning of α is N. Notice
that Õç² forces us in this way to view the meaning of a word of category α ¾ β
to be a function from η–objects to ζ–objects. For it is formally required that
Γ has to have the meaning of a function. We call the rules (I– v) and (I– è)
also abstraction rules. These rules have to be restricted, however. Define for
a variable x and a term M, focc 7 x � M 8 to be the number of free occurrences of
x in M. In the applications of the introduction rules, we add a side condition:

(3.196) In (I– v) and (I– è) : focc 7 xη � M 8Yç 1

(In fact, one can show that from this condition already follows focc 7 xη � M 8 ,
1, by induction on the proof.) To see the need for this restriction, look at the

246 Categorial Grammar and Formal Semantics

following derivation.7 β ¾ α ¾ α : M : α : xη 8(: α : xη ~ ~ ~ β : 7 Mxη 8 xη
β ¾ α ¾ α : M : α : xη ~ ~ ~ β ¾ α : λxη ��7 Mxη 8 xη

β ¾ α ¾ α : M ~ ~ ~ β ¾ α ¾ α : λxη � λxη ��7=7 Mxη 8 xη 8
The first is obtained using two applications of the derivable (E– v).

This rule must be further restricted, however, as the next example shows.
In the rule (è –I) put ∆ :

,
γ :
,

β .

(3.197)
α : xη ~ ~ ~ α : xη β : xζ ~ ~ ~ β : xζ

α ¾ β : xζ Ä η : β : xζ ~ ~ ~ α : 7 xζ Ä η xζ 8
Using (I– v), we get

(3.198)
α ¾ β : xζ Ä η : β : xζ ~ ~ ~ α : 7 xζ Ä η xζ 8

α ¾ β : xζ Ä η ~ ~ ~ α ¾ β : 7 λxζ ��7 xζ Ä η xζ 8=8
Now λxζ � xζ Ä η xζ is the same function as xζ Ä η . On the other hand, by apply-
ing (I– è) we get

(3.199)
α ¾ β : xζ Ä η : β : xζ ~ ~ ~ α : 7 xζ Ä η xζ 8

β : xζ ~ ~ ~Ë7 α ¾ β 8=u α : 7 λxζ Ä η ��7 xζ Ä η xζ 8=8
This is the type raising rule which we have discussed above. A variable xζ can
also be regarded as a function, which for given function f taking arguments
of type ζ returns the value f 7 xζ 8 . However, xζ is not the same function as7 λxζ Ä η ��7 xζ Ä η xζ 8=8 . (The latter has the type 7 β � α 83� α .) Therefore the
application of the rule is incorrect in this case. Moreover, in the typed λ–
calculus the equation xζ

, 7 λxζ Ä η ��7 xζ Ä η xζ 8=8 is invalid.
To remedy the situation we must require that the variable which we have

abstracted over appears on the left hand side of ~ ~ ~ in the premiss as an ar-
gument variable and not as a variable of a function that is being applied to
something. So, the final form of the right slash–introduction rule is as follows.

(3.200) (I– v)
Γ : α : xη ~ ~ ~ β : M

Γ ~ ~ ~ β ¾ α : 7 λxη �M 8 xη an argument variable,
and focc 7 xη � M 8Yç 1

How can one detect whether xη is an argument variable? To this end we re-
quire that the sequent Γ ~ ~ ~ β ¾ α be derivable in categorial Õæ² © . This seems

The AB–Calculus 247

paradoxical. For with this restriction the calculus seems to be as weak asÕæ² © . Why should one make use of the rule (I– v) if the sequent is anyway
derivable? To understand this one should take note of the difference between
the categorial calculus and the interpreted calculus. We allow the use of the
interpreted rule (I– v) if Γ ~ ~ ~ β ¾ α is derivable in the categorial calculus; or, to
be more prosaic, if Γ has the category β ¾ α and hence the type α � β . That
this indeed strengthens the calculus can be seen as follows. In the interpretedÕæ² © the following sequent is not derivable (though it is derivable in Õæ²). The
proof of this claim is left as an exercise.

(3.201) α ¾ β : xζ Ä η ~ ~ ~ α ¾ β : λxζ � xζ Ä η xζ

We assign to a sign complex a sign as follows.

§ 7�Ex : α : M 8 :
, ��Ex � α � M �

§ 7�Ex : α ¾ β : M :+Ey : β : N 8 :
, í ò 7=��Ex � α ¾ β � M �P�Z��Ey � β � N �=8(3.202)

§ 7�Ex : β : M :+Ey : β u α : N 8 :
, í ó 7=��Ex � β � M �P�Z��Ey � β u α � N �=8

It is easy to see that if Γ ~ ~ ~ α : M is derivable in the interpreted Õæ² then
§ 7 Γ 8 , ��Ex � α � M k � for some M k.ð M. (Of course, M and M k are just notational
variants denoting the same object. Thus they are identical qua objects they
represent.)

The calculus that has just been defined has drawbacks. We will see below
that (cut) cannot be formulated for strings. Thus, we have to do without it. But
then we cannot derive the rules (E– v) and (E– è). The calculus
 obviates the
need for that.

Definition 3.71 The calculus
 has the rules (ax), (I– v), (E– v) (I– v) and
(E– è).

In (the interpreted)
 , (cut) is admissible. (The proof of that is left as an
exercise.)

Now let us turn to strings. Now we omit the interpretation, since it has
been dealt with. Our objects are now written as Ex : α where Ex is a string and
α a category. The reader is reminded of the fact that Ey ¾ Ex denotes that string
which results from Ey by removing the postfix Ex. This is clearly defined only if

248 Categorial Grammar and Formal SemanticsEy , Eu 9 Ex for some Eu, and then we have Ey ¾ Ex , Eu. Analogously for Ex u�Ey.

(3.203)

(ax) Ex : α ~ ~ ~ÙEx : α

(I– v)
Γ :+Ex : α ~ ~ ~ìEy : β
Γ ~ ~ ~ìEy ¾ Ex : β ¾ α (E– v)

Γ ~ ~ ~ÙEx : α ∆ ~ ~ ~ìEy : β ¾ α
∆ : Γ ~ ~ ~ìEy 9@Ex : β

(I– è)
Ex : α : Γ ~ ~ ~ìEy : β
Γ ~ ~ ~ìEx u�Ey : α u β (E– è)

Γ ~ ~ ~ÙEx : α ∆ ~ ~ ~ìEy : α u β
Γ : ∆ ~ ~ ~ìEx 9 Ey : β

The cut rule is however no more a rule of the calculus. There is no formulation
of it at all. Suppose we try to formulate a cut rule. Then it would go as follows.

(3.204)
Γ ~ ~ ~ìEx : α ∆ ¦ Ey : α §�~~~¬Ez : β

∆ ¦ Γ §�~~ ~Ë¦ Ey ¾ Ex § Ez : β

Here, ¦ Ey ¾ Ex § Ez denotes the result of replacing Ey for Ex in Ez. So, on the strings
(cut) becomes constituent replacement. Notice that only one occurrence may
be replaced, so if Ex occurs several times, the result of the operation ¦nEy ¾ Ex § Ez is
not uniquely defined. Moreover, Ex may occur accidentally in Ez! Thus, it is not
clear which of the occurrences is the right one to be replaced. So the rule of
(cut) cannot even be properly formulated. On the other hand, semantically it
is admissible, so for the semantics we can do without it anyway. However,
the same problem of substitution arises with the rules (v –I) and (è –I). Thus,
they had to be eliminated as well.

This completes the definition of the sign calculus
 . Call á the calculus
consisting of just (v –E) and (è –E). Based on Lemma 3.70 the completeness
of á for � is easily established.

Theorem 3.72 �� Γ ~ ~ ~ σ iff Γ � σ .
 is certainly correct for the global interpretation, but it is correct for the
intrinsic interpretation? The answer is actually yes! The fact is that the intro-
duction rules are toothless tigers: they can only eliminate a variable that has
never had a chance to play a role. For assume that we have an
 –proof. If
(I– v) is used, let the highest application be as follows.

(3.205)
Γ : ε : α : xη ~ ~ ~ìEy : β : M
Γ ~ ~ ~ìEy : β ¾ α : 7 λxη �M 8

Then the sequent above the line has been introduced by (E– v):

(3.206)
Γ ~ ~ ~ìEy : β ¾ α : N ε : α : xη ~ ~ ~ ε : α : xη

Γ : ε : α : xη ~ ~ ~ìEy : β : Nxη

The Lambek–Calculus 249

Here, Nxη
,

M. Since 7 λxη �M 8 , 7 λxη �Nxη 8 , N, this part of the proof can
be eliminated.

Theorem 3.73 The rules (I– v) and (I– è) are admissible in á .

In the next section, however, we shall study the effect of adding associativity.
In presence of associativity the introduction rules actually do considerable
work. In that case, to regain correctness, we can either ban the introduction
rules, or we can restrict the axioms. Given an AB–sign grammar ­ we can
restrict the set of axioms to

(3.207) (ax ®) υ 7 f 8ÿ~~ ~ υ 7 f 8 where f � F and Ω 7 f 8 , 0

For an AB–grammar does not possess any modes of the form � ε � α � xα � where
xα is a variable.

Exercise 116. Prove the correctness theorem, Proposition 3.67.

Exercise 117. Define a function p from category complexes to categories as
follows.

(3.208)
p 7 α 8 :

,
α

p 7 Γ : ∆ 8 :
,

p 7 Γ 8
Â p 7 ∆ 8
Show that Γ ~ ~ ~ α is derivable in Õç² © iff p 7 Γ 8 , α . Show that this also holds
for Õæ² © g (cut). Conclude from this that (cut) is admissible in (categorial!)Õæ² © . (This could in principle be extracted from the proof for Õæ² , but this
proof here is quite simple.)

Exercise 118. Show that every CFL can be generated by an AB–grammar
using only two basic categories.

Exercise 119. Show the following claim: in the interpreted Õæ² © –calculus no
sequents are derivable which contain bound variables.

Exercise 120. Show that (cut) is admissible for
 .

6. The Lambek–Calculus

The Lambek–Calculus, Ü , is in many respects an extension of Õæ² . It has
been introduced in (Lambek, 1958). In contrast to Õæ² , in Ü categories are
not interpreted as sets of labelled trees but as sets of strings. This means

250 Categorial Grammar and Formal Semantics

that the calculus has different laws. Furthermore, Ü possesses a new category
constructor, pair formation; it is written ! and has a counterpart on the level
of categories, also denoted by that symbol. The constructors of the classical
Lambek–calculus for categories therefore are è , v and ! . Given an alphabet
A and an elementary category assignment ζ we denote by 5 α 6 ζ the set of all
strings over A which are of category α with respect to ζ . Then the following
holds.

(3.209)
5 α ! β 6 ζ :

, 5 α 6 ζ ÂZ5 β 6 ζ5 Γ : ∆ 6 ζ :
, 5 Γ 6 ζ ÂZ5 ∆ 6 ζ

Since we have the constructor ! at our disposal, we can in principle dispense
with the symbol : . However, we shall not do so. We shall formulate the cal-
culus as before using : , which makes it directly comparable to the ones we
have defined above. Hence as before we distinguish terms from structures.
We write Γ ~ ~ ~ β if 5 Γ 6 ζ }�5 α 6 ζ . We shall axiomatize the sequents of ~ ~ ~ . In
order to do so we add the following rules to the calculus Õæ² (without (cut)).

(ass1)
Γ ¦∆1 :;7 ∆2 : ∆3 8�§�~~~ α
Γ ¦ 7 ∆1 : ∆2 8(: ∆3 §�~~~ α (ass2)

Γ ¦ 7 ∆1 : ∆2 8�: ∆3 §�~~~ α
Γ ¦∆1 :;7 ∆2 : ∆3 8�§�~~~ α

(! –I)
Γ ¦ α : β §�~~ ~ γ
Γ ¦ α ! β §�~~ ~ γ (I– !) Γ ~ ~ ~ α ∆ ~ ~ ~ β

Γ : ∆ ~ ~ ~ α ! β

This calculus is called the Lambek–Calculus, or simply Ü . Further, we put
 Ü :
, Õç²]g (I– !) g (! –I) and
 Ü © :

, Õæ² © g (! –I) g (I– !).
 Ü is also called
the Nonassociative Lambek–Calculus.

Theorem 3.74 (Lambek) (cut) is admissible for Ü .

Corollary 3.75 (Lambek) Ü with or without (cut) is decidable.

For a proof we only have to look at applications of (cut) following an appli-
cation of the new rules. Assume that the left hand premiss has been obtained
by an application of (ass1).

(3.210)
Γ ¦Θ1 :;7 Θ2 : Θ2 8�§�~~ ~ α
Γ ¦ 7 Θ1 : Θ2 8(: Θ2 §�~~ ~ α ∆ ¦α §�~~~ β

∆ ¦ Γ ¦ 7 Θ1 : Θ2 8(: Θ3 § §�~~ ~ β

The Lambek–Calculus 251

This proof part we reformulate into the following one.

(3.211)
Γ ¦Θ1 :;7 Θ2 : Θ3 8�§�~~ ~ α ∆ ¦α §�~~~ β

∆ ¦ Γ ¦Θ1 :;7 Θ2 : Θ3 8�§ §�~~~ β
∆ ¦ Γ ¦ 7 Θ1 : Θ2 8�: Θ3 § §�~~~ β

Analogously if the left hand premiss has been obtained by using (ass2). We
leave it to the reader to treat the case where the right hand premiss has been
obtained by using (ass1) or (ass2). We have to remark here that by reformu-
lation we do not diminish the degree of the cut. So the original proof is not
easily transported into the new setting. However, the depth of the application
has been diminished. Here, depth means (intuitively) the length of a longest
path through the proof tree from the top up to the rule occurrence. If we as-
sume that Γ ¦Θ1 :�7 Θ2 : Θ3 8�§V~~~ α has depth i and ∆ ¦α §V~~~ β depth j then in
the first tree the application of (cut) has depth max 5 i � j 63g 1, in the second
however it has depth max 5 i � j 6 .

Let us look at the cases of introduction of ! . The case of (! –I) on the left
hand premiss is easy.

(3.212)
Γ ¦ θ1 : θ2 §�~~~ α
Γ ¦ θ1 ! θ2 §�~~~ α ∆ ¦α §�~~~ γ

∆ ¦ Γ ¦ θ1 ! θ2 § §�~~~ γ � Γ ¦ θ1 : θ2 §�~~~ α ∆ ¦α §�~~ ~ γ
∆ ¦Γ ¦ θ1 : θ2 § §�~~ ~ γ
∆ ¦Γ ¦ θ1 ! θ2 § §�~~ ~ γ

Now for the case of (I– !) on the right hand premiss.

(3.213)
Θ1 ~ ~ ~ θ1 Θ2 ~ ~ ~ θ2

Γ ~ ~ ~ α ∆ ¦α §�~~ ~ γ
∆ ¦ Γ §�~~ ~ γ

In this case γ
,

θ1 ! θ2. Furthermore, ∆
,

Θ1 : Θ2 and the marked occurrence
of α either is in Θ1 or in Θ2. Without loss of generality we assume that it is
in Θ1. Then we can replace the proof by

(3.214)
Γ ~ ~ ~ α Θ1 ¦α §�~~ ~ θ1

Θ1 ¦Γ §�~~ ~ θ1 Θ2 ~ ~ ~ θ2
Θ1 ¦ Γ §ï: Θ2 ~ ~ ~ θ1 ! θ2

252 Categorial Grammar and Formal Semantics

We have Θ1 ¦ Γ §1: Θ2
,

∆ ¦ Γ § by hypothesis on the occurrence of α . Now we
look at the case where the left hand premiss of cut has been introduced by
(I– !). We may assume that the right hand premiss has been obtained through
application of (! –I). The case where α is a side formula is once again easy.
So let α be main formula. We get the following local tree.

(3.215)
Θ1 ~ ~ ~ θ1 Θ2 ~ ~ ~ θ2

Θ1 : Θ2 ~ ~ ~ θ1 ! θ2

∆ ¦ θ1 : θ2 §�~~~ γ
∆ ¦ θ1 ! θ2 §�~~~ γ

∆ ¦Θ1 : Θ2 §�~~ ~ γ

�
Θ1 ~ ~ ~ θ1 ∆ ¦ θ1 : θ2 §�~~ ~ γ

Θ2 ~ ~ ~ θ2 ∆ ¦Θ1 : θ2 §�~~ ~ γ
∆ ¦Θ1 : Θ2 §�~~ ~ γ

In all cases the cut–weight (or the sum of the depth of the cuts) has been
reduced.

We shall also present a different formulation of Ü using natural deduction
over ordered DAGs. Here are the rules:

(3.216)

(I– !) α βT α ! β W (E– !) T α ! β W
α β

(I– v)

¦α §
...
βT α v β W (E– v)

β T β è α W
α

(I– è)

¦α §
...
βT α v β W (E– è)

T α v β W β
α

These rules are very much like the natural deduction rules for intuitionistic
logic. However, two differences must be noted. First, suppose we disregard
for the moment the rules for ! . (This would incidentally give exactly the nat-
ural deduction calculus corresponding to Õæ² .) The rules must be understood
to operate on ordered trees. Otherwise, the difference between then rules forv and the rules for è would be obliterated. Second, the elimination rule for! creates two linearly ordered daughters for a node, thus we not only create

The Lambek–Calculus 253

ordered trees, we in fact create ordered DAGs. We shall not spell out exactly
how the rules are interpreted in terms of ordered DAGs, but we shall point
out a few noteworthy things. First, this style of presentation is very much lin-
guistically oriented. We may in fact proceed in the same way as for Õæ² and
define algorithms that decorate strings with certain categorial labels and pro-
ceed downward using the rules shown above. Yet, it must be clear that the so
created structures cannot be captured by constituency rules (let alone rules of
a CFG) for the simple reason that they are not trees. The following derivation
is illustrative of this.

(3.217)

7 α !;7 α u γ 8 ¾ β 8(! β
α !ª7 α u γ 8 ¾ β β

α 7 α u γ 8 ¾ β β
... α u γ

γ

Notice that if a rule has two premisses, these must be adjacent and follow
each other in the order specified in the rule. No more is required. This allows
among other to derive associativity, that is, 7 α ! β 8�! γ �ÿ~ ~ ~ α !�7 β ! γ 8 . How-
ever, notice the role of the so–called assumptions and their discharge. Once
an assumption is discharged, it is effectively removed, so that the items to its
left and its right are now adjacent. This plays a crucial role in the derivation
of the rule of function composition.

(3.218)

α ¾ β β ¾ γ γ
{

... β
α

α ¾ γ
As soon as the assumption γ is removed, the top sequence reads α ¾ β � β ¾ γ .

The relationship with Ü is as follows. Let Γ be a sequence of categories.
We interpret this as a labelled DAG, which is linearly ordered. Now we suc-
cessively apply the rules above. It is verified that each rule application pre-
serves the property that the leaves of the DAG are linearly ordered. Define a
category corresponding to a sequence as follows.

(3.219)
α ¤ :

,
α7 α � ∆ 8 ¤ :

,
α ! ∆ ¤

254 Categorial Grammar and Formal Semantics

First of all we say that for two sequences ∆ and ∆ k , ∆ k is derivable from ∆ in
the natural deduction style calculus if there is a DAG constructed according to
the rules above, whose topmost sequence is ∆ and whose lowermost sequence
is ∆ k . (Notice that assumptions get discharged, so that we cannot simply say
that ∆ is the sequence we started off with.) The following is then shown by
induction.

Theorem 3.76 Let ∆ and Θ be two sequences of categories. Θ is derivable
from ∆ iff ∆ ~ ~ ~ Θ ¤ is derivable in Ü .

This shows that the natural deduction style calculus is effectively equivalent
to Ü .Ü allows for a result akin to the Curry–Howard–Isomorphism. This is an
extension of the latter result in two respects. First, we have the additional type
constructor ! , which we have to match by some category constructor, and
second, there are different structural rules. First, the new type constructor is
actually the pair–formation.

Definition 3.77 Every λ–term is a λ ¤ –term. Given two λ ¤ –terms M and N,� M � N � , p1 7 M 8 and p2 7 M 8 also are λ ¤ –terms. Further, the following equa-
tions hold.

(3.220) p1 7=� M � N �=8 , M � p2 7=� M � N �=8 , N �
p1 7 U 8 and p2 7 U 8 are not defined if U is not of the form � M � N � for some M
and N. The functions p1 and p2 are called the projections.

Notice that antecedents of sequents no longer consist of sets of sequences.
Hence, Γ, ∆, Θ now denote sequences rather than sets. In Table 8 we display
the new calculus. We have also put a general constraint on the proofs that
variables may not be used twice. To implement this constraint, we define the
notion of a linear term:

Definition 3.78 A term M is strictly linear if for every variable x and every
subterm N, focc 7 x � N 83ç 1. A term is linear if it results from a strictly linear
term M by iterated replacement of a subterm M k by ¦ p1 7 N 8 ¾ x §�¦ p2 7 N 8 ¾ y § M k ,
where N is a linear term.

The calculus above yields only linear terms if we start with variables and
require in the rules (I– !), (E– v), (E– è) that the sets of free variables be dis-
joint, and that in (I– v) and (I– è) the variable occurs exactly once free in M.

The Lambek–Calculus 255

Table 8. � with λ–Term Annotation

(ax) x : ϕ ~ ~ ~ x : ϕ

(cut)
Γ ~ ~ ~ M : ϕ ∆ � x : ϕ � Θ ~ ~ ~ N : β

∆ � Γ � Θ ~ ~ ~Ë¦M ¾ x § N : β

(E– v)
Γ ~ ~ ~ M : α ¾ β ∆ ~ ~ ~ N : β

Γ � ∆ ~ ~ ~ MN : α (I– v)
Γ � x : β ~ ~ ~ M : α
Γ ~ ~ ~ λx �M : α ¾ β

(E– è)
Γ ~ ~ ~ M : β u α ∆ ~ ~ ~ N : β

∆ � Γ ~ ~ ~ MN : α (I– è)
x : β � Γ ~ ~ ~ M : α
Γ ~ ~ ~ λx �M : β u α

(E– !) Γ ~ ~ ~ M : α ! β ∆ � x : α � y : β � Θ ~ ~ ~ U : ψ
∆ � Γ � Θ ~ ~ ~Ë¦ p1 7 M 8 ¾ x §�¦ p2 7 M 8 ¾ y §U : ψ

(I– !) Γ ~ ~ ~ M : α ∆ ~ ~ ~ N : β
Γ � ∆ ~ ~ ~Ý� M � N � : α ! β

In this way we can ensure that for every sequent derivable in Ü there actually
exists a labelling such that the labelled sequent is derivable in the labelled
calculus. This new calculus establishes a close correspondence between lin-
ear λ ¤ –terms and the so–called multiplicative fragment of linear logic, which
naturally arises from the above calculus by stripping off the terms and leav-
ing only the formulae. A variant of proof normalization can be shown, and all
this yields that Ü has quite well–behaved properties.

In presence of the rules (ass1) and (ass2) ! behaves exactly like concatena-
tion, that is, it is a fully associative operation. Therefore we shall change the
notation in what is to follow. In place of structures consisting of categories we
shall consider finite sequences of categories, that is, strings over Cat ì é ¤ é ��7 C 8 .
We denote concatenation by comma, as is commonly done.

Now we return to the theory of meaning. In the previous section we have
seen how to extend Õæ² by a component for meanings which computes the
meaning in tandem with the category. We shall do the same here. To this end
we shall have to first clarify what we mean by a realization of α ! β . We shall
agree on the following.

(3.221) I α ! β J :
, I α J�epI β J

256 Categorial Grammar and Formal Semantics

The rules are tailored to fit this interpretation. They are as follows.

(3.222)
Γ ¦ ∆1 :ª7 ∆2 : ∆3 8�§�~~ ~ α : M
Γ ¦ 7 ∆1 : ∆2 8�: ∆3 §�~~ ~ α : M

This means that the restructuring of the term is without influence on its mean-
ing. Likewise we have

(3.223)
Γ ¦ 7 ∆1 : ∆2 8�: ∆3 §�~~ ~ α : M
Γ ¦ ∆1 :ª7 ∆2 : ∆3 8�§�~~ ~ α : M

So, for ! we assume the following rule.

(3.224)
Γ ¦α : xα : β : xβ §�~~ ~ γ : M

Γ ¦ α ! β §�~~ ~ γ : ¦ p1 7 zα ¤ β 8 ¾ xα � p2 7 zα ¤ β 8 ¾ xβ § M
(3.224) says that in place of a function of two arguments α and β we can
form a function of a single argument of type α ! β . The two arguments we
can recover by application of the projection functions. The fourth rule finally
tells us how the type/category α ! β is interpreted.

(3.225)
Γ ~ ~ ~ α : M ∆ ~ ~ ~ β : N

Γ : ∆ ~ ~ ~ α ! β : � M � N �
Here we have the same problem as before with Õæ² . The meaning assignments
that are being computed are not in full accord with the interpretation. The
term I $ 0 I $ 1

$
2 J�J does not denote the same function as I�I $ 0

$
1 J $ 2 J . (Usually,

one of them is not even well defined.) So this raises the question whether it
is at all legitimate to proceed in this way. We shall avoid the question by
introducing a totally different calculus, sign based Ü (see Table 9), which
builds on the calculus
 of the previous section. The rules (ass1) and (ass2)
are dropped. Furthermore, (! –I) is restricted to Γ

, w . These restrictions are
taken over from
 for the abstraction rules. Sign based Ü has the global side
condition that no variable is used in two different leaves. This condition can
be replaced (up to α–conversion) by the condition that all occurring terms are
linear. In turn, this can be implemented by the adding suitable side conditions
on the rules.

Sign based Ü is not as elegant as plain categorial Ü . However, it is se-
mantically correct. If one desperately wants to have associativity, one has to
introduce combinators at the right hand side. So, a use of the associativity

The Lambek–Calculus 257

Table 9. The Sign Based Calculus �
(ax) Ex : α : xζ ~ ~ ~ Ex : α : xζ � ζ

,
σ 7 α 8

(I– v)
Γ :+Ex : α : xζ ~ ~ ~ìEy : β : N
Γ ~ ~ ~ìEy ¾ Ex : β ¾ α : λxζ � N xζ an argument variable,

focc 7 xζ � N 8�ç 1

(I– è)
Ex : α : xζ : Γ ~ ~ ~ìEy : β : N
Γ ~ ~ ~ìEx u4Ey : α u β : λxζ � N xζ an argument variable,

focc 7 xζ � N 8�ç 1

(E– v)
Γ ~ ~ ~ÙEx : α : M ∆ ~ ~ ~ìEy : β ¾ α : N

∆ : Γ ~ ~ ~ìEy 9 Ex : β : NM

(E– è)
Γ ~ ~ ~ÙEx : α : M ∆ ~ ~ ~ìEy : α u β : N

Γ : ∆ ~ ~ ~ìEx 9 Ey : β : NM

(! –I)
Ex : α : xζ :+Ey : β : yη ~ ~ ~�Ez : γ : MEx 9 Ey : α ! β : zζ ¤ η ~ ~ ~¬Ez : γ : ¦ p1 7 zζ ¤ η 8 ¾ xζ � p2 7 zζ ¤ η 8 ¾ yη § M

(I– !) Γ ~ ~ ~ÙEx : α : M ∆ ~ ~ ~ìEy : β : N
Γ : ∆ ~ ~ ~ìEx 9yEy : α ! β : � M � N �

rule is accompanied in the semantics by a use of | with | MNP
,

M I NP J .
We shall not spell out the details here.

Exercise 121. Assume that in place of sequents of the form α ~ ~ ~ α for arbi-
trary α only sequents c ~ ~ ~ c, c � C, are axioms. Show that with the rules of Ü
α ~ ~ ~ α can be derived for every α .

Exercise 122. Let G
, � C � S � A � ζ ��
 Ü © � be a categorial sequent grammar.

Show that the language 5XEx : ~ G Ex 6 is context free.

Exercise 123. Show that the sequent α ¾ β : β ¾ γ ~ ~ ~ α ¾ γ is derivable in Ü but
not in Õæ² . What semantics does the structure α ¾ β : β ¾ γ have?

Exercise 124. A loop is a structure � L �=Â ��u(� ¾ � where Ω 7$Â`8 , Ω 7�u�8 , Ω 7 ¾ 8 , 2
and the following equations hold for all x � y � L.

(3.226) x Âj7 x u y 8 , y � 7 y ¾ x 8
Â x , y

The categories do not form a loop with respect to u , ¾ and Â (!), for the
reason that Â is only partially defined. Here is a possible remedy. Define

258 Categorial Grammar and Formal SemanticsØÄ} Cat � é ¤ é Q 7 C 8 2 to be the least congruence such that

(3.227) 7 α ! β 8 ¾ β Ø α � β u�7 β ! α 8lØ α

Show that the free algebra of categories over C factored by Ø is a loop. What
is α Â β in the factored algebra?

Exercise 125. Show that the following rules are admissible in Ü .

(3.228) (! –E)
Γ ¦ θ1 ! θ2 §�~~~ α
Γ ¦ θ1 : θ2 §�~~~ α (E– v)

Γ ~ ~ ~ α ¾ β
Γ : β ~ ~ ~ α (E– è)

Γ ~ ~ ~ β u α
β : Γ ~ ~ ~ α

7. Pentus’ Theorem

It was conjectured by Noam Chomsky that the languages generated by Ü are
context free, which means that Ü is in effect not stronger than Õæ² . This was
first shown by Mati Pentus (see (Pentus, 1997)). His proof makes use of the
fact that Ü has interpolation. We start with a simple observation. Let ` :

,� G �=Â �`© 1 � 1 � be a group and γ : C � G. We extend γ to all types and structures
as follows.

(3.229)

γ 7 α ! β 8 :
,

γ 7 α 8
Â γ 7 β 8
γ 7 α ¾ β 8 :

,
γ 7 α 8
Â γ 7 β 8 © 1

γ 7 β u α 8 :
,

γ 7 β 8 © 1 Â γ 7 α 8
γ 7 Γ : ∆ 8 :

,
γ 7 Γ 8
Â γ 7 ∆ 8

We call γ a group valued interpretation.

Theorem 3.79 (Roorda) If Γ ~ ~ ~ α is derivable in Ü then for all group valued
interpretations γ γ 7 Γ 8 , γ 7 α 8 .
The proof is performed by induction over the length of the derivation and is
left as an exercise. Let C be given and c � C. For a category α over C we
define

(3.230)

σc 7 c k 8 :
, ¿ 1 if c

,
c k ,

0 otherwise.

σc 7 α ! β 8 :
,

σc 7 α 8�g σc 7 β 8
σc 7 α ¾ β 8 :

,
σc 7 α 8�g σc 7 β 8

σc 7 β u α 8 :
,

σc 7 α 8�g σc 7 β 8

Pentus’ Theorem 259

Likewise we define�α � : , ∑
c � C σc 7 α 8(3.231)

π 7 α 8 :
, 5 c � C : σc 7 α 8@� 0 6(3.232)

These definitions are extended in the canonical way to structures. Let ∆ be a
nonempty structure (that is, ∆ �, ε) and Γ ¦ v § a structure containing a marked
occurrence of a substructure. An interpolant for a sequent Γ ¦∆ §9~ ~~ α in a
calculus Ú with respect to ∆ is a category θ such that

À σc 7 θ 83ç min 5 σc 7 Γ 8�g σc 7 α 8P� σc 7 ∆ 8Z6 , for all c � C,

Á ∆ ~ ~ ~ θ is derivable in Ú ,

Â Γ ¦ θ §�~~~ α is derivable in Ú .

In particular π 7 θ 8;} π 7 Γ : α 8�t π 7 ∆ 8 if θ satisfies these conditions. We say
that Ú has interpolation if for every derivable Γ ¦∆ §�~ ~ ~ α there exists an inter-
polant with respect to ∆.

We are interested in the calculi Õæ² and Ü . In the case of Ü we have to
remark that in presence of full associativity the interpolation property can
be formulated as follows. We deal with sequents of the form Γ ~ ~ ~ α where
Γ is a sequence of categories. If Γ

,
Θ1 � ∆ � Θ2 with ∆ �, ε then there is an

interpolant with respect to ∆. For let ∆ � be a structure in : which corresponds
to ∆ (after omitting all occurrences of :). Then there exists a sequent Γ � ~ ~ ~ α
which is derivable and in which ∆ � occurs as a substructure.

Interpolation is shown by induction on the derivation. In the case of an
axiom there is nothing to show. For there we have a sequent α ~ ~ ~ α and the
marked structure ∆ has to be α . In this case α is an interpolant. Now let
us assume that the rule (I– v) has been applied to yield the final sequent. Fur-
ther, assume that the interpolation property has been shown for the premisses.
Then we have the following constellation.

(3.233)
Γ ¦ ∆ §½: α ~ ~ ~ β
Γ ¦∆ §�~~~ β ¾ α

We have to find an interpolant with respect to ∆. By induction hypothesis
there is a formula θ such that Γ ¦ θ §½: α ~ ~ ~ β and ∆ ~ ~ ~ θ are both derivable and
σc 7 θ 8yç min 5 σc 7 Γ : α : β 8P� σc 7 ∆ 8Z6 for all c � C. Then also Γ ¦ θ §�~ ~~ β ¾ α and

260 Categorial Grammar and Formal Semantics

∆ ~ ~ ~ θ are derivable and we have σc 7 θ 8;ç min 5 σc 7 Γ : β ¾ α 8P� σc 7 ∆ 8Z6 . Hence
θ also is an interpolant with respect to ∆ in Γ ¦∆ §�~ ~ ~ β ¾ α . The case of (I– è) is
fully analogous.

Now we look at the case that the last rule is (v –I).

(3.234)
Γ ~ ~ ~ β ∆ ¦α §�~~~ γ

∆ ¦α ¾ β : Γ §�~~ ~ γ

Choose a substructure Z from ∆ ¦α ¾ β : Γ § . Several cases have to be distin-
guished. (1) Z is a substructure of Γ, that is, Γ

,
Γ k ¦ Z § . Then there exists an

interpolant θ for Γ kl¦ Z §�~~~ β with respect to Z. Then θ also is an interpolant for
∆ ¦α ¾ β : Γ kã¦ Z § §�~~~ γ with respect to Z. (2) Z is disjoint with α ¾ β : Γ. Then we
have ∆ ¦α § , ∆ k ¦ Z � α § (with two marked occurrences of structures) and there is
an interpolant θ with respect to Z for ∆ kl¦ Z � α §�~~ ~ γ . Also in this case one calcu-
lates that θ is the desired interpolant. (3) Z

,
α ¾ β . By induction hypothesis

there is an interpolant θ ¹ for Γ ~ ~ ~ β with respect to Γ, as well as an interpolant
θr for ∆ ¦α §�~~ ~ γ with respect to α . Then θ :

,
θr ¾ θ ¹ is the interpolant. For we

have

σc 7 θ 8 , σc 7 θr 8�g σc 7 θ ¹ 8(3.235) ç min 5 σc 7 ∆ : γ 8P� σc 7 α 8Z6»g min 5 σc 7 β 8P� σc 7 Γ 8Z6ç min 5 σc 7 ∆ : Γ : γ 8P� σc 7 α ¾ β 8Z6
Furthermore,

(3.236)
Γ ~ ~ ~ θ ¹ ∆ ¦ θr §�~~ ~ γ

∆ ¦ θr ¾ θ ¹ : Γ §�~~~ γ

θ ¹ ~ ~ ~ β α ~ ~ ~ θr

α ¾ β : θ ¹ ~ ~ ~ θr

α ¾ β ~ ~ ~ θr ¾ θ ¹
(4) Z

,
Θ ¦α ¾ β : Γ § . Then ∆ ¦α ¾ β : Γ § , ∆ kã¦Θ ¦α ¾ β : Γ § § for some ∆ k . Then by

hypothesis there is an interpolant for ∆ k ¦Θ ¦α § §G~~~ γ with respect to Θ ¦α § . We
show that θ is the desired interpolant.

(3.237)
Γ ~ ~ ~ β Θ ¦α §�~~~ θ

Θ ¦ α ¾ β : Γ §�~~~ θ ∆ k ¦ θ §�~~~ γ

In addition

σc 7 θ 8@ç min 5 σc 7 ∆ k : γ 8P� σc 7 Θ ¦α §l8Z6(3.238) ç min 5 σc 7 ∆ k : γ 8P� σc 7 Θ ¦α ¾ β : Γ §l8Z6
This ends the proof for the case (v –I). The case (è –I) again is fully analogous.

Pentus’ Theorem 261

Theorem 3.80 Õæ² has interpolation. <
Now we move on to Ü . Clearly, we only have to discuss the new rules. Let
us first consider the case where we add ! together with its introduction rules.
Assume that the last rule is (! –I).

(3.239)
Γ ¦ α : β §�~~ ~ γ
Γ ¦ α ! β §�~~ ~ γ

Choose a substructure Z of Γ ¦α : β § . (1) Z does not contain the marked occur-
rence of α ! β . Then Γ ¦α ! β § , Γ kl¦ Z � α ! β § , and by induction hypothesis we
get an interpolant θ for Γ k ¦ Z � α : β §�~~~ γ with respect to Z. It is easily checked
that θ also is an interpolant for Γ kã¦ Z � α ! β §-~~~ γ with respect to Z. (2) Let
Z
,

Θ ¦α ! β § . Then Γ ¦α ! β § , Γ k ¦Θ ¦α ! β § § . By induction hypothesis there is
an interpolant θ for Γ kã¦Θ ¦α : β § §n~~~ γ with respect to Θ ¦α : β § , and it also is
an interpolant for Γ kã¦Θ ¦α ! β § §�~~~ γ with respect to Θ ¦α ! β § . In both cases we
have found an interpolant.

Now we turn to the case (I– !).
(3.240)

Γ ~ ~ ~ α ∆ ~ ~ ~ β
Γ : ∆ ~ ~ ~ α ! β

There are now three cases for Z. (1) Γ
,

Γ kl¦ Z § . By induction hypothesis there
is an interpolant θ ¹ for Γ k ¦ Z §�~~~ α with respect to Z. This is the desired inter-
polant. (2) ∆

,
∆ kã¦ Z § . Analogous to (1). (3) Z

,
Γ : ∆. By hypothesis there is

an interpolant θ ¹ for Γ ~ ~ ~ α with respect to Γ and an interpolant θr for ∆ ~ ~ ~ β
with respect to ∆. Put θ :

,
θ ¹ ! θr. This is the desired interpolant. For

(3.241)
Γ ~ ~ ~ θ ¹ ∆ ~ ~ ~ θr

Γ : ∆ ~ ~ ~ θ ¹ ! θr

θ ¹ ~ ~ ~ α θr ~ ~ ~ β
θ ¹ : θr ~ ~ ~ α ! β
θ ¹ ! θr ~ ~ ~ α ! β

In addition it is calculated that σc 7 θ 83ç min 5 σc 7 α ! β 8P� σc 7 Γ : ∆ 8Z6 .
This concludes a proof of interpolation for
 Ü . Finally we must study Ü .

The rules (ass1), (ass2) pose a technical problem since we cannot proceed
by induction on the derivation. For the applications of these rules change
the structure. Hence we change to another system of sequents and turn —
as discussed above — to sequents of the form Γ ~ ~ ~ α where Γ is a sequence
of categories. In this case the rules (ass1) and (ass2) must be eliminated.
However, in the proof we must make more distinctions in cases. The rules

262 Categorial Grammar and Formal Semantics

(I– v) and (I– è) are still unproblematic. So we look at a more complicated
case, namely an application of the rule (v –I).

(3.242)
Γ ~ ~ ~ β ∆ ¦α §�~~~ γ

∆ ¦α ¾ β � Γ §�~~~ γ

We can segment the structure ∆ ¦α ¾ β � Γ § into ∆ k�� α ¾ β � Γ � ∆ k k . Let a subse-
quence Z be distinguished in ∆ k � α ¾ β � Γ � ∆ k k . The case where Z is fully con-
tained in ∆ k is relatively easy; likewise the case where Z is fully contained in
∆ k k . The following cases remain. (1) Z

,
∆1 � α ¾ β � Γ1, where ∆ k , ∆0 � ∆1 for

some ∆0, and Γ
,

Γ1 � Γ2 for some Γ2. Even if Z is not empty ∆1 as well as Γ1
may be empty. Assume Γ1 �, ε . In this case θ ¹ an interpolant for Γ ~ ~ ~ β with
respect to Γ2 and θr an interpolant of ∆ ¦α §�~~~ γ with respect to ∆1 � α . (Here it
becomes clear why we need not assume ∆1 �, ε .) The following sequents are
therefore derivable.

(3.243)
Γ2 ~ ~ ~ θ ¹ Γ1 � θ ¹ ~ ~ ~ β

∆1 � α ~ ~ ~ θr ∆0 � θr � ∆ k k ~ ~ ~ γ

Now put θ :
,

θr ¾ θ ¹ . Then we have on the one hand

(3.244)
∆1 � α ~ ~ ~ θr Γ1 � θ ¹ ~ ~ ~ β

∆1 � α ¾ β � Γ1 � θ ¹ ~ ~ ~ θr

∆1 � α ¾ β � Γ1 ~ ~ ~ θr ¾ θ ¹
and on the other

(3.245)
Γ2 ~ ~ ~ θ ¹ ∆0 � θr � ∆ k k�~~ ~ γ

∆0 � θr ¾ θ ¹ � Γ2 � ∆ k k'~~ ~ γ

The conditions on the numbers of occurrences of symbols are easy to check.
(2) As Case (1), but Γ1 is empty. Let then θ ¹ be an interpolant for Γ ~ ~ ~ β with
respect to Γ and θr an interpolant for ∆0 � ∆1 � α � ∆ k k ~ ~ ~ γ with respect to ∆1 � α .
Then put θ :

,
θr ¾ θ ¹ . θ is an interpolant for the end sequent with respect to

Z.

(3.246)
θ ¹ ~ ~ ~ β ∆1 � α ~ ~ ~ θr

∆1 � α ¾ β � θ ¹ ~ ~ ~ θr

∆1 � α ¾ β ~ ~ ~ θr ¾ θ ¹ Γ ~ ~ ~ θ ¹ ∆0 � θr � ∆ k k'~~~ γ
∆0 � θr ¾ θ ¹ � Γ � ∆ k k ~ ~ ~ γ

(3) Z does not contain the marked occurrence of α ¾ β . In this case Z
,

Γ2 � ∆1
for some final part Γ2 of Γ and an initial part ∆1 of ∆ k k . Γ2 as well as ∆1 may

Pentus’ Theorem 263

be assumed to be nonempty, since otherwise we have a case that has already
been discussed. The situation is therefore as follows with Z

,
Γ2 � ∆1.

(3.247)
Γ1 � Γ2 ~ ~ ~ β ∆ kÁ� α � ∆1 � ∆2 ~ ~ ~ γ

∆ k�� α ¾ β � Γ1 � Γ2 � ∆1 � ∆2 ~ ~ ~ γ

Let θ ¹ be an interpolant for Γ1 � Γ2 ~ ~ ~ β with respect to Γ2 and θr an interpolant
for ∆ k � α � ∆1 � ∆2 ~ ~ ~ γ with respect to ∆1. Then the following are derivable

(3.248)
Γ2 ~ ~ ~ θ ¹ Γ1 � θ ¹ ~ ~ ~ β
∆1 ~ ~ ~ θr ∆ k � α � θr � ∆2 ~ ~ ~ γ

Now we choose θ :
,

θ ¹ ! θr. Then we have both

(3.249)
Γ2 ~ ~ ~ θ ¹ ∆1 ~ ~ ~ θr

Γ2 � ∆1 ~ ~ ~ θ ¹ ! θr

and

(3.250)
Γ1 � θ ¹ ~ ~ ~ β ∆ k � α � θr � ∆2 ~ ~ ~ γ

∆ k�� α ¾ β � Γ1 � θ ¹ � θr � ∆2 ~ ~ ~ γ
∆ kÁ� α ¾ β � Γ1 � θ ¹ ! θr � ∆2 ~ ~ ~ γ

In this case as well the conditions on numbers of occurrences are easily
checked. This exhausts all cases. Notice that we have used ! to construct
the interpolant. In the case of the rules (I– !) and (! –I) there are no surprises
with respect to Õç² .

Theorem 3.81 (Roorda) Ü has interpolation. <
Now we shall move on to show that Ü is context free. To this end we introduce
a series of weak calculi of which we shall show that together they are not
weaker than Ü . These calculi are called Ü m, m b ω . The axioms of Ü m are
sequents Γ ~ ~ ~ α such that the following holds.

À Γ
,

β1 � β2 or Γ
,

β1 for certain categories β1 and β2.

Á Γ ~ ~ ~ α is derivable in Ü .

Â �α �`�P� β1 �`�P� β2 �4b m.

(cut) is the only rule of inference. The main work is in the proof of the fol-
lowing theorem.

264 Categorial Grammar and Formal Semantics

Theorem 3.82 (Pentus) Let Γ
,

β0 � β1 �=�=�=�Z� βn © 1. Γ ~ ~ ~ α is derivable in Ü m iff

À � βi �4b m for all i b m,

Á �α �1b m and

Â Γ ~ ~ ~ α is derivable in Ü .

We shall show first how to get from this fact that Ü –grammars are context
free. We weaken the calculi still further. The calculus Ü��m has the axioms ofÜ m but (cut) may be applied only if the left hand premiss is an axiom.

Lemma 3.83 For all sequents Γ ~ ~ ~ α the following holds: Γ ~ ~ ~ α is derivable
in Ü��m iff Γ ~ ~ ~ α is derivable in Ü m.

The proof is relatively easy and left as an exercise.

Theorem 3.84 The languages accepted by Ü –grammars are context free.

Proof. Let � , � } � C � ζ � A ��Ü>� be given. Let m be larger than the maximum
of all �α � , α � ζ 7 a 8 , a � A. Since A as well as ζ 7 a 8 are finite, m exists. For
simplicity we shall assume that C

, � � π 7 α 8 : α � ζ 7 a 8P� a � A � . Now we put
N :
, 5 α : �α �1b m 6 . G :

, � } � N � A � R � , where

R :
, 5 α � a : a � ζ 7 a 8Z6sì5 α � β : α � β � N ���� β ~ ~ ~ α 6sì5 α � β0β1 : α � β0 � β1 � N � �� β0 � β1 ~ ~ ~ α 6(3.251)

Now let ��~�Ex, Ex , x0 9 x1 9�Â=Â=Â xn © 1. Then for all i b n there exist an αi � ζ 7 xi 8
such that Γ ~ ~ ~ } is derivable in Ü , where Γ :

,
α0 � α1 �=�=�=�Z� αn © 1. By Theo-

rem 3.82 and Lemma 3.83 Γ ~ ~ ~ } is also derivable in Ü��m . Induction over
the length of the derivation yields that ~ G α0 9 α1 9 Â=Â=Â 9 αn © 1 and hence also~ G Ex. Now let conversely ~ G Ex. We extend the category assignment ζ to
ζ � : A s N � Cat ì é ¤ é ��7 C 8 by putting ζ � 7 α 8 :

, 5 α 6 while ζ � £ A
,

ζ . By
induction over the length of the derivation of Eα one shows that from ~ G Eα we
get � ~ Eα . <

Now on to the proof of Theorem 3.82.

Definition 3.85 A category α is called thin if σc 7 α 8�ç 1 for all c � C. A
sequent Γ ~ ~ ~ α is called thin if the following holds.

Pentus’ Theorem 265

À Γ ~ ~ ~ α is derivable in Ü .

Á All categories occurring in Γ as well as α are thin.

Â σc 7 Γ � α 8@ç 2 for all c � C.

For a thin category α we always have �α � , � π 7 α 8j� . We remark that for a thin
sequent only σc 7 Γ � α 8 , 0 or

,
2 can occur since σc 7 Γ � α 8 always is an even

number in a derivable sequent (see Exercise 127). Let us look at a thin sequent
Γ ¦∆ §.~~ ~ α and an interpolant θ of it with respect to ∆. Then σc 7 θ 8�ç σc 7 ∆ 8�ç 1.
For either c �� π 7 ∆ 8 , and then c �� π 7 θ 8 , whence σc 7 θ 8 , 0. Or c � π 7 ∆ 8 ; but
then c � π 7 Γ � α 8 , and so by assumption σc 7 ∆ 8 , 1.

(3.252) σc 7 ∆ � θ 83ç σc 7 ∆ 8(g σc 7 θ 83ç σc 7 Γ ¦ ∆ §�� α 8�g σc 7 θ 8@ç 2 g 1

Now σc 7 ∆ 8(g σc 7 θ 8 is an even number hence either 0 or 2. Hence ∆ ~ ~ ~ θ also
is thin. Likewise it is shown that Γ ¦ θ §�~ ~~ α is thin.

Lemma 3.86 Let Γ � Θ � ∆ ~ ~ ~ α be a sequent and c � d � C two distinct elemen-
tary categories. Further, let c � π 7 Γ 8	t π 7 ∆ 8 as well as d � π 7 Θ 8�t π 7 α 8 .
Then Γ � Θ � ∆ ~ ~ ~ α is not thin.

Proof. Let ¹ G 7 C 8 be the free group generated by the elementary categories.
The elements of this group are finite products of the form cs0

0
Â cs2

2
Â�Â=Â=ÂjÂ csn Ü 1

n © 1
,

where ci �, ci � 1 for i b n v 1 and si ��¿�v�5 0 6 . (If n
,

0 then the empty product
denotes the group unit, 1.) For if c0

,
c1 the term cs0

0
Â cs1

1
can be shortened

to cs0 � s1
0

. Look at the group valued interpretation γ sending every element of
C to itself. If the sequent was thin we would have γ 7 Γ 8	Â γ 7 Θ 8	Â γ 7 ∆ 8 , γ 7 α 8 .
By hypothesis the left hand side is of the form w Â c � 1 Â x Â d � 1 Â y Â c � 1 Â z for
certain products w� x � y � z. The right hand side equals t Â d � 1 Â u for certain t � u.
Furthermore, we know that terms which stand for w, x, y, z as well as t and u
cannot contain c or d if maximally reduced. But then equality cannot hold. <
Lemma 3.87 Let α0 � α1 �=�=�=�i� αn ~ ~ ~ αn � 1 be thin, n � 0. Then there is a k with
0 b k b n g 1 and π 7 αk 8Y} π 7 αk © 1 8�s π 7 αk � 1 8 .
Proof. The proof is by induction on n. We start with n

,
1. Here the sequent

has the form α0 � α1 ~ ~ ~ α2. Let c � π 7 α1 8 . Then σc 7 α1 8 , 1 since the sequent
is thin. And since σc 7 α0 � α1 � α2 8 , 2, we have σc 7 α0 � α2 8 , 1, whence c �
π 7 α0 8
s π 7 α2 8 . This finishes the case n

,
1. Now let n � 1 and the claim

proved for all m b n. Case a. π 7 α0 � α1 �=�=�=�Z� αn © 2 8�t π 7 αn 8 , w . Then we

266 Categorial Grammar and Formal Semantics

choose k :
,

n. For if c � π 7 αn 8 then σc 7 α0 �=�=�=�i� αn © 2 8 , 0, and so we have
σc 7 αn © 1 8	g σc 7 αn � 1 8 , 1. Hence we get c � π 7 αn © 1 8�s π 7 αn � 1 8 . Case b.
π 7 α0 � α1 �=�=�=�i� αn © 2 8
t π 7 αn 8 �, w . Then there exists an elementary category
c with c � π 7 α0 �=�=�=�i� αn © 2 8 and c � π 7 αn 8 . Put Γ :

,
α0 � α1 �=�=�=�i� αn © 1, ∆ :

,
αn. Let θ be an interpolant for Γ � ∆ ~ ~ ~ αn � 1 with respect to Γ. Then Γ ~ ~ ~ θ
and θ � αn ~ ~ ~ αn � 1 are thin. By induction hypothesis there exists a k such that
π 7 αk 8+} π 7 αk © 1 8>s π 7 αk � 1 8 , if k b n v 1, or π 7 αk 8+} π 7 αk © 1 8>s π 7 θ 8 in case
k
,

n v 1. If k b n v 1 then k is the desired number for the main sequent. Let
now k

,
n v 1. Then

(3.253) π 7 αn © 1 8@} π 7 αn © 2 8�s π 7 θ 83} π 7 αn © 2 8�s π 7 αn 8�s π 7 αn � 1 8
We show that k in this case too is the desired number for the main sequent. Let
π 7 αn © 1 8>t π 7 αn � 1 8;�, w , say d � π 7 αn © 1 8>t π 7 αn � 1 8 . Then surely d �� π 7 αn 8 ,
so d �, c. Therefore the sequent is not thin, by Lemma 3.86. Hence we have
π 7 αn © 1 8(t π 7 αn � 1 8 , w , and so π 7 αn © 1 8Y} π 7 αn © 2 8�s π 7 αn 8 . <
Lemma 3.88 Let Γ ~ ~ ~ γ be an Ü –derivable thin sequent in which all cate-
gories have length b m. Then Γ ~ ~ ~ γ is already derivable in Ü m.

Proof. Let Γ
,

α0 � α1 �=�=�=�i� αn © 1; put αn :
,

γ . If n ç 2 then Γ ~ ~ ~ γ already is
an axiom of Ü m. So, let n � 2. By the previous lemma there is a k such that
π 7 αk 8;} π 7 αk © 1 8�s π 7 αk � 1 8 . Case 1. k b n. Case 1a. � π 7 αk © 1 8	t π 7 αk 8j��f� π 7 αk � 1 8�t π 7 αk 8j� . Put Ξ :

,
α0 � α1 �=�=�=�i� αk © 2, Θ :

,
αk � 1 �=�=�=�i� αn © 1, and ∆ :

,
αk © 1 � αk . Let θ be an interpolant for Ξ � ∆ � Θ ~ ~ ~ αn with respect to ∆. Then the
sequent

(3.254) α0 �=�=�=�i� αk © 2 � θ � αk � 1 �=�=�=�i� αn © 1 ~ ~ ~ αn

is thin. Furthermore

π 7 θ 83}�7 π 7 αk © 1 8(s π 7 αk 8=8(t π 7 Ξ � Θ � αn 8(3.255) , 7 π 7 αk © 1 8(t π 7 Ξ � Θ � αn 8=8�s¸7 π 7 αk 8(t π 7 Ξ � Θ � αn 8=8P�
Let c � π 7 αk © 1 8 . Then σc 7 αk © 1 8 , 1 and σc 7 Ξ � αk © 1 � αk � Θ � αn 8 , 2, from
which σc 7 Ξ � αk � Θ � αn 8 , 1. Hence either σc 7 αk 8 , 1 or σc 7 Ξ � Θ � αn 8 , 1.
Since c was arbitrary we have

(3.256) π 7 αk 8�t π 7 Ξ � Θ � αn 8 , π 7 αk © 1 8	v 7 π 7 αk © 1 8(t π 7 αk 8=8

Pentus’ Theorem 267

By choice of k, π 7 αk 8�t π 7 Ξ � Θ � αn 8 , π 7 αk 8�t π 7 αk � 1 8 . Hence

(3.257)
π 7 θ 8 , 7 π 7 αk © 1 8(t π 7 Ξ � Θ � αn 8=8�7 π 7 αk 8(t π 7 Ξ � Θ � αn 8=8}¬7 π 7 αk 8
v 7 π 7 αk © 1 8�t π 7 αk 8=8�s¸7 π 7 αk 8�t π 7 αk � 1 8=8P�

So � π 7 θ 8j� , � π 7 αk © 1 8j��g � π 7 αk © 1 8(t π 7 αk 8j�$gÅ� π 7 αk 8�t π 7 αk � 1 8j�ç�� π 7 αk © 1 8j�b m

(3.258)

(Note that � π 7 αk © 1 8j� , �αk � .) Therefore also � θ �½b m and so αk © 1 � αk ~ ~ ~ θ is an
axiom of Ü m. Hence, by induction hypothesis Ξ � θ � Θ ~ ~ ~ αn is derivable in Ü m.
A single application from both sequents yields the main sequent. It is there-
fore derivable in Ü m. Case 1b. � π 7 αk © 1 8�t π 7 αk 8j��b�� π 7 αk 8�t π 7 αl � 1 8j� . Here
one puts Ξ :

,
α0 �=�=�=�Z� αk © 1, ∆ :

,
αk � αk � 1, Θ :

,
αk � 1 �=�=�=�i� αn © 1 and proceeds

as in Case 1a. Case 2. k
,

n v 1. So, π 7 αn © 1 8»} π 7 αn © 2 84s π 7 γ 8 . Also here we
distinguish to cases. Case 2a. � π 7 αn © 2 84t π 7 αn © 1 8j��fÅ� π 7 αn © 1 84t π 7 αn 8j� . This
case is similar to Case 1a. Case 2b. � π 7 αn © 2 81t π 7 αn © 1 8j��b � π 7 αn © 1 81t π 7 αn 8j� .
Here put ∆ :

,
α0 �=�=�=�i� αn © 2, Θ :

,
αn © 1. Let θ be an interpolant for ∆ � Θ ~ ~ ~ αn

with respect to ∆. Then ∆ ~ ~ ~ θ as well as θ � αn © 1 ~ ~ ~ αn are thin. Further we
have

π 7 θ 83} π 7 ∆ 8(t¸7 π 7 αn © 1 8(s π 7 αn 8=8, 7 π 7 ∆ 8�t π 7 αn © 1 8=8(s¸7 π 7 ∆ 8(t π 7 αn 8=8, 7 π 7 αn © 2 8�t π 7 αn © 1 8=8(s¸7 π 7 αn 8	v 7 π 7 αn © 1 8�t π 7 αn 8=8=8P�(3.259)

As in Case 1a we conclude that� π 7 θ 8j� , � π 7 αn © 2 8�t π 7 αn © 1 8j��g � π 7 αn 8j�ivÃ� π 7 αn © 1 8�t π 7 αn 8j�b�� π 7 αn 8j�b m

(3.260)

Hence θ � αn © 1 ~ ~ ~ αn is an axiom of Ü m. By induction hypothesis, ∆ ~ ~ ~ θ is
derivable in Ü m. A single application of (cut) yields the main sequent, which
is therefore derivable in Ü m. <
Finally we proceed to the proof of Theorem 3.82. Let � γi �>b m for all i b n,
and �α ��b m. Finally, let γ0 � γ1 �=�=�=�i� γm © 1 ~ ~ ~ α be derivable in Ü . We choose
a derivation of this sequent. We may assume here that the axioms are only

268 Categorial Grammar and Formal Semantics

sequents of the form c ~ ~ ~ c. For every occurrence of an axiom c ~ ~ ~ c we choose
a new elementary category ;c and replace this occurrence of c ~ ~ ~ c by ;c ~ ~ ~«;c.
We extend this to the entire derivation and so we get a new derivation of a
sequent ;γ0 � ;γ1 �=�=�=�i� ;γn © 1 ~ ~ ~ ;α . We get σc 7 ;α 8>g ∑i n σc 7 ;γi 8 , 2, if c occurs at all
in the sequent. Nevertheless, the sequent need not be thin, since it may contain
categories which are not thin. However, if σc 7 δ 8 , 2 for some δ and some c,
then c is not contained in any other category. We exploit this as follows. By
successively applying interpolation we get the following sequents, which are
all derivable in Ü .

(3.261)

;γ0 ~ ~ ~ θ0 θ0 � ;γ1 � ;γ2 �=�=�=�Z� ;γn © 1 ~ ~ ~ ;α;γ1 ~ ~ ~ θ1 θ0 � θ1 � ;γ2 �=�=�=�Z� ;γn © 1 ~ ~ ~ ;α
...

...;γn © 1 ~ ~ ~ θn © 1 θ0 � θ1 �=�=�=�Z� θn © 1 ~ ~ ~ ;α
θ0 � θ1 �=�=�=�i� θn © 1 ~ ~ ~ γ γ ~ ~ ~ ;α

It is not hard to show that σc 7 θi 8yç 1 for all c and all i b n. So the sequent
θ0 � θ1 �=�=�=�i� θn © 1 ~ ~ ~ γ is thin. Certainly � γ ��çÑ� ;α � , �α ��b m as well as � θi ��ç� ;αi � , �αi �4b m for all i b n. By Lemma 3.88 the sequent θ0 � θ1 �=�=�=�Z� θn © 1 ~ ~ ~ γ
is derivable in Ü m. The sequents ;γi ~ ~ ~ θi, i b n, as well as γ ~ ~ ~ ;αn are axioms ofÜ m. Hence ;γ0 � ;γ0 �=�=�=�i� ;γn © 1 ~ ~ ~ ;α is derivable in Ü m. We undo the replacement in
the derivation. This can in fact be done by applying a homomorphism (substi-
tution) t which replaces ;c by c. So, we get a derivation of γ0 � γ1 �=�=�=�i� γn © 1 ~ ~ ~ γn
in Ü m. This concludes the proof of Theorem 3.82.

We remark that Pentus has also shown in (Pentus, 1995) that Ü is complete
with respect to so–called L–frames.

Definition 3.89 An L–frame is a free semigroup of the form � A � �=Â`� . A valu-
ation is a function v : C � ℘7 A � 8 . v is extended to categories and sequents
as follows:

(3.262)

v 7½T α ! β W48 :
,

v 7 α 8�Â v 7 β 8
v 7½T α v β W48 :

,
v 7 α 8 ¾=¾ v 7 β 8

v 7½T β è α W48 :
,

v 7 β 8=u=u v 7 α 8
v 7 Γ : ∆ 8 :

,
v 7 Γ 8�Â v 7 ∆ 8

Γ ~ ~ ~ α is true under v if v 7 Γ 8;} v 7 α 8 . It is valid in an L–frame if it is true
under all valuations.

Montague Semantics I 269

Theorem 3.90 (Pentus) �� Γ ~ ~ ~ α iff Γ ~ ~ ~ α is valid in all L–frames.

A survey of this subject area can be found in (Buszkowski, 1997).

Exercise 126. Prove Theorem 3.79.

Exercise 127. Let Γ ~ ~ ~ α be derivable in Ü , c � C. Show that σc 7 Γ 8�g σc 7 α 8
is an even number.

Exercise 128. Prove Lemma 3.83.

Exercise 129. Show that if �� Γ ~ ~ ~ α , Γ ~ ~ ~ α is valid in all L–frames.

8. Montague Semantics I

Until the beginning of the 1970s semantics of natural languages was consid-
ered a hopeless affair. Natural language was thought of as being completely
illogical so that no formal theory of semantics for natural languages could
ever be given. By contrast, Montague believed that natural languages can be
analysed in the same way as formal languages. Even if this was too optimistic
(and it is quite certain that Montague did deliberately overstate his case) there
is enough evidence that natural languages are quite well–behaved. To prove
his claim, Montague considered a small fragment of English, for whose se-
mantics he produced a formal account. In this section we shall give a glimpse
of the theory shaped by Montague. Before we can start, we have to talk about
predicate logics and its models. For Montague has actually built his seman-
tics somewhat differently than we have done so far. In place of defining the
interpretation in a model directly, he defined a translation into λ–calculus
over predicate logic, whose interpretation on the other hand is fixed by some
general conventions.

A language of first–order predicate logic with identity has the following
symbols:

À a set R of relation symbols, a disjoint set F of function symbols,

Á a countably infinite set V :
, 5 $ i : i � ω 6 of variables,

Â the equality symbol (,

Ã the booleans U , S , � , � ,

Ä the quantifiers � , � .

270 Categorial Grammar and Formal Semantics

As outlined in Section 1.1, the language is defined by choosing a signature� Ω � Ξ � . Then r is a Ξ 7 r 8 –ary relation symbol and f a Ω 7 f 8 –ary function sym-
bol. Equality is always a binary relation symbol (so, Ξ 7_(�8 , 2). We define the
set of terms as usual. Next we define formulae (see also Section 2.7).

À If ti, i b Ξ 7 r 8 , are terms then r I t0 �=�=�=�i� tΞ ¯ r ° © 1 J is a formula.

Á If t0 and t1 are terms then t0 � t1 is a formula.

Â If ϕ and ψ are formulae, so are TZU ϕ W , T ϕ S ψ W , T ϕ � ψ W and T ϕ � ψ W .
Ã If ϕ is a formula and x � V , then T�� x W ϕ and T�� x W ϕ are formulae.

A � Ω � Ξ � –structure is a triple � M ��5 f ì : f � F 6>��5 r ì : r � R 61� such that
f ì : MΩ ¯ f ° � M for every f � F and r ì } MΞ ¯ r ° for every r � R. Now let
β : V � M. Then we define �løÀ� β ��Ð ϕ for a formula by induction. To begin,
we associate with every t its value ¦ t § β under β .¦ x § β :

,
β 7 x 8¦ f 7 t0 �=�=�=�i� tΩ ¯ f ° © 1 8�§ β :

,
f ì 7=¦ t0 § β �=�=�=�P�Z¦ tΩ ¯ f ° © 1 § β 8(3.263)

Now we move on to formulae. (In this definition, γ Ê x β , for x � V , if β 7 y 8;�,
γ 7 y 8 only if y

,
x.)�løÀ� β �+ÐÃT s0 � s1 W : åæ¦ s0 § β , ¦ s1 § β�løÀ� β ��Ð r TPEs W : åæ�=¦ si § : i b Ξ 7 r 8=�3� r ì�løÀ� β ��ÐÃTPU ϕ W : åæ�løÀ� β ��µ ϕ�løÀ� β �»ÐÃT ϕ S ψ W : åæ�løÀ� β �»Ð ϕ and �løÀ� β ��Ð ψ�løÀ� β �»ÐÃT ϕ � ψ W : åæ�løÀ� β �»Ð ϕ or �løÀ� β �»Ð ψ�løÀ� β �»ÐÃT ϕ � ψ W : åæ�løÀ� β ��µ ϕ or �løÀ� β �»Ð ψ�løÀ� β �»ÐÃT�� x W ϕ : å there is β k Ê x β : �løÀ� β k ��Ð ϕ�løÀ� β �»ÐÃT[� x W ϕ : å for all β k Ê x β : �løÀ� β k ��Ð ϕ

(3.264)

In this way formulae are interpreted in models.

Definition 3.91 Let ∆ be a set of formulae, and ϕ a formula. Then ∆ Ð ϕ if
for all models �løÀ� β � : if �løÀ� β �»Ð δ for every δ � ∆, then also �løÀ� β ��Ð ϕ .

Montague Semantics I 271

For example, the arithmetical terms in L , G and � with the relation � can
be interpreted in the structure M where L O , g and � O , Â are the usual
operations, � O , 0 and í O , b . Then for the valuation β with β 7�
 � 8 , 7 we
have:

(3.265) �2M � β �yÐÃT[�g
 R W�T��`
 V W�T(T�
 R �%
 V W �
��+�3T�
 R � �!��
 V � �&W�W
This formula says that β 7�
 � 8 is a prime number. For a number w is a prime
number iff for all numbers u and v: if u Â v , w then u

,
1 or v

,
1. We compare

this with (3.265). (3.265) holds if for all β k different only on
 R from β

(3.266) �2M � β k �»Ð T[�`
 V W.T�T�
 R �

 V W �
��#�@T�
 R � �S��
 V � �(W�W
This in turn is the case if for all β k k different only on
 V from β k
(3.267) �2M � β k k �»ÐÃT�T�
 R �%
 V W �
��#�@T�
 R � �!��
 V � �(W(W
This means: if u :

,
β k kã7�
�R48 , v :

,
β k kl7�
�Vï8 and w :

,
β k kl7�
 � 8 and if we have

w
,

u Â v, then u
,

1 or v
,

1. This holds for all u and v. Since on the other
hand w

,
β 7�
���8 we have (3.265) iff β 7�
��48 , that is to say 7, is a prime number.

The reader may convince himself that for every β

(3.268) �2M � β �yÐÃT[�g
 R W�T���
 V W�T��`
��>W�T��`
�¡(WT�
 R �
 V SYT�T�
 � �

 ¡ 8 �
 V �3T�
 � � �!��
 ¡ � �(W(W�W
This says that for every number there exists a prime number larger than it.

For later use we introduce a type e. This is the type of terms. e is real-
ized by M. Before we can start designing a semantics for natural language we
shall have to eliminate the relations from predicate logic. To this end we shall
introduce a new basic type, t, which is the type of truth values. It is realized
by the set 5 0 � 1 6 . An n–place relation r is now replaced by the characteris-
tic function r � from n–tuples of objects to truth values, which is defined as
follows.

(3.269) r � 7 x0 � x1 �=�=�=�i� xΞ ¯ r ° © 1 8 , 1 : å r 7 x0 �=�=�=�Z� xΞ ¯ r ° © 1 8
This allows us to use λ–calculus for handling the argument places of r. For
example, from the binary relation r we can define the following functions r1
and r2.

r1 :
,

λxe � λye � r � 7 xe � ye 8(3.270)

r2 :
,

λxe � λye � r � 7 ye � xe 8(3.271)

272 Categorial Grammar and Formal Semantics

So, we can define functions that either take the first argument of r � first, or
one which takes the first argument of r � second.

Further, we shall also interpret U , S , � and � by the standard set–theoretic
functions v , t , s and ¯ , respectively:

(3.272)
v

0 1
1 0

t 0 1
0 0 0
1 0 1

s 0 1
0 0 1
1 1 1

¯ 0 1
0 1 1
1 0 1

Syntactically speaking U has category t ¾ t and S , � and � have category7 t u t 8 ¾ t. Finally, also the quantifiers must be turned into functions. To this end
we introduce the function symbols � and � of type 7=7 e � t 8»� t 8 . Moreover,�.7 X 8 is true iff for all x X 7 x 8 is true, and �	7 X 8 is true iff for some x X 7 x 8
is true. T[� x W ϕ is now replaced by �@T�Ó x � ϕ W , and T�� x W ϕ by �+T�Ó x � ϕ W . So,
ignoring types for the moment, we have the equations� , Ó�
 R �4Ó�
 V ���3T�Ó�
 R ��
 V W(3.273) � , Ó�
 R �4Ó�
 V ���YT�Ó�
 R ��
 V W(3.274)

We shall however continue to write ~ x � ϕ and � x � ϕ . This definition can in
fact be used to define quantification for all functions. This is the core idea
behind the language of simple type theory (STT) according to Church (1940).
Church assumes that the set of basic categories contains at least t. The symbolU has the type t � t, while the symbols S , � and � have type t �þ7 t � t 8 .
(Church actually works only with negation and conjunction as basic symbols,
but this is just a matter of convenience.) To get the power of predicate logic
we assume for each type α a symbol � α of type 7 α � t 8+� t and a symbol� α of type α � 7 α � t 8 . Put Ú :

,
Typ Ä 7 B 8 .

Definition 3.92 A Henkin frame is a structure

(3.275) i , ��5 Dα : α �ìÚ	6>��!(�ivØ��t���5 πα : α �ÙÚ	6>��5 ια : α �ÙÚ	61�
such that the following holds.

À ��5 Dα : α �«Ú
6>��!�� is a functionally complete typed applicative structure.

Á Dt
, 5 0 � 1 6 , v : Dt � Dt and t : Dt � 7 Dt � Dt 8 are complement and

intersection, respectively.

Â For every a � Dα Ä t πα ! a
,

1 iff for every b � Dα : b ! a
,

1.

Montague Semantics I 273

Ã For every a � Dα Ä t , if there is a b � Dα such that a ! b
,

1 then also
a !;7 ια ! a 8 , 1.

A valuation into a Henkin frame is a function β such that for every variable x
of type α β 7 x 8y� Dα . For every N of type t, �Li�� β �»Ð N iff ¦N § β , 1. Further,
for a set Γ of expressions of type t and every N of type t, Γ Ð N if for every
Henkin frame and every valuation β : if �Li�� β �	Ð M for all M � Γ then �Li�� β �	Ð
N.

πα is the interpretation of � α and ια the interpretation of � α . So, πα is
the device discussed above that allows to define the universal quantifier for
functions of type α � t. ια on the other hand is a kind of choice or ‘witness’
function. If a is a function from objects of type α into truth values then ι α ! a
is an object of type α , and, moreover, if a is at all true on some b of type α ,
then it is true on ια ! a. In Section 4.4 we shall deliver an axiomatization of
STT and show that the axiomatization is complete with respect to these mod-
els. The reason for explaining about STT is that every semantics or calculus
that will be introduced in the sequel can easily be interpreted into STT.

We now turn to Montague Semantics. To begin we choose a very small
base of words.

(3.276) 5 /
04%	2 � /�D�"�D># �)�2(D(D'&�) �)4D�D) 6
The type of (the meaning of)

/�04%�2
and

/�D�"�D>#
is e, the type of

)�2(D�D.&�)
is

e � t, the type of
)�D(D)

e � 7 e � t 8 . This means: names are interpreted
by individuals, intransitive verbs by unary relations, and transitive verbs by
binary relations. The (finite) verb

)>2(D(D'&.)
is interpreted by the relation hj_ aja4pïh k

and
)4D�D
)

by the relation hiaja k . Because of our convention a transitive verb
denotes a function (!) of type e ��7 e � t 8 . So the semantics of these verbs is)>2&D�D'&.) �� λxe �nhj_ aja4p k 7 xe 8(3.277))�D�D
) �� λxe � λye �nhiaja k 7 ye � xe 8(3.278)

We already note here that the variables are unnecessary. After we have seen
how the predicate logical formulae can be massaged into typed λ–expressions,
we might as well forget this history and write hj_ aja4p k in place of the function
λxe �nhj_ aja4p k 7 xe 8 and hiaja½k in place of λxe � λye �nhiajajkã7 ye � xe 8 . This has the additional
advantage that we need not mention the variables at all (which is a moot point,
as we have seen above). We continue in this section to use the somewhat more
longwinded notation, however. We agree further that the value of

/
04%	2
shall

274 Categorial Grammar and Formal Semantics

be the constant p1q(r(_ k and the value of
/�D�"�D&#

the constant p>a�É�a.JÁk . Here are
finally our 0–ary modes.

(3.279)

� /�04%	2 � e � p1q(r(_ k �� /�D�"�D&# � e � p>a�É�a.J k ��)�2(D(D'&�) � e u t � λxe �nhj_ aja4p k 7 xe 8=��)4D�D
) � 7 e u t 8 ¾ e � λxe � λye �nhiaja½kl7 ye � xe 8=�
The sentences

/�D�"�D&#À)�2(D(D'&�)
or
/�D�"�D&#À)4D�D
) /�D�"�D&#

are grammatical, and
their meaning is hj_ aja4p k 7$p4q(r&_ k 8 and hiaja�kÈ7$p>a�É$a.J�kÁ�=p>a�É�a.J k 8 .

The syntactic categories possess an equivalent in syntactic terminology. e
for example is the category of proper names. The category e u t is the category
of intransitive verbs and the category 7 e u t 8 ¾ e is the category of transitive
verbs.

This minilanguage can be extended. For example, we can introduce the
word

' C " by means of the following constant mode.

(3.280) � ' C " �Z7 e u t 8=u�7 e u t 8P� λee Ä t � λxe � ¶ xe Ä t 7 xe 8=�
The reader is asked to verify that now

)�2(D�D.&�) ' C " is an intransitive verb,
whose meaning is the complement of the meaning of

)>2&D�D.&�)
. So,

/�04%	2)>2&D�D'&.) ' C " is true iff
/�04%	2Ñ)>2(D(D'&.)

is false. This is perhaps not such a
good example, since the negation in English is formed using the auxiliary î C .
To give a better example, we may introduce

01' î by the following mode.

(3.281) � 04' î	�Z7=7 e u t 8=u�7 e u t 8=8 ¾ 7 e u t 8P�
λxe Ä t � λye Ä t � λ ze � xe Ä t 7 ze 8�� ye Ä t 7 ze 8=�

In this way we have a small language which can generate infinitely many
grammatical sentences and which assigns them correct meanings. Of course,
English is by far more complex than this.

The real advance that Montague made was to show that one can treat quan-
tification. Let us take a look at how this can be done. (Actually, what we are
going to outline right now is not Montague’s own solution, since it is not
in line with Categorial Grammar. We will deal with Montague’s approach to
quantification in Chapter 4.) Nouns like F 0'" and B�C %�)�D are not proper names
but semantically speaking unary predicates. For F 0'" does not denote a single
individual but a class of individuals. Hence, following our conventions, the
semantic type of F 0�" and B�C %.)�D is e � t. Syntactically speaking this cor-
responds to either t ¾ e or e u t. Here, no decision is possible, for neither Õ 0�"

Montague Semantics I 275/
01%�2
nor

/
04%	2 F 0'" is a grammatical sentence. Montague did not solve this
problem; he introduced a new category constructor ¾=¾ , which allows to dis-
tinguish a category t ¾=¾ e from t ¾ e (the intransitive verb) even though they are
not distinct in type. Our approach is simpler. We introduce a category n and
stipulate that σ 7 n 8 :

,
e � t. This is an example where the basic categories

are different from the (basic) semantic types. Now we say that the subject
quantifier

D < D&# × has the sentactic category 7 t ¾ 7 e u t 8=8 ¾ n. This means the fol-
lowing. It forms a constituent together with a noun, and that constituent has
the category t ¾ 7 e u t 8 . This therefore is a constituent that needs an intransitive
verb to form a sentence. So we have the following constant mode.

(3.282) � D < D># × �Z7 t ¾ 7 e u t 8=8 ¾ n � λxe Ä t � λye Ä t � ~ xe ��7 xe Ä t 7 xe 8»� ye Ä t 7 xe 8=8=�
Let us give an example.

(3.283)
D < D># × F 0�"À)�D(D) /�D�"�D&#

The syntactic analysis is as follows.

(3.284)

D < D&# × F 0�")4D�D) /�D�"�D>#7 t ¾ 7 e u t 8=8 ¾ n n 7 e u t 8 ¾ e e
t ¾ 7 e u t 8 e u t

t

This induces the following constituent structure.

(3.285) 7=7 D < D># × F 0�" 8@7)�D(D);/�D�"�D&# 8=8
Now we shall have to insert the meanings in place of the words and calculate.
This means converting into normal form. For by convention, a constituent
has the meaning that arises from applying the meaning of one immediate part
to the meaning of the other. That this is now well–defined is checked by the
syntactic analysis. We calculate in several steps.

)�D�D
)É/�D�"�D&#
is a constituent

and its meaning is

(3.286) 7 λxe � λye �nhiaja k 7 ye � xe 8=8�7$p>a�É$a.J k 8 , λye �nhiaja k 7 ye �=p>a�É�a.J k 8
Further,

D < D># × F 0�" is a constituent with the following meaning7 λxe Ä t � λye Ä t ��7�~ xe � xe Ä t 7 xe 8»� ye Ä t 7 xe 8=8=8�7 λxe �DK½q0É k 7 xe 8=8,
λye Ä t � ~ xe ��7=7 λxe �DK½q#É k 7 xe 8=8�7 xe 8�� ye Ä t 7 xe 8=8,
λye Ä t � ~ xe ��7_K½q#É k 7 xe 8�� ye Ä t 7 xe 8=8(3.287)

276 Categorial Grammar and Formal Semantics

Now we combine these two:7 λye Ä t � ~ xe �DK½q#É k 7 xe 8�� ye Ä t 7 xe 8=8�7 λye �nhiaja k 7 ye �=p>a�É�a.J k 8=8, ~ xe ��7_K½q#É k 7 xe 8���7 λye �nhiaja k 7 ye �=p>a�É�a.J k 8=8�7 xe 8=8, ~ xe ��7_K½q#É k 7 xe 8��Óhiaja k 7 xe �=p>a�É$a.J k 8=8(3.288)

This is the desired result. Similarly to
D < D&# × we define

) C1B D :

(3.289) �) C1B D �Z7 t ¾ 7 e u t 8=8 ¾ n � λxe Ä t � λye Ä t �`� xe ��7 xe Ä t 7 xe 8�� ye Ä t 7 xe 8=8=�
If we also want to have quantifiers for direct objects we have to introduce new
modes. � D < D&# × �Z7=7 e u t 8 ¾ 7=7 e u t 8 ¾ e 8=8 ¾ n �

λxe Ä t � λye Ä�¯ e Ä t ° � λye � ~ xe ��7 xe Ä t 7 xe 8�� ye Ä�¯ e Ä t ° 7 xe 8�7 ye 8=8=�(3.290) �) CXB D �Z7=7 e u t 8 ¾ 7=7 e u t 8 ¾ e 8=8 ¾ n �
λxe Ä t � λye Ä�¯ e Ä t ° � λye �`� xe ��7 xe Ä t 7 xe 8�� ye Ä�¯ e Ä t ° 7 xe 8�7 ye 8=8=�(3.291)

For
D < D&# × F 0�" as a direct object is analyzed as a constituent which turns

a transitive verb into an intransitive verb. Hence it must have the category7 e u t 8 ¾ 7=7 e u t 8 ¾ e 8 . From this follows immediately the category assignment forD < D&# × .
Let us look at this using an example.

(3.292)
) C1B D F 0'"À)�D�D
)�D < D&# × B�C %.)�D

The constituent structure is as follows.

(3.293) 7=7) C1B D F 0�" 8y7)4D�D
) 7 D < D&# × B�C %.)�D 8=8=8=8
The meaning of

D < D># × B�C %�)4D is, as is easily checked, the following:

(3.294) λye Ä�¯ e Ä t ° � λye � ~ xe 7���d�rïhia k 7 xe 8»� ye Ä�¯ e Ä t ° 7 xe 8�7 ye 8=8
From this we get for

)�D�D
)�D < D&# × B�C %.)�D
λye � ~ xe 7���d�rïhia k 7 xe 8���7 λxe � λye �nhiaja k 7 ye � xe 8=8�7 xe 8�7 ye 8=8,
λye � ~ xe 7���d�rïhia k 7 xe 8��Óhiaja k 7 ye � xe 8=8(3.295)) CXB D F 0'" is analogous to

D < D># × F 0�" :

(3.296) λye Ä t �`� xe ��7_K½q#É k 7 xe 8(� ye Ä t 7 xe 8=8

Montague Semantics I 277

We combine (3.296) and (3.295).7 λye Ä t �`� xe ��7_K½q#É k 7 xe 8(� ye Ä t 7 xe 8=8=87 λye � ~ xe ��7��]d�rXhia k 7 xe 8��Óhiaja k 7 ye � xe 8=8=8, � xe ��7_K½q#É k 7 xe 8��¸7 λye � ~ xe ��7���d�rïhia k 7 xe 8��Óhiaja k 7 ye � xe 8=8=8�7 xe 8=8, � xe ��7_K½q#É k 7 xe 8��Ø~ ze ��7���d�rïhia k 7 ze 8»�Óhiaja k 7 xe � ze 8=8=8(3.297)

One can see that the calculations require some caution. Sometimes variables
may clash and this calls for the substitution of a variable. This is the case for
example when we insert a term and by doing so create a bound occurrences of
a variable. The λ–calculus is employed to do this work for us. (On the other
hand, if we used plain functions here, this would again be needless.)

Montague used the cancellation interpretation for his calculus, hence the
sequent formulation uses the calculus á . We have seen that this calculus can
also be rendered into a sign grammar, which has two modes, forward appli-
cation (

5 ò
) and backward application (

5 ó
). In syntactic theory, however, the

most popular version of grammar is the Lambek–Calculus. However, the lat-
ter does not lend itself easily to a compositional interpretation. The fault lies
basically in the method of hypothetical assumptions. Let us see why this is
so. An adjective like í ,.4 has category n ¾ n, and its type is 7 e � t 8��Û7 e � t 8 .
(This is not quite true, but good enough for illustration.) This means that it
can modify nouns such as F 0># , but not relational nouns such as

: #n,�D�' î or'	D�,'4 /(í C %�# . Let us assume that the latter have category n ¾ g (where g stands
for the category of a genitive argument). Now, in Natural Deduction style
Lambek–Calculus we can derive a constituent í ,'4?'	D�,'4 /�í C %�# by first feed-
ing it a hypothetical argument and then abstracting over it.

(3.298)

í ,.4 '
D�,.4 /�í C %�#
n ¾ n : >^ Ö k n ¾ g : oXa1^ Ö�\! >d�r�J k g : y

... n : o1a1^ Ö�\! >d�r�J k 7 y 8
n : >^ Ö k 7$o1a1^ Ö�\! >d�r�J k 7 y 8=8

n ¾ g : λy �" >^ Ö k 7$oXa1^ Ö�\! >d�r�J k 7 y 8=8
This allows us, for example, to coordinate í ,.4?'	D�,.4 /(í C %�# and

: #n,�D�' î and
then compose with C : B ,ï'	D . Notice that this proof is not available in á .
There also is a sign based analogue of this. Introduce binary modes 1 ò and1 ó :
(3.299)

1 ò 7=�ÈEx � α � M �P�Z��Ey � γ � xγ �=8 :
, �ÈEx ¾ Ey � α ¾ γ �Z7 λxγ �Mxγ 8=�1 ó 7=�ÈEx � α � M �P�Z��Ey � γ � xγ �=8 :
, �ÈEy u4Ex � γ u α �Z7 λxγ �Mxγ 8=�

278 Categorial Grammar and Formal Semantics

A condition on the application of these modes is that the variable xγ actually
occurs free in the term. Now introduce a new 0–ary mode with exponent c

#
,

which shall be a symbol not in the alphabet.

(3.300) Y α $ i :
, � c

� α � xα é i �
Consider the structure term

(3.301) ø ò í ò&%(' í ò � ê Y() $ RSY() $ R
Here,

6 4
:
, ��í ,'4 � n ¾ n �* &^ Ö k � and 2>í :

,f'	D�,.4 /(í C %�# � n ¾ g �=oXa1^ Ö�\� >d�r%J k � . On con-
dition that it is definite, it has the following unfolding.

(3.302) ��í ,'4 '
D�,'4 /�í C %�# � n ¾ g � λxg é 0 �" >^ Ö k oXa1^ Ö�\� >d�r%J k 7 xg é 0 8=�
These modes play the role of hypothetical arguments in Natural Deduction
style derivations. However, the combined effect of these modes is not ex-
actly the same as in the Lambek–Calculus. The reason is that abstraction
can only be over a variable that is introduced right or left peripherally to
the constituent. However, if we introduce two arguments in succession, we
can abstract over them in any order we please, as the reader may check (see
the exercises). The reason is that c

#
bears no indication of the name of the

variable that it introduces. This can be remedied by introducing instead the
following 0–ary modes.

(3.303)
s

α $ i :
, � c

#
α é i � α � xα é i �

Notice that these empty elements can be seen as the categorial analogon of
traces in Transformational Grammar (see Section 6.5). Now the exponent
reveals the exact identity of the variable and the Lambek–Calculus is ex-
actly mirrorred by these modes. The price we pay is that there are structure
terms whose exponents are not pronounceable: they contain elements that
are strictly speaking not overtly visible. The strings are therefore not surface
strings.

Notes on this section. Already in (Harris, 1963) the idea is defended that
one must sometimes pass through ‘nonexistent’ strings, and TG has made
much use of this. An alternative idea that suggests itself is to use combina-
tors. This route has been taken by Steedman in (1990; 1996). For example,
the addition of the modes

6 ò
and

6 ó
assures us that we can derive the these

constituents as well. Steedman and Jacobson emphasize in their work also

Montague Semantics I 279

that variables can be dispensed with in favour of combinators. See (Jacobson,
1999; Jacobson, 2002) (and references therein) for a defense of variable free
semantics. For a survey of approaches see (Böttner and Thümmel, 2000).

Exercise 130. Write an AB–grammar for predicate logic over a given signa-
ture and a given structure. Hint. You need two types of basic categories: e and
t, which now stand for terms and truth–values.

Exercise 131. The solutions we have presented here fall short of taking cer-
tain aspects of orthography into account. In particular, words are not sepa-
rated by a blank, sentences do not end in a period and the first word of a
sentence is written using lower case letters only. Can you think of a remedy
for this situation?

Exercise 132. Show that with the help of 1 ó and 1 ò and the 0–ary modes
7

α $ i
it is possible to derive the sign

(3.304) � 4G, < D �Z7 e u t 8 ¾ e ¾ e � λx � λy � λ z �nÖ�^ +4a k 7 z 8�7 x 8�7 y 8=�
from the sign

(3.305) � 4G, < D �Z7 e u t 8 ¾ e ¾ e � λx � λy � λ z �nÖ�^ +4a k 7 z 8�7 y 8�7 x 8=�
Exercise 133. We have noted earlier that

04' î , C # and
' C " are polymorphic.

The polymorphicity can be accommodated directly by defining polyadic op-
erations in the λ–calculus. Here is how. Call a type α t–final if it has the
following form: (a) α

,
t, or (b) α

,
β � γ , where γ is t–final. Define S α ,� α and U α by induction. Similarly, for every type α define functions � α and� α of type α � t that interpret the existential and universal quantifier.

Exercise 134. A (unary) generalized quantifier is a function from proper-
ties to truth values (so, it is an object of type 7 e � t 8�� t). Examples are

) C1B D
and

D < D># × , but there are many more:B�C #�DÙ" / 04'�" / #�D(D(3.306) 04'ÒD < D�'�'(% B í D&# C :(3.307) " / D î ,4#�D F " C #ª*�)(3.308)

First, give the semantics of each of the generalized quantifiers and define a
sign for them. Now try to define the semantics of B�C #�DÙ" / 04' . (It takes a

280 Categorial Grammar and Formal Semantics

number and forms a generalized quantifier.)

Exercise 135. In CCG 7K²�8 , many (but not all) substrings are constituents. We
should therefore be able to coordinate them with

01' î . As was noted for exam-
ple by Eisenberg in (1973), such a coordination is constrained (the brackets
enclose the critical constituents).¡1¦ A C / 'Æ)�0�, î " / 0�" EX§ 01' î«¦ A 0�# ×)>0�, î " / 0�"ý) / D §(3.309) ,�)±" / D í D
)�"À)#Tn, B(B D&#�O¦ A C / 'Æ)>0�, î " / 0�" EX§ 04' î¶¦ A 0># ×)�0�, î " / 0�"À) / D §(3.310) T	0
)±" / D í D)�"À)0TV, B�B D>#SO
The constraint is as follows. Ex � 04' îl�YEy ��Ez is well–formed only if both Ex ��Ez andEy �YEz are. The suggestion is therefore that first the sentence Ex �YEz � 04' îR��Ey �YEz
is formed and then the first occurrence of Ez � is ‘deleted’. Can you suggest
a different solution? Note. The construction is known as forward deletion.
The more common backward deletion gives Ex �@Ez � 04' îR� Ey, and is far less
constrained.

Chapter 4
Semantics

1. The Nature of Semantical Representations

This chapter lays the foundation of semantics. In contrast to much of the cur-
rent semantical theory we shall not use a model–theoretic approach but rather
an algebraic one. As it turns out, the algebraic approach helps to circumvent
many of the difficulties that beset a model–theoretic analysis, since it does
not try to spell out the meanings in every detail, only in as much detail as is
needed for the purpose at hand.

In this section we shall be concerned with the question of feasibility of in-
terpretation. Much of semantical theory simply defines mappings from strings
to meanings without assessing the question whether such mappings can actu-
ally be computed. While on a theoretical level this gives satisfying answers,
one still has to address the question how it is possible that a human being can
actually understand a sentence. The question is quite the same for computers.
Mathematicians ‘solve’ the equation x2 , 2 by writing x

, C-, 2. However,
this is just a piece of notation. If we want to know whether or not 3

{
2 b 6,

this requires calculation. This is the rule rather than the exception (think of
trigonometric functions or the solutions of differential equations). However,
hope is not lost. There are algorithms by which the number , 2 can be approx-
imated to any degree of precision needed, using only elementary operations.
Much of mathematical theory has been inspired by the need to calculate dif-
ficult functions (for example logarithms) by means of elementary ones. Evi-
dently, even though we do not have to bother any more with them thanks to
computers, the computer still has to do the job for us. Computer hardware
actually implements sophisticated algorithms for computing nonelementary
functions. Furthermore, computers do not compute with arbitrary degree of
precision. Numbers are stored in fixed size units (this is not necessary, but
the size is limited anyhow by the size of the memory of the computer). Thus,
they are only close to the actual input, not necessarily equal. Calculations
on the numbers propagate these errors and in bad cases it can happen that
small errors in the input yield astronomic errors in the output (problems that
have this property independently of any algorithm that computes the solu-
tion are called ill–conditioned). Now, what reason do we have to say that a

282 Semantics

particular machine with a particular algorithm computes, say, , 2? One an-
swer could be: that the program will yield exactly , 2 given exact input and
enough time. Yet, for approximative methods — the ones we generally have
to use — the computation is never complete. However, then it computes a
series of numbers an, n � ω , which converges to , 2. That is to say, if ε � 0
is any real number (the error) we have to name an nε such that for all n f nε :� an v., 2 ��ç ε , given exact computation. That an algorithm computes such
a series is typically shown using pure calculus over the real numbers. This
computation is actually independent of the way in which the computation
proceeds as long as it can be shown to compute the approximating series. For
example, to compute , 2 using Newton’s method, all you have to do is to
write a program that calculates

(4.1) an � 1 :
,

an v 7 a2
n v 2 8 ¾ 2an

For the actual computation on a machine it matters very much how this series
is calculated. This is so because each operation induces an error, and the
more we compute the more we depart from the correct value. Knowing the
error propagation of the basic operations it is possible to compute exactly,
given any algorithm, with what precision it computes. To sum up, in addition
to calculus, computation on real machines needs two things:

+ a theory of approximation, and

+ a theory of error propagation.

Likewise, semantics is in need of two things: a theory of approximation,
showing us what is possible to compute and what not, and how we can com-
pute meanings, and second a theory of error propagation, showing us how we
can determine the meanings in approximation given only limited resources
for computation. We shall concern ourselves with the first of these. More-
over, we shall look only at a very limited aspect, namely: what meanings can
in principle be computed and which ones cannot.

We have earlier characterized the computable functions as those that can
be computed by a Turing machine. To see that this is by no means an innocent
assumption, we shall look at propositional logic. Standardly, the semantics of
classical propositional logic is given as follows. (This differs only slightly
from the setup of Section 3.2.) The alphabet is 5�I½�iJ(� & ��G	�ZH>��U	��S
6 and the set
of variables V :

,k& 7ÈG�sËHX8 ¡ . A function β : V � 2 is called a valuation. We

The Nature of Semantical Representations 283

extend β to a mapping β from the entire language to 2.

β 7 p 8 :
,

β 7 p 8 7 p � V 8
β 7½TPU ϕ W18 :

, v β 7 ϕ 8(4.2)

β 7½T ϕ S χ W18 :
,

β 7 ϕ 8�t β 7 χ 8
To obtain from this a compositional interpretation for the language we turn
matters around and define the meaning of a proposition to be a function from
valuations to 2. Let 2V be the set of functions from V to 2. Then for every
proposition ϕ , ¦ ϕ § denotes the function from 2V to 2 that satisfies

(4.3) ¦ϕ §�7 β 8 , β 7 ϕ 8
(The reader is made aware of the fact that what we have performed here is
akin to type raising, turning the argument into a function over the function
that applies to it.) Also ¦ϕ § can be defined inductively.¦ p § :

, 5 β : β 7 p 8 , 1 6 7 p � V 8¦�TPU ϕ Wj§ : , 2V v ¦ ϕ §(4.4) ¦�T ϕ S χ Wj§ : , ¦ ϕ §½t¸¦ χ §
Now notice that V is infinite. However, we have excluded that the set of basic
modes is infinite, and so we need to readjust the syntax. Rather than working
with only one type of expression, we introduce a new type, that of a register.
Registers are elements of G :

, 7z�ªs³�18 ¡ . Then V
, Q]Â G. Valuations are now

functions from G to 2. The rest is as above. Here is now a sign grammar for
propositional logic. The modes are / (0–ary), X R , X V , 7 , 0 ¸ (all unary), and 0%º
(binary). The exponents are strings over the alphabets, categories are either R
or P, and meanings are either registers (for expressions of category R) or sets
of functions from registers to 2 (for expressions of category P)._ :

, � ε � R � ε �(4.5a) X�R�7=��Ex � R ��Ey �=8 :
, �ÈEx 9 ��� R ��Ey 9 ���(4.5b) X V 7=��Ex � R ��Ey �=8 :
, �ÈEx 9 ��� R ��Ey 9 �1�(4.5c) Y�7=��Ex � R �$Ex �=8 :
, ��Q	Ex � P�Z¦ Q	Ex §l�(4.5d) 0%¸�7=�ÈEx � P� M �=8 :
, �½TZU�Ex W&� P� 2V v M �(4.5e) 0 º 7=��Ex � P� M �P�Z��Ey � P� N �=8 :
, �½TPEx S�Ey W&� P� M t N �(4.5f)

284 Semantics

It is easily checked that this is well–defined. This defines a sign grammar
that meets all requirements for being compositional except for one: the func-
tions on meanings are not computable. Notice that (a) valuations are infinite
objects, and (b) there are uncountably many of them. However, this is not
sufficient as an argument because we have not actually said how we encode
sets of valuations as strings and how we compute with them. Notice also that
the notion of computability is defined only on strings. Therefore, meanings
too must be coded as strings. We may improve the situation a little bit by
assuming that valuations are functions from finite subsets of G to 2. Then at
least valuations can be represented as strings (for example, by listing pairs
consisting of a register and its value). However, still the set of all valuations
that make a given proposition true is infinite. On the other hand, there is an
algorithm that can check for any given partial function whether it assigns 1
to a given register (it simply scans the string for the pair whose first member
is the given register). Notice that if the function is not defined on the register,
we must still give an output. Let it be Ç . We may then simply take the code
of the Turing machine computing that function as the meaning the variable
(see Section 1.7 for a definition). Then, inductively, we can define for every
proposition ϕ a machine Tϕ that computes the value of ϕ under any given
partial valuation that gives a value for the occurring variables, and assigns Ç
otherwise. Then we assign as the meaning of ϕ the code T �ϕ of that Turing
machine. However, this approach suffers from a number of deficiencies.

First, the idea of using partial valuations does not always help. To see
this let us now turn to predicate logic (see Section 3.8). As in the case of
propositional logic we shall have to introduce binary strings for registers,
to form variables. The meaning of a formula ϕ is by definition a function
from pairs �løÀ� β � to 5 0 � 1 6 , where ø is a structure and β a function from
variables to the domain of ø . Again we have the problem to name finitary or
at least computable procedures. We shall give two ways of doing so that yield
quite different results. The first attempt is to exclude infinite models. Thenø , and in particular the domain M of ø , are finite. A valuation is a partial
function from V to M with a finite domain. The meaning of a term under such
a valuation is a member of M or

, {
. (For if xα is in t, and if β is not defined

on xα then tβ is undefined.) The meaning of a formula is either a truth value
or

{
. The truth values can be inductively defined as in Section 3.8. M has to

be finite, since we usually cannot compute the value of ~ xα � ϕ 7 xα 8 without
knowing all values of xα .

This definition has a severe drawback: it does not give the correct results.

The Nature of Semantical Representations 285

For the logic of finite structures is stronger than the logic of all structures. For
example, the following set of formulae is not satisfiable in finite structures
while it has an infinite model. (Here G is a 0–ary function symbol, and

)
a

unary function symbol.)

Proposition 4.1 The theory T is consistent but has no finite model.

(4.6) T :
, 5�T[�g
�R(W�TPU21

(R � ��W>�XT[�`
(R�W.T[�`
	V1W.T31!
�R � 1

	V���
�R �
�V1W>6

Proof. Let ø be a finite model for T . Then for some n and some k � 0:
sn � k0

,
sn0. From this it follows with the second formula that sk0

,
0. Since

k � 0, the first formula is false in ø . There is, however, an infinite model for
these formulae, namely the set of numbers together with 0 and the successor
function. <

We remark here that the logic of finite structures is not recursively enu-
merable if we have two unary relation symbols. (This is a theorem from
(Trakhténbrodt, 1950).) However, the logic of all structures is clearly recur-
sively enumerable, showing that the sets are very different. This throws us
into a dilemma: we can obviously not compute the meanings of formulae in
a structure directly, since quantification requires search throughout the en-
tire structure. (This problem has once worried some logicians, see (Ferreirós,
2001). Nowadays it is felt that these are not problems of logic proper.) So,
once again we have to actually try out another semantics.

The first route is to let a formula denote the set of all formulae that are
equivalent to it. Alternatively, we may take the set of all formulae that follow
from it. (These are almost the same in boolean logic. For example, ϕ � χ
can be defined using � and � ; and ϕ � χ can be defined by ϕ ��7 ϕ � χ 8 .
So these approaches are not very different. However the second one is tech-
nically speaking more elegant.) This set is again infinite. Hence, we do some-
thing different. We shall take a formula to denote any formula that follows
from it. (Notice that this makes formulae have infinitely many meanings.)
Before we start we seize the opportunity to introduce a more abstract theory.
A propositional language is a language of formulas generated by a set V of
variables and a signature. The identity of V is the same as for boolean logic
above. As usual, propositions are considered here as certain strings. The lan-
guage is denoted by the letter L. A substitution is given by a map σ : V � L.
σ defines a map from L to L by replacement of occurrences of variables by
their σ–image. We denote by ϕ σ the result of applying σ to ϕ .

286 Semantics

Definition 4.2 A consequence relation over L is a relation ~ } ℘7 L 83e L
such that the following holds. (We write ∆ ~ ϕ for the more complicated� ∆ � ϕ �Y� ~ .)

À ϕ ~ ϕ .

Á If ∆ ~ ϕ and ∆ } ∆ k then ∆ k�~ ϕ .

Â If ∆ ~ χ and Σ; χ ~ ϕ , then ∆;Σ ~ ϕ .~ is called structural if from ∆ ~ ϕ follows ∆σ ~ ϕσ for every substitution. ~
is finitary if ∆ ~ ϕ implies that there is a finite subset ∆ k of ∆ such that ∆ k#~ ϕ .

In the sequel consequence relations are always assumed to be structural. A
rule is an element of ℘7 L 8Ye L, that is, a pair ρ

, � ∆ � ϕ � . ρ is finitary if ∆
is finite; it is n–ary if �∆ � , n. Given a set R of rules, we call ~ R the least
structural consequence relation containing R. This relation can be explicitly
defined. Say that χ is a 1–step R–consequence of Σ if there is a substitution
σ and some rule � ∆ � ϕ �3� R such that ∆σ } Σ and χ

,
ϕσ . Then, an n–step

consequence of Σ is inductively defined.

Proposition 4.3 ∆ ~ R ϕ iff there is a natural number n such that ϕ is an
n–step R–consequence of ∆.

The reader may also try to generalize the notion of a proof from a Hilbert
calculus and show that they define the same relation on condition that the
rules are all finitary. We shall also give an abstract semantics and show its
completeness. The notion of an Ω–algebra has been defined.

Definition 4.4 Let L be a propositional logic over the signature Ω. A matrix
for L and ~ is a pair ø , �Á­¬� D � , where ­ is an Ω–algebra (the algebra of
truth values) and D a subset of A, called the set of designated truth values.
Let h be a homomorphism from ±@² Ω 7 V 8 into ø . We write �løÀ� h ��Ð ϕ if
h 7 ϕ 83� D and say that ϕ is true under h in ø . Further, we write ∆ Ð ì ϕ if
for all homomorphisms h : ±@² Ω 7 V 8»�Ó­ : if h ¦ ∆ §�} D then h 7 ϕ 8@� D.

Proposition 4.5 If ø is a matrix for L, Ð ì is a structural consequence re-
lation.

Notice that in boolean logic ­ is the 2–element boolean algebra and D
, 5 1 6 ,

but we shall encounter other cases later on. Here is a general method for
obtaining matrices.

The Nature of Semantical Representations 287

Definition 4.6 Let L be a propositional language and ~ a consequence rela-
tion. Put ∆ 4 :

, 5 ϕ : ∆ ~ ϕ 6 . ∆ is deductively closed if ∆
,

∆ 4 . It is consistent
if ∆ 4 �, L. It is maximally consistent if it is consistent but no proper superset
is.

A matrix ® is canonical for ~ if ® , �l±@² Ω 7 V 8P� ∆ 4�� for some set ∆. (Here,±@² Ω 7 V 8 is the canonical algebra with carrier set L whose functions are just
the associated string functions.) It is straightforward to verify that ~ }µÐ65 .
Now consider some set ∆ and a formula such that ∆ ´ ϕ . Then put ® :

,�l±@² Ω 7 V 8P� ∆ 4 � and let h be the identity. Then h ¦ ∆ § , ∆ } ∆ 4 , but h 7 ϕ 8 �� ∆ 4
by definition of ∆ 4 . So, ∆ µ75 ϕ . This shows the following.

Theorem 4.7 (Completeness of Matrix Semantics) Let ~ be a structural
consequence relation over L. Then

(4.7) ~ ,98 ��Ð:5 : ® canonical for ~»�
(The reader may verify that an arbitrary intersection of consequence rela-
tions again is a consequence relation.) This theorem establishes that for any
consequence relation we can find enough matrices such that they together
characterize that relation. We shall notice also the following. Given ~ andø , �Á­¬� D � , then Ð ì à ~ iff D is closed under the consequence. (This is
pretty trivial: all it says is that if ∆ ~ ϕ and h is a homomorphism, then if
h ¦∆ §y} D we must have h 7 ϕ 8�� D.) Such sets are called filters. Now, letø , �Á­¬� D � be a matrix, and Θ a congruence on ­ . Suppose that for any
x: ¦ x § Θ } D or ¦ x § Θ t D

, w . Then we call Θ admissible for ø and putø ¾ Θ :
, �Á­ ¾ Θ � D ¾ Θ � , where D ¾ Θ :

, 5(¦ x § Θ : x � D 6 . The following is easy
to show.

Proposition 4.8 Let ø be a matrix and Θ an admissible congruence on ø .
Then Ð ì Q Θ , Ð ì .

Finally, call a matrix reduced if only the diagonal is an admissible congru-
ence. Then, by Proposition 4.8 and Theorem 4.7 we immediately derive that
every consequence relation is complete with respect to reduced matrices. One
also calls a class of matrices ´ a (matrix) semantics and says ´ is adequate
for a consequence relation ~ if ~ ,<; ì � ¼ Ð ì .

Now, given L and ~ , the system of signs for the consequence relation is
this.

(4.8) ΣP :
, 5(��Ex � R �$Ex � : Ex � G 6»sì5(��Ex � P��Ey � : Ex ~ìEy 6

288 Semantics

How does this change the situation? Notice that we can axiomatize the con-
sequences by means of rules. The following is a set of rules that fully axiom-
atizes the consequence. The proof of that will be left to the reader (see the
exercises), since it is only peripheral to our interests.

ρd :
, ��5�TPU@TZU�Q�W�W�6>�lQ��(4.9a)

ρdn :
, ��5�Q.6>�XTPUYTPU4Q»W�W1�(4.9b)

ρu :
, ��5�Q��XTPU4Q»W>6>�lQ ���(4.9c)

ρc :
, ��5�Q�� & G�6>�XT�Q
S�Q �	W4�(4.9d)

ρp0 :
, ��5�T�Q	S4Q �	W>6>�lQ	�(4.9e)

ρp1 :
, ��5�T�Q	S4Q �	W>6>�lQ`���(4.9f)

ρmp :
, ��5�Q��XTPUYT�Q
S@TPU4Q �	W�W�W16>�lQ`���(4.9g)

With each rule we can actually associate a mode. We only give examples,
since the general scheme for defining modes is easily extractable.U(=?> 7=��Ex � P�XTPUYTPU�Ey W�W1� :

, �ÈEx � P��Ey �(4.10) U2@ 7=��Ex � P��Ey �P�Z��Ex � P�lEz �=8 :
, ��Ex � P�XTPEy S4Ez W��(4.11)

If we have � as a primitive symbol then the following mode corresponds to
the rule ρmp, Modus Ponens.

(4.12) [�ACB
7=��Ex � P�XTPEy ��Ez W��P�Z�ÈEx � P��Ey �=8 :
, �ÈEx � P�ÁEz �

This is satisfactory in that it allows to derive all and only the consequences
of a given proposition. A drawback is that the functions on the exponents are
nonincreasing. They always return Ex. The structure term of the sign ��Ex � P��Ey �
on the other hand encodes a derivation of Ey from Ex.

Now, the reader may get worried by the proliferation of different seman-
tics. Aren’t we always solving a different problem? Our answer is indirect.
The problem is that we do not know exactly what meanings are. Given a nat-
ural language, what we can observe more or less directly is the exponents.
Although it is not easy to write down rules that generate them, the entities are
more or less concrete. A little less concrete are the syntactic categories. We
have already seen in the previous chapter that the assignment of categories
to strings (or other exponents, see next chapter) are also somewhat arbitrary.
We shall return to this issue. Even less clearly definable, however, are the
meanings. What, for example, is the meaning of (4.13)?

(4.13) Õ 0(D
)>0># F # C)�)4D î " / DÚF(% í , F C 'YO

The Nature of Semantical Representations 289

The first answer we have given was: a truth value. For this sentence is ei-
ther true or false. But even though it is true, it might have been false, just
in case Caesar did not cross the Rubicon. What makes us know this? The
second answer (for first–order theories) is: the meaning is a set of models.
Knowing what the model is and what the variables are assigned to, we know
whether that sentence is true. But we simply cannot look at all models, and
still it seems that we know what (4.13) means. Therefore the next answer is:
its meaning is an algorithm, which, given a model, tells us whether the sen-
tence is true. Then, finally, we do not have to know everything in order to
know whether (4.13) is true. Most facts are irrelevant, for example, whether
Napoleon was French. On the other hand, suppose we witness Caesar walk
across the Rubicon, or suppose we know for sure that first he was north of
the Rubicon and the next day to the south of it. This will make us believe
that (4.13) is true. Thus, the algorithm that computes the truth value does not
need all of a model; a small part of it actually suffices. We can introduce par-
tial models and define algorithms on them, but all this is a variation on the
same theme. A different approach is provided by our last answer: a sentence
means whatever it implies.

We may cast this as follows. Start with the set L of propositions and a
set (or class) D of models. A primary (or model theoretic) semantics is
given in terms of a relation Ð@} L eED . Most approaches are variants of the
primary semantics, since they more or less characterize meanings in terms of
facts. However, from this semantics we may define a secondary semantics,
which is the semantics of consequence. ∆ Ð ϕ iff for all M �FD : if M Ð δ
for all δ � ∆ then M Ð ϕ . (We say in this case that ∆ entails ϕ .) Secondary
semantics is concerned only with the relationship between the objects of the
language, there is no model involved. It is clear that the secondary semantics
is not fully adequate. Notice namely that knowing the logical relationship
between sentences does not reveal anything about the nature of the models.
Second, even if we knew what the models were: we could not say whether a
given sentence is true in a given model or not. It is perfectly conceivable that
we know English to the extent that we know which sentences entail which
other sentences, but still we are unable to say, for example, whether or not
(4.13) is true even when we witnessed Caesar cross the Rubicon. An example
might make this clear. Imagine that all I know is which sentences of English
imply which other sentences, but that I know nothing more about their actual
meaning. Suppose now that the house is on fire. If I realize this I know that
I am in danger and I act accordingly. However, suppose that someone shouts

290 Semantics

(4.14) at me. Then I can infer that he thinks (4.14) is true. This will certainly
make me believe that (4.14) is true and even that (4.15) is true as well. But
still I do not know that the house is on fire, nor that I am in danger.s / D / C %.)�D ,�) C ' : ,1#�DRO(4.14) E 0 B ,X' î 04'�4�D&#�O(4.15)

Therefore, knowing how sentences hang together in a deductive system has
little to do with the actual world. The situation is not simply remedied by
knowing some of the meanings. Suppose I additionally know that (4.14)
means that the house is on fire. Then if I see that the house is on fire then
I know that I am in danger, and I also know that (4.15) is the case. But I
still may fail to see that (4.15) means that I am in danger. It may just mean
something else that is being implied by (4.14). This is reminiscent of Searle’s
thesis that language is about the world: knowing what things mean is not con-
stituted by an ability to manipulate certain symbols. We may phrase this as
follows.

Indeterminacy of secondary semantics. No secondary semantics can fix the
truth conditions of propositions uniquely for any given language.

Searle’s claims go further than that, but this much is perhaps quite uncon-
troversial. Despite the fact that secondary semantics is underdetermined, we
shall not deal with primary semantics at all. We are not going to discuss what
a word, say,

2�, : D
really means — we are only interested in how its meaning

functions language internally. Formal semantics really cannot do more than
that. In what is to follow we shall sketch an algebraic approach to seman-
tics. This contrasts with the far more widespread model–theoretic approach.
The latter may be more explicit and intuitive, but on the other hand it is quite
inflexible.

We begin by examining a very influential principle in semantics, called
Leibniz’ Principle. We quote one of its original formulation from (Leibniz,
2000) (from Specimen Calculi Coincidentium, (1), 1690). Eadem vel Coin-
cidentia sunt quae sibi ubique substitui possunt salva veritate. Diversa quae
non possunt. Translated it says: The same or coincident are those which can
everywhere be substituted for each other not affecting truth. Different are
those that cannot. Clearly, substitution must be understood here in the con-
text of sentences, and we must assume that what we substitute is constituent

The Nature of Semantical Representations 291

occurrences of the expressions. We therefore reformulate the principle as fol-
lows.

Leibniz’ Principle. Two expressions A and B have the same meaning iff in ev-
ery sentence any occurrence of A can be substituted by B and any occurrence
of B by A without changing the truth of that sentence.

To some people this principle seems to assume bivalence. If there are more
than two truth values we might interpret Leibniz’ original definition as saying
that substitution does not change the truth value rather than just truth. (See
also Lyons for a discussion.) We shall not do that, however. First we give
some unproblematic examples. In second order logic (

ÞHG
, see Chapter 1), the

following is a theorem.

(4.16) 7�~ x 8�7�~ y 8�7 x , y ��7�~ P 8�7 P 7 x 8»� P 7 y 8=8=8
Hence, Leibniz’ Principle holds of second order logic with respect to terms.
There is general no identity relation for predicates, but if there is, it is defined
according to Leibniz’ Principle: two predicates are equal iff they hold of the
same individuals. This requires full second order logic, for what we want to
have is the following for each n � ω (with Pn and Qn variables for n–ary
relations):

(4.17) 7�~ Pn 8�7�~ Qn 8�7 Pn
,

Qn ��7�~�Ex 8�7 Pn 7ÈEx 8»� Qn 7ÈEx 8=8=8
(Here, Ex abbreviates the n–tuple x0 �=�=�=�i� xn © 1.) (4.16) is actually the basis for
Montague’s type raising. Recall that Montague identified an individual with
the set of all of its properties. In virtue of (4.16) this identification does not
conflate distinct individuals. To turn that around: by Leibniz’ Principle, this
identification is one–to–one. We shall see in the next section that boolean al-
gebras of any kind can be embedded into powerset algebras. The background
of this proof is the result that if there are two elements x, y in a boolean
algebra

·
and for all homomorphisms h :

· � 2 we have h 7 x 8 , h 7 y 8 , then
x
,

y. (More on that in the next section. We have to use homomorphisms here
since properties are functions that commute with the boolean operations, that
is to say, homomorphisms.) Thus, Leibniz’ Principle also holds for boolean
semantics, defined in Section 4.6. Notice that the proof relies on the Axiom
of Choice (in fact the somewhat weaker Prime Ideal Axiom), so it is not alto-
gether innocent.

292 Semantics

We use Leibniz’ Principle to detect whether two items have the same
meaning. One consequence of this principle is that semantics is essentially

unique. If µ : A ¡ p¤ M, µ k : A ¡ p¤ M k are surjective functions assigning mean-
ings to expressions, and if both satisfy Leibniz’ Principle, then there is a
bijection π : M � M k such that µ k , π : µ and µ

,
π © 1 : µ k . Thus, as far as

formal semantics is concerned, any solution is as good any other.
As we have briefly mentioned in Section 3.5, we may use the same idea

to define types. This method goes back to Husserl, and is a key ingredient to
the theory of compositionality by Wilfrid Hodges (see his (2001)). A type is
a class of expressions that can be substituted for each other without chang-
ing meaningfulness. Hodges just uses pairs of exponents and meanings. If
we want to assimilate his setup to ours, we may add a category U , and let
for every mode f , f τ 7 U �=�=�=�Z� U 8 :

,
U . However, the idea is to do without

categories. If we further substract the meanings, we get what Hodges calls a
grammar. We prefer to call it an H–grammar. (The letter H honours Hodges
here.) Thus, an H–grammar is defined by some signature and correspond-
ing operations on the set E of exponents, which may even be partial. An
H–semantics is a partial map µ from the structure terms (!) to a set M of
meanings. Structure terms � and � are synonymous if µ is defined on both
and µ 7��&8 , µ 72��8 . We write �Sð µ � to say that � and � are synonymous. (Notice
that ��ð µ � iff µ is defined on � .) An H–semantics ν is equivalent to µ ifð µ

, ð ν . An H–synonymy is an equivalence relation on a subset of the set
of structure terms. We call that subset the field of the H–synonymy. Given
an H–synonymy ð , we may define M to be the set of all equivalence classes
of ð , and set µ Iy7��&8 :

, ¦ �1§ I iff � is in that subset, and undefined otherwise.
Thus, up to equivalence, H–synonymies and H–semantics are in one–to–one
correspondence. We say that ð¬k extends ð if the field of ðØk contains the field
of ð , and the two coincide on the field of ð .

Definition 4.9 Let G be an H–grammar and µ an H–semantics for it. We
write � Ê µ �4k iff for every structure term � with a single free variable x, ¦ � ¾ x §R�
is µ–meaningful iff ¦ �>k ¾ x §R� is µ–meaningful. The equivalence classes of Ê µ
are called the µ–categories.

This is the formal rendering of the ‘meaning categories’ that Husserl defines.

Definition 4.10 ν and its associated synonymy is called µ–Husserlian if for
all structure terms � and �>k : if �·ð ν �4k then � Ê µ �4k . µ is called Husserlian if
it is µ–Husserlian.

The Nature of Semantical Representations 293

It is worthwhile to compare this definition with Leibniz’ Principle. The lat-
ter defines identity in meaning via intersubstitutability in all sentences; what
must remain constant is truth. Husserl’s meaning categories are also defined
by intersubstitutability in all sentences; however, what must remain constant
is the meaningfulness. We may connect these principles as follows.

Definition 4.11 Let Sent be a set of structure terms and ∆ } Sent. We call �
sentential if ��� Sent, and true if ��� ∆. µ is Leibnizian if for all structure
terms � and ��k : � ð µ �(k iff for all structure terms � such that ¦ � ¾ x §6�¶� ∆ also¦ � k ¾ x §6��� ∆ and conversely.

Under mild assumptions on µ it holds that Leibnizian implies Husserlian.
The following is from (Hodges, 2001).

Theorem 4.12 (Hodges) Let µ be an H–semantics for the H–grammar G.
Suppose further that every subterm of a µ–meaningful structure term is again
µ–meaningful. Then the following are equivalent.

À For each mode f there is an Ω 7 f 8 –ary function f µ : MΩ ¯ f ° � M such
that µ is a homomorphism of partial algebras.

Á If � is a structure term and � i, J i (i b n) are structure terms such that¦ � i ¾ xi : i b n §6� and ¦KJ i ¾ xi : i b n §6� are both µ–meaningful and if for all
i b n � i ð µ J i then¦ � i ¾ xi : i b n §6�·ð µ ¦KJ i ¾ xi : i b n §6�Ø�

Furthermore, if µ is Husserlian then the second already holds if it holds for
n
,

1.

It is illuminating to recast the approach by Hodges in algebraic terms. This
allows to compare it with the setup of Section 3.1. Moreover, it will also
give a proof of Theorem 4.12. We start with a signature Ω. The set TmΩ 7 X 8
forms an algebra which we have denoted by ±@² Ω 7 X 8 . Now select a subset
D } TmΩ 7 X 8 of meaningful terms. It turns out that the embedding i : D ¥
TmΩ 7 X 8 : x �� x is a strong homomorphism iff D is closed under subterms.
We denote the induced algebra by

�
. It is a partial algebra. The map µ : D �

M induces an equivalence relation ð µ . There are functions f µ : MΩ ¯ f ° � M
that make M into an algebra ø and µ into a homomorphism iff ð µ is a weak
congruence relation (see Definition 1.21 and the remark following it). This is
the first claim of Theorem 4.12. For the second claim we need to investigate
the structure of partial algebras.

294 Semantics

Definition 4.13 Let ­ be a partial Ω–algebra. Put x L ® y (or simply x L y)
if for all f � Pol1 7Á­�8 : f 7 x 8 is defined iff f 7 y 8 is defined.

Proposition 4.14 Let ­ be a partial Ω–algebra. (a) L ® is a strong congru-
ence relation on ­ . (b) A weak congruence on ­ is strong iff it is contained
in L ® .

Proof. (a) Clearly, L is an equivalence relation. So, let f � F and ai L ci for
all i b Ω 7 f 8 . We have to show that f 7�Ea 8ML f 7ÈEc 8 , that is, for all g � Pol1 7Á­�8 :
g 7 f 7�Ea 8=8 is defined iff g 7 f 7ÈEc 8=8 is. Assume that g 7 f 7$Ea 8=8 is defined. The function
g 7 f 7 x0 � a1 �=�=�=�i� aΩ ¯ f ° © 1 8=8 is a unary polynomial h0, and h0 7 a0 8 is defined. By
definition of L , h0 7 c0 8 , g 7 f 7 c0 � a1 �=�=�=�i� aΩ ¯ f ° © 1 8=8 is also defined. Next,

(4.18) h1 7 x1 8 :
,

f 7 g 7 c0 � x1 � a2 �=�=�=�i� aΩ ¯ f ° © 1 8=8
is a unary polynomial and defined on a1. So, it is defined on c1 and we have
h1 7 c1 8 , f 7 g 7 c0 � c1 � a2 �=�=�=�i� aΩ ¯ f ° © 1 8=8 . In this way we show that f 7 g 7ÈEc 8=8 is
defined. (b) Let Θ be a weak congruence. Suppose that it is not strong. Then
there is a polynomial f and vectors Ea ��Ec � AΩ ¯ f ° with ai Θ ci (i b Ω 7 f 8) such
that f 7$Ea 8 is defined but f 7ÈEc 8 is not. Now, for all i b Ω 7 f 8 ,
(4.19) f 7 a0 �=�=�=�Z� ai © 1 � ai � ci � 1 �=�=�=�Z� cΩ ¯ f ° © 1 8

Θ f 7 a0 �=�=�=�i� ai © 1 � ci � ci � 1 �=�=�=�i� cΩ ¯ f ° © 1 8
if both sides are defined. Now, f 7$Ea 8 is not Θ–congruent to f 7ÈEc 8 . Hence there
is an i b Ω 7 f 8 such that the left hand side of (4.19) is defined and the right
hand side is not. Put

(4.20) h 7 x 8 :
,

f 7 a0 �=�=�=�i� ai © 1 � x � ci � 1 �=�=�=�i� cΩ ¯ f ° © 1 8
Then h 7 ai 8 is defined, h 7 ci 8 is not, but ai Θ ci. So, Θ pNL . Conversely, if Θ is
strong we can use (4.19) to show inductively that if f 7$Ea 8 is defined, so are all
members of the chain. Hence f 7�Ec 8 is defined. And conversely. <
Proposition 4.15 Let ­ be a partial algebra and Θ an equivalence relation
on ­ . Θ is a strong congruence iff for all g � Pol1 7Á­�8 and all a � c � A such
that a Θ c: g 7 a 8 is defined iff g 7 c 8 is, and then g 7 a 8 Θ g 7 c 8 .
The proof of this claim is similar. To connect this with the theory by Hodges,
notice that Ê µ is the same as L � . ð µ is Husserlian iff ð µ }OL � .

The Nature of Semantical Representations 295

Proposition 4.16 ð µ is Husserlian iff it is contained in L � iff it is a strong
congruence.

Propositions 4.14 and 4.15 together show the second claim of Theorem 4.12.
If ! is the only operation, we can actually use this method to define the

types (see Section 3.5). In the following sections we shall develop an alge-
braic account of semantics, starting first with boolean algebras and then going
over to intensionality, and finally carrying out the full algebraization.

Notes on this section. The idea that the logical interconnections between
sentences constitute their meanings is also known as holism. This view and
its implications for semantics is discussed by Dresner (2002). We shall briefly
also mention the problem of reversibility (see Section 4.6). Most formalisms
are designed only for assigning meanings to sentences, but it is generally
hard or impossible to assign a sentence that expresses a given content. We
shall briefly touch on that issue in Section 4.6.

Exercise 136. Prove Proposition 4.8.

Exercise 137. Let ρ
, � ∆ � ϕ � be a rule. Devise a mode A ρ that captures the

effect of this rule in the way discussed above. Translate the rules given above
into modes. What happens with 0–ary rules (that is, rules with ∆

, w)?

Exercise 138. There is a threefold characterization of a consequence: as a
consequence relation, as a closure operator, and as a set of theories. Let ~ be
a consequence relation. Show that ∆ �� ∆ 4 is a closure operator. The closed
sets are the theories. If ~ is structural the set of theories of ~ are inversely
closed under substitutions. That is to say, if T is a theory and σ a substi-
tution, then σ © 1 ¦ T § is a theory as well. Conversely, show that every closure
operator on℘7l±3² Ω 7 V 8=8 gives rise to a consequence relation and that the con-
sequence relation is structural if the set of theories is inversely closed under
substitutions.

Exercise 139. Show that the rules (4.9) are complete for boolean logic in S
and U .
Exercise 140. Show that for any given finite signature the set of predicate log-
ical formulae valid in all finite structures for that signature is co–recursively
enumerable. (The latter means that its complement is recursively enumer-
able.)

Exercise 141. Let L be a first–order language which contains at least the sym-
bol for equality (�). Show that a first–order theory T in L satisfies Leibniz’

296 Semantics

Principle if the following holds for any relation symbol r

(4.21) T ; 5�T xi � yi W : i b Ξ 7 r 8Z6Y~QP*R � T r TPEx W#� r TPEy W(W
and the following for every function symbol f :

(4.22) T ; 5�T xi � yi W : i b Ω 7 f 8Z6Y~QP�R � T f TPEx W � f TOEy W(W
Use this to show that the first–order set theory z@{(| satisfies Leibniz’ Prin-
ciple. Further, show that every equational theory satisfies Leibniz’ Principle.

2. Boolean Semantics

Boolean algebras are needed in all areas of semantics, as is demonstrated in
(Keenan and Faltz, 1985). Boolean algebras are the structures that correspond
to propositional logic in the sense that the variety turns out to be generated
from just one algebra: the algebra with two values 0 and 1, and the usual
operations (Theorem 4.33). Moreover, the calculus of equations and the usual
deductive calculus mutually interpret each other (Theorem 4.36). This allows
to show that the axiomatization is complete (Theorem 4.39).

Definition 4.17 An algebra � B � 0 � 1 �ivØ��t���sy� , where 0 � 1 � B, v : B � B andt���s : B2 � B, is called a boolean algebra if it satisfies the following equa-
tions for all x � y � z � B.

(as t) x t¸7 y t z 8 , 7 x t y 8�t z (as s) x s�7 y s z 8 , 7 x s y 8�s z
(co t) x t y

,
y t x (co s) x s y

,
y s x

(id t) x t x
,

x (id s) x s x
,

x
(ab t) x t¸7 y s x 8 , x (ab s) x s¸7 y t x 8 , x
(di t) x t¸7 y s z 8 , (di s) x s¸7 y t z 8 ,7 x t y 8(s¸7 x t z 8 7 x s y 8�t¸7 x s z 8
(li v) x t¸7�v x 8 ,

0 (ui s) x s¸7�v x 8 ,
1

(ne t) x t 1
,

x (ne0) x s 0
,

x
(dm t) v�7 x t y 8 , 7�v x 8�s¸7�v y 8 (dm s) v�7 x s y 8 , 7�v x 8�t¸7�v y 8
(dn v) v�7�v x 8 ,

x

The operation t is generally referred to as the meet (operation) and s as the
join (operation). v x is called the complement of x and 0 the zero and 1 the

Boolean Semantics 297

one or unit. Obviously, the boolean algebras form an equationally definable
class of algebras.

The laws (as t) and (as s) are called associativity laws, the laws (co t)
and (co s) commutativity laws, (id t) and (id s) the laws of idempotence
and (ab t) and (ab s) the laws of absorption. A structure � L ��t ��sy� satisfy-
ing these laws is called a lattice. If only one operation is present and the
corresponding laws hold we speak of a semilattice. (So, a semilattice is a
semigroup that satisfies commutativity and idempotence.) Since t and s are
associative and commutative, we follow the general practice and omit brack-
ets whenever possible. So, rather than 7 x t¸7 y t z 8=8 we simply write x t y t z.
Also, 7 x t¸7 y t x 8=8 is simplified to x t y. Furthermore, given a finite set S } L
the notation � � x : x � S � or simply � S is used for the iterated join of the
elements of S. This is uniquely defined, since the join is independent of the
order and multiplicity in which the elements appear.

Definition 4.18 Let ^ be a lattice. We write x ç y if x s y
,

y.

Notice that x ç y iff x t y
,

x. This can be shown using the equations above.
We leave this as an exercise to the reader. Notice also the following.

Lemma 4.19 À ç is a partial ordering.

Á x s y ç z iff x ç z and y ç z.

Â z ç x t y iff z ç x and z ç y.

Proof. À (a) x s x
,

x, whence x ç x. (b) Suppose that x ç y and y ç x. Then
we get x s y

,
x and y s x

,
y, whence y

,
x s y

,
x. (c) Suppose that x ç y

and y ç z. Then x s y
,

y and y s z
,

z and so x s z
,

x sì7 y s z 8 , 7 x s y 8�s z
,

y s z
,

z. Á Let x s y ç z. Then, since x ç x s y, we have x ç z by (Àc); for the
same reason also y ç z. Now assume x ç z and y ç z. Then x s z

,
y s z

,
z

and so z
,

z s z
, 7 x s z 8>sì7 y s z 8 , 7 x s y 8>s z, whence x s y ç z. Â Similarly,

using x ç y iff x t y
,

x. <
In fact, it is customary to define a lattice by means of ç . This is done as

follows.

Definition 4.20 Let ç be a partial order on L. Let X } L be an arbitrary set.
The greatest lower bound (glb) of X, also denoted

;
X, is that element u such

that for all z: if x f z for all x � X then also u f z (if it exists). Analogously,
the least upper bound (lub) of X, denoted by � X, is that element v such that
for all z: if x ç z for all x � X then also v ç z (if it exists).

298 Semantics

Notice that there are partial orderings which have no lubs. For example, let
L
, ��5 0 � 1 � 2 � 3 6>��S]� , where

(4.23) S :
, 5(� 0 � 0 �P�Z� 0 � 2 �P�Z� 0 � 3 �P�P� 1 � 1 �P�O� 1 � 2 �O�Z� 1 � 3 �O�Z� 2 � 2 �O�Z� 3 � 3 �P6

Here, 5 0 � 1 6 has no lub. This partial ordering does therefore not come from
a lattice. For by the facts established above, the join of two elements x and y
is simply the lub of 5 x � y 6 , and the meet is the glb of 5 x � y 6 . It is left to the
reader to verify that these operations satisfy all laws of lattices. So, a partial
order ç is the order determined by a lattice structure iff all finite sets have a
least upper bound and a greatest lower bound.

The laws (di t) and (di s) are the distributivity laws. A lattice is called
distributive if they hold in it. A nice example of a distributive lattice is the
following. Take a natural number, say 28, and list all divisors of it: 1, 2, 4, 7,
14, 28. Write x ç y if x is a divisor of y. (So, 2 ç 14, 2 ç 4, but not 4 ç 7.)
Then t turns out to be the greatest common divisor and s the least common
multiple. Another example is the linear lattice defined by the numbers b n
with ç the usual ordering. t is then the minimum and s the maximum.

A bounded lattice is a structure � L � 0 � 1 ��t���sy� which is a lattice with re-
spect to t and s , and in which satisfies (ne t) and (ne s). From the definition
of ç , (ne t) means that x ç 1 for all x and (ne s) that 0 ç x for all x. Every
finite lattice has a least and a largest element and can thus be extended to a
bounded lattice. This extension is usually done without further notice.

Definition 4.21 Let ^ , � L ��t ��sy� be a lattice. An element x is join irre-
ducible in ^ if for all y and z such that x

,
y s z either x

,
y or x

,
z. x

is meet irreducible if for all y and z such that x
,

y t z either x
,

y or x
,

z.

It turns out that in a distributive lattice irreducible elements have a stronger
property. Call x meet prime if for all y and z: from x f y t z follows x f y or
x f z. Obviously, if x is meet prime it is also meet irreducible. The converse
is generally false. Look at M3 shown in Figure 11. Here, c f a t b 7 , 0 8 , but
neither c f a nor c f b holds.

Lemma 4.22 Let ^ be a distributive lattice. Then x is meet (join) prime iff x
is meet (join) irreducible.

Let us now move on to the complement. (li t) and (ui s) have no special name.
They basically ensure that v x is the unique element y such that x t y

,
0 and

x s y
,

1. The laws (dm t) and (dm s) are called de Morgan laws. Finally,
(dn v) is the law of double negation.

Boolean Semantics 299

!
0òòòò ñ ñ ññ!a

ñ ñ ññ !b ! còòòò
!1

Figure 11. The Lattice M3

Lemma 4.23 The following holds in a boolean algebra.

À x ç y iff v y ç�v x.

Á x ç y iff x t¸7�v y 8 , 0 iff 7�v x 8(s y
,

1.

Proof. À x ç y means x s y
,

y, and so v y
, v«7 x s y 8 , 7�v x 8�tì7�v y 8 , whencev y çÉv x. From v y çÉv x we now get x

, v�v x çÉv v y
,

y. Á If x ç y then
x t y

,
x, and so x t¸7�v y 8 , 7 x t y 8�t�7�v y 8 , x t 0

,
0. Conversely, suppose

that x t¶7�v y 8 , 0. Then x t y
, 7 x t y 81s«7 x t¶7�v y 8=8 , x t¶7 y s¶7�v y 8=8 , x t 1

,
x.

So, x ç y. It is easily seen that x t¸7�v y 8 , 0 iff 7�v x 8�s y
,

1. <
We can use the terminology of universal algebra (see Section 1.1). So, the

notions of homomorphisms and subalgebras, congruences, of these structures
should be clear. We now give some examples of boolean algebras. The first
example is the powerset of a given set. Let X be a set. Then℘7 X 8 is a boolean
algebra with w in place of 0, X in place of 1, v A

,
X v A, t and s the

intersection and union. We write Tf7 X 8 for this algebra. A subalgebra of this
algebra is called a field of sets. Also, a subset of ℘7 X 8 closed under the
boolean operations is called a field of sets. The smallest examples are the
algebra 1 :

, Tf7�w�8 , consisting just of one element (w), and 2 :
, Tf7�51w«618 , the

algebra of subsets of 1
, 51w«6 . Now, let X be a set and

·Æ, � B � 0 � 1 ��t���s��iv]�
be a boolean algebra. Then for two functions f � g : X � B we may define v f ,
f t g and f s g as follows.7�v f 8�7 x 8 :

, v f 7 x 87 f s g 8�7 x 8 :
,

f 7 x 8�s g 7 x 8(4.24) 7 f t g 8�7 x 8 :
,

f 7 x 8�t g 7 x 8
Further, let 0 : X � B : x �� 0 and 1: X � B : x �� 1. It is easily verified that
the set of all functions from X to B form a boolean algebra: � BX � 0 � 1 �iv¬��t���sy� .

300 Semantics

We denote this algebra by
· X . The notation has been chosen on purpose: this

algebra is nothing but the direct product of
·

indexed over X . A particular
case is

·Æ,
2. Here, we may actually think of f : X � 2 as the characteristic

function χM of a set, namely the set f © 1 7 1 8 . It is then again verified that
χ © M

, v χM , χM U N
,

χM t χN , χM V N
,

χM s χN . So we find the following.

Theorem 4.24 2X is isomorphic to Tf7 X 8 .
We provide some applications of these results. The intransitive verbs of En-
glish have the category e u t. Their semantic type is therefore e � t. This in
turn means that they are interpreted as functions from objects to truth values.
We assume that the truth values are just 0 and 1 and that they form a boolean
algebra with respect to the operations t , s and v . Then we can turn the inter-
pretation of intransitive verbs into a boolean algebra in the way given above.
Suppose that the interpretation of

01' î , C # and
' C " is also canonically ex-

tended in the given way. That is: suppose that they can now also be used for
intransitive verbs and have the meaning given above. Then we can account
for a number of inferences, such as the inference from (4.25) to (4.26) and
(4.27), and from (4.26) and (4.27) together to (4.25). Or we can infer that
(4.25) implies that (4.28) is false; and so on.Õ 2(0 < D>#ÙT	0(2'@�)?04' î "�0�2.@.)ÒO(4.25) Õ 2(0 < D>#ÙT	0(2'@�)ÒO(4.26) Õ 2(0 < D>#�"
0(2'@�)ÒO(4.27) Õ 2(0 < D># î C D)Å' C "�T	0(2'@SO(4.28)

With the help of that we can now also assign a boolean structure to the tran-
sitive verb denotations. For their category is 7 e u t 8 ¾ e, which corresponds to
the type e ��7 e � t 8 . Now that the set functions from objects to truth values
carries a boolean structure, we may apply the construction again. This allows
us then to deduce (4.30) from (4.29).Õ 2(0 < D>#Ò)�D(D) C # / D�0�#�)É/�0�"�#G, F @ �(4.29) Õ 2(0 < D>#Ò)�D(D)É/�0�"�#G, F @ C # Õ 2�0 < D&# / D�0�#�)É/
0'"�#G, F @SO(4.30)

Obviously, any category that finally ends in t has a space of denotations as-
sociated to it that can be endowed with the structure of a boolean algebra.
(See also Exercise 133.) These are, however, not all categories. However, for
the remaining ones we can use a trick used already by Montague. Montague

Boolean Semantics 301

was concerned with the fact that names such as
/�D�"�D&#

and
}4%�)�04'

denote
objects, which means that their type is e. Yet, they fill a subject NP posi-
tion, and subject NP positions can also be filled by (nominative) quantified
NPs such as

) C1B D�& / ,>2 C) C & / D># , which are of type 7 e � t 8�� t. In order to
have homogeneous type assignment, Montague lifted the denotation of

/�D�"�D&#
and

}4%�)�04'
to 7 e � t 8Y� t. In terms of syntactic categories we lift from e to

t ¾ 7 e u t 8 . We have met this earlier in Section 3.4 as raising. Cast in terms of
boolean algebras this is the following construction. From an arbitrary set X
we first form the boolean algebra Tf7 X 8 and then the algebra 2 Ì ¯ X ° .
Proposition 4.25 The map x �� x† given by x† 7 f 8 :

,
f 7 x 8 is an embedding

of X into 2 Ì ¯ X ° .
Proof. Suppose that x �, y. Then x† 7 χ è x ê 8 , χ è x ê 7 x 8 , 1, while y† 7 χ è x ê 8 ,
χ è x ê 7 y 8 , 0. Thus x† �, y†. <

To see that this does the trick, consider the following sentence.

(4.31)
/�D�"�D&#Ñ04' î }4%.)>04'�T	0�2.@YO

We interpret
/�D�"�D&#

now by p>a�É$a.J k †, where p>a�É�a.J k is the individual Peter. Sim-
ilarly, hjrïhZq(oïk † interprets

}1%�)>01'
. Then (4.31) means7$p>a�É�a.J k † t�hjrïhZq(o k † 8�7Á[ªq(_6á k 8, 7$p>a�É�a.J k † 7Á[yq(_ á k 8=8�t�7lhjrXhZq(o k † 7Á[ªq(_6á k 8=8, [ªq(_6á k 7$p>a�É$a.J k 8�t¬[ªq&_ á k 7lhjrïhZq(o k 8(4.32)

So, this licenses the inference from (4.31) to (4.33) and (4.34), as required.
(We have tacitly adjusted the morphology here.)/�D�"�D&#�T
0�2.@.)ÒO
(4.33) }4%.)>04'ZT
0�2.@.)ÒO
(4.34)

It follows that we can make the denotations of any linguistic category a
boolean algebra.

The next theorem we shall prove is that boolean algebras are (up to iso-
morphism) the same as fields of sets. Before we prove the full theorem we
shall prove a special case, which is very important in many applications. An
atom is an element x �, 0 such that for all y ç x: either y

,
0 or y

,
x. At 7 · 8

denotes the set of all atoms of
·

.

302 Semantics

Lemma 4.26 In a boolean algebra, an element is an atom iff it is join irre-
ducible.

This is easy to see. An atom is clearly join irreducible. Conversely, suppose
that x is join irreducible. Suppose that 0 ç y ç x. Then

(4.35) x
, 7 x t y 8�s�7 x t¸7�v y 8=8 , y s¸7 x t¸7�v y 8=8

By irreducibility, either y
,

x or x tÙ7�v y 8 , x. From the latter we get x çÉv y,
or y çµv x, using Lemma 4.19. Since also y ç x, y ç x t¸7�v x 8 , 0. So, y

,
0.

Therefore, x is an atom. Put

(4.36) ;x :
, 5 y � At 7 · 8 : y ç x 6

The map x �� ;x is a homomorphism: ;x , At 7Á­�8.v­;x. For let u be an atom.
For any x, u

, 7 u t x 8�sx7 u tx7�v x 8=8 ; and since u is irreducible, u
,

u t x or
u
,

u t 7�v x 8 , which gives u ç x or u çÅv x. But not both, since u � 0. Second,W
x t y

, ;x tü;y, as is immediately verified.
Now, if

·
is finite, ;x is nonempty iff x �, 0.

Lemma 4.27 If
·

is finite, x
, � ;x.

Proof. Put x k : , � ;x. Clearly, x k&ç x. Now suppose x k(b x. Then 7�v x k 8>t x �, 0.
Hence there is an atom u ç�7�v x k 8�t x, whence u ç x. But u q x k , a contradic-
tion. <

A boolean algebra is said to be atomic if x is the lub ;x for all x.

Theorem 4.28 Let
·

be a finite boolean algebra. The map x ���;x is an iso-
morphism from

·
onto Tf7 At 7 · 8=8 .

Now we proceed to the general case. First, notice that this theorem is false
in general. A subset N of M is called cofinite if its complement, M v N, is
finite. Let Ω be the set of all subsets of ω which are either finite or cofinite.
Now, as is easily checked, Ω contains w , ω and is closed under complement,
union and intersection. The singletons 5 x 6 are the atoms. However, not every
set of atoms corresponds to an element of the algebra. A case in point is5�5 2k 6 : k � ω 6 . Its union in ω is the set of even numbers, which is neither
finite nor cofinite. Moreover, there exist infinite boolean algebras that have
no atoms (see the exercises). Hence, we must take a different route.

Definition 4.29 Let
·

be a boolean algebra. A point is a homomorphism
h :
· � 2. The set of points of

·
is denoted by Pt 7 · 8 .

Boolean Semantics 303

Notice that points are necessarily surjective. For we must have h 7 0 Ç]8 , 0 and
h 7 1 Ç×8 , 1. (As a warning to the reader: we will usually not distinguish 1 Ç
and 1.)

Definition 4.30 A filter of
·

is a subset that satisfies the following.

À 1 � F.

Á If x � y � F then x t y � F.

Â If x � F and x ç y then y � F.

A filter F is called an ultrafilter if F �, B and there is no filter G such that
F m G m B.

A filter F is an ultrafilter iff for all x: either x � F or v x � F . For suppose
neither is the case. Then let F x be the set of elements y such that there is a
u � F with y f u t x. This is a filter, as is easily checked. It is a proper filter: it
does not contain v x. For suppose otherwise. Then v x f u t x for some u � F .
By Lemma 4.23 this means that 0

,
u t x, from which we get u çÏv x. So,v x � F , since u � F . Contradiction.

Proposition 4.31 Let h :
· �³­ be a homomorphism of boolean algebras.

Then Fh :
,

h © 1 7 1 ®�8 is a filter of
·

. Moreover, for any filter F of
·

, ΘF
defined by x ΘF y iff x � y � F is a congruence. The factor algebra

· ¾ ΘF is
also denoted by

· ¾ F and the map x ���¦ x § ΘF by hF .

It follows that if h :
· ¤ ­ then ­ÉÊ, · ¾ Fh. Now we specialize ­ to 2. Then

if h :
· � 2, we have a filter h © 1 7 1 8 . It is clear that this must be an ultrafil-

ter. Conversely, given an ultrafilter U ,
· ¾ U Ê, 2. We state without proof the

following theorem. A set X } B has the finite intersection property if for
every finite S } X we have

;
S �, 0.

Theorem 4.32 For every subset of B with the finite intersection property
there exists an ultrafilter containing it.

Now put ;x :
, 5 h � Pt 7 · 8 : h 7 x 8 , 1 6 . It is verified thatXv x

, v�;xW
x t y

, ;x tü;y(4.37) W
x s y

, ;x sü;y

304 Semantics

To see the first, assume h � Xv x. Then h 7�v x 8 , 1, from which h 7 x 8 , 0, and
so h ��¬;x, that is to say h �fvS;x. Conversely, if h � vS;x then h 7 x 8 �, 1, whence
h 7�v x 8 , 1, showing h � Xv x. Second, h � Wx t y implies h 7 x t y 8 , 1, so h 7 x 8 ,
1 and h 7 y 8 , 1, giving h �Æ;x as well as h �Æ;y. Conversely, if the latter holds
then h 7 x t y 8 , 1 and so h � Wx t y. Similarly with s .

Theorem 4.33 The map x �� ;x is an injective homomorphism from
·

into
the algebra Tf7 Pt 7 · 8=8 . Consequently, every boolean algebra is isomorphic
to a field of sets.

Proof. It remains to see that the map is injective. To that end, let x and y be two
different elements. We claim that there is an h :

· � 2 such that h 7 x 8��, h 7 y 8 .
For we either have x q y, in which case x tÝ7�v y 8ª� 0; or we have y q x, in
which case y tÙv x � 0. Assume (without loss of generality) the first. There is
an ultrafilter U containing the set 5 x tË7�v y 8Z6 , by Theorem 4.32. Obviously,
x � U but y �� U . Then hU is the desired point. <

We point out that this means that every boolean algebra is a subalgebra of
a direct product of 2. The variety of boolean algebras is therefore generated
by 2. The original representation theorem for finite boolean algebras can be
extended in the following way (this is the route that Keenan and Faltz take).
A boolean algebra

·
is called complete if any set has a least upper bound

and a greatest lower bound.

Theorem 4.34 Let
·

be a complete atomic boolean algebra. Then
· Ê,Tf7 At 7 · 8=8 .

It should be borne in mind that within boolean semantics (say, in the spirit of
Keenan and Faltz) the meaning of a particular linguistic item is a member of a
boolean algebra, but it may at the same time be a function from some boolean
algebra to another. For example, the denotations of adjectives form a boolean
algebra, but they may also be seen as functions from the algebra of common
noun denotations (type e � t) to itself. These maps are, however, in general
not homomorphisms. The meaning of a particular adjective, say

"
0(2�2
, can in

principle be any such function. However, some adjectives behave better than
others. Various properties of such functions can be considered.

Definition 4.35 Let
·

be a boolean algebra and f : B � B. f is called
monotone iff for all x � y � B: if x ç y then f 7 x 8@ç f 7 y 8 . f is called antitone if
for all x � y � B: if x ç y then f 7 x 8�f f 7 y 8 . f is called restricting iff for each
x � B f 7 x 8yç x. f is called intersecting iff for each x � B: f 7 x 8 , x t f 7 1 8 .

Boolean Semantics 305

Adjectives that denote intersecting functions are often also called intersec-
tive. An example is

T / ,."�D . A white car is something that is both white and
a car. Hence we find that []\&^ É�a k is intersecting. Intersecting functions are
restricting but not necessarily conversely. The adjective

"
0(2�2
denotes a re-

stricting function (and is therefore also called restricting). A tall student is
certainly a student. Yet, a tall student is not necessarily also tall. The problem
is that tallness varies with the property that is in question. (We may analyze
it, say, as: belongs to the 10 % of the longest students. Then it becomes clear
that it has this property.) Suppose that students of sports are particularly tall.
Then a tall student of sports will automatically qualify as a tall student, but
a tall student may not be a tall student of sports. On the other hand, if stu-
dents of sports are particularly short, then a tall student will be a tall student
of sports, but the converse need not hold. There are also adjectives that have
none of these properties (for example,

)½%�&�& C)4D î or
0�2(2(D%4�D î). We will return

to sentential modifiers in the next section.
We conclude the section with a few remarks on the connection with theo-

ries and filters. Let Ω be the signature of boolean logic: the 0–ary symbols 0 ,¨ , the unary ¶ and the binary · and � . Then we can define boolean algebras
by means of equations, as we have done with Definition 4.17. For reference,
we call the set of equations ²3á�â . Or we may actually define a consequence
relation, for example by means of a Hilbert–calculus. Table 10 gives a com-
plete set of axioms, which together with the rule MP axiomatize boolean
logic. Call this calculus H�| . We have to bring the equational calculus and the
deductive calculus into correspondence. We have a calculus of equations (see
Section 1.1), which tells us what equations follow from what other equations.
Write ϕ � χ in place of 7 ϕ � χ 8��¸7 χ � ϕ 8 .
Theorem 4.36 The following are equivalent.

À ~MY&Z ϕ � χ .

Á For every boolean algebra ­ : ­ Ð ϕ
,

χ .

Â ²3á�â ~ ϕ
,

χ .

The proof is lengthy, but routine. Á and Â are equivalent by the fact that an
algebra is a boolean algebra iff it satisfies ²yá�â . So, À å Â needs proof. It
rests on the following

Lemma 4.37 (a) ~ Y&Z ϕ iff ~ Y&Z 0�� ϕ .
(b) ²3á�â ~ ϕ

,
χ iff ²yá�âü~C0 , ϕ � χ .

306 Semantics

Table 10. The Axioms of Propositional Logic

(a0) p0 ��7 p1 � p0 8
(a1) 7 p0 � 7 p1 � p2 8=8»��7=7 p0 � p1 8���7 p0 � p2 8=8
(a2) 7=7 p0 � p1 8»� p0 8�� p0
(a3) ¨µ� p0
(a4) ¶ p0 ��7 p0 �W¨¬8
(a5) 7 p0 ��¨¬8�� ¶ p0
(a6) 0
(a7) p0 ��7 p1 ��7 p0 � p1 8=8
(a8) 7 p0 � p1 8�� p0
(a9) 7 p0 � p1 8�� p1
(a10) p0 ��7 p0 · p1 8
(a11) p1 ��7 p0 · p1 8
(a12) 7=7 p0 · p1 8�� p2 8»��7=7 p0 � p2 8��¸7 p1 � p2 8=8

Proof. (a) Suppose that ~�Y&Z ϕ . Since ~QY&Z ϕ � 7�0É� ϕ 8 we get ~QY&Z 0 � ϕ .
Similarly, from ~ Y&Z 0 we get ~ Y&Z ϕ ��0 . Conversely, if ~ Y&Z 0?� ϕ , then
with (a8) we get ~ Y&Z 0�� ϕ and with (a6) and MP, ~ Y&Z ϕ . (b) We can take
advantage of our results on BAs here. Put a [b :

, 7�v a s b 8(t¸7 a sÙv b 8 . The
claim boils down to a [b

,
1 iff a

,
b. Now, if a [b

,
1, then v a s b

,
1,

from which a ç b, and also a s�v b
,

1, from which b ç a. Together this gives
a
,

b. Conversely, if a
,

b then v a s b
, v b s b

,
1 and a s�v b

,
a s«v a

,
1,

showing a [b
,

1. <
The next thing to show is that if ²3á�â«~�0 ,

ϕ � χ ; 0 ,
ϕ then also²3á�âü~p0 , χ . Finally, for all ϕ of the form (a1) – (a12), ²3á�â ~p0 , ϕ . This

will show that ~\Y&Z ϕ implies ²3á�â·~ 0 , ϕ . À is an immediate consequence.
For the converse direction, first we establish that for all basic equations ϕ

,
χ

of ²yá�â we have ~QY&Z ϕ � χ . This is routine. Closure under substitution is
guaranteed for theorems. So we need to show that this is preserved by the
inference rules of Proposition 1.12, that is:~ Y&Z ϕ � ϕ(4.38a)

ϕ � χ ~ Y&Z χ � ϕ(4.38b)

ϕ � χ ; χ � ψ ~ Y&Z ϕ � ψ(4.38c) 5 ϕi � χi : i b Ω 7 f 8Z6W~ Y&Z f 7 Eϕ 8»� f 7 Eχ 8(4.38d)

Boolean Semantics 307

In the last line, f is one of the basic functions. The verification is once again
routine. We shall now show that the so–defined logic is indeed the logic of
the two element matrix with designated element 1. By DT (which holds inH�|), ϕ � χ iff ϕ ~ Y&Z χ and χ ~ Y&Z ϕ .

(4.39) Θ] :
, 5(� ϕ � χ � : ~ Y&Z ϕ � χ 6

Θ] is a congruence on the term algebra. What is more, it is admissible for
every deductively closed set. For if Σ is deductively closed and ϕ � Σ, then
also χ � Σ for every χ Θ] ϕ , by Modus Ponens.

Lemma 4.38 ±@² Ω 7 V 8 ¾ Θ] is a boolean algebra. Moreover, if Σ is a deduc-
tively closed set in ±@² Ω 7 V 8 then Σ ¾ Θ] is a filter on ±@² Ω 7 V 8 ¾ Θ] . If Σ is
maximally consistent, Σ ¾ Θ] is an ultrafilter. Conversely, if F is a filter on±@² Ω 7 V 8 ¾ Θ] , then h © 1

Θ ^ ¦ F § is a deductively closed set. If F is an ultrafilter,
this set is a maximally consistent set of formulae.

Thus, ~ Y&Z is the intersection of all Ð�_ ® é F ` , where ­ is a boolean algebra and
F a filter. Now, instead of deductively closed sets we can also take maximal
(consistent) deductively closed sets. Their image under the canonical map
is an ultrafilter. However, the equivalence ΘU :

, 5(� x � y � : x � y � U 6 is a
congruence, and it is admissible for U . Thus, we can once again factor it out
and obtain the following completeness theorem.

Theorem 4.39 ~QY&Z , Ð _ 222 é è 1 ê�` .
This says that we have indeed axiomatized the logic of the 2–valued algebra.
What is more, equations can be seen as statements of equivalence and con-
versely. We can draw from this characterization a useful consequence. Call a
propositional logic inconsistent if every formula is a theorem.

Corollary 4.40 H»| is maximally complete. That is to say, if an axiom or rule
ρ is not derivable in H»| , H�|×g ρ is inconsistent.

Proof. Let ρ
, � ∆ � ϕ � be a rule that is not derivable in H�| . Then by Theo-

rem 4.39 there is a valuation β which makes every formula of ∆ true but ϕ
false. Define the following substitution: σ 7 p 8 :

, 0 if β 7 p 8 , 1, and σ 7 p 8 :
,¨ otherwise. Then for every χ � ∆, σ 7 χ 8»�W0 , while σ 7 ϕ 8���¨ . Hence, asH�| derives σ 7 χ 8 for every χ � ∆, it also derives σ 7 ϕ 8 , and so ¨ . On the other

hand, in H»| , everything follows from ¨ . Thus, H»|×g ρ is inconsistent. <

308 Semantics

Notes on this section. The earliest sources of propositional logic are the
writing of the Stoa, notably by Chrysippos. Stoic logic was couched in terms
of inference rules. The first to introduce equations and a calculus of equations
was Leibniz. The characterization of ç in terms of union (or intersection) is
explicitly mentioned by him. Leibniz only left incomplete notes. Later, de
Morgan, Boole and Frege have completed the axiomatization of what is now
known as Boolean logic.

Exercise 142. Show that x ç y iff x t y
,

x.

Exercise 143. For a lattice ^ , � L ��t���sª� define ^ d :
, � L ��s���tª� . Show that

this is lattice as well. Obviously, ^ dd , ^ . ^ d is called the dual lattice of ^ .
The dual of a lattice term td is defined as follows. xd :

,
x if x is a variable,7 t s t k 8 d :

,
td t t k d , 7 t t t k 8 d :

,
td s t k d . Evidently, ^ÄÐ s

,
t iff ^ d Ð sd , td .

Deduce that s
,

t holds in every lattice iff sd , td holds in every lattice.

Exercise 144. (Continuing the previous exercise.) For a boolean term define
additionally 0d :

,
1, 1d :

,
0, 7�v t 8 d :

, v td and
· d :

, � B � 1 � 0 ��s ��t��iv]� for·Ó, � B � 0 � 1 ��t���s��iv]� . Show that
· d Ê, · . This implies that

· Ð s
,

t iff· Ð sd , td .

Exercise 145. Prove Lemma 4.22.

Exercise 146. Let ç be a partial ordering on L with finite lubs and glbs.
Define x s y :

,
lub 5 x � y 6 , and x t y :

,
glb 5 x � y 6 . Show that � L ��t���sy� is a lattice.

Exercise 147. Let ¿ be the set of entire numbers. For i � j � ω and j b 2i let
Ri é j :

, 5 m Â 2i g j : m � ¿�6 . Let H be the set of subsets of ¿ generated by all
finite unions of sets of the form Ri é j . Show that H forms a field of sets (hence
a boolean algebra). Show that it has no atoms.

3. Intensionality

Leibniz’ Principle has given rise to a number of problems in formal seman-
tics. One such problem is its alleged failure with respect to intensional con-
texts. This is what we shall discuss now. The following context does not admit
any substitution of A by a B different from A without changing the truth value
of the entire sentence.

(4.40)
s / DÏD�$�&�#�D)()%, C ' "

A
*c,�)±" / Dý)>0 B DÏD%$'&�#�D)�)�, C 'Ñ0
) "

B
*�O

Intensionality 309

Obviously, if such sentences were used to decide about synonymy, no expres-
sion is synonymous with any other. However, the feeling with these types of
sentences is that the expressions do not enter with their proper meaning here;
one says, the expressions A and B are not used in (4.40) they are only men-
tioned. This need not cause problems for our sign based approach. We might
for example say that the occurrences of A where A is used are occurrences
with a different category than those where A is mentioned. If we do not as-
sume this we must exclude those sentences in which the occurrences of A or
B are only mentioned, not used. However, in that case we need a criterion for
deciding when an expression is used and when it is mentioned. The picture is
as follows. Let S 7 x 8 be shorthand for a sentence S missing a constituent x. We
call them contexts. Leibniz’ Principle says that A and B have identical mean-
ing, in symbols A ð B, iff S 7 A 8»� S 7 B 8 is true for all S 7 x 8 . Now, let Σ be the
set of all contexts, and Π the set of all contexts where the missing expression
is used, not mentioned. Then we end up with two kinds of identity:

A ð Σ B : å 7�~ S 7 x 83� Σ 8�7 S 7 A 8»� S 7 B 8=8(4.41)

A ð Π B : å 7�~ S 7 x 83� Π 8�7 S 7 A 8�� S 7 B 8=8(4.42)

Obviously, ð Σ }cð Π. Generalizing this, we get a Galois correspondence here
between certain sets of contexts and equivalence relations on expressions.
Contexts outside of Π are called hyperintensional. In our view, (4.40) does
not contain occurrences of the language signs for A and B but only occur-
rences of strings. Strings denote themselves. So, what we have inserted are
not the same signs as the signs of the language, and this means that Leib-
niz’ Principle is without force in example (4.40) with respect to the signs.
However, if put into the context

" / D B D�01'-,ï'�4 C : " *
, we get the actual

meaning of A that the language gives to it. Thus, the following is once again
transparent for the meanings of A and B:s / DÏD%$�&�#�D
)�)%, C 'Ó"

A
* / 0�)±" / Dý)>0 B D B D�04'V,X'�4Ï0
)±" / D(4.43) D%$�&�#�D
)�)%, C 'Ó"

B
*�O

A hyperintensional context isA C / '�" / ,X'�@.)k" / 0�"Ù&	0�2�, B &.)�D
)�"�) 0>#�Dÿ2(D�0 : 2&D�"�)ÒO(4.44)

What John thinks here is that the expression
&�0(2�, B &�)4D)#" denotes a special

kind of leaflet, where in fact it denotes a kind of manuscript. Although this

310 Semantics

is a less direct case of mentioning an expression, it still is the case that the
sign with exponent

&�0(2�, B &�)4D)�" is not an occurrence of the genuine English
language sign, because it is used with a different meaning. The meaning of
that sign is once again the exponent (string) itself.

There are other problematic instances of Leibniz’ Principle, for example
the so–called intensional contexts. Consider the following sentences.s / D B�C #>'-,ï'�4ý)#"
0>#Â,�)±" / DÏD < D4'-,ï'�4ý)#"
0>#�O
(4.45) A C / ' í D�2�,�D < D
)k" / 0�"�" / D B�C #&'V,X'�4ý)�"�0>#Â,�)±" / D(4.46) B�C #>'-,ï'�4ý)#"
0>#�OA C / ' í D�2�,�D < D
)k" / 0�"�" / D B�C #&'V,X'�4ý)�"�0>#Â,�)±" / D(4.47) D < D4'-,ï'�4ý)#"
0>#�Os / Dý)�a>%	0>#�D?# C(C " C : � ,�)?2(D)()k" / 04' ��ï�� O(4.48) A C / ' í D�2�,�D < D
)k" / 0�"�" / Dý)�a>%�0�#�D?# C�C " C : � ,�)(4.49) 2(D)()±" / 04' ��ï%� O
It is known that (4.45) is true. However, it is quite conceivable that (4.46)
may be true and (4.47) false. By Leibniz’ Principle, we must assume that

" / DB�C #&'-,ï'�4ý)#"
0�#
and

" / DÏD < D4'-,ï'�4ý)#"
0>#
have different meaning. However,

as Frege points out, in this world they refer to the same thing (the planet
Venus), so they are not different. Frege therefore distinguishes reference (Be-
deutung) from sense (Sinn). In (4.45) the expressions enter with their refer-
ence, and this is why the sentence is true. In (4.46) and (4.47), however, they
do not enter with their reference, otherwise John holds an inconsistent be-
lief. Rather, they enter with their senses, and the senses are different. Thus,
we have seen that expressions that are used (not mentioned) in a sentence
may either enter with their reference or with their sense. The question is
however the same as before: how do we know when an expression enters
with its sense rather than its reference? The general feeling is that one need
not be worried by that question. Once the sense of an expression is given,
we know what its reference is. We may think of the sense as an algorithm
that gives us the reference on need. (This analogy has actually been pushed
by Yannis Moschovakis, who thinks that sense actually is an algorithm (see
(Moschovakis, 1994)). However, this requires great care in defining the no-
tion of an algorithm, otherwise it is too fine grained to be useful. Moschovakis
shows that equality of meaning is decidable, while equality of denotation
is not.) Contexts that do not vary with the sense only with the reference of

Intensionality 311

their subexpression are called extensional. Nonextensional contexts are in-
tensional. Just how fine grained intensional contexts are is a difficult matter.
For example, it is not inconceivable that (4.48) is true but (4.49) is false. Since, 2 b 1 � 5 we expect that it cannot be otherwise, and that one cannot even be-
lieve otherwise. This holds, for example, under the modal analysis of belief
by Hintikka (1962). Essentially, this is what we shall assume here, too. The
problem of intensionality with respect to Leibniz’ Principle disappears once
we realize that it speaks of identity in meaning, not just identity in denota-
tion. These are totally different things, as Frege rightly observed. Of course,
we still have to show how meaning and denotation work together, but there is
no problem with Leibniz’ Principle.

Intensionality has been a very important area of research in formal se-
mantics, partly because Montague already formulated an intensional system.
The influence of Carnap is clearly visible here. It will turn out that equating
intensionality with normal modal operators is not always helpful. Neverthe-
less, the study of intensionality has helped enormously in understanding the
process of algebraization.

Let A :
, 5�Ij�iJ(� & ��G
�ZH&��S
��U	��¾ ¾ ¾¶6 , where the boolean symbols are used as be-

fore and ¾ ¾ ¾ is a unary symbol, which is written before its argument. We form
expressions in the usual way, using brackets. The language we obtain shall
be called LM . The abbreviations ϕ � χ and ϕ � χ as well as typical short-
hands (omission of brackets) are used without warning. Notice that we have
a propositional language, so that the notions of substitution, consequence re-
lation and so on can be taken over straightforwardly from Section 4.1.

Definition 4.41 A modal logic is a subset L of LM which contains all boolean
tautologies and which is closed under substitution and Modus Ponens. L is
called classical if from ϕ � χ � L follows that ¾ ϕ � ¾ χ � L, monotone if
from ϕ � χ � L follows ¾ ϕ � ¾ χ � L. L is normal if for all ϕ � χ � LM (a)¾ 7 ϕ � χ 8���7¯¾ ϕ �Ü¾ χ 8Y� L, (b) if ϕ � L then ¾ ϕ � L.

The smallest normal modal logic is denoted by

Ý
, after Saul Kripke. A quasi–

normal modal logic is a modal logic that contains

Ý
. One also defines

(4.50) b ϕ :
, U@Tt¾¾ ¾ÝTPU ϕ W(W

and calls this the dual operator (see Exercise 144). ¾ is usually called a
necessity operator, b a possibility operator. If ϕ is an axiom and L a (nor-
mal) modal logic, then L g ϕ (L � ϕ) is the smallest (normal) logic containing
L sì5 ϕ 6 . Analogously the notation L g Γ, L � Γ for a set Γ is defined.

312 Semantics

Definition 4.42 Let L be a modal logic. Then ~ L is the following conse-
quence relation. ∆ ~ L ϕ iff ϕ can be deduced from ∆ s L using (mp) only.� L is the consequence relation generated by the axioms of L, the rule (mp)
and the rule (mn): ��5 & 6>�XI
¾ ¾ ¾ & J4� . ~ L is called the local consequence relation,� L the global consequence relation associated with L.

It is left to the reader to verify that this indeed defines a consequence relation.
We remark here that for ~�c the rule (mn) is by definition admissible. How-
ever, it is not derivable (see the exercises) while in �dc it is, by definition.
Before we develop the algebraic approach further, we shall restrict our at-
tention to normal logics. For these logics, a geometric (or ‘model theoretic’)
semantics has been given.

Definition 4.43 A Kripke–frame is a pair � F �
Î]� where F is a set, the set of
worlds, and Î?} F2, the accessibility relation. A generalized Kripke–frame
is a triple � F �
ÎØ�_°�� where � F �
Î]� is a Kripke–frame and °Ä} ℘7 F 8 a field of
sets closed under the operation e on ℘7 F 8 defined as follows:

(4.51) e A :
, 5 x : for all y : if x Î y then y � A 6

Call a valuation into a general Kripke–frame ¹ , � F �
Î¬�_°�� a function β : V �° .

(4.52)

�Á¹ª� β � x ��Ð p å x � β 7 p 8 7 p � V 8�Á¹ª� β � x �+ÐÃTPU ϕ Wyå �Á¹ª� β � x �#µ ϕ�Á¹ª� β � x �+ÐÃT ϕ S χ Wyå �Á¹ª� β � x �+Ð ϕ ; χ�Á¹ª� β � x ��ÐÍT
¾¾ ¾ ϕ Wªå for all y : if x Î y then �Á¹ª� β � y �+Ð ϕ

(One often writes x Ð ϕ , suppressing ¹ and β .) Furthermore, the local frame
consequence is defined as follows. ∆ Ð:f ϕ if for every β and x: if �Á¹ª� β � x ��Ð δ
for every δ � ∆ then �Á¹ª� β � x �»Ð ϕ . This is a consequence relation. Moreover,
the axioms and rules of H�| are valid. Furthermore,

(4.53) Ðgf ¾ 7 ϕ � χ 8���7¯¾ ϕ �Ü¾ χ 8
For if x Ð�¾ì7 ϕ � χ 8 ; ¾ ϕ and x Î y then y Ð ϕ � χ ;ϕ , from which y Ð χ . As y
was arbitrary, x Ð«¾ χ . Finally, suppose that ¹ËÐ ϕ . Then ¹¸ÐÆ¾ ϕ . For choose
x and β . Then for all y such that x Î y: �Á¹ª� β � y �+Ð ϕ , by assumption. Hence�Á¹ª� β � x �.Ðà¾ ϕ . Since x and β were arbitrarily chosen, the conclusion follows.
Define ∆ Ð gf ϕ if for all β : if β 7 δ 8 , F for all δ � ∆, then also β 7 ϕ 8 , F .

Intensionality 313

This is the global frame consequence determined by ¹ . For a class of frames´ we put

(4.54) Ð�¼ :
,h8 ��Ðgf : ¹f� ´��

Analogously, Ð g¼ is the intersection of all Ð gf , ¹���´ .

Theorem 4.44 For every class ´ of frames there is a modal logic L such thatÐ�¼ , ~ L. Moreover, Ð g¼ , � L.

Proof. We put L :
, 5 ϕ : wÏÐ�¼ ϕ 6 . We noticed that this is a normal modal

logic if ´ is one membered. It is easy to see that this therefore holds for all
classes of frames. Clearly, since both ~ L and Ð�¼ have a deduction theorem,
they are equal if they have the same tautologies. This we have just shown. For
the global consequence relation, notice first that L

, 5 ϕ : wÃÐ g¼ ϕ 6 . Moreover,� L is the smallest global consequence relation containing ~ L, and similarlyÐ g¼ the smallest global consequence relation containing ÐY¼ . <
We shall give some applications of modal logic to the semantics of natural

language. The first is that of (meta)physical necessity. In uttering (4.55) we
suggest that (4.56) obtains whatever the circumstances. Likewise, in uttering
(4.57) we suggest that there are circumstances under which (4.58) is true.�&L�� ,�)Å'	D F D
)�)>0�#n,>2 × 4&#�D�0�"�D>#�" / 04' N O(4.55) �&L�� ,�)\4(#�D�0'"�D&#Ù" / 01' N O(4.56) Õ 0&D)>0�# B ,.4 / " ' C " / 0 < D î D : D�0'"�D î 7 D># F ,ï'�4�D�" C #n,.$�O(4.57) Õ 0&D)>0�# / 0�)Å' C " î D : D�0'"�D î 7 D&# F ,ï'�4�D�" C #n,'$�O(4.58)

The analysis is as follows. We consider
'
D F D)�)�0>#G,&2 × as an operator on sen-

tences. Although it appears here in postverbal position, it may be rephrased by,."Â,�)É'
D F D)�)�0># × " / 0�" , which can be iterated any number of times. The
same can be done with B ,.4 / " , which can be rephrased as

,�" ,�)U& C)�)%, í 2&D" / 0�" and turns out to be the dual of the first. We disregard questions of form
here and represent sentential operators simply as ¾ and b , prefixed to the
sentence in question. ¾ is a modal operator, and it is normal. For example, if
A and B are both necessary, then so is A � B, and conversely. Second, if A is
logically true, then A is necessary. Necessity has been modelled following to
Carnap by frames of the form �W � W e W � . Metaphysically possible worlds
should be possible no matter what is the case (that is, no matter which world

314 Semantics

we are in). It turns out that the interpretation above yields a particular logic,
called

Þ2i
.

(4.59)

Þ2i
:
, Ý � 5 p �jb p �kb p �9b6b p � p �Ü¾	b p 6

We defer a proof of the fact that this characterizes

Þ2i
.

Hintikka (1962) has axiomatized the logic of knowledge and belief. Write¦KJ § ϕ to represent the proposition ‘John knows that ϕ’ and ¦ BJ § ϕ to repre-
sent the proposition ‘John believes that ϕ’. Then, according to Hintikka, both
turn out to be normal modal operators. In particular, we have the following
axioms. ¦ BJ §�7 ϕ � χ 8 logical ‘omniscience’ for belief(4.60) � 7=¦BJ § ϕ ��¦BJ § χ 8¦ BJ § ϕ ��¦ BJ §�¦BJ § ϕ positive introspection for belief(4.61) ¦KJ §�7 ϕ � χ 8 logical omniscience(4.62) ��7=¦KJ § ϕ ��¦KJ § χ 8¦KJ § ϕ � ϕ factuality of knowledge(4.63) ¦KJ § ϕ ��¦KJ §�¦KJ § ϕ positive introspection(4.64) ¶ ¦KJ § ϕ ��¦KJ § ¶ ¦KJ § ϕ negative introspection(4.65)

Further, if ϕ is a theorem, so is ¦ BJ § ϕ and ¦KJ § ϕ . Now, we may either study
both operators in isolation, or put them together in one language, which now
has two modal operators. We trust that the reader can make the necessary
amendments to the above definitions to take care of any number of operators.
We can can then also formulate properties of the operators in combination. It
turns out, namely, that the following holds.

(4.66) ¦KJ § ϕ ��¦BJ § ϕ
The logic of ¦BJ § is known as

Ýml
:
, Ý � b6b p �nb p and it is the logic of

all transitive Kripke–frames; ¦KJ § is once again

Þ2i
. The validity of this set of

axioms for the given interpretation is of course open to question.
A different interpretation of modal logic is in the area of time. Here there

is no consensus on how the correct model structures look like. If one believes
in determinism, one may for example think of time points as lying on the real
line �2� �Zb]� . Introduce an operator < by

(4.67) �2� �ZbØ� β � t �ªÐ < χ : å for all t k � t : �2� �Zb¬� β � t k ��Ð χ

Intensionality 315

One may read < χ as it will always be the case that χ . Likewise, o χ may be
read as it will at least once be the case that χ . The logic of < is

(4.68) p�\Y�2� �Pb]� :
, 5 χ : for all β � x : �2� �PbØ� β � x �ªÐ χ 6

Alternatively, we may define an operator < by

(4.69) �2� �ZbØ� β � t �ªÐ < χ : å for all t k b t : �2� �Zb¬� β � t k ��Ð χ

to be read as it has always been the case that χ . Finally, o χ reads it has been
the case that χ . On �2� �ib]� , < has the same logic as < . We may also study both
operators in combination. What we get is a bimodal logic (which is simply
a logic over a language with two operators, each defining a modal logic in
its own fragment). Furthermore, �2� �ib]��Ð p � < o p; p � < o p. The details
need not be of much concern here. Suffice it to say that the modelling of
time with the help of modal logic has received great attention in philosophy
and linguistics. Obviously, to be able to give a model theory of tenses is an
important task. Already Montague integrated into his theory a treatment of
time in combination with necessity (as discussed above).

We shall use the theory of matrices to define a semantics for these log-
ics. We have seen earlier that one can always choose matrices of the form�l±@² Ω 7 V 8P� ∆ � , ∆ deductively closed. Now assume that L is classical. Then
put ϕ Θ]L χ if ϕ � χ � L. This is a congruence relation, and we can form
the factor algebra along that congruence. (Actually, classicality is exactly the
condition that � induces a congruence relation.) It turns out that this algebra
is a boolean algebra and that ¾ is interpreted by a function e on that boolean
algebra (and b by a function q).

Definition 4.45 A boolean algebra with (unary) operators (BAO) is an al-
gebra � A � 0 � 1 ��t���s �ivØ�Z�re i : i b κ �=� such that e i : A � A for all i b κ .

If furthermore L is a normal modal logic, e turns out to be a so–called hemi-
morphism.

Definition 4.46 Let
·

be a boolean algebra and h : B � B a map. h is called
a hemimorphism if (i) e 1

,
1 and (2) for all x � y � B: e 7 x t y 8 , e 7 x 81tse 7 y 8 .

A multimodal algebra is an algebra ø , � M � 0 � 1 ��t���s��ivØ�Z�re i : i b κ �=� ,
where � M � 0 � 1 ��t���s��iv]� is a boolean algebra and e i, i b κ , a hemimorphism
on it.

316 Semantics

We shall remain with the case κ
,

1 for reasons of simplicity. A hemimor-
phism is thus not a homomorphism (since it does not commute with s). The
modal algebras form the semantics of modal propositional logic. We also
have to look at the deductively closed sets. First, if ϕ Θ]L χ then ϕ � ∆ iff
χ � ∆. So, we can factor ∆ by Θ]L . It turns out that ∆, being closed under
(mp), becomes a filter of the boolean quotient algebra. Thus, normal modal
logics are semantically complete with respect to matrices �løÀ� F � , where ø
is a modal algebra and F a filter. We can refine this still further to F being an
ultrafilter. This is so since if ∆ ´ L ϕ there actually is a maximally consistent
set of formulae that contains ∆ but not ϕ , and reduced by Θ]L this turns into
an ultrafilter. Say that ø�Ð χ if �løÀ� U ��Ð χ for all ultrafilters U on ø . Since
x is in all ultrafilters iff x

,
1, we have ø Ð χ exactly if for all homomor-

phisms h into ø , h 7 χ 8 , 1. (Equivalently, ø Ð χ iff �løÀ��5 1 61�3Ð χ .) Notice
that øæÐ ϕ � χ if for all h: h 7 ϕ 8Yç h 7 χ 8 .

Now we shall apply the representation theory of the previous section. A
boolean algebra can be represented by a field of sets, where the base set is the
set of all ultrafilters (alias points) over the boolean algebra. Now take a modal
algebra ø . Underlying it we find a boolean algebra, which we can represent
by a field of sets. The set of ultrafilters is denoted by U 7løÑ8 . Now, for two
ultrafilters U , V put U Î V iff for all e x � U we have x � V . Equivalently,
U Î V iff x � V implies q x � U . We end up with a structure � U 7løÑ8P�
Î¬��É@� ,
where Î is a binary relation over U 7løÑ8 and ÉÝ} ℘7 U 7løÑ8=8 a field of sets
closed under the operation A ��9e A.

A modal algebra ø is an

Þ2i
–algebra if it satisfies the axioms given above.

Let ø be an

Þ2i
–algebra and U � V � W ultrafilters. Then (a) U Î U . For let

x � U . Then q x � U since øþÐ p �tb p. Hence, U Î U . (b) Assume U Î V
and V Î W . We show that U Î W . Pick x � W . Then q x � V and so q6q x � U .
Since ø�Ðdbub p �vb p, we have q x � U . (c) Assume U Î V . We show V Î U .
To this end, pick x � U . Then e	q x � U . Hence q x � V , by definition of Î .
Hence we find that Î is an equivalence relation on U 7løÑ8 . More exactly, we
have shown the following.

Proposition 4.47 Let ø be a modal algebra, and ÎÉ} U 7løÑ8 2 be defined as
above.

À ø�Ð p �9b p iff Î is reflexive.

Á ø�Ð�b6b p �9b p iff Î is transitive.

Â ø�Ð p �Ü¾-b p iff Î is symmetric.

Intensionality 317

The same holds for Kripke–frames. For example, � F �
Î]�	Ð p �wb p iff Î is re-
flexive. Therefore, � U 7løÑ8P�
Î]� already satisfies all the axioms of

Þ2i
. Finally,

let � F �
Î]� be a Kripke–frame, G } F be a set such that x � G and x Î y implies
y � G. (Such sets are called generated.) Then the induced frame � G �
ÎÝt G2 �
is called a generated subframe. A special case of a generated subset is the
set F e x consisting of all points that can be reached in finitely many steps
from x. Write ¹ e x for the generated subframe induced by F e x. Then a
valuation β on ¹ induces a valuation on ¹Æe x, which we denote also by β .

Lemma 4.48 �Á¹ª� β � x �+Ð ϕ iff �Á¹Æe x � β � x �+Ð ϕ . It follows that if ¹ËÐ L and `
is a generated subframe of ¹ then also ` Ð L.

A special consequence is the following. Let ¹ 0 :
, � F0 �
Î 0 � and ¹ 1 :

, � F1 �
Î 1 �
be Kripke–frames. Assume that F0 and F1 are disjoint.

(4.70) ¹ 0
� ¹ 1 :

, � F0 s F1 �
Î 0 s Î 1 �
Then ¹ 0

� ¹ 1 Ð ϕ iff ¹ 0 Ð ϕ and ¹ 1 Ð ϕ . (For if x � F0 then �Á¹ 0
� ¹ 1 � β � x �.Ð ϕ

iff �Á¹ 0 � β � x �3Ð ϕ , and analogously for x � F1.) It follows that a modal logic
which is determined by some class of Kripke–frames is already determined
by some class of Kripke–frames generated from a single point. This shows
the following.

Theorem 4.49
Þ2i

is the logic of all Kripke–frames of the form � M � M e M � .
Now that we have looked at intensionality we shall look at the question of

individuation of meanings. In algebraic logic a considerable amount of work
has been done concerning the semantics of propositional languages. Notably
in Blok and Pigozzi (1990) Leibniz’ Principle was made the starting point of
a definition of algebraizability of logics. We shall exploit this work for our
purposes here. We start with a propositional language of signature Ω. Recall
the definition of logics, consequence relation and matrix from Section 4.1. We
distinguish between a theory, (world) knowledge and a meaning postulate.

Definition 4.50 Let ~ be a consequence relation. A ~ –theory is a set ∆ such
that ∆ 4 , ∆. If T is a set such that T 4 , ∆, T is called an axiomatization of
∆.

Theories are therefore sets of formulae, and they may contain variables. For
example, 5�Q �
�XT�Q �0�3TZU�Q �m�(W(W�6 is a theory. However, in virtue of the fact that

318 Semantics

variables are placeholders, it is not appropriate to say that knowledge is es-
sentially a theory. Rather, for a theory to be knowledge it must be closed
under substitution. Sets of this form shall be called logics.

Definition 4.51 Let ~ be a structural consequence relation. A ~ –logic is a~ –theory closed under substitution.

Finally, we turn to meaning postulates. Here, it is appropriate not to use sets
of formulae, but rather equations.

Definition 4.52 Let L be a propositional language. A meaning postulate for
L is an equation. Given a set M of meaning postulates, an equation s

,
t

follows from M if s
,

t holds in all algebras satisfying M.

Thus, the meaning postulates effectively axiomatize the variety of meaning
algebras, and the consequences of a set of equations can be derived using the
calculus of equations of Section 1.1. In particular, if f is an n–ary operation
and si

,
ti holds in the variety of meaning algebras, so does f 7ÈEs 8 , f 7 Et 8 , and

likewise, if s
,

t holds, then σ 7 s 8 , σ 7 t 8 holds for any substitution σ . These
are natural consequences if we assume that meaning postulates characterize
identity of meaning. We shall give an instructive example.Õ 0&D)>0�# F # C)()�D î " / DÚF&% í , F C 'WO(4.71) A C / ' î C D)Å' C " í D�2�,�D < D\" / 0�" Õ 0&D)�0># F # C)()�D î " / D(4.72) F(% í , F C 'WO6 0 F#/ D�2 C #�)�0�#�D�%�' B 0�#�#n,�D î B D�'YO(4.73) A C / ' î C D)Å' C " í D�2�,�D < D\" / 0�" í 0 F#/ D�2 C #�)É0>#�D(4.74) %�' B 0>#(#n,>D î B D4'WO
It is not part of the meanings of the words that Caesar crossed the Rubicon,
so John may safely believe or disbelieve it. However, it is part of the language
that bachelors are unmarried men, so not believing it means associating dif-
ferent meanings to the words. Thus, if (4.73) is true and moreover a meaning
postulate, (4.74) cannot be true.

It is unfortunate having to distinguish postulates that take the form of a
formula from those that take the form of an equation. Therefore, one has
sought to reduce the equational calculus to the logical calculus and con-
versely. The notion of equivalential logic has been studied among other by
Janusz Czelakowski and Roman Suszko. The following definition is due to

Intensionality 319

Prucnal and Wroński (1974). (For a set Φ of formulae, we write ∆ ~ Φ to say
that ∆ ~ ϕ for all ϕ � Φ.)

Definition 4.53 Let ~ be a consequence relation. We call the set ∆ 7 p � q 8 ,5 δi 7 p � q 8 : i � I 6 a set of equivalential terms for ~ if the following holds~ ∆ 7 p � p 8(4.75a)

∆ 7 p � q 8þ~ ∆ 7 q � p 8(4.75b)

∆ 7 p � q 8 ;∆ 7 q � r 8þ~ ∆ 7 p � r 8(4.75c) �
i Ω ¯ f ° ∆ 7 pi � qi 89~ ∆ 7 f 7�Ep 8P� f 7$Eq 8=8(4.75d)

p;∆ 7 p � q 8ÿ~ q(4.75e)~ is called equivalential if it has a set of equivalential terms, and finitely
equivalential if it has a finite set of equivalential terms. If ∆ 7 p � q 8 , 5 δ 7 p � q 8Z6
is a set of equivalential terms for ~ then δ 7 p � q 8 is called an equivalential
term for ~ .

As the reader may check, p � q is an equivalential term for ~ Y&Z . If there
is no equivalential term then synonymy is not definable language internally.
(Zimmermann, 1999) discusses the nature of meaning postulates. He requires
among other that meaning postulates should be expressible in the language
itself. To that effect we can introduce a 0–ary symbol x and a binary symbol[[[such that [[[is an equivalential term for ~ in the expanded language. (So,
we add (4.75) for ∆ 7 p � q 8 :

, 5�T p [[[q W>6 .) To secure that [[[and x do the job
as intended, we shall stipulate that the logical and the equational calculus are
intertranslatable in the following way.5 si � ti : i b n 6 Ð u � v å 5�T si [[[ti W : i b n 6S~ÃT u [[[v W(4.76) 5 δi : i b κ 6�~ ϕ å 5 δi � � : i b κ 6�Ð ϕ � �(4.77)

Here, Ð denotes model theoretic consequence, or, alternatively, derivability
in the equational calculus (see Section 1.1). In this way, equations are trans-
lated into sets of formulae. In order for this translation to be faithful in both
directions we must require the following (see (Pigozzi, 1991)).

(4.78) x ~ÃT x [[[æ�(W (G–rule)

An equivalent condition is x;y ~ÃT x [[[y W . Second, we must require that

(4.79) T x [[[y W � �;Ð x � y (R–rule)

320 Semantics

Then one can show that on any algebra ­ and any two congruences Θ, Θ k
on ­ , Θ

,
Θ k iff ¦yxO§ Θ , ¦yxO§ Θ k , so every congruence is induced by a theory.

(Varieties satisfying this are called congruence regular.) Classical modal
logics admit the addition of [. x is simply 0 . The postulates can more or less
directly be verified. Notice however that for a modal logic L there are two
choices for ~ in Definition 4.53: if we choose � L then p � q is an equiv-
alential term; if, however, we choose ~ L then 5�¾ n 7 p � q 8 : n � ω 6 is a set of
equivalential terms. In general no finite set can be named in the local case.

In fact, this holds for any logic which is an extension of boolean logic
by any number of congruential operators. There we may conflate meaning
postulates with logics. However, call a logic Fregean if it satisfies 7 p � q 8��7 p [q 8 . A modal logic is Fregean iff it contains p � ¾ p. There are exactly
four Fregean modal logics the least of which is

Ý � p ��¾ p. The other three
are

Ý � p � ¾ p,

Ý � ¾>¨ and

Ý � ¨ , the inconsistent logic. This follows
from the following theorem.

Proposition 4.54
Ý � p �Ü¾ p

, Ý � 7¯¾ p ��7 p ·¬¾>¨�8=8 .
Proof. Put L :

, Ý � p � ¾ p. ¾ p ��7 p ·¬¾>¨¬8-~�c p � ¾ p, so have to show
that ¾ p �³7 p · ¾>¨¬8�� L. (1) ~\c¶¾ p �³7rb p · ¾>¨�8 . Furthermore, ~ L b p � p.
Hence also ~ L ¾ p �æ7 p ·«¾>¨¬8 . (2) ¾>¨?�â¾ p is a theorem of

Ý
, p �â¾ p

holds by assumption. This shows the claim. <
Now, in a Fregean logic, any proposition ϕ is equivalent either to a non-

modal proposition or to a proposition 7 χ �zb�0¬8g·Ý7 χ k � ¾>¨¬8 , where χ and
χ k are nonmodal. It follows from this that the least Fregean logic has only
constant extensions: by the axiom ¾B¨ , by its negation b�0 , or both (which
yields the inconsistent logic).

Now let us return to Leibniz’ Principle. Fix a theory T . Together with the
algebra of formulae it forms a matrix. This matrix tells us what is true and
what is not. Notice that the members of the algebra are called truth–values in
the language of matrices. In the present matrix, a sentence is true only if it is
a member of T . Otherwise it is false. Thus, although we can have as many
truth values as we like, sentences are simply true or false. Now apply Leibniz’
Principle. It says: two propositions ϕ and ϕ k have identical meaning iff for
every proposition χ and every variable p: ¦ ϕ ¾ p § ψ � T iff ¦ ϕ k ¾ p § χ � T . This
leads to the following definition.

Definition 4.55 Let Ω be a signature and ­ an Ω–algebra. Then for any

Intensionality 321

F } A put

(4.80) ∆ ® F :
, 5(� a � b � : for all t � Pol1 7Á­�8 : t 7 a 83� F å t 7 b 8@� F 6

This is called the Leibniz equivalence and the map ∆ ® the Leibniz operator.

Notice that the definition uses unary polynomials, not just terms. This means
in effect that we have enough constants to name all expressible meanings, not
an unreasonable assumption.

Lemma 4.56 ∆ ® F is an admissible congruence on �Á­¬� F � .
Proof. It is easy to see that this is an equivalence relation. By Proposition 4.15
it is a congruence relation. We show that it is compatible with F . Let x � F
and x ∆ ® F y. Take t :

,
p we get ¦ x ¾ p § t , x, ¦ y ¾ p § p , y. Since x � F we have

y � F as well. <
We know that the consequence relation of �Á­¬� F � is the same as the con-

gruence relation of �Á­ ¾ ∆ ® F � F ¾ ∆ ® F � . So, from a semantical point of view we
may simply factor out the congruence ∆ ® F . Moreover, this matrix satisfies
Leibniz’ Principle! So, in aiming to define meanings from the language and
its logic, we must first choose a theory and then factor out the induced Leib-
niz equivalence. We may then take as the meaning of a proposition simply its
equivalence class with respect to that relation. Yet, the equivalence depends
on the theory chosen and so do therefore the meanings. If the 0–ary constantF 0 is a particular sentence (say, that Caesar crossed the Rubicon) then depend-
ing on whether this sentence is true or not we get different meanings for our
language objects. However, we shall certainly not make the assumption that
meaning depends on accidental truth. Therefore, we shall say the following.

Definition 4.57 Let ~ be a structural consequence relation over a language
of signature Ω. Then the canonical Leibniz congruence is defined to be

(4.81) ∇ 4 :
,

∆ f � Ω ¯ Ë ° Taut 7¯~ìt TmΩ 7�w¬8=8
For a proposition ϕ free of variables, the object ¦ ϕ § ∇ { is called the canonical
(Leibniz) meaning of ϕ .

The reader is asked to check that Pol1 7l±3² Ω 7�w¬8=8 , Clo1 7l±@² Ω 7�w¬8=8 , so that
nothing hinged on the assumption made earlier to admit all polynomials for
the definition of ∆ ® . We shall briefly comment on the fact that we deal only

322 Semantics

with constant propositions. From the standpoint of language, propositional
variables have no meaning except as placeholders. To ask for the meaning ofT�Q`�#�@TZU�Qe�#�(W(W in the context of language makes little sense since language
is a means of communicating concrete meanings. A variable only stands in
for the possible concrete meanings. Thus we end up with a single algebra of
meanings, one that even satisfies Leibniz’ Principle.

In certain cases the Leibniz operator actually induces an isomorphism be-
tween the lattice of deductively closed sets and the lattice of congruences on­ . This means that different theories will actually generate different equali-
ties and different equalities will generate different theories. For example, in
boolean logic, a theory corresponds to a deductively closed set in the free
algebra of propositions. Moreover, � ϕ � χ �3� ∆ Ç T iff ϕ � χ � T . On the left
hand side we find the Leibniz congruence generated by T , on the right hand
side we find T applied to a complex expression formed from ϕ and χ . It
means in words the following (taking T to be the theory generated by w):
two propositions, ϕ and χ , have the same meaning iff the proposition ϕ � χ
is a tautology. This does not hold for modal logic; for in modal logic a theory
induces a nontrivial consequence only if it is closed under the necessitation
rule. (The exactness of the correspondence is guaranteed for boolean logic by
the fact that it is Fregean.)

We shall now briefly address the general case of a language as a system
of signs. We assume for a start a grammar, with certain modes. The grammar
supplies a designated category t of sentences. We may define notions of logic,
theory and so on on the level of definite structure terms of category t, since
these are unique by construction. This is how Church formulated the simple
theory of types,

Þ pg|(p (see next section). A theory is now a set of definite
structure terms of category t which is closed under consequence. Given a
theory T we define the following relation on definite structure terms: � ∆ �=k iff
the two are intersubstitutable in any structure term preserving definiteness,
and for a structure term � : ¦ � ¾ x §6�Ù� T iff ¦ ��k ¾ x §6��� T . Again, this proves to
be a congruence on the partial algebra of definite structure terms, and the
congruence relation can be factored. What we get is the algebra of natural
meanings.

Notes on this section. There have been accounts of propositional attitudes
that propose representations of attitude reports that do not contain a repre-
sentation of the embedded proposition. These accounts have difficulties with
Leibniz’ Principle. Against this argues (Recanati, 2000). For him, the repre-
sentation of the report contains a representation of the embedded proposition

Binding and Quantification 323

so that Leibniz’ Principle does not need to be stipulated. Modal operators ac-
tually have that property. However, they do not provide enough analysis of
the kinds of attitudes involved. On the other hand, modal operators are very
flexible. In general, most attitudes will not give rise to a normal logic, though
classicality must be assumed, in virtue of Leibniz’ Principle. Also, there is a
consensus that a proposition is an expression modulo the laws of H»| . How-
ever, notice that this means only that if two expressions are interderivable inH�| , we must have the same attitude towards them. It does not say, for exam-
ple, that if χ follows from ϕ then if I believe ϕ I also believe that χ . Classical
logics need not be monotone (see the exercises below). For the general theory
of modal logic see (Kracht, 1999).

Exercise 148. Set up a Galois correspondence between contexts and equiv-
alence classes of expressions. You may do this for any category α . Can you
characterize those context sets that generate the same equivalence class?

Exercise 149. Show that ~ L as defined above is a consequence relation. Show
that (mn) is not derivable in Ð c . Hint. You have to find a formula ϕ such that
ϕ µOc�¾ ϕ .

Exercise 150. Show that Ð g¼ is the global consequence relation associated
with p�\�´ .

Exercise 151. Show that the logic of knowledge axiomatized above is

ÞHi
.

Exercise 152. Let � F �
ÎØ�_°�� be a generalized Kripke–frame and β a valuation
into it. Put ø :

, �N°»��w¶� F ��t ��s��ke¬� . Then β has an obvious homomorphic ex-
tension β : ±@² Ω 7 V 8��Óø . Show that �Á¹ª� β � x �+Ð ϕ iff x � β 7 ϕ 8 .
Exercise 153. Show that there are classical modal logics which are not mono-
tone. Hint. There is a counterexample based on a two–element algebra.

Exercise 154. Prove Lemma 4.48.

Exercise 155. Define } ϕ :
,

ϕ [Ì0 . Let L be the set of formulae in } and the
boolean connectives that are derivable. Show that L is a normal modal logic
containing

Ýml
.

4. Binding and Quantification

Quantification and binding are one of the most intricate phenomena of formal
semantics. Examples of quantifiers we have seen already: the English phrases

324 SemanticsD < D&# × and
) CXB D , and ~ and � of predicate logic. Examples of binding without

quantification can be found easily in mathematics. The integral

(4.82) h 7�Ey 8 :
, G 1

0
f 7 x ��Ey 8 dx

is a case in point. The integration operator takes a function (which may have
parameters) and returns its integral over the interval ¦ 0 � 1 § . What this has in
common with quantification is that the function h 7ÈEy 8 does not depend on x.
Likewise, the limit limn Ä ∞ an of a convergent series a : ω � � , is indepen-
dent of n. (The fact that these operations are not everywhere defined shall not
concern us here.) So, as with quantifiers, integration and limits take entities
that depend on a variable x and return an entity that is independent of it. The
easiest way to analyze this phenomenon is as follows. Given a function f that
depends on x, λx � f is a function which is independent of x. Moreover, every-
thing that lies encoded in f is also encoded in λx � f . So, unlike quantification
and integration, λ–abstraction does not give rise to a loss of information. This
is ensured by the identity 7 λx � f 8 x , f . Moreover, extensionality ensures that
abstraction also does not add any information: the abstracted function is es-
sentially nothing more than the graph of the function. λ–abstraction therefore
is the mechanism of binding. Quantifiers, integrals, limits and so on just take
the λ–abstract and return a value. This is exactly how we have introduced the
quantifiers: � x � ϕ was just an abbreviation of �YI�Ó x

O
ϕ J . Likewise, the integral

can be decomposed into two steps: first, abstraction of a variable and then the
actual integration. Notice, how the choice of variable matters:

(4.83) y ¾ 3 , G 1

0
x2ydx �, x ¾ 2 , G 1

0
x2ydy

The notation dx actually does the same as λx: it shows us over which vari-
able we integrate. We may define integration as follows. First, we define an
operation I : �\~Ä�^� , which performs the integration over the interval ¦ 0 � 1 §
of f �C� ~ . Then we define

(4.84) G 1

0
f 7 x 8 dx :

,
I 7 λx � f 8

This definition decouples the definition of the actual integration from the
binding process that is involved. In general, any operator O � xi : i b n �P�M
which binds the variables xi, i b n, and returns a value, can be defined as

(4.85) O � xi : i b n �P�M :
, ;O 7 λx0 � λx1 �=Â=Â=Â>� λxn © 1 �M 8

Binding and Quantification 325

Table 11. The Axioms for Predicate Logic (FOL)

AXIOMS.
(a0) — (a12) g
(a13) 7�~ x 8�7 ϕ � χ 8���7=7�~ x 8 ϕ ��7�~ x 8 χ 8
(a14) 7�~ x 8 ϕ ��¦ t ¾ x § ϕ
(a15) ϕ ��7�~ x 8 ϕ 7 x �� fr 7 ϕ 8=8
(a16) 7�~ x 8 ϕ � ¶ 7�� x 8 ¶ ϕ
(a17) ¶ 7�� x 8 ¶ ϕ ��7�~ x 8 ϕ
(a18) 7�~ x 8�7 x , x 8
(a19) 7�~ x 8�7�~ y 8�7 x , y � y

,
x 8

(a20) 7�~ x 8�7�~ y 8�7�~ z 8�7 x , y � y
,

z � x
,

z 8
(a21) 7�~ x0 8(Â=Â=ÂP7�~ xΞ ¯ R ° © 1 8�7�~ y 8�7=7 " i Ξ ¯ R ° xi

,
yi 8��7 R 7 x0 �=�=�=�i� xΞ ¯ R ° © 1 8»��¦ y ¾ xi § R 7 x0 �=�=�=�i� xΞ ¯ R ° © 1 8=8=8

RULES.

(mp)
ϕ ϕ � χ

χ (gen)
ϕ7�~ x 8 ϕ

for a suitable ;O. In fact, since O Ex �M does not depend on Ex, we can use (4.85) to
define ;O. What this shows is that λ–calculus can be used as a general tool for
binding. It also shows that we can to some extent get rid of explicit variables,
something that is quite useful for semantics. The elimination of variables
removes a point of arbitrariness in the representation that makes meanings
nonunique. In this section, we shall introduce two different algebraic calculi.
The first is the algebraic approach to predicate logic using so called cylindric
algebras, the other an equational theory of λ–calculus, which embraces the
(marginally popular) variable free approach to semantics for first order logic.

We have already introduced the syntax and semantics of first–order pred-
icate logic. Now we are going to present an axiomatization. To this end we
expand the set of axioms for propositional logic by the axioms (a13) – (a21)
in Table 11. The calculus (a0) – (a21) with the rules (mp) and (gen) is called{ G Ü . A first–order theory is a set of formulae containing (a0) – (a21) and
which is closed under (mp). We write ∆ ~ P*R � ϕ if every theory containing ∆
also contains ϕ . In virtue of (a16) and (a17) we get that 7�~ x 8 ϕ � ¶ 7�� x 8 ¶ ϕ
as well as 7�� x 8 ϕ � ¶ 7�~ x 8 ¶ ϕ which means that one of the quantifiers can be
defined from the other. In (a21), we assume i b Ξ 7 R 8 .

We shall prove its completeness using a more powerful result due to Leon

326 Semantics

Henkin that simple type theory (

Þ pg|(p) is complete with respect to Henkin–
frames. Notice that the status of (gen) is the same as that of (mn) in modal
logic. (gen) is admissible with respect to the model theoretic consequence Ð
defined in Section 3.8, but it is not derivable in it. To see the first, suppose
that ϕ is a theorem and let x be a variable. Then 7�~ x 8 ϕ is a theorem, too.
However, ϕ Ðx7�~ x 8 ϕ does not follow. Simply take a unary predicate letter P
and a structure consisting of two elements, 0, 1, such that P is true of 0 but
not of 1. Then with β 7 x 8 :

,
0 we have �løÀ� β ��Ð P 7 x 8 but �løÀ� β � µÅ7�~ x 8 P 7 x 8 .

Now let P be the set of all formulae that can be obtained from (a0) – (a21) by
applying (gen). Then the following holds.

Theorem 4.58 ~ P�R � ϕ iff ϕ is derivable from P using only (mp).

Proof. Let Π be a proof of χ from P using only (mp). Transform the proof in
the following way. First, prefix every occurring formula by 7�~ x 8 . Further, for
every k such that ϕk follows from ϕi and ϕi � ϕ j for some i � j b k, insert in
front of the formula 7�~ x 8 ϕ j the sequence

(4.86) 7�~ x 8�7 ϕi � ϕ j 8»��7=7�~ x 8 ϕi ��7�~ x 8 ϕ j 8P�Z7�~ x 8 ϕi ��7�~ x 8 ϕ j

The new proof is a proof of 7�~ x 8 χ from P, since the latter is closed under
(gen). Hence, the set of formulae derivable from P using (mp) is closed under
(gen). Therefore it contains all tautologies of { G Ü . <

The next theorem asserts that this axiomatization is complete.

Definition 4.59 Let ∆ be a set of formulae of predicate logic over a signature,
ϕ a formula over that same signature. Then ∆ ~ ϕ iff ϕ can be proved from
∆ s P using only (mp).

Theorem 4.60 (Gödel) ∆ ~ P*R � ϕ iff ∆ Ð ϕ .

Recall from Section 3.8 the definition of the simple theory of types. There we
have also defined the class of models, the so called Henkin–frames. Recall
further that this theory has operators Πα , which allow to define the universal
quantifiers in the following way.

(4.87) 7�~ xα 8 Nt :
, 7 Πα 7 λxα �Nt 8=8

The simple theory of types is axiomatized as follows. We define a calculus
exclusively on the terms of type t (truth values). However, it will also be pos-
sible to express that two terms are equal. This is done as follows. Two terms

Binding and Quantification 327

Table 12. The Simple Theory of Types

AXIOMS.
(s0) — (s12) +
(s13) 7=7�~ xα 8�7 yt � Mα Ä txα 8=8»��7 yt � ΠαMα Ä t 8
(s14) 7 Παxα Ä t 8�� xα Ä t yα
(s15) 7 xt � yt 8�� xt � yt
(s16) 7=7�~ zα 8�7 xα Ä β zα � yα Ä β zα 8=8���7 xα Ä β � yα Ä β 8
(s17) xα Ä tyα � xα Ä t 7 ιαxα Ä t 8

RULES.

(mp)
Mt � Nt Mt

Nt
(ug)

Mα Ä txα
ΠαMα

xα �� fr 7 Mα Ä t 8
(conv)

Mt Mt ð αβ Nt

Nt
(sub)

Mα Ä txα
Mα Ä tNα

xα �� fr 7 Mα Ä t 8
Mα and Nα of type α are equal if for every term Oα Ä t the terms Oα Ä tMα
and Oα Ä tNα are equivalent.

(4.88) Mα � Nα :
, 7�~ zα Ä t 8�7 zα Ä t Mα � zα Ä tNα 8

For this definition we assume that zα Ä t is free neither in Mα nor in Nα . If one
dislikes the side conditions, one can prevent the accidental capture of zα Ä t
using the following more refined version:

(4.89) Mα � Nα :
, 7 λxα � λyα ��7�~ zα Ä t 8�7 zα Ä t xα � zα Ä t yα 8=8 MαNα

However, if zα Ä t is properly chosen, no problem will ever arise. Now, let (s0)
– (s12) be the formulae (a0) – (a12) appropriately translated into the language
of types. We call the Hilbert–style calculus consisting of (s0) – (s17) and the
rules given in Table 12

Þ pH|�p . All instances of theorems of H�| are theorems ofÞ pg|�p . For predicate logic this will also be true, but the proof of that requires
work. The rule (gen) is a derived rule of this calculus. To see this, assume that
Mα Ä tzα is a theorem. Then, by (conv), 7 λ zα �Mα Ä tzα 8 zα also is a theorem.
Using (ug) we get Πα 7 λ zα �Mα Ä tzα 8 , which by abbreviatory convention is7�~ zα 8 Mα Ä t . We will also show that (a14) and (a15) are theorems of

Þ pg|(p .
Lemma 4.61

Þ pg|�pS~Ý7�~ xα 8 yt ��¦Nα ¾ xα § yt .

Proof. By convention, 7�~ xα 8 yt
,

Πα 7 λxα � yt 8 . Moreover, by (s14),

Þ pg|(pü~7=7�~ xα 8 yt 8»��7 λxα � yt 8 xα
, 7=7�~ xα 8 yt 8»� yt . Using (sub) we get

(4.90) ~��?�C��� ¦Nα ¾ xα §�7=7�~ xα 8 yt � yt 8 , 7�~ xα 8 yt ��¦Nα ¾ xα § yt

328 Semantics

as required. <
Lemma 4.62 Assume that xα is not free in Nt . Then

(4.91)

Þ pg|(pS~ Nt ��7�~ xα 8 Nt

Proof. With Nt � Nt ð αβ Nt � 7 λxα � Nt 8 xα and the fact that 7�~ xα 8�7 Nt � Nt 8
is derivable (using (gen)), we get with (conv) 7�~ xα 8�7 Nt � 7=7 λxα � Nt 8 xα 8=8 and
with (s13) and (mp) we get

(4.92) ~ �?�C��� Nt � Πα 7 λxα � Nt 8 , Nt ��7�~ xα 8 Nt

(The fact that xα is not free in Nt is required when using (s13). In order for
the replacement of Nt for yt in the scope of 7�~ xα 8 to yield exactly Nt again,
we need that xα is not free in Nt .) <
Lemma 4.63 If Ô
Õ·~ Mα

, , ,
Nα then

Þ pg|�pS~ Mα � Nα .

Proof. Ô
Õ = Ô + (ext), and (ext) is the axiom (s16). Hence it remains to show
that Ô�~ Mα

, , ,
Nα implies ~ �?�C��� Mα � Nα . So, assume the first. Then we have

Mα ð αβ Nα . Hence

(4.93) zα Ä t Mα � zα Ä t Mα ð αβ zα Ä t Mα � zα Ä t Nα

Hence, using (conv), and ~ ���C��� zα Ä t Mα � zα Ä t Mα we get

(4.94) ~ �?�C��� zα Ä tMα � zα Ä tNα

By symmetry, ~ �?�3��� zα Ä tMα � zα Ä tNα . Using (gen) we get

(4.95) ~��?�C��� 7�~ zα Ä t 8�7 zα Ä t Mα � zα Ä tNα 8
By abbreviatory convention, ~ �?�3��� Mα � Nα . <

We shall now show that

Þ pg|(p is complete with respect to Henkin–frames
where � simply is interpreted as identity. To do that, we first prove that � is
a congruence relation.

Lemma 4.64 The following formulae are provable in

Þ pg|(p .
xα � xα(4.96a)

xα � yα � yα � xα(4.96b)

xα � yα � yα � zα � xα � zα(4.96c)

xα Ä β � x kα Ä β � yα � y kα �1� � xα Ä β yα � x kα Ä β y kα(4.96d)

Binding and Quantification 329

Proof. (4.96a) Let zα Ä t be a variable of type α � t. Then zα Ä txα � zα Ä t xα
is provable in

Þ pH|�p (as p � p is in H»|). Hence, 7�~ zα Ä t 8�7 zα Ä t xα � zα Ä txα 8
is provable, which is xα � xα . (4.96b) and (4.96c) are shown using predicate
logic. (4.96d) Assume xα Ä β � x kα Ä β and yα � y kα . Now,

(4.97) zβ Ä t 7 xα Ä β yα 89ð αβ 7 λuα � zβ Ä t 7 xα Ä β uα 8=8�7 yα 8
Put Mα Ä t :

, 7 λuα � zβ Ä t 7 xα Ä β uα 8=8 . Using the rule (conv), we get

(4.98)
yα � y kα ~:���C��� Mαyα � Mαy kα~ ���C��� zβ Ä t 7 xα Ä β yα 8»� zβ Ä t 7 xα Ä β y kα 8

Likewise, one can show that

(4.99) yα � y kα ~ ���C��� zβ Ä t 7 x kα Ä β yα 8�� zβ Ä t 7 x kα Ä β y kα 8
Similarly, using N ¯ α Ä β °LÄ t :

, 7 λuα Ä β � zβ Ä t 7 uα Ä β yα 8=8 one shows that

(4.100) xα Ä β � x kα Ä β ~ �?�3��� zβ Ä t 7 xα Ä β yα 8»� zβ Ä t 7 x kα Ä β yα 8
This allows to derive the desired conclusion. <

Now we get to the construction of the frame. Let Cα be the set of closed
formulae of type α . Choose a maximally consistent ∆

à
Ct . Then, for each

type α , define Ø α
∆ by Mα Ø α

∆ Nα iff Mα � Nα � ∆. By Lemma 4.64 this is an
equivalence relation for each α , and, moreover, if Mα Ä β Ø α Ä β

∆ M kα Ä β and

Nα Ø α
∆ N kα , then also Mα Ä β Nα Ø β

∆ M kα Ä β N kα . For Mα � Cα put

(4.101) ¦Mα § : , 5 Nα : Mα Ø α
∆ Nα 6

Finally, put Dα :
, 5(¦Mα § : Mα � Cα 6 . Next, ! is defined as usual, v :

, ¦nU>§ ,t :
, ¦nS>§ , πα :

, ¦ � α § and ια :
, ¦ � α § . This defines a structure (where Ú :

,
Typ Ä 7 B 8).
(4.102) i � º ∆ :

, ��5 Dα : α �ìÚ	6>��!(�ivØ��t��Z� πα : α �ÙÚ	61�P�Z� ια : α �ÙÚ	61�=�
Lemma 4.65 (Witnessing Lemma)Þ pg|�pS~ �?�3��� Mα Ä t 7 ια 7 λxα � ¶ Mα 8=8�� ΠαMα

330 Semantics

Proof. Write ¶ Nα Ä t :
,

λxα � ¶ 7 Nα Ä txα 8 . Now, by (s17)

(4.103) ~ �?�C��� 7 ¶ Nα Ä t 8 yα ��7 ¶ Nα Ä t 8�7 ια 7 ¶ Nα Ä t 8=8
Using classical logic we obtain

(4.104) ~ �?�C��� ¶ 7=7 ¶ Nα Ä t 8�7 ια 7 ¶ Nα Ä t 8=8=8»� ¶ 7=7 ¶ Nα Ä t 8 yα 8
Now, ¶ 7=7 ¶ Nα Ä t 8 yt 8�Ø β

¶½¶ 7 Nα Ä tyα 8 , the latter being equivalent to Nα Ä tyα .
Similarly, ¶ 7=7 ¶ Nα Ä t 8�7 ια 7 ¶ Nα Ä t 8=8=8 is equivalent with Nα Ä t 7 ια 7 ¶ Nα Ä t 8=8 .
Hence

(4.105) ~ �?�C��� Nα Ä t 7 ια 7 ¶ Nα Ä t 8=8�� Nα Ä tyα

Using (gen), (s13) and (mp) we get

(4.106) ~ �?�C��� 7 Nα Ä t 7 ια 7 ¶ Nα Ä t 8=8=8»� ΠαNα Ä t

This we had to show. <
Lemma 4.66 i�º � ∆ is a Henkin–frame.

Proof. By Lemma 4.63, if Ô
Õ ~ Mα � Nα , then ¦Mα § , ¦Nα § . So, the axioms
of the theory Ô
Õ are valid, and ��5 Dα : α � S 6>��!�� is a functionally complete
(typed) applicative structure. Since ∆ is maximally consistent, Dt consists
of two elements, which we now call 0 and 1. Furthermore, we may arrange
it that ¦Mt § , 1 iff Mt � ∆. It is then easily checked that the interpretation
of U is complement, and the interpretation of S is intersection. Now we treat
πα :

, ¦ � α § . We have to show that for a � Dα Ä t πα ! a
,

1 iff for every b � Dα :
a ! b

,
1. Or, alternatively, ΠαMα Ä t � ∆ iff Mα Ä tNα � ∆ for every closed

term Nα . Suppose that ΠαMα Ä t � ∆. Using Lemma 4.61 and the fact that ∆ is
deductively closed, Mα Ä tNα � ∆. Conversely, assume Mα Ä tNα � ∆ for every
constant term Nα . Then Mα 7 ια 7 λxα � ¶ Mα Ä txα 8=8 is a constant term, and it is
in ∆. Moreover, by the Witnessing Lemma, ΠαMα Ä t � ∆. Finally, we have
to show that for every a � Dα Ä t : if there is a b � Dα such that a ! b

,
1 then

a !37 ια ! a 8 , 1. This means that for Mα Ä t : if there is a constant term Nα such
that Mα Ä tNα � ∆ then Mα Ä t 7 ια Mα Ä t 8Y� ∆. This is a consequence of (s17).<

Now, it follows that i � º ∆ Ð Nt iff Nt � ∆. More generally, let β an assign-
ment of constant terms to variables. Let Mα be a term. Write Mβ

α for the result
of replacing a free occurrence of a variable xγ by β 7 xγ 8 . Then

(4.107) �Li � º ∆ � β ��Ð Mα å Mβ
α � ∆

This is shown by induction.

Binding and Quantification 331

Lemma 4.67 Let ∆0 be a consistent set of constant terms. Then there exists
a maximally consistent set ∆ of constant terms containing ∆0.

Proof. Choose a well–ordering 5 Nδ : δ b µ 6 on the set of constant terms.
Define ∆i by induction as follows. ∆κ � 1 :

,
∆κ sì5 Nδ 6 if the latter is consis-

tent. Otherwise, ∆κ � 1 :
,

∆κ . If κ b µ is a limit ordinal, ∆κ :
, � λ κ ∆λ . We

shall show that ∆ :
,

∆µ is maximally consistent. Since it contains ∆0, this
will complete the proof. (a) It is consistent. This is shown inductively. By
assumption ∆0 is consistent, and if ∆κ is consistent, then so is ∆κ � 1. Finally,
let λ be a limit ordinal and suppose that ∆λ is inconsistent. Then there is a
finite subset Γ which is inconsistent. There exists an ordinal κ b λ such that
Γ } ∆κ . ∆κ is consistent, contradiction. (b) There is no consistent superset.
Assume that there is a term M �� ∆ such that ∆ sË5 M 6 is consistent. Then
for some δ , M

,
Nδ . Then ∆δ s¸5 Nδ 6 is consistent, whence by definition

Nδ � ∆δ � 1. Contradiction. <
Theorem 4.68 (Henkin) (a) A term Nt is a theorem of

Þ pg|�p iff it is valid in
all Henkin–frames. (b) An equation Mα � Nα is a theorem of

Þ pg|�p iff it holds
in all Henkin–frames iff it is valid in the many sorted sense.

We sketch how to prove Theorem 4.60. Let � Ω � Ξ � be a signature for predicate
logic. Define a translation into

Þ pH|�p :
f � :

, 7 λx0 8�7 λx1 8(�=�=�P7 λxΩ ¯ f ° © 1 8 f 7 x0 �=�=�=�Z� xΩ ¯ f ° © 1 8(4.108a)

r � :
, 7 λx0 8�7 λx1 8(�=�=�P7 λxΞ ¯ r ° © 1 8 r 7 x0 �=�=�=�Z� xΞ ¯ r ° © 1 8(4.108b)

This is extended to all formulae. Now we look at the signature for

Þ pH|�p with
the constants f � , r � of type

f � : 7 e ��7 e � �=�=�P7 e � e 8(�=�=�=8=8(4.109a)

r � : 7 e ��7 e � �=�=�P7 e � t 8(�=�=��8=8(4.109b)

Now, given a first–order model ø , we can construct a Henkin–frame for ø �
with De

,
M and Dα Ä β :

,
Dα � Dβ , by interpreting f � and r � as given by

(4.108a) and (4.108b).

Lemma 4.69 Let β be a valuation on ø . Extend β to β � . Then

(4.110) �løÀ� β ��Ð ϕ å �lø � � β ��Ð ϕ �

332 Semantics

Lemma 4.70 ~ �?�C��� ϕ � iff ~ P�R � ϕ .

Right to left is by induction. Now if ´ P*R � ϕ then there is a model �løÀ� β �YÐ¶ ϕ , from which we get a Henkin–frame �lø � � β ��µ ¶ ϕ � . The proof of The-
orem 4.60 is as follows. Clearly, if ϕ is derivable it is valid. Suppose that it
is not derivable. Then ϕ � is not derivable in

Þ pg|(p . There is a Henkin–frameø µ ϕ � . This allows to define a first–order model ø � µ ϕ .

Exercise 156. The set of typed λ–terms is defined over a finite alphabet if
the set B of basic types is finite. Define from this a well–ordering on the set
of terms. Remark. This shows that the proof of Lemma 4.67 does not require
the use of the Axiom of Choice for obtaining the well–ordering.

Exercise 157. Show Lemma 4.69.

Exercise 158. Complete the details of the proof of Theorem 4.60.

Exercise 159. Let L be a normal modal logic. Show that ∆ � L χ iff ∆b ~ L χ ,
where ∆b :

, 5�¾ nδ : δ � ∆ � n � ω 6 . Hint. This is analogous to Theorem 4.58.

5. Algebraization

Now that we have shown completeness with respect to models and frames,
we shall proceed to investigate the possibility of algebraization of predicate
logic and simple type theory. Apart from methodological reasons, there are
also practical reasons for preferring algebraic models over frames. If ϕ is a
sentence and ø a model, then either øþÐ ϕ or ø Ð ¶ ϕ . Hence, the theory
of a single model is maximally consistent, that is, complete. One may argue
that this is as it should be; but notice that the base logic ({ G Ü ,

Þ pH|�p) is not
complete — neither is the knowledge ordinary people have. Since models are
not enough for representing incomplete theories, something else must step in
their place. These are algebras for some appropriate signature, for the product
of algebras is an algebra again, and the logic of the product is the intersection
of the logics of the factors. Hence, for every logic there is an adequate algebra.
However, algebraization is not straightforward. The problem is that there is
no notion of binding in algebraic logic. Substitution always is replacement of
an occurrence of a variable by the named string, there is never a preparatory
replacement of variables being performed. Hence, what creates in fact big
problems is those axioms and rules that employ the notion of a free or bound

Algebraization 333

variable. In predicate logic this is the axiom (a15). (Unlike H�| , { G Ü has no
rule of substitution.)

It was once again Tarski who first noticed the analogy between modal
operators and quantifiers. Consider a language L of first order logic with-
out quantifiers. We may interpret the atomic formulae of this language as
propositional atoms, and formulae made from them using the boolean con-
nectives. Then we have a somewhat more articulate version of our proposi-
tional boolean language. We can now introduce a quantifier Q simply as a
unary operator. For example, T[�`
#��W is a unary operator on formulae. Given
a formula ϕ , T��`
#��W ϕ is again a formula. (Notice that the way we write the
formulae is somewhat different, but this can easily be accounted for.) In this
way we get an extended language: a language of formulae extended by a
single quantifier. Moreover, the laws of T[�g
\��W turn the logic exactly into a
normal modal logic. The quantifier T��
\�	W then corresponds to b , the dual of¾ . Clearly, in order to reach full expressive power of predicate logic we need
to add infinitely many such operators, one for each variable. The resulting
algebras are called cylindric algebras. The principal reference is to (Henkin
et al., 1971).

We start with the intended models of cylindric algebras. A formula may
be seen as a function from models, that is, pairs �løÀ� β � , to 2, where ø is
a structure and β an assignment of values to the variables. First of all, we
shall remove the dependency on the structure, which allows us to focus on
the assignments. There is a general first order model for any complete (=
maximal consistent) theory, in which exactly those sentences are valid that
belong to the theory. Moreover, this model is countable. Suppose a theory T
is not complete. Then let ∆i, i � I, be its completions. For each i � I, let ø i
be the canonical structure associated with ∆i. If ­ i is the cylindrical algebra
associated with ø i (to be defined below), the algebra associated with T will
∏i � I ­ i. In this way, we may reduce the study to that of a cylindric algebra of
a single structure.

Take a first order structure � M �Èä�� , where M is the universe and ä the in-
terpretation function. For simplicity, we assume that there are no functions.
(The reader shall see in the exercises that there is no loss of expressivity in re-
nouncing functions.) Let V :

, 5 xi : i � ω 6 be the set of variables. Let ��7 V ;M 8
be the boolean algebra of sets of functions into M. Then for every formula ϕ
we associate the following set of assignments:

(4.111) ¦ ϕ § : , 5 β : �løÀ� β ��Ð ϕ 6

334 Semantics

Now, for each number i we assume the following operation Õ i.

(4.112) Õ i 7 S 8 :
, 5 β : for all γ Ê xi

β : γ � S 6
Then á i 7 S 8 :

, v�Õ i 7�v S 8 . (The standard notation for á i is K i. The letter K here
is suggestive for ‘cylindrification’. We have decided to stay with a more log-
ical notation.) Furthermore, for every pair of numbers i � j � ω we assume the
element c i é j .
(4.113) c i é j :

, 5 β : β 7 xi 8 , β 7 x j 8Z6
It is interesting to note that with the help of these elements substitution can
be defined. Namely, put

(4.114) h ij 7 x 8 :
,À¿ x if i

,
j,á i 7ãc i é j t x 8 otherwise.

Lemma 4.71 Let y be a variable distinct from x. Then ¦ y ¾ x § ϕ is equivalent
with T�� x Wþ��T�T y � x W1S ϕ W .
Thus, equality and quantification alone can define substitution. The rele-
vance of this observation for semantics has been nicely explained in (Dresner,
2001). For example, in applications it becomes necessary to introduce con-
stants for the relational symbols. Suppose, namely that

"
0(2�2&D&#
is a binary

relation symbol. Its interpretation is a binary relation on the domain. If we
want to replace the structure by its associated cylindric algebra, the relation
is replaced by an element of that algebra, namely

(4.115) ¦ É=q(_ _ a.J k 7 x0 � x1 8�§ :
, 5 β : � β 7 x0 8P� β 7 x1 8=�@� ä�7 "
0(2�2(D># 8Z6

However, this allows us prima facie only to assess the meaning of ‘x0 is taller
than x1’. We do not know, for example, what happens to ‘x2 is taller than
x7’. For that we need the substitution functions. Now that we have the unary
substitution functions, any finitary substitution becomes definable. In this par-
ticular case,

(4.116) ¦ É=q(_ _ a.J k 7 x2 � x7 8�§ , h 71 h 20 ¦ É=q(_ _ a.J k 7 x0 � x1 8�§
Thus, given the definability of substitutions, to define the interpretation of R
we only need to give the element ¦R 7 x0 � x1 �=�=�=�i� xΞ ¯ R ° © 1 8�§ .

The advantage in using this formulation of predicate logic is that it can be
axiomatized using equations. It is directly verified that the equations listed in
the next definition are valid in the intended structures.

Algebraization 335

Definition 4.72 A cylindric algebra of dimension κ , κ a cardinal number, is
a structure

(4.117) ­ , � A � 0 � 1 �ivØ��t���s��Z��á λ : λ b κ �P�Z�ãc λ é µ : λ � µ b κ �=�
such that the following holds for all x � y � A and λ � µ � ν b κ:

(4.118)

(ca1) � A � 0 � 1 �ivØ��t���sª� is a boolean algebra.
(ca2) á λ 0

,
0.

(ca3) x sÙá λ x
, á λ x.

(ca4) á λ 7 x tÙá λ y 8 , á λ x t�á λ y.
(ca5) á λ á µx

, á µ á λ x.
(ca6) c λ é µ , 1.
(ca7) If λ �, µ � ν then c µ é ν , á λ 7ãc µ é λ t«c λ é ν 8 .
(ca8) If λ �, µ then á λ 7ãc λ é µ t x 8�t�á λ 7ãc λ é µ t�7�v x 8=8 , 0.

We shall see that this definition allows to capture the effect of the axioms
above, with the exception of (a15). Notice first the following. � is a congru-
ence in { G Ü as well. For if ϕ � χ is a tautology then so is 7�� xi 8 ϕ �¨7�� xi 8 χ .
Hence, we can encode the axioms of { G Ü as equations of the form ϕ � 0
as long as no side condition concerning free or bound occurrences is present.
We shall not go into the details. For example, in ϕ

, 7�~ x 8 χ x occurs triv-
ially bound. It remains to treat the rule (gen). It corresponds to the rule (mn)
of modal logic. In equational logic, it is implicit anyway. For if x

,
y then

O 7 x 8 , O 7 y 8 for any unary operator O.

Definition 4.73 Let ­ be a cylindric algebra of dimension κ , and a � A. Then

(4.119) ∆a :
, 5 i : i b κ �iá ia �, a 6

is called the dimension of a. ­ is said to be locally finite dimensional if�∆a �4b ℵ0 for all a � A.

A particular example of a cylindric algebra is � κ ¾ ð , � κ the formulae of pure
equality based on the variables

$
i, i b κ , and ϕ ð χ iff ϕ � χ is a theorem.

(If additional function or relation symbols are needed, they can be added with
little change to the theory.) This algebra is locally finite dimensional and is
freely κ–generated.

The second approach we are going to elaborate is one which takes sub-
stitutions as basic functions. For predicate logic this has been proposed by

336 Semantics

Halmos (1956), but most people credit Quine (1960) for this idea. For an ex-
position see (Pigozzi and Salibra, 1995). Basically, Halmos takes substitution
as primitive. This has certain advantages that will become apparent soon. Let
us agree that the index set is κ , again called the dimension. Halmos defines
operations

Þ 7 τ 8 for every function τ : κ � κ such that there are only finitely
many i such that τ 7 i 8��, i. The theory of such functions is axiomatized inde-
pendently of quantification. Now, for every finite set I � κ Halmos admits
an operator á�7 I 8 , which represents quantification over each of variables

$
i,

where i � I. If I
, w , á.7 I 8 is the identity, otherwise á.7 I 8�7�á�7 K 8 x 8 , á�7 I s K 8 x.

Thus, it is immediately clear that the ordinary quantifiers á�7�5 i 618 suffice to
generate all the others. However, the axiomatization is somewhat easier with
the polyadic quantifiers. Another problem, noted in (Sain and Thompson,
1991), is the fact that the axioms for polyadic algebras cannot be schema-
tized using letters for elements of the index set. However, Sain and Thomp-
son (1991) also note that the addition of transpositions is actually enough to
generate the same functions. To see this, here are some definitions.

Definition 4.74 Let I be a set and π : I � I. The support of π , supp 7 π 8 , is
the set 5 i : π 7 i 8 �, i 6 . A function of finite support is called a transformation.
π is called a permutation of I if it is bijective. If the support contains exactly
two elements, π is called a transposition.

The functions whose support has at most two elements are of special interest.
Notice first the case when supp 7 π 8 has exactly one element. In that case, π is
called an elementary substitution. Then there are i � j � I such that π 7 i 8 , j
and π 7 k 8 , k if k �, i. If i and j are in I, then denote by 7 i � j 8 the permutation
that sends i to j and j to i. Denote by ¦ i � j § the elementary substitution that
sends i to j.

Proposition 4.75 Let I be a set. The set Φ 7 I 8 of functions π : I � I of finite
support is closed under concatenation. Moreover, Φ 7 I 8 is generated by the
elementary substitutions and the transpositions.

The proof of this theorem is left to the reader. So, it is enough if we take
only functions corresponding to ¦ i � j § and 7 i � j 8 . The functions of the first kind
are already known: these are the h j

i . For the functions of the second kind,
write p i é j . Sain and Thompson effectively axiomatize cylindric algebras that
have these additional operations. They call them finitary polyadic algebras.
Notice also the following useful fact, which we also leave as an exercise.

Algebraization 337

Proposition 4.76 Let π : I � I be an arbitrary function, and M } I finite.
Then there is a product γ of elementary substitutions such that γ £ M ,

π £ M.

This theorem is both stronger and weaker than the previous one. It is stronger
because it does not assume π to have finite support. On the other hand, γ
only approximates π on a given finite set. (The reader may take notice of
the fact that there is no sequence of elementary substitutions that equals the
transformation 7 0 1 8 on ω . However, we can approximate it on any finite
subset.)

Rather than developing this in detail for predicate logic we shall do it for
the typed λ–calculus, as the latter is more rich and allows to encode arbi-
trarily complex abstraction (for example, by way of using

Þ pH|�p). Before we
embark on the project let us outline the problems that we have to deal with.
Evidently, we wish to provide an algebraic axiomatization that is equivalent
to the rules (3.95a) – (3.95g) and (3.95i). First, the signature we shall choose
has function application and abstraction as its primitives. However, we cannot
have a single abstraction symbol corresponding to Ó , rather, for each variable
(and each type) we must assume a different unary function symbol Ó i, cor-
responding to Ó $ i. Now, (3.95a) – (3.95e) and (3.95i) are already built into
the Birkhoff–Calculus. Hence, our only concern are the rules of conversion.
These are, however, quite tricky. Notice first that the equations make use of
the substitution operation ¦N ¾ x § . This operation is in turn defined with the
definitions (3.93a) – (3.93f). Already (3.93a) for N

,�$
i can only be written

down if we have an operation that performs an elementary substitution. So,
we have to add the unary functions h i é j , to denote this substitution. Addition-
ally, (3.93a) needs to be broken down into an inductive definition. To make
this work, we need to add correlates of the variables. That is, we add zeroary
function symbols

$
i for every i � ω . Symbols for the functions p i é j permuting

i and j will also be added to be able to say that the variables all range over
the same set. Unfortunately, this is not all. Notice that (3.95f) is not simply
an equation: it has a side condition, namely that y is not free in M. In order
to turn this into an equation we must introduce sorts, which will help us keep
track of the free variables. Every term will end up having a unique sort, which
will be the set of i such that

$
i is free in it. B is the set of basic types. Call a

member of s :
,

Typ Ä 7 B 8�e ω an index. If � α � i � is an index, α is its type and
i its numeral. Let � be the set of pairs � α � δ � where α is a type and δ a finite
set of indices.

We now start with the signature. Let δ and δ k be finite sets of indices, α ,

338 Semantics

β types, and ι
, � γ � i � , κ

, � γ k�� i k � indices. We list the symbols together with
their type: $

ι : �=� γ ��5 ι 61�=�(4.120a) Ó _ β é δ `ι : �=� β � δ �P�Z� γ � β � δ vf5 ι 61�=�(4.120b) & _ α é δ `
ι é κ : �=� α � δ �P�Z� α �Z7 ι � κ 8�¦ δ §l�=� where γ

,
γ k(4.120c)) _ α é δ `

ι é κ : �=� α � δ �P�Z� α �Z¦ ι � κ §�¦ δ §l�=�(4.120d) ! _ α Ä β é δ `�é _ α é δ ¡ ` : �=� α � β � δ �P�Z� α � δ k �P�Z� β � δ s δ k �=�(4.120e)

Here 7 ι � κ 8�¦ δ § is the result of exchanging ι and κ in δ and ¦ ι � κ §�¦ δ § is the result
of replacing κ by ι in δ . Notice that

$
ι is now a constant! We may also have

additional functional symbols stemming from an underlying (sorted) alge-
braic signature. The reader is asked to verify that nothing is lost if we assume
that additional function symbols only have arity 0, and signature �=� α ��w¬�=� for
a suitable α . This greatly simplifies the presentation of the axioms.

This defines the language. Notice that in addition to the constants
$

ι we
also have variables xσ

i for each sort σ . The former represent the variable
$

i
(where ι

, � γ � i �) of the λ–calculus and the latter range over terms of sort
σ . Now, in order to keep the notation perspicuous we shall drop the sorts
whenever possible. That this is possible is assured by the following fact. If t
is a term without variables, and we hide all the sorts except for those of the
variables, still we can recover the sort of the term uniquely. For the types this
is clear, for the second component we observe the following.

Lemma 4.77 If a term t has sort � α � δ � then fr 7 t 8 , 5 $ ι : ι � δ 6 .
The proof of this fact is an easy induction.

For the presentation of the equations we therefore omit the sorts. They
have in fact only been introduced to ensure that we may talk about the set of
free variables of a term. The equations (vb1) — (vb6) of Table 13 characterize
the behaviour of the substitution and permutation function with respect to the
indices. We assume that ι , µ , ν all have the same type. (We are dropping the
superscripts indicating the sort.) The equations (vb7) – (vb11) characterize
the pure binding by the unary operators Ó ι . The set of equations is invariant
under permutation of the indices. Moreover, we can derive the invariance
under replacement of bound variables, for example. Thus, effectively, once
the interpretation of ÓH_ α é 0 ` is known, the interpretation of all Ó�_ α é i ` , i � ω , is

Algebraization 339

Table 13. The Variable Binding Calculus �6�
(vb1)

)
ι é µ $ ν

, j $
ι if ν �¸5 ι � µ 6>�$
ν otherwise.

(vb2)
&

ι é µ $ ν
, ñò ó $ ι if ν

,
µ �$

µ if ν
,

ι �$
ν otherwise.

(vb3)
&

ι é ι x ,
x

(vb4)
&

ι é µ x
, &

µ é ι x
(vb5)

&
ι é µ & µ é ν x

, &
µ é ν & ι é µx if � 5 ι � µ � ν 6�� , 3

(vb6)
&

ι é µ) µ é ι x ,)
ι é µ x

(vb7)
)

ι é µ Ó νx
, Ó ν

)
ι é µx if � 5 ι � µ � ν 6�� , 3

(vb8)
)

µ é ι Ó ιx
, Ó ιx

(vb9)
&

ι é µ Ó νx
, Ó ν

&
ι é µx if � 5 ι � µ � ν 6�� , 3

(vb10)
&

µ é ι Ó µx
, Ó ι

&
µ é ιx

(vb11) Ó ι 7 y ! $ ι 8 ,
y

(vb12) 7�Ó ι 7 x ! y 8=8(! z
, 7=7�Ó ι x 8(! z 8(!;7=7�Ó ι y 8�! z 8

(vb13) 7�Ó ι Ó µ x 8(! y
, j Ó µ 7=7�Ó ι x 8(! y 8 if ι �, µ � $ µ �� fr 7 y 8Ó ι x if ι

,
µ

(vb14) 7�Ó ι
$

µ 8�! y
, j y if ι

,
µ$

µ if ι �, µ

known as well. For using the equations we can derive that
& _ α é i `�é _ α é 0 ` is the

inverse of
& _ α é 0 `�é _ α é i ` , and so

(4.121) Ó _ α é i ` x , & _ α é 0 `�é _ α é i ` Ó _ α é 0 ` & _ α é i `�é _ α é 0 ` x
The equivalent of (3.95f) now turns out to be derivable. However, we still
need to take care of (3.95g). Since we do not dispose of the full substitution¦N ¾ x § , we need to break down (3.95g) into an inductive definition (vb12) —
(vb14). The condition

$
µ �� fr 7 y 8 is just a shorthand; all it says is that we take

only those equations where the term y has sort � α � δ � and µ �� δ . Notice that

340 Semantics

the disjunction in (vb13) is not complete. From these equations we deduce
that

$ _ α é k ` ,k& _ α é k `Áé _ α é 0 ` $ _ α é 0 ` , so we could in principle dispense with all but
one variable symbol for each type.

The theory of sorted algebras now provides us with a class of models
which is characteristic for that theory. We shall not spell out a proof that
these models are equivalent to models of the λ–calculus in a sense made
to be precise. Rather, we shall outline a procedure that turns an Ω–algebra
into a model of the above equations. Start with a signature � F � Ω � , sorted or
unsorted. For ease of presentation let it be sorted. Then the set B of basic types
is the set of sorts. Let á�â Ω be the equational theory of the functions from the
signature alone. For complex types, put Aα Ä β :

,
Aα � Aβ . Now transform

the original signature into a new signature Ω k , � F � Ω k � where Ω kã7 f 8 , 0 for
all f � F . Namely, for f : ∏i n Aσi

� Aτ set

(4.122) f ý :
,

λx _ σn Ü 1 é n © 1 ` �=Â=Â=Â&� λx _ σ0 é 0 ` � f ® 7 x _ σn Ü 1 é n © 1 ` �=�=�=�i� x _ σ0 é 0 ` 8
This is an element of Aπ where

(4.123) π :
, 7 σ0 ��7 σ1 � Â=Â=ÂO7 σn © 1 � τ 8(Â=Â=Â$8=8

We blow up the types in the way described above. This describes the transi-
tion from the signature Ω to a new signature Ωλ . The original equations are
turned into equations over Ωλ as follows.$ λ

α é i :
,±$ _ α é i `(4.124a) 7 f 7�Es 8=8 λ :
, 7$Â=Â=ÂO7=7 f ¡ ! sλ

0 8(! sλ
1 8(!yÂ=Â=Âi! sλ

n © 1 8(4.124b) 7 s , t 8 λ :
,

sλ , tλ(4.124c)

Next, given an Ω–theory, T , let T λ be the translation of T , with the postulates
(vb1) – (vb14) added. It should be easy to see that if T Ð s

, , ,
t then also

T λ Ð sλ , , , tλ . For the converse we provide a general model construction that
for each multisorted Ω–structure for T gives a multisorted Ωλ –structure for
T λ in which that equation fails.

An environment is a function β from s , Úìe ω (Ú , Typ Ä 7 B 8) into� � Aα : α �ìÚ�� such that for every index � i � α � , β 7=� α � i �=83� Aα . We denote the
set of environments by ¥ . Now let C _ α é δ ` be the set of functions from ¥ to Aα

which depend at most on δ . That is to say, if β and β k are environments such
that for all ι � δ , β 7 ι 8 , β kl7 ι 8 , and if f � C _ α é δ ` then f 7 β 8 , f 7 β k 8 .

Algebraization 341

The constant f is now interpreted by the function ¦ f ý½§ : β �� f ý . For the
‘variables’ we put ¦ $ ι § : β �� β 7 ι 8 . A transformation τ : s � s naturally in-
duces a map ;τ : ¥���¥ : β �� β : τ . Further,

(4.125)

�
τ : σ 7 β 8 , β :ª7 τ : σ 8, 7 β : τ 8�: σ, ;σ 7 ;τ 7 β 8=8, 7 ;σ : ;τ 8�7 β 8

Let σ
, � α � δ � , τ

, � α �Z¦ ι � µ §�¦ δ §l� and υ
, � α �Z7 ι � µ 8�¦ δ §l� .¦) σ

ι é µ § : Cσ � Cτ : f �� f : � ¦ ι � µ §(4.126) ¦ & σ
ι é µ § : Cσ � Cυ : f �� f : �7 ι � µ 8(4.127)

Next, ! _ α Ä β é δ `�é _ α é δ ¡ ` is interpreted as follows.

(4.128) ¦ ! _ α Ä β é δ `�é _ α é δ ¡ ` § : C _ α é δ ` e C _ β é δ ¡K` � C _ α é δ V δ ¡ ` :� f � g �Y��Û5(� β � f 7 β 8�! g 7 β 8=� : β �Ì¥�6
Finally, we define abstraction. Let ι

, � γ � i � .
(4.129) ¦ Ó _ α é δ `ι § : C _ α é δ ` � C _ γ Ä β é δ © è ι êk` :� ��¨5(� β ��5(� y � f 7=¦ y ¾ β 7 ι 8�§ β 8=� : y � Aγ 61� : β �Ì¥�6
It takes some time to digest this definition. Basically, given f , g f 7 β 8 :

,5(� y � f 7=¦ y ¾ β 7 ι 8�§ β 8=� : y � Aγ 6 is a function from Aγ to Aα with parameter β �p¥ .
Hence it is a member of Aγ Ä α . It assigns to y the value of f on β k , which is
identical to β except that now β 7 ι 8 is replaced by y. This is the abstraction
from y. Finally, for each f � C _ α é δ ` , ¦ Ó _ α é δ `ι §�7 f 8 assigns to β � ¥ the value
g f 7 β 8 . (Notice that the role of abstraction is now taken over by the set forma-
tion operator 5 x : 6 .)
Theorem 4.78 Let Ω a multisorted signature, and T an equational theory
over Ω. Furthermore, let Ωλ be the signature of the λ–calculus with 0–ary
constants f ý for every f � F. The theory T λ consisting of the translation of T
and the equations (vb1) — (vb14) is conservative over T . This means that an
equation s

,
t valid in the Ω–algebras satisfying T iff its translation is valid

in all Ωλ –algebras satisfying T λ .

342 Semantics

Notes on this section. The theory of cylindric algebras has given rise to
a number of difficult problems. First of all, the axioms shown above do not
fully characterize the cylindric algebras that are representable, that is to say,
have as their domain U κ , κ the dimension, and where relation variables range
over n–ary relations over U . Thus, although this kind of cylindric algebra
was the motivating example, the equations do not fully characterize it. As
Donald Monk (1969) has shown, there is no finite set of schemes (equa-
tions using variables for members of set of variable indices) axiomatizing the
class of representable cylindric algebras of dimension κ if κ f ℵ0; moreover,
for finite κ , the class of representable algebras is not finitely axiomatizable.
J. S. Johnson has shown in (Johnson, 1969) an analogue of the second result
for polyadic algebras, Sain and Thompson (1991) an analogue of the first.

The model construction for the model of the λ–calculus is called a syn-
tactical model in (Barendregt, 1985). It is due to Hindley and Longo from
(Hindley and Longo, 1980). The approach of using functions from the set of
variables into the algebra as the carrier set is called a functional environment
model, and has been devised by Koymans (see (Koymans, 1982)). A good
overview over the different types of models is found in (Meyer, 1982) and
(Koymans, 1982).

Exercise 160. For f an n–ary function symbol let R f be an n g 1–ary relation
symbol. Define a translation from terms to formulae as follows. First, for a
term t let xt be a variable such that xt �, xs whenever s �, t.7�
 i 8 † :

,
 xi �
 xi
(4.130a)

f 7 t0 �=�=�=�i� tn © 1 8 † :
,

R f 7 xt0
�=�=�=�i� xtn Ü 1

� x f ¯)t ° 8(���
i n

t†
i(4.130b)

Finally, extend this to formulae as follows.

R 7 t0 �=�=�=�i� tn © 1 8 † :
,

R 7 xt0
�=�=�=�i� xtn Ü 1

8����
i n

t†
i(4.131a) TZU ϕ W † :

, TPU ϕ† W(4.131b) T ϕ S χ W † :
, T ϕ† S χ† W(4.131c) 7½T�� x W ϕ 8 † :
, T�� x W ϕ†(4.131d)

Now, let ø , � M � Π �Èä�� be a signature. We replace the function symbols by
relation symbols, and let ä � be the extension of ä such that

(4.132) ä � 7 R f 8 , 5(��Ex � y �3� MΞ ¯ f °�� 1 : Π 7 f 8�7�Ex 8 , y 6

Montague Semantics II 343

Then put ø † :
, � M �Èä � � . Show that �løÀ� β ��Ð ϕ iff �lø � � β �»Ð ϕ†.

Exercise 161. Show that if ­ is a cylindric algebra of dimension κ , everyá λ , λ b κ , satisfies the axioms of

ÞHi
. Moreover, show that if ­ÿÐ ϕ then­ Ð ¶ á λ

¶ ϕ .

Exercise 162. Prove Lemma 4.71.

Exercise 163. Show Proposition 4.76.

Exercise 164. Show that � κ ¾ ð is a cylindric algebra of dimension κ and that
it is locally finite dimensional.

Exercise 165. Prove Proposition 4.75.

6. Montague Semantics II

This section deals with the problem of providing a language with a compo-
sitional semantics. The problem is to say, which languages that are weakly
context free are also strongly context free. The principal result of this section
is that if a language is strongly context free, it can be given a compositional
interpretation based on an AB–grammar. Recall that there are three kinds
of languages: languages as sets of strings, interpreted languages, and finally,
systems of signs. A linear system of signs is a subset of A ¡ e C e M, where C
is a set of categories.

Definition 4.79 A linear sign grammar is context free if (a) C is finite, (b) if f
is a mode of arity n � 0 then f ε 7 x0 �=�=�=�i� xn © 1 8 :

,
∏i n xi, (c) f µ 7 m0 �=�=�=�i� mn © 1 8

is defined if there exist derivable signs σi
, � ei � ci � mi � , i b n, such that f γ 7ÈEc 8

is defined and (d) if f �, g then f γ �, gγ . If only (a) — (c) are satisfied, the
grammar is quasi context free. Σ is (quasi) context free if it is generated by
a (quasi) context free linear sign grammar.

This definition is somewhat involved. (a) says that if f is an n–ary mode, f γ

can be represented by a list of n–ary immediate dominance rules. It conjunc-
tion with (b) we get that we have a finite list of context free rules. Condition
(c) says that the semantics does not add any complexity to this by introducing
partiality. Finally, (d) ensures that the rules of the CFG uniquely define the
modes. (For we could in principle have two modes which reduce to the same
phrase structure rule.) The reader may verify the following simple fact.

344 Semantics

Proposition 4.80 Suppose that Σ is a context free linear system of signs.
Then the string language of Σ is context free.

An interpreted string language is a subset s of A ¡ e M where M is the set of
(possible) (sentence) meanings. The corresponding string language is S 72sï8 .
An interpreted language is weakly context free iff the string language is.

Definition 4.81 An interpreted language s is strongly context free if there is
a context free linear system of signs Σ and a category

}
such that

} 7 Σ 8 , s .
For example, let L be the set of declarative sentences of English. M is arbi-
trary. We take the meanings of declarative sentences to be truth–values, here
0 or 1 (but see Section 4.7). A somewhat more refined approach is to let
the meanings be functions from contexts to truth values. Next, we shall also
specify what it means for a system of signs to be context free.

Obviously, a linear context free system of signs defines a strongly context
free interpreted language. The converse does not hold, however. A counterex-
ample is provided by the following grammar, which generates simple equality
statements.

(4.133)

/¬��Õ%(�ÕÕ×� Ö � Ö L ÖÖ ��H×�+�
Expressions of category / are called equations, and they have as their mean-
ing either É
J�rXa or ÈÈq(_ hia . Now, assign the following meanings to the strings. H
has as its

Ö
– and Õ –meaning the number 1, � the number 2, and HïL.H as itsÕ –meaning the number 2. The / –meanings are as follows.

(4.134)

¦D��(��1§"� , 5+É
J�rXa16 ¦ HXL�H#(��4§"� , 5�ÈÈq(_ hia16¦ H0(��1§ � , 5�ÈÈq(_ hia16 ¦ H#(�HXL�Hj§ � , 5+É
J�r1a16¦D��(.H�§"� , 5�ÈÈq(_ hia16 ¦ HXL�H#(�Hj§"� , 5+É
J�r1a16¦ H0(.H�§"� , 5+É
J�rXa16 ¦D��(�HXL�Hj§"� , 5�ÈÈq(_ hia16¦ HXL�H#(�HXL.HO§ E , 5+É
J�r1a16
This grammar is unambiguous; and every string of category X has exactly one
X–meaning for X �¸5#Õ	� Ö ��/�6 . Yet, there is no CFG of signs for this language.
For the string HXL.H has the same

s
–meaning as � , while substituting one for

the other in an equation changes the truth value.

Montague Semantics II 345

We shall show below that ‘weakly context free’ and ‘strongly context free’
coincide for interpreted languages. This means that the notion of an inter-
preted language is not a very useful one, since adding meanings to sentences
does not help in establishing the structure of sentences. The idea of the proof
is very simple. Consider an arbitrary linear sign grammar ­ and a start sym-
bol

}
. We replace

}
throughout by

} � , where
} � �� C. Now replace the algebra

of meanings by the partial algebra of definite structure terms. This defines
·

.
Then for c � C vË5 } 6 , ��Ex � c �R�&� is a sign generated by

·
iff � is a definite struc-

ture term such that � ε , Ex and � γ , c; and ��Ex � } � �R�&� is generated by
·

iff � is
a definite structure term such that � ε , Ex, and � γ ,Ù} . Finally, we introduce
the following unary mode [.

(4.135) [�7=��Ex � } � �R�&�=8 :
, ��Ex � } �R� µ �

This new grammar, call it ­ � , defines the same interpreted language with
respect to

}
. So, if an interpreted language is strongly context free, it has

a context free sign grammar of this type. Now, suppose that the interpreted
language s is weakly context free. So there is a CFG G generating

} 72sï8 . At
the first step we take the trivial semantics: everything is mapped to 0. This is a
strongly context free sign system, and we can perform the construction above.
This yields a context free sign system where each Ex has as its C–denotations
the set of structure terms that define a C–constituent with string Ex. Finally, we
have to deal with the semantics. Let Ex be an

}
–string and let �M)x � be the set

of meanings of Ex and
})x the set of structure terms for Ex as an

}
. If � })x �1bµ�M)x � ,

there is no grammar for this language based on G. If, however, � })x �%f �M)x �
there is a function f)x :

})x � M)x. Finally, put

(4.136)
f ¡ :
,É� � f)x : Ex � } 7lä�8=�[�¡X7=��Ex � } � �R�&�=8 :
, �ÈEx � } � f ¡17��&8=�

This defines the sign grammar ­ ¡ . It is context free and its interpreted lan-
guage with respect to the symbol

}
is exactly s .

Theorem 4.82 Let s be a countable interpreted language.

À If the string language of s is context free then s is strongly context free.

Á For every CFG G for
} 72sï8 there exists a context free system of signs Σ

and with a category
}

such that

346 Semantics

(a)
} 7 Σ 8 , s ,

(b) for every nonterminal symbol A5XEx : for some m � M : ��Ex � A � m �Y� Σ 6 , 5XEx : A ~ G Ex 6
Proof. Á has been established. For À it suffices to observe that for every
CFL there exists a CFG in which every sentence is infinitely ambigous. Just
replace

}
by
} ¤ and add the rules

} ¤ � } ¤ � } . <
Notice that the use of unary rules is essential. If there are no unary rules,

a given string can have only exponentially many analyses.

Lemma 4.83 Let L be a CFL and d � 0. Then there is a CFG G and such that
for all Ex � L the set of nonisomorphic G–trees for Ex has at least d Ç)x Ç members.

Proof. Notice that it is sufficient that the result be proved for almost all Ex. For
finitely many words we can provide as many analyses as we wish. First of all,
there is a grammar in Chomsky normal form that generates L. Take two rules
that can be used in succession.

(4.137) A � BC � C � DE

Add the rules

(4.138) A � XE � X � AD

Then the string ABC has two analyses: ¦ A ¦ B C § § and ¦ ¦ A B § C § . We proceed
similarly if we have a pair of rules

(4.139) A � XE � X � AB

This grammar assigns exponentially many parses to a given string. To see this
notice that any given string Ex of length n contains n distinct constituents. For
n ç 3, we use the ‘almost all’ clause. Now, let n � 3. Then Ex has a decom-
position Ex , Ey0 Ey1 Ey2 into constituents. By inductive hypothesis, for Eyi we have
d Ç)yi Ç many analyses. Thus Ex has at least 2d Ç)y0 Ç d Ç)y1 Ç d Ç)y2 Ç , 2d Ç)x Ç analyses. <

The previous proof actually assumes exponentially many different struc-
tures to a string. We can also give a simpler proof of this fact. Simply replace
N by N e d and replace in each rule every nonterminal X by any one of the� X � k � , k b d.

Montague Semantics II 347

Theorem 4.84 Let s be a countable interpreted language. Then s is strongly
context free for a CFG without unary rules iff

} 72sï8 is context free and there
is some constant c � 0 such that for almost all strings of A ¡ : the number of
meanings of Ex is bounded by c Ç)x Ç .
We give an example. Let A :

, 5 /�04%�2 �ãA 0�# F %�) �)�D�D
) 6 and

L :
, 5 /�04%	2Ñ)�D�D
) /
01%�2 � /
01%�2Ñ)�D(D) A 0># F %�) �A 0># F %�)�)4D�D
)É/
04%	2 �ãA 0># F %�))�D�D
) A 0�# F %.) 6(4.140)

We associate the following truth values to the sentences.s , 5(� /
04%	2Ñ)�D(D)É/
01%�2 � 0 �P�� /
04%	2Ñ)�D(D) A 0�# F %�) � 1 �P��ÁA 0># F %.)�)�D(D)É/
01%�2 � 0 �P��ÁA 0># F %.)�)�D(D) A 0�# F %�) � 1 �Z6(4.141)

Furthermore, we fix a CFG that generates L:

(4.142)
ρ0 :

,�} ��2 / 7 / ρ1 :
, 7 / � 7 2 /

ρ2 :
, 2 / � /�04%	2

ρ3 :
, 7 �)�D�D
)

ρ4 :
, 2 / �ÓA 0># F %�)

We construct a context free system of signs Σ with
} 7 Σ 8 , s . For every rule

ρ of arity n � 0 we introduce a symbol 2 ρ of arity n. In the first step the
interpretation is simply given by the structure term. For example,

(4.143) 2 V 7=��Ex � 7 �R�&�P�Z��Ey ��2 / �z���=8 , ��Ex �yEy � 7 / ��2 V 9 � 9 ���
(To be exact, on the left hand side we find the unfolding of 2 V rather than the
symbol itself.) Only the definition of 2 µR is somewhat different. Notice that
the meaning of sentences is fixed. Hence the following must hold.

(4.144)

7�2 R 2 ö 2 V 2\¡02 ö 8 µ , 17�2 R 2 ö 2 V 2\¡02��18 µ , 07�2�R�2 � 2�Vt2 ¡ 2 ö 8 µ , 17�2 R 2��02 V 2\¡02��18 µ , 0

We can now do two things: we can redefine the action of the function 2 µR . Or
we can leave the action as given and factor out the congruence defined by

348 Semantics

(4.144) in the algebra of the structure terms enriched by the symbols 0 and 1.
If we choose the latter option, we have

M :
, 5 0 � 1 ��2G�&��2\¡&��2 ö ��2 V 2#¡#2 ö ��2 V 2#¡#2��&��2 R 2 ö 2 V 2�¡�2 ö �2�R�2 ö 2	V�2 ¡ 2 � ��2�R#2 � 2�Vt2 ¡ 2 ö ��2�R#2 � 2�V
2 ¡ 2 � 6(4.145)

Now let Θ be the congruence defined by (4.144).

M ¾ Θ :
, 5�5 0 ��2 R 2 ö 2 V 2\¡02��>��2 R 2��#2 V 2#¡#2��&6>��5+2��>6>��5+2g¡>6>�5+2 ö 6>��5 1 ��2
R#2 ö 2�V
2 ¡ 2 ö ��2�R�2 � 2�Vt2 ¡ 2 ö 6>�5+2 V 2\¡#2 ö 6>��5+2 V 2\¡02��&6�6(4.146)

Next we define the action on the categories. Let ρ
,

B � A0 Â=Â=Â An © 1. Then

(4.147) 2 γ
ρ 7 γ0 �=�=�=�i� γn 8 :

, ¿ B if for all i b n : γi
,

Ai,{
otherwise.

The functions on the exponents are fixed.
Let us pause here and look at the problem of reversibility. Say that f : S �

℘7 T 8 is finite if � f 7 x 8j�&b ω for every x � S. Likewise, f is bounded if there
is a number k b ω such that � f 7 x 8j��b k for all x.

Definition 4.85 Let s�} E e M be an interpreted language. s is finitely re-
versible (boundedly reversible) if for every x � E, x

Ò
:
, 5 y : � x � y �»�>sX6 is finite

(bounded), and for every y � M, y Ò :
, 5 x : � x � y �3� sX6 is finite (bounded), and

moreover, the functions x �� x
Ò

and y �� y Ò are computable.

The conditions on x
Ò

are independent from the conditions on x Ò (see (Dymet-
man, 1991; Dymetman, 1992)).

Theorem 4.86 (Dymetman) There are interpreted languages s and ä such
that (a) x �� x

Ò
is finite and computable but y �� y Ò is not, (b) y �� y ë is finite

and computable but x �� x
Ò

is not.

In the present context, the problem of enumerating the analyses is trivial. So,
given a context free sign grammar, the function Ex �� Ex Ò is always computable,
although not always finite. If we insist on branching, Ex Ò grows at most ex-
ponentially in the length of Ex. We have established nothing about the maps
m �� m Ò .

Let us now be given a sign system Σ whose projection to E e C is context
free. What conditions must be impose so that there exists a context free sign

Montague Semantics II 349

grammar for Σ? Let Ex � A ¡ and A � C. We write ¦nEx § AΣ :
, 5 m : �ÈEx � A � m �ª� Σ 6

and call this set the set of A–meanings of Ex in Σ. If Σ is given by the context,
we omit it. If a system of has a CFG ­ then it satisfies the following equations
for every A and every Ex.

(4.148)
�

Z � F

Zµ ¦ ¦ Ex0 § B0 e¸Â=Â=Â4eË¦ ExΩ ¯ Z ° © 1 § BΩ � Z �nÜ 1 § , ¦ Ex0 9 Â=Â=Â 9 ExΩ ¯ Z ° © 1 § A
where Zτ 7 B0 �=Â=Â=Â>� Bn © 1 8 , A. This means simply put that the A–meanings
of Ex can be computed directly from the meanings of the immediate subcon-
stituents. From (4.148) we can derive the following estimate.

(4.149) ∑
Z � F

�
∏

i Ω ¯ Z ° � ¦ Exi § Bi � � f�� ¦ Ex0 9 Â=Â=Â 9 ExΩ ¯ Z ° © 1 § A �
This means that a string cannot have more meanings than it has readings
(= structure terms). We call the condition (4.149) the count condition. In
particular, it implies that there is a constant c such that for almost all Ex and all
A:

(4.150) � ¦ Ex § A ��ç c Ç)x Ç
Even if the count condition is satisfied it need not be possible to construct a
context free system of signs. Here is an example.

Σ :
, 5(�ÈG n � s � 0 � : n � ω 6�sì5(� 0 G n 0 � } � n � : n � ω 6(4.151)

A CFG for Σ is} � 0�s�0 s � ε � s G(4.152)

The condition (4.148) is satisfied. But there is no context free sign gram-
mar for Σ. The reason is that no matter how the functions are defined, they
must produce an infinite set of numbers from just one input, 0. Notice that
we can even define a boundedly reversible system for which no CFG exists.
It consists of the signs �ÈG n � s � n � , n � ω , the signs � 0 G n 0 � } � 2n � and the signs� 0 G n 0 � } � 3n � where n is prime. We have

0 G n 0 Ò }µ5 2n � 3n 6 , whence � Ex Ò �&ç 2,
and � k Ò �Xç 2. However, suppose we allow the functions f ε to be partial, but if
defined f ε 7�Ex0 �=�=�=�i�$ExΩ ¯ f ° © 1 8 , ∏i Ω ¯ f ° Exi. Then a partial context free grammar
exists if the interpreted language defined by Σ is boundedly reversible. (Basi-
cally, the partiality allows any degree of sensitivity to the string of which the

350 Semantics

expression is composed. Each meaning is represented by a bounded number
of expressions.)

Let ρ
,

A � B0 Â=Â=Â Bn © 1. Notice that the function [ρ makes A–meanings
from certain Bi–meanings of the constituents of the string. However, often lin-
guists use their intuition to say what an A–string means under a certain anal-
ysis, that is to say, structure term. This — as is easy to see — is tantamount
to knowing the functions themselves, not only their domains and ranges. For
let us assume we have a function which assigns to every structure term � of
an A–string Ex an A–meaning. Then the functions [ρ are uniquely determined.
For let a derivation of Ex be given. This derivation determines derivations of its
immediate constituents, which are now unique by assumption. For the tuple
of meanings of the subconstituents we know what the function does. Hence,
it is clear that for any given tuple of meanings we can say what the function
does. (Well, not quite. We do not know what it does on meanings that are
not expressed by a Bi–string, i b Ω 7 f 8 . However, on any account we have as
much knowledge as we need.)

Let us return to Montague Grammar. Let Σ } A ¡ e C e M be strongly
context free, with F the set of modes. We want to show that there is an AB–
grammar which generates Σ. We have to precisify in what sense we want to
understand this. We cannot expect that Σ is any context free system, since
AB–grammars are always binary branching. This, however, means that we
have to postulate other constituents than those of Σ. Therefore we shall only
aim to have the same sentence meanings. In what way we can get more, we
shall see afterwards. To start, there is a trivial solution of our problem. If
ρ
,

A � B0B1 is a rule we add a 0–ary mode

(4.153) 2 ρ
, � ε � A ¾ B0 ¾ B1 � λxB0

� λxB1
� Fρ 7 xB0

� xB1
8=�

This allows us to keep our constituents. However, postulating empty elements
does have its drawbacks. It increases the costs of parsing, for example. We
shall therefore ask whether one can do without empty categories. This is pos-
sible. For, as we have seen, with the help of combinators one can liberate
oneself from the straightjacket of syntactic structure. Recall from Section 2.2
the transformation of a CFG into Greibach Normal Form. This uses essen-
tially the tool of skipping a rule and of eliminating left recursion. We leave it
to the reader to formulate (and prove) an analogon of the skipping of rules for
context free sign grammars. This allows us to concentrate on the elimination
of left recursion. We look again at the construction of Lemma 2.33. Choose

Montague Semantics II 351

a nonterminal X . Assume that we have the following X–productions, whereEα j , j b m, and Eβi, i b n, do not contain X .

(4.154) ρ j :
,

X � X 9 Eαi � i b m � σi :
,

X � βi � i b n

Further let [µ
ρ j

, j b m, and [µ
σi

, i b n, be given. To keep the proof legible we

assume that Eβ j
,

Yj , Eαi
,

Ui, are nonterminal symbols. (Evidently, this can
be achieved by introducing some more nonterminal symbols.) We we have
now these rules.

(4.155) ρ j
,

X � X 9 Ui � i b m � σi
,

X � Yi � i b n

So, we generate the following structures.

(4.156) ¦Y k ¦Ui0
¦Ui1

Â=Â=ÂP¦Uin Ü 2
Uin Ü 1

§½Â=Â=ÂÈ§ § §
We want to replace them by these structures instead:

(4.157) ¦ ¦ Â=Â=Â�¦ ¦Y k Ui0
§ Ui1

§½Â=Â=Â Uin Ü 2
§ Uin Ü 1

§
Proceed as in the proof of Lemma 2.33. Choose a new symbol Z and replace
the rules by the following ones.

λ j :
,

X � U j � j b m � νi :
,

Z � Yi � i b n �(4.158a)

µ j :
,

X � Yj 9 Z � j b m � ξ :
,

Z � Yi 9 Z � i b n �(4.158b)

Now define the following functions.§ µ
λi

:
, [µ

σi§ µ
µi
7 x0 � x1 8 :

,
x1 7 x0 8§ µ

νi
7 x0 � x1 8 :

,
λx2 �ô[µ

ρi
7 x1 7 x2 8P� x0 8§ µ

ξi
7 x0 8 :

,
λx0 �ô[µ

ρi
7 x0 � x1 8(4.159)

Now we have eliminated all left recursion on X . We only have to show that
we have not changed the set of X–meanings for any string. To this end, let Ex
be an X–string, say Ex , Ey 9 ∏i k Ezi, where Ey is a Y j–string and Ezi a U ji

–string.
Then in the transformed grammar we have the Z–strings

(4.160) Eup :
, ∏

p � i k
Ezi

352 Semantics

and Ex is an X–string. Now we still have to determine the meanings. Let ² be
a meaning of Ey as a Yi–string and Ã i, i b k, a meaning of Ezi as a U ji

–string.
The meaning of Ex as an X–string under this analysis is then

(4.161) [µ
ρ jn Ü 1

7�[µ
ρ jn Ü 2

7$Â=Â=ÂP7�[µ
ρ j0
7�²Ù�_Ã 0 8P�_Ã 1 8P�=�=�=�Z�_Ã n © 2 8P�_Ã n © 1 8

As a Z–string Eun © 1 has the meaning

(4.162) � n © 1 :
, § µ

νin Ü 1
7NÃ n © 1 8 , λx0 �ô[µ

ρi
7 x0 �_Ã n © 1 8

Then Eun © 2 has the meaning� n © 2 :
, § µ

νin Ü 2
7NÃ n © 2 ��� n © 1 8,

λx2 �ô[µ
ρn Ü 2

7~� n © 1 7 x2 8P�_Ã n © 2 8,
λx2 �ô[µ

ρn Ü 2
7�[µ

ρi
7 x2 �_Ã n © 1 8P�_Ã n © 2 8P�(4.163)

Inductively we get

(4.164) � n © j
,

λx0 �ô[µ
ρn Ü 1

7�[µ
ρn Ü 2

7$Â=Â=Â¯[µ
ρn Ü j

7 x0 �_Ã n © j 8P�=�=�=�i�_Ã n © 2 8P�_Ã n © 1 8
If we put j

,
n, and if we apply at last the function [µ

µ j
on ² and the result we

finally get that Ex has the same X–meaning under this analysis. The converse
shows likewise that every X–analysis of Ex in the transformed grammar can be
transformed back into an X–analysis in the old grammar, and the X–meanings
of the two are the same.

The reader may actually notice the analogy with the semantics of the
Geach rule. There we needed to get new constituent structures by bracket-
ing ¦A ¦B C § § into ¦ ¦A B § C § . Supposing that A and B are heads, the semantics
of the rule forming ¦ A B § must be function composition. This is what the defi-
nitions achieve here. Notice, however, that we have no categorial grammar to
start with, so the proof given here is not fully analogous. Part of the semantics
of the construction is still in the modes themselves, while categorial grammar
requires that it be in the meaning of the lexical items.

After some more steps, consisting in more recursion elimination and skip-
ping of rules we are finally done. Then the grammar is in Greibach normal
form. The latter can be transformed into an AB–grammar, as we have already
seen.

Montague Semantics II 353

Theorem 4.87 Let Σ be a context free linear system of signs. Then there ex-
ists an AB–grammar that generates Σ.

The moral to be drawn is that Montague grammmar is actually quite power-
ful from the point of view of semantics. If the string languages are already
context free, then if any context free analysis succeeds, so does an analysis
in terms of Montague grammar (supposing here that nothing except linear
concatenation is allowed in the exponents). We shall extend this result later
to PTIME–languages.

Notes on this section. With suitable conditions (such as nondeletion) the
set x

Ò
becomes enumerable for every given x, simply because the number of

parses of a string is finite (and has an a priori bound based on the length of
x). Yet, x

Ò
is usually infinite (as we discussed in Section 5.1), and the sets y Ò

need not be recursively enumerable for certain y. (Pogodalla, 2001) studies
how this changes for categorial grammars if semantic representations are not
formulae but linear formulae. In that case, the interpreted grammar becomes
reversible, and generation is polynomial time computable.

Exercise 166. Let G be a quasi context free sign grammar. Construct a con-
text free sign grammar which generates the same interpreted language.

Exercise 167. Let G be determined by the two rules
} � }�} � 0 . Show that

the set of constituent structures of G cannot be generated by an AB–grammar.
Hint. Let d 7 α 8 be the number of occurrences of slashes (è or v) in α . If α is
the mother of β and γ then either d 7 β 8@� d 7 α 8 or d 7 γ 8@� d 7 α 8 .
Exercise 168. Let Σ be strongly context free with respect to a 2–standard
CFG G with the following property: there exists a k � ω such that for every
G–tree � T �ibØ�
jØ�_!ï� and every node x � T there is a terminal node y � T with¦ y � x §�ç k. Then there exists an AB–grammar for Σ which generates the same
constituent structures as G.

Exercise 169. As we have seen above, left recursion can be eliminated from a
CFG G. Show that there exists a CCG 7K²�8 grammar which generates for every
nonterminal X the same set of X–strings. Derive from this that we can write
an AB–grammar which for every X generates the same X–strings as G. Why
does it not follow that LB 7 G 8 can be generated by some AB–grammar? Hint.
For the first part of the exercise consider Exercise 114.

Exercise 170. Let � } � C � A � ζ � be an AB–grammar. Put È 0 :
, � a � A ζ 7 a 8 . These

are the 0th projections. Inductively we put for β i , α ¾ γ �DÈ i, γ �, α , β i � 1 :
,

354 Semantics

α . In this way we define the projections of the symbols from È 0. Show that by
these definitions we get a grammar which satisfies the principles of X–syntax.
Remark. The maximal projections are not necessarily in È 2.

7. Partiality and Discourse Dynamics

After having outlined the basic setup of Montague Semantics, we shall deal
with an issue that we have so far tacitly ignored, namely partiality. The name
‘partial logic’ covers a wide variety of logics that deal with radically differ-
ent problems. We shall look at two of them. The first is that of partiality as
undefinedness. The second is that of partiality as ignorance. We start with
partiality as undefinedness.

Consider the assignment y :
, 7 x g 1 8 ¾ 7 u2 v 9 8 to y in a program. This

clause is potentially dangerous, since u may equal 3, in which case no value
can be assigned to y. Similarly, for a sequence � , 7 an 8 n � ω , lim � :

,
limn Ä ∞ an

is defined only if the series is convergent. If not, no value can be given. Or
in type theory, a function f may only be applied to x if f has type α � β
for certain α and β x has type α . In the linguistic and philosophical litera-
ture, this phenomenon is known as presupposition. It is defined as a relation
between propositions (see (van der Sandt, 1988)).

Definition 4.88 A proposition ϕ presupposes χ if both ϕ ~ χ and ¶ ϕ ~ χ .
We write ϕ � 4 χ (or simply ϕ � χ) to say that ϕ presupposes χ .

The definition needs only the notion of a negation in order to be well–defined.
Clearly, in boolean logic this definition gives pretty uninteresting results. ϕ
presupposes χ in H»| iff χ is a tautology. However, if we have more than
two truth–values, interesting results appear. First, notice that we have ear-
lier remedied partiality by assuming a ‘dummy’ element

{
that a function

assumes as soon as it is not defined on its regular input. Here, we shall rem-
edy the situation by giving the expression itself the truth–value

{
. That is to

say, rather than making functions themselves total, we make the assignment
of truth–values a total function. This has different consequences, as will be
seen. Suppose that we totalize the operator limn Ä ω so that it can be applied
to all sequences. Then if 7 an 8 n � ω is not a convergent series, say an

, 7�v 1 8 n,
3
,

limn Ä ∞ an is not true, since limn Ä ω an
, {

and 3 �, {
. The negation of

the statement will then be true. This is effectively what Russel (1905) and
Kempson (1975) claim. Now suppose we say that 3

,
limn Ä ∞ an has no truth–

Partiality and Discourse Dynamics 355

value; then 3 �, limn Ä ∞ an also has no truth–value. To nevertheless be able to
deal with such sentences rather than simply excluding them from discourse,
we introduce a third truth–value,

{
. The question is now: how do we define

the 3–valued counterparts of v , t and s ? In order to keep confusion at a
minimum, we agree on the following conventions. ~ 3 denotes the 3–valued
consequence relation determined by a matrix ø , ��5 0 � 1 � { 6>� Π ��5 1 61� , where
Π is an interpretation of the connectives. We shall assume that F consists of
a subset of the set of the 9 unary and 27 binary symbols, which represent the
unary and binary functions on the three element set. This defines Ω. Then~ 3 is uniquely fixed by F , and the logical connectives will receive a distinct
name every time we choose a different function on 5 0 � 1 � { 6 . What remains
to be solved, then, is not what logical language to use but rather by what
connective to translate the ordinary language connectors

' C " ,
04' î , C # , and, : Â=Â=Â " / D4' . Here, we assume that whatever interprets them is a function on5 0 � 1 � { 6 (or 5 0 � 1 � { 6 2), whose restriction to 5 0 � 1 6 is its boolean counterpart,

which is already given. For those functions, the 2–valued consequence is also
defined and denoted by ~ 2.

Now, if
{

is the truth–value reserved for the otherwise truth valueless state-
ments, we get the following three valued logic, due to Bochvar (1938). Its
characteristics is the fact that undefinedness is strictly hereditary.

(4.165)

v
0 1
1 0{ {

t 0 1
{

0 0 0
{

1 0 1
{{ { { {

s 0 1
{

0 0 1
{

1 1 1
{{ { { {

The basic connectives are ¶ , � and · , which are interpreted by v , t ands . Here is a characterization of presupposition in Bochvar’s Logic. Call a
connective C a Bochvar–connective if Π 7 C 8�7�Ex 8 , {

iff xi
,L{

for some i b
Ω 7 C 8 .
Proposition 4.89 Let ∆ and χ be composed using only Bochvar–connectives.
Then ∆ ~ 3 χ iff (i) ∆ is not classically satisfiable or (ii) ∆ ~ 2 χ and var 7 χ 8@}
var ¦∆ § .
Proof. Suppose that ∆ ~ 3 χ and that ∆ is satisfiable. Let β be a valuation
such that β 7 δ 8 , 1 for all δ � ∆. Put β � 7 p 8 :

,
β 7 p 8 for all p � var 7 ∆ 8 and

β � 7 p 8 :
, {

otherwise. Suppose that var 7 χ 8
v var 7 ∆ 8 �, w . Then β � 7 χ 8 , {
,

contradicting our assumption. Hence, var 7 χ 83} var 7 ∆ 8 . It follows that every

356 Semantics

valuation that satisfies ∆ also satisfies χ , since the valuation does not assume{
on its variables (and can therefore be assumed to be a classical valuation).

Now suppose that ∆ ´ 3 χ . Then clearly ∆ must be satisfiable. Furthermore,
by the argument above either var 7 χ 8
v var 7 ∆ 8��, w or else ∆ ~ 2 χ . <

This characterization can be used to derive the following corollary.

Corollary 4.90 Let ϕ and χ be composed by Bochvar–connectives. Then
ϕ � χ iff var 7 χ 8@} var 7 ϕ 8 and ~ 2 χ .

Hence, although Bochvar’s logic makes room for undefinedness, the notion of
presupposition is again trivial. Bochvar’s Logic seems nevertheless adequate
as a treatment of the ι–operator. It is formally defined as follows.

Definition 4.91 ι is a partial function from predicates to objects such that
ιx � χ 7 x 8 is defined iff there is exactly one b such that χ 7 b 8 , and in that case
ιx � χ 7 x 8 :

,
b.

Most mathematical statements which involve presuppositions are instances
of a (hidden) use the ι–operator. Examples are the derivative, the integral and
the limit. In ordinary language, ι corresponds to the definite determiner

" / D .
Using the ι–operator, we can bring out the difference between the bivalent in-
terpretation and the three valued one. Define the predicate K½q&r�K4\3| k on infinite
sequences of real numbers as follows:

(4.166) K½q(r�K4\3| k 7k�18 :
, 7�~ ε � 0 8�7�� n 8�7�~ m f n 8j���(7 m 8	v��(7 n 8j�>b ε

This is in formal terms the definition of a Cauchy sequence. Further, define a
predicate K4r!� k as follows.

(4.167) K4r!� k 7k�18�7 x 8 :
, 7�~ ε � 0 8�7�� n 8�7�~ m f n 8j���(7 m 8
v x �4b ε

This predicate says that x is a cumulation point of � . Now, we may set lim � :
,

ιx �DK4r���kã7k�18�7 x 8 . Notice that K½q(r#K4\C| k 7k�18 is equivalent to

(4.168) 7�� x 8�7_K4r�� k 7k�18�7 x 8(�¸7�~ y 8�7_K4r!� k 7k�18�7 y 8+� y
,

x 8=8
This is exactly what must be true for lim � to be defined.s / Dÿ2�, B ,." C : � D!a�%�0(2
)k" / #�D(D�O(4.169)

ιx �DK4r�� k 7k�18�7 x 8 , 3(4.170) 7�� x 8�7_K4r!� k 7k�18�7 x 8(�¸7�~ y 8�7_K4r!� k 7k�18�7 y 8+� y
,

x 8�� x
,

3 8P�(4.171)

Partiality and Discourse Dynamics 357

Under the analysis (4.170) the sentence (4.169) presupposes that � is a Cauchy–
sequence. (4.171) does not presuppose that. However, the dilemma for the
translation (4.171) is that the negation of (4.169) is also false (at least in or-
dinary judgement). What this means is that the truth–conditions of (4.172)
are not expressed by (4.174), but by (4.175) which in three valued logic is
(4.173). s / Dÿ2�, B ,." C : �Éî C D)Å' C " D!a�%�0(2�" / #�D�DRO(4.172) ¶ 7 ιx �DK4r�� k 7k�18�7 x 8 , 3 8(4.173) ¶ 7�� x 8�7_K4r!� k 7k�18�7 x 8���7�~ y 8�7_K4r�� k 7k�18�7 y 8Y� y

,
x 8�� x

,
3 8(4.174) 7�� x 8�7_K4r!� k 7k�18�7 x 8(�¸7�~ y 8�7_K4r!� k 7k�18�7 y 8+� y

,
x 8�� ¶ 7 x , 3 8=8(4.175)

It is difficult to imagine how to get the translation (4.175) in a bivalent ap-
proach, although a proposal is made below. The problem with a bivalent anal-
ysis is that it can be shown to be inadequate, because it rests on the assump-
tion that the primitive predicates are bivalent. However, this is problematic.
The most clear–cut case is that of the truth–predicate. Suppose we define the
semantics of p on the set of natural numbers as follows.

(4.176) p�7�I ϕ J�8�� ϕ

Here, I ϕ J is, say, the Gödel code of ϕ . It can be shown that there is a χ such
that p]7�I χ J�8@� ¶ χ is true in the natural numbers. This contradicts (4.176).
The sentence χ corresponds to the following liar paradox.s / ,�)Ï)�D4'�"�D�' F D�,�) : 0�2�)�D�O(4.177)

Thus, as Tarski has observed, a truth–predicate that is consistent with the
facts in a sufficiently rich theory must be partial. As sentence (4.177) shows,
natural languages are sufficiently rich to produce the same effect. Since we
do not want to give up the correctness of the truth–predicate (or the falsity
predicate), the only alternative is to assume that it is partial. If so, however,
there is no escape from the use of three valued logic, since bivalence must
fail.

Let us assume therefore that we three truth–values. What Bochvar’s logic
gives us is called the logic of hereditary undefinedness. For many reasons it

358 Semantics

is problematic, however. Consider the following two examples.E : � 01' î�� 0�#�D F C ' < D&#�4�D�'�"ý)4D!a>%
D�' F D) � lim 7k�»g��18(4.178) ,
lim ��g lim � O^ È u �, 3 ÉO\Xa4o y :

, 7 x g 1 8 ¾ 7 u2 v 9 8 a4_ hia y :
,

0 �(4.179)

By Bochvar’s Logic, (4.178) presupposes that � , � and �+g�� are convergent
series. (4.179) presupposes that u �, 3. However, none of the two sentences
have nontrivial presuppositions. Let us illustrate this with (4.178). Intuitively,
the if–clause preceding the equality statement excludes all sequences from
consideration where � and � are nonconvergent sequences. One can show that�+g�� , the pointwise sum of � and � , is then also convergent. Hence, the if–
clause covers all cases of partiality. The statement lim 7k��gN�48 , lim ��g lim �
never fails. Similarly,

04' î has the power to eliminate presuppositions.� 04' î�� 0>#�D F C ' < D>#�4�D�'�"Ñ)�D>#n,>D
)�04' î lim 7k��gN�48(4.180) ,
lim ��g lim � O

u :
,

4;y :
, 7 x g 1 8 ¾ 7 u2 v 9 8(4.181)

As it turns out, there is an easy fix for that. Simply associate the following
connectives with

, : Â=Â=Â " / D4' and
01' î .

(4.182)

�Åk 0 1
{

0 1 1 1
1 0 1

{{ { { {
�Yk 0 1

{
0 0 0 1
1 0 1

{{ { { {
·Yk 0 1

{
0 0 1

{
1 1 1 1{ { { {

The reader may take notice of the fact that while �;k and � k are reasonable
candidates for

01' î and
, : Â=Â=Â " / D�' , · k is not as good for C # .

In the linguistic literature, various attempts have been made to explain
these facts. First, we distinguish the presupposition of a sentence from its as-
sertion. The definition of these terms is somewhat cumbersome. The general
idea is that the presupposition of a sentence is a characterization of those cir-
cumstances under which it is either true or false, and the assertion is what the
sentence says when it is either true of false (that is to say, the assertion tells
us when the sentence is true given that it is either true or false). Let us attempt
to define this. Let ϕ be a proposition. Call χ a generic presupposition of ϕ
if the following holds. (a) ϕ � χ , (b) if ϕ � ψ then χ ~ 3 ψ . If χ is a generic

Partiality and Discourse Dynamics 359

presupposition of ϕ , χ � ϕ is called an assertion of ϕ . First, notice that
presuppositions are only defined up to interderivability. This is not a congru-
ence. We may have ϕ �ÿ~ 3χ without ϕ and χ receiving the same truth–value
under all assignments. Namely, ϕ �9~ 3χ iff ϕ and χ are truth–equivalent, that
is, β 7 ϕ 8 , 1 exactly when β 7 χ 8 , 1. In order to have full equivalence, we
must also require ¶ ϕ �9~ 3

¶ χ . Second, notice that ϕ · ¶ ϕ satisfies (a) and (b).
However, ϕ · ¶ ϕ presupposes itself, something that we wish to avoid. So,
we additionally require the generic presupposition to be bivalent. Here, ϕ
is bivalent if for every valuation β into 5 0 � 1 � { 6 : β 7 ϕ 83��5 0 � 1 6 . Define the
following connective.

(4.183)

d
0 1

{
0

{
0

{
1

{
1

{{ { { {
Definition 4.92 Let ϕ be a proposition. χ is a generic presupposition of ϕ
with respect to ~ 3 if (a) ϕ � χ , (b) χ is bivalent and (c) if ϕ � ψ then
χ ~ 3 ψ . χ is the assertion of ϕ if (a) χ is bivalent and (b) χ �ÿ~ 3 ϕ . Write
P 7 ϕ 8 for the generic presupposition (if it exists), and A 7 ϕ 8 for the assertion.

It is not a priori clear that a proposition has a generic presupposition. A case
in point is the truth–predicate. Write ϕ ð 3 χ if β 7 ϕ 8 , β 7 χ 8 for all β .

Proposition 4.93 ϕ ð 3 A 7 ϕ 8 d P 7 ϕ 8 .
The projection algorithm is a procedure that assigns generic presuppositions
to complex propositions by induction over their structure. Table 14 shows a
projection algorithm for the connectives defined so far. It is an easy matter
to define projection algorithms for all connectives. The prevailing intuition is
that the three valued character of

04' î , C # and
, : Â=Â=Â " / D�' is best explained

in terms of context change. A text is a sequence of propositions, say ∆
,� δi : i b n � . A text is coherent if for every i b n: � δ j : j b i �R~ 3 δi · ¶ δi.

In other words, every member is either true or false given that the previous
propositions are considered true. (Notice that the order is important now.) In
order to extend this to parts of the δ j we define the local context as follows.

Definition 4.94 Let ∆
, � δi : i b n � . The local context of δ j is � δi : i b j � . For

a subformula occurrence of δ j, the local context of that occurrence is defined
as follows.

360 Semantics

Table 14. The Projection Algorithm

A 7 ¶ ϕ 8 , ¶ A 7 ϕ 8 P 7 ¶ ϕ 8 ,
P 7 ϕ 8

A 7 ϕ � χ 8 ,
A 7 ϕ 8(� A 7 χ 8 P 7 ϕ � χ 8 ,

P 7 ϕ 8�� P 7 χ 8
A 7 ϕ · χ 8 ,

A 7 ϕ 8�· A 7 χ 8 P 7 ϕ · χ 8 ,
P 7 ϕ 8�� P 7 χ 8

A 7 ϕ � χ 8 , A 7 ϕ 8�� A 7 χ 8 P 7 ϕ � χ 8 , P 7 ϕ 8�� P 7 χ 8
A 7 ϕ �Yk χ 8 ,

A 7 ϕ 8(� A 7 χ 8 P 7 ϕ �@k χ 8 ,
P 7 ϕ 8� 7 A 7 ϕ 8�� P 7 χ 8=8

A 7 ϕ ·Yk χ 8 ,
A 7 ϕ 8�· A 7 χ 8 P 7 ϕ ·@k χ 8 ,

P 7 ϕ 8� 7 ¶ A 7 ϕ 8�� P 7 χ 8=8
A 7 ϕ � k χ 8 , 7 A 7 ϕ 8(� P 7 ϕ 8=8 P 7 ϕ � k χ 8 , P 7 ϕ 8� A 7 χ 8 � 7 A 7 ϕ 8.� P 7 χ 8=8

À If Σ is the local context of ϕ �yk χ then (a) Σ is the local context of ϕ
and (b) Σ;ϕ is the local context of χ .

Á If Σ is the local context of ϕ �µk χ then (a) Σ is the local context of ϕ
and (b) Σ;ϕ is the local context of χ .

Â If Σ is the local context of ϕ · k χ then (a) Σ is the local context of ϕ
and (b) Σ; ¶ ϕ is the local context of χ .

δ j is bivalent in its local context if for all valuations that make all formulae
in the local context true, δ j is true or false.

The presupposition of ϕ is the formula χ such that ϕ is bivalent in the con-
text χ , and which implies all other formulae that make ϕ bivalent. It so turns
out that the context dynamics define a three valued extension of a 2–valued
connective, and conversely. The above rules are an exact match. Such for-
mulations have been given by Irene Heim (1983), Lauri Karttunen (1974)
and also Jan van Eijck (1994). It is easy to understand this in computer pro-
grams. A computer program may contain clauses carrying presuppositions
(for example clauses involving divisions), but it need not fail. For if when-
ever a clause carrying a presupposition is evaluated, that presupposition is
satisfied, no error ever occurs at runtime. In other words, the local context of
that clause satisfies the presuppositions. What the local context is, is defined
by the evaluation procedure for the connectives. In computer languages, the
local context is always to the left. But this is not necessary. The computer

Partiality and Discourse Dynamics 361

evaluates α q(oXc β by first evaluating α and then β only if α is true — but it
could also evaluate β first and then evaluate α whenever β is true. In (Kracht,
1994) it is shown that in the definition of the local context all that needs to
be specified is the directionality of evaluation. The rest follows from general
principles. Otherwise one gets connectives that extend the boolean connec-
tives in an improper way (see below on that notion).

The behaviour of presuppositions in quantification and propositional atti-
tude reports is less straightforward. We shall only give a sketch./�< D&# × í 0 F0/ D�2 C # C : " / D #�D�4G, C '�4 C "Ñ0ÿ2(D�"%"�D># : # C1B(4.184) " / 0'" B 0�#�#n,>0�4�D�0�4�D�' F × O/�< D&# × &
D&#�) C 'Â,X'�" / 0�"Ï#�D%4G, C ' ,�)?0 í 0 F#/ D�2 C #SO(4.185) A C / ' í D�2�,�D < D
)k" / 0�" / ,�)Å'
D�,'4 /�í C %�#�,�) 0 í 0 F#/ D�2 C #SO(4.186)

We have translated
D < D&# × using the quantifier ~ in predicate logic. We wish

to extend it to a three–valued quantifier, which we also call ~ . (4.184) is true
even if not everybody in the region is a bachelor; in fact, it is true exactly if
there is no non–bachelor. Therefore we say that 7�~ x 8 ϕ is true iff there is no x
for which ϕ 7 x 8 is false. 7�~ x 8 ϕ is false if there is an x for which ϕ 7 x 8 is false.
Thus, the presupposition effectively restricts the range of the quantifier. 7�~ x 8 ϕ
is bivalent. This predicts that (4.185) has no presuppositions. On (4.186) the
intuitions vary. One might say that it does not have any presuppositions, or
else that it presupposes that the neighbour is a man (or perhaps: that John
believes that his neighbour is a man). This is deep water (see (Geurts, 1998)).

Now we come to the second interpretation of partiality, namely ignorance.
Let

{
now stand for the fact that the truth–value is not known. Also here the

resulting logic is not unique. Let us take the example of a valuation β that
is only defined on some of the variables. Now let us be given a formula ϕ .
Strictly speaking β 7 ϕ 8 is not defined on ϕ if the latter contains a variable
that is not in the domain of β . On the other hand, there are clear examples of
propositions that receive a definite truth–value no matter how we extend β to
a total function. For example, even if β is not defined on p, every extension
of it must make p · ¶ p true. Hence, we might say that β also makes p · ¶ p
true. This is the idea of supervaluations by Bas van Fraassen. Say that ϕ is
sv–true (sv–false) under β if ϕ is true under every total γ

à
β . If ϕ is neither

sv–true nor sv—false, call it sv–indeterminate. Unfortunately, there is no
logic to go with this approach. Look at the interpretation of C # . Clearly, if
either ϕ or χ is sv–true, so is their disjunction. However, what if both ϕ and

362 Semantics

χ are sv–indeterminate?

(4.187)

s 0 1
{

0 0 1
{

1 1 1 1{ {
1 ?

The formula p · q is sv–indeterminate under the empty valuation. It has no
definite truth–value, because both p and q could turn out to be either true
or false. On the other hand, p · ¶ p is sv–true under the empty valuation,
even though both p and ¶ p are sv–indeterminate. So, the supervaluation ap-
proach is not so well–suited. Stephen Kleene actually had the idea of doing a
worst case interpretation: if you can’t always say what the value is, fill in

{
.

This gives the so–called Strong Kleene Connectives (the weak ones are like
Bochvar’s).

(4.188)

v
0 1
1 0{ {

tQ� 0 1
{

0 0 0 0
1 0 1

{{
0

{ {
sM� 0 1

{
0 0 1

{
1 1 1 1{ {

1
{

These connectives can be defined in the following way. Put 1 � :
, 5 1 6 , 0 � :

,5 0 6 and
{

:
, 5 0 � 1 6 . Now put

(4.189) f � 7 x �0 � x �1 8 :
,

f ¦ x �0 e x �1 §
For example, s � 7=� 0 � � { � �=8 , s�¦`5 0 6�e¸5 0 � 1 6j§ , 5 0 s 0 � 0 s 1 6 , 5 0 � 1 6 ,�{ � .
So, we simply take sets of truth–values and calculate with them.

A more radical account of ignorance is presented by constructivism and
intuitionism. A constructivist denies that the truth or falsity of a statement
can always be assessed directly. In particular, an existential statement is true
only if we produce an instance that satisfies it. A universal statement can be
considered true only if we possess a proof that any given element satisfies it.
For example, Goldbach’s conjecture is that every even number greater than
2 is the sum of two primes. According to a constructivist, at present it is
neither true nor false. For on the one hand we have no proof that it holds,
on the other hand we know of no even number greater than 2 which is not
the sum of two primes. Both constructivists and intuitionists unanimously
reject axiom (a2). (Put ¨ for p1. Then in conjunction with the other rules

Partiality and Discourse Dynamics 363

this gives 7 ¶ p0 � p0 8�� p0. This corresponds to the Rule of Clavius: from¶ p0 � p0 conclude p0.) They also reject p · ¶ p, the so–called Law of the
Exluded Middle. The difference between a constructivist and an intuitionist
is the treatment of negative evidence. While a constructivist accepts basic
negative evidence, for example, that this lemon is not green, for an intuitionist
there is no such thing as direct evidence to the contrary. We only witness the
absence of the fact that the lemon is green. Both, however, are reformist in
the sense that they argue that the mathematical connectives

01' î , C # ,
' C " ,

and
, : Â=Â=Â " / D�' have a different meaning. However, one can actually give a

reconstruction of both inside classical mathematics. We shall deal first with
intuitionism. Here is a new set of connectives, defined with the help of ¾ ,
which satisfies

Þ�l
.

(4.190)

¶ iϕ :
, ¾ 7 ¶ ϕ 8

ϕ · i χ :
,

ϕ · χ
ϕ � i χ :

,
ϕ � χ

ϕ � i χ :
, ¾ 7 ϕ � χ 8

Call an I–proposition a proposition formed from variables and ¨ using only
the connectives just defined.

Definition 4.95 An I–model is a pair � P�içØ� β � , where � P�iç]� is a partially
ordered set and β 7 p 8 , e β 7 p 8 for all variables p.

Intuitively, the nodes of P represent stages in the development of knowl-
edge. Knowledge develops in time along ç . We say that x accepts ϕ if� P�içØ� x � β ��Ð ϕ , and that x knows ϕ if � P�içØ� x � β ��Ð ¾ ϕ . By definition of
β , once a proposition p is accepted, it is accepted for good and therefore
considered known. Therefore Gödel simply translated variables p by the for-
mula ¾ p. Thus, intuitionistically the statement that p may therefore be under-
stood as ‘p is known’ rather than ‘p is accepted’. The systematic conflation
of knowledge and simple temporary acceptance as true is the main feature of
intuitionistic logic.

Proposition 4.96 Let � P�içØ� β � be an I–model and ϕ an I–proposition. Then
β 7 ϕ 8 , e β 7 ϕ 8 for all ϕ .

Constructivism in the definition by Nelson adds to intuitionism a second val-
uation for those variables that are definitely rejected, and allows for the pos-
sibility that neither is the case. (However, nothing can be both accepted and
rejected.) This is reformulated as follows.

364 Semantics

Definition 4.97 A C–model is a pair � P�içØ� β � , where � P�iç]� is a partially
ordered set and β : V e P �³5 0 � 1 � { 6 such that if β 7 p � v 8 , 1 and v ç w then
also β 7 p � w 8 , 1, and if β 7 p � v 8 , 0 and v ç w then β 7 p � w 8 , 0. We write� P�içØ� x � β �»Ð � p if β 7 p � x 8 , 1 and � P�içØ� x � β ��Ð+© p if β 7 p � x 8 , 0.

We can interpret any propositional formula over 3–valued logic that we have
defined so far. We have to interpret ¾ and b , however.

(4.191)

x Ð � ¾ ϕ : å for no y f x : y Ð © ϕ
x Ð © ¾ ϕ : å there is y f x : y Ð © ϕ
x Ð � b ϕ : å there is y f x : y Ð � ϕ
x Ð © b ϕ : å for no y f x : y Ð � ϕ

Now define the following new connectives.

(4.192)

¶ cϕ :
, ¶ ϕ

ϕ · c χ :
,

ϕ · � χ
ϕ � c χ :

,
ϕ � � χ

ϕ � c χ :
, ¾ 7 ϕ � � χ 8

In his data semantics (see (Veltman, 1985)), Frank Veltman uses constructive
logic and proposes to interpret B %.)�" and B 0 × as ¾ and b , respectively. What
is interesting is that the set of points accepting b ϕ is lower closed but not
necessarily upper closed, while the set of points rejecting it is upper but not
necessarily lower closed. The converse holds with respect to ¾ . This is nat-
ural, since if our knowledge grows there are less things that may be true but
more that must be.

The interpretation of the arrow carries the germ of the relational interpre-
tation discussed here. A different strand of thought is the theory of condition-
als (see again (Veltman, 1985) and also (Gärdenfors, 1988)). The conditional
ϕ � χ is accepted as true under Ramsey’s interpretation if, on taking ϕ as a
hypothetical assumption (doing as if ϕ is the case) and performing the stan-
dard reasoning, we find that χ is true as well. Notice that after this routine of
hypothetical reasoning we retract the assumption that ϕ . In Gärdenfors mod-
els there are no assignments in the ordinary sense. A proposition ϕ is mapped
directly onto a function, the update function Uϕ . The states in the Gärdenfors
model carry no structure.

Definition 4.98 A Gärdenfors model is a pair � G � U � , where G is a set, and
U : TmΩ � GG subject to the following constraints.

Partiality and Discourse Dynamics 365

À For all χ: Uχ : Uχ
,

Uχ .

Á For all ϕ and χ: Uϕ : Uχ
,

Uχ : Uϕ .

We say that x � G accepts ϕ if Uϕ 7 x 8 , x.

Put x ç y iff there is a finite set 5 χi : i b n 6 such that

(4.193) y
,

Uχ0
: Uχ1

:yÂ=Â=ÂZ: Uχn Ü 1
7 x 8

The reader may verify that this relation is reflexive and transitive. If we re-
quire that x

,
y iff x and y accept the same propositions, then this order-

ing is also a partial ordering. We can define as follows. If Uχ
,

Uϕ : Uψ
then we write χ

,
ϕ � ψ . Hence, if our language actually has a conjunction,

the latter is a condition on the interpretation of it. To define � , Gärdenfors
does the following. Suppose that for all ϕ and χ there exists a δ such that
Uϕ : Uδ

,
Uχ : Uδ . Then we simply put Uϕ] ψ :

,
Uδ . Finally, since ϕ � ψ is

equivalent to ϕ � ϕ � ψ , once we have � and � , we can also define � . For
negation we need to assume the existence of an inconsistent state. The de-
tails need not concern us here. Obviously, Gärdenfors models are still more
general than data semantics. In fact, any kind of logic can be modelled by a
Gärdenfors model (see the exercises).

Notes on this section. It is an often discussed problem whether or not a
statement of the form 7�~ x 8 ϕ is true if there are no x at all. Equivalently, in
three valued logic, it might be said that 7�~ x 8 ϕ is undefined if there is no x
such that ϕ 7 x 8 is defined.

Exercise 171. A three valued binary connective C satisfies the Deduction
Theorem if for all ∆, ϕ and χ : ∆;ϕ ~ 3 χ iff ∆ ~ 3 ϕCχ . Establish all truth–
tables for binary connectives that satisfy the Deduction Theorem. Does any
of the implications defined above have this property?

Exercise 172. Let � be a language and ~ a structural consequence relation
over � . Let G 4 be the set of theories of ~ . For ϕ ��� , let Uϕ : T ��³7 T s¬5 ϕ 618 4 .
Show that this is a Gärdenfors model. Show that the set of formulae accepted
by all T � G 4 is exactly the set of tautologies of ~ .

Chapter 5
PTIME Languages

1. Mildly–Context Sensitive Languages

The introduction of the Chomsky hierarchy has sparked off a lot of research
into the complexity of formal and natural languages. Chomsky’s own posi-
tion was that language was not even of Type 1. In transformational gram-
mar, heavy use of context sensitivity and deletion has been made. However,
Chomsky insisted that these grammars were not actually models of perfor-
mance, neither of sentence production nor of analysis; they were just models
of competence. They were theories of language or of languages, couched in
algorithmic terms. In the next chapter we shall study a different type of the-
ory, based on axiomatic descriptions of structures. Here we shall remain with
the algorithmic approach. If Chomsky is right, the complexity of the gener-
ated languages is only of peripheral interest and, moreover, cannot even be
established by looking at the strings of the language. Thus, if observable lan-
guage data can be brought to bear on the question of the ‘language faculty’,
we actually need to have

+ a theory of the human language(s),

+ a theory of human sentence production, and

+ a theory of human sentence analysis (and understanding).

Namely, the reason that a language may fail to show its complexity in speech
or writing is that humans simply are unable to produce the more complex
sentences, even though given enough further means they would be able to
produce any of them. The same goes for analysis. Certain sentences might
be avoided not because they are illegitimate but because they are misleading
or too difficult to understand. An analogy that might help is the notion of
a programming language. A computer is thought to be able to understand
every program of a given computer language if it has been endowed with an
understanding of the syntactic primitives and knows how to translate them
into executable routines. Yet, some programs may simply be too large for
the computer to be translated let alone executed. This may be remedied by
giving it more memory (to store the program) or a bigger processing unit (to

368 PTIME Languages

be able to execute it). None of the upgrading operations, however, seem to
touch on the basic ability of the computer to understand the language: the
translation or compilation program usually remains the same. Some people
have advanced the thesis that certain monkeys possess the symbolic skills of
humans but since they cannot handle recursion, so that their ability to use
language is restricted to single clauses consisting of single word phrases (see
for example (Haider, 1991) and (Haider, 1993), Pages 8 – 12).

One should be aware of the fact that the average complexity of spoken
language is linear (= O 7 n 8) for humans. We understand sentences as they are
uttered, and typically we seem to be able to follow the structure and message
word by word. To conclude that therefore human languages must be regular is
premature. For one thing, we might just get to hear the easy sentences because
they are also easy to generate: it is humans who talk to humans. Additionally,
it is not known what processing device the human brain is. Suppose that it is
a finite state automaton. Then the conclusion is certainly true. However, if it
is a pushdown automaton, the language can be deterministically context free.
More complex devices can be imagined giving rise to even larger classes of
languages that can be parsed in linear time. This is so since it is not clear
that what is one step for the human brain also is one step for, say, a Turing
machine. It is known that the human brain works with massive use of paral-
lelism, for example.

Therefore, the problem with the line of approach advocated by Chomsky
is that we do not possess a reliable theory of human sentence processing
let alone of sentence production (see (Levelt, 1991) for an overview of the
latter). Without them, however, it is impossible to assess the correctness of
any proposed theory of grammar. Many people have therefore ignored this
division of labour into three faculties (however reasonable that may appear)
and tried to assess the complexity of the language as we see it. Thus let us
ask once more:

How complex is human language (are human languages)?

While the Chomsky hierarchy has suggested measuring complexity in terms
of properties of rules, it is not without interest to try to capture its complexity
in terms of resources (time and space complexity). The best approximation
that we can so far give is this.

Human languages are in PTIME.

Mildly–Context Sensitive Languages 369

In computer science, PTIME problems are also called ‘tractable’, since the
time consumption grows slowly. On the other hand, EXPTIME problems
are called ‘intractable’. Their time consumption grows too fast. In between
the two lie the classes NPTIME and PSPACE. Still today it is not known
whether or not NPTIME is contained in (and hence equal to) PTIME. Prob-
lems which are NPTIME–complete usually do possess algorithms that run
(deterministically) in polynomial time — on the average.

Specifically, Aravind Joshi has advanced the claim that languages are what
he calls ‘mildly context sensitive’ (see (Joshi, 1985)). Mildly context sensitive
languages are characterized as follows.

Definition 5.1 L } A ¡ has the constant growth property if it is finite or there
is a number cL such that for every Ex � L there is a Ey � L such that � Ex �4b?�nEy �4ç�nEx �$g cL.

À Every context free language is mildly context sensitive. There are mildly
context sensitive languages which are not context free.

Á Mildly context sensitive languages can be recognized in deterministic
polynomial time.

Â There is only a finite number of crossed dependency types.

Ã Mildly context sensitive languages have the constant growth property.

These conditions are not very strong except for the second. It implies that
the mildly context sensitive languages form a proper subset of the context
sensitive languages. À needs no comment. Ã is quite weak. Moreover, it
seems that for every natural language there is a number dL such that for
every n f dL there is a string of length n in L. Rambow (1994) proposes
to replace it with the requirement of semilinearity, but that seems to be too
strong (see Michaelis and Kracht (1997)). Also Â is problematic. What ex-
actly is a crossed dependency type? In this chapter we shall study grammars
in which the notion of structure can be defined as with context free languages.
Constituents are certain subsets of disjoint (occurrences of) subwords. If this
definition is accepted, Â can be interpreted as follows: there is a number n
such that a given constituent has no more than n parts. This is certainly not
what Joshi had in mind when formulating his conditions, but it is certainly
not easy to come up with a definition that is better than this one and as clear.

370 PTIME Languages

So, the conditions are problematic with the exception of Á. Notice that
Á implies À, and, as we shall see, also Â (if only weak equivalence counts
here). Ã shall be dropped. In order not to create confusion we shall call a
language a PTIME language if it has a deterministic polynomial time recog-
nition algorithm (see Definition 1.100). In general, we shall also say that a
function f : A ¡ � B ¡ is in PTIME if there is a deterministic Turing machine
which computes that function. Almost all languages that we have considered
so far are PTIME languages. This shall emerge from the theorems that we
shall prove further below.

Proposition 5.2 Every context free language is in PTIME.

This is a direct consequence of Theorem 2.57. However, we get more than
this.

Proposition 5.3 Let A be a finite alphabet and L1, L2 languages over A. If
L1 � L2 � PTIME then so is A ¡ v L1, L1 t L2 and L1 s L2.

The proof of this theorem is very simple and left as an exercise. So we get
that the intersection of CFLs, for example 5 0 n í n F n : n � ω 6 , are PTIME
languages. Condition Á for mildly context sensitive languages is satisfied by
the class of PTIME languages. Further, we shall show that the full preimage
of a PTIME language under the Parikh–map is again a PTIME language.
To this end we shall identify M 7 A 8 with the set of all strings of the form
∏i n

0 pi
i

. The Parikh–map is identified with the function π : A ¡ � A ¡ , which
assigns to a string Ex the string

0 p0
0
9 0 p1

1
9 Â=Â=Â 9 0 pn Ü 1

n © 1
, where p j is the number

of occurrences of
0

j in Ex. Now take an arbitrary polynomial time computable
function g : A ¡ � 2. Clearly, g £ M 7 A 8 is also in PTIME. The preimage of
1 under this function is contained in the image of π . g © 1 7 1 8�t M 7 A 8 can be
thought of in a natural way as a subset of M 7 A 8 .
Theorem 5.4 Let L } M 7 A 8 be in PTIME. Then π © 1 ¦ L § , the full preimage of
L under π , also is in PTIME. If L is semilinear, π © 1 ¦ L § is in PTIME.

The reader is warned that there nevertheless are semilinear languages which
are not in PTIME. For PTIME is countable, but there are uncountably many
semilinear languages (see Exercise 74). Theorem 5.4 follows directly from

Theorem 5.5 Let f : B ¡ � A ¡ be in PTIME and L } A ¡ in PTIME. Then
M :
,

f © 1 ¦ L § also is in PTIME.

Mildly–Context Sensitive Languages 371

Proof. By definition χL � PTIME. Then χM
,

χL : f � PTIME. This is the
characteristic function of M. <

Another requirement for mildly context sensitive languages was the con-
stant growth property. We leave it to the reader to show that every semilinear
language has the constant growth property but that there are languages which
have the constant growth property without being semilinear.

We have introduced the Polish Notation for terms in Section 1.2. Here we
shall introduce a somewhat exotic method for writing down terms, which has
been motivated by the study of certain Australian languages (see (Ebert and
Kracht, 2000)). Let � F � Ω � be a finite signature. Further, let

(5.1) Ω :
,

max 5 Ω 7 f 8 : f � F 6
Inductively, we assign to every term t a set M 7 t 8Y}µ7 F s 5XG��ZH&�=�=�=�Z� Ω @v 1 618 ¡ :

À If t
,

f with Ω 7 f 8 , 0 then put M 7 f 8 :
, 5 f 6 .

Á If t
,

f 7 s0 �=�=�=�Z� sΩ ¯ f ° © 1 8 then put

M 7 t 8 :
, 5 f 6»s �

i Ω ¯ f ° 5XEx 9 i : Ex � M 7 si 8Z6
An element of M 7 t 8 is a product f 9 Ey, where f � F and Ey � Ω ¡ . We call f
the main symbol and Ey its key. We choose a new symbol, Ç . Now we say
that Ey is an A–form of t if Ey is the product of the elements of M 7 t 8 in an
arbitrarily chosen (nonrepeating) sequence, separated by Ç . For example, let
t :
, I�I(I $ L 0 J.? × JXL3I�a�?�F�J�J . Then

(5.2) M 7 t 8 , 5ïL���?(G���?�H>��L�G�G
� $ G(G�G�� 0 G�G�H>� × G�H���a.HXG	��F
H(H�6
Hence the following string is an A–form of t:

(5.3) F�H�H0Ç#a.HXG%Ç(L�G�G�Ç�?&G%Ç�?	H#Ç × G�H0Ç $ G�G�G�Ç 0 G(G�H#Ç(L
Theorem 5.6 Let � F � Ω � be a finite signature and L the language of A–forms
of terms of this signature. Then L is in PTIME.

Proof. For each A–form Ex there is a unique term t such that Ex is the A–form
of t, and there is a method to calculate M 7 t 8 on the basis of Ex. One simply has
to segment Ex into correctly formed parts. These parts are maximal sequences

372 PTIME Languages

consisting of a main symbol and a key, which we shall now simply call stalks.
The segmentation into stalks is unique. We store Ex on a read and write tape
τi. Now we begin the construction of t. t will be given in Polish Notation.
t will be constructed on Tape τo in left–to–right order. We will keep track
of the unfinished function symbols Tape on τs. We search through the keys
(members of Ω ¡) in lexicographic order. On a separate tape, τk, we keep note
of the current key.

À τs :
,

ε , τk :
,

ε , τo :
,

ε .

Á Match τi
, Ey Ç f 9 τk Ç4Ez. If match succeeds, put τi :

, Ey Ç�Ez, τs :
,

τs 9 f ,
τo :
,

τo 9 f . Else exit: ‘String is not an A–form.’

Â Let g be the last symbol of τs, n the last symbol of τk.� If n
,

Ω 7 g 8	v 1, τs :
,

τs ¾ g, τk :
, 7 τk ¾ n 8 .� Else τs :

,
τs, τk :

, 7 τk ¾ n 8�9�7 n g 1 8 .
Ã If τk

,
τs
,

ε , go to Ä else go to Á.

Ä If τi
,

ε exit: ‘String is an A–form.’ Else exit: ‘String is not an A–form.’

It is left to the reader to check that this algorithm does what it is supposed to
do. Polynomial runtime is obvious. <

Ebert and Kracht (2000) show that this algorithm requires O 7 n3 Q 2 logn 8
time to compute. Now we shall start the proof of an important theorem on
the characterization of PTIME languages. An important step is a theorem
by Chandra, Kozen and Stockmeyer (1981), which characterizes the class
PTIME in terms of space requirement. It uses special machines, which look
almost like Turing machines but have a special way of handling parallelism.
Before we can do that, we introduce yet another class of functions. We say
that a function f : A ¡ � B ¡ is in LOGSPACE if it can be computed by a so
called deterministic logarithmically bounded Turing machine. Here, a Turing
machine is called logarithmically space bounded if it has k g 2 tapes (where
k may be 0) such that the length of the tapes number 1 through k is bounded
by log2 �nEx � . Tape 0 serves as the input tape, Tape k g 1 as the output tape. Tape
0 is read only, Tape k g 1 is write only. At the end of the computation, T has
to have written f 7�Ex 8 onto that tape. (Actually, a moment’s reflection shows
that we may assume that the length of the intermediate tapes is bounded by
c log2 �nEx � , for some c � 0, cf. also Theorem 1.98.) This means that if Ex has

Mildly–Context Sensitive Languages 373

length 12 the tapes 2 to k g 1 have length 3 since 3 b log2 12 b 4. It need
not concern us further why this restriction makes sense. We shall see in Sec-
tion 5.2 that it is well–motivated. We emphasize that f 7�Ex 8 can be arbitrarily
large. It is not restricted at all in its length, although we shall see later that the
machine cannot compute outputs that are too long anyway. The reader may
reflect on the fact that we may require the machine to use the last tape only
in this way: it moves strictly to the right without ever looking at the previous
cells again. Further, we can see to it that the intermediate tapes only contain
single binary numbers.

Definition 5.7 Let A ¡ be a finite alphabet and L } A ¡ . We say that L is in
LOGSPACE if χL is deterministically LOGSPACE–computable.

Theorem 5.8 Let f : A ¡ � B ¡ be LOGSPACE–computable. Then f is in
PTIME.

Proof. We look at the configurations of the machine (see Definition 1.84). A
configuration is defined with the exception of the output tape. It consists of the
positions of the read head of the first tape and the content of the intermediate
tapes plus the position of the read/write heads of the intermediate tapes. Thus
the configurations are k–tuples of binary numbers of length ç c log2 �nEx � , for
some c. A position on a string likewise corresponds to a binary number. So
we have k g 1 binary numbers and there are at most

(5.4) 2 ¯ k � 1 ° c log2 Ç)x Ç , � Ex � c ¯ k � 1 °
of them. So the machine can calculate at most �nEx � c ¯ k � 1 ° steps. For if there are
more the machine is caught in a loop, and the computation does not terminate.
Since this was excluded, there can be at most polynomially many steps. <

Since f is polynomially computable we immediately get that � f 7�Ex 8j� is
likewise polynomially bounded. This shows that a space bound implies a time
bound. (In general, if f 7 n 8 is the space bound then c f ¯ n ° is the corresponding
time bound for a certain c.)

We have found a subclass of PTIME which is defined by its space con-
sumption. Unfortunately, these classes cannot be shown to be equal. (It has
not been disproved but is deeemed unlikely that they are equal.) We have to
do much more work. For now, however, we remark the following.

Theorem 5.9 Suppose that f : A ¡ � B ¡ and g : B ¡ � C ¡ are LOGSPACE
computable. Then so is g : f .

374 PTIME Languages

Proof. By assumption there is a logarithmically space bounded deterministic
k g 2–tape machine T which computes f and a logarithmically space bounded
deterministic !
g 2–tape machine U which computes g. We cascade these ma-
chines in the following way. We use k g !�g 3 tapes, of which the first k g 2
are the tapes of T and the last !�g 2 the tapes of U . We use Tape k g 1 both as
the output tape of T and as the input tape of U . The resulting machine is de-
terministic but not necessarily logarithmically space bounded. The problem
is Tape k g 1. However, we shall now demonstrate that this tape is not needed
at all. For notice that T cannot but move forward on this tape and write on
it, while U on the other hand can only progress to read the input. Now rather
than having Tape k ready, it would be enough for U if it can access the sym-
bol number i on the output tape of T on request. Clearly, as T can compute
that symbol, U only needs to communicate the request to T by issuing i in
binary. (This takes only logarithmic space. For we have � f 7�Ex 8j�(ç p 7i� Ex �n8 for
some polynomial p for the length of the output computed by T , so we have
log2 � f 7�Ex 8j�&ç λ log2 �nEx � for some natural number λ .) The proof follows once
we make this observation: there is a machine T k that computes the ith symbol
of the output tape of T , given the input for T input and i, using only logarith-
mic space. The rest is simple: everytime U needs a symbol, it calls T k issuing
i in binary. The global input T k reads from U ’s input tape. <

This proof is the key to all following proofs. We shall now show that there
is a certain class of problems which are, as one says, complete with respect
to the class PTIME modulo LOGSPACE–reductions.

An n–ary boolean function is an arbitrary function f : 2n � 2. Every
such function is contained in the polynomial clone of functions generated
by the functions s , t and v (see Exercise 176). We shall now assume that
f is composed from projections using the functions t , s , and v . For ex-
ample, let f 7 x0 � x1 � x2 8 :

, v�7�v x2 tÝ7 x1 s x0 8=8 . Now for the variables x0, x1
and x2 we insert concrete values (either 0 or 1). Which value does f have?
This problem can clearly be solved in PTIME. However, the formulation
of the problem is a delicate affair. Namely, we want to think of f not as a
string, but as a network. (The difference is that in a network every subterm
needs to be represented only once.) To write down networks, we shall have
to develop a more elaborate coding. Networks are strings over the alphabet
W :

, 5�T½�iW&��¡��/�
���&�4é
� ê ��S��/�	��U�6 . A cell is a string of the form T Eα ¡ Eε ¡ Eη ¡���W ,T Eα ¡ Eε ¡ Eη ¡=S�W , or of the form T Eα ¡ Eε ¡iU	W , where Eα is a binary sequence — writ-
ten in the alphabet 5 0 �lí.6 —, and Eε � Eη either are binary strings (written down
using the letters

0
and í in place of G and H) or a single symbol of the form G

Mildly–Context Sensitive Languages 375

or H . Eα is called the number of the cell and Eε and Eη the argument key, unless
it is of the form G or H . Further, we assume that the number represented byEε and Eη is smaller than the number represented by Eα . (This makes sure that
there are no cycles.) A sequence of cells is called a network if (a) there are
no two cells with identical number, (b) the numbers of cells are the numbers
from 1 to a certain number ν , and (c) for every cell with argument key Eε (or Eη)
there is a cell with number Eε (Eη). The cell with the highest number is called
the goal of the network. Intuitively, a network defines a boolean function into
which some constant values are inserted for the variables. This function shall
be evaluated. With the cell number Eα we associate a value w)x 7 Eα 8 as follows.

(5.5) w)x 7 Eα 8 :
, ñ
ò
ó w)x 7 Eε 8�s w)x 7 Eη 8 if Ex contains T Eα ¡ Eε ¡ Eη ¡���W ,

w)x 7 Eε 8�t w)x 7 Eη 8 if Ex contains T Eα ¡ Eε ¡ Eη ¡iS�W ,v w)x 7 Eε 8 if Ex contains T Eα ¡ Eε ¡iU�W .
We write w 7 Eα 8 in place of w)x 7 Eα 8 . The value of the network is the value of
its goal (incidentally the cell with number ν). Let ξ : W ¡ ��5 0 � 1 � { 6 be the
following function. ξ 7ÈEx 8 :

,|{
if Ex is not a network. Otherwise, ξ 7�Ex 8 is the

value of Ex. We wish to define a machine calculating ξ . We give an example.
We want to evaluate f 7 x0 � x1 � x2 8 , v�7�v x2 tÝ7 x1 s x0 8=8 for x0 :

,
0, x1 :

,
1

and x2 :
,

0. Then we write down the following network:

(5.6) T�é�¡K�6¡iU	W�T ê ¡<�:¡���¡���W.T ê é�¡�é\¡ ê ¡iS�W�T ê�ê ¡ ê é\¡=U	W
Now w 7�é�8 , v 0

,
1, w 7 ê 8 , 1 s 0

,
1, w 7 ê é(8 , w 7�é�8�t w 7 ê 8 , 1 t 1

,
1,

and v 7ÈEx 8 , w 7 ê#ê 8 , v w 7 ê é(8 , v 1
,

0.

Lemma 5.10 The set of all networks is in LOGSPACE.

Proof. The verification is a somewhat longwinded matter but not difficult to
do. To this end we shall have to run over the string several times in order to
check the different criteria. The first condition is that no two cells have the
same number. To check that we need the following: for every two positions
i and j that begin a number, if i �, j, then the numbers that start there are
different. To compare the numbers means to compare the strings starting at
these positions. (To do that requires to memorize only one symbol at a time,
running back and forth between the strings.) This requires memorizing two
further positions. However, a position takes only logarithmic space. <
Theorem 5.11 ξ is in PTIME.

376 PTIME Languages

Proof. Let Ex be given. First we compute whether Ex is a network. This com-
putation is in PTIME. If Ex is not a network, output

{
. If it is, we do the

following. Moving up with the number k we compute the value of the cell
number k. For each cell we have to memorize its value on a separate tape,
storing pairs 7 Eα � w 7 Eα 8=8 consisting of the name and the value of that cell. This
can also be done in polynomial time. Once we have reached the cell with the
highest number we are done. <

It is not known whether the value of a network can be calculated in LOG-
SPACE. The problem is that we may not be able to bound the number of
intermediate values. Now the following holds.

Theorem 5.12 Let f : A ¡ � 5S�
���>6 be in PTIME. Then there exists a function
N : A ¡ � W ¡ in LOGSPACE such that for every Ex � A ¡ N 7ÈEx 8 is a network and
f 7�Ex 8 , 7 ξ : N 8�7ÈEx 8 .
Proof. First we construct a network and then show that it is in LOGSPACE.
By assumption there exist numbers k and c such that f 7ÈEx 8 is computable in
ρ :
,

c ÂX� Ex � k time using a deterministic Turing machine T . We define a con-
struction algorithm for a sequence È+7ÈEx 8 :

, 7 C 7 i � j 8=8 i é j , where 0 ç i � j ç c ÂZ� Ex � k.È+7�Ex 8 is ordered in the following way:

C 7 0 � 0 8P� C 7 0 � 1 8P� C 7 0 � 2 8P�i�=�=�X�
C 7 1 � 0 8P� C 7 1 � 1 8P� C 7 1 � 2 8P�i�=�=�X�(5.7)

C 7 2 � 0 8P� C 7 2 � 1 8P� C 7 2 � 2 8P�i�=�=�
C 7 i � j 8 contains the following information: (a) the content of the jth cell of
the tape of T at time point i, (b) information, whether the read head is on that
cell at time point i, (c) if the read head is on this cell at i also the state of the
automaton. This information needs bounded length. Call the bound λ . We
denote by C 7 i � j � k 8 , k b λ , the kth binary digit of C 7 i � j 8 . C 7 i g 1 � j 8 depends
only on C 7 i � j v 1 8 , C 7 i � j 8 and C 7 i � j g 1 8 . (T is deterministic. Moreover, we
assumed that T works on a tape that is bounded to the left. See Exercise 43
that this is no loss of generality.) C 7 0 � j 8 are determined by Ex alone. (A) We
have C 7 i g 1 � j 8 , C 7 i � j 8 if either (A1) at i the head is not at j v 1 or else
did not move right, or (A2) at i the head is not at j g 1 or else did not move
left; (B) C 7 i g 1 � j 8 can be computed from (B1) C 7 i � j v 1 8 if the head was at
i positioned at j and moved right, (B2) C 7 i � j 8 if the head was at i positioned
at j and did not move, (B3) C 7 i � j g 1 8 if the head at i was positioned at j g 1

Mildly–Context Sensitive Languages 377

and moved left. Hence, for every k b λ there exist boolean functions f k
L , f k

M
and f k

R such that f k
L � f k

R : 5 0 � 1 6 2λ �Û5 0 � 1 6 λ , f k
M : 5 0 � 1 6 3λ �Û5 0 � 1 6 λ , and

C 7 i g 1 � 0 � k 8 , fL 7 C 7 i � 0 8P� C 7 i � 1 8=8
C 7 i g 1 � j � k 8 , fM 7 C 7 i � j v 1 8P� C 7 i � j 8P� C 7 i � j g 1 8=8(5.8)

C 7 i g 1 � ρ � k 8 , fR 7 C 7 i � ρ v 1 8P� C 7 i � ρ 8=8
These functions can be computed from T in time independent of Ex. Moreover,
we can compute sequences of cells that represent these functions. Basically,
the network we have to construct results in replacing for every i � 0 and
appropriate j the cell C 7 i � j 8 by a sequence of cells calling on appropriate
other cells to give the value C 7 i � j 8 . This sequence is obtained by adding a
fixed number to each argument key of the cells of the sequence computing
the boolean functions.

Now let Ex be given. We compute a sequence of cells γ 7 i � j 8 corresponding
to C 7 i � j 8 . The row γ 7 0 � j 8 is empty. Then ascending in i, the rows γ 7 i � j 8 are
computed and written on the output tape. If row i is computed, the follow-
ing numbers are computed and remembered: the length of the ith row, the
position of the read head at i g 1 and the number of the first cell of γ 7 i � j k�8 ,
where j k is the position of the read head at i. Now the machine writes down
C 7 i g 1 � j 8 with ascending j. This is done as follows. If j is not the position
of the read head at i g 1, the sequence is a sequence of cells that repeats the
value of the cells of γ 7 i � j 8 . So, γ 7 j g 1 � i � k 8 , T Eα ¡ Eε ¡x�¢¡=S�W for Eα the number
of the actual cell and Eε is Eα minus some appropriate number, which is com-
puted from the length of the ith row the length of the sequence γ 7 i � j k 8 and
the length of the sequence γ 7 i g 1 � j 8 . If j is the position of the read head, we
have to insert more material, but basically it is a sequence shifted by some
number, as discussed above. The number by which we shift can be computed
in LOGSPACE from the numbers which we have remembered. Obviously, it
can be decided on the basis of this computation when the machine T termi-
nates on Ex and therefore when to stop the sequence. The last entry is the goal
of the network. <

One also says that the problem of calculating the value of a network is
complete with respect to the class PTIME. A network is monotone if it does
not contain the symbol U .
Theorem 5.13 There exists a LOGSPACE–computable function M which
transforms an arbitrary network into a monotone network with identical value.

378 PTIME Languages

The proof is longwinded but rather straightforward, so we shall only sketch
it. Call g : 2n � 2 monotone if for every Ex and Ey such that xi ç yi for all i b n,
g 7�Ex 8Yç g 7�Ey 8 . (We write Ex ç Ey if xi ç yi for all i b n.)

Lemma 5.14 Let f be an n–ary boolean function. Then there exists a 2n–ary
boolean function g which is monotone such that

(5.9) f 7�Ex 8 , g 7 x0 �iv x0 � x1 �iv x1 �=�=�=�Z� xn © 1 �iv xn © 1 8
Theorem 5.15 Every monotone boolean function is a polynomial function
over t and s .

Proof. One direction is easy. t and s is monotone, and every composition
of monotone functions is again monotone. For the other direction, let f be
monotone. Let M be the set of minimal vectors Ex such that f 7�Ex 8 , 1. For
every vector Ex, put p 7ÈEx 8 :

, ;
xi ð 1 xi. (If Ex , 0 �=�=� 0, then p 7ÈEx 8 :

, � .) Finally,
put

(5.10) ρM :
, �)x � M

p 7ÈEx 8
If M

, w , put ρ f :
, � . It is easily seen that f 7�Ex 8 , ρ f 7ÈEx 8 for all Ex � 2n. <

What is essential (and left for the reader to show) is that the map f ��
g translates into a LOGSPACE computable map on networks. So, if g is
an arbitrary PTIME–computable function from A ¡ to 5 0 � 1 6 , there exists
a LOGSPACE–computable function N � constructing monotone networks
such that g 7�Ex 8 , 7 ξ : N � 8�7�Ex 8 for all Ex � A ¡ .

Now we shall turn to the promised new type of machines.

Definition 5.16 An alternating Turing machine is a sextuple

(5.11) � A ��1�� Q � q0 � f � γ �
where � A ��1�� Q � q0 � f � is a Turing machine and γ : Q � 51���4·;6 an arbitrary
function. A state q is called universal if γ 7 q 8 , � , and otherwise existential.

We tacitly generalize the concepts of Turing machines to the alternating Tur-
ing machines (for example an alternating k–tape Turing machine, and a log-
arithmically space bounded alternative Turing machine). To this end one has
to add the function γ in the definitions. Now we have to define when a Turing
machine accepts an input Ex. This is done via configurations. A configuration
is said to be accepted by T if one of the following is the case:

Mildly–Context Sensitive Languages 379

+ T is in an existential state and one of the immediately subsequent con-
figurations is accepted by T .

+ T is in a universal state and all immediately subsequent configurations
are accepted by T .

Notice that the machine accepts a configuration that has no immediately sub-
sequent configurations if (and only if) it is in a universal state. The difference
between universal and existential states is effective if the machine is not de-
terministic. Then there can be several subsequent configurations. Acceptance
by a Turing machine is defined as for an existential state if there is a succes-
sor state, otherwise like a universal state. If in a universal state, the machine
must split itself into several copies that compute the various subsequent alter-
natives. Now we define ALOGSPACE to be the set of functions computable
by a logarithmically space bounded alternating multitape Turing machine.

Theorem 5.17 (Chandra & Kozen & Stockmeyer)

ALOGSPACE
,

PTIME �
The theorem is almost proved. First, notice

Lemma 5.18 LOGSPACE } ALOGSPACE.

For every deterministic logarithmically space bounded Turing machine also
is an alternating machine by simply letting every state be universal. Like-
wise the following claim is easy to show, if we remind ourselves of the facts
concerning LOGSPACE–computable functions.

Lemma 5.19 Let f : A ¡ � B ¡ and g : B ¡ � C ¡ be functions. If f and g are in
ALOGSPACE, so is g : f .

Lemma 5.20 ALOGSPACE } PTIME.

Also this proof is not hard. We already know that there are at most polyno-
mially many configurations. The dependency between these configurations
can also be checked in polynomial time. (Every configuration has a bounded
number of successors. The bound only depends on T .) This yields a compu-
tation tree which can be determined in polynomial time. Now we must deter-
mine in the last step whether the machine accepts the initial configuration. To
this end we must determine by induction on the depth in a computation tree

380 PTIME Languages

whether the respective configuration is accepted. This can be done as well in
polynomial time. This completes the proof.

Now the converse inclusion remains to be shown. For this we use the
following idea. Let f be in PTIME. We can write f as ξ : N � where N � is
a monotone network computing f . As remarked above we can construct N �
in LOGSPACE and in particular because of Lemma 5.18 in ALOGSPACE.
It suffices to show that ξ is in ALOGSPACE. For then Lemma 5.19 gives us
that f

,
ξ : N � � ALOGSPACE.

Lemma 5.21 ξ � ALOGSPACE.

Proof. We construct a logarithmically space bounded alternating machine
which for an arbitrary given monotone network Ex calculates its value w 7ÈEx 8 .
Let a network be given. First move to the goal. Descending from it compute
as follows.

À If the cell contains S change into the universal state q1. Else change
into the existential state q2. Goto Â.

Á Choose an argument key Eα of the current cell and go to the cell numberEα .

Â If Eα is not an argument key go into state q f if Eα , � and into qg if Eα ,� . Here q f is universal and qg existential and there are no transitions
defined from q f and qg.

All other states are universal; however, the machine works nondeterministi-
cally only in one case, namely if it gets the values of the arguments. Then it
makes a nondeterministic choice. If the cell is an · –cell then it will accept
that configuration if one argument has value 1, since the state is existential.
If the cell is a � –cell then it shall accept the configuration if both arguments
have value 1 for now the state is universal. The last condition is the termina-
tion condition. If the string is not an argument key then it is either � or � and
its value can be computed without recourse to other cells. If it is � the au-
tomaton changes into a final state which is universal and so the configuration
is accepted. If the value is � the automaton changes into a final state which is
existential and the configuration is rejected. <

Notes on this section. The gap between PTIME and NPTIME is believed
to be a very big one, but it is not known whether the two really are dis-
tinct. The fact that virtually all languages are in PTIME is good news, telling

Literal Movement Grammars 381

us that natural languages are tractable, at least syntactically. Concerning the
tractability of languages as sign systems not very much is known, however.

Exercise 173. Show Proposition 5.3: With L1 and L2 also L1 s L2, L1 t L2 as
well as A ¡ v L1 are in PTIME.

Exercise 174. Show the following. If L1 and L2 are in PTIME then so is
L1 Â L2.

Exercise 175. Show that L has the constant growth property if L is semilinear.
Give an example of a language which has the constant growth property but is
not semilinear.

Exercise 176. Let f : 2n � 2 a boolean function. Show that it can be ob-
tained from the projections and the functions v , s , and t . Hint. Start with
the functions g)x : 2n � 2 such that g)x 7�Ey 8 :

,
1 iff Ex , Ey. Show that they can

be generated from v and t . Proceed to show that every boolean function is
either the constant 0 or can be obtained from functions of type g)x using s .

Exercise 177. Prove Lemma 5.14.

Exercise 178. Call a language L } A ¡ weakly semilinear if every intersec-
tion with a semilinear language } A ¡ has the constant growth property. Show
that every semilinear language is also weakly semilinear. Let M :

, 5 0 m í n :
n f 2m 6 . Show that M }É5 0 �lí.6 ¡ is weakly semilinear but not semilinear.

Exercise 179. Show that every function f : A ¡ � B ¡ which is computable us-
ing an alternating Turing machine can also be computed using a Turing ma-
chine. (It is not a priori clear that the class of alternating Turing machines is
not more powerful than the class of Turing machines. This has to be shown.)

2. Literal Movement Grammars

The concept of a literal movement grammar — LMG for short — has been in-
troduced by Annius Groenink in (1997b) (see also (Groenink, 1997a)). With
the help of these grammars one can characterize the PTIME languages by
means of a generating device. The idea to this characterization goes back to
a result by William Rounds (1988). Many grammar types turn out to be spe-
cial subtypes of LMGs. The central feature of LMGs is that the rules contain
a context free skeleton which describes the abstract structure of the string
and in addition to this a description of the way in which the constituent is

382 PTIME Languages

formed from the basic parts. The notation is different from that of CFGs. In
an LMG, nonterminals denote properties of strings and therefore one writes
‘Q 7�Ex 8 ’ in place of just ‘Q’. The reason for this will soon become obvious. If
Q 7�Ex 8 obtains for a given string Ex we say that Ex has the property Q or that Ex
is a Q–string. The properties play the role of the nonterminals in CFGs, but
technically speaking they are handled differently. Since Ex is metavariable for
strings, we now need another set of (official) variables for strings in the for-
mulation of the LMGs. To this end we use the plain symbols x, y, z and so on
(possibly with subscripts) for these variables. In addition to these variables
there are also constants

0
, í , for the symbols of our alphabet A. We give a

simple example of an LMG. It has two rules.

(5.12) S 7 xx 8Q£ S 7 x 8P� ; S 7 0 8:£ �
These rules are written in Horn–clause format, as in Prolog, and they are
exactly interpreted in the same way: the left hand side obtains with the vari-
ables instantiated to some term if the right hand obtains with the variables
instantiated in the same way. So, the rules correspond to more familar look-
ing formulae:

(5.13) S 7 0 8P� 7�~ x 8�7 S 7 x 8�� S 7 x 9 x 8=8
(Just reverse the arrow and interpret the comma as conjunction.)

Definition 5.22 A formulae ϕ of predicate logic is called a Horn–formula
iff it has the form

(5.14) 7�~ x0 8(�=�=�P7�~ xq © 1 8�7��
i n

χi � ϕ 8
where the χi, i b n, and ϕ are atomic formulae.

Here, it is assumed that only the variables xi, i b q, occur in the χi and in
ϕ . We abbreviate 7�~ x0 8(�=�=�O7�~ xp © 1 8 by 7�~�Ex 8 . Now, consider the case where
the language has the following functional signature: for every letter from A
a zeroary function symbol (denoted by the same letter), ε (zeroary) and 9
(binary). Further, assume the following set of axioms:

(5.15) SG :
, 5(7�~ xyz 8�7 x 9 7 y 9 z 8 , 7 x 9 y 8 9 z 8P�7�~ x 8�7 ε 9 x

,
x 8P�Z7�~ x 8�7 x 9 ε

,
x 8Z6

Literal Movement Grammars 383

Then a Horn–clause is of the form

(5.16) 7�~.Ex 8�7 U0 7 s0 8�� U1 7 s1 8(�Ù�=�=��� Un © 1 7 sn © 1 8»� T 7 t 8=8
where t and the si (i b n) are string polynomials. This we shall write as

(5.17) T 7 t 8¢£ U0 7 s0 8P� U1 7 s1 8P�=�=�=�Z� Un © 1 7 sn © 1 8P�
Definition 5.23 A literal movement grammar, or LMG for short, is a quin-
tuple G

, � A � R � Ξ � S � H � , where A is the alphabet of terminal symbols, R a set
of so–called predicates, Ξ : R � ω a signature, S � R a distinguished symbol
such that Ξ 7 S 8 , 1, and H a set of Horn–formulae in the language consisting
of constants for every letter of A, the empty string, concatenation, and the
relation symbols of R. Ex is a G–sentence iff S 7ÈEx 8 is derivable from H and SG:

(5.18) L 7 G 8 :
, 51Ex : SG;H ~ S 7�Ex 8Z6

We call G a k–LMG if max 5 Ξ 7 Q 8 : Q � R 6�ç k. The grammar above is a
1–LMG.

Proposition 5.24 L 7 G 8 , 5 0 2n
: 0 ç n 6 .

Proof. Surely
0 � L 7 G 8 . This settles the case n

,
0. By induction one shows0 2n � L 7 G 8 for every n � 0. For if

0 2n
is a string of category S so is

0 2n Í 1 ,0 2n 9 0 2n
. This shows that L 7 G 8 à 5 0 2n

: n f 0 6 . On the other hand this set
satisfies the formula ϕ . For we have

0 � L 7 G 8 and with Ex � L 7 G 8 we also haveEx Ex � L 7 G 8 . For if Ex ,µ0 2n
for a certain n f 0 then Ex Ex ,µ0 2n ¤ 2 ,µ0 2n Í 1 � L 7 G 8 .<

There is an inductive definition of L 7 G 8 by means of generation. We write~ G S 7ÈEx 8 (vector arrow!), if either S 7�Ex 8\£�� is a rule or Ex , Ey Ey and ~ G S 7ÈEy 8 .
Both definitions define the same set of strings. Let us elaborate the notion of
a 1–LMG in more detail. The maximum of all n such that G has an n–ary rule
is called the branching number of G. In the rule

(5.19) S 7 xx 8Q£ S 7 x 8P�
we have n

,
1 and T

,
U0
,

S, t
,

xx and s0
,

x. In the rule

(5.20) S 7 0 8:£¨�
we have n

,
0, T

,
S and t

,µ0
.

384 PTIME Languages

Definition 5.25 Let G
, � A � R � Ξ � S � H � be an LMG. Then we write Γ ~ n

G γ iff
Γ;H;SG ~ n γ in predicate logic and Γ ~ G γ iff Γ;H;SG ~ γ in predicate logic.

We shall explain in some detail how we determine whether or not ~ n
G Q 7�Ex 8 (Q

unary). Call a substitution a function α which associates a term to each vari-
able; and a valuation a function that associates a string in A ¡ to each string
variable. Given α we define sα for a polynomial by homomorphic extension.
For example, if s

,Í0
x2 í y and α 7 x 8 ,Í0 F , α 7 y 8 , í�í 0 then sα ,Ã0�0 F 0 Fïí�í(í 0 ,

as is easily computed. Notice that strings can be seen as constant terms mod-
ulo equivalence, a fact that we shall exploit here by confusing valuations with
substitutions that assign constant terms to the string variable. (The so–called
Herbrand–universe is the set of constant terms. It is known that any Horn–
formula that is not valid can be falsified in the Herbrand–universe, in this caseù;7 A 8 .)
(5.21) T 7ÈEx 8¢£ U0 7�Ey0 8P� U1 7�Ey1 8P�=�=�=�i� Um © 1 7�Eym © 1 8P�
is an instance of the rule

(5.22) T 7 t 8¢£ U0 7 s0 8P� U1 7 s1 8P�=�=�=�Z� Um © 1 7 sm © 1 8P�
if there is a valuation β such that Ex , tβ and Eyi

,
sβ

i for all i b m. Similarly,

(5.23) T 7 t k 8¢£ U0 7 s k0 8P� U1 7 s k1 8P�=�=�=�i� Um © 1 7 s km © 1 8P�
is an instance of

(5.24) T 7 t 8¢£ U0 7 s0 8P� U1 7 s1 8P�=�=�=�Z� Um © 1 7 sm © 1 8P�
if there is a substitution α such that s ki , 7 si 8 α for all i b m and t k , tα . The
notion of generation by an LMG can be made somewhat more explicit.

Proposition 5.26 (a) ~ 0
G Q 7ÈEx 8 iff Q 7�Ex 8m£�� is a ground instance of a rule of

G. (b) ~ n � 1
G Q 7�Ex 8 iff ~ n

G Q 7ÈEx 8 or there is a number m, predicates Ri, i b m,
and strings Eyi, i b m, such that

À ~ n
G Ri 7�Eyi 8 , and

Á Q 7ÈEx 8¢£ R0 7�Ey0 8P�=�=�=�i� Rm © 1 7�Eym © 1 8 is a ground instance of a rule of G.

Literal Movement Grammars 385

We shall give an example to illustrate these definitions. Let K be the following
grammar.

(5.25) S 7 vxyz 8Q£ S 7 vyxz 8P� ; S 7 0 í.F 9 x 8¢£ S 7 x 8P� ; S 7 ε 8:£ �
Then L 7 K 8 is that language which contains all strings that contain an identical
number of

0
, í and F . To this end one first shows that 7 0 í�F>8 ¡ } L 7 K 8 and in

virtue of the first rule L 7 K 8 is closed under permutations. Here Ey is a permu-
tation of Ex if Ey and Ex have identical image under the Parikh map. Here is an
example (the general case is left to the reader as an exercise). We can derive
S 7 0 í�F&8 in one step from S 7 ε 8 using the second rule, and S 7 0 í.F 0 í�F>8 in two
steps, using again the second rule. In a third step we can derive S 7 0(0 í(í.F�F48
from this, using the first rule this time. Put α 7 v 8 :

,Å0
, α 7 x 8 :

,Å0 í , α 7 y 8 :
, í.F

and α 7 z 8 :
, F . Then

(5.26) 7 vxyz 8 α ,µ0�0 í�í.F(F�� 7 vyxz 8 α ,µ0 í.F 0 í.F
Let H be a CFG. We define a 1–LMG H � as follows. (For the presentation

we shall assume that H is already in Chomsky normal form.) For every non-
terminal A we introduce a unary predicate A. The start symbol is

}
. If A � BC

is a rule from H then H � contains the rule

(5.27) A 7 xy 8M£ B 7 x 8P� C 7 y 8P�
If A � a is a terminal rule then we introduce the following rule into H � :

(5.28) A 7 a 8¢£ �
One can show relatively easily that L 7 H 8 , L 7 H �»8 .

The 1–LMGs can therefore generate all CFLs. Additionally, they can gen-
erate languages without constant growth, as we have already seen. Let us note
the following facts.

Theorem 5.27 Let L1 and L2 be languages over A which can be generated
by 1–LMGs. Then there exist 1–LMGs generating the languages L1 t L2 and
L1 s L2.

Proof. Let G1 and G2 be 1–LMGs which generate L1 and L2, respectively.
We assume that the set of nonterminals of G1 and G2 are disjoint. Let Si be
the start predicate of Gi, i � 5 1 � 2 6 . Let H V be constructed as follows. We

386 PTIME Languages

form the union of the nonterminals and rules of G1 and G2. Further, let S �
be a new predicate, which will be the start predicate of G V . At the end we
add the following rules: S � 7 x 8u£ S1 7 x 8P� ; S � 7 x 8u£ S2 7 x 8 . This defines G V .
G U is defined similarly, only that in place of the last two rules we have a
single rule, S � 7 x 8\£ S1 7 x 8P� S2 7 x 8 . It is easily checked that L 7 G V 8 , L1 s L2
and L 7 G U 8 , L1 t L2. We show this for G U . We have Ex � L 7 G U 8 if there is
an n with ~ n

G ¥ S � 7�Ex 8 . This in turn is the case exactly if n � 0 and ~ n © 1
G ¥ S1 7�Ex 8

as well as ~ n © 1
G ¥ S2 7�Ex 8 . This is nothing but ~ n © 1

G1
S1 7�Ex 8 and ~ n © 1

G2
S1 7ÈEx 8 . Since n

was arbitrary, we have Ex � L 7 G U 8 iff Ex � L 7 G1 8 , L1 and Ex � L 7 G2 8 , L2, as
promised. <

The 1–LMGs are quite powerful, as the following theorem shows.

Theorem 5.28 Let A be a finite alphabet and L } A ¡ . L
,

L 7 G 8 for a 1–LMG
iff L is recursively enumerable.

The proof is left to the reader as an exercise. Since the set of recursively
enumerable languages is closed under union and intersection, Theorem 5.27
already follows from Theorem 5.28. It also follows that the complement of a
language that can be generated by a 1–LMG does not have to be such a lan-
guage again. For the complement of a recursively enumerable language does
not have to be recursively enumerable again. (Otherwise every recursively
enumerable set would also be decidable, which is not the case.)

In order to arrive at interesting classes of languages we shall restrict the
format of the rules. Let ρ be the following rule.

(5.29) ρ :
,

T 7 t 8¢£ U0 7 s0 8P� U1 7 s1 8P�=�=�=�P� Un © 1 7 sn © 1 8P�
+ ρ is called upward nondeleting if every variable which occurs in one

of the si, i b n, also occurs in t.

+ ρ is called upward linear if no variable occurs more than once in t.

+ ρ is called downward nondeleting if every variable which occurs in t
also occurs in one of the si.

+ ρ is called downward linear if none of the variables occurs twice in
the si. (This means: the si are pairwise disjoint in their variables and no
variable occurs twice in any of the si.)

Literal Movement Grammars 387

+ ρ is called noncombinatorial if the si are variables.

+ ρ is called simple if it is noncombinatorial, upward nondeleting and
upward linear.

G has the property Å if all rules of G possess Å . In particular the type of
simple grammars shall be of concern for us. The definitions are not always
what one would intuitively expect. For example, the following rule is called
upward nondeleting even though applying this rule means deleting a sym-
bol: ¦�7 x 8M£w¦»7 x 9 0 8 . This is so since the definition focusses on the variables
and ignores the constants. Further, downward linearity could alternatively be
formulated as follows. One requires any symbol to occur in t as often as it
occurs in the si taken together. This, however, is too strong a requirement.
One would like to allow a variable to occur twice to the right even though on
the left it occurs only once.

Lemma 5.29 Let ρ be simple. Further, let

(5.30) Q 7ÈEy 8:£ R0 7�Ex0 8P� R1 7ÈEx1 8P�=�=�=�Z� Rn © 1 7�Exn © 1 8P�
be an instance of ρ . Then �nEy �'f ∑i n �nExi �'f max 5�� Exi � : i b n 6 . Further, Exi is a
subword of Ey for every i b n.

Theorem 5.30 Let L } A ¡ be generated by some simple 1–LMG. Then L is
in PTIME.

Proof. Let Ex be an arbitrary string and n :
,¨§

N Â½�nEx � . Because of Lemma 5.29
for every predicate Q: ~ G Q 7ÈEx 8 iff ~ n

G Q 7�Ex 8 . From this follows that every
derivation of S 7ÈEx 8 has length at most n. Further, in a derivation there are
only predicates of the form Q 7ÈEy 8 where Ey is a subword of Ex. The following
chart–algorithm (which is a modification of the standard chart–algorithm)
only takes polynomial time:

+ For i
,

0 �=�=�=�Z� n: For every substring Ey of length i and every predicate Q
check if there are subwords Ez j , j b p, of length b i and predicates R j,
j b p, such that Q 7ÈEy 8m£ R0 7 Ez0 8P� R1 7�Ez1 8P�=�=�=�i� Rp © 1 7�Ezp © 1 8P� is an instance
of a rule of G.

The number of subwords of length i is proportional to n. For given p, a string
of length n can be decomposed in O 7 np © 1 8 ways as product of p (sub)strings.

388 PTIME Languages

Thus for every i, O 7 np 8 many steps are required, in total O 7 np � 1 8 on a deter-
ministic multitape Turing machine. <

The converse of Theorem 5.30 is in all likelihood false. Notice that in
an LMG, predicates need not be unary. Instead, we have allowed predicates
of any arity. There sometimes occurs the situation that one wishes to have
uniform arity for all predicates. This can be arranged as follows. For an i–ary
predicate A (where i b k) we introduce a k–ary predicate A ¡ which satisfies

(5.31) A ¡ 7 x0 �=�=�=�Z� xk © 1 8�� A 7 x0 �=�=�=�i� xi © 1 8(� k © 1�
j ð i

x j
,

ε �
There is a small difficulty in that the start predicate is required to be unary.
So we lift also this restriction and allow the start predicate to have any arity.
Then we put

(5.32) L 7 G 8 :
, 5 ∏

i Ω ¯ S ° Exi : ~ G S 7ÈEx0 �=�=�=�Z��ExΩ ¯ S ° © 1 8Z6
This does not change the generative power. An important class of LMGs,
which we shall study in the sequel, is the class of simple LMGs. Notice that
in virtue of the definition of a simple rule a variable is allowed to occur on
the right hand side several times, while on the left it may not occur more than
once. This restriction however turns out not to have any effect. Consider the
following grammar H .

(5.33)
E 7 ε � ε 8 £ �
E 7 a � a 8 £ � 7 a � A 8
E 7 xa � ya 8 £ E 7 x � y 8P� 7 a � A 8

It is easy to see that ~ H E 7�Ex ��Ey 8 iff Ex , Ey. H is simple. Now take a rule in
which a variable occurs several times on the left hand side.

(5.34) S 7 xx 8Q£ S 7 x 8P�
We replace this rule by the following one and add (5.33).

(5.35) S 7 xy 8M£ S 7 x 8P� E 7 x � y 8P�
This grammar is simple and generates the same strings. Furthermore, we can
see to it that no variable occurs more than three times on the right hand side,

Literal Movement Grammars 389

and that s j
i �, s j

k
for i �, k. Namely, replace s j

i by distinct variables, say x j
i , and

add the clauses E 7 x j
i � x j ¡

i ¡ 8 , if s j
i

,
s j ¡

i ¡ . We do not need to introduce all of these
clauses. For each variable we only need two. (If we want to have Ai

,
A j for

all i b n we simply have to require Ai
,

A j for all j ð i g 1 7 mod n 8 .)
With some effort we can generalize Theorem 5.30.

Theorem 5.31 Let L } A ¡ be generated by a simple LMG. Then L is in
PTIME.

The main theorem of this section will be to show that the converse also
holds. We shall make some preparatory remarks. We have already seen that
PTIME = ALOGSPACE. Now we shall provide another characterization of
this class. Let T be a Turing machine. We call T read only if none of its
heads can write. If T has several tapes then it will get the input on all of its
tapes. (A read only tape is otherwise useless.) Alternatively, we may think
of the machine as having only one tape but several read heads that can be
independently operated.

Definition 5.32 Let L } A ¡ . We say that L is in ARO if there is an alternating
read only Turing machine which accepts L.

Theorem 5.33 ARO
,

ALOGSPACE.

Proof. Let L � ARO. Then there exists an alternating read only Turing ma-
chine T which accepts L. We have to find a logarithmically space bounded
alternating Turing machine that recognizes L. The input and output tape re-
main, the other tapes are replaced by read and write tapes, which are initially
empty. Now, let τ be a read only tape. The actions that can be performed on it
are: moving the read head to the left or to the right (and reading the symbol).
We code the position of the head using binary coding. Evidently, this coding
needs only log2 � Ex �=g 1 space. Calculating the successor and predecessor (if
it exists) of a binary number is LOGSPACE computable (given some extra
tapes). Accessing the ith symbol of the input, where i is given in binary code,
is as well. This shows that we can replace the read only tapes by logarith-
mically space bounded tapes. Hence L � ALOGSPACE. Suppose now that
L � ALOGSPACE. Then L

,
L 7 U 8 for an alternating, logarithmically space

bounded Turing machine U . We shall construct a read only alternating Tur-
ing machine which accepts the same language. To this end we shall replace
every intermediate Tape τ by several read only tapes which together perform

390 PTIME Languages

the same actions. Thus, all we need to show is that the following operations
are computable on read only tapes (using enough auxiliary tapes). (For sim-
plicity, we may assume that the alphabet on the intermediate tapes is just G
and H .) (a) Moving the head to the right, (b) moving the head to the left, (c)
writing G onto the tape, (d) writing H onto the tape. Now, we must use at least
two read only tapes; one, call it τa, contains the content of Tape τ , τb contains
the position of the head of τ . The position i, being bounded by log2 �nEx � , can
be coded by placing the head on the cell number i. Call ia the position of the
head of τa, ib the position of the head of τb. Arithmetically, these steps corre-
spond to the following functions: (a) ib �� ib g 1, (b) ib g 1 �� ib, (c) replacing
the ibth symbol in the binary code of ia by G , (d) replacing the ibth symbol in
the binary code of ia by H . We must show that we can compute (c) and (d). (It
is easy to see that if we can compute this number, we can reset the head of τb
onto the position corresponding to that number.) (A) The ibth symbol in the
binary code of ia is accessed as follows. We successively divide ia by 2, ex-
actly ib times, throwing away the remainder. If the number is even, the result
is G , otherwise it is H . (B) 2ib is computed by doubling 1 ib times. So, (c) is
performed as follows. First, check the ibth digit in the representation. If it isG , leave ia unchanged. Otherwise, substract 2ib . Similarly for (d). This shows
that we can find an alternating read only Turing machine that recognizes L. <

Now for the announced proof. Assume that L is in PTIME. Then we know
that there is an alternating read only Turing machine which accepts L. This
machine works with k tapes. For simplicity we shall assume that the machine
can move only one head in a single step. We shall construct a 2k g 2–LMG G
such that L 7 G 8 , L. Assume for each a � A two binary predicates, La and Ra,
with the following rules.

La 7 ε � a 8¢£¨� La 7 xc � yc 8M£ La 7 x � y 8P�(5.36)

Ra 7 ε � a 8¢£¨� Ra 7 cx � cy 8M£ Ra 7 x � y 8P�(5.37)

It is easy to see that La 7�Ex ��Ey 8 is derivable iff Ey , a Ex and Ra 7�Ex ��Ey 8 is derivable
iff Ey , Exa.

If Ew is the input we can code the position of a read head by a pair ��Ex ��Ey � for
which Ex Ey , Ew. A configuration is simply determined by naming the state of
the machine and k pairs �ÈExi ��Eyi � with Exi Eyi

, Ew. Our grammar will monitor the
actions of the machine step by step. To every state q we associate a predicate
qý . If q is existential the predicate is 2k g 2–ary. If q changes to r when reading
the letter a and if the machine moves to the left on Tape j then the following

Literal Movement Grammars 391

rule is added to G.

(5.38) qý 7 w� x jy j � x0 � y0 �=�=�=�i� x j © 1 � y j © 1 � x k j � y k j � x j � 1 � y j � 1 �=�=�=�i� xk © 1 � yk © 1 8£ r ý 7 w� w� x0 � y0 �=�=�=�Z� xk © 1 � yk © 1 8P� La 7 y j � y k j 8P� Ra 7 x k j � x j 8P�
If the machine moves the head to the right we instead add the following rule.

(5.39) qý 7 w� x jy j � x0 � y0 �=�=�=�i� x j © 1 � y j © 1 � x k j � y k j � x j � 1 � y j � 1 �=�=�=�i� xk © 1 � yk © 1 8£ r ý 7 w� w� x0 � y0 �=�=�=�Z� xk © 1 � yk © 1 8P� Ra 7 x j � x k j 8P� La 7 y k j � y j 8P�
If the machine does not move the head, then the following rule is added.

(5.40) qý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8¢£ r ý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8P�
Notice that the first two argument places of the predicate are used to get rid
of ‘superfluous’ variables. If the state q is universal and if there are exactly p
transitions with successor states ri, i b p, which do not need to be different,
then qý becomes 2k g 2–ary and we introduce symbols q 7 i 8�ý , i b p, which are
2k g 2–ary. Now, first the following rule is introduced.

qý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8¢£(5.41)

q 7 0 8 ý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8P�
q 7 1 8 ý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8P��=�=�i�
q 7 p v 1 8 ý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8P�

Second, if the transition i consists in the state q changing to ri when reading
the symbol a and if the machine moves to the left on Tape j, G gets (5.38)
with qý 7 i 8 in place qý and r ý j in place of r ý . If movement is to the right, instead
we use (5.39). If the machine does not move the head, then (5.40) is added.

All of these rules are simple. If q is an accepting state, then we also take
the following rule on board.

(5.42) qý 7 w� w k � x0 � y0 �=�=�=�i� xk © 1 � yk © 1 8¢£ �
The last rule we need is

(5.43) S 7 w 8¢£ qý0 7 w� w� ε � w� ε � w�=�=�=�Z� ε � w 8P�

392 PTIME Languages

This is a simple rule. For the variable w occurs to the left only once. With this
definition made we have to show that L 7 G 8 , L. Since L

,
L 7 T 8 it suffices

to show that L 7 G 8 , L 7 T 8 . We have Ew � L 7 T 8 if there is an n � ω such that
T moves into an accepting state from the initial configuration for Ew. Here the
initial configuration is as follows. On all tapes we have Ew and the read heads
are to the left of the input. An end configuration is a configuration from which
no further moves are possible. It is accepted if the machine is in a universal
state.

We say that ζ :
,

qý�7jEw �ïEw �$Ex0 ��Ey0 �=�=�=�Z��Exk © 1 ��Eyk © 1 8 codes the configuration ζ K

where T is in state q, and for each i b k (a) Tape i is filled by xiyi, and (b) the
read head Tape i is on the symbol immediately following Exi. Now we have:

À ~ 0
G ζ iff ζ K is an accepting end configuration.

Á If q is existential then ζ £ η is an instance of a rule of G iff T computes
ηK from ζ K in one step.

Â If q is universal then ζ is derivable from ηi, i b p, in two rule steps iff
T computes the transitions ζ K � ηK

i (i b p).

Let Ew � L 7 G 8 . This means that ~ n
G S 7½Ew 8 and so

(5.44) ~ n © 1
G ζ :

,
qý0 7½Ew �XEw � ε �ïEw � ε �1Ew �=�=�=�i� ε �ïEw 8P�

This corresponds to the initial configuration of T for the input Ew. We conclude
from what we have said above that if ~ n © 1

G ζ there exists a k ç n such that
T accepts ζ K in k steps. Furthermore: if T accepts ζ K in k steps, then ~ 2k

G ζ .
Hence we have L 7 G 8 , L 7 T 8 .
Theorem 5.34 (Groenink) L is accepted by a simple LMG iff L � PTIME.

Notes on this section. LMGs are identical to Elementary Formal Systems
(EFSs) defined in (Smullyan, 1961), Page 4. Smullyan used them to define
recursion without the help of a machine. (Post, 1943) did the same, however
his rules are more akin to actions of a Turing machine than to rules of an EFS
(or an LMG). There is an alternative characterization of PTIME–languages.
Let { G Ü
7[Ü�{nH.8 be the expansion of first–order predicate logic (with constants
for each letter and a single binary symbol b in addition to equality) by the
least–fixed point operator. Then the PTIME–languages are exactly those that
can be defined in { G Ü
7[Ü�{GH�8 . A proof can be found in (Ebbinghaus and Flum,
1995).

Interpreted LMGs 393

Exercise 180. Prove Theorem 5.28. Hint. You have to simulate the actions of
a Turing machine by the grammar. Here we code the configuration by means
of the string, the states by means of the predicates.

Exercise 181. Prove Theorem 5.31.

Exercise 182. Construct a simple 1–LMG G such that 5 0 n í n F n : n � ω 6 ,
L 7 G 8 .
Exercise 183. Let G

, � A � R � Ξ � S � H � be an LMG which generates L. Further-
more, let U be the language of all Ex whose Parikh image is that of some Ey � L.
(In other words: U is the permutation closure of L.) Let

(5.45) Gp :
, � A � R sì5 S � 6>� Ξ � � S � � H p �

where Ξ 7 S ��8 , 1, and let

(5.46) H p :
,

R sì5 S � 7 x 8¢£ S 7 x 8P� ;S � 7 vyxz 8Q£ S � 7 vxyz 8P� 6
Show that L 7 Gp 8 , U .

Exercise 184. Let L be the set of all theorems of intuitionistic logic. Write a
1–LMG that generates this set. Hint. You may use the Hilbert–style calculus
here.

3. Interpreted LMGs

In this section we shall concern ourselves with interpreted LMGs. The basic
idea behind interpreted LMGs is quite simple. Every rule is connected with
a function which tells us how the meanings of the elements on the right hand
side are used to construct the meaning of the item on the left. We shall give
an example. The following grammar generates — as we have shown above
— the language 5 0 2n

: n f 0 6 .
(5.47) S 7 xx 8Q£ S 7 x 8P� S 7 0 8m£ �
We write a grammar which generates all pairs � 0 2n � n � . So, we take the number
n to be the meaning of the string

0 2n
. For the first rule we choose the function

λn � n g 1 as the meaning function and for the second the constant 0. We shall
adapt the notation to the one used previously and write as follows.

(5.48)
0(0�0(0

: S : 2 or � 0(0�0(0 � S � 2 �

394 PTIME Languages

Both notations will be used concurrently. (5.48) names a sign with exponent0�0(0�0
with category (or predicate) S and with meaning 2. The rules of the

above grammar are written as follows:

(5.49) � xx � S � n g 1 �M£�� x � S � n �P� � 0 � S � 0 �m£ �
This grammar is easily transformed into a sign grammar. We define a 0–ary
mode í�R and a unary mode

5 V .
(5.50)

í R :
, � 0 � S � 0 �P�í�V>7=� x � S � n �=8 :
, � xx � S � n g 1 �P�

The structure term í V í V í V í R for example defines the sign � 0 8 � S � 3 � .
It seems that one can always define a sign grammar from a LMGs in this

way. However, this is not so. Consider adding the following rule to (5.47).

(5.51) � x 0 í y � S � 3n �m£�� x 0�0 y � S � n �P�
The problem with this rule is that the left hand side is not uniquely determined
by the right hand side. For example, from � 0�0�0(0 � S � 2 � we can derive in one
step � 0 í 0�0 � S � 6 � as well as � 0�0 í 0 � S � 6 � and � 0�0�0 í.� S � 6 � . We shall therefore
agree on the following.

Definition 5.35 Let

ρ
,

T 7 t0 � t1 �=�=�=�i� t p © 1 8¢£ U0 7 s0
0 � s1

0 �=�=�=�Z� sq0 © 1
0

8P�(5.52)

U1 7 s0
1 � s1

1 �=�=�=�i� sq1 © 1
1

8P�=�=�=�i� Un © 1 7 s0
n © 1 � s1

n © 1 �=�=�=�Z� sqn © 1
n © 1 8

be a rule. ρ is called definite if for all instances of the rule the following
holds: For all α , if the 7 s j

i 8 α are given, the 7 t j 8 α are uniquely determined. An
LMG is called definite if each of its rules is definite.

Clearly, to be able to transform an LMG into a sign grammar we need that
it is definite. However, this is still a very general concept. Hence we shall
restrict our attention to simple LMGs. They are definite, as is easily seen.
These grammars have the advantage that the s j

i are variables over strings and
the t j polynomials. We can therefore write them in λ–notation. Our grammar
can therefore be specified as follows.

(5.53)
í R :

, � 0 � S � 0 �í V :
, � λx � x 9 x � S � λn � n g 1 �

Interpreted LMGs 395

In certain cases the situation is not so simple. For this specification only works
if a variable of the right hand side occurs there only once. If it occurs several
times, we cannot regard the t j as polynomials using concatenation. Namely,
they are partial, as is easily seen. An easy example is provided by the follow-
ing rule.

(5.54) C 7 x 8m£ A 7 x 8P� B 7 x 8P�
Intuitively, one would choose λx � x for the string function; however, how does
one ensure that the two strings on the right hand side are equal? For suppose
we were to introduce a binary mode Õ .

(5.55) Õ�7=��Ex � α � X �P�Z��Ey � β � Y �=8 :
, ��Õ ε 7ÈEx ��Ey 8P��Õ τ 7 α � β 8P��Õ µ 7 X � Y 8=�

Then we must ensure that Õ ε 7ÈEx ��Ey 8 is only defined if Ex , Ey. So in addition
to concatenation on A ¡ we also have to have a binary operation ι , which is
defined as follows.

(5.56) ι 7�Ex ��Ey 8 :
, ¿ Ex if Ex , Ey,{

otherwise.

With the help of this operation we can transform the rule into a binary mode.
Then we simply put Õ ε :

,
λx � λy � ι 7 x � y 8 .

We shall try out our concepts by giving a few examples. Let Ex ��5+1��4ô�6 ¡
be a binary sequence. This is the binary code n © of a natural number n. This
binary sequence we shall take as the meaning of the same number in Turing
code. For the number n it is the sequence n ª :

, 0 n � 1. Here is a grammar for
the language 5(� n ª � S � n ©�� : n � ω 6 .
(5.57)

� x 0 � S � n �¢£ � x � T � n �P�� xx
0 � T � n 9 1
�:£�� x � T � n �P�� xx � T � n 9 ô��:£�� x � T � n �P�� ε � T � ε ��£��

Notice that the meanings are likewise computed using concatenation. In place
of λn � 2n or λn � 2n g 1 we therefore have λx � x 9 ô and λx � x 9Ò1 .

We can also write a grammar which transforms binary codes into Turing
codes, by simply exchanging exponent and meaning.

396 PTIME Languages

A somewhat more complex example is a grammar which derives triples��Ex « Ey � S �lEz � of binary numbers where Ez is the binary code of the sum of the
numbers represented by Ex and Ey. (The symbol « serves to separate Ex from Ey.)� x « y � S � z �m£�� x « y � A � z �P�(5.58a) ��ô x « y � S � z �m£�� x « y � S � z �P�� x « ô y � S � z �m£�� x « y � S � z �P�� x « y � S �4ô z �¢£�� x « y � S � z �P�� x « y � S �zø z �¢£�� x « y � U � z �P���ô x « ô y � A �4ô z �¢£�� x « y � A � z �P�(5.58b) ��ô x « ô y � A ��1 z �¢£�� x « y � U � z �P���ô x «�1 y � U �4ô z �¢£�� x « y � U � z �P���ô x «�1 y � A ��1 z �¢£�� x « y � A � z �P���1 x « ô y � U �4ô z �¢£�� x « y � U � z �P���1 x « ô y � A ��1 z �¢£�� x « y � A � z �P���1 x «�1 y � U �4ô z �¢£�� x « y � A � z �P���1 x «�1 y � U ��1 z �¢£�� x « y � U � z �P���ô!« ô
� A �4ô��:£ � ��ô(«�1	� A ��1
�¢£ �(5.58c) ��1¬« ô
� A ��1
�:£ � ��1¬«�1�� U �4ô��¢£ �
Now let us return to the specification of interpreted LMGs. First of all we shall
ask how LMGs can be interpreted to become sign grammars. To this end we
have to reconsider our notion of an exponent. Up to now we have assumed
that exponents are strings. Now we have to assume that they are sequences
of strings (we say rather ‘vectors of strings’, since strings are themselves
sequences). This motivates the following definition.

Definition 5.36 Let A be a finite set. We denote by V 7 A 8 :
, � k ω 7 A ¡ 8 k the

set of vectors of strings over A. Furthermore, let FV :
, 5 ε � 0 � 9 �k«]��Ø��r­�� ζ � ι 6 ,

Ω 7È938 , Ω 7r«�8 , Ω 7 ι 8 , 2, Ω 7�Ø&8 , Ω 7®­&8 , Ω 7 ζ 8 , 1; Ω 7 ε 8 , Ω 7 0 8 , 0.
Here, the following is assumed to hold. (Strings are denoted by vector arrows,
while � , ¯ and å range over V 7 A 8 .)

À åC«�7�¯°«Òåï8 , 7 åC«±¯>8*«Òå
Á 0

, �½� is the empty sequence.

Interpreted LMGs 397

Â 9 is the usual concatenation of strings, so it is not defined on vectors
of length �, 1.

Ã ε is the empty string.

Ä Ø¢² i m Ex , ² i m © 1 Exi, and ­m² i m Exi
, ² 0 i m Exi.

Å ζ 7 � 8 , {
if � is not a string; ζ 7ÈEx 8 , Ex otherwise.

Æ ι 7 � ��¯>8 , � if � , ¯ and ι 7 � ��¯>8 , {
otherwise.

The resulting (partial) algebra is called the algebra of string vectors over A
and is denoted by ��7 A 8 .
In this algebra the following laws hold among other.

(5.59)

� « 0
, �

0 « � , �� «×7�¯°«Òåï8 , 7 � «±¯>8*«ÒåØ
7 � « ζ 7�¯>8=8 , �­
7 ζ 7�¯>8*« � 8 , �
The fourth and fifth equation hold under the condition that ζ 7�¯>8 is defined.
A vector � has length m if ζ 7�Ø m © 1 � 8 is defined but ζ 7�Ø m � 8 is not. In this case
ζ 7�Ø m © ¯ i � 1 ° ­ i � 8 is defined for all i b m and they are the projection functions.
Now we have:

(5.60) � , Ø m © 1 � «ÂØ m © 2 ­ � «�Â=Â=Â�«CØQ­ m © 2 � «z­ m © 1 � �
All polynomial functions that appear in the sequel can be defined in this al-
gebra. The basis is the following theorem.

Theorem 5.37 Let p : 7 A ¡ 8 m � A ¡ be a function which is a polynomial in 9
and ι . Then there exists a vector polynomial ³ : V 7 A 8�� V 7 A 8 such that

À ³>7 � 8 is defined only if � �f7 A ¡ 8 m.

Á If � �f7 A ¡ 8 m and � , ��Exi : i b m � then ³&7 � 8 , p 7ÈEx0 �=�=�=�Z��Exm © 1 8 .
Proof. Let p be given. We assume that one of the variables appears at least
once. (Otherwise p

,
ε and then we put q :

,
ε .) Let q arise from p by re-

placement of xi by ζ 7�Ø m © ¯ i � 1 ° ­ i � 8 , for all i b m. This defines q. (It is well

398 PTIME Languages

defined, for the symbols ε , 9 , ι are in the signature FV .) Let now � be given.
As remarked above, q is defined on � only if � has length m. In this case� , �ÈExi : i b n � for certain Exi, and we have Exi

,
ζ 7�Ø m © ¯ i � 1 ° ­ i � 8 . Since the

symbols ε , 9 and ι coincide on the strings in both algebras (that of the strings
and that of the vectors) we have q 7 � 8 , q 7ÈEx0 �=�=�=�Z��Exm © 1 8 . <

That p : 7 A ¡ 8 m �þ7 A ¡ 8 n is a polynomial function means that there exist
polynomials pi, i b n, such that

(5.61) p 7ÈEx0 �=�=�=�Z��Exm © 1 8 , � pi 7�Ex0 �=�=�=�i�$Exm © 1 8 : i b n �P�
We can therefore replace the polynomials on strings by polynomials over
vectors of strings. Thise simplifies the presentation of LMGs considerably.
We can now write down a rule as follows.� q 7 � 0 �=�=�=�i� � m © 1 8P� A � f 7 X0 �=�=�=�i� Xm © 1 8=�(5.62) £�� � 0 � B0 � X0 �P�=�=�=�Z�Z� � m © 1 � Bm © 1 � Xm © 1 �P�
We shall make a further step and consider LMGs as categorial grammars.
To this end we shall first go over to Chomsky Normal Form. This actually
brings up a surprise. For there are k–LMGs for which no k–LMG in Chomsky
Normal Form can be produced (see the exercises). However, there exists a k k –
LMG in Chomsky Normal Form for a certain effectively determinable k k ç
πk, where π is the maximal productivity of a rule. Namely, look at a rule. We
introduce new symbols Zi, i b m v 2, and replace this rule by the following
rules.

(5.63)

� � 0 « � 1 � Z0 � X0 e X1 8 £ � � 0 � B0 � X0 �P� � � 1 � B1 � X1 �P���¯ 0 « � 2 � Z1 � Y0 e X2 8 £ ��¯ 0 � Z0 � Y0 �P� � � 2 � B2 � X2 �P�Â=Â=Â��¯ m © 4 « � m © 2 � Zm © 3 � Ym © 4 e Xm © 2 �£ ��¯ m © 4 � Zm © 4 � Ym © 4 � � � m © 2 � Bm © 2 � Xm © 2 �P�� q ¡47�¯ m © 3 « � m © 1 8P� A � f ¡17 Ym © 3 e Xm © 1 8=�£ ��¯ m © 3 � Zm © 3 � Ym © 3 �P� � � m © 1 � Bm © 1 � Xm © 1 �P�
Here q ¡ and f ¡ are chosen in such a way that

(5.64)
q ¡ 7 � 0 «�Â=Â=Â´« � m © 1 8 , q 7 � 0 �=�=�=�i� � m © 1 8

f ¡ 7 X0 e¸Â=Â=ÂXe Xm © 1 8 , f 7 X0 �=�=�=�i� Xm © 1 8

Interpreted LMGs 399

It is not hard to see how to define the functions by polynomials. Hence, in the
sequel we may assume that we have at most binary branching rules. 0–ary
rules are the terminal rules. A unary rule has the following form.

(5.65) � q 7 � 8P� C � f 7 X 8=�Q£�� � � A � X �P�
We keep the sign � � � A � X � and introduce a new sign � ρ which has the follow-
ing form.

(5.66) � ρ :
, � λ � � q 7 � 8P� C ¾ A � λx � f 7 x 8=�

There is only one binary mode, Õ , which is defined thus:

(5.67) Õ�7=� p � A � X �P�Z� q � B � Y �=8 :
, � p 7 q 8P� A Â B �Z7 XY 8=�

This is exactly the scheme of application in categorial grammar. One dif-
ference remains. The polynomial p is not necessarily concatenation. Further-
more, we do not have to distinguish between two modes, since we in the string
case we have the possibility of putting p to be either λx � x 9ªEy or λx �`Ey 9 x. Ap-
plication has in this way become independent of the accidental order. Many
more operations can be put here, for example reduplication. The grammar that
we have mentioned at the beginning of the section is defined by the following
two modes.

(5.68) µ R :
, � 0 � S � 0 �µ V :
, � λx � x 9 x � S ¾ S � λn � n g 1 �

To the previous structure term í V í V í V í R now corresponds the structure term

(5.69) ¶ µ V ¶ µ V ¶ µ V µ R
In this way the grammar has become an AB–grammar, with one exception:
the treatment of strings must be explicitly defined.

The binary rules remain. A binary rule has the following form.

(5.70) � q 7 � ��¯>8P� C � f 7 X � Y 8=�:£�� � � A � X �P�Z��¯�� B � Y �P�
We keep the sign on the right hand side and introduce a new sign.

(5.71) � ρ :
, � λ ¯�� λ � � q 7 � ��¯>8P�Z7 C ¾ A 8 ¾ B � λy � λx � f 7 x � y 8i�

400 PTIME Languages

Table 15. Arabic Binyanim: ·�¸�ö
I

@	0'"
0 í to write
II

@	0'"�"
0 í to make write
III

@	0(0�"�0 í to correspond
VI

"
0.@	0�0'"
0 í to write to each other
VIII

@�"�0�"�0 í to write, to be inscribed

Perf. Act. Perf. Pass. Impf. Act. Impf. Pass.
I

@	0'"
0 í @&%�"G, í 0.@�"&% í %�@�"�0 í
II

@	0'"�"
0 í @&%�"%"n, í %�@	0�"%"n, í %�@	0'"�"
0 í
III

@	0(0�"�0 í @(%�%�"n, í %�@	0(0�"n, í %�@	0(0�"�0 í
VI

"
0.@	0�0'"
0 í ">%�@&%�%�"G, í 0'"
0'@
0�"%"
0 í %�"
0.@	0�"%"
0 í
VIII

@�"�0�"�0 í @�"&%�"n, í 0.@�"�0�"n, í %�@�"�0�"�0 í
Exercise 185. Show that for any k � 1 there are simple k–LMGs G with
branching number 3 such that for no simple k–LMG H with branching num-
ber 2, L 7 G 8 , L 7 H 8 .
Exercise 186. Here are some facts from Arabic. In Arabic a root typically
consists of three consonants. Examples are

@�" í ‘to write’, î #�) ‘to study’.
There are also roots with four letters, such as î # / B (from Greek Drachme),
which names a numismatic unit. From a root one forms so–called binyanim,
roughly translated as ‘word classes’, by inserting vowels or changing the con-
sonantism of the root. In Table 15 we give some examples of verbs derived
from the root

@�" í . Of these forms we can in turn form verbal forms in differ-
ent tenses and voices.

We have only shown the transparent cases, there are other classes whose
forms are not so regular. Write an interpreted LMG that generates these
forms. For the meanings, simply assume unary operators, for example K½q&rXh k
for II, p1qXh=h�k for passive, and so on.

Exercise 187. In Mandarin (a Chinese language) a yes–no–question is formed
as follows. A simple assertive sentence has the form (5.72) and the corre-
sponding negative sentence the form (5.73). Mandarin is an SVO–language,
and so the verb phrase follows the subject. The verb phrase is negated by

Discontinuity 401

prefixing í % . (We do not write tones.)s
0 a 0�, B ,>0RO(5.72)

He/She/It (is) at homes
0 í % a 0�, B ,&0RO(5.73)

He/She/It (is) not at home

The yes–no–question is formed by concatenating the subject phrase with the
positive verb phrase and then the negated verb phrase.s
0 a 0�, B ,>0 í % a 0�, B ,>0¬¹(5.74)

Is he/she/it at home?

As Radzinski (1990) argues, the verb phrases have to be completely identical
(with the exception of í %). For example, (5.75) is grammatical, (5.76) is un-
grammatical. However, (5.77) is again grammatical and means roughly what
(5.75) means.2 ,Ú$G, / %	04'Z"�0 ?&î D F#/ D�'.) / 01' í % $�, / %�04'X"
0 ?>î D(5.75)

You like his shirt not like hisF#/ D�'�) / 01'�¹
shirt?

Do you like his shirt?¡ 2 ,�$G, / %�01'Z"
0 ?&î D í % $G, / %�01'Z"
0 ?&î D F#/ D�'�) / 01'�¹(5.76)

You like his not like his shirt?2 ,Ú$G, / %	04' í % $G, / %�01'Z"
0 ?&î D F#/ D4'�) / 04'�¹(5.77)

You like not like his shirt?

Write an interpreted LMG generating these examples. Use ? : ϕ to denote the
question, whether or not ϕ is the case.

4. Discontinuity

In this section we shall study a very important type of grammars, the so–
called Linear Context–Free Rewrite Systems — LCFRS for short (see
(Vijay-Shanker et al., 1987)). These grammars are weakly equivalent to what
we call linear LMGs.

402 PTIME Languages

Definition 5.38 A k–LMG is called linear if it is a simple k–LMG and every
rule which is not 0–ary is downward nondeleting and downward linear, while
0–ary rules have the form X 7�Ex0 �=�=�=�i�$ExΞ ¯ X ° © 1 8�£³� with Exi � A for all i b Ξ 7 X 8 .
In other words, if we have a rule of this form

(5.78) A 7 t0 �=�=�=�i� tk © 1 8:£ B0 7 s0
0 �=�=�=�i� s0

k © 1 8P�=�=�=�Z� Bn © 1 7 sn © 1
0 �=�=�=�i� sn © 1

k © 1 8P�
then for every i b k and every j b n: s j

i

,
x j

i and xi
j
,

xi ¡
j ¡ implies i

,
i k and

j
,

j k . Finally, ∏i k ti is a term containing each of these variables exactly
once, in addition to occurrences of constants.

It is easy to see that the generative capacity is not diminished if we disal-
lowed constants. In case k

,
1 we get exactly the CFGs, though in somewhat

disguised form: for now — if there are no constants — a rule is of the form

(5.79) A 7 ∏
i n

xπ ¯ i ° 8¢£ B0 7 x0 8P� B1 7 x1 8P�=�=�=�Z� B 7 xn © 1 8P�
where π is a permutation of the numbers b n. If ρ :

,
π © 1 is the permutation

inverse to π we can write the rule in this way.

(5.80) A 7 ∏
i n

xi 8:£ Bρ ¯ 0 ° 7 x0 8P� Bρ ¯ 1 ° 7 x1 8P�=�=�=�i� Bρ ¯ n © 1 ° 7 xn © 1 8P�
(To this end we replace the variable xi by the variable xρ ¯ i ° for every i. After
that we permute the Bi. The order of the conjuncts is anyway insignificant in
an LMG.) This is as one can easily see exactly the form of a context free rule.
For we have

(5.81) ∏
i n

xi
,

x0x1 Â=Â=Â xn © 1

This rule says therefore that if we have constituents Eui of type Bρ ¯ i ° for i b n,
then ∏i n Eui is a constituent of type A.

The next case is k
,

2. This defines a class of grammars which have been
introduced before, using a somewhat different notation and which have been
shown to be powerful enough to generate non CFLs such as Swiss German.
In linear 2–LMGs we may have rules of this kind.

(5.82)

A 7 x1x2 � y1y2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�
A 7 x2x1 � y1y2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�
A 7 y1x1y2 � x2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�
A 7 x1 � y1x2y2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�

Discontinuity 403

The following rules, however, are excluded.

A 7 x1 � y1y2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�(5.83)

A 7 x2x2x1 � y1y2 8¢£ B 7 x1 � y1 8P� C 7 x2 � y2 8P�(5.84)

The first is upward deleting, the second not linear. We shall see that the lan-
guage 5 0 n í n F n î n : n � ω 6 can be generated by a linear 2–LMG, the language5 0 n í n F n î n D n : n � ω 6 however cannot. The second fact follows from Theo-
rem 5.45. For the first language we give the following grammar.

(5.85)

} 7 y0x0y1 � z0x1z1 8¢£ } 7 x0 � x1 8P� 5 7 y0 � y1 8P� 6 7 z0 � z1 8P�} 7 ε � ε 8:£ �5 7 0 �lí	8¢£¨�6 7�F���î�8¢£¨�
This shows that 2–linear LMGs are strictly stronger than CFGs. As a further
example we shall look again at Swiss German (see Section 2.7). We define
the following grammar. (Recall that x � y :

,
x 9 < 9 y.)

(5.86)

2 /
0 7ãî * F#/ ,ï' î(8 £ � 2 / î�7 D B] 01'�) 8�£ �2 /�) B 7�A 04' 8 £ � 2 /
0 7 D) / %(%�) 8�£ �7 î # 7L/ 80(2 : D 8 £ � 7 : 7 2 8C ' î�8 £ �7 0># 7 2�0(0 8 £ �7 04' 7 0�0�)�"�#G, F0/ D 8º£ � Õ	7ãî 0�) 8 £ �2 /�)() 7 B D&# 8 £ � 7 F�7) 80�,." 8 £ �} 7 x � y 9 O 8 £ 2 /�) B 7 x 8P� 7 / 7 y 8P�7 / 7 x 9 ��� y 8 £ 7 F�7 x 8P��Õ / 7 y 8P�Õ / 7 x � y � z0 � z1 � u 8�£ Õ�7 x 8P��2 /�)() 7 y 8P� 7 E
7 z0 � z1 8P� 7 : 7 u 8P�7 E�7 x � z0 � y � z1 8 £ 2 /�0 7 x 8P� 7 0># 7 y 8P� 7 E
7 z0 � z1 8P�7 E�7 x � z0 � y � z1 8 £ 2 / î�7 x 8P� 7 î # 7 y 8P� 7 E
7 z0 � z1 8P�7 E�7 x � y 8 £ 2 /�0 7 x 8P� 7 04' 7 y 8P�
This grammar is pretty realistic also with respect to the constituent structure,
about which more below. For simplicity we have varied the arities of the
predicates. Notice in particular the last two rules. They are the real motor of

404 PTIME Languages

the Swiss German infinitive constructions. For we can derive the following.7 E�7ãî * F0/ ,ï' î z0 � 2�0�0 z1 8:£ 7 E�7 z0 � z1 8P�(5.87) 7 E�7 D B] 01'�) z0 ��/ 80�2 : D z1 8:£ 7 E�7 z0 � z1 8P�(5.88) 7 E�7ãî * F0/ ,ï' î�� 0�0�)�"�#G, F0/ D 8:£��(5.89) 7 E�7 D) / %(%�) � 0�0�)�"�#G, F0/ D 8:£��(5.90) 7 E�7ãî * F0/ ,ï' î D B] 04'.) z0 � 2(0�0 / 80(2 : D z1 8:£ 7 E�7 z0 � z1 8P�(5.91) 7 E�7 D B] 01'�)�D
) / %�%.) z0 ��/ 80�2 : Dÿ2�0(0 z1 8:£ 7 E�7 z0 � z1 8P�(5.92)

However, we do not have

(5.93)
7 E�7 D B] 04'.) � 2(0�0 8:£¨�

The sentences of Swiss German as reported in Section 2.7 are derivable and
some further sentences, which are all grammatical.

Linear LMGs can also be characterized by the vector polynomials which
occur in the rules. We shall illustrate this by way of example with linear 2–
LMGs and here only for the at most binary rules. We shall begin with the
unary rules. They can make use of these vector polynomials.

(5.94)

» 7 x0 � x1 8 :
, � x0 � x1 �¼

X 7 x0 � x1 8 :
, � x1 � x0 �¼

F 7 x0 � x1 8 :
, � x0x1 � ε �¼

G 7 x0 � x1 8 :
, � x1x0 � ε �¼

H 7 x0 � x1 8 :
, � ε � x0x1 �¼

K 7 x0 � x1 8 :
, � ε � x1x0 �

Then the following holds.¼
X 7 ¼ X 7 x0 � x1 8=8 , » 7 x0 � x1 8¼

G 7 x0 � x1 8 , ¼ F 7 ¼ X 7 x0 � x1 8=8(5.95) ¼
K 7 x0 � x1 8 , ¼ H 7 ¼ X 7 x0 � x1 8=8

This means that one has ¼ G at one’s disposal if one also has ¼ X and ¼ F , and
that one has ¼ F if one also has ¼ X and ¼ G and so on. With binary rules al-
ready the situation gets quite complicated. Therefore we shall assume that
we have all unary polynomials. A binary vector polynomial is of the form

Discontinuity 405� p0 7 x0 � x1 � y0 � y1 8P� p1 7 x0 � x1 � y0 � y1 8=� such that q :
,

p0 9 p1 is linear. Given q
there exist exactly 5 choices for p0 and p1, determined exactly by the cut–off
point. So we only need to list q. Here we can assume that in q 7 x0 � x1 � y0 � y1 8
x0 always appears to the left of x1 and y0 to the left of y1. Further, one may
also assume that x0 is to the left of y0 (otherwise exchange the xi with the yi).
After simplification this gives the following polynomials.

(5.96)

qC 7 x0 � x1 � y0 � y1 8 :
,

x0x1y0y1

qW 7 x0 � x1 � y0 � y1 8 :
,

x0y0x1y1

qZ 7 x0 � x1 � y0 � y1 8 :
,

x0y0y1x1

Let us take a look at qW . From this polynomial we get the following vector
polynomials.

(5.97)

³ W 0 7=� x0 � x1 �P�Z� y0 � y1 �=8 :
, � ε � x0y0x1y1 �³ W 1 7=� x0 � x1 �P�Z� y0 � y1 �=8 :
, � x0 � y0x1y1 �³ W 2 7=� x0 � x1 �P�Z� y0 � y1 �=8 :
, � x0y0 � x1y1 �³ W 3 7=� x0 � x1 �P�Z� y0 � y1 �=8 :
, � x0y0x1 � y1 �³ W 4 7=� x0 � x1 �P�Z� y0 � y1 �=8 :
, � x0y0x1y1 � ε �

We say that a linear LMG has polynomial basis Q if in the rules of this gram-
mar only vector polynomials from Q have been used. It is easy to see that if ³
is a polynomial that can be presented by means of polynomials from Q, then
one may add ³ to Q without changing the generative capacity. Notice also
that it does not matter if the polynomial contains constants. If we have, for
example,

(5.98) ��7 0 x í�F y 8¢£��.7 x 8P����7 y 8P�
we can replace this by the following rules.�.7 uxvwy 8M£ 5 7 u 8P�¯�.7 x 8P� 6 7 v 8P��Õ.7 w 8P����7 y 8P�5 7 0 8:£¨�6 7�í	8:£¨�Õ�7�F>8:£¨�(5.99)

This is advantageous in proofs. We bring to the attention of the reader some
properties of languages that can be generated by linear LMGs. The following
is established in (1987), see also (Weir, 1988).

406 PTIME Languages

Proposition 5.39 (Vijay–Shanker & Weir & Joshi) Let G be a linear k–
LMG. Then L 7 G 8 is semilinear.

A special type of linear LMGs are the so–called head grammars. These gram-
mars have been introduced by Carl Pollard in (1984). The strings that are ma-
nipulated are of the form Exa Ey where Ex and Ey are strings and a � A. One speaks
in this connection of a in the string as the distinguished head. This head is
marked here by underlining it. Strings containing an underlined occurrence
of a letter are called marked. The following rules for manipulating marked
strings are now admissible.

(5.100)

hC1 7�Eva Ew ��EybEz 8 :
, Eva Ew EybEz

hC2 7�Eva Ew ��EybEz 8 :
, Eva Ew EybEz

hL1 7�Eva Ew ��EybEz 8 :
, Eva EybEz Ew

hL2 7�Eva Ew ��EybEz 8 :
, Eva EybEz Ew

hR1 7�Eva Ew ��EybEz 8 :
, Ev EybEza Ew

hR2 7�Eva Ew ��EybEz 8 :
, Ev EybEza Ew

(Actually, this definition is due to (Roach, 1987), who showed that Pollard’s
definition is weakly equivalent to this one.) Notice that the head is not al-
lowed to be empty. In (Pollard, 1984) the functions are partial: for exam-
ple, hC1 7 ε �XEw 8 is undefined. Subsequently, the definition has been changed
slightly, basically to allow for empty heads. In place of marked strings one
takes 2–vectors of strings. The marked head is the comma. This leads to the
following definition. (This is due to (Vijay–Shanker et al., 1986). See also
(Seki et al., 1991).)

Definition 5.40 A head grammar is a linear 2–LMG with the following poly-
nomial basis.

(5.101)

¼
C1 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0 � x1y0y1 �¼
C2 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0x1y0 � y1 �¼
L1 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0 � y0y1x1 �¼
L2 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0y0 � y1x1 �¼
R1 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0y0y1 � x1 �
It is not difficult to show that the following basis of polynomials is sufficient:¼

C1, ¼ C2 and

(5.102) ¼
W 7=� x0 � x1 �P�Z� y0 � y1 �=8 :

, � x0y0 � y1x1 �

Discontinuity 407

Notice that in this case there are no extra unary polynomials. However, some
of them can be produced by feeding empty material. These are exactly the
polynomials

»
, ¼ F and ¼ H . The others cannot be produced, since the order of

the component strings must always be respected. For example, one has

(5.103) ¼
C2 7=� x0 � x1 �P�Z� ε � ε �=8 , � x0x1 � ε � , ¼ F 7 x0 � x1 8

We shall now turn to the description of the structures that correspond to
the trees for CFGs. Recall the definitions of Section 1.4.

Definition 5.41 A sequence C
, �½Ewi : i b n g 1 � of strings is called an n–

context. A sequence J , ��Evi : i b n � occurs in Ex in the context C if

(5.104) Ex , Ew0 9 ∏
i n
Evi Ewi � 1

We write C 7rJ&8 in place of Ex.

Notice that an n–sequence of strings can alternatively be regarded as an n v 1–
context. Let G be a k–linear LMG. If ~ G A 7ÈEx0 �=�=�=�Z��Exk © 1 8 then this means that
the k–tuple �ÈExi : i b k � is a constituent of category A. If ~ G S 7ÈEx 8 , then the
derivation will consist in deriving statements of the form A 7=�ÈEyi : i b Ξ 7 A 8=�=8
such that there is an n g 1–context for ��Eyi : i b Ξ 7 A 8=� in Ex.

The easiest kinds of structures are trees where each nonterminal node is
assigned a tuple of subwords of the terminal string. Yet, we will not follow
this approach as it generates stuctures that are too artificial. Ideally, we would
like to have something analogous to constituent structures, where constituents
are just appropriate subsets of the terminal nodes.

Definition 5.42 An labelled ordered tree of discontinuity degree k is a la-
belled, ordered tree such that ¦ x § has at most k discontinuous pieces.

If G is given, the labels are taken from A and R, and A is the set of labels
of leaves, while R is the set of labels for nonleaves. Also, if Q is a k–ary
predicate, it must somehow be assigned a unique k–tuple of subwords of the
terminal string. To this end, we segment ¦ x § into k continuous parts. The way
this is done exactly shall be apparent later. Now, if x is assigned B and if ¦ x §
is the disjoint union of the continuous substrings Eyi, i b k, and if Eyi precedes
in Ey j in Ex iff i b j then B 7=�ÈEyi : i b k �=8 .

However, notice that the predicates apply to sequences of substrings. This
is to say that the linear order is projected from the terminal string. Addition-
ally, the division into substrings can be read off from the tree (though not

408 PTIME Languages

from ¦ x § alone). There is, however, one snag. Suppose G contains a rule of the
form

(5.105) A 7 x1x0y0 � y1 8¢£ B 7 x0 � x1 8P� C 7 y0 � y1 8
Then assuming that we can derive B 7$Eu0 �=Eu1 8 and C 7ÈEv0 ��Ev1 8 , we can also derive
A 7$Eu1 Eu0 Ev0 ��Ev1 8 . However, this means that Eu1 must precede Eu0 in the terminal
string, which we have excluded. We can prevent this by introducing a nonter-
minal B ¡ such that B ¡ 7 x0 � x1 8»� B 7 x1 � x0 8 , and then rewrite the rule as

(5.106) A 7 x0x1y0 � y1 8¢£ B ¡X7 x0 � x1 8P� C 7 y0 � y1 8P�
The problem with the rule (5.105) is that it switches the order of the xi’s.
Rules that do this (or switch the order of the yi’s) are called nonmonotone in
the sense of the following definition.

Definition 5.43 Let ρ
,

L £ M0 Â=Â=Â Mn © 1 be a linear rule, L
,

B 7=� t j : j b k �=8
and Mi

,
Ai 7=� x j

i : j b ki �=8 , i b n. ρ is called monotone of for every i b n and
every pair j b j k(b ki the following holds: if x j

i occurs in tq and x j ¡
i in tq ¡ then

either q b q k or q
,

q k and x j
i occurs before x j ¡

i in the polynomial tq. An LMG
is monotone if all of its rules are.

Now, for every LCFRS there exists a monotone LCFRS that generates the
same strings (and modulo lexical rules also the same structures). For ev-
ery predicate A and every permutation π : k � k, k :

,
Ξ 7 A 8 assume a dis-

tinct predicate Aπ with the intended interpretation that A 7 x0 �=�=�=�i� xk © 1 8 iff
Aπ 7 xπ Ü 1 ¯ 0 ° �=�=�=�Z� xπ Ü 1 ¯ k © 1 ° 8 . Every rule A 7�Es 8½£ B0 �=�=� Bp © 1 is replaced by all

possible rules Aπ 7 π © 1 7ÈEs 8=8¢£ B0 �=�=� Bp © 1.
Let A £ B0 �=�=� Bp © 1 be a rule. Now put ρi 7 j 8 :

,
k iff xk

i is the jth variable
from the variables xq

i , q b Ξ 7 Bi 8 , which occurs in ∏i Ξ ¯ A ° ti, counting from the

left. Then A k £ Bρ0
0
�=�=� Bρp Ü 1

p © 1
will replace the rule A £ B0 �=�=� Bp © 1, where A k

results from A by applying the substitution x j
i �� xρ Ü 1

i ¯ j °
i

(while the variables
of the Bρ

i
remain in the original order). This rule is monotone. For example,

assume that we have the rule

(5.107) A 7 x2y1x1 � x0y2y0y3 8:£ B0 7 x0 � x1 � x2 8P� C 7 y0 � y1 � y2 � y3 8P�
Then we put ρ0 : 0 �� 2 � 1 �� 1 � 2 �� 0, and ρ1 : 0 �� 2 � 1 �� 0 � 2 �� 1 � 3 �� 3.
So we get

(5.108) A 7 x0y0x1 � x2y1y2y3 8:£ Bρ0 7 x0 � x1 � x2 8P� Cρ1 7 y0 � y1 � y2 � y3 8P�

Discontinuity 409

Every terminal rule is monotone. Thus, we can essentially throw out all non-
monotone rules. Thus, for nonmonotone LCFRS there is a monotone LFCRS
generating the same strings.

We can a derive useful theorem on LCFRSs.

Definition 5.44 A language L is called k–pumpable if there is a constant pL
such that for all Ex of length f pL there is a decomposition Ex , Eu0 ∏i k 7�Evi Eui � 1 8
such that

(5.109) 5&Eu0 ∏
i k
7�Evi

n Eui 8 : n � ω 6 } L

Theorem 5.45 (Groenink) Suppose that L is a k–LCFRL. Then L is 2k–
pumpable.

We provide a proof sketch based on derivations. Transform the language into
a language of signs, by adding the trivial semantics. Then let ­ be a sign
grammar based on a monotone k–LCFRS for it. Observe that if � is a structure
term containing x free exactly once, and if �Z7~�
8 and � are definite and unfold to
signs of identical category, then with �
72�Z7~��8=8 also �
72� n 7~��8=8 is definite for every
n (the rule skeleton is context free). Now, if Ex is large enough, its structure
term will be of the form �
72�Z7~��8=8 such that �Z7~��8 and � have the same category.
Finally, suppose that the grammar is monotone. Then � ε is a monotone, linear
polynomial function on k–tuples; hence there are Evi, i b 2k, such that

(5.110) p 7 x0 �=�=�=�Z� xk © 1 8 , �ÈEv2ixi Ev2i � 1 : i b k �
Thus let us now focus on monotone LCFRSs. We shall define the struc-

tures that are correspond to derivations in monotone LCFRSs, and then show
how they can be generated using graph grammars.

Definition 5.46 Suppose that ± , � T �ibØ�
jØ�_!ï� is an ordered labelled tree with
degree of discontinuity k and G

, � A � R � Ξ � S � H � a monotone LCFRS. We say
that ± is a G–tree if

À !�7 v 8Y� A iff v is a leaf,

Á for every nonleaf v: there is a set 5 H 7 v 8 i : i b k 6 of leaves such that
k
,

Ξ 7N!�7 v 8=8 , and H 7 v 8 i }µ¦ x § is continuous,

410 PTIME Languages

Â if v has daughters wi, i b n, then there is a rule

A 7 t0 �=�=�=�i� tΞ ¯ A ° 8:£ B0 7 x0
0 �=�=�=�Z� xΞ ¯ B0 °

0
8P���=�=�Z� Bn © 1 7 x0

n © 1 �=�=�=�i� xΞ ¯ Bn Ü 1 °
n © 1

8
such that� v has label A, wi has label Bi (i b n),� if t j

,
∏i ν xh ¯ i °

g ¯ i ° then H 7 v 8 j
, � i ν H 7 wg ¯ i ° 8 h ¯ i ° .

The last clause is somewhat convoluted. It says that whatever composition
we assume of the leaves associated with v, it must be compatible with the
composition of the wi, and the way the polynomials are defined. Since the
preterminals are unary, it can be shown that H 7 v 8 i is unique for all v and i.

The following grammar is called G � .

(5.111)

} 7 y0x0y1 � z0x1z1 8m£ } 7 x0 � x1 8P�¯��7 y0 � y1 8P� � 7 z0 � z1 8P�} 7 ε � ε 8:£ ���7 x � y 8m£ 5 7 x 8P� 6 7 y 8P� � 7 x � y 8M£ÜÕ	7 x 8P� Ö 7 y 8P�5 7 0 8:£ � Õ	7�F&8¢£ �6 7�í�8:£ � Ö 7ãî�8¢£ �
G � derives é�é ê#ê ë#ë
�#� with the structure shown in Figure 12. This tree is not
exhaustively ordered. This is the main difference with CFGs. Notice that the
tree does not reflect the position of the empty constituent. Its segments are
found between the second and the third as well as between the sixth and the
seventh letter. One can define the structure tree also in this way that it explic-
itly contains the empty strings. To this end one has to replace also occurrences
of ε by variables. The rest is then analogous.

We shall now define a context free graph grammar that generates the same
structures as a given monotone LCFRS. For the sake of simplicity we as-
sume that all predicates are k–ary, and that all terminal rules are of the form
Y 7 a � ε �=�=�=�i� ε 8 , a � A. Monotonicity is not necessary to assume, but makes life
easier. The only problem that discontinuity poses is that constituents cannot
be ordered with respect to each other in a simple way. The way they are re-
lated to each other shall be described by means of special matrices.

Assume that Eu is a string, C
, �ÈEvi : i b k g 1 � a k g 1–context for Exi, i b k,

in Eu and D
, �jEwi : i b k g 1 � a k g 1–context for Ey j , j b k, in Eu. Now, write

M 7 C � D 8 :
, 7 µi j 8 i j for the following matrix:

(5.112) µpq
,

1 iff ∏
i p
Evi Exi is a prefix of Ew0 9 ∏

i q
Eyi Ewi � 1

Discontinuity 411

0 0 í í F F î î
5 5 6 6 Õ Õ Ö Ö¾ ¾ ¾¾ ¿¿¿¿ ÀÀÀÀÀÀÀÀÀÀ Á Á Á Á Á Á Á Á ÁÁ¾ ¾ ¾¾ ¿¿¿¿� � � �Â Â Â Â Â ÂÂ vvvvvvv}Ã Ã Ã Ã Ã Ã

Ã Ã Ã Ã Ã
ÄÄÄÄÄÄ

ÄÄÄÄÄ}

Figure 12. A Structure Tree for G Å
We call M 7 C � D 8 the order scheme of C and D. Intuitively, the order scheme
tells us which of the Exp precede which of the Eyq in Eu. We say that C and D
overlap if there are i � j b k such that the (occurrences of) Exp and Eyq overlap.
This is the case iff µpq

,
µqp

,
0.

Lemma 5.47 Assume that
·

is a labelled ordered tree for a monotone LCFRS
with yield Eu. Further, let x and y be nodes. Then !>7 x 8 and !>7 y 8 overlap iff x
and y are comparable.

Notice that in general µqp
,

1 v µpq in the nonoverlapping case, which is
what we shall assume from now on. We illustrate this with an example. Fig-
ure 13 shows some 2–schemes for monotone rules together with the orders
which define them. (We omit the vector arrows; the ordering is defined by ‘is
to the left of in the string’.) For every k–scheme M let ξM be a relation. Now
we define our graph grammar. N � :

, 5 A � : A � N 6 is a set of fresh nontermi-
nals. The set of vertex colours FV :

,
N s N �	s A, the set of terminal vertex

colours is FT
V :
,

N s A, the set of edge colours is 5&bØ6	s�5 ξM : M a k–scheme 6 .
(As we will see immediately, j is the relation which fits to the relation ξ Æ
where Ç , 7 1 8 i j is the matrix which consists only of 1s.) The start graph is the
one–element graph ® which has one edge. The vertex has colour S, the edge

412 PTIME Languages

w 1 1
1 1 x w 1 1

0 1 x w 1 1
0 0 x

x0x1y0y1 x0y0x1y1 x0y0y1x1

w 0 1
0 1 x w 0 1

0 0 x w 0 0
0 0 x

y0x0x1y1 y0x0y1x1 y0y1x0x1

Figure 13. Order Schemes

has only one colour, ξK , where K
, 7 κpq 8 pq with κpq

,
1 iff p b q. For every

rule ρ we add a graph replacement rule. Let

(5.113) ρ
,

B 7=� t j : j b k �=8m£ A0 7=� x j
0 : j b k �=8(Â=Â=Â An © 1 7=� x j

n © 1 : j b k �=8
be given. Let p :

,
∏i k t i be the characteristic polynomial of the rule. Then

the graph replacement ρ γ replaces the node B � by the following graph.

(5.114) !
v0

A �0Â
Â Â Â Â ÂÂ!

v1

A �1
ñ ñ ññ Â=Â=Â !

xn © 1

A �n © 1

òòòò
!wB

Furthermore, between the nodes vi and w j, i �, j, the following relations hold
(which are not shown in the picture). Put µ 7 i � j 8 i ¡ j ¡ :

,
1 if xi ¡

i is to the left
of x j ¡

j in p. Otherwise, put µ 7 i � j 8 i ¡ j ¡ : , 0. Then put Hi j :
, 7 µ 7 i � j 8 i ¡ j ¡ 8 i ¡ j ¡ . The

relation from vi to v j is ξHi j
. Notice that by definition always either xi ¡

i is to the

left of x j ¡
j or to the right of it. Hence the relation between v j and vi is exactly

ξ1 © H . This is relevant insofar as it allows us to concentrate on one colour
functional only: ä�ä . Now supppose that w is in relation ξM to a node u. (So,
there is an edge of colour ξM from v to u.) We need to determine the relation
(there is only one) from vi to u. This is ξN , where N

, 7 νpq 8 pq and νpq
,

1 iff
µp ¡ q , 1, where xp

i occurs in t p ¡ . The map that sends M to N and b to b is the
desired colour functional ä�ä . The other functionals can be straightforwardly
defined.

Discontinuity 413

0 0 0 0 0 0 0 0
} } } } } } } }¾ ¾ ¾¾ ¿¿¿¿ ¾ ¾ ¾¾ ¿¿¿¿ ¾ ¾ ¾¾ ¿¿¿¿ ¾ ¾ ¾¾ ¿¿¿¿} } } }ñ ñ ññ òòòò ñ ñ ññ òòòò

} }Â Â Â Â Â ÂÂ vvvvvvv}

Figure 14. An Exponentially Growing Tree

There is a possibility of defining structure in some restricted cases, namely
always when the right hand sides do not contain a variable twice. This differs
from linear grammars in that variables are still allowed to occur several times
on the left, but only once on the right. An example is the grammar

(5.115)
} 7 xx 8m£ } 7 x 8P� ; } 7 0 8m£ �

The notion of structure that has been defined above can be transferred to this
grammar. We simply do as if the first rule was of this form

(5.116)
} 7 xy 8m£ } 7 x 8P� } 7 y 8P�

where it is clear that x and y always represent the same string. In this way we
get the structure tree for

0�0(0�0(0�0�0(0
shown in Figure 14.

Notes on this section. In (Seki et al., 1991), a slightly more general type of
grammars than the LCFRSs is considered, which are called Multiple Context
Free Grammars (MCFGs). In our terminology, MCFGs maybe additionally
upward deleting. In (Seki et al., 1991) weak equivalence between MCFGs
and LCFRs is shown. See also (Kasami et al., 1987). (Michaelis, 2001b)
also defines monotone rules for MCFGs and shows that any MCFL can be

414 PTIME Languages

generated by a monotone MCFG. For the relevance of these grammars in
parsing see (Villemonte de la Clergerie, 2002a; Villemonte de la Clergerie,
2002b). In his paper (1997), Edward Stabler describes a formalisation of min-
imalist grammars akin to Noam Chomsky’s Minimalist Program (outlined
in (Chomsky, 1993)). Subsequently, in (Michaelis, 2001b; Michaelis, 2001a;
Michaelis, 2001c) and (Harkema, 2001) it is shown that the languages gen-
erated by this formalism are exactly those that can be generated by simple
LMGs, or, for that matter, by LCFRSs.

Exercise 188. Show that the derivation Γ k is determined by Γ up to renaming
of variables.

Exercise 189. Prove Proposition 5.39.

Exercise 190. Let Ak :
, 5!é i : i b k 6 , and let Wk :

, 5 ∏i k é n
i : n � ω 6 . Show

that Wk is a m–LCFRL iff k ç 2m.

Exercise 191. Determine the graph grammar γG � .

Exercise 192. Show the following. Let N
, 5 xi : i b k 6�sÙ5 yi : i b k 6 and b

a linear ordering on N with xi b x j as well as yi b y j for all i b j b k. Then
if mi j

,
1 iff xi b y j then M

, 7 mi j 8 i j is a k–scheme. Conversely: let M be
a k–scheme and b defined by (1) xi b x j iff i b j, (2) yi b y j iff i b j, (3)
xi b y j iff mi j

,
1. Then b is a linear ordering. The correspondence between

orderings and schemes is biunique.

Exercise 193. Show the following: If in a linear k–LMG all structure trees
are exhaustively ordered, the generated tree set is context free.

5. Adjunction Grammars

In this and the next section we shall concern ourselves with some alternative
types of grammars which are all (more or less) equivalent to head grammars.
These are the tree adjoining grammars (TAGs), CCGs (which are some re-
fined version of the adjunction grammars of Section 1.4 and the grammars
CCG 7 Q 8 of Section 3.4, respectively) and the so–called linear index gram-
mars.

Let us return to the concept of tree adjoining grammars. These are pairs
G
, �_º � N � A ��»]� , where º is the set of centre trees and » a set of adjunction

trees. In an adjunction tree a node is called central if it is above the distin-

Adjunction Grammars 415

guished leaf or identical to it.
It is advantageous to define a naming scheme for nodes in an adjunction

tree. Let ± , � T �ib T �
j T �_! T � be a centre tree. Then put N 7 T 8 :
,

T . If adjoin-
ing ­ , � A �ib A �
j A �_! A � at x to ± yields

r , � U �ib U �
j U �_! U � then

(5.117) N 7 r 8 :
, 7 N 7 T 8	v�5 x 618�sì5 x 9 ­ 9 v : v � A 6

Let H be the set of all nodes of centre or adjunction trees. Then N 7l± 8 }
H ÂZ7Á­xÂ H 8 ¡ . Furthermore, as is inductively verified, N 7l± 8 is prefix free. Thus,
as x gets replaced by strings of which x is a suffix, no name that is added
equals any name in N 7 r 8 . So, the naming scheme is unique. Moreover, it
turns out that the structure of ± is uniquely determined by N 7l±�8 . The map
that identifies x � T with its name is called ν . Put N :

,
N 7l±�8 and

(5.118) ú 7l±�8 :
, � N �ib N �
j N �_! N �

If Eσ , Eγ 9 ­ 9 j, let ! N 7 Eσ 8 :
,

X for the unique X which is the label of the node
j in ­ . Second, put Eσ j N Eτ if Eσ , Eγ 9 j 9+­]9 Eη and Eτ , Eγ 9 j k 9�­]9 Eθ for certainEγ , Eη , Eθ , ­ and j �, j k such that j j j k . Third, Eσ b Eτ if Eσ , Eγ 9 j 9 ­ 9 Eη andEτ , Eγ 9 j k 9 ­ 9 Eθ for certain Eγ , Eη , Eθ , ­ and j �, j k , such that (a) j b j k , (b) j k
and every node of Eθ is central in its corresponding adjunction tree.

Proposition 5.48 ν is an isomorphism from ± onto ú�7l± 8 .
Thus, we basically only need to define N 7l± 8 . It turns out that the sets N 7l±�8
are the sets of leaves of a CFG. For the sake of simplicity we assume that
the set of nodes of

·
is the set of numbers j 7 · 8 , 5 0 � 1 �=�=�=�O� j 7 · 8�v 1 6 .

j ¡ :
,

max 5 j 7 · 8 :
· �o» s³º;6 . The terminals are the numbers b j ¡ . The

nonterminals are pairs 7 i � · 8 where
·

is a tree and i b j ¡ . The start symbols
are 7 0 ��ë»8 , ëË�³º . First, we shall define the grammar ¡ D 7 G 8 . The rules are of
this form. 7 j �ã­�8+� X0 X1 Â=Â=Â X j ¯ ® ° © 1(5.119)

where (5.119) is to be seen as rule a scheme: for every ­ and every admissible
j we may choose whether Xi is i or 7 i � · i 8 (i b j 7Á­�8) for some tree

·
i which

can be adjoined at i in ­ . This grammar ¡ we denote by D 7 G 8 and call it the
derivation grammar. A derivation for G is simply a tree generated by D 7 G 8 .
The following is clear: trees from D 7 G 8 are in one–to–one correspondence
with their sets of leaves, which in turn define tree of the adjunction grammar.

416 PTIME Languages

It should be said that the correspondence is not always biunique. (This is so
since any given tree may have different derivations, and these get matched
with nonisomorphic trees in D 7 G 8 . However, each derivation tree maps to
exactly one tree of G modulo isomorphism.)

TAGs differ from the unregulated tree adjunction grammars in that they
allow to specify

À whether adjunction at a certain node is licit,

Á which trees may be adjoined at which node, and

Â whether adjunction is obligatory at certain nodes.

We shall show that À increases the generative power but Á and Â do not in
presence of À. To establish control over derivations, we shall have to change
our definitions a little bit. We begin with À. To control for the possiblity
of adjunction, we assume that the category symbols are now of the form a,
a � A, or X and X È respectively, where X � N. Centre and adjunction trees
are defined as before. Adjunction is also defined as before. There is a leaf i
which has the same label as the root (all other leaves carry terminal labels).
However, no adjunction is licit at nodes with label X È . Notice that root and
distinguished leaf must carry the same nonterminal, it is not admitted that one
carries X while the other has X È . Even if we admitted that, this would not in-
crease the generative capacity. Using such grammars one can generate the
language 5 0 n í n F n î n : n � ω 6 . Figure 15 shows such a grammar. The centre
tree is shown to the left, the adjunction tree to the right. It is not hard to show
that one can generally reduce such grammars to those where both the root
and the leaf carry labels of the form X È . Namely, if the root does not carry an
adjunction prohibition, but, say, a label X � N, then add a new root which has
label X È , and similarly for the distinguished leaf. Also, notice that adjunc-
tion prohibition for interior nodes of adjunction trees can be implemented by
changing their label to a newly added nonterminal. Trivially, no tree can be
adjoined there.

Definition 5.49 A standard tree adjoining grammar (or simply a TAG) is
an adjunction grammar in which the adjunction trees carry an adjunction
prohibition at the root and the distinguished leaf.

Now let us turn to Á and Â. It is possible to specify in standard TAGs whether
adjunction is obligatory and which trees may be adjoined. So, we also have

Adjunction Grammars 417

ε
!!
}

ññññ ò ò òò

ññññ ò ò òò
!!
!!
!

!
!

!
!

} È

} È

í
0

F
î

s }s
Figure 15. A Tree Adjoining Grammar for ��õ n ö n É n Ê n : n � ω �
a function f which maps all nodes with nonterminal labels to sets of adjunc-
tion trees. (If for some i f 7 i 8 , w then that node effectively has an adjunction
prohibition.) We can simulate this as follows. Let » be the set of adjunction
trees. We think of the nonterminals as labels of the form � X �È± � and � X �È±��CÈ ,
respectively, where X � N and ±Å�­» . A (centre or adjunction) tree ± is re-
placed by all trees ±;k on the same set of nodes, where i carries the label � X � r �
if i had label X in ± if

r � f 7 i 8 , and � X � r � È if i has the label X È in ± . How-
ever, if i is the root, it will only get the label � i �È± �ËÈ . The second element says
nothing but which tree is going to be adjoined next. This eliminates the sec-
ond point from the list, as we can reduce the grammars by keeping the tree
structure.

Now let us turn to the last point, the obligation for adjunction. We can
implement this by introducing labels of the form X ¤ . (Since obligation and
prohibition to adjoin are exclusive, ! occurs only when Ì does not.) A tree is
complete only if there are no nodes with label X ¤ for any X . Now we shall
show that for every adjunction grammar of this kind there exists a grammar
generating the same set of trees where there is no obligation for adjunction.
We adjoin to a centre tree as often as necessary to eliminate the obligation.
The same we do for adjunction trees. The resulting trees shall be our new
centre and adjunction trees. Obviously, such trees exist (otherwise we may
choose the set of centre trees to be empty). Now we have to show that there

418 PTIME Languages

exists a finite set of minimal trees. Look at a tree without adjunction obliga-
tion and take a node. This node has a history. It has been obtained by succes-
sive adjunction. If this sequence contains an adjunction tree twice, we may
cut the cycle. (The details of this operation are left to the reader.) This gram-
mar still generates the same trees. So, we may remain with the standard form
of TAGs.

Now we shall first prove that adjunction grammars cannot generate more
languages as linear 2–LMGs. From this it immediately follows that they can
be parsed in polynomial time. The following is from (1986), who inciden-
tally show the converse of that theorem as well: head grammars are weakly
equivalent to TAGs.

Theorem 5.50 (Vijay–Shanker & Weir & Joshi) For every TAG G there ex-
ists a head grammar K such that L 7 K 8 , L 7 G 8 .
Proof. Let G be given. We assume that the trees have pairwise disjoint sets of
nodes. We may also assume that the trees are at most binary branching. (We
only need to show weak equivalence.) Furthermore, we can assume that the
nodes are strictly branching if not preterminal. The set of all nodes is denoted
by M. The alphabet of nonterminals is N k : , 5 ia : i � M 6�sì5 in : i � M 6 . The
start symbol is the set of all ia and in where i is the root of a centre tree. By
massaging the grammar somewhat one can achieve that the grammar contains
only one start symbol. Now we shall define the rules. For a local tree we put

(5.120) i 7 a � ε 8m£ �
if i is a leaf with terminal symbol a. If i is a distinguished leaf of an adjunction
tree we also take the rule

(5.121) in 7 ε � ε 8:£ �
Now let i � j k be a branching local tree. Then we add the following rules.

(5.122) ia 7 x0x1 � y0y1 8¢£ jn 7 x0 � x1 8P� kn 7 y0 � y1 8P�
Further, if i is a node to which a tree with root j can be adjoined, then also
this is a rule.

(5.123) in 7 x0y0 � y1x1 8¢£ jn 7 x0 � x1 8 ia 7 y0 � y1 8P�

Adjunction Grammars 419

If adjunction is not necessary or prohibited at i, then finally the following rule
is added.

(5.124) in 7 x0 � x1 8:£ ia 7 x0 � x1 8P�
This ends the definition of K. In view of the rules (5.122) it is not entirely
clear that we are dealing with a head grammar. So, replace the rules (5.122)
by the following rules:

ia 7 x0 � x1y0y1 8¢£ jn ¤ 7 x0 � x1 8P� kn ¤ 7 y0 � y1 8P�(5.125)

jn ¤ 7 x0x1y0 � y1 8¢£ jn 7 x0 � x1 8P��1»7 y0 � y1 8P�(5.126)

kn ¤ 7 x0 � x1y0y1 8¢£¼1�7 x0 � x1 8P� kn 7 y0 � y1 8P�(5.127) 1�7 ε � ε 8:£ �(5.128)

These are rules of a head grammar; (5.122) can be derived from them. For
this reason we remain with the rules (5.122).

It remains to show that L 7 K 8 , L 7 G 8 . First the inclusion L 7 G 8�} L 7 K 8 .
We show the following. Let ± be a local tree which contains exactly one dis-
tinguished leaf and nonterminal leaves xi, i b n, with labels ki. Let therefore
j b i be distinguished. We associate with ± a vector polynomial ¼ 7l±�8 which
returns

(5.129) � ∏
i j
Eyi Ezi � ∏

j i n
Eyi Ezi �

for given pairs of strings ��Eyi �lEzi � . It is possible to show by induction over ±
that there is a K–derivation

(5.130) in 7 ¼ 7l±�8�7=�=��Eyi �lEzi � : i b n �=8=8m£ ¡ kn
0 7=��Ey0 �ÁEz0 �=8P��=�=�i� kn

n © 1 7=�ÈEyn © 1 �lEzn © 1 �=8P�
If no leaf is distinguished in ± the value of p 7l± 8 is exactly

(5.131) ��Ey0 Ez0 � ∏
0 i n

Eyi Ezi �
This claim can be proved inductively over the derivation of ± in G. From this
it follows immediately that Ex � L 7 K 8 if Ex � L 7 G 8 . For the converse inclusion
one has to choose a different proof. Let Ex � L 7 K 8 . We choose a K–derivation
of Ex. Assume that no rule of type (5.123) has been used. Then Ex is the string of

420 PTIME Languages

a centre tree as is easily seen. Now we assume that the claim has been shown
for derivations with fewer than n applications of (5.123) and that the proof
has exactly n applications. We look at the last application. This is followed
only by applications of (5.122), (5.120) and (5.121). These commute if they
belong to different subtrees. We can therefore rearrange the order such that
our application of (5.123) is followed exactly by those applications of (5.122),
(5.120) and (5.121) which belong to that subtree. They derive

(5.132) ia 7ÈEx0 �$Ex1 8P�
where i is the left hand side of the application of (5.123), and �ÈEx0 �$Ex1 � is the
pair of the adjunction tree whose root is i. (Ex0 is to the left of the distinguished
leaf, Ex1 to the right.) Before that we have the application of our rule (5.123):

(5.133) ja 7�Ex0 Ey0 ��Ey1 Ex1 8¢£ ia 7�Ex0 �$Ex1 8P� jn 7�Ey0 ��Ey1 8P�
Now we eliminate this part of the derivation. This means that in place of
ja 7�Ex0 Ey0 ��Ey1 Ex1 8 we only have jn 7�Ey0 ��Ey1 8 . This however is derivable (we already
have the derivation). But on the side of the adjunction this corresponds exactly
to the disembedding of the corresponding adjunction tree. <

The converse also holds. However, the head grammars do not exhaust the
2–LMGs. For example look at the following grammar G.} 7 y0x0y1 � x1 8:£ s 7 x0 � x1 8P�] 7 y0 � y1 8P�s 7 x0 ��F x1 î�8:£Í¦�7 x0 � y1 8P�¦�7 0 x0 í�� x1 8:£ } 7 x0 � x1 8P�} 7 0 í���F�î�8:£ �(5.134)] 7 " x0

% � x1 8:£ß�»7 x0 � x1 8P��»7 x0 ��< x1
T 8:£] 7 x0 � x1 8P�] 7 ε � ε 8:£ �

To analyze the generated language we remark the following facts.

Lemma 5.51] 7ÈEx ��Ey 8 iff �ÈEx ��Ey � , � " n % n ��< n T n � for some n � ω .

As a proof one may reflect that first of all ~ G
] 7 ε � ε 8 and secondly

(5.135) ~ G
] 7 " x0

% ��< x1
T 8 iff ~ G

] 7 x0 � x1 8
From this the following characterization can be derived.

Adjunction Grammars 421

Lemma 5.52 Let Exn :
,k" n % n and Eyn :

, < n T n. Then

(5.136) L 7 G 8 , 5 0 Exn0

0 Exn1

0 Â=Â=Â$Exnk Ü 1

0 í	Eynk Ü 1
í Â=Â=Âãí	Eyn1

í	Eyn0
í�F k î k :

k � ω � ni � ω for all i b k 6
In particular, for every Ex � L 7 G 8
(5.137) µ 7ÈEx 8 , m 7 0 gÝí gÃF+g�î�8�g n 7 " g % g <;g T 8
for certain natural numbers m and n.

For example0�0 í�í�F�F�î(î ,
0�">%�0 í�< T í.F�F4î�î ,

0'"�"&%(%�0'"&%�0 í�í�< T í�<�< T�T í�F�F(F�î�î(î , �=�=�
are in L 7 G 8 but not0�">%�0 í(í.F4î ,

0'"�">%�%�0'"&%	0 í�< T í�<�< T%T í�F�F�î(î
Now for the promised proof that there is no TAG which can generate this
language.

Lemma 5.53 Let H be a TAG with L 7 H 8 , L 7 G 8 and
·

a centre or adjunc-
tion tree. Then

(5.138) µ 7 · 8 , m Ç 7 0 gÝí�gÃFYg�î�8�g n Ç 7 " g % g <;g T 8
for certain natural numbers m Ç and n Ç .

We put ρ Ç :
,

n Ç ¾ m Ç . (This is ∞, if m
,

0.) Certainly, there exists the mini-
mum of all ρ Ç for all adjunction trees. It is easy to show that it must be 0. So
there exists an adjunction tree which consists only of

"
,
%

, < and
T

, in equal
number. Further there exists an adjunction tree which contains

0
.

Let Ex be a string from L 7 G 8 such that

(5.139) µ 7ÈEx 8 , m 7 0 gÝí gÃF+g�î�8�g n 7 " g % g <;g T 8
for certain natural numbers m and n such that (a) m is larger than any m Ç ,
and (b) n ¾ m is smaller than any ρ Ç that is not equal to 0. It is to be noticed
that such a Ex exists. If m and n are chosen, the following string does the job.

(5.140)
0�" n % n 0 m © 1 í n © 1 < n T n í�F m î m

422 PTIME Languages

This string results from a centre tree by adjoining (a k) an ­ in which
0

occurs,
by adjoining (b k) a

·
in which

0
does not occur. Now we look at points in

which
·

has been inserted in (5.140). These can only be as follows.

(5.141)
0�" n ! % n 0 m © 1 í n © 1 < n ! T n í.F m î m

However, let us look where the adjunction tree ­ has been inserted.

(5.142)
0�" n % n 0 m © 1 :.í n © 1 < n T n í.F m :�î m

If we put this on top of each other, we get

(5.143)
0�" n ! % n 0 m © 1 :.í n © 1 < n T n !�í.F m :�î m

Now we have a contradiction. The points of adjunction may not cross! For the
subword between the two ! must be a constituent, likewise the part between
the two : . However, these constituents are not contained in each other. (In
order for this to become a real proof one has to reflect over the fact that the
constituent structure is not changed by adjunction. This is Exercise 194.)

So we have a 2–LMG which generates a language that cannot be generated
by a TAG. This grammar is 2–branching. In turn, 2–branching 2–LMGs are
weaker than full linear 2–LMGs. Some parts of the argumentation shall be
transferred to the exercises, since they are not of central concern.

Definition 5.54 A linear LMG is called n–branching if the polynomial base
consists of at most k–ary vector polynomials.

The reason for this definition is the following fact.

Proposition 5.55 Let L
,

L 7 G 8 for some n–branching, k–linear LMG G.
Then there exists a k–linear LMG H with L 7 H 8 , L in which every rule is
at most n–branching.

To this end one has to see that a rule with more than n daughters can be
replaced by a canonical sequence of rules with at most n daughters, if the
corresponding vector polynomial is generated by at most n–ary polynomials.
On the other hand it is not guaranteed that there is no n–branching grammar
if higher polynomials have been used. Additionally, it is possible to construct
languages such that essentially n g 1–ary polynomials have been used and
they cannot be reduced to at most n–ary polynomials. Define as beforeExn :

,U" n % n Eyn :
, < n T n(5.144)

Adjunction Grammars 423

The following polynomial is not generable using polynomials that are at most
ternary.

(5.145) ³&7=� w0 � w1 �P�Z� x0 � x1 �P�Z� y0 � y1 �P�Z� z0z1 �=8 :
, � w0x0y0z0 � y1w1z1x1 �

From this we can produce a proof that the following language cannot be gen-
erated by a 2–branching LMG.

(5.146) L
, 5XExn0

Exn1
Exn2
Exn3
Eyn2
Eyn0
Eyn3
Eyn1

: n0 � n1 � n2 � n3 � ω 6
We close this section with a few remarks on the semantics. Adjunction is

an operation that takes complete trees as input and returns a complete tree.
This concept is not easily coupled with a semantics that assembles the mean-
ings of sentences from their parts. It is — at least in Montague semantics —
impossible to recover the meaning components of a sentence after comple-
tion, which would be necessary for a compositional account. (Harris, 1979)
only gives a modest sketch of how adjunction is done in semantics. Princi-
pally, for this to work one needs a full record of which items are correlated
to which parts of meaning (which is assumed, for example, in many syntactic
theories, for example LFG and HPSG).

Exercise 194. Let
·

be a tree and ­ an adjunction tree. Let ë be the result
of adjoining ­ to x in

·
. We view

·
in a natural way as a subtree of ë with

x the lower node of ­ in ë . Show the following: the constituents of
·

are
exactly the intersection of constituents of ë with the set of nodes of

·
.

Exercise 195. Show that the language L :
, 5 0 n í n F n î n : n � ω 6 cannot be

generated by an unregulated TAG. Hint. Proceed as in the proof above. Take
a string which is large enough so that a tree has been adjoined and analyze
the places where it has been adjoined.

Exercise 196. Show that in the example above min 5 ρ Ç :
· �Æ» 6 , 0. Hint.

Compare the discussion in Section 2.7.

Exercise 197. Show the following: For every TAG G there is a TAG G

in
standard form such that G

and G have the same constituent structures. What

can you say about the labelling function?

Exercise 198. Prove Proposition 5.55.

424 PTIME Languages

6. Index Grammars

Index grammars broaden the concept of CFGs in a very special way. They
allow to use in addition of the nonterminals a sequence of indices; the manip-
ulation of the sequences is however very limited. Therefore, we may consider
these grammars alternatively as grammars that contain rule schemata rather
than individual rules. Let as usual A be our alphabet, N the set of nontermi-
nals (disjoint with A). Now add a set I of indices, disjoint to both A and N.
Furthermore, Ç shall be a symbol that does not occur in A s N s I. An index
scheme σ has the form

(5.147) A 9 Eα � B0 9 Eβ0 Â=Â=Â Bn © 1 9 Eβn © 1

or alternatively the form

(5.148) A 9 Eα � a

where Eα � Eβi � I ¡ sì50Ç�6 for i b n, and a � A. The schemata of the second kind
are called terminal schemata. An instantiation of σ is a rule

(5.149) A 9 Ex Eα � B0 9 Ey0
Eβ0 Â=Â=Â Bn © 1 9 Eyn © 1

Eβn © 1

where the following holds.

À If Eα , Ç then Ex , ε and Eyi
,

ε for all i b n.

Á If Eα �, Ç then for all i b n: Eyi
,

ε or Eyi
, Ex.

Â For all i b n: if Eβi
, Ç then Eyi

,
ε .

For a terminal scheme the following condition holds: if Eα , Ç then Ex , ε .
An index scheme simply codes the set of all of its instantiations. So we may
also call it a rule scheme. If in a rule scheme σ we have Eα , Ç as well asEβi
, Ç for all i b n then we have the classical case of a context free rule.

We therefore call an index scheme context free if it has this form. We call
it linear if Eβi �, Ç for at most one i b n. Context free schemata are therefore
also linear but the converse need not hold. One uses the following suggestive
notation. A ¦X§ denotes an A with an arbitrary stack; on the other hand, A is
short for A Ç . Notice for example the following rule.

(5.150)
5 ¦ , §�� 6 ¦�§ 5 Õ�¦ , B�§

Index Grammars 425

This is another form for the scheme

(5.151)
5 , � 6 5 Ç�Õ , B

which in turn comprises all rules of the following form

(5.152)
5 Ex , � 6 Ex 5 Ç Õ�Ex , B

Definition 5.56 We call an index grammar a sextuple G
, � S � A � N � I �¯Ç	� R �

where A, N, and I are pairwise disjoint finite sets not containing Ç , S � N the
start symbol and R a finite set of index schemata over A, N, I and Ç . G is
called linear or a LIG if all its index schemata are linear.

The notion of a derivation can be formulated over strings as well as trees. (To
this end one needs A, N and I to be disjoint. Otherwise the category symbols
cannot be uniquely reconstructed from the strings.) The easiest is to picture
an index grammar as a grammar � S � N � A � R � , where in contrast to a context
free rule set we have put an infinite set of rules which is specified by means of
schemata, which may allow infinitely many instantiations. This allows us to
transfer many notions to the new type of grammars. For example, it is easily
seen that for an index grammar there is a 2–standard form which generates
the same language.

The following is an example of an index grammar. Let A :
, 5 0 6 , N :

,5 } � s �Î¦.6 , I :
, 5 , ��B�6 , and

(5.153)

} ¦P§�� s ¦ôB>§ s ¦P§�� s ¦ , §s ¦ , §��w¦�¦O§ ¦�¦ , §��Í¦»¦O§Ï¦�¦P§¦�¦ôB�§�� 0
This defines the grammar G. We have L 7 G 8 , 5 0 2n

: n � ω 6 . As an example,
look at the following derivation.

(5.154)

� } � s B s B , �s B ,%, � s B ,%,�, � ¦�B ,%, �¦�B , ¦GB , � ¦�B , ¦GB�¦�B��Ð¦�B�¦�B�¦GB�¦GB��0 ¦GB�¦GB�¦�B�� 0(0 ¦�B�¦GB�� 0(0�0 ¦GB��0(0�0(0 �
Index grammars are therefore quite strong. Nevertheless, one can show that
they too can only generate PTIME–languages. (For index grammars one can

426 PTIME Languages

define a variant of the chart–algorithm This variant also needs only polyno-
mial time.) Of particular interest are the linear index grammars.

Now we turn to the equality between LIGs and TAGs. Let G be an LIG;
we shall construct a TAG which generates the same constituent structures.
We shall aim for roughly the same proof as with CFGs. The idea is again to
look for nodes x and y with identical label X Ex. This however can fail. For on
the one hand we can expect to find two nodes with identical label from N,
but they may have different index stack. It may happen that no such pair of
nodes exists. Therefore we shall introduce the first simplification. We only
allow rules of the following form.

X ¦ i §�� Y0 Â=Â=Â Yj © 1 Yj ¦P§ Yj � 1 Â=Â=Â Yn © 1(5.155a)

X ¦P§�� Y0 Â=Â=Â Yj © 1 Yj ¦ i § Yj � 1 Â=Â=Â Yn © 1(5.155b)

X � Y0 Â=Â=Â Yn © 1(5.155c)

X � a(5.155d)

In other words, we only admit rules that stack or unstack a single letter, or
which are context free. Such a grammar we shall call simple. It is clear that
we can turn G into simple form while keeping the same constituent structures.
Then we always have the following property. If x is a node with label X Ex and
if x immediately dominates the node x k with label Y Exi then there exists a node
y k&ç x k with label V Exi which immediately dominates a node with label W Ex. At
least the stacks are now identical, but we need not have Y

,
V . To get this we

must do a second step. We put N k : , N2 eì5 o � e � a 6 (but write � A � B � x in place
of � A � B � x �). The superscript keeps score of the fact whether at this point we
stack an index (a), we unstack a letter (e) or we do nothing (o). The index
alphabet is I k : , N2 e I. The rules above are now reformed as follows. (For
the sake of perspicuity we assume that n

,
3 and j

,
1.) For a rule of the

form (5.155b) we add all rules of the form

(5.156) � X � X k � a ��� Y0 � Y k0 � a Q o � Y1 � Y k1 � a Q o ¦ � X � X k � i ��§�� Y2 � Y k2 � a Q o
So we stack in addition to the index i also the information about the label
with which we have started. The superscript a is obligatory for � X � X k � ! From
the rules of the form (5.155a) we make rules of the following form.

(5.157) � X � X k � a Q o ¦ � W � Y k1 � i ��§�� � Y0 � Y k0 � a Q o �W � Y k1 � e � Y2 � Y k2 � a Q o
However, we shall also add these rules:

(5.158) � Y1 � Y k1 � e ��� Y k1 � Z � a Q o

Index Grammars 427

for all Y1 � Y k1 � Z � N. The rules of the form (5.155c) are replaced thus.

(5.159) � X � X k � o ��� Y0 � Y k0 � a Q o � Y1 � Y k1 � a Q o � Y2 � Y k2 � a Q o
Finally, the rules of the form (5.155d) are replaced by these rules.

(5.160) � X � X k � o � a

We call this grammar G � . We shall at first see why G and G � generate the
same constituent structures. To this end, let us be given a G � –derivation. We
then get a G–derivation as follows. Every symbol of the form � X � X k � a Q e Q o is
replaced by X , every stack symbol � X � X k � i � by i. Subsequently, the rules of
type (5.158) are skipped. This yields a G–derivation, as is easily checked. It
gives the same constituent structure. Conversely, let a G–derivation be given
with associated ordered labelled tree

·
. Then going from bottom to top we

do the following. Suppose a rule of the form (5.155b) has been applied to
a node x and that i has been stacked. Then look for the highest node y b x
where the index i has been unstacked. Let y have the label B, x the label A.
Then replace A by � A � B � a and the index i on all nodes up to y by � A � B � i � . In
between x and y we insert a node y ¡ with label � A � B � e. y ¡ has y as its only
daughter. y keeps at first the label B. If however no symbol has been stacked
at x then exchange the label A by � A � A k � o, where A k is arbitrary. If one is at
the bottom of the tree, one has a G � –tree. Again the constituent structures
have been kept, since only unary rules have been inserted.

Now the following holds. If at x the index � A � B � i � has been stacked then
x has the label � A � B � a and there is a node y below x at which this index is
again removed. It has the label � A � B � e. We say that y is associated to x. Now
define as in the case of CFLs centre trees as trees whose associated string is a
terminal string and in which no pair of associated nodes exist. It is easy to see
that in such trees no symbol is ever put on the stack. No node carries a stack
symbol and therefore there are only finitely many such trees. Now we define
the adjunction trees. These are trees in which the root has label � A � B � a exactly
one leaf has a nonterminal label and this is � A � B � e. Further, in the interior of
the tree no pair of associated nodes shall exist. Again it is clear that there are
only finitely many such trees. They form the basic set of our adjunction trees.
However, we do the following. The labels � X � X k � o we replace by � X � X k � , the
labels � X � X k � a and � X � X k � e by � X � X k ��È . (Root and associated node get an
adjunction prohibition.) Now the proof is as in the context free case.

428 PTIME Languages

Now let conversely a TAG G
, �_º � N � A ��»]� be given. We shall construct a

LIG which generates the same constituent structures. To this end we shall as-
sume that all trees from º and » are based on pairwise disjoint sets of nodes.
Let K be the union of all sets of nodes. This is our set of nonterminals. The set» is our set of indices. Now we formulate the rules. Let i � j0 j1 Â=Â=Â jn © 1
be a local subtree of a tree.
(A) i is not central. Then add

(5.161) i � j0 j1 Â=Â=Â jn © 1

(B) Let i be root of ± and jk central (and therefore not a distinguished leaf).
Then add

(5.162) i ¦�§�� j0 jk © 1 jk ¦ ±3§ jk � 1 Â=Â=Â jn © 1

(C) Let jk be a distinguished leaf of ± . Then add

(5.163) i ¦ ±y§�� j0 jk © 1 jk ¦O§ jk � 1 Â=Â=Â jn © 1

(D) Let i be central in ± , but not a root and jk central but not a distinguished
leaf. Then let

(5.164) i ¦�§�� j0 Â=Â=Â jk © 1 jk ¦P§ jk � 1 Â=Â=Â jn © 1

be a rule. Nothing else shall be a rule. This defines the grammar GI . (This
grammar may have start trees over distinct start symbols. This can be reme-
died.) Now we claim that this grammar generates the same constituent struc-
tures over A. This is done by induction over the length of the derivation. Let± be a centre tree, say ± , � B �ibØ�
jØ�_!ï� . Then let ± I :

, � B �ibØ�
jØ�_! I � , where! I 7 i 8 :
,

i if i is nonterminal and ! I 7 i 8 :
, !�7 i 8 otherwise. One establishes eas-

ily that this tree is derivable. Now let ± , � B �ibØ�
jØ�_!ï� and ± I , � B �ibØ�
jØ�_! I �
already be constructed; let

r , � C �ib]k��
j kl�_!�k � result from ± by adjoining a
tree

·
to a node x. By making x into the root of an adjoined tree we get

B } C, b�k�t B2 , b , j k�t B2 , j and !�ky£ B , ! . Now
r I , � C �ib�k��
j kl�_!�k I � .

Further, there is an isomorphism between the adjunction tree
·

and the local
subtree induced on C s�5 x 6 . Let π : C s�5 x 6¬� B be this isomorphism. Put!�k I 7 y 8 :

, ! I 7 y 8 if y � B v C. Put !�k I 7 y 8 :
,

π 7 y 8 if π 7 y 8 is not central; and put! k I 7 y 8 :
, ! k I 7 x 8 :

, ! I 7 x 8 if y is a distinguished leaf. Finally, assume ! I 7 x 8 , X Ex,
where X is a nonterminal symbol and Ex � I ¡ . If y is central but not root or leaf
then put

(5.165) ! k I 7 y 8 :
,

π 7 y 8�Ex ·

Index Grammars 429

Now it is easily checked that the so–defined tree is derivable in GI . We have to
show likewise that if

r
is derivable in GI there exists a tree

r A with 7 r A 8 I Ê, r
which is derivable in G. To this end we use the method of disembedding. One
looks for nodes x and y such that they have the same stack, x � y, there is
no element between the two that has the same stack. Further, there shall be
no such pair in

d
x vÃ7 d y sÙ5 x 618 . It is easily seen that this tree is isomorphic

to an adjunction tree. We disembed this tree and gets a tree which is strictly
smaller. (Of course, the existence of such a tree must still be shown. This is
done as in the context free case. Choose x of minimal height such that such
there exists a y b x with identical stack. Subsequently, choose y maximal with
this property. In

d
x vÄ7 d y s 5 x 618 there can then be no pair x k , y k of nodes with

identical stack such that y k b x k . Otherwise, x would not be minimal.) We
summarize.

Theorem 5.57 A set of constituent structures is generated by a linear index
grammar iff it is generated by a TAG.

We also say that these types of grammars are equivalent in constituent analy-
sis.

A rule is called right linear if the index is only passed on to the right hand
daughter. So, the right hand rule is right linear, the left hand rule is not:

(5.166)
5 ¦P§�� 6 Õ�¦ , § 6 � 5 ¦P§�� 6 Õ 6 ¦ , §

An index grammar is called right linear if all of its rules are right lin-
ear. Hence it is automatically linear. The following is from (Michaelis and
Wartena, 1997; Michaelis and Wartena, 1999).

Theorem 5.58 (Michaelis & Wartena) A language is generated by a right
linear index grammar iff it is context free.

Proof. Let G be right linear, X � N. Define HX as follows. The alphabet of
nonterminals has the form T :

, 5 X � : X � N 6 . The alphabet of terminals is
the one of G, likewise the alphabet of indices. The start symbol is X . Now for
every rule

(5.167) A ¦P§�� B0 Â=Â=Â Bn © 1 Bn ¦ i §
we add the rule

(5.168) A � ¦O§�� A B � ¦ i §

430 PTIME Languages

This grammar is right regular and generates a CFL (see the exercises). So
there exists a CFG LX :

, � SL
X � NL

X � N � RL
X � which generates L 7 HX 8 . (Here N is

the alphabet of nonterminals of G but the terminal alphabet of LX .) We as-
sume that NX

L is disjoint to our previous alphabets. We put N k : , � NL
X s N as

well as R k : , � RL
X s R s R © where R is the set of context free rules of G and

R © the set of rules A ¦P§�� B0 Â=Â=Â Bn © 1 such that A ¦P§�� B0 Â=Â=Â Bn © 1 Bn ¦ i §�� R.
Finally, let G k : , � SL � N k � A � R k � . G k is certainly context free. It remains to show
that L 7 G k 8 , L 7 G 8 . To this end let Ex � L 7 G 8 . There exists a tree

·
with associ-

ated string Ex which is derived from G. By induction over the height of this tree
one shows that Ex � L 7 G k 8 . The inductive hypothesis is this: For every G–tree·

with associated string Ex there exists a G k –tree
· k with associated string Ex;

and if the root of
·

carries the label X Ex then the root of
· k carries the label

X. If
·

contains no stack symbols, this claim is certainly true. Simply take· k : ,µ· . Further, the claim is easy to see if the root has been expanded with
a context free rule. Now let this not be the case; let the tree have a root with
label U . Let P be the set of right hand nodes of

·
. For every x � P let B 7 x 8 be

that tree which contains all nodes which are below x but not below any y � P
with y b x. It is easy to show that these sets form a partition of

·
. Let u a x,

u �� P. By induction hypothesis, the tree dominated by u can be restructured
into a tree ± u which has the same associated string and the same root label
and which is generated by G k . The local tree of x in B 7 x 8 is therefore an in-
stance of a rule of R © . We denote the tree obtained from x in such a way by· kx.

· kx is a G k –tree. Furthermore: if y b x, y � P, and if u b x then u j y.
Therefore we have that P

, 5 xi : i b n 6 is an enumeration with xi � xi � 1 for
all i b n v 1. Let Ai be the root label of xi in

· kxi
. The string ∏i n Ai is a string

of HU . Therefore it is generated by LU . Hence it is also generated by G k . So,
there exists a tree ë associated to this string. Let the leaves of this tree be
exactly the xi and let xi have the label Ai. Then we insert

· kxi
at the place of

xi for all i b n. This defines
�

.
�

is a G k –tree with associated string Ex. The
converse inclusion is left to the reader. <

We have already introduced Combinatory Categorial Grammars (CCGs)
in Section 3.4. The concept of these grammars was very general. In the lit-
erature, the term CCG is usually fixed — following Mark Steedman — to a
particular variant where only those combinators may be added that perform
function application and generalized function composition. In order to har-
monize the notation, we revise it as follows.

(5.169) α Ñ � β replaces α v β � α Ñ � β replaces β è α

Index Grammars 431

We take pi as a variable for elements from 50��� u 6 . A category is a well formed
string over 5 B �XIj�iJ(�!Ñ � �!Ñ � 6 . We agree on obligatory left associative bracket-
ing. That means that the brackets that we do not need to write assuming left
associativity actually are not present in the string. Hence é½Ñ � ê Ñ � ë is a cate-
gory, as is é½Ñ � T ê Ñ � ë�W . However, T�T�é½Ñ � ê W�Ñ � ë�W and T�éÒÑ � T ê Ñ � ë�W(W are not. A
block is a sequence of the form Ñ � a or Ñ � a, a basic, or of the form Ñ � T β W orÑ � T β W , where β is a complex category symbol. (Often we ignore the details
of the enclosing brackets.) A p–category is a sequence of blocks, seen as a
string. With this a category is simply a string of the form α 9 ∆ where ∆ is
a p–category. If ∆ and ∆ k are p–categories, so is ∆ 9 ∆ k . For a category α we
define by induction the head, α , K 7 α 8 , as follows.

À K 7 b 8 :
,

b.

Á K 7 α Ñ � β 8 :
,

K 7 α Ñ � β 8 :
,

K 7 α 8 .
Lemma 5.59 Every category α can be uniquely segmented as α

,
K 7 α 8 9 ∆

where ∆ is a p–category.

If we regard the sequence simply as a string we can use 9 as the concatenation
symbol of blocks as well as of sequences of blocks. We admit the following
operations. (If β is basic, omit the additional enclosing brackets.)

α Ñ � T β WY: 1 β :
,

α(5.170)

β : 2 α Ñ � T β W :
,

α(5.171)

α Ñ � T β W+: n
3 β 9 ∆n :

,
α 9 ∆n(5.172)

β 9 ∆n : n
4 α Ñ � T β W :

,
α 9 ∆n(5.173)

Here ∆n is a variable for p–categories consisting of n blocks. In addition it is
possible to restrict the choice of heads for α and β . This means that we define
operations : F é A é n

i in such a way that

(5.174) α : L é R é n
i β :

, ¿ α : n β if K 7 α 8@� L � K 7 β 8@� R,{
otherwise.

This means that we have to step back from our ideal to let the categories be
solely determined by the combinators.

432 PTIME Languages

Definition 5.60 A combinatory categorial grammar (or CCG) is a catego-
rial grammar which uses finitely many operations from

(5.175) 51: L é R
1 ��: L é R

2 : L � R } B 6�sì51: L é R é n
3 ��: L é R é n

4 : n � ω � L � R } B 6
Notice by the way that : 1

, : 0
3 and : 2

, : n
4. This simplifies the calculations.

Lemma 5.61 Let G be a CCG over A and M the set of categories which are
subcategories of some α � ζ 7 a 8 , a � A. Then the following holds. If Ex is a
string of category α in G then α

,
β 9 ∆ where α � M and ∆ is a p–category

over M.

The proof is by induction over the length of Ex and is left as an exercise.

Theorem 5.62 For every CCG G there exists a linear index grammar H
which generates the same trees.

Proof. Let G be given. In particular, G associates with every letter a � A a
finite set ζ 7 a 8 of categories. We consider the set M of subterms of categories
from �«� ζ 7 a 8 : a � A � . This is a finite set. We put N :

,
M and I :

,
M. By

Lemma 5.61, categories can be written as pairs α ¦∆ § where α � N and ∆ is
a p–category over I. Further, there exist finitely many operations which we
write as rules. Let for example : L é R

1 be an operation. This means that we have
rules of the form

α � α Ñ � a a(5.176a)

α � α Ñ � T β W β(5.176b)

where K 7 β 8 � L and K 7 α 8�� R, and β not basic. We write this into linear
index rules. Notice that in any case β � M because of Lemma 5.61. Further-
more, we must have α � M � . So we write down all the rules of the form

(5.177) α � δ ¦∆ § β

where δ ¦∆ § , α Ñ � β for certain α � ∆ � M ¡ and δ � β � M. We can group these
into finitely many rule schemata. Simply fix β where K 7 β 8Y� R. Let Ó be the
set of all sequences � γi : i b p �@� M ¡ whose concatenation is Ñ � β . Ó is finite.
Now put for (5.177) all rules of the form

(5.178) α k ¦ §�� α k ¦∆ § β

Index Grammars 433

where α k�� M is arbitrary with K 7 α 8@� L and ∆ �EÓ . Now one can see easily
that every instance of (5.177) is an instance of (5.178) and conversely.

Analogously for the rules of the following form.

(5.179) α � β α Ñ � β
In a similar way we obtain from the operations : L é R é n

3 rules of the form

(5.180) α 9 ∆n � α Ñ � β β 9 ∆n

where K 7 α 8�� L and K 7 β 8�� R. Now it turns out that, because of Lemma 5.61
∆n � Mn and β � M. Only α may again be arbitrarily large. Nevertheless we
have α � M � , because of Lemma 5.61. Therefore, (5.180) only corresponds
to finitely many index schemata. <

The converse does not hold: for the trees which are generated by an LIG
need not be 3–branching. However, the two grammar types are weakly equiv-
alent.

Notes on this section. There is a descriptive characterization of indexed
languages akin to the results of Chapter 6 which is presented in (Langholm,
2001). The idea there is to replace the index by a so–called contingency func-
tion, which is a function on the nodes of the constituent structure that codes
the adjunction history.

Exercise 199. Show the following claim. For every index grammar G there
is an index grammar H in 2–standard form such that L 7 G 8 , L 7 H 8 . If G is
linear (context free) H can be chosen linear (context free) as well.

Exercise 200. Prove the Lemma 5.61.

Exercise 201. Write an index grammar that generates the sentences of predi-
cate logic. (See Section 2.7 for a definition.)

Exercise 202. Let NB be the set of formulae of predicate logic with � and S in
which every quantifier binds at least one occurrence of a variable. Show that
there is no index grammar that generates NB. Hint. It is useful to concentrate
on formulae of the form QM, where Q is a sequence of quantifiers and M a
formula without quantifiers (but containing any number of conjuncts). Show
that in order to generate these formulae from NB, a branching rule is needed.
Essentially, looking top down, the index stack has to memorize which vari-
ables have been abstracted over, and the moment that there is a branching
rule, the stack is passed on to both daughters. However, it is not required that
the left and right branch contain the same variables.

434 PTIME Languages

7. Compositionality and Constituent Structure

In this section we return to the discussion of compositionality, which we
started in Chapter 3. Our concern is how constituent structure and compo-
sitionality constrain each other. In good cases this shows that the semantics
of a language does not allow a certain syntactic analysis. This will allow to
give substance to the distinction between weak and strong generative capacity
of grammar types.

Recall once again Leibniz’ Principle. It is defined on the basis of con-
stituent substitution and truth equivalence. However, constituent substitution
is highly problematic in itself, for it hardly ever is string substitution. If we
do string substitution of

: 0
)#"
by
4 C�C î in (5.181), we get (5.182) and not the

correct (5.183).}�, B�C ' ,�) : 0�)�"�D>#�" / 04' /�04%�2PO(5.181) ¡ }�, B�C ' ,�)\4 C�C î D&#Ù" / 01' /
01%�2RO(5.182) }�, B�C ' ,�) í D�"�"�D>#�" / 04' /�04%�2PO(5.183)

Notice that substitution in λ–calculus and predicate logic also is not string
substitution but something more complex. (This is true even when variables
are considered simple entities.) What makes matters even more difficult in
natural languages is the fact that there seems to be no uniform algorithm to
perform such substitution. Another, related problem is that of determining
occurrences. For example, does F 0�"�D&# occur as a subexpression in the wordF 0'"�D&#�&-,>2�2�0�# , í D&#�# × as a subexpression of F #�04' í D&#(# × ? What about

@V, F @
in
@V, F @X" / D í % F @
D�" ? Worse still, does

"
0 F @ occur as a subexpression of)�"�0 F @ ,
× D

as a subexpression of
#G, F D ? Obviously, no one would say that"
0 F @ occurs in

)�"
0 F @ , and that by Leibniz’ Principle its meaning is distinct
from

'
D�D î 2(D since there is no word
)½'	D�D î 2&D . Such an argument is absurd.

Likewise, in the formula I & G�� & G�H(J , the variable
&

does not occur, even
though the string

&
is a substring of the formula as a string.

To be able to make progress on these questions we have to resort to the
distinction between language and grammar. As the reader will see in the ex-
ercises, there is a tight connection between the choice of constituents and the
meanings these constituents can have. If we fix the possible constituents and
their meanings this eliminates some but not all choices. However it does set-
tle the question of identity in meaning and can then lead to a detection of
subconstituents. For if two given expressions have the same meaning we can

Compositionality and Constituent Structure 435

conclude that they can be substituted for each other without change in the
truth value in any given sentence on condition that they also have the same
category. (Just an aside: sometimes substitution can be blocked by the ex-
ponents so that substitution is impossible even when the meanings and the
category are the same. These facts are however generally ignored. See be-
low for further remarks.) So, Leibniz’ Principle does tell us something about
which substitutions are legitimate, and which occurrences of substrings are
actually occurrences of a given expression. If

)½'	D�D î 2&D does not exist we can
safely conclude that

"�0 F @ has no proper occurrence in
)#"
0 F @ if substitution

is simply string substitution. Moreover, Leibniz’ Principle also says that if
two expressions are intersubstitutable everywhere without changing the truth
value, then they have the same meaning.

Definition 5.63 Let � be a structure term with a single free variable, x, and� a structure term unfolding to τ . If ¦ � ¾ x §6� unfolds to σ we say that the sign
τ occurs in σ under the analyses � and � . Suppose now that �	k is a structure
term unfolding to τ k , and that ¦ ��k ¾ x §6� is definite and unfolds to σ k . Then we
say that σ k results from σ by replacing the occurrence of τ by τ k under the
analyses � , � and ��k .
This definition is complicated since a given sign may have different struc-
ture terms, and before we can define the substitution operation on a sign we
must fix a structure term for it. This is particularly apparent when we want
to define simultaneous substitution. Now, in ordinary parlance one does not
usually mention the structure term. And substitution is typically defined not
on signs but on exponents (which are called expressions). This, however, is
dangerous and the reason for much confusion. For example, we have proved
in Section 3.1 that almost every recursively enumerable sign system has a
compositional grammar. The proof used rather tricky functions on the expo-
nents. Consequently, there is no guarantee that if Ey is the exponent of τ andEx the exponent of σ there is anything in Ex that resembles Ey. Contrast this
with CFGs, where a subexpression is actually also a substring. To see the
dangers of this we discuss the theory of compositionality of (Hodges, 2001).
Hodges discusses in passim the following principle, which he attributes to
Tarski (from (Tarski, 1983)). The original formulation in (2001) was flawed.
The correct version according to Hodges (p.c.) is this.

Tarski’s Principle. If there is a µ–meaningful structure term Ô Õ!) x ÖØ× unequal
to × and Ô Õ3Ù:) x ÖÚ× also is a µ–meaningful structure term with Ô Õ&Ù:) x ÖÚ×±Û µ Ô ÕS) x ÖØ×
then Õ6Û µ Õ3Ù .

436 PTIME Languages

Notice that the typed λ–calculus satisfies this condition. Hodges dismisses
Tarski’s Principle on the following grounds.s / D í D�0�)�"Ñ0'"�DÙ" / D B D�0�"�O(5.184) s / D í D�0�)�" î D < C %�#�D î " / D B D�0�"�O(5.185) s / D í D�0�)�"Ñ0'"�D�O(5.186) ¡ s / D í D�0
)#" î D < C %�#�D î O(5.187)

Substituting
" / D í D�0
)�"ÿ0�"�D by

" / D í D�0
)#" î D < C %�#�D î in (5.184) yields a
meaningful sentence, but it does not with (5.186). (As an aside: we consider
the appearance of the upper case letter as well as the period as the result
of adding a sign that turns the proposition into an assertion. Hence the sub-
stitution is performed on the string beginning with a lower case

"
.) Thus,

substitutability in one sentence does not imply substitutability in another, so
the argument goes. The problem with this argument is that it assumes that
we can substitute

" / D í D�0
)#" 0�"�D for
" / D í D�0�)�" î D < C %�#�D î . Moreover, it

assumes that this is the effect of replacing a structure term � by � k in some
structure term for (5.184). Thirdly, it assumes that if we perform the same
substitution in a structure term for (5.186) we get (5.187). Unfortunately,
none of these assumptions is justified. (The pathological examples of Sec-
tion 3.1 should suffice to destroy this illusion.) What we need is a strength-
ening of the conditions concerning admissible operations on exponents. In
the example sentence, the substituted strings are actually nonconstituents, so
even under standard assumptions they do not constitute counterexamples. We
can try a different substitution, for example replacing

" / D B D�0�" by ε . This is
a constituent substitution under the ordinary analysis. But this does not save
the argument, for we do not know which grammar underlies the examples.
It is not clear that Tarski’s Principle is a good principle. But the argument
against it is fallacious.

Obviously, what is needed is a restriction on the syntactic operations. In
this book, we basically present two approaches. One is based on polynomials
(noncombinatorial LMGs), the other on λ–terms for strings. In both cases the
idea is that the functions should not destroy any material (ideally, each rule
should add something). In this way the notion of composition does justice
to the original meaning of the word. (Compositionality derives from LatinKjd��«p>d4h�^ ÉP^�Üd ‘the putting together’.) Thus, every derived string is the result of
applying some polynomial applied to certain vectors, and this polynomial
determines the structure as well as — indirectly — the meaning and the cate-

Compositionality and Constituent Structure 437

gory. Both approaches have a few abstract features in common. For example,
that the application of a rule is progressive with respect to some progress
measurse. (For LMGs this measure is the combined length of the parts of the
string vector.)

Definition 5.64 A progress measure is a function µ : E � ω . A function
f : En � E is progressive with respect to µ if

(5.188) µ 7 f 7�Ee 8=8Y� max 5 µ 7 ei 8 : i b n 6
f is strictly progressive if

(5.189) µ 7 f 7�Ee 8=8Y� ∑
i n

µ 7 ei 8
A sign grammar is (strictly) progressive with respect to µ if for all modes f ,
f ε is (strictly) progressive.

For example, a CFG is progressive with respect to length if it has no unary
rules, and no empty productions (and then it is also strictly progressive). Let
µ be a progress measure, ­ a progressive grammar generating Σ. Then a
given exponent e can be derived with a term that has depth at most µ 7 e 8 .
This means that its length is ç Ωµ ¯ e ° , where Ω :

,
max 5 Ω 7 f 8 : f � F 6 . The

number of such terms is ç��F � Ωµ � e �Ý , so it is doubly exponential in µ 7 e 8 ! If ­
is strictly progressive, the length of the structure term is ç µ 7 e 8 , so we have
at most �F � µ ¯ e ° many. Now, finally, suppose that the unfolding of a term is at
most exponential in its length, then we can compute for strictly progressive
grammars in time O 7 2cµ ¯ e ° 8 whether e is in π0 ¦ Σ § .
Theorem 5.65 Suppose that ­ is strictly progressive with respect to the pro-
gress measure µ . Assume that computing the unfolding of a term can be done
in time exponential in the length. Then for every e, ‘e � π0 ¦ Σ § ’ can be solved
in time O 7 cµ ¯ e ° 8 for some c � 0. If ­ is only progressive, ‘e � π0 ¦ Σ § ’ can be
solved in time O 7 ccµ � e � 8 for some c � 0.

Notice that this one half of the finite reversibility for grammars (see Defini-
tion 4.85). The other half requires a similar notion of progress in the seman-
tics. This would correspond to the idea that the more complex a sentence is
the more complex its meaning. (Unlike in classical logic, where for exampleT�Q`�@TPU4Q»W(W is simpler than Q .)

438 PTIME Languages

We still have not defined the notion of intersubstitutability that enters
Leibniz’ Principle. We shall give a definition based on a grammar. Recall
that for Leibniz’ Principle we need a category of sentences, and a notion of
truth. So, let ­ be a sign grammar and

}
a category. Put

(5.190) Sent ® é Þ :
, 5�� : � µ ,�} 6

This defines the set of sentential terms (see also Section 6.1). Let � be a struc-
ture term with a single occurrence of a free variable, say x. Then given � ,¦ � ¾ x §R� if definite is the result of putting � in place of x. Thus � ε � Pol1 7��+8 . We
define the context set of e as follows.

(5.191) Cont ® é Þ 7 e 8 :
, 5<� ε : for some � such that � ε , e :¦ � ¾ x §R�3� Sent ® é Þ 6

We shall spell this out for a CFG. In a CFG, Cont ® é Þ � Pol1 7Áù;7 A 8=8 . Moreover,
if x occurs only once, the polynomials we get are quite simple: they are of the
form p 7 x 8 , Eu 9 x 9yEv for certain strings Eu and Ev. Putting C :

, ��Eu ��Ev � , p 7�Ex 8 ,
C 7ÈEx 8 . Thus, the context set for Ex defined in (5.191) is the set of all C such that
C 7ÈEx 8 is a sentence, and C is a constituent occurrence of Ex in it. Thus, (5.191)
defines the substitution classes of the exponents. We shall also define what it
means to be syntactically indistinguishable in a sign system.

Definition 5.66 e and e k are syntactically indistinguishable — we write e ß Σ
e k — iff

À for all c � C and all m � M: if � e � c � m �+� Σ then there is an m k � M such
that � e kÁ� c � m k �Y� Σ and

Á for all c � C and all m k
� M: if � e kl� c � m k �;� Σ then there is an m � M
such that � e � c � m �@� Σ.

This criterion defines which syntactic objects should belong to the same sub-
stitution category. Obviously, we can also use Husserl’s criterion here. How-
ever, there is an intuition that certain sentences are semantically but not syn-
tactically well formed. Although the distinction between syntactic and se-
mantic well–formedness breaks the close connection between syntactic cat-
egories and context sets, it seems intuitively justified. Structural linguistics,
following Zellig Harris and others, typically defines categories in this way,
using context sets. We shall only assume here that categories may not distin-
guish syntactic objects finer than the context sets.

Compositionality and Constituent Structure 439

Definition 5.67 Let Σ be a system of signs. A sign grammar ­ that generates
Σ is natural with respect to

}
if Cont ® é Þ 7 e 8 , Cont ® é Þ 7 e k 8 implies e ß Σ e k .

A context free sign grammar is natural iff the underlying CFG is reduced.
Here is an example. Let

(5.192) Σ :
, 5(��é	��í�� 0 �P�Z� ê � % � 0 �P�Z�4ë
��¶
� 3 �P�Z��égë��4��� 5 �P�Z� ê ë��4��� 7 �Z6

Let ­ be the sign grammar based on the following rules.��� í�¶¶� % ¶ íØ�Wé(5.193) % � ê ¶×��ë
This corresponds to choosing five modes,

U R , U V , U � all unary, and
U ¡ ,

U ö both
binary. U R , � 0 � 5 � 0 �U V , ��í.� 6 � 0 �(5.194) U � , ��F���Õ	� 3 �
Further,

U γ¡ is a two place function defined only on � 5 ��Õ�� with result � ,
U µ¡ a

two place function defined only on � 0 � 3 � with value 5. Similarly,
U γö 7 5 ��Õ�8 , � ,

and is undefined elsewhere, and
U µö 7 0 � 3 8 , 7, and is undefined elsewhere.

Then the only definite structure terms are
U R , U V , U � , U ¡ U R U � , and

U ö U V U � .
Together they unfold to exactly Σ.

This grammar is, however, not natural. We have

(5.195) Cont ® é Þ 7�é(8 , Cont ® é Þ 7 ê 8 , 5(� ε �[ë>�Z6
However, é and ê do not have the same category.

Now look at the grammar
·

based on the following rules:���Wégë¬� % ¶ íØ�Wé(5.196) % � ê ¶×��ë
Here we compute that

(5.197) Cont Ç é Þ 7�é�8 , wÒ�, 5(� ε �[ë>�Z6 , Cont Ç é Þ 7 ê 8
Notice that in this grammar, é has no constituent occurrence in a sentence.
Only ê has. So,

0 F is treated as an idiom.

440 PTIME Languages

Definition 5.68 A vectorial system of signs is strictly compositional if there
is a natural sign grammar for Σ in which for every f � F the function f à is a
vector term which is stricly progressive with respect to the combined lengths
of the strings.

The definition of compositionality is approximately the one that is used in the
literature (modulo adaptation to systems of signs) while the notion of strict
compositionality is the one which we think is the genuine notion reflecting
the intuitions concerning compositionality.

A particularly well–known case of noncompositionality in the strict sense
is the analysis of quantification by Montague.2 C í C î × / 0�)Ï)�D(D�' /
01%�2PO(5.198) 2 CµB 01' / 0�)Ï)�D(D�' /
01%�2PO(5.199)

In the traditional, pre–Fregean understanding the subject of this sentence is' C í C î × and the remainder of the sentence is the predicate; further, the pred-
icate is predicated of the subject. Hence, it is said of nobody that he has
seen Paul. Now, who is this ‘nobody’? Russell, following Frege’s analysis
has claimed that the syntactic structure is deceptive: the subject of this sen-
tence is contrary to all expectations not the argument of its predicate. Many,
including Montague, have endorsed that view. For them, the subject denotes
a so–called generalized quantifier. Type theoretically the generalized quanti-
fier of a subject has the type e ��7 e � t 8 . This is a set of properties, in this
case the set of properties that are disjoint to the set of all humans. Now, / 0
))�D(D�' /
01%�2

denotes a property, and (5.199) is true iff this property is in the
set denoted by

' C / % B 01' , that is to say, if it is disjoint with the set of all
humans.

The development initiated by Montague has given rise to a rich literature.
Generalised quantifiers have been a big issue for semantics for quite some
time (see (Keenan and Westerståhl, 1997)). Similarly for the treatment of in-
tensionality that he proposed. Montague systematically assigned intensional
types as meanings, which allowed to treat world or situation dependencies.
The general ideas were laid out in the semiotic program and left room for
numerous alternatives. This is what we shall discuss here. However, first we
scrutinize Montague’s analysis of quantifiers. The problem that he chose to
deal with was the ambiguity of sentences that were unambiguous with respect

Compositionality and Constituent Structure 441

to the type assignment. Instructive examples are the following.} CXB D B 01'Ò2 C < D)ÉD < D># × T C1B 01'WO(5.200) A 01' ,�)?2 C(C @n,X'�4 : C #Ñ0�%('-, F C #>'WO(5.201)

Both sentences are ambiguous. (5.200) may say that there is a man such that
he loves all women. Or it may say that for every woman there is a man who
loves her. In the first reading the universal quantifier is in the scope of the
existential, in the second reading the existential quantifier is in the scope of
the universal quantifier. Likewise, (5.201) may mean two things. That there is
a real unicorn and Jan is looking for it, or Jan is looking for something that is
in his opinion a unicorn. Here we are dealing with scope relations between an
existential quantifier and a modal operator. We shall concentrate on example
(5.200). The problem with this sentence is that the universal quantifier

D < D># ×T CXB 04' may not take scope over
) C1B D B 04'Ò2 C < D
) . This is so since the latter

does not form a constituent. (Of course, we may allow it to be a constituent,
but then this option creates problems of its own. In particular, this does not fit
in with the tight connections between the categories and the typing regime.)
So, if we insist on our analysis there is only one reading: the universal quanti-
fier is in the scope of the existential. Montague solved the problem by making
natural language look more like predicate logic. He assumed an infinite set
of pronouns called / D n. These pronouns exist in inflected forms and in other
genders as well, so we also have / , B n, / D># n and so on. (We shall ignore gen-
der and case inflection at this point.) The other reading is created as follows.
We feed to the verb the pronoun / D R and get the constituent

2 C < D) / D R . This
is an intransitive verb. Then we feed another pronoun, say / D V and get áHâ Vf�h°ã¬âH1�á2â(R . Next we combine this with

D < D&# × B 01' and then with
0�T C1B 01' .

These operations substitute genuine phrases for these pronouns in the follow-
ing way. Assume that we have two signs:

(5.202) σ
, �ÈEx � e u t � m �P� σ k , �ÈEy � t � m k �

Further, let Qn be the following function on signs:

(5.203) Qn 7 σ � σ k 8 :
, � subn 7�Ex ��Ey 8P� t � Q 7 m � λxn �m k 8=�

Here subn 7ÈEx ��Ey 8 is defined as follows.

À For some k: Ex , / D k. Then subn 7�Ex ��Ey 8 is the result of replacing all oc-
currences of / D n by / D k.

442 PTIME Languages

Á For all k: Ex �, / D k. Then subn 7�Ex ��Ey 8 is the result of replacing the first
occurrence of / D n by Ex and deleting the index n on all other occurrences
of / D n.

At last we have to give the signs for the pronouns. These are

(5.204)
/

n :
, �L/ D n ��2 / � λx ä»� x ä@7 xn 8=�

Depending on case, x ä is a variable of type e � t (for nominative pronouns)
or of type e ��7 e � t 8 (for accusative pronouns). Starting with the sign

(5.205) 1 :
, � 2 C < D) �Z7 e u t 8 ¾ e � λx0 � λx1 � _ d�+1a k 7 x1 � x0 8=�

we get the signí ò X V í ò / R ø(5.206) , �åáHâ V f�h�ã¬â21�áHâ R � t �=_ d�+1a�h k 7 x1 � x0 8=8=�
Now we need the following additional signs./ n :

, � λx � λy � subn 7 D < D&# × � x � y 8P�Z7 t ¾ t 8 ¾ 7 e u t 8P�
λx � λy � ~ xn ��7 x 7 xn 8�� y 8=�(5.207) }

n :
, � λx � λy � subn 7) CXB D � x � y 8P�Z7 t ¾ t 8 ¾ 7 e u t 8P�

λx � λy �`� xn ��7 x 7 xn 8�� y 8=�(5.208) A :
, � B 04' � e u t � λx �"��q(o k 7 x 8=�(5.209) 3

:
, � 3 � e u t � λx � [3d��×q(o k 7 x 8=�(5.210)

If we feed the existential quantifier first we get the reading ~�� , and if we feed
the universal quantifier first we get the reading �&~ . The structure terms are as
follows. í ò í ò _ RCæ í ò í ò � V ¬gí ò X R í ò X V ø(5.211) 5\ò05\ò } VPA 5#ò#5#ò /�R 3 5#ò / R 5\ò / Vt1(5.212)

We have not looked at the morphological realization of the phrase Ex. Num-
ber and gender must be inserted with the substitution. So, the case is deter-
mined by the local context, the other features are not. We shall not go into this
here. (Montague had nothing to say about morphology as English has very lit-
tle. We can only speculate what would have been the case if Montague had

Compositionality and Constituent Structure 443

spoken, say, an inflecting language.) Notice that the present analysis makes
quantifiers into sentence adjuncts.

Recall from Section 2.7 that the grammar of sentences is very complex.
Hence, since Montague defined the meaning of sentences to be closed for-
mulae, it is almost unavoidable that something had to be sacrificed. In fact,
the given analysis violates several of our basic principles. First, there are in-
finitely many lexical elements. Second, the syntactic structure is not respected
by the translation algorithm, and this yields the wrong results. Rather than
taking an example from a different language, we shall exemplify the prob-
lems with the genitive pronouns. We consider / ,�) as the surface realization
of / , B *�) , where

*O)
is the so–called Anglo Saxon genitive. Look for example

at (5.213), which resulted from (5.214). Application of the above rules gives
(5.215), however.TV,�" / 0 / 0'" C ' / ,�) / D�0 î D < D&# × B 01'Ò2 C(C @.) í D�"%"�D&#(5.213)

sub R 7 D < D&# × B 04' �®ç�d�è�á ééámé�è h%iêá�d<b R¢ë 1�á2â\é��ìá2â R(5.214) f�h#h�í�1 ê â�è(è�â�î�8TV,�" / 0 / 0'" C 'ÒD < D&# × B 01' *�) / D�0 îÚ/ Dÿ2 C�C @�) í D�"�"�D&#(5.215)

This happens not because the possessive pronouns are also part of the rules:
of course, they have to be part of the semantic algorithm. It is because the
wrong occurrence of the pronoun is being replaced by the quantifier phrase.
This is due to the fact that the algorithm is ignorant about the syntactic struc-
ture (which the string reveals only partly) and second because the algorithm
is order sensitive at places where it should better not be. See Section 6.5 on
GB, a theory that has concerned itself extensively with the question which
NP may be a pronoun, or a reflexive pronoun or empty. Fiengo and May
(1994) speak quite plastically of vehicle change, to name the phenomenon
that a variable appears sometimes as a pronoun, sometimes as pro (an empty
pronoun, see Section 6.5), sometimes as a lexical NP and so on. The syn-
chronicity between surface structure and derivational history which has been
required in the subsequent categorial grammar, is not found with Montague.
He uses instead a distinction proposed by Church between tectogrammar
(the inner structure, as von Humboldt would have called it) and phenogram-
mar (the outer structure, which is simply what we see). Montague admits
quite powerful phenogrammatical operations, and it seems as if only the la-
bel distinguishes him from GB theory. For in principle his maps could be
interpreted as transformations.

444 PTIME Languages

We shall briefly discuss the problems of blocking and other apparent fail-
ures of compositionality. In principle, we have allowed the exponent func-
tions to be partial. They can refuse to operate on certain items. This may be
used in the analysis of defective words, for example F C %�#
0�4�D . This word
exists only in the singular (though it arguably also has a plural meaning).
There is no form F C %�#
0�4�D) . In morphology, one says that each word has a
root; in this case the root may simply be F C %�#
0�4�D . The singular is formed by
adding ε , the plural by adding

)
. The word F C %�#
0�4�D does not let the plural be

formed. It is defective. If that is so, we are in trouble with Leibniz’ Principle.
Suppose we have a word X that is synonymous with F C %�#
0�4�D but exists in
the singular and the plural (or only in the plural like

4�%�"�)
). Then, by Leib-

niz’ Principle, the two roots can never have the same meaning, since it is not
possible to exchange them for each other in all contexts (the context where X
appears in the plural is a case in point). To avoid this, we must actually assume
that there is no root form of F C %�#
0�4�D . The classical grammar calls it a singu-
lare tantum, a ‘singular only’. This is actually more appropriate. If namely
this word has no root and exists only as a singular form, one simply cannot
exchange the root by another. We remark here that English has pluralia tanta
(‘plural only’ nouns), for example

"�# C�C &.) . In Latin,
"�D4'	D í #
0&D ‘darkness’,,X' î %�"G,&0&D ‘cease fire’ are examples. Additionally, there are words which are

only formwise derived from the singular counterpart (or the root, for that mat-
ter). One such example is

: C # F D) in its meaning ‘troops’, in Latin
: C #�">%�'�0&D

‘assets’, whose singular
: C #%"&%�'	0 means ‘luck’. Again, if both forms are as-

sumed to be derived from the root, we have problems with the meaning of the
plural. Hence, some of these forms (typically — but not always — the plural
form) will have to be part of the lexicon (that is, it constitutes a 0–ary mode).

Once we have restricted the admissible functions on exponents, we can
show that weak and strong generative capacity do not necessarily coincide.
Recall the facts from Exercise 187, taken from (Radzinski, 1990). In Man-
darin yes–no–questions are formed by iterating the statement with the nega-
tion word in between. Although it is conceivable that Mandarin is context
free as a string language, Radzinski argues that it is not strongly context free.
Now, suppose we understand by strongly context free that there is a context
free sign grammar. Then we shall show that under mild conditions Mandarin
is not strongly context free. To simplify the dicussion, we shall define a some-
what artificial counterpart of Mandarin. Start with a context free language G
and a meaning function µ defined on G. Then put M :

,
G s G ��í % � G. Fur-

Compositionality and Constituent Structure 445

ther, put

(5.216) ν 7�Ex �+í % �yEy 8 :
, ¿ µ 7�Ex 8#· ¶ µ 7�Ey 8 if Ex �, Ey,

µ 7�Ex 8 ? if Ex , Ey.

Here, ? forms questions. We only need to assume that it is injective on the set
µ ¦G § and that ? ¦ µ ¦G § § is disjoint from 5 µ 7�Ex 8%· µ 7�Ey 8 : Ex ��Ey � L 7 G 8Z6 . (This is the
case in Mandarin.) Assume that there are two distinct expressions Eu and Ev of
equal category in G such that µ 7$Eu 8 , µ 7�Ev 8 . Then they can be substituted for
each other. Now suppose that G has a sublanguage of the form 5jEr Ez i Es : i � ω 6
such that µ 7ÁEr Ez i Es 8 , µ 7ÁEr Ez j Es 8 for all i � j. We claim that M together with ν is
not context free. Suppose otherwise. Then we have a context free grammar H
together with a meaning function that generates it. By the Pumping Lemma,
there is a k such that Ez k can be adjoined into some Er Ez i Es any number of times.
(This is left as an exercise.) Now look at the expressions

(5.217) Er 9 Ez i 9 Es �+í % ��Er 9 Ez j 9 Es
Adjunction is the result of substitution. However, the ν–meaning of these
expressions is 0 if i �, j and a yes–no question if i

,
j. Now put j

,
i g k.

If we adjoin Ez k on the left side, we get a yes–no question, if we substitute
it to the right, we do not change the meaning, so we do not get a yes–no
question. It follows that one and the same syntactic substitution operation
defines two different semantic functions, depending on where it is performed.
Contradiction. Hence this language is not strongly context free. It is likely that
Mandarin satisfies the additional assumptions. For example, colour words are
extensional. So, í 24%
DÑ) / ,4#�" means the same as í 21%	D í 24%	Dý) / ,1#�" , í 24%
Dí 21%	D í 21%	Dý) / ,4#%" , and so on.

Next we look at Bahasa Indonesia. Recall that it forms the plural by redu-
plication. If the lexicon is finite, we can still generate the set of plural ex-
pressions. However, we must assume a distinct syntactic category for each
noun. This is clearly unsatisfactory. For every time the lexicon grows by an-
other noun, we must add a few rules to the grammar (see (Manaster-Ramer,
1986)). However, let us grant this point. Suppose, we have two nouns, Em andEn, which have identical meaning. If there is no syntactic or mophological
blocking, by Leibniz’ Principle any constituent occurrence of the first can be
substituted by the second and vice versa. Therefore, if Em has two constituent
occurrences in Em ?+Em, we must have a word Em ?(En and a word En ?+Em, and both
mean the same as the first. This is precisely what is not the case. Hence, no

446 PTIME Languages

such pair of words can exist if Bahasa Indonesia is strongly context free. This
argument relies on a stronger version of Leibniz’ Principle: that semantic
identity enforces substitutability tout court. Notice that our previous discus-
sion of context sets does not help here. The noun Em has a different context set
as the noun En, since it occurs in a plural noun Em ?YEm, where En does not occur.
However, notice that the context set of Em contains occurrences of Em itself. If
that circularity is removed, Em and En become indistinguishable.

These example might suffice to demonstrate that the relationship between
syntactic structure and semantics is loose but not entirely free. One should
be extremely careful, though, of hidden assumptions. Many arguments in the
literature showing that this or that language is not strongly context free rest
on particular assumptions that are not made explicit.

Notes on this section. The idea that syntactic operations should more or
less be restricted to concatenation give or take some minor manipulations
is advocated for in (Hausser, 1984), who calls this surface compositionality.
Hausser also noted that Montague did not actually define a surface composi-
tional grammar. Most present day categorial grammars are, however, surface
compositional.

Exercise 203. Suppose that A
, 5XG	�ZH>�=�=�=�Z����6 , with the following modes.ô :

, �ÈG	���
� 0 �(5.218) } 7=�ÈEx ���
� n �=8 :
, � suc 7ÈEx 8P���
� n g 1 �(5.219)

Here, suc 7�Ex 8 denotes the successor of Ex in the decimal notation, for example,
suc 7=H���8 , �(G . Let a string be given. What does a derivation of that string look
like? When does a sign σ occur in another sign τ? Describe the exponent of¦ � k ¾ �1§R� , for given structure terms � , � k , � . Define a progress measure for which
this grammar is progressive.

Exercise 204. Let A :
, 5S�
�=�=�=�Z�/w
�¯���XTj�iW(�Ï��6 . We shall present two ways for

generating ordinary arithmetical terms. Recall that there is a convention to
drop brackets in the following circumstances. (a) When the same operation
symbol is used in succession (����u%�!ï in place of Tt���3T
u��(ï�W�W), (b) when the
enclosed term is multiplicative (����ï���� in place of T
����ï�W#���). Moreover, (c)
the outermost brackets are dropped. Write a sign grammar that generates
triples ��Ex � T � n � , where Ex is a term and n its value, where the conventions (a),
(b) and (c) are optionally used. (So you should generate �¯����u%�!ï
� T � 16 � as well
as �½Tt���3T
u��(ï�W�W�� T � 16 �). Now apply Leibniz’ Principle to the pairs Tt����u�W and

de Saussure Grammars 4470�, C ,X'2a�%�0 B î , F C ‘I say’0�,�) ,X'2a�%-,�) î , F ,�) ‘you(sg) say’0�,." ,X'2a�%-,�" î , F ,�" ‘he says’î , F , B %.) ‘we say’î , F ,�"n,�) ‘you(pl) say’0�,X%�'�" ,X'2a�%-,ï%�'�" î , F %('�" ‘they say’

Figure 16. Latin Verbs of Saying����u , K&L@IPM(L(N�J and ����u%�!ï . What problems arise? Can you suggest a solution?

Exercise 205. (Continuing the previous exercise.) Write a grammar that treats
every accidental occurrence of a term as a constituent occurrence in some dif-
ferent parse. For example, the occurrence of �(L�N in �(L(NHð>M is in the grammar
of the previous exercise a nonconstituent occurrence, now however it shall be
a constituent occurrence under some parse. Apply Leibniz’ Principle. Show
that K&L�M is not identical to M(L�K , and �>L�K&L�M is not identical to �>L�M&L�K and so
on. Which additive terms without brackets are identical in meaning, by Leib-
niz Principle?

Exercise 206. The Latin verbs
0�, C and

,X'2a�%�0 B (‘I say’) are highly defective.
They exist only in the present. Apart from one or two more forms (which we
shall ignore for simplicity), Figure 16 gives a synopsis of what forms exist
of these verbs and contrast them with the forms of î , F C . The morphology
of
,ï'2a>%	0 B is irregular in that form (we expect

,ï'2a>% C); also the syntax of,X'¬a>%-,�"
is somewhat peculiar (it is used parenthetically). Discuss whether,X'¬a>%-,�"
and î , F ,�" can be identical in meaning by Leibniz’ Principle or not.

Further, the verb B D B ,ï'-, is formwise in the perfect, but it means ‘I remem-
ber’; similarly C î , ‘I hate’.

8. de Saussure Grammars

In his famous Cours de Linguistique Générale, de Saussure speaks about lin-
guistic signs and the nature of language as a system of signs. In his view,
a sign is constituted by two elements: its signifier and its signified. In our
terms, these are the exponent and the meaning, respectively. Moreover, de
Saussure says that signifiers are linear, without further specifying what he
means by that. To a modern linguist all this seems obviously false: there are

448 PTIME Languages

categories, and linguistic objects are structured, they are not linear. Notably
Chomsky has repeatedly offered arguments to support this view. He believed
that structuralism was fundamentally mistaken. In this section we shall show
that the rejection of de Saussure’s ideas is ill–founded. To make the point, we
shall look at a few recalcitrant syntactic phenomena and show how they can
be dealt with using totally string based notions.

Let us return to the idea mentioned earlier, that of λ–terms on strings. We
call a string term a λ–term over the algebra of strings (consisting of con-
stants for every a � A, ε , and 9). We assume here that strings are typed, and
that we have strings of different type. Assume for the moment that there is
only one type, that of a string, denoted by s. Then λx � λy � y 9 x is the function
of reverse concatenation, and it is of type s � 7 s � s 8 . Now we wish to imple-
ment restrictions on these terms that make sure we do not lose any material.
Call a λ–term relevant if for all subterms λx � N, x occurs at least once free in
N. λx � λy � y � x is relevant, λx � λy � x is not. Clearly, relevance is a necessary re-
striction. However, it is not sufficient. Let Å and ñ be variables of type s � s,
x a variable of type x. Then function composition, λ Å�� λ ñ3� λx � Å 7�ñª7 x 8=8 , is a
relevant λ–term. But this is problematic. Applying this term leaves no visible
trace on the string, it just changes the analysis. Thus, we shall also exclude
combinators. This means, an admissible λ–term is a relevant term that con-
tains 9 or an occurrence of a constant at least once.

Definition 5.69 A string term τ is weakly progressive if it is relevant and not
a combinator. τ is progressive if it is weakly progressive and does not contain
ε .

Definition 5.70 A de Saussure sign or simply dS–sign is a pair δ
, � e � m � ,

where e is a progressive string term and m a λ–term over meanings. The
type of δ is the pair � σ � τ � , where σ is the type of e and τ the type of m. If
δ k , � e k � m k � is another de Saussure sign then δ 7 δ k 8 is defined iff ee k is defined
and mm k is defined, and then

(5.220) δ 7 δ k 8 :
, � ee k � mm k �

In this situation we call δ the functor sign and δ k the argument sign. A de
Saussure grammar is a finite set of dS–signs.

So, the typing regime of the strings and the typing regime of the meanings do
all the work here.

de Saussure Grammars 449

Proposition 5.71 Let δ and δ k be dS–signs of type � σ � τ � and � σ k�� τ k � , re-
spectively. Then δ 7 δ k 8 is defined iff there are µ , ν such that σ

,
σ k
� µ ,

τ
,

τ k � ν , and then δ 7 δ k 8 has type � µ � ν � .
The rest is actually the same as in AB–grammars. Before we shall prove any
results, we shall comment on the definition itself. In Montague Grammar and
much of Categorial Grammar there is a conflation of information that belongs
to the realm of meaning and information that belongs to the realm of expo-
nents. The category β ¾ α , for example, tells us that the meaning must be a
function of type σ 7 α 8.� σ 7 β 8 , and that the exponent giving us the argument
must be found to the right. α u β , is different only in that the exponent is to be
found to the left. While this seems to be reasonable at first sight, it is already
apparent that the syntactic categories simply elaborate the semantic types.
(This is why σ is a homomorphism.) The information concerning the seman-
tic types is however not necessary, since the merger would fail anyhow if we
did not supply signs with the correct types. So, we could leave it to syntax to
specify only the directionality. However, syntax is not well equipped for that.
There are discontinuous constituents and this is not easily accommodated in
categorial grammar. Much of the research can be seen as an attempt to up-
grade the string handling potential in this direction. Notice further that the
original categorial apparatus created distinctions that are nowhere attested.
For example, adjectives in English are of category n ¾ n. In order to modify a
relational noun, however, they must be lifted to the category of a relational
noun. The lifting will have to specify whether the noun is looking for its com-
plement on its right or on its left. Generally, however, modifiers and functors
do not care very much about the makeup of their arguments. However, in Õæ²
and Ü , categories must be explicit about these details.

De Saussure grammars do away with some of the problems that beset
CGs. They do not require to iterate the semantic types in the category, and
the string handling has more power than in standard categorial grammar. We
shall discuss a few applications of de Saussure grammars. These will illustrate
both the strength as well as certain deficiencies.

A striking fact about de Saussure grammars is that they allow for word
order variation in the most direct way. Let us take a transitive verb,

)�D�D
, with

meaning hiaja k , λx � λy �nhiaja k 7 y 8�7 x 8 . Its first argument is the direct object and the
second its subject. We assume no case marking, so that the following nouns
will be either subject or object.

JOHN :
, ��A C / ' � m$d�\&o k � MARY :

, �ÁA 0># × �*��q.Jò| k �(5.221)

450 PTIME Languages

Now we can give to the verb one of the following six signs. of which each
corresponds to a different word order pattern. Recall that x � y

,
x 9 ¾ 9 y.

SEES0 :
, � λx � λy � y � x �)4D�D
) �Èhiaja k � SOV(5.222)

SEES1 :
, � λx � λy � y �)4D�D
) � x �Èhiaja k � SVO(5.223)

SEES2 :
, � λx � λy �)�D�D
) � y � x �Èhiaja k � VSO(5.224)

SEES3 :
, � λx � λy � x � y �)4D�D
) �Èhiaja k � OSV(5.225)

SEES4 :
, � λx � λy � x �)4D�D
) � y �Èhiaja k � OVS(5.226)

SEES5 :
, � λx � λy �)�D�D
) � x � y �Èhiaja k � VOS(5.227)

The structure term for a basic sentence expressing that John sees Mary is
in all cases the same. (Structure terms will be written using brackets, to
avoid confusion. The convention is that bracketing is left–associative.) It is
SEES i 7 MARY 8�7 JOHN 8 , i b 6. Only that the order of the words is different in
each case. For example,

SEES0 7 MARY 8�7 JOHN 8(5.228) , � λx � λy � y � x �)4D�D
) �Èhiaja k ��7=�ÁA 0># × �*��q.Jò| k �=8�7=��A C / ' � m$d�\&o k �=8, � λy � y �+A 0># ×)�D�D
) �Èhiaja k 7���q.J"| k 8=��7=��A C / ' � m$d�\&o k �=8, ��A C / ' A 0�# ×)�D(D) �Èhiaja k 7���q.Jò| k 8�7nm�d�\(o k 8=�
SEES4 7 MARY 8�7 JOHN 8(5.229) , � λx � λy � x �)�D�D
) � y �Èhiaja k ��7=�ÁA 0># × �*��q.Jò| k �=8�7=��A C / ' � m$d�\&o k �=8, � λy � A 0># ×)�D�D
) � y �Èhiaja k 7���q.J"| k 8=��7=��A C / ' � m$d�\&o k �=8, �ÁA 0># ×)�D(D) A C / ' �Èhiaja k 7���q.Jò| k 8�7nm�d�\(o k 8=�

Notice that this construction can be applied to heads in general, and to heads
with any number of arguments. Thus, de Saussure grammars are more at ease
with word order variation than categorial grammars. Moreover, in the case of
OSV word order we see that the dependencies are actually crossing, since the
verb does not form a constituent together with its subject.

We have seen in Section 5.3 how interpreted LMGs can be transformed
into AB–grammars using vector polynomials. Evidently, if we avail ourselves
of vector polynomials (for example by introducing pair formation and projec-
tions and redefining the notion of progressivity accordingly) this result can
be reproduced here for de Saussure grammars. Thus, de Saussure grammars
suitably generalized are as strong as interpreted LMGs. However, we shall ac-
tually not follow this path. We shall not use pair formation; instead, we shall

de Saussure Grammars 451

Table 16. Plural in English

Singular Plural"(#�D�D "�#�D(D)
plain suffixí %�) / í %�) / D
) e-insertionC $ C $�D4' en–suffix: ,�) / : ,�) / no changeB 04' B D�' vowel change

stay with the more basic apparatus. The examples that we shall provide be-
low will give evidence that this much power is actually sufficient for natural
languages, though some modifications will have to be made.

Next we shall look at plural in Bahasa Indonesia (or Malay). The plural is
formed by reduplicating the noun. For example, the plural of C #
04'�4 ‘man’ isC #�04'�4 ? C #
04'�4 , the plural of

04'	0'@
‘child’ is

04'	0'@ ? 04'	0'@ . To model this, we
assume one type of strings, n.

(5.230) PLU :
, � λx � x 9 ? 9 x � λ Å�� 5 x : Å 7 x 8Z61�

The term λx � x 9 ? 9 x is progressive. The plural operation can in principle be
iterated; we shall see below how this can be handled. (We see no obvious
semantical reason why it cannot, so it must be blocked morphologically.)
Now let us turn to English. In English, the plural is formed by adding an

)
.

However, some morphophonological processes apply, and some nouns form
their plural irregularly. Table 16 gives an (incomplete) list of plural forma-
tion. Above the line we find regular plurals, below irregular plurals. As we
have outlined in Section 1.3, these differences are explained by postulating
different plural morphs, one for each noun class. We can account for that by
introducing noun class distinctions in the semantic types. For example, we
may introduce a semantic type for nouns endings in a nonsibilant, another
for nouns ending in a sibilant, and so on. However, apart from introducing
the distinction where it obviously does not belong, this proposal has another
drawback. Recall, namely, that linguists speak of a plural morpheme, which
abstracts away from the particular realizations of plural formation. Mel’čuk
defines a morpheme as a set of signs that have identical category and identical
meaning. So, for him the plural morpheme is simply the set of plural morphs.
Now, suppose that we want the morpheme to be a (de Saussure) sign. Then

452 PTIME Languages

its meaning is that of any of its morphs, but the string function cannot be a λ–
term. For it may act differently on identical strings of different noun class. A
good example is German

6 04'�@
. Like its English counterpart it can denote (i)

a money institute, (ii) something to sit on, (iii) the bank of a river. However,
in the first case its plural is

6 04'�@�D�'
and in the other two it is

6l804'�@
D
. Now,

since the function forming the plural cannot access the meaning we must dis-
tinguish two different string classes, one for nouns that form the plural by
umlaut plus added

D
, and the other for nouns that form the plural by addingD�'

. Further, we shall assume that German
6 04'�@

is in both, but with different
meanings. Thus, we have two signs with exponent

6 01'�@
, one to mean money

institute and the other to mean something to sit on or the bank of a river. This
is the common practice. The classes are morphological, that is, they do not
pertain to meaning, just to form.

Thus we are led to the introduction of string types. We assume that types
are ordered by some partial ordering ç , so that if α and β are string types
and α ç β then any string of type α is a string of type β . Moreover, we put
α � β ç α k � β k iff α ç α k and β ç β k . No other relations hold between
nonbasic types. The basic type s is the largest basic type. Returning now to
English, we shall split the type n into various subtypes. In particular, we need
the types ni, nr, of irregular and regular nouns. We shall first treat the regular
nouns. The rule is that if a noun ends in a sibilant, the vowel

D
is inserted,

otherwise not. Since this is a completely regular phenomenon, we can only
define the string function if we have a predicate h�^Ø that is true of a string iff
it ends in a sibilant. Further, we need to be able to define a function by cases.

(5.231) J�p&_ r :
,

λx � ^ È�h�^Ø �7 x 8VÉO\Xa4o x 9 D
) a4_ hia x 9) ��ó
Thus, we must have a basic type of booleans plus some functions. We shall
not spell out the details here. Notice that definitions by cases are not necessar-
ily unique, so they have to be used with care. Notice a further problem. The
minute that we admit different types we have to be specific about the type of
the resulting string. This is not an innocent matter. The operation 9 is defined
on all strings. Suppose now that

"�#�D(D
is a string of type nr, which type does"�#�D�D)

have? Obviously, we do not want it to be just a string, and we may
not want it to be of type nr again. (The difference between regular and irreg-
ular is needed only for plural formation.) Also, as we shall see below, there
are operations that simply change the type of a string without changing the
string itself. Hence we shall move from a system of implicit typing to one
of explicit typing (see (Mitchell, 1990) for an overview). Rather than using

de Saussure Grammars 453

variables for each type, we use a single set of variables. λ–abstraction is now
written λx : σ �M : τ in place of λx �M. Here x must be a variable of type σ ,
and the result will be of type τ . Thus, λx : nr � x 9) : n denotes the function that
turns and nr–string into an n–string by appending

)
. The reader may recall

from Section 4.1 the idea that strings can be taken to mean different things
depending on what type they are paired with. Internally, a typed string term
is represented by � N � σ � , where N is the string term and σ its type. The op-
eration M : τ does the following: it evaluates M on N, and gives it the type τ .
Now, the function is also defined for all σ k(ç σ , so we finally have

(5.232) 7 λx : σ �M : τ 8�7 N : σ k 8 ,Ò¿ ¦N ¾ x § M : τ if σ k ç σ ,� otherwise.

Now we turn to the irregular plural. Here we face two choices. We may simply
take all singular and plural nouns as being in the lexicon; or we devise rules
for all occurring subcases. The first is not a good idea since it does not allow
us to say that C $ and the plural morpheme actually occur in C $�D�' . The sign
is namely an unanalyzable unit. So we discard the first alternative and turn
to the second. In order to implement the plural we again need a predicate of
strings that tells us whether a string equals some given string. The minimum
we have to do is to introduce an equality predicate on strings. This allows
to define the plural by cases. However, suppose we add a binary predicatehjr0È=7 x � y 8 which is true of x and y iff x is a suffix of y. Then the regular plural
can be defined also as follows:J�p(_ r :

,
λx : nr ��^ È�7lhjr+È=7) � x 8»d�J&hjr0È=7) /�� x 8=8(5.233) ÉO\Xa4o x 9 D) a4_ hia x 9) � : n;

Moreover, equality is definable from hjr+È . Evidently, since we allow a function
to be defined by cases, the irregular plural forms can be incorporated here as
well, as long as they are additive (as is C $�D4' but not B D�'). For nonadditive
plural formations see the remarks on umlaut in Section 6.3.

Now take another case, causatives. Many English verbs have causative
forms. Examples are

2�01%�4 / , î #n,ï'�@ , F 2�0�& .s / Dÿ04% î ,>D4' F D�2�04%�4 / D î " / D F C ' î % F " C # C :�: " / Dý)#"
0�4�D�O
(5.234) s / D B 04'	0�4�D&# î #
04'�@ / ,�) : #G,>D�' î) %(' î D&#X" / DÚ"
0 í 2&D�O(5.235) s / Dÿ04% î ,>D4' F D\T	0
) F 2�0�&�&-,ï'�4�" / D B %�)�, F ,>04' í 0 F @ C '�" C(5.236) " / Dý)#"
0�4�D�O

454 PTIME Languages

In all these cases the meaning of the causative is regularly formed so that
we may actually assume that there is a sign that performs the change. But it
leaves no visible trace. Thus, we must at least allow operators that perform
type conversion even when they change nothing in the semantics. In the type
system we have advocated above they can be succinctly represented by

(5.237) λx : σ � x : τ

Now, the conversion of a string of one type into another is often accompanied
by morphological marking. For example, the gerund in English turns a verb
into a noun (

)�,X'�4�,X'�4
). It is formed regularly by suffixing

,X'�4
. So, it has the

following sign:

(5.238) GER :
, � λx : v� x 9 ,ï'�4 : n � λx � x �

The semantics of these nominalizations is rather complex (see (Hamm and
van Lambalgen, 2003)), so we have put the identity for simplicity here. Signs
that consist of nothing more than a type conversion are called conversionemes
in (Mel’čuk, 2000). Obviously, they are not progressive in the intuitive sense.
For we can in principle change a string from σ to τ and back; and we could
do this as often as we like. However, there is little harm in admitting such
signs. The additional complexity can be handled in much the same way as
unproductive context free rules.

Another challenge is Swiss German. Since we do not want to make use
of products, it is not obvious how we can instrumentalize the λ–terms to
get the word order right. Here is how this can be done. We distinguish the
main (inflected) verb from its subordinate verbs, and raising from nonraising
verbs. (See Table 17. We use ‘ C i’ short for ‘ C inflected’, ‘ C r’ for ‘ C raising’,
and ‘ C t’ for ‘ C transitive’. We have suppressed the type information as it is of
marginal relevance here.) Here, v, x, z are variables over NP–cluster strings,
w, y variables over verb–cluster strings, and Å a variable for functions from
NP–cluster strings to functions from verb–cluster strings to strings. NPs are
by contrast very basic:

MER :
, � B D&# �ã[ya k � HUUS :

, � D
) / %(%�) �=\1d�rïhia k �(5.239)

We ignore case for the moment. The lowest clause is translated as follows.

AASTE 7 HUUS 8(5.240) , � λy � λ z � y � D) / %�%.) � z � 0(0
)�"(#n, F#/ D �=p1q&^`o#É k 7$\1d�rïhia k 8=�

de Saussure Grammars 455

Table 17. Swiss German Verbs

–i–r+t AASTE := � λx � λy � λ z � y � x � z � 0�0
)#"�#G, F#/ D �=p1q&^`o#É k �
+i–r+t AAST := � λx � λy � y � x � 0�0
)#"�#G, F#/ " �=p1q&^`o#É k �
–i–r–t SCHWE := � λy � λ z � y � z �) F0/ TV, B�B D �Èh�^Ú� k �
+i–r–t SCHW := � λx � x �) F0/ TV, B�B " �Èh�[^Ø� k �
–i+r+t LAA := � λx � λ Å�� λv� λw� Å 7 v � x 8�7 w � 2(0�0 8P�=_ a�É k �
+i+r+t LAAT := � λ Å�� λx � Å 7 x 8�7 2�0(0 8P�=_ a�É k �

The recursive part, raising verb plus object, is translated as follows:

(5.241)

HÄLFE 7 CHIND 8, �=7 λx � λ Å�� λv� λw� Å 7 v � x 8�7 w �ÿ/ 80(2 : D 8=8�7 D B F0/ ,ï' î(8P�\Xa4_ p k 7_K4\&^`_ cGJ�a4o k 8=�, �=7 λ Å�� λv� λw� Å 7 v � D B F#/ ,X' î(8�7 w �þ/ 80(2 : D 8=8P�\Xa4_ p k 7_K4\&^`_ cGJ�a4o k 8=�
If we combine the two we get something that is of the same kind as the lower
infinitive, showing that the recursion is adequately captured:

(5.242)

HÄLFE 7 CHIND 8�7 AASTE 7 HUUS 8=8, � λv� λw� v � D B F#/ ,X' î D
) / %�%.) � w �ÿ/ 80�2 : DÏ0(0
)#"�#n, F#/ D �\Xa4_ p k 7_K4\&^`_ cGJ�a4o k 8�7$p1q&^ o0É k 7$\1d�rïhia k 8=8=8
Had we inserted a finite verb, the second ‘hole’ would have been closed.
There would have been just a place for the subject. Once that is inserted, there
are no more holes left. The recursion is finished. Notice that the structure term
has the form of the corresponding English structure. The λ–terms simply
transliterate it into Swiss German. Let us briefly speak about case. We insert
only the bare nouns and let the verb attach the appropriate case marker. For
example, if DAT is the function that turns a DP into a dative marked DP, the
sign HÄLFE will be

(5.243) HÄLFE :
, � λx � λ Å�� λv� λw� Å 7 v � DAT 7 x 8=8�7 w � 2�0(0 8P�=\1a4_ p k �

Next, we shall deal with case agreement inside a noun phrase. In many
languages, adjectives agree in case with the noun they modify. We take our

456 PTIME Languages

example from Finnish. The phrase
,�) C B %�'�0 ‘a/the big train’ inflects in the

singular as follows. (We show only a fraction of the case system.)

(5.244)

nominative
,�) C B %�'	0

genitive
,�) C ' B %('�04'

allative
,�) C 2�2&D B %('�0�2(2(D

inessive
,�) C)�)�0 B %('�0
)()>0

In the present case, it is the same suffix that is added to the adjective as well
as the noun. Now, suppose we analyze the allative as a suffix that turns a
caseless noun phrase into a case marked noun phrase. Then we want to avoid
analyzing the allative

,�) C 2�2&D B %('�0�2(2(D as consisting of occurrences of the
allative case. We want to say that it occurs once, but is spelled out twice. To
achieve this, we introduce two types: ν , the type of case marked nouns, and
κ , the type of case markers. Noun roots will be of type κ � ν , adjectives of
type 7 κ � ν 8���7 κ � ν 8 .

JUNA :
, � λx : κ � B %('�0 9 x : ν ��É
Jlq>^ o k �(5.245)

ISO :
, � λ Å : κ � ν � λx : κ � ,�) C 9 x ��Å 7 x 8 : ν �* >^ Ö k �(5.246)

So, x has the type κ , Å the type κ � ν . These signs combine to

(5.247) ISO 7 JUNA 8 , � λx : κ � ,�) C 9 x ��B %�'	0 9 x : ν �* >^ Ö k 7�ÉtJÁq&^`o k 8=�
Finally, assume the following sign for the allative.

(5.248) ALL :
, � 2�2(D : κ �*�]d�+4atÊ¯É$d k �

Then the last two signs combine to

ALL 7 ISO 7 JUNA 8=8(5.249) , � ,�) C 2�2&D B %('�0�2(2(D : ν �*�]d�+4atÊ¯É$d k 7� &^ Ö k 7�É
Jlq>^ o k 8=8=�
This has the advantage that the tectogrammatical structure of signs is much
like their semantic structure, and that we can stack as many adjectives as
we like: the case ending will automatically be distributed to all constituents.
Notice that LMGs put a limit on the number of occurrences that can be con-
trolled at the same time, and so they cannot provide the same analysis for
agreeing adjectives. Thus, de Saussure grammars sometimes provide more
adequate analyses than do LMGs. We remark here that the present analysis

de Saussure Grammars 457

conforms to the idea proposed in (Harris, 1963), who considers agreement
simply as a multiple manifestation of a single morpheme. Case assignment
can also be handled in a rather direct way. Standardly, a verb that takes a case
marked noun phrase is assumed to select the noun phrase as a noun phrase of
that case. Instead, however, we may assume that the sign for a case marking
verb actually carries the case marker and attaches it to the NP. The Finnish
verb

"&%('�">%�0
‘to resemble’ selects ablative case. Assume that it has an abla-

tive marked argument that it takes directly to its right. Then its sign may be
assumed to be like this (taking the 3rd person singular present form).

(5.250) TUNTUU :
, � λx � "&%�'�"&%(% � x 7 2�"�0 8P�MJ�a�hia��d &_ a k �

The reason is that if we simply insist that the noun phrase comes equipped
with the correct case, then it enters with its ablative case meaning rather than
with its typical NP meaning. Notice namely that the ablative has an unmo-
tivated appearance here given the semantics of the ablative case in Finnish.
(Moreover, it is the only case possible with this verb.) So, semantically the
situation is the same as if the verb was transitive. Notice that the fact that"&%('�"&%	0

selects an ablative NP is a coincidence in this setup. The ablative
form is directly added to the complement selected. This is not the best way of
arranging things, and in (Kracht, 2003) a proposal has been made to remedy
the situation.

There is a list of potential problems for de Saussure grammars. We men-
tion a few of them. The plural in German is formed with some stems by
umlauting them (see Section 1.3). This is (at least on the surface) an oper-
ation that is not additive. As mentioned earlier, we shall discuss this phe-
nomenon in Section 6.3. Another problem is what is known as suppletion.
We exemplify this phenomenon with the gradation of Latin adjectives. Recall
that adjectives in many languages possess three forms: a positive (/ 0�&�& ×) a
comparative (/ 0.&�&V,>D>#) and a superlative (/ 0.&%&-,�D)�"). This is so in Latin. Ta-
ble 18 gives some examples. Adjectives above the line are regularly formed,
the ones below are irregular. Interesting is the fact that it is not the com-
parative or superlative suffix that is irregular: it is the root form itself. The
expected form ¡ í C '-, C # is replaced by B D�2�, C # : the root changes from í C '
to B D�2 . (The English adjective

4 C�C î is also an example.) A different phe-
nomenon is exhibited by English

T C #�)�D . The comparative is formed either
by adding

D>#
(í D�"%"�D># ,

: 0�)�"�D&#
) or by adding B�C #�D . The form

T C #�)�D resists
a decomposition into a stem and a suffix. In the case of

T C #�)4D we speak of
a portmanteau morph. Portmanteau morphs can be treated in de Saussure

458 PTIME Languages

Table 18. Gradation of Latin Adjectives

Positive Comparative Superlative&�0�# < %�) &	0># < , C # &�0�# < ,�)�)�, B %�)í D�0�">%�) í D�0�"G, C # í D�0�"G,�)�)�, B %�)í C '�%.) B D�2�, C # C &�"n, B %�)B 0(24%.) &
D�, C # &	D
)�)�, B %.)
grammars only as lexical items (since we only allow additive phonological
processes).

Notes on this section. A proposal similar to de Saussure grammars one has
been made by Philippe de Groote (2001).

Exercise 207. Recall from Section 3.5 the notion of a combinatory extension
of categorial grammar. We may attempt the same for de Saussure grammars.
Define a new mode of combination,

6
, as follows.

(5.251)
6 7=� e � m �=8�7=� e k � m k �=8 :

, � λx � e 7 e k 7 x 8=8P� λy �m 7 m k 7 y 8=8=�
Here, e is of type µ � ν , e k of type λ � µ and x of type λ , so that the string
term λx � e 7 e k�7 x 8=8 is of type λ � ν . Likewise for the semantics. Show that
this extension does not generate different signs, it just increases the set of
structure terms. Contrast this with the analogous extension of AB–grammars.
Look especially at mixed composition rules.

Exercise 208. Review the facts from Exercise 186 on Arabic. Write a de Saus-
sure grammar that correctly accounts for them. Hint. This is not so simple.
First, define schemes, which are functions of type

(5.252) s ��7 s ��7 s ��7 s ��7 s ��7 s � s 8=8=8=8=8
They provide a way of combining consonantism (root) and vocalism. The
first three arguments form the consonantism, the remaining three the vocal-
ism. The change in consonantism or vocalism can be defined on schemes
before inserting the actual consonantism and vocalism.

Exercise 209. Write a de Saussure grammar that generates the facts of Man-
darin shown in Exercise 187.

Exercise 210. In European languages, certain words inside a NP do not in-
flect for case (these are adverbs, relative clauses and other) and moreover, no

de Saussure Grammars 459

word can more than two cases. Define case marking functions that take care
of this. (If you need concrete examples, you may elaborate the Finnish exam-
ple using English substitute words.)

Exercise 211. We have talked briefly in Section 5.1 about Australian case
marking systems. We shall simplify the facts (in particular the word order)
as follows. We define a recursive translation from PNΩ (Ω–terms t in Polish
notation) inductively as follows. We assume case markers F i, i b Ω. For a
constant term c, put c � :

,
c. If F is an n–ary function symbol and ti, i b n,

terms then put

(5.253) 7 Ft0 Â=Â=Â tn © 1 8 � :
,

F � t �0 9 F 0 � t �1 9 F 1 ��Â=Â=Â�� t �n © 1 9 F n © 1

Write a de Saussure grammar that generates the set 5(� t �4� t � : t � PNΩ 6 .
Exercise 212. In many modern theories of grammar, so–called functional
heads play a fundamental role. Functional elements are elements that are re-
sponsible for the correct shape of the structures, but have typically very little
— if any — content. A particularly useful idea is to separate the content of an
element from its syntax. For example, we may introduce the morphological
type of a transitive verb (tv) without specifying any selectional behaviour.

(5.254) SEE :
, �)�D(D : tv �Èhiaja k �

Then we assume one or two functional elements that turn this sign into the
signs SEEi, i b 6. Show how this can be done for the particular case of the
signs SEEi. Can you suggest a general recipe for words of arbitrary category?
Do you see a solution of the problem of ablative case selection in Finnish?

Chapter 6
The Model Theory of Linguistic Structures

1. Categories

Up to now we have used plain nonterminal symbols in our description of
syntactic categories — symbols with no internal structure. For many purposes
this is not a serious restriction. But it does not allow to capture important
regularities of language. We give an example from German. The sentences
(6.1) – (6.6) are grammatical.E(F0/)�D / D�O(6.1)

I see-1.SGÖ %¢)%,�D /)�"SO(6.2)

You.SG see-2.SG/ # ï }�,�D ï�/)�)�,>D / "SO(6.3)

He/She/It see-3.SG3 ,1#À)�D / D�'YO(6.4)

We see-1.PLE0/ #À)�D / "SO(6.5)

You.PL see-2.PL}�,�Dý)�D / D�'YO(6.6)

They see-3.PL

By contrast, the following sentences are ungrammatical.¡ E&F#/)%,�D /)�" ¾)%,�D / " ¾)�D / D4' ¾)4D / "�O(6.7)

I see-2.SG/see-3.SG/see-1/3.PL/see-2.PL¡ Ö %Æ)�D / D ¾)�,>D / " ¾)�D / D�' ¾)�D / "SO(6.8)

You.SG see-1.SG/see-3.SG/see-1/3.PL/see-2.PL

One says that the finite verb of German agrees with the subject in person and
number. This means that the verb has different forms depending on whether
the subject is in the 1st, 2nd or 3rd person, and whether it is singular or plural.

462 The Model Theory of Linguistic Structures

How can we account for this? On the one hand, we may simply assume
that there are six different kinds of subjects (1st, 2nd or 3rd person, singular
or plural) as well as five different kinds of verb forms (since two are ho-
mophonous, namely 1st and 3rd person plural). And the subjects of one kind
can only cooccur with a matching verb form. But the grammars we looked
at so far do not allow to express this fact at this level of generality; all one
can do is provide lists of rules. A different way has been proposed among
other in Generalized Phrase Structure Grammar (GPSG, see (Gazdar et
al., 1985)). Let us start with the following basic rule.

(6.9)

Þ �t
SH ü·H
Here the symbols

Þ
,
�H and ü·H are symbols not for a single category but for a

whole set of them. (This is why we have not used typewriter font.) In fact, the
labels are taken to be descriptions of categories. They are not string anymore.
This means that these ‘labels’ can be combined using boolean connectives
such as negation, conjunction and disjunction. For example, if we introduce
the properties x , ô and õ as well as

Þ Ö and H+_ then our rule (6.9) can be refined
as follows:

(6.10)

Þ �t
SH]��x.� Þ Ö ü·H ��x.� Þ Ö
Furthermore, we have the following terminal rules.

(6.11)
�H��zx�� Þ Ö]� , F0/�� ü·H ��x�� Þ Ö]�)�D / D
Here
SH«�Fx@� Þ Ö is the description of a category which is a noun phrase
(
SH) in the first person (x) singular (

Þ Ö). This means that we can derive the
sentence (6.1). In order for the sentences (6.7) and (6.8) not to be derivable
we now have to eliminate the rule (6.9). But this excludes the sentences (6.2)
– (6.6). To get them back again we still have to introduce five more rules.
These can however be fused into a single schematic rule. In place of
SH we
now write ¦ CAT : np § , in place of x we write ¦ PERS : 1 § , and in place of H+_ we
write ¦ NUM : pl § . Here, we call CAT, PER and NUM attributes, and np, vp, 1,
and so on values. In the pair ¦ CAT : np § we say that the attribute CAT has the
value np. A set of pairs ¦A : v § , where A is an attribute and v a value is called
an attribute–value structure or simply an AVS.

The rule (6.9) is now replaced by the schematic rule (6.12).

(6.12) ö CAT : s ÷y� øù
CAT : np
PER : α
NUM : β

úû øù
CAT : vp
PER : α
NUM : β

úû

Categories 463

Here, α and β are variables. However, they have different value range; α
may assume values from the set 5 1 � 2 � 3 6 β values from the set 5 sg � pl 6 . This
fact shall be dealt with further below. One has to see to it that the properties
inducing agreement are passed on. This means that the following rule also
has to be refined in a similar way.

(6.13) ü·H��Zü
SH
This rule says that a VP may be a constituent comprising a (transitive) verb
and an NP. The agreement features have to be passed on to the verb.

(6.14)

øù
CAT : vp
PER : α
NUM : β

úû � øù
CAT : v
PER : α
NUM : β

úû ö CAT : np ÷
Now, there are languages in which the verb not only agrees with the subject
but also with the object in the same categories. This means that it does not
suffice to simply write ¦ PER : α § ; we also have to say whether α concerns
the subject or the object. Hence the structure relating to agreement has to be
further embedded into the structure.

(6.15)

øù
CAT :vp
PER :α
NUM :β

úû �
øüüüüüüù CAT :v

AGRS : ý PER :α
NUM :β þ

AGRO : ý PER :α k
NUM :β k þ

úØÿÿÿÿÿÿû øù
CAT :np
PER :α k
NUM :β k

úû
It is clear that this rule does the job as intended. One can make it look even
nicer by assuming also for the NP an embedded structure for the agreement
complex. This is what we shall do below. Notice that the value of an attribute
is now not only a single value but may in turn be an entire AVS. Thus, two
kinds of attributes are distinguished. 1, sg are called atomic values. In the
present context, all basic expressions are either (atomic) values or attributes.
Attributes which have only atomic values are called Type 0 attributes, all
others are Type 1 attributes. This is the basic setup of (Gazdar et al., 1988).
In the so–called Head Driven Phrase–Structure Grammar by Carl Pollard
and Ivan Sag (HPSG, see (Pollard and Sag, 1994)) this has been pushed much
further. In HPSG, the entire structure is encoded using AVSs of the kind just
shown. Not only the bare linguistic features but also the syntactic structure

464 The Model Theory of Linguistic Structures

itself is coded into AVSs. We shall study these structures from a theoretical
point of view in Section 6.6. Before we enter this investigation we shall move
one step further. The rules that we have introduced above use variables for
values of attributes. This certainly is a viable option. However, HPSG has
gone into a different direction here. It introduces what are in fact structure
variables, whose role it is to share entire AVSs between certain members of
an AVS. To see how this works we continue with our example. Let us now
write an NP not as a flat AVS, but let us instead embed the agreement related
attribute value pairs as the value of an attribute AGR. A 3rd person NP in the
plural is now represented as follows.

(6.16)

øù
CAT : np

AGR : ý NUM : pl
PER : 3 þ

úû
The value of AGR is now structured in the same way as the values of AGRS

and AGRO. Now we can rewrite our rules with the help of structure variables
as follows. The rule (6.12) now assumes the form

(6.17) ö CAT : s ÷ � ý CAT : np
AGR : 1 þ ý CAT : vp

AGRS : 1 þ
The rule that introduces the object now has this shape.

(6.18) ý CAT : vp
AGRS : 1 þ � øù

CAT : v
AGRS : 1
AGRO : 2

úû ý CAT : np
AGR : 2 þ

The labels 1 and 2 are variables for AVSs. If some variable occurs several
times in a rule then every occurence stands for the same AVS. This is pre-
cisely what is needed to formulate agreement. AVS variables help to avoid
that agreement blows up the rule apparatus beyond recognition. The rules
have become once again small and perspicuous. (However, the agreement
facts of languages are full of tiny details and exceptions, which make the
introduction of more rules unavoidable.)

Now if AVSs are only the description, then what are categories? In a nut-
shell, it is thought that categories are Kripke–frames. One assumes a set of
vertices and associates with each attribute a binary relation on this set. So,
attributes are edge colours, atomic values turn into vertex colours. And a syn-
tactic tree is no longer an exhaustively ordered tree with simple labels but

Categories 465

!sg NUM

ÃÃÃÃ �
!1

¤!
ñ ñ ñ ñÄÄÄÄ �
! CAT

np

PER ¦CAT ! s!
òòòò !
! ¤CAT

vp

Ä Ä Ä Ä��
NUM ! sg

Ã Ã Ã Ã��PER ! 1

Figure 17. The Kripke–frame of an AVS

an exhaustively ordered tree with labels having complex structure. Or, as it is
more convenient, we shall assume that the tree structure itself also is coded by
means of AVSs. The Figure 17 shows an example of a structure which — as
one says — is licensed by the rule (6.17). The literature on AVSs is rich (see
the books (Johnson, 1988) and (Carpenter, 1992)). In its basic form, however,
it is quite simple. Notice that it is a mistake to view attributes as objects. In
fact, AVSs are not objects, they are descriptions of objects. Moreover, they
can be the values of attributes. Therefore we treat values like np, 1 as proper-
ties which can be combined with the usual boolean operations, for example¶ , � , · or � . This has the advantage that we are now able to represent the
category of the German verb form

)�D / D�' in either of the following ways.

(6.19)

øù
CAT : v
PER : 1 · 3
NUM : pl

úû øù
CAT : v
PER : ¶ 2
NUM : pl

úû
The equivalence between these two follows only if we assume that the values
of PER can be only 1, 2 or 3. This fact, however, is a fact of German, and will
be part of the grammar of German. (In fact, it seems to hold pretty universally
across languages.) Notice that the collocation of attribute–value pairs into an
attribute–value structure is nothing but the logical conjunction. So the left
hand AVS can also be written down as follows.

(6.20) ¦ CAT : v §½�¸¦ PER : 1 · 3 §ï�¸¦ NUM : pl §
One calls underspecification the fact that a representation does not fix an
object in all detail but that it leaves certain properties unspecified. Disjunctive

466 The Model Theory of Linguistic Structures

specifications are a case in point. However, they do not in fact provide the
most welcome case. The most ideal case is when certain attributes are not
contained in the AVS so that their actual value can be anything. For example,
the category of the English verb form

)>0.T
may be (partially!) represented

thus.

(6.21) ý CAT : v
TEMP : past þ

This means that we have a verb in the past tense. The number and person are
simply not mentioned. We can — but need not — write them down explicitly.

(6.22)

øüüù CAT : v
TEMP : past
NUM : 0
PER : 0

úØÿÿû
Here 0 is the maximally unspecified value. We have — this is a linguistical,
that is to say, an empirical, fact —:

(6.23) ¦ PER : 1 · 2 · 3 §
From this we can deduce that the category of

)�0'T
also has the following

representation.

(6.24)

øüüù CAT : v
TEMP : past
NUM : 0
PER : 1 · 2 · 3

úØÿÿû
Facts of language are captured by means of axioms. More on that later.

Since attribute–value pairs are propositions, we can combine them in the
same way. The category of the English verb form

)4D�D
has among other the

following grammatical representation.

(6.25) ¶ øù
CAT : v
PER : 3
NUM : sg

úû ·¨ý CAT : v
NUM : pl þ

This can alternatively be written as follows.

(6.26) ¦ CAT : v §½�¸7 ¶ 7=¦ PER : 3 §½�¸¦ NUM : sg §l8#·�¦ NUM : pl §l8

Categories 467

In turn, this can be simplified.

(6.27) ¦ CAT : v §½�¸7 ¶ ¦ PER : 3 §P·¸¦ NUM : pl §l8
This follows on the basis of the given interpretation. Since AVSs are not the
objects themselves but descriptions thereof, we may exchange one descrip-
tion of an object or class of objects by any other description of that same
object or class of objects. We call an AVS universally true if it is always
true, that is, if it holds of every object.

À If ϕ is a tautology of propositional logic then ϕ holds for all replace-
ments of AVSs for the propositional variables.

Á If ϕ is universally true, then so is ¦X : ϕ § .
Â ¦X : ϕ � χ §��1� ��¦X : ϕ §���¦X : χ § .
Ã If ϕ and ϕ � χ are universally true then so is χ .

In order to avoid having to use � , we shall write ϕ ç χ if ϕ � χ is uni-
versally true. Most attributes are definite, that is, they can have at most one
value in any object. For such attributes we also have

(6.28) ¦X : ϕ §ï��¦X : χ §��X� ��¦X : ϕ � χ §
Definite attributes are the norm. Sometimes, however, one needs nondefinite
attributes; they are called set valued to distinguish them from the definite
ones.

The AVSs are nothing but an alternative notation for formulae of some
logical language. In the literature, two different kinds of logical languages
have been proposed. Both serve the purpose equally well. The first is the so–
called monadic second order predicate logic (I ÞHG

), which is a fragment
of second order logic (

ÞHG
). Second order logic extends standard first order

predicate logic as follows. There additionally are variables and quantifiers
for predicates of any given arity n � ω . The quantifiers are also written ~
and � and the variables are Pn

i , n � i � ω . Here, n tells us that the variable is
a variable for n–ary relations. So, PdV :

, 5 Pn
i : n � i � ω 6 is the set of pred-

icate variables for unary predicates and V :
, 5 xi : i � ω 6 the set of object

variables. We write Pn
i 7�Ex 8 to say that Pn

i applies to (the n–tuple) Ex. If ϕ is a
formula so are 7�~ Pn

i 8 ϕ and 7�� Pn
i 8 ϕ . The set of (M)SO–formulae defined over

a given signature Ω is denoted by

ÞHG 7 Ω 8 and I ÞgG 7 Ω 8 , respectively. The

468 The Model Theory of Linguistic Structures

structures are the same as those of predicate logic (see Section 3.8): triplesø , � M ��5 f ì : f � F 6>��5 r ì : r � R 61� , where M is a nonempty set, f ì the
interpretation of the function f in ø and r � the interpretation of the rela-
tion r. A model is a triple �løÀ� γ � β � where ø is a structure β : V � M a
function assigning to each variable an element from M and γ : P � ℘7 M 8 a
function assigning to each n–ary predicate variable an n–ary relation on M.
The relation �løÀ� γ � β ��Ð ϕ is defined inductively.

(6.29) �løÀ� γ � β ��Ð Pn
i 7ÈEx 8 : å β 7�Ex 83� γ 7 Pn

i 8
We define γ Ê P γ k if γ k 7 Q 8 , γ 7 Q 8 for all Q �, P.�løÀ� γ � β �+ÐÝ7�~ P 8 ϕ : å for all γ k Ê P γ : �løÀ� γ k � β ��Ð ϕ(6.30) �løÀ� γ � β �+ÐÝ7�� P 8 ϕ : å for some γ k Ê P γ : �løÀ� γ k � β ��Ð ϕ(6.31)

We write ø�Ð ϕ iff for all γ and β �løÀ� γ � β ��Ð ϕ . I ÞHG
is that fragment of

ÞHG
which has only predicate variables for unary relations (n

,
1). When using

MSO we drop the superscript ‘1’ in the variables P1
i .

Another type of languages that have been proposed are modal languages
(see (Blackburn, 1993) and (Kracht, 1995a)). We shall pick out one specific
language that is actually an extension of the ones proposed in the quoted lit-
erature, namely quantified modal logic (QML). This language possesses a
denumerably infinite set PV :

, 5 pi : i � ω 6 of proposition variables, a set
Md of so–called modalities, and a set Cd of propositional constants. And fi-
nally, there are the symbols ¶ , � , · , � , ¦ v § , ��v�� , ~ and � . Formulas (called
propositions) are defined inductively in the usual way. Moreover, if ϕ is
a proposition, so is 7�~ pi 8 ϕ and 7�� pi 8 ϕ . The notions of Kripke–frame and
Kripe–model remain the same. A Kripke–frame is a triple � F � R � C � , where
R : Md � ℘7 F2 8 and C : Cd � ℘7 F 8 . If m is a modality, R 7 m 8 is the accessi-
bility relation associated with m. In particular, we have

(6.32) �Á¹ª� β � x ��ÐÝ� m � ϕ : å there is y : x R 7 m 8 y and �Á¹ª� β � y � ϕ
For the constants we put

(6.33) �Á¹ª� β � x ��Ð c : å x � C 7 c 8
We define

(6.34)
�Á¹ª� β � x �üÐÝ7�~ p 8 ϕ : å for all β k Ê p β : �Á¹ª� β k � x �+Ð ϕ�Á¹ª� β � x �üÐÝ7�� p 8 ϕ : å for some β k Ê p β : �Á¹ª� β kÁ� x �+Ð ϕ

Categories 469

Table 19. Translating
��� � into

�	��

p†
i :

,
Pi 7 x0 8 c† :

,
Qc 7 x0 87 ¶ ϕ 8 † :

, ¶ ϕ† 7 ϕ1 � ϕ2 8 † :
,

ϕ†
1 � ϕ†

27 ϕ1 · ϕ2 8 † :
,

ϕ†
1 · ϕ†

2 7 ϕ1 � ϕ2 8 † :
,

ϕ†
1 � ϕ†

27=7�~ pi 8 ϕ 8 † :
, 7�~ Pi 8 ϕ† 7=7�� pi 8 ϕ 8 † :

, 7�� Pi 8 ϕ†7=¦m § ϕ 8 † :
, 7�~ x0 8�7 rm 7 x0 � xi 8�� ¦ xi ¾ x0 § ϕ† 87=� m � ϕ 8 † :
, 7�� x0 8�7 rm 7 x0 � xi 8��¸¦ xi ¾ x0 § ϕ† 8

We write �Á¹ª� β �»Ð ϕ if for all x � F �Á¹ª� β � x ��Ð ϕ ; we write ¹ËÐ ϕ , if for all β
we have �Á¹ª� β �»Ð ϕ .

We define an embedding of ��IÌÜ�7 Ω 8 into I ÞgG 7 Ωm 8 , where Ωm is defined
as follows. Let R :

, 5 rm : m � Md 6 and Cd :
, 5 Qc : c � K 6 . Ωm 7 rm 8 :

,
2,

Ωm 7 Qc 8 :
,

1. Then define ϕ† as in Table 19. Here in the last two clauses
xi is a variable that does not already occur in ϕ †. Finally, if ¹ is a Kripke–
frame, we define an MSO–structure ¹ m as follows. The underlying set is F ,7 rm 8 f m

:
,

R 7 m 8 for every m � Md, and 7 Qc 8 f m
:
,

C 7 c 8 . Now we have

Theorem 6.1 Let ϕ �
��IÌÜ�7 Ω 8 . Then ϕ † � I ÞHG 7 Ωm 8 . And for every Kripke–
frame ¹ : ¹ËÐ ϕ iff ¹ m Ð ϕ†.

Proof. We shall show the following. Assume β : PV � ℘7 F 8 is a valuation
in ¹ and that x � F and γ : PdV � ℘7 F 8 and δ : V � F valuations for the
predicate and the object variables. Then if γ 7 Pi 8 , β 7 pi 8 for all i � ω and
δ 7 x0 8 , x we have

(6.35) �Á¹ª� β � x ��Ð ϕ å �Á¹ m � γ � δ �»Ð ϕ†

It is not hard to see that (6.35) allows to derive the claim. We prove (6.35)
by induction. If ϕ

,
pi then ϕ† , Pi 7 x0 8 and the claim holds in virtue of

the fact that β 7 pi 8 , γ 7 Pi 8 and γ 7 x0 8 , x. Likewise for ϕ
,

c � C. The
steps for ¶ , � , · and � are routine. Let us therefore consider ϕ

, 7�� pi 8 η .
Let �Á¹ª� β � x � Ð ϕ . Then for some β k which differs from β at most in pi:�Á¹ª� β k � x � Ð η . Put γ k as follows: γ k 7 Pi 8 :

,
β k 7 pi 8 for all i � ω . By induc-

tion hypothesis �Á¹ m � γ kl� δ �yÐ η† and γ k differs from γ at most in Pi. There-
fore we have �Á¹ m � γ � δ �+ÐÝ7�� Pi 8 η† , ϕ†, as desired. The argument can be re-
versed, and the case is therefore settled. Analogously for ϕ

, 7�~ Pi 8 η . Now for
ϕ
, � m � η . Let �Á¹ª� β � x ��Ð ϕ . Then there exists a y with x rm y and �Á¹ª� β � y ��Ð η .

470 The Model Theory of Linguistic Structures

Choose δ k such that δ kã7 x0 8 , y and δ kã7 xi 8 , δ 7 xi 8 for every i � 0. Then by
induction hypothesis �Á¹ m � γ � δ k �;Ð η†. If xi is a variable that does not oc-
cur in η† then let δ k k 7 xi 8 :

,
δ k 7 xi 8 , δ k k 7 x0 8 :

,
x and δ k k 7 x j 8 :

,
δ k 7 x j 8 for

all j �� 5 0 � i 6 . Then �Á¹ m � γ � δ k k �3Ð rm 7 x0 � xi 8 ; ¦ xi ¾ x0 § η† , ϕ†. Hence we have�Á¹ m � γ � δ k k ��Ð ϕ†. Now it holds that δ k kÈ7 x0 8 , x
,

δ 7 x0 8 and xi is bound. There-
fore also �Á¹ m � γ � δ �3Ð ϕ†. Again the argument is reversible, and the case is
proved. Likewise for ϕ

, ¦m § η . <
Exercise 213. Let 1, 2 and 3 be modalities. Show that a Kripke–frame satis-
fies the following formula iff R 7 3 8 , R 7 1 8�s R 7 2 8 .
(6.36) � 3 � p ��� 1 � p ·¸� 2 � p
Exercise 214. Let 1, 2 and 3 be modalities. Show that a Kripke–frame satis-
fies the following formula iff R 7 3 8 , R 7 1 8�: R 7 2 8 .
(6.37) � 3 � p ��� 1 ��� 2 � p
Exercise 215. In HPSG one writes ¦ CAT : α � β § if CAT has at least two
values: α and β . (If α � β is consistent, CAT can take also one value, α � β ,
but not necessarily.) Devise a translation into ��IÌÜ for � . What if ¦ cat : α � β §
also means that CAT can have no other value than α and β?

Exercise 216. Let r be a binary relation symbol. Show that in a model ofI ÞHG
the following holds: �løÀ� γ � β �»Ð Q 7 x � y 8 iff x 7 r ì 8 ¡ y (this means that y

can be reached from x in finitely many r–steps).

(6.38) Q 7 x � y 8 :
, 7�~ P 8�7 P 7 x 8��¸7�~ yz 8�7 P 7 y 8(� y r z �1�¨� P 7 z 8=8P�1� � P 7 y 8=8

2. Axiomatic Classes I: Strings

For the purposes of this chapter we shall code strings in a new way. This
will result in a somewhat different formalization than the one discussed in
Section 1.4. The differences are, however, marginal.

Definition 6.2 A Z–structure over the alphabet A is a triple of the form ^ ,� L �
aØ��5 Qa : a � A 61� , where L is an arbitrary finite set, 5 Qa : a � A 6 a partition
of L and a a binary relation on L such that both a � and its inverse are linear,
irreflexive, total orderings of L.

Axiomatic Classes I: Strings 471

Z–structures are not strings. However, it is not difficult to define a map which
assigns a string to each Z–structure. However, if L �, w there are infinitely
many Z–structures which have the same string associated with them and they
form a proper class.

Fix A and denote by I ÞHG
the MSO–language of the binary relation sym-

bol a as well as a unary predicate constant a for every a � A.

Definition 6.3 Let ´ be a set or class of Z–structures over an alphabet A.
Then p \	´ denotes the set 5 ϕ �bI ÞgG

: for all ^É�Ë´ : ^ÍÐ ϕ 6 , called the
MSO–theory of ´ . If Φ is a set of sentences from I ÞHG

then let I�d(c Φ be the
set of all ^ which satisfy every sentence from Φ. I�d�c Φ is called the model
class of Φ.

Recall from Section 1.1 the notion of a context. It is easy to see that Ð together
with the class of Z–structures and the MSO–formulae form a context. From
this we directly get the following

Theorem 6.4 The map ρ : ´ÿ��âI�d�c¢p�\�´ is a closure operator on the class
of of classes Z–structures over A. Likewise, λ : Φ ��<p�\ÒI�d(c Φ is a closure
operator on the set of all subsets of I ÞgG

.

(We hope that the reader does not get irritated by the difference between
classes and sets. In the usual set theory one has to distinguish between sets
and classes. Model classes are except for trivial exception always classes
while classes of formulae are always sets, because they are subclasses of the
set of formulae. This difference can be neglected in what is to follow.) We
now call the sets of the form λ 7l´�8 logics and the classes of the form ρ 7 Φ 8
axiomatic classes. A class is called finitely MSO–axiomatizable if it has the
form I�d(c�7 Φ 8 for a finite Φ, while a logic is finitely MSO–axiomatizable if
it is the logic of a finitely axiomatizable class. We call a class of Z–structures
over A regular if it is the class of all Z–structures of a regular language. For-
mulae are called valid if they hold in all structures. The following result from
(Büchi, 1960) is the central theorem of this section.

Theorem 6.5 (Büchi) A class of Z–structures is finitely MSO–axiomatizable
iff it corresponds to a regular language which does not contain ε .

This sentence says that with the help of I ÞHG
we can only define regular

classes of Z–structures. If one wants to describe nonregular classes, one has
to use stronger logical languages (for example

ÞgG
). The proof of this theo-

rem requires a lot of work. Before we begin, we have to say something about

472 The Model Theory of Linguistic Structures

Table 20. The Formula δ (��½*
δ 7Á­�8 :

, 7�~ xyz 8�7 x a y � x a z �4� � y , z 8 (a)� 7�~ xyz 8�7 y a x � z a x �1� � y , z 8 (b)� 7�~ P 8Z5(7�~ xy 8�7 x a y �1� � P 7 x 8»� P 7 y 8=8��¸7�� x 8 P 7 x 8P�� ��7�� x 8�7 P 7 x 8��¸7�~ y 8�7 x a y � ¶ P 7 y 8=8=8Z6 (c)� 7�~ P 8Z5(7�~ xy 8�7 x a y �1� � P 7 y 8»� P 7 x 8=8��¸7�� x 8 P 7 x 8P�� ��7�� x 8�7 P 7 x 8��¸7�~ y 8�7 y a x � ¶ P 7 y 8=8=8Z6 (d)� 7�~ P 8Z5(7�~ xy 8�7 x a y ��7 P 7 x 8»� P 7 y 8=8=8� 7�� x 8 P 7 x 8P��� ��7�~ x 8 P 7 x 8Z6 (e)� 7�~ x 8 � a � A a 7 x 8 (f)� 7�~ x 8 " a �ð b a 7 x 8�� ¶ b 7 x 8 (g)� 7�� P0P1 Â=Â=Â Pn © 1 8Z5(7�~ x 8�7=7�~ y 8 ¶ 7 y a x 8P�4�¨� P0 7 x 8=8��7�~ x 8�7=7�~ y 8 ¶ 7 x a y 8P�1�¨�/� i � F Pi 7 x 8=8��7�~ xy 8�7 x a y � " a � A ¦ a 7 y 8(� Pi 7 x 8P�� �/� j � δ ¯ i é a ° Pj 7 y 8�§l8Z6 (h)

the formulation of the theorem. By definition, models are only defined on
nonempty sets. This is why a model class always defines a language not con-
taining ε . It is possible to change this but then the Z–structure of ε (which is
actually unique) is a model of every formula, and then w is regular but not
MSO–axiomatizable. So, complete correspondence cannot be expected. But
this is the only exception.

Let us begin with the simple direction. This is the claim that every regu-
lar class is finitely MSO–axiomatizable. Let ´ be a regular class and L the
corresponding regular language. Then there exists a finite state automaton­ , � A � Q � i0 � F � δ � with L 7Á­�8 , L. We may choose Q :

,
n for a natural num-

ber n and i0
,

0. Look at the sentence δ 7Á­�8 defined in Table 20.

Lemma 6.6 Let ^ be an MSO–structure. Then ^¸Ð δ 7Á­�8 iff ^ is a Z–structure
and its associated string is in L 7Á­�8 .
Proof. Let ^ÅÐ δ 7Á­�8 and let ^ be an MSO–structure. Then there exists a
binary relation a (the interpretation of a) and for every a � A a subset Qa }
L. By (a) and (b) an element x has at most one a –successor and at most
one a –predecessor. By (c), every nonempty subset which is closed under a –
successors contains a last element, and by (d) every nonempty subset which is

Axiomatic Classes I: Strings 473

closed under a –predecessors contains a first element. Since L is not empty, it
has a least element, x0. Let H :

, 5 xi : i b κ 6 be a maximal set such that xi � 1 is
the (unique) a –successor of xi. H cannot be infinite, for otherwise 5 xi : i b ω 6
would be a successor closed set without last element. So, H is finite. H is also
closed under predecessors. So, H is a maximal connected subset of L. By (e),
every maximal connected nonempty subset of L is identical to L. So, H

,
L,

and hence L is finite, connected, and linear in both directions.
Further, by (f) and (g) every x � L is contained in exactly one set Qa.

Therefore ^ is a Z–structure. We have to show that its string is in L 7Á­�8 . (h)
says that we can find sets Hi } L for i b n such that if x is the first element
with respect to a then x � H0, if x is the last element with respect to a then
x � H j for some j � F and if x � Hi, y � Qa, x a y then y � H j for some
j � δ 7 i � a 8 . This means that the string is in L 7Á­�8 . (There is namely a biunique
correspondence between accepting runs of the automaton and partitions into
Hi. Under that partition x � Hi means exactly that the automaton is in state i
at x in that run.) Now let ^>µ δ 7Á­�8 . Then either ^ is not a Z–structure or there
exists no accepting run of the automaton ­ . Hence the string is not in L 7Á­�8 .
This concludes the proof. <

Notice that we can define b , the transitive closure of a , and � , the transi-
tive closure of h (and converse of b) by an MSO–formula (see Exercise 216).
Further, we will write x ç y for x b y · x

,
y, and x a y in place of x a y. Now,

given a Z–structure ^ , � L �
aØ��5 Qa : a � A 61� put

(6.39) M 7_^�8 :
, � L �
aØ�
hØ�ibØ�i�¬��5 Qa : a � A 61�

A structure of the form M 7_^;8 we call an MZ–structure.
Now we shall prove the converse implication of Theorem 6.5. To this end

we shall make a detour. We put M :
, 51g¶�ivØ�
aØ�
hØ6 and C :

, 5 ca : a � A 6 .
Then we call ��IÌÜ the language of quantified modal logic with basic modal-
ities from M and propositional constants from C. Now we put

(6.40)

σ :
, �Ïa]� p ����g¬� p � �Ïh]� p ����v�� p� p ��¦¸h §��Ïa]� p � p ��¦¸a §��Ïh]� p� �Ïa�� p ��¦¸a § p � �Ïh]� p ��¦¸h § p� ��g�����g¬� p ����g�� p � ��v]����v]� p ����v]� p� ¦ g�§�7=¦ g]§ p � p 8»��¦ g]§ p � ¦ v §�7=¦ v § p � p 8���¦ v § p� " a �ð b ca � ¶ cb � � a � A ca

We call a structure connected if it is not of the form ¹ � ` with nonempty¹ and ` . As already mentioned, QML–formulae cannot distinguish between

474 The Model Theory of Linguistic Structures

connected and nonconnected structures.

Theorem 6.7 Let ¹ be a connected Kripke–frame for ��IÌÜ . Put Z 7Á¹@8 :
,� F � R 7Ïa�8P� R 7Ïh]8P� R 7�g¬8P� R 7�v]8P��5 K 7 ca 8 : a � A 61� . ¹ÙÐ σ iff Z 7Á¹@8 is an MZ–struc-

ture over A.

Proof. The proof is not hard but somewhat lengthy. It consists of the follow-
ing facts (the others are dual to these).

À ¹¸ÐÝ�Ïa]� p ����g¬� p iff R 7Ïa]8Y} R 7�g¬8 .
Á ¹¸Ð p ��¦¸h §��Ïa]� p iff R 7Ïh]8Y} R 7Ïa�8�� .

Â ¹¸ÐÝ�Ïa]� p ��¦¸a § p iff every point has at most one R 7Ïa]8 –successor.,

Ã ¹¸ÐÝ��g¬����g¬� p ����g¬� p iff R 7�g¬8 is transitive.

Ä ¹ Ð ¦ g]§�7 p �þ¦ g]§ p 8y� ¦ g]§ p iff R 7�g¬8 is transitive and free of infinite
ascending chains (or cycles).

We show only À and Ä. À For this let ¹AµÉ�Ïa]� p ����g�� p. Then there exists
β and x such that �Á¹ª� β � x �@Ð �Ïa]� p; ¶ ��g�� p. This means that there is a y � F
with y � β 7 p 8 and x R 7Ïa�8 y. If x R 7�g¬8 y then x Ð���g¬� p, contradiction. This
shows R 7Ïa]8�p R 7�g�8 . Assume conversely R 7Ïa]8Rp R 7�g¬8 . Then there exist x
and y such that x R 7Ïa]8 y but not x R 7�g¬8 y. Now set β 7 p 8 :

, 5 y 6 . Then we have�Á¹ª� β � x ��Ðì�Ïa�� p; ¶ ��g¬� p. Ä Because of Ã we restrict ourselves to proving this
for transitive R 7�g�8 . Assume ¹EµÉ¦ g]§�7=¦ g�§ p � p 8+��¦ g]§ p. Then there exists a
β and a x0 with �Á¹ª� β � x �+Ð�¦ g]§�7 p ��¦ g]§ p 8 ; ��g¬� ¶ p. So there exists a x1 with
x0 R 7�g¬8 x1 and x1 �� β 7 p 8 . Then x1 Ð�¦ g]§ p � p and therefore x1 ÐÙ��g�� ¶ p. Be-
cause of the transitivity of R 7�g¬8 we also have x1 Ð�¦ g�§�7=¦ g]§ p � p 8 . Repeating
this argument we find an infinite chain � xi : i � ω � such that xi R 7�g¬8 xi � 1.
Therefore, R 7�g¬8 contains an infinite ascending chain. Conversely, assume
that R 7�g¬8 has an infinite ascending chain. Then there exists a set � xi : i � ω �
with xi R 7�g¬8 xi � 1 for all i � ω . Put β 7 p 8 :

, 5 y : there is i � ω : y R 7�g¬8 xi 6 .
Then it holds that �Á¹;� β � x0 �@Ð ¦ g]§�7=¦ g]§ p � p 8 ; ��g¬� ¶ p. For let x R 7�g¬8 y and
suppose that y Ð ¦ g]§ p. Then there exists an i with y R 7�g¬8 xi (for R 7�g¬8 is
transitive). Hence y Ð p, whence y ÐÍ¦ g]§ p � p. Since y was arbitrary, we
have x Ðx¦ g]§�7=¦ g]§ p � p 8 . Also x1 µ p and x0 R 7�g¬8 x1. Hence x0 ÐÝ��g¬� ¶ p, as
required. <

Notice that a finite frame has an infinite ascending chain iff it has a cycle.
Now we define an embedding of I ÞHG

into ��IÌÜ . To this end we need some
preparations. As one convinces oneself easily the following laws hold.

Axiomatic Classes I: Strings 475

À 7�~ x 8 ϕ � ¶ 7�� x 8�7 ¶ ϕ 8 , ¶½¶ ϕ � ϕ .

Á 7�~ x 8�7 ϕ1 � ϕ2 8���7�~ x 8 ϕ1 �¸7�~ x 8 ϕ2,7�� x 8�7 ϕ1 · ϕ2 8���7�� x 8 ϕ1 ·¸7�� x 8 ϕ2.

Â 7�~ x 8�7 ϕ1 · ϕ2 83� 7 ϕ1 ·Ý7�~ x 8 ϕ2 8 , 7�� x 8�7 ϕ1 � ϕ2 8y� 7 ϕ1 �x7�� x 8 ϕ2 8 , if x
does not occur freely in ϕ1.

Finally, for every variable y �, x:7�~ x 8 ϕ 7 x 8�� 7�~ x 8�7 x b y � ϕ 7 x 8=8(6.41) �¸7�~ x 8�7 y b x � ϕ 7 x 8=8(� ϕ 7 y 8
We now define following quantifiers.

(6.42)

7�~ x b y 8 ϕ :
, 7�~ x 8�7 x b y � ϕ 87�~ x � y 8 ϕ :
, 7�~ x 8�7 x � y � ϕ 87�� x b y 8 ϕ :
, 7�� x 8�7 x b y � ϕ 87�� x � y 8 ϕ :
, 7�� x 8�7 x � y � ϕ 8

We call these quantifiers restricted. Evidently, we can replace an unrestricted
quantifier 7�~ x 8 ϕ by the conjunction of restricted quantifiers.

Lemma 6.8 For every MSO–formula ϕ with at least one free object variable
there is an MSO–formula ϕ g with restricted quantifiers such that in all Z–
structures ^ : ^ Ð ϕ � ϕg.

We define the following functions f , f � , g and g � on unary predicates.

(6.43)

7 f 7 ϕ 8=8�7 x 8 :
, 7�� y a x 8 ϕ 7 y 87 g 7 ϕ 8=8�7 x 8 :
, 7�� y h x 8 ϕ 7 y 87 f � 7 ϕ 8=8�7 x 8 :
, 7�� y b x 8 ϕ 7 y 87 g � 7 ϕ 8=8�7 x 8 :
, 7�� y � x 8 ϕ 7 y 8

A somewhat more abstract approach is provided by the notion of a universal
modality.

Definition 6.9 Let M be a set of modalities and ω � M. Further, let L be a
��IÌÜ�7 M 8 –modal logic. ω is called a universal modality of L if the following
formulae are contained in L:

476 The Model Theory of Linguistic Structures

Table 21. Mimicking the Variables in
��� �5 Px ¾ x 6(7 x , y 8 :

,
Px 7 y 8 5 Px ¾ x 6(7 y , x 8 :

,
Px 7 y 85 Px ¾ x 6(7 v , w 8 :

,
v
,

w 5 Px ¾ x 6(7 x a y 8 :
, 7 g 7 Px 8=8�7 y 85 Px ¾ x 6(7 y a x 8 :

, 7 f 7 Px 8=8�7 y 8 5 Px ¾ x 6(7 v a w 8 :
,

v a w5 Px ¾ x 6(7 a 7 x 8=8 :
,

a 7 x 8 5 Px ¾ x 6(7 ¶ ϕ 8 :
, ¶ 5 Px ¾ x 6 ϕ5 Px ¾ x 6(7 ϕ1 � ϕ2 8 :

, 5 Px ¾ x 6 ϕ1 �ì5 Px ¾ x 6 ϕ25 Px ¾ x 6(7 ϕ1 · ϕ2 8 :
, 5 Px ¾ x 6 ϕ1 ·ì5 Px ¾ x 6 ϕ25 Px ¾ x 6(7=7�� y 8 ϕ 8 :
, 7�� y 8Z5 Px ¾ x 6 ϕ5 Px ¾ x 6(7=7�� x 8 ϕ 8 :
, 7�� x 8 ϕ5 Px ¾ x 6(7=7�~ P 8 ϕ 8 :
, 7�~ P 8Z5 Px ¾ x 6 ϕ5 Px ¾ x 6(7=7�� P 8 ϕ 8 :
, 7�� P 8Z5 Px ¾ x 6 ϕ

À ¦ω § p � p, ¦ω § p ��¦ω §�¦ω § p, p ��¦ω §�� ω � p.

Á ¦ω § p ��¦m § p, for all m � M.

Proposition 6.10 Let L be a ��IÌÜ�7 M 8 –logic, ω � M a universal modality
and ¹ , � F � R � a connected Kripke–frame with ¹ËÐ L. Then R 7 ω 8 , F e F.

The proof is again an exercise. The logic of Z–structures allows to define a
universal modality. Namely, set

(6.44) ¦ω § ϕ :
,

ϕ �¸¦ g]§ ϕ ��¦ v § ϕ
This satisfies the requirements above.

The obvious mismatch between I ÞHG
and ��IÌÜ is that the former allows

for several object variables to occur freely, while the latter only contains
one free object variable (the world variable), which is left implicit. However,
given that ϕ contains only one free object variable, we can actually massage
it into a form suitable for ��IÌÜ . Let Px be a predicate variable which does not
occur in ϕ . Define 5 Px ¾ x 6 ϕ inductively as in Table 21. (Here, assume that
x ��Ë5 v� w 6 and x �, y.) Let γ 7 Px 8 , 5 β 7 x 8Z6 . Then

(6.45) �løÀ� γ � β ��Ð ϕ å �løÀ� γ � β ��Ð¸5 Px ¾ x 6 ϕ
Lemma 6.11 Let

(6.46)
ν 7 P 8 :

, 7�� x 8�7 P 7 x 8=8��¸7�~ x 8�7 P 7 x 8»� ¶ 7 f � 7 P 8=8�7 x 8=8�¸7�~ x 8�7 P 7 x 8»� ¶ 7 g � 7 P 8=8�7 x 8=8

Axiomatic Classes I: Strings 477

Then �løÀ� γ � β ��Ð ν 7 P 8 iff γ 7 P 8 , 5 x 6 for some x � M.

This is easy to show. Notice that ν 7 P 8 contains no free occurrences of x. This
is crucial, since it allows to directly translate ν 7 P 8 into a ��IÌÜ –formula.

Now we define an embedding of I ÞHG
into ��IÌÜ . Let h : P � PV be a

bijection from the set of predicate variables of I ÞHG
onto the set of proposi-

tional variables of ��IÌÜ .

(6.47)

7 a 7 x 8=8 � :
,

ca 7 ¶ ϕ 8 � :
, ¶ ϕ �7 P 7 y 8=8 � :

,
h 7 P 8 7 ϕ1 � ϕ2 8 � :

,
ϕ �1 � ϕ �27 f 7 ϕ 8=8 � :

, �Ïh]� ϕ � 7 ϕ1 · ϕ2 8 � :
,

ϕ �1 · ϕ �27 g 7 ϕ 8=8 � :
, �Ïa]� ϕ � 7=7�� P 8 ϕ 8 � :

, 7�� h 7 P 8=8 ϕ �7 f � 7 ϕ 8=8 � :
, ��v]� ϕ � 7=7�~ P 8 ϕ 8 � :

, 7�~ h 7 P 8=8 ϕ �7 g � 7 ϕ 8=8 � :
, ��g¬� ϕ �

For the first–order quantifiers we put

(6.48) 7=7�~ x 8 ϕ 7 x 8=8 � :
, 7�~ px 8�7=7=� ω � px ��7�~ p kx 8�7=¦ω §�7 p kx � px 8��7=¦ω § ¶ px ��·ì��¦ω §�7 p kx � px 8=8=8=8+� 5 px ¾ p 6 ϕ � 8

and

(6.49) 7=7�� x 8 ϕ 7 x 8=8 � :
, 7�~ px 8�7=7=� ω � px ��7�~ p kx 8�7=¦ω §�7 p kx � px 8��7=¦ω § ¶ px �K·Ù��¦ω §�7 p kx � px 8=8=8=8�� 5 px ¾ x 6 ϕ � 8

The correctness of this translation follows from the fact that

(6.50) �Á¹ª� β � x ��ÐÝ� ω � px �¸7�~ p kx 8�7=¦ω §�7 p kx � px 8� 7=7=¦ω § ¶ px 8#·¸¦ω §�7 p kx � px 8=8=8
exactly if β 7 px 8 , 5 v 6 for some v � F .

Theorem 6.12 Let ϕ �bI ÞgG
contain at most one free variable, the object

variable x0. Then there exists a QML–formula ϕ M such that for all Z–struc-
tures � :

(6.51) �_^ � β �»Ð ϕ 7 x0 8 iff � M 7_^;8P� β 7 x0 8=�»Ð ϕ 7 x0 8 M

478 The Model Theory of Linguistic Structures

Corollary 6.13 Modulo the identification ^x�� M 7_^;8 , I ÞHG
and ��IÌÜ define

the same classes of connected nonempty and finite Z–structures. Further: ´
is a finitely MSO–axiomatizable class of Z–structures iff M 7l´�8 is a finitely
QML–axiomatizable class of MZ–structures.

This shows that it is sufficient to prove that finitely QML–axiomatizable
classes of MZ–structures define regular languages. This we shall do now.
Notice that for the proof we only have to look at grammars with rules of the
form X � a � aY and no rules of the form X � ε . Furthermore, instead of
regular grammars we can work with regular grammars ¡ , where we have a set
of start symbols.

Let G
, � Σ � N � A � R � be a regular grammar ¡ and Ex a string. For a deriva-

tion of Ex we define a Z–structure over A e N (!) as follows. We consider the
grammar ¡ G Î :

, � Σ � N � A e N � R Î(� which consists of the following rules.

R Î :
, 5 X ��� a � X � Y : X � aY � R 6(6.52) sì5 X ��� a � X � : X � a � R 6

The map h : A e N � A : � a � X ���� a defines a homomorphism from 7 A e N 8 ¡
to A ¡ , which we likewise denote by h. It also gives us a map from Z–structures
over A e N to Z–structures over A. Every G–derivation of Ex uniquely defines
a G Î –derivation of a string Ex Î with h 7ÈEx Î�8 , Ex and this in turn defines a Z–
structure

(6.53) ø , � L �
aØ��5 Q ì _ a é X ` : � a � X �@� A e N 61�
From ø we define a model over the alphabet A s N, also denoted by Ex Î .

(6.54) Ex Î :
, � L �
aØ��5 Q éa : a � A 6>��5 Q éX : X � N 61�

Here w � Q éa iff w � Q ì _ a é X ` for some X and w � Q éX iff w � Q ì _ a é X ` for some
a � A.

Definition 6.14 Let G
, � Σ � N � A � R � be a regular grammar ¡ and ϕ ����IÌÜ a

constant formula (with constants for elements of A). We say, G is faithful to
ϕ if there is a subset H } N such that for every string Ex, every Ex Î and every
w: �ÈEx Î�� w �YÐ ϕ iff there exists X � H with w � QX . We say, H codes ϕ with
respect to G.

Axiomatic Classes I: Strings 479

The idea behind this definition is as follows. Given a set H and a formula ϕ ,
H codes ϕ with respect to G if in every derivation of a string Ex ϕ is true inEx Î at exactly those nodes where the nonterminal H occurs. The reader may
convince himself of the following facts.

Proposition 6.15 Let G be a regular grammar ¡ and let H code ϕ and K code
χ with respect to G. Then the following holds.

À N v H codes ¶ ϕ with respect to G.

Á H t K codes ϕ � χ with respect to G.

Â H s K codes ϕ · χ with respect to G.

We shall inductively show that every QML–formula can be coded in a regular
grammar ¡ on condition that one suitably extends the original grammar.

Definition 6.16 Suppose that G1
, � Σ1 � N1 � A � R1 � and G2

, � Σ2 � N2 � A � R2 �
are regular grammars ¡ . Then put

(6.55) G1 e G2 :
, � Σ1 e Σ2 � N1 e N2 � A � R1 e R2 �

where

R1 e R2 :
, 5(� X1 � X2 ��� a � Y1 � Y2 � : Xi � aYi � Ri 6(6.56) sì5(� X1 � X2 ��� a : Xi � a � Ri 6

We call G1 e G2 the product of the grammars ¡ G1 and G2.

We have

Proposition 6.17 Let G1 and G2 be grammars ¡ over A. Then L 7 G1 e G2 8 ,
L 7 G1 8�t L 7 G2 8 .
The following theorem is not hard to show and therefore left as an exercise.

Lemma 6.18 Let ϕ be coded in G2 by H. Then ϕ is coded in G1 e G2 by
N1 e H and in G2 e G1 by H e N1.

Definition 6.19 Let ϕ ����IÌÜ . A code for ϕ is a pair � G � H � where L 7 G 8 , A ¡
and H codes ϕ with respect to G. ϕ is called codable if it has a code.

480 The Model Theory of Linguistic Structures

Assume � G � H � is a code for ϕ and let G k be given. Then we have L 7 G kïe G 8 ,
L 7 G k 8 and ϕ is coded in G k>e G by N k1e H . Therefore, it suffices to name just
one code for every formula. Moreover, the following fact makes life simpler
for us.

Lemma 6.20 Let ∆ be a finite set of codable formulae. Then there exists a
grammar ¡ G and sets Hϕ , ϕ � ∆, such that � G � Hϕ � is a code of ϕ .

Proof. Let ∆ :
, 5 δi : i b n 6 and let � Gi � Mi � be a code of δi, i b n. Put G :

,Ý i nGi and Hi :
, Ý j iNi e Hi e·Ý i j nN j. Iterated application of Lemma 6.18

yields the claim. <
Theorem 6.21 (Coding Theorem) Every constant QML–formula is codable.

Proof. The proof is by induction over the structure of the formula. We begin
with the code of a, a � A. Define the following grammar ¡ Ga. Put N :

, 5 X � Y 6
and Σ :

, 5 X � Y 6 . The rules are

(6.57) X � a � aX � aY � Y � b � bX � bY

where b ranges over all elements from A v 5 a 6 . The code is � Ga ��5 X 61� as
one easily checks. The inductive steps for ¶ , � , · and � are covered by
Proposition 6.15. Now for the case ϕ

, �Ïa]� η . We assume that η is codable
and that Cη

, � Gη � Hη � is a code. Now we define Gϕ . Let Nϕ :
,

Nη eì5 0 � 1 6
and Σϕ :

,
Ση e�5 0 � 1 6 . Finally, let the rules be of the form

(6.58) � X � 1 ��� a � Y � 0 �P� � X � 1 �»� a � Y � 1 �P�
where X � aY � Rη and Y � Hη and of the form

(6.59) � X � 0 ��� a � Y � 0 �P� � X � 0 �»� a � Y � 1 �P�
where X � aY � Rη and Y �� Hη . Further, we take all rules of the form

(6.60) � X � 0 ��� a

for X � a � Rη . One easily checks that for every rule X � aY or X � a there
is a rule Gϕ . The code of ϕ is now � Gϕ � Nη e«5 1 61� . Now to the case ϕ

, �Ïh]� η .
Again we assume that η is codable and that the code is Cη

, � Gη � Hη � . Now
we define Gϕ . Let Nϕ :

,
Nη e�5 0 � 1 6 , Σϕ :

,
Ση eÙ5 0 6 . Finally, let Rϕ be the

set of rules of the form

(6.61) � X � 0 ��� a � Y � 1 �P� � X � 1 �»� a � Y � 1 �P�

Axiomatic Classes I: Strings 481

where X � aY � Rη and X � Hη and of the form

(6.62) � X � 0 ��� a � Y � 0 �P� � X � 1 �»� a � Y � 0 �P�
where X � aY � Rη and X �� Hη ; and finally for every rule X � a we take
the rule

(6.63) � X � 0 ��� a � � X � 1 ��� a

on board. The code of ϕ is now � Gϕ � Nη e�5 1 61� . Now we look at ϕ
, ��g¬� η .

Again we put Nϕ :
,

Nη eÝ5 0 � 1 6 as well as Σϕ :
,

Ση eÝ5 0 � 1 6 . We take all
rules of the form

(6.64) � X � 0 ��� a � Y � 0 �
where X � aY � Rη . Further, the rules have the form

(6.65) � X � 1 ��� a � Y � 1 �
where X � aY � Rη and Y �� Hη . Moreover, we take the rules

(6.66) � X � 1 ��� a � Y � 0 �
for X � aY � Rη and Y � Hη , as well as all rules

(6.67) � X � 0 ��� a

where X � a � Rη . The code of ϕ is then � Gϕ � Nη e¸5 1 61� . Now we look at
ϕ
, ��v]� η . Let Nϕ :

,
Nη e�5 0 � 1 6 , and Σϕ :

,
Ση e�5 0 6 . The rules are of the

form

(6.68) � X � 1 ��� a � Y � 1 �
for X � aY � Rη . Further there are rules of the form

(6.69) � X � 0 ��� a � Y � 1 �
for X � aY � Rη and X � Hη . Moreover, we take the rules

(6.70) � X � 0 ��� a � Y � 0 �
where X � aY � Rη and X �� Hη , and, finally, all rules of the form

(6.71) � X � 0 ��� a � � X � 1 ��� a �

482 The Model Theory of Linguistic Structures

where X � a � Rη . The code of ϕ is then � Gϕ � Nη eÙ5 1 61� . The biggest effort
goes into the last case, ϕ

, 7�~ pi 8 η . To start, we introduce a new alphabet,
namely A eÝ5 0 � 1 6 , and a new constant, K . Let a :

, � a � 0 � ·x� a � 1 � . Further,
assume that K � � a � A � a � 1 � holds. Then � a � 1 � � a �àK and � a � 0 � � a � ¶ K .
Then let η k : , η ¦ K ¾ pi § . We can apply the inductive hypothesis to this formula.
Let ∆ be the set of subformulae of η k . For an arbitrary subset Σ } ∆ let

(6.72) LΣ :
, �

δ � Σ
δ � �

δ �� Σ

¶ δ

We can find a grammar ¡ G and for each δ � ∆ sets Hδ such that � G � Hδ � codes
δ . Hence for every Σ } ∆ there exist HΣ such that � G � HΣ � codes LΣ. Now we
first form the grammar ¡ G1 with the nonterminals N e ℘7 ∆ 8 and the alphabet
A e�5 0 � 1 6 . The set of rules is the set of all

(6.73) � X � Σ ����� a � i � � X k � Σ k �
where X � aX k � R, X � HΣ and X k � HΣ ¡ ; further all rules of the form

(6.74) � X � Σ ����� a � i �
where X � a � R and X � HΣ. Put H1

Σ :
,

HΣ e¶5 Σ 6 . Again one easily sees that� G1 � H1
Σ � is a code for Σ for every Σ } ∆. We now step over to the grammar ¡

G2 with N2 :
,

N e�5 0 � 1 6 e ℘7 ∆ 8 and A2 :
,

A as well as all rules

(6.75) � X � i � Σ �»� a � X k � i k � Σ k �
where � X � Σ ����� a � i � � X k � Σ k �Y� R1 and

(6.76) � X � i � Σ �»� a

where � X � Σ �	� � a � i ��� R1. Finally, we define the following grammar ¡ . N3 :
,

N e ℘7℘7 ∆ 8=8 , A3 :
,

A, and let

(6.77) � X ��»;�ª� a � Y �®ÓY�
be a rule iff Ó is the set of all Σ k for which Σ �³» and there are i � i k	�x5 0 � 1 6
such that

(6.78) � X � i � Σ �»� a � Y � i k � Σ k �3� R2

Axiomatic Classes I: Strings 483

Likewise

(6.79) � X ��»;�ª� a � R3

iff there is a Σ �«» and some i �¸5 0 � 1 6 with

(6.80) � X � i � Σ �»� a � R2

Put Hϕ :
, 5 Σ : η k � Σ 6 . We claim: � G3 � Hϕ � is a code for ϕ . For a proof let Ex be

a string and let a G3–derivation of Ex be given. We construct a G1–derivation.
Let Ex , ∏i n xi. By assumption we have a derivation

(6.81) � Xi ��» i �»� xi � Xi � 1 ��» i � 1 �
for i b n v 1 and

(6.82) � Xn © 1 ��» n © 1 �»� xn © 1

By construction there exists a jn © 1 and a Σn © 1 �«» n © 1 such that

(6.83) � Xn © 1 � jn © 1 � Σn © 1 ��� a � R2

Descending we get for every i b n v 1 a ji and a Σi with

(6.84) � Xi � ji � Σi �»� a � Xi � 1 � ji � 1 � Σi � 1 �@� R2

We therefore have a G2–derivation of Ex. From this we immediately get a G1–
derivation. It is over the alphabet A eË5 0 � 1 6 . By assumption η k is coded in
G1 by Hη ¡ . Then η k holds in all nodes i with Xi � Hη ¡ . This is the set of all i
with Xi � HΣ for some Σ } ∆ with η k(} ∆. This is exactly the set of all i with� Xi ��» i ��� Hϕ . Hence we have � Xi ��» i �»� Hϕ iff the Z–structure of Ex satisfies ϕ
in the given G3–derivation at i. This however had to be shown. Likewise from
a G1–derivation of a string a G3–derivation can be constructed, as is easily
seen. <

Now we are almost done. As our last task we have to show that from the
fact that a formula is codable we also get a grammar which only generates
strings that satisfy this formula. So let Φ }�I ÞHG

be finite. We may assume
that all members are sentences (if not, we quantify over the free variables
with a universal quantifier). By Corollary 6.13 we can assume that in place
of MSO–sentences we are dealing with QML–formulae. Further, a finite con-
junction of QML–formulae is again a QML–formula so that we are down to

484 The Model Theory of Linguistic Structures

the case where Φ consists of a single QML–formula ϕ . By Theorem 6.21, ϕ
has a code � G � H � , with G

, � Σ � N � A � R � . Put Gϕ :
, � Σ t H � N t H � A � RH � ,

where

RH :
, 5 X � aY � R : X � Y � H 6(6.85) sì5 X � a � R : X � H 6

Now there exists a Gϕ –derivation of Ex iff Ex Î�Ð ϕ .
Notes on this section. Some remarks are in order about FOL–definable

classes of Z–structures over the signature containing � (!) and a, a � A. A
regular term is � –free if it does not contain ¡ , but may contain occurrences
of v , which is a unary operator forming the complement of a language. Then
the following are equivalent.

À The class of Z–structures for L are finitely FO–axiomatizable.

Á L
,

L 7 t 8 for a � –free regular term t.

Â There is a k f 1 such that for every Ey � A � and Ex �ÁEz � A ¡ : Ex Ey k Ez � L iffEx Ey k � 1 Ez � L.

See (Ebbinghaus and Flum, 1995) and references therein.

Exercise 217. Show that every (!) language is an intersection of regular lan-
guages. (This means that we cannot omit the condition of finite axiomatiz-
ability in Theorem 6.5.)

Exercise 218. Let Φ be a finite MSO–theory, L the regular language which
belongs to Φ. L is recognizable in O 7 n 8 –time using a finite state automaton.
Give upper bounds for the number of states of a minimal automaton recog-
nizing L. Use the proof of codability. Are the derived bounds optimal?

Exercise 219. An MSO–sentence is said to be in Σ1
1 if it has the form

(6.86) 7�� P0 8�7�� P1 8(Â=Â=ÂP7�� Pn © 1 8 ϕ 7 P0 �=�=�=�i� Pn © 1 8
where ϕ does not contain second order quantifiers. ϕ is said to be in Π1

1 if
it has the form 7�~ P0 8�7�~ P1 8(Â=Â=ÂO7�~ Pn © 1 8 ϕ 7 P0 �=�=�=�Z� Pn © 1 8 where ϕ does not con-
tain second order quantifiers. Show the following: Every MSO–axiomatizable
class ´ of Z–structures is axiomatizable by a set of Σ1

1–sentences. If ´ is
finitely MSO–axiomatizable then it is axiomatizable by finitely many Σ1

1–sen-
tences.

Categorization and Phonology 485

3. Categorization and Phonology

In this section we shall deal with syllable structure and phonological rules.
We shall look at the way in which discrete entities, known as phonemes, arise
from a continuum of sounds or phones, and how the mapping between the
sound continuum and the discrete space of language particular phonemes is
to be construed. The issue is far from resolved; moreover, it seems that it
depends on the way we look at language as a whole. Recall that we have
assumed sign grammars to be completely additive: there is no possibility to
remove something from an exponent that has been put there before. This has
a number of repercussions. Linguists often try to define representations such
that combinatory processes are additive. If this is taken to be a definition of
linguistic processes (as in our definition of compositionality) the organisa-
tion of phonology and the phonetics–to–phonology mapping have to have a
particular form. We shall discuss a few examples, notably umlaut and final
devoicing.

For example, the plural of the German noun
7 0'"�D>#

is
7980'"�D>#

. How can
this be realized in an additive way? First, notice that the plural is not formed
from the singular; rather, both forms are derived from an underlying form,
the root. Notice right away that the root cannot be a string, it must be a string
where at most one vowel is marked for umlaut. (Not all roots will undergo
umlaut and if so only one vowel is umlauted!) Technically, we can implement
this by writing the root as a string vector:

7 « 0 « "�D&# . This allows us to restrict
our attention to the representation of the vowel alone.

Typically, in grammar books the root is assumed to be just like the sin-
gular:

7 « 0 « "�D&# . Early phonological theory on the other hand would have
posited an abstract phoneme in place of

0
or
80
, a so–called archiphoneme.

Write
5

for the archiphoneme that is underspecified between
0

and
80
. Then

the root is
7 « 5 « "�D># , and the singular adds the specification, say an element$

, that makes
5

be like
0
, while the plural adds something, say

×
that makes5

be like
80
. In other words, in place of

0
and

80
we have

5 $
and

5�×
.

sing : x « y « z �� z Â y Â $ Â z :
7 « 5 « "�D&# �� 7 5 $�"�D&#

(6.87)

plur : x « y « z �� z Â y Â × Â z :
7 « 5 « "�D&# �� 7 5%× "�D&#

(6.88)

This solution is additive. Notice, however, that
5

cannot be pronounced, and
so the root remains an abstract element. In certain representations, however,80

is derived from
0
. Rather than treating the opposition between

0
and

80
as

486 The Model Theory of Linguistic Structures

equipollent, we may treat it as privative:
80

is
0

plus something else. One
specific proposal is that

80
differs from

0
in having the symbol i in the i–

tier (see (Ewen and van der Hulst, 2001) and references therein). So, rather
than writing the vowels using the Latin alphabet, we should write them as
sequences indicating the decomposition into primitive elements, and the pro-
cess becomes literally additive. Notice that the alphabet that we use actually
is additive.

80
differs from

0
by just two dots — and this is the same with8%

and
8C . Historically, the dots derive from an ‘e’ that was written above the

vowel to indicate umlaut. (This does not always work; in Finnish
8%

is written×
, blocking for us this cheap way out for Finnish vowel harmony.) Final de-

voicing could be solved similarly by positing a decomposition of voiced con-
sonants into voiceless consonant plus an abstract voice element (or rather:
being voiceless is being voiced plus having a devoicing–feature). All these
solutions, however, posit two levels of phonology: a surface phonology and
a deep phonology. At the deep level, signs are again additive. This allows
us to say that languages are compositional from the deep phonological level
onwards.

The most influential model of phonology, by Chomsky and Halle (1968),
is however not additive. The model of phonology they favoured — referred
to simply as the SPE–model — transforms deep structures into surface struc-
tures using context sensitive rewrite rules. We may illustrate these rules with
German final devoicing. The rule says, roughly, that syllable final consonants
(those following the vowel) are voiceless in German. However, as we have
noted earlier (in Section 1.3), there is evidence to assume that some con-
sonants are voiced and only become voiceless exactly when they end up in
syllable final position. Hence, instead of viewing this as a constraint on the
structure of the syllable we may see this as the effect of a rule that devoices
consonants. Write L for the syllable boundary. Sidestepping a few difficulties,
we may write the rule of final devoicing as follows.

(6.89) Õ�¦ g voiced § , |�Õ	¦ v voiced § ¾ ¦ v voiced § or L
(Phonologists write +voiced what in attribute–value notation is ¦ VOICED :g]§ .) This says that a consonant preceding a voiceless sound or a syllable
boundary becomes voiceless. Using such rules, Chomsky and Halle have for-
mulated a theory of the sound structure of English. This is a Type 1 gram-
mar for English. It has been observed, however, by Ron Kaplan and Martin
Kay (1994) and Kimmo Koskenniemi (1983) that for all that language really
needs the relation between deep level and surface level is a regular relation

Categorization and Phonology 487

and can be effected by a finite state transducer. Before we go into the details,
we shall explain something about the general abstraction process in structural
linguistics, exemplified here with phonemes, and on syllable structure.

Phonetics is the study of phones (= linguistic sounds) whereas phonol-
ogy is the study of the phonemes of the languages. We may simply define a
phoneme as a set of phones. Different languages group different phones into
different phonemes, so that the phonemes of languages are typically not com-
parable. The grouping into phonemes is far from trivial. A good exposition
of the method can be found in (Harris, 1963). We shall look at the process
of phonemicization in some detail. Let us assume for simplicity that words
or texts are realized as sequences of discrete entities called phones. This is
not an innocent assumption: it is for example often not clear whether the se-
quence [t] plus [S], resulting in an affricate [tS], is to be seen as one or as two
phones. (One can imagine that this varies from language to language.) Now,
denote the set of phones by Σ. A word is not a single sequence of phones, but
rather a set of such sequences.

Definition 6.22 L is a language ¡ over Σ if L is a subset of ℘7 Σ ¡ 8 such thatwÒ�� Σ and if W � W k�� L and W t W k��, w then W
,

W k . We call the members
of L words. Ex � W is called a realization of W. For two sequences Ex and Ey we
write Ex Ê L Ey if they belong to (or realize) the same word.

One of the aims of phonology is to simplify the alphabet in such a way that
words are realized by as few as possible sequences. (That there is only one
sequence for each word in the written system is an illusion created by or-
thographical convention. English orthography often has little connection with
actual pronunciation.) We proceed by choosing a new alphabet, P, and a map-
ping π : Σ � P. The map π induces a partition on Σ. If π 7 s 8 , π 7 s k�8 we say
that s and s k are allophones. π induces a mapping of L onto a subset of ℘7 P ¡ 8
in the following way. For a word W we write π ¦W § : , 5 π 7ÈEx 8 : Ex � W 6 . Finally,
π ¡ 7 L 8 :

, 5 π ¦W § : W � L 6 .
Definition 6.23 Let π : P � Σ be a map and L } ℘7 Σ ¡ 8 be a language ¡ . π
is called discriminating for L if whenever W � W k(� L are distinct then π ¦W §jt
π ¦W k § , w .

Lemma 6.24 Let L } ℘7 Σ ¡ 8 be a language ¡ and π : Σ � P. If π is discrimi-
nating for L, π ¡ 7 L 8 is a language ¡ over P.

488 The Model Theory of Linguistic Structures

Definition 6.25 A phonemicization of L is a discriminating map v : A � B
such that for every discriminating w : A � C we have �C �'fÏ�B � . We call the
members of B phonemes.

If phonemes are sets of phones, they are clearly infinite sets. To account for
the fact that speakers can manipulate them, we must assume that they are
finitely specified. Typically, phonemes are defined by means of articulatory
gestures, which tell us (in an effective way) what basic motor program of
the vocal organs is associated with what phoneme. For example, English [p]
is voiceless. This says that the chords do not vibrate while it is being pro-
nounced. It is further classified as an obstruent. This means that it obstructs
the air flow. And thirdly it is classified as a bilabial: it is pronounced by
putting the lips together. In English, there is exactly one voiceless bilabial
obstruent, so these three features characterize English [p]. In Hindi, however,
there are two phonemes with these features, an aspirated and an unaspirated
one. (In fact, the actual pronunciation of English [p] for a Hindi speaker os-
cillates between two different sounds, see the discussion below.) As sounds
have to be perceived and classified accordingly, each articulatory gesture is
identifiable by an auditory feature that can be read off its spectrum.

The analysis of this sort ends in the establishment of an alphabet P of
abstract sounds classes, defined by means of some features, which may either
be called articulatory or auditory. (It is not universally agreed that features
must be auditory or articulatory. We shall get to that point below.) These can
be modeled in the logical language by means of constants. For example, the
feature +voiced corresponds to the constant +4d�^ Kjajc . Then ¶ +4d�^ Kjajc is the same
as being unvoiced.

The features are often interdependent. For example, vowels are always
voiced and continuants. In English and German voiceless plosives are typi-
cally aspirated, while in French this is not the case; so [t] is pronounced with
a subsequent [h]. (In older German books one often finds

s / D�,>2 (‘part’) in
place of the modern

s�D�,>2
.) The aspiration is lacking when [t] is preceded

within the syllable by a sibilant, which in standard German always is [S],
for example in

)#"&% B & : ["StUmpf]. In German, vowels are not simply long
or short. Also the vowel quality changes with the length. Long vowels are
tense, short vowels are not. The letter

,
is pronounced [ı] when it is short

and [i:] when it is long (the colon indicates a long sound). (For example,}�,ï'�'
(‘sense’) ["zın] as opposed to

sn,>D :
(‘deep’) ["thi:f].) Likewise for the

other vowels. Table 22 shows the pronunciation of the long and short vowels,

Categorization and Phonology 489

Table 22. Long and short vowels of German

long short long short
i: ı y: Y

a: a e: @

o: O ø: œ
u: U E: E

drawn from (IPA, 1999), Page 87 (written by Klaus Kohler). Only the pairs
[a:]/[a] and [E:]/[E] are pronounced in the same way, differing only in length.
It is therefore not easy to say which feature is distinctive: is length distinctive
in German for vowels, or is it rather the tension? This is interesting in par-
ticular when speakers learn a new language, because they might be forced to
keep distinct two parameters that are cogradient in their own. For example,
in Finnish vowels are almost purely distinct in length, there is no cooccur-
ring distinction in tension. If so, tension cannot be used to differentiate a long
vowel from a short one. This is a potential source of difficulty for Germans if
they want to learn Finnish.

If L is a language ¡ in which every word has exactly one member, L is
uniquely defined by the language L � :

, 51Ex : 51Ex 6�� L 6 . Let us assume after
suitable reductions that we have such a language ¡ ; then we may return to
studying languages in the customary sense. It might be thought that languages
do not possess nontrivial phonemicization maps. This is, however, not so. For
example, English has two different sounds, [p] and [ph]. The first occurs after
[s], while the second appears for example word initially before a vowel. It
turns out that in English [p] and [ph] are not two but one phoneme. To see
why, we offer first a combinatorial and then a logical analysis. Recall the
definition of a context set. For regular languages it is simply

(6.90) ContL 7 a 8 :
, 5(��Ex ��Ey � : Ex 9 a 9 Ey � L 6

If ContL 7 a 8(t ContL 7 a k 8 , w , a and a k are said to be in complementary dis-
tribution. An example is the abovementioned [p] and [ph]. Another example
is [x] versus [χ] in German. Both are written F#/ . However, F0/ is pronounced
[x] if occurring after [a], [o] and [u], while it is pronounced [ç] if occurring af-
ter other vowels and [r], [n] or [l]. Examples are 1 , F#/ " ["lıçt], 2 0 F0/ " ["naxt],D F0/ " ["eçt] and [%�# F0/ " ["fuKçt]. (If you do not know German, here is a short

490 The Model Theory of Linguistic Structures

description of the sounds. [x] is pronounced at the same place as [k] in En-
glish, but it is a fricative. [ç] is pronounced at the same place as

×
in English× 0 F#/ " , however the tongue is a little higher, that is, closer to the palatum and

also the air pressure is somewhat higher, making it sound harder.) Now, from
Definition 6.25 we extract the following.

Definition 6.26 Let A be an alphabet and L a language over A. π : A � B is
a pre–phonemicization if π is injective on L. π : A ¤ B is a phonemicization
if for all pre–phonemicizations π k : A ¤ C, �C �.f?�B � .
The map sending [x] and [ç] to the same sound is a pre–phonemicization in
German. However, notice the following. In the language L0 :

, 5 0(0 �lí�í�6 , 0
and í are in complementary distribution. Nevertheless, the map sending both
to the same element is not injective. So, complementary distribution is not
enough to make two sounds belong to the same phoneme. We shall see be-
low what is. Second, let L1 :

, 5 0 F��lí�î	6 . We may either send
0

and í to
D

and obtain the language M0 :
, 5 D F�� D î	6 , or we may send F and î to

:
and

obtain the language M1 :
, 5 0 : �lí : 6 . Both maps are phonemicizations, as is

easily checked. So, phonemicizations are not necessarily unique. In order to
analyse the situation we have to present a few definitions. The general idea is
this. Suppose that A is not minimal for L in the sense that it possesses a non-
injective phonemicization. Then there is a pre–phonemicization that conflates
exactly two symbols into one. The image M of this map is a regular language
again. Now, given the latter we can actually recover for each member of M its
preimage under this conflation. What we shall show now is that moreover if L
is regular there is an explicit procedure telling us what the preimage is. This
will be cast in rather abstract terms. We shall define here a modal language
that is somewhat different from ��IÌÜ , namely H�� Ü with converse.

The syntax of propositional dynamic logic (henceforth PDL) has the
usual boolean connectives, the program connectives ;, s , ¡ , further ? and the
‘brackets’ ¦ v § and ��v�� . Further, there is a set Π0 of elementary programs.

À Every propositional variable is a proposition.

Á if ϕ and χ is a proposition, so are ¶ ϕ , ϕ � χ , ϕ · χ , and ϕ � χ .

Â If ϕ is a proposition, ϕ? is a program.

Ã Every elementary program is a program.

Ä If α and β are programs, so are α ;β , α s β , and α ¡ .

Categorization and Phonology 491

Å If α is a program and ϕ a proposition, ¦α § ϕ and � α � ϕ are propositions.

A Kripke–model is a triple � F � R � β � , where R : Π0 � ℘7 F2 8 , and β : PV �
℘7 F 8 . We extend the maps R and β as follows.

(6.91)

β 7 ¶ ϕ 8 :
,

F v β 7 ϕ 8
β 7 ϕ � χ 8 :

,
β 7 ϕ 8(t β 7 χ 8

β 7 ϕ · χ 8 :
,

β 7 ϕ 8(s β 7 χ 8
β 7 ϕ � χ 8 :

, 7�v β 7 ϕ 8=8�s β 7 χ 8
R 7 ϕ? 8 :

, 5(� x � x � : x � β 7 ϕ 8Z6
R 7 α s β 8 :

,
R 7 α 8�s R 7 β 8

R 7 α ;β 8 :
,

R 7 α 8(: R 7 β 8
R 7 α ¡P8 :

,
R 7 α 8=¡

β 7=¦ α § ϕ 8 :
, 5 x : for all y : if x R 7 α 8 y then y � β 7 ϕ 8Z6

β 7=� α � ϕ 8 :
, 5 x : there is y : x R 7 α 8 y and y � β 7 ϕ 8Z6

We write � F � R � β �
Ð ϕ if x � β 7 ϕ 8 . Elementary PDL (EPDL) is the fragment
of PDL that has no star. The elements of Π0 are constants; they are like the
modalities of modal logic. Obviously, it is possible to add also propositional
constants.

In addition to H�� Ü , it also has a program constructor � . α � denotes the
converse of α . Hence, in a Kripke–frame R 7 α �@8 , R 7 α 8�� . The axiomatiza-
tion consists in the axioms for H�� Ü together with the axioms p �¨¦α §�� α � � p,
p �¨¦ α �»§�� α � p for every program α . The term dynamic logic will henceforth
refer to an extension of H�� Ü � by some axioms. The fragment without ¡ is
called elementary PDL with converse, and is denoted by á-H�� Ü � . An ana-
log of Büchi’s Theorem holds for the logic H�� Ü � 7Ïa]8 .
Theorem 6.27 Let A be a finite alphabet. A class of MZ–structures over A is
regular iff it is axiomatizable over the logic of all MZ–structures by means of
constant formulae in H�� Ü � 7Ïa]8 (with constants for letters from A).

Proof. By Kleene’s Theorem, a regular language is the extension of a regular
term. The language of such a term can be written down in H�� Ü � using a
constant formula. Conversely, if γ is a constant H�� Ü � 7Ïa�8 –formula it can be
rewritten into an I ÞHG

–formula. <

492 The Model Theory of Linguistic Structures

The last point perhaps needs reflection. There is a straightforward transla-
tion of H�� Ü � into I ÞgG

. We only have to observe that the transitive closure
of an I ÞHG

–definable relation is again I ÞHG
–definable (see Exercise 216).

x R ¡ y å 7�~ X 8�7 X 7 x 8(�¸7�~ z 8�7�~ z k 8�7 X 7 z 8(� z R z k �(6.92) ��� X 7 z k 8=8»� X 7 y 8=8
Notice also that we can eliminate � from complex programs using the fol-
lowing identities.

R 7=7 α s β 8 � 8 , R 7 α � s β � 8(6.93a)

R 7=7 α ;β 8 � 8 , R 7 β � ;α � 8(6.93b)

R 7=7 α ¡ 8 � 8 , R 7=7 α � 8 ¡ 8(6.93c)

R 7=7 ϕ? 8 � 8 , R 7 ϕ? 8(6.93d)

Hence, H�� Ü � 7Ïa]8 can also be seen as an axiomatic extension of H�� Ü�7Ïa ; h]8
by the axioms p �æ¦¸a §��Ïh]� p, p �æ¦¸h §��Ïa]� p. Now let Θ be a dynamic logic.
Recall from Section 4.3 the definition of � Θ, the global consequence associ-
ated with Θ.

Now, we shall assume that we have a language H�� Ü � 7Ïa ;D 8 , where D is a
set of constants. For simplicity, we shall assume that for each letter a � A, D
contains a constant a. However, there may be additional constants. It is those
constants that we shall investigate here. We shall show (i) that these constants
can be eliminated in an explicit way, (ii) that one can always add constants
such that A can be be described purely by contact rules.

Definition 6.28 Let Θ be a dynamic logic and ϕ 7 q 8 a formula. ϕ 7 q 8 globally
implicitly defines q in Θ if ϕ 7 q 8 ;ϕ 7 q k 8m� Θ q � q k .
Features (or constants, for that matter) that are implicitly defined are called
inessential. Here the leading idea is that an inessential feature does not con-
stitute a distinctive phonemic feature, because removing the distinction that
this feature induces on the alphabet turns out to induce an injective map.
Formally, this is spelled out as follows. Let A eË5 0 � 1 6 be an alphabet, and
assume that the second component indicates the value of the feature K . Let
π : A eË5 0 � 1 6¬� A be the projection onto the first factor. Suppose that the
language L can be axiomatized by the constant formula ϕ 7_Kï8 . ϕ 7_Kï8 defines K
implicitly if π : L k � L is injective. This in turn means that the map π is a

Categorization and Phonology 493

pre–phonemicization. For in principle we could do without the feature. Yet,
it is not clear that we can simply eliminate it. In H�� Ü � � ϕ 7_Kï8 we call K elim-
inable if there is a formula χ provably equivalent to ϕ 7_Kï8 that uses only the
constants of ϕ without K . In the present case, however, an inessential feature
is also eliminable. Notice first of all that a regular language over an alphabet
B is definable by means a constant formula over the logic of all strings, with
constants b for every element b of B. By Lemma 6.31, it is therefore enough
to show the claim for the logic of all strings. Moreover, by a suitable replace-
ment of other variables by new constants we may reduce the problem to the
case where p is the only variable occurring in the formula. Now the language
L is regular over the alphabet A eË5 0 � 1 6 . Therefore, π ¦ L § is regular as well.
This means that it can be axiomatized using a formula without the constant K .
However, this only means that we can make the representation of words more
compact. Ideally, we also wish to describe for given a � A, in which context
we find � a � 0 � (an a lacking K) and in which context we find � a � 1 � (an a havingK). This can be done. Let ­ , � A � Q � q0 � F � δ � be a finite state automaton. Then

L ® 7 q 8 :
, 51Ex : q0

)x� q 6 is a regular language (for L ® 7 q 8 , L 7=� A � Q � q0 ��5 q 6>� δ �=8 ,
and the latter is a finite state automaton). Furthermore, A ¡ , � q � Q L ® 7 q 8 . If­ is deterministic, then L ® 7 q 8�t L ® 7 q k 8 , w whenever q �, q k . Now, let

·
be

a deterministic finite state automaton over A e¸5 0 � 1 6 such that Ex � L 7 · 8 iffEx Ð ϕ 7_Kï8 . Suppose we have a constraint χ , where χ is a constant formula.

Definition 6.29 The Fisher–Ladner closure of χ , FL 7 χ 8 , is defined as fol-
lows.

FL 7 pi 8 :
, 5 pi 6(6.94a)

FL 7 γ 8 :
, 5 γ 6(6.94b)

FL 7 χ � χ k 8 :
, 5 χ � χ k 6»s FL 7 χ 8�s FL 7 χ k 8(6.94c)

FL 7=� α s β � χ 8 :
, 5(� α s β � χ 6�s FL 7=� α � χ 8(s FL 7=� β � χ 8(6.94d)

FL 7=� α ;β � χ 8 :
, 5(� α ;β � χ 6�s FL 7=� α ��� β � χ 8(6.94e)

FL 7=� α ¡ � χ 8 :
, 5(� α ¡ � χ 6»s FL 7=� α ��� α ¡ � χ 8(s FL 7 χ 8(6.94f)

FL 7=� ϕ? � χ 8 :
, 5(� ϕ? � χ 6»s FL 7 ϕ 8(s FL 7 χ 8(6.94g)

FL 7=� α � χ 8 :
, 5(� α � χ 6�s FL 7 χ 8 α basic(6.94h)

The Fisher–Ladner closure covers only H�� Ü�7Ïa ; h]8 –formulae, but this is ac-
tually enough for our purposes. For each formula σ in the Fisher–Ladner
closure of χ we introduce a constant c 7 σ 8 . In addition, we add the following

494 The Model Theory of Linguistic Structures

axioms.

(6.95)

c 7 ¶ σ 8»� ¶ c 7 σ 8
c 7 σ � τ 8�� c 7 σ 8(� c 7 τ 8

c 7=� ϕ? � σ 8�� c 7 ϕ 8�� c 7 σ 8
c 7=� α s β � σ 8�� c 7=� α � σ 8#· c 7=� β � σ 8

c 7=� α ;β � σ 8�� c 7=� α ��� β � σ 8
c 7=� α ¡ � σ 8»� c 7 σ 8�· c 7=� α ��� α ¡ � σ 8
c 7=�Ïa�� σ 8»���Ïa]� c 7 σ 8
c 7=�Ïh�� σ 8»���Ïh]� c 7 σ 8

We call these formulae cooccurrence restrictions. After the introduction of
these formulae as axioms σ � c 7 σ 8 is provable for every σ � FL 7 χ 8 . In par-
ticular, χ � c 7 χ 8 is provable. This means that we can eliminate χ in favour
of c 7 χ 8 . The formulae that we have just added do not contain any of ?, s , � , ¡
or ;. We only have the most simple axioms, stating that some constant is true
before or after another. Now we construct the following automaton. Let ϑ be
a subset of FL 7 χ 8 . Then put

(6.96) qϑ :
, �

γ � ϑ
c 7 γ 8(�é�

γ �� ϑ

¶ c 7 γ 8
Now let Q be the set of all consistent qϑ . Furthermore, put qϑ

a� qη iff qϑ ��Ïa ;a? � qη is consistent. Let F :
, 5 qϑ : ¦¸a §2¨µ� ϑ 6 and B :

, 5 qϑ : ¦¸h §2¨�� ϑ 6 .
For every b � B, � A � Q � b � F � δ � is a finite state automaton. Then

(6.97) L :
, �

b � B

L 7=� A � Q � b � F � δ �=8
is a regular language. It immediately follows that the automaton above is
well–defined and for every subformula α of χ the set of positions i such
that ��Ex � i �@Ð α is uniquely fixed. Hence, for every Ex there exists exactly one
accepting run of the automaton. ��Ex � i �.Ð ψ iff ψ holds at the ith position of the
accepting run.

We shall apply this to our problem. Let ϕ 7_Kï8 be an implicit definition of K .
Construct the automaton ­«7 ϕ 7_Kï8=8 for ϕ 7_Kï8 as just shown, and lump together
all states that do not contain c 7 ϕ 7_Kï8=8 into a single state q k and put q k a� q k for
every a. All states different from q k are accepting. This defines the automaton·

. Now let C :
, 5 qϑ : K�� ϑ 6 . The language � c � C L Ç 7 q 8 is regular, and it

possesses a description in terms of the constants a, a � A, alone.

Categorization and Phonology 495

Definition 6.30 Let Θ be a logic and ϕ 7 q 8 a formula. Further, let δ be a
formula not containing q. We say that δ globally explicitly defines q in Θ
with respect to ϕ if ϕ 7 q 8:� Θ δ � q.

Obviously, if δ globally explicitly defines q with respect to ϕ 7 q 8 then ϕ 7 q 8
globally implicitly defines q. On the other hand, if ϕ 7 q 8 globally implicitly
defines q then it is not necessarily the case that there is an explicit definition
for it. It very much depends on the logic in addition to the formula whether
there is. A logic is said to have the global Beth–property if for any global
implicit definition there is a global explicit definition. Now suppose that we
have a formula ϕ implicitly defining q. Suppose further that δ is an explicit
definition. Then the following is valid.

(6.98) � Θ ϕ 7 q 8�� ϕ 7 δ 8
The logic Θ � ϕ defined by adding the formula ϕ as an axiom to Θ can there-
fore equally well be axiomatized by Θ � ϕ 7 δ 8 . The following is relatively
easy to show.

Lemma 6.31 Let Θ be a modal logic, and γ a constant formula. Suppose
that Θ has the global Beth–property. Then Θ � γ also has the global Beth–
property.

Theorem 6.32 Every logic of a regular string language has the global Beth–
property.

If the axiomatization is infinite, by the described procedure we get an infinite
array of formulae. This does not have a regular solution in general, as the
reader is asked to show in the exercises.

The procedure of phonemicization is inverse to the procedure of adding
features that we have looked at in the previous section. We shall briefly look
at this procedure from a phonological point of view. Assume that we have
an alphabet A of phonemes, containing also the syllable boundary marker L
and the word boundary marker Ç . These are not brackets, they are separators.
Since a word boundary is also a syllable boundary, no extra marking of the
syllable is done at the word boundary. Let us now ask what are the rules of
syllable and word structure in a language. The minimal assumption is that
any combination of phonemes may form a syllable. This turns out to be false.
Syllables are in fact constrained by a number of (partly language dependent)

496 The Model Theory of Linguistic Structures

principles. This can partly be explained by the fact that vocal tract has a cer-
tain physiognomy that discourages certain phoneme combinations while it
enhances others. These properties also lead to a deformation of sounds in
contact, which is called sandhi, a term borrowed from Sanskrit grammar. A
particular example of sandhi is assimilation ([np] � [mp]). Sandhi rules ex-
ist in nearly all languages, but the scope and character varies greatly. Here,
we shall call sandhi any constraint that is posed on the occurrence of two
phonemes (or sounds) next to each other. Sandhi rules are 2–templates in the
sense of the following definition.

Definition 6.33 Let A be an alphabet. An n–template over A (or template of
length n) is a cartesian product of length n of subsets of A. A language L is
an n–template language if there is a finite set Å of length n such that L is
the set of words Ex such that every subword of length n belongs to at least one
template from Å . L is a template language if there is an n such that L is an
n–template language.

Obviously, an n–template language is an n g 1–template language. Further-
more, 1–template languages have the form B ¡ where B } A. So the first really
interesting class is that of the 2–template languages. It is clear that if the al-
phabet is finite, we may actually define an n–template to be just a member of
An. Hence, a template language is defined by naming all those sequences of
bounded length that are allowed to occur.

Proposition 6.34 A language is a template language iff its class of A–strings
is axiomatizable by finitely many positive EPDL–formulae.

To make this more realistic we shall allow also boundary templates. Namely,
we shall allow a set Å;© of left edge templates and a set Å � of right edge
templates. Åª© lists the admissible n–prefixes of a word and Å � the admissible
n–suffixes. Call such languages boundary template languages. Notice that
phonological processes are conditioned by certain boundaries, but we have
added the boundary markers to the alphabet. This effectively eliminates the
need for boundary templates in the description here. We have not explored
the question what would happen if they were eliminated from the alphabet.

Proposition 6.35 A language is a boundary template language iff its class of
A–strings is axiomatizable by finitely many EPDL–formulae.

It follows from Theorem 6.5 that template languages are regular (which is
easy to prove anyhow). However, the language F 0 � Fªs�î 0 � î is regular but
not a template language.

Categorization and Phonology 497

The set of templates effectively names the legal transitions of an automa-
ton that uses the alphabet A itself as the set of states to recognize the lan-
guage. We shall define this notion, using a slightly different concept here,
namely that of a partial finite state automaton. This is a quintuple ­ ,� A � Q � I � F � δ � , such that A is the input alphabet, Q the set of internal states, I
the set of initial states, F the set of accepting states and δ : A e Q

p� Q a par-
tial function. ­ accepts Ex if there is a computation from some q � I to some
q k	� F with Ex as input. ­ is a 2–template language if Q

,
A and δ 7 a � b 8 is

either undefined or δ 7 a � b 8 , b.
The reason for concentrating on 2–template languages is the philosophy of

naturalness. Basically, grammars are natural if the nonterminal symbols can
be identified with terminal symbols, that is, for every nonterminal X there is
a terminal a such that for every X–string Ex we have ContL 7ÈEx 8 , ContL 7 a 8 .
For a regular grammar this means in essence that a string beginning with a
has the same distribution as the letter a itself. A moment’s reflection reveals
that this is the same as the property of being 2–template. Notice that the
2–template property of words and syllables was motivated from the nature
of the articulatory organs, and we have described a parser that recognizes
whether something is a syllable or a word. Although it seems prima facie
plausible that there are also auditory constraints on phoneme sequences we
know of no plausible constraint that could illustrate it. We shall therefore
concentrate on the former. What we shall now show is that syllables are not
2–template. This will motivate either adding structure or adding more features
to the description of syllables. These features are necessarily nonphonemic.

We shall show that nonphonemic features exist by looking at syllable
structure. It is not possible to outline a general theory of syllable structure.
However, the following sketch may be given (see (Grewendorf et al., 1987)).
The sounds are aligned into a so–called sonoricity hierarchy, which is shown
in Table 23 (vd. = voiced, vl. = voiceless). The syllable is organized as fol-
lows.

Syllable Structure. Within a syllable the sonoricity increases monotonically
and then decreases.

This means that a syllable must contain at least one sound which is at least as
sonorous as all the others in the syllable. It is called the sonoricity peak. We
shall make the following assumption that will simplify the discussion.

Sonoricity Peak. The sonoricity peak can be constituted by vowels only.

498 The Model Theory of Linguistic Structures

Table 23. The Sonoricity Hierarchy

dark vowels � mid vowels � high vowels
[a], [o] [æ], [œ] [i], [y]� r–sounds � nasals; laterals � vd. fricatives
[r] [m], [n]; [l] [z], [Z]� vd. plosives � vl. fricatives � vl. plosives
[b], [d] [s], [S] [p], [t]

This wrongly excludes the syllable [krk], or [dn]. The latter is heard in the
German < D>#�) F0/ Tn,X' î D�' (‘to disappear’) [­fEK"Swındn]. (The second

D
that

appears in writing is hardly ever pronounced.) However, even if the assump-
tion is relaxed, the problem that we shall address will remain.

The question is: how can we implement these constraints? There are basi-
cally two ways of doing that. (a) We state them by means of H��æÜ � –formulae.
This is the descriptive approach. (b) We code them. This means that we add
some features in such a way that the resulting restrictions become specifi-
able by 2–templates. The second approach has some motivation as well. The
added features can be identified as states of a productive (or analytic) device.
Thus, while the solution under (a) tells us what the constraint actually is, the
approach under (b) gives us features which we can identify as (sets of) states
of a (finite state) machine that actually parses or produces these structures.
That this can be done is expressed in the following corollary of the Coding
Theorem.

Theorem 6.36 Any regular language is the homomorphic image of a bound-
ary 2–template language.

So, we only need to add features. Phonological string languages are regular,
so this method can be applied. Let us see how we can find a 2–template so-
lution for the sonoricity hierarchy. We introduce a feature α and its negationv α . We start with the alphabet P, and let C } P be the set of consonants. The
new alphabet is

(6.99) Ξ :
,

P e�5&v α 6»s C e�5 α 6

Categorization and Phonology 499

Let son 7 a 8 be the sonoricity of a. (It is some number such that the facts of
Table 23 fall out.)

(6.100)

∇ :
, 5(�=� a � α �P�Z� a k � α �=� : son 7 a 8@ç son 7 a k 8Z6sì5(�=� a �iv α �P�Z� a k �iv α �=� : son 7 a 8�f son 7 a k 8Z6sì5(�=� a � α �P�Z� a k �iv α �=� : a k �� C � son 7 a 8@ç son 7 a k 8Z6sì5(�=� a �iv α �P�Z� a k � α k �=� : a �¸5ïL��¯Ç	6�6

As things are defined, any subword of a word is in the language. We need to
mark the beginning and the end of a sequence in a special way, as described
above. This detail shall be ignored here.

α has a clear phonetic interpretation: it signals the rise of the sonoricity.
It has a natural correlate in what de Saussure calls ‘explosive articulation’. A
phoneme carrying α is pronounced with explosive articulation, a phoneme
carrying v α is pronounced with ‘implosive articulation’. (See (Saussure,
1965).) So, α actually has an articulatory (and an auditory) correlate. But it
is a nonphonemic feature; it has been introduced in addition to the phonemic
features in order to constrain the choice of the next phoneme. As de Saussure
remarks, it makes the explicit marking of the syllable boundary unnecessary.
The syllable boundary is exactly where the implosive articulation changes to
explosive articulation. However, some linguists (for example van der Hulst in
(1984)) have provided a completely different answer. For them, a syllable is
structured in the following way.

(6.101) [onset [nucleus coda]]

So, the grammar that generates the phonological strings is actually not a regu-
lar grammar but context free (though it makes only very limited use of phrase
structure rules). α marks the onset, while v α marks the nucleus together
with the coda (which is also called rhyme). So, we have three possible ways
to arrive at the constraint for the syllable structure: we postulate an axiom,
we introduce a new feature, or we assume more structure.

We shall finally return to the question of spelling out the relation between
deep and surface phonological representations. We describe here the simplest
kind of a machine that transforms strings into strings, the finite state trans-
ducer.

Definition 6.37 Let A and B be alphabets. A (partial) finite state transducer
from A to B is a sextuple ± , � A � B � Q � i0 � F � δ � such that i0 � Q, F } Q and

500 The Model Theory of Linguistic Structures

δ : Q e Aε � ℘7 Q e B ¡ 8 where δ 7 q �$Ex 8 is always finite for every Ex � Aε . Q
is called the set of states, i0 is called the initial state, F the set of accept-
ing states and δ the transition function. ± is called deterministic if δ 7 q � a 8
contains at most one element for every q � Q and every a � A.

We call A the input alphabet and B the output alphabet. The transducer dif-
fers from a finite automaton in the transition function. This function does not
only say into which state the automaton may change but also what symbol(s)
it will output on going into that state. Notice that the transducer may also
output an empty string and that it allows for empty transitions. These are not
eliminable (as they would be in the finite state automaton) since the machine
may accompany the change in state by a nontrivial output. We write

(6.102) q
)x:)yv	� q k

if the transducer changes from state q with input Ex (� A ¡) into the state q k and
outputs the string Ey (� B ¡). This is defined as follows.

(6.103) q
)x:)yv	� q k � if

ñ

ò

ó
7 q kl��Ey 8@� δ 7 q �$Ex 8

or for some q k k �=Eu �=Eu1 ��Ev ��Ev1 :

q
)u:)vv�� q k k)u1:)v1v�� q k

and Ex , Eu 9 Eu1 ��Ey , Ev 9 Ev1.

Finally one defines

(6.104) L 7l±�8 :
, 5(��Ex ��Ey � : there is q � F with i0

)x:)yv	� q 6
Transducers can be used to describe the effect of rules. One can write, for
example, a transducer ®E¯�� that syllabifies a given input according to the con-
straints on syllable structure. Its input alphabet is A sØ5ïL��¯Ç	6 , where A is the set
of phonemes, L the word boundary and Ç the syllable boundary. The output
alphabet is A e¸5 C � ' ��F�6+sÙ5ïL	�¯Ç	6 . Here, C stands for ‘onset’,

'
for ‘nucleus,’

and F for ‘coda’. The machine annotates each phoneme stating whether it be-
longs to the onset of a syllable, to its nucleus or its coda. Additionally, the
machine inserts a syllable boundary wherever necessary. (So, one may leave
the input partially or entirely unspecified for the syllable boundaries. The
machine will look which syllable segmentation can or must be introduced.)

Categorization and Phonology 501

Now we write a machine ­ ��� which simulates the actions of final devoicing.
It has one state, i0, it is deterministic and the transition function consists in� [b] ��F&� : � [p] ��F>� , � [d] ��F&� : � [t] ��F>� , � [g] ��F&� : � [k] ��F&� as well as � [z] ��F&� : � [s] ��F>�
and � [v] ��F&� : � [f] ��F>� . Everywhere else we have � P� α � : � P� α � , P a phoneme,
α �Ë5 0 ��F�� ' 6 .

The success of the construction is guaranteed by a general theorem known
as the Transducer Theorem. It says that the image under transduction of a
regular language is again a regular language. The proof is not hard. First,
by adding some states, we can replace the function δ : Q e Aε � ℘7 Q e B ¡ 8
by a function δ � : Q � e Aε � ℘7 Q � e Bε 8 for some set Q � . The details of
this construction are left to the reader. Next we replace this function by the
function δ 2 : Q e Aε e Bε � ℘7 Q 8 . What we now have is an automaton over
the alphabet Aε e Bε . We now take over the notation from the Section 5.3 and
write Ex « Ey for the pair consisting of Ex and Ey. We define

(6.105) 7�Eu « Ev 8 9 7½Ew « Ex 8 :
, 7�Eu 9 Ew 8*«×7ÈEv 9 Ex 8

Definition 6.38 Let R be a regular term. We define L2 7 R 8 as follows.

L2 7 0 8 :
, w(6.106a)

L2 7�Ex « Ey 8 :
, 51Ex « Ey 6 7�Ex « Ey � Aε e Bε 8(6.106b)

L2 7 R Â S 8 :
, 5 � 9 ¯ : � � L2 7 R 8P��¯Ø� L2 7 S 8Z6(6.106c)

L2 7 R s S 8 :
,

L2 7 R 8�s L2 7 S 8(6.106d)

L2 7 R ¡P8 :
,

L2 7 R 8=¡(6.106e)

A regular relation on A is a relation of the form L2 7 R 8 for some regular term
R.

Theorem 6.39 A relation Z } A ¡ e B ¡ is regular iff there is a finite state
transducer ± such that L 7l±�8 , Z.

This is essentially a consequence of the Kleene’s Theorem. In place of the
alphabets A we have chosen the alphabet Aε e Bε . Now observe that the tran-
sitions ε : ε do not add anything to the language. We can draw a lot of con-
clusions from this.

Corollary 6.40 (Transducer Theorem) The following holds.

À Regular relations are closed unter intersection and converse.

502 The Model Theory of Linguistic Structures

Á If H } A ¡ is regular so is H e B ¡ . If K } B ¡ is regular so is A ¡ e K.

Â If Z } A ¡ e B ¡ is a regular relation, so are the projections� π1 ¦ Z § : , 51Ex : there is Ey with ��Ex ��Ey �@� Z 6 ,� π2 ¦ Z § : , 51Ey : there is Ex with ��Ex ��Ey �@� Z 6 .
Ã If Z is a regular relation and H } A ¡ a regular set then Z ¦H § also is

regular.
Z ¦H § : , 51Ey : there is Ex � H with �ÈEx ��Ey �Y� Z 6

One can distinguish two ways of using a transducer. The first is as a machine
which checks for a pair of strings whether they stand in a particular regular
relation. The second, whether for a given string over the input alphabet there
is a string over the output alphabet that stands in the given relation to it. In the
first use we can always transform the transducer into a deterministic one that
recognizes the same set. In the second case this is impossible. The relation5(� 0 � 0 n � : n � ω 6 is regular but there is no deterministic translation algorithm.
One easily finds a language in which there is no deterministic algorithm in
any of the directions. From the previous results we derive the following con-
sequence.

Corollary 6.41 (Kaplan & Kay) Let R } A ¡ e B ¡ and S } B ¡ e C ¡ be regu-
lar relations. Then R : S } A ¡ e C ¡ is regular.

Proof. By assumption and the previous theorems, both R e C ¡ and A ¡ e S are
regular. Furthermore, 7 R e C ¡ 8&tì7 A ¡ e S 8 , 5(��Ex ��Ey �ÁEz � : �ÈEx ��Ey �+� R �Z�ÈEy �ÁEz ��� S 6 is
regular, and so is its projection onto A ¡ e B ¡ , which is exactly R : S. <

This theorem is important. It says that the composition of rules which
define regular relations defines a regular relation again. Effectively, what dis-
tinguishes regular relations from Type 1 grammars is that the latter allow
arbitrary iterations of the same process, while the former do not.

Notes on this section. There is every reason to believe that the mapping
from phonemes to phones is not constant but context dependent. In particular,
final devoicing is believed by some not to be a phonological process, rather, it
is the effect of a contextually conditioned change of realization of the voice–
feature (see (Port and O’Dell, 1985)). In other words, on the phonological
level nothing changes, but the realization of the phonemes is changed, some-
times so radically that they sound like the realization of a different phoneme

Categorization and Phonology 503

(though in a different environment). This simplifies phonological processes
at the cost of complicating the realization map.

The idea of eliminating features was formulated in (Kracht, 1997) and
already brought into correspondence with the notion of implicit definability.
Concerning long and short vowels, Hungarian is an interesting case. The vow-
els
,
, C , 8C ,

%
,
8%

show length contrast alone, while the long and short forms of0
and

D
also differ in lip attitude and/or aperture. Sauvageot noted in (1971)

that Hungarian moved towards a system where length alone is not distinctive.
Effectively, it moves to eliminate the feature hj\1d�J É .
Exercise 220. Show that for every given string in a language there is a sepa-
ration into syllables that conforms to the Syllable Structure constraint.

Exercise 221. Let Π0 :
, 5 ζi : i b n 6 be a finite set of basic programs. Define

M :
, 5 ζi : i b n 6.s¶5 ζ �i : i b n 6 . Show that for every áVH�� Ü � formula ϕ there

is a modal formula δ over the set M of modalities such that H�� Ü � ~ δ � ϕ .
Remark. A modal formula is a formula that has no test, and no s and ;.
Whence it can be seen as a H�� Ü � –formula.

Exercise 222. The results of the previous section show that there is a transla-
tion � of H�� Ü � 7 M 8 into ��IÌÜ�7 M 8 . Obviously, the problematic symbols are ¡
and � . With respect to � the technique shown above works. Can you suggest a
perspicuous translation of ¦α ¡ § ϕ? Hint. ¦α ¡ § ϕ holds if ϕ holds in the smallest
set of worlds closed under α–successors containing the current world. This
can be expressed in ��IÌÜ rather directly.

Exercise 223. Show that in Theorem 6.32 the assumption of regularity is nec-
essary. Hint. For example, show that the logic of L

, 5 0 2n F 0 n : n � ω 6 fails
to have the global Beth–property.

Exercise 224. Prove Lemma 6.31.

Exercise 225. One of the aims of historical linguistics is to reconstruct the
affiliation of languages, preferrably by reconstructing a parent language for
a certain group of languages and showing how the languages of that group
developed from that parent language. The success of the reconstruction lies
in the establishment of so–called sound correspondences. In the easiest case
they take the shape of correspondences between sounds of the various lan-
guages. Let us take the Indo–European (I.–E.) languages. The ancestor of
this language, called Indo–European, is not known directly to us, if it at all
existed. The proof of its existence is — among other — the successful estab-

504 The Model Theory of Linguistic Structures

lishment of such correspondences. Their reliability and range of applicability
have given credibility to the hypothesis of its existence. Its sound structure
is reconstructed, and is added to the sound correspondences. (We base the
correspondence on the written language, viz. transcriptions thereof.)

I–E Sanskrit Greek Latin (meaning)4��½D&# B�C) 4 / 0�# B 0 /
˙

" / D># B�C) : C # B %.) ‘warm’C %
“

,�) 0 < , /
˙

C ,�) C < ,�) ‘sheep’)ï%
“

C)) < 0 /
˙

/ C))ï%(%�)
‘his’)�D.&�" B

˚

)�0.&�"
0 / D'&�"
0)�D.&�"�D B ‘seven’î D'@�� B
˚

î 0PQ)�0 î D�@
0 î D F D B ‘ten’'	D4%
“

C) '	0 < 0 /
˙

'	D C) ' C < %�) ‘new’
“
4(D�' C) B 04'	0 /

˙

4�D�' C) 4�D4'�%�)
‘gender’)ï%

“

D'&(' C)) < 0�&�'�0 /
˙

/ × &(' C)) CXB '�%.) ‘sleep’

Some sounds of one language have exact correspondences in another. For
example, I.–E. ¡ & corresponds to

&
across all languages. (The added star in-

dicates a reconstructed entity.) With other sounds the correspondence is not
so clear. I.–E. ¡ D and ¡ 0 become

0
in Sanskrit. Sanskrit

0
in fact has multi-

ple correspondences in other languages. Finally, sounds develop differently
in different environments. In the onset, I.–E. ¡) becomes Sanskrit

)
, but it

becomes /
˙

at the end of the word. The details need not interest us here. Write
a transducer for all sound correspondences displayed here.

Exercise 226. (Continuing the previous exercise.) Let Li, i b n, be languages
over alphabets Ai. Show the following: Suppose R is a regular relation be-
tween Li, i b n. Then there is an alphabet P, a proto–language Q } P ¡ , and
regular relations Ri } P ¡ e A ¡i , i b n, such that (a) for every Ex � P there is
exactly one Ey such that ExRi Ey and (b) Li is the image of P under Ri.

Exercise 227. Finnish has a phenomenon called vowel harmony. There are
three kinds of vowels: back vowels ([a], [o], [u], written

0
, C and

%
, respec-

tively), front vowels ([æ], [ø], [y], written
80
,
8C and

×
, respectively) and neutral

vowels ([e], [i], written
D

and
,
). The principle is this.

Vowel harmony (Finnish). A word contains not both a back and a front har-
monic vowel.

The vowel harmony only goes up to the word boundary. So, it is possible to
combine two words with different harmony. Examples are C)>0'@�D × / "n, 8C ‘share

Axiomatic Classes II: Exhaustively Ordered Trees 505

holder company’. It consists of the back harmonic word C)>0'@�D ‘share’ and
the front harmonic word

× / "G, 8C ‘society’. First, give an H�� Ü � –definition of
strings that satisfy Finnish vowel harmony. It follows that there is a finite au-
tomaton that recognizes this language. Construct such an automaton. Hint.
You may need to explicitly encode the word boundary.

4. Axiomatic Classes II: Exhaustively Ordered Trees

The theorem by Büchi on axiomatic classes of strings has a very interesting
analogon for exhaustively ordered trees. We shall prove it here; however, we
shall only show those facts that are not proved in a completely similar way.
Subsequently, we shall outline the importance of this theorem for syntactic
theory. The reader should consult Section 1.4 for notation. Ordered trees are
structures over a language that has two binary relation symbols, j and b .
We also take labels from A and N (!) in the form of constants and get the
language I ÞgG

b. In this language the set of exhaustively ordered trees is a
finitely axiomatizable class of structures. We consider first the postulates. b
is transitive and irreflexive, e x is linear for every x, and there is a largest
element, and every subset has a largest and a smallest element with respect tob . From this it follows in particular that below an arbitrary element there is a
leaf. Here are now the axioms listed in the order just described.

7�~ xyz 8�7 x b y � y b z �1� � x b z 8(6.107a) 7�~ x 8 ¶ 7 x b x 8(6.107b) 7�~ xyz 8�7 x b y � x b z �1� � y b z · y
,

z · y � z 8(6.107c) 7�� x 8�7�~ y 8�7 y b x · y
,

x 8(6.107d) 7�~ P 8�7�� x 8�7�~ y 8�7 P 7 x 8(� y b x �1�¨� ¶ P 7 y 8=8(6.107e) 7�~ P 8�7�� x 8�7�~ y 8�7 P 7 x 8(� y b x �1�¨� ¶ P 7 y 8=8(6.107f)

In what is to follow we use the abbreviation x ç y :
,

x b y · x
,

y. Now we
shall lay down the axioms for the ordering. j is transitive and irreflexive, it
is linear on the leaves, and we have x j y iff for all leaves u below x and all
leaves v ç y we have u j v. Finally, there are only finitely many leaves, a fact
which we can express by requiring that every set of nodes has a smallest and

506 The Model Theory of Linguistic Structures

a largest member (with respect to j). We put b 7 x 8 :
, ¶ 7�� y 8�7 y b x 8 .7�~ xyz 8�7 x j y � y j z �1� � x j z 8(6.108a) 7�~ x 8 ¶ 7 x j x 8(6.108b) 7�~ xy 8�7 b 7 x 8�� b 7 y 8P�&� � x j y · x

,
y · y j x 8(6.108c) 7�~ xy 8�7 x j y �1� ��7�~ uv 8�7 b 7 u 8(� u ç x � b 7 v 8(� v ç y �1� � u j v 8=8(6.108d) 7�~ P 8Z5(7�~ x 8�7 P 7 x 8�� b 7 x 8=8P�(6.108e) ���Û7�� y 8�7 P 7 y 8���7�~ z 8�7 P 7 z 8»� ¶ 7 y j z 8=8=8�¸7�� y 8�7 P 7 y 8���7�~ z 8�7 P 7 z 8»� ¶ 7 z � y 8=8=8Z6

Thirdly, we must regulate the distribution of the labels.7�~ x 8�7 b 7 x 8Y� �ÿ� a 7 x 8 : a � A �=8(6.109a) 7�~ x 8�7 ¶ b 7 x 8Y� � � A 7 x 8 : A � N �=8(6.109b) 7�~ x 8�7��Ñ� α 7 x 8�� ¶ β 7 x 8 : α �, β �=8(6.109c)

The fact that a tree is exhaustively ordered is described by the following for-
mula.

(6.110) 7�~ xy 8�7 ¶ 7 x ç y · y ç x 8P�4� � x j y · y j x 8
Proposition 6.42 The following are finitely I ÞHG

b–axiomatizable classes.

À The class of ordered trees.

Á The class of finite exhaustively ordered trees.

Likewise we can define a quantified modal language. However, we shall
change the base as follows, using the results of Exercise 23. We assume 8
operators, M8 :

, 5 o � o � � o � o � � o � o � � o � o � 6 , which correspond to the
relations a , b , h , � , immediate left sister of, left sister of, immediate right
sister of, as well as right sister of. These relations are MSO–definable from
the original ones, and conversely the original relations can be MSO–defined
from the present ones. Let ± , � T �ibØ�
j]� be an exhaustively ordered tree.

Axiomatic Classes II: Exhaustively Ordered Trees 507

Then we define R : M8 � ℘7 T 8 as follows.

(6.111)

x R 7 o � 8 y :
,

x j y �¸7�� z 8�7 x a z � y a z 8
x R 7 o 8 y :

,
x R 7 o � 8 y � ¶ 7 x R 7 o � 8�: R 7 o � 8 y 8

x R 7 o � 8 y :
,

x � y �¸7�� z 8�7 x a z � y a z 8
x R 7 o 8 y :

,
x R 7 o � 8 y � ¶ 7 x R 7 o � 8�: R 7 o � 8 y 8

x R 7 o � 8 y :
,

x b y

x R 7 o 8 y :
,

x a y

x R 7 o � 8 y :
,

x � y

x R 7 o 8 y :
,

x h y

The resulting structure we call M 7l±�8 . Now if T as well as R are given, then
the relations a , h , b , � , and j , as well as � are definable. First we defineo ¡ ϕ :

,
ϕ · o � ϕ , and likewise for the other relations. Then R 7 o ¡ 8 , ∆ s

R 7 o � 8 .
(6.112)

a , R 7 o 8 h , R 7 o 8b , R 7 o � 8 � , R 7 o � 8j , R 7 o ¡ 8(: R 7 o � 8�: R 7 o ¡ 8
� , R 7 o ¡ 8(: R 7 o � 8�: R 7 o ¡ 8

Analogously, as with the strings we can show that the following properties are
axiomatizable: (a) that R 7 o � 8 is transitive and irreflexive with converse rela-
tion R 7 o � 8 ; (b) that R 7 o � 8 is the transitive closure of R 7 o 8 and R 7 o � 8 the
transitive closure of R 7 o 8 . Likewise for R 7 o � 8 and R 7 o 8 , R 7 o � 8 and R 7 o 8 .
With the help of the axiom below we axiomatically capture the condition thate x is linear:

(6.113) o � p � o � q �1� � o � 7 p � q 8#· o � 7 p � o � q 8�· o � 7 q � o � p 8
The other axioms are more complex. Notice first the following.

Lemma 6.43 Let � T �ibØ�
j]� be an exhaustively ordered tree and x � y � T.
Then x �, y iff (a) x b y or (b) x � y or (c) x j y or (d) x � y.

Hence the following definitions.���, � ϕ :
, o � ϕ · o � ϕ · o ¡ o � o ¡ ϕ · o ¡ o � o ¡ ϕ(6.114) } ϕ :
,

ϕ �¸¦ã�, § ϕ(6.115)

508 The Model Theory of Linguistic Structures

So we add the following set of axioms.

(6.116) 5�} ϕ � < � ϕ �k} ϕ � < � ϕ �k} ϕ � < � ϕ �k} ϕ � < � ϕ} ϕ �<} } ϕ �k} ϕ � ϕ � ϕ �j} ¶ } ¶ ϕ 6
(Most of them are already derivable. The axiom system is therefore not min-
imal.) These axioms see to it that in a connected structure every node is
reachable from any other by means of the basic relations, moreover, that it
is reachable in one step using R 7r}¬8 . Here we have

(6.117) R 7r}¬8 , 5(� x � y � : there is z : x ç z f y 6
Notice that this always holds in a tree and that conversely it follows from the
above axioms that R 7 o � 8 possesses a largest element. Now we put

(6.118) b 7 ϕ 8 :
,

ϕ � < ¨Ä�¸¦ã�, § ¶ ϕ

b 7 ϕ 8 holds at a node x iff x is a leaf and ϕ is true exactly at x. Now we can
axiomatically capture the conditions that R 7 o � 8 must be linear on the set of
leaves.

(6.119) < ¨ �¸���, � b 7 q 8P�X� � o � p · o � p

Finally, we have to add axioms which constrain the distribution of the labels.
The reader will be able to supply them. A forest is defined here as the disjoint
union of trees.

Proposition 6.44 The class of exhaustively ordered forests is finitely ��IÌÜ b–
axiomatisable.

We already know that ��IÌÜ b can be embedded into I ÞHG
b. The converse is as

usual somewhat difficult. To this end we proceed as in the case of strings. We
introduce an analogon of restricted quantifiers. We define functions o , o � ,o , o � , o , o � , o , o � , as well as ���, � on unary predicates, whose meaning
should be self explanatory. For example7 o ϕ 8�7 x 8 :

, 7�� y h x 8 ϕ 7 y 8(6.120a) 7 o � ϕ 8�7 x 8 :
, 7�� y � x 8 ϕ 7 y 8(6.120b)

where y �� fr 7 ϕ 8 . Finally let O be defined by

(6.121) O 7 ϕ 8 :
, 7�~ x 8 ¶ ϕ 7 x 8

Axiomatic Classes II: Exhaustively Ordered Trees 509

O 7 ϕ 8 says that ϕ 7 x 8 is nowhere satisfiable. Let Px be a predicate variable
which does not occur in ϕ . Define 5 Px ¾ x 6 ϕ inductively as described in Sec-
tion 6.2. Let γ 7 Px 8 , 5 β 7 x 8Z6 . Then we have

(6.122) �løÀ� γ � β �+Ð ϕ å �løÀ� γ � β �+Ð�5 Px ¾ x 6 ϕ
Therefore put

(6.123) 7 Ex 8 ϕ 7 x 8 :
, 7�� Px 8�7 ¶ O 7 Px 8(� O 7 Px �¸���, � Px 8P�1� � 5 Px ¾ x 6 ϕ 8

Because of this we have for all exhaustively ordered trees ±
(6.124) �l± � γ � β �»ÐÝ7�� x 8 ϕ å �l±�� γ � β �»ÐÝ7 Ex 8 ϕ
Let again h : P � PV be a bijection from the set of predicate variables ofI ÞHG

b onto the set of proposition variables or ��IÌÜ b.

(6.125)

7 a 7 x 8=8 � :
,

Qa 7 P 7 y 8=8 � :
,

h 7 P 87 o ϕ 8 � :
, o ϕ � 7 o ϕ 8 � :

, o ϕ �7 o ϕ 8 � :
, o ϕ � 7 o ϕ 8 � :

, o ϕ �7 o � ϕ 8 � :
, o � ϕ � 7 o � ϕ 8 � :

, o � ϕ �7 o � ϕ 8 � :
, o � ϕ � 7 o � ϕ 8=8 � :

, o � ϕ �7 ¶ ϕ 8 � :
, ¶ ϕ � 7 O 7 ϕ 8=8 � :

, } ¶ ϕ �7 ϕ1 � ϕ2 8 � :
,

ϕ �1 � ϕ �2 7 ϕ1 · ϕ2 8 � :
,

ϕ �1 · ϕ �27=7�� P 8 ϕ 8 � :
, 7�� h 7 P 8=8 ϕ � 7=7�~ P 8 ϕ 8 � :

, 7�~ h 7 P 8=8 ϕ �
Then the desired embedding of I ÞHG

b into ��IÌÜ b is shown.

Theorem 6.45 Let ϕ be an I ÞgG
b–formula with at most one free variable,

the object variable x0. Then there exists a ��IÌÜ b–formula ϕM such that for
all exhaustively ordered trees ± :

(6.126) �l± � β �»Ð ϕ 7 x0 8 iff � M 7l±�8P� β 7 x0 8=��Ð ϕ 7 x0 8 M
Corollary 6.46 Modulo the identification ± �� M 7l±�8SI ÞHG

b and ��IÌÜ b de-
fine the same model classes of exhaustively ordered trees. Further: ´ is a
finitely axiomatizable class of I ÞHG

b–structures iff M 7l´�8 is a finitely axiom-
atizable class of ��IÌÜ b–structures.

510 The Model Theory of Linguistic Structures

For the purpose of definition of a code we suspend the difference between
terminal and nonterminal symbols.

Definition 6.47 Let G
, � Σ � N � A � R � be a CFG ¡ and ϕ �!��IÌÜ b a constant

formula (with constants over A). We say, G is faithful for ϕ if there is a
set Hϕ } N such that for every tree ± and every node w � T : �l± � w �+Ð ϕ iff!>7 w 8�� Hϕ . We also say that Hϕ codes ϕ with respect to G. Let ϕ be a ��IÌÜ b–
formula and n a natural number. An n–code for ϕ is a pair � G � H � such that
LB 7 G 8 is the set of all at most n–ary branching, finite, exhaustively ordered
trees over A s N and H codes ϕ in G. ϕ is called n–codable if there is an
n–code for ϕ . ϕ is called codable if there is an n–code for ϕ for every n.

Notice that for technical reasons we must restrict ourselves to at most n–
branching trees since we can otherwise not write down a CFG ¡ as a code. Let
G
, � Σ � N � A � R � and G k , � Σ k�� N k�� A � R k � be grammars ¡ over A. The product

is defined by

(6.127) G e G k , � Σ e Σ k � N e N k � A � R e R k �
where

(6.128) R e R k : , 5(� X � X k ����� α0 � α k0 �(Â=Â=ÂP� αn © 1 � α kn © 1 � :

X � α0 Â=Â=Â αn © 1 � R � X k � α k0 Â=Â=Â α kn © 1 � R k 6
To prove the analogon of the Coding Theorem (6.21) for strings we shall have
to use a trick. As one can easily show the direct extension on trees is false
since we have also taken the nonterminal symbols as symbols of the language.
So we proceed as follows. Let h : N � N k be a map and ± , � T �ibØ�
jØ�_!ï� a tree
with labels in A s N. Then let h ¦ ±3§ :

, � T �ibØ�
jØ� hA :-!½� where hA £ N :
,

h and
hA 7 a 8 :

,
a for all a � A. Then h ¦ ±3§ is called a projection of ± . If ´ is a class

of trees, then let h ¦ ´�§ :
, 5 h ¦ ±y§ : ±Í� ´Ë6 .

Theorem 6.48 (Thatcher & Wright, Doner) Let A be a terminal alphabet,
N a nonterminal alphabet and n � ω . A class of exhaustively ordered, at most
n–branching finite trees over A s N is finitely axiomatizable in I ÞHG

b iff it is
the projection onto A s N of a context free ¡ class of ordered trees over some
alphabet.

Here a class of trees is context free ¡ if it is the class of trees generated by
some CFG ¡ . Notice that the symbol ε is not problematic as it was for regular

Axiomatic Classes II: Exhaustively Ordered Trees 511

languages. We may look at it as an independent symbol which can be the
label of a leaf. However, if this is to be admitted, we must assume that the
terminal alphabet may be Aε and not A. Notice that the union of two context
free sets of trees is not necessarily itself context free. (This again is different
for regular languages, since the structures did not contain the nonterminal
symbols.)

From now on the proof is more or less the same. First one shows the
codability of ��IÌÜ b–formulae. Then one argues as follows. Let � G � H � be the
code of a formula ϕ . We restrict the set of symbols (that is, both N as well as
A) to H . In this way we get a grammar ¡ which only generates trees that satisfy
ϕ . Finally we define the projection h : H � A s N as follows. Put h 7 a 8 :

,
a,

a � A, and h 7 Y 8 :
,

X if LB 7 G 8+Ðf7�~ x 8�7 Y 7 x 8Y� X 7 x 8=8 . In order for this to be
well defined we must therefore have for all Y � H an X � N with this property.
In this case we call the code uniform. Uniform codability follows easily from
codability since we can always construct products G e G k of grammars ¡ so
that G

, � Σ � N � A � R � and LB 7 G e G k 8YÐ X 7=� x � y �=8 iff LB 7 G 8�Ð X 7 x 8 . The map
h is nothing but the projection onto the first component.

Theorem 6.49 Every constant ��IÌÜ b–formula is uniformly codable.

Proof. We only deliver a sketch of the proof. We choose an n and show the
uniform n–codability. For ease of exposition we illustrate the proof for n

,
2.

For the formulae a 7 x 8 , a � A, and Y 7 x 8 , Y � N, nothing special has to be
done. Again, the booleans are easy. There remain the modal operators and the
quantifiers. Before we begin we shall introduce a somewhat more convenient
notation. As usual we assume that we have a grammar ¡ G

, � Σ � N � A � R � as
well as some sets Hη for certain formulae. Now we take the product with
a new grammar ¡ and define Hϕ . In place of explicit labels we now use the
formulae themselves, where η stands for the set of labels from Hη .

The basic modalities are as follows. Put

(6.129) 2 :
, ��5 0 � 1 6>��5 0 � 1 6>� A � R2 �

where R2 consists of all possible n–branching rules of a grammar in standard
form. To code o η , we form the product of G with 2. However, we only
choose a subset of rules and of the start symbols. Namely, we put Σ k : , Σ e5 0 � 1 6 and H kη :

,
Hη eÙ5 0 � 1 6 , H k o η

:
,

N eÙ5 1 6 . The rules are all rules of the

512 The Model Theory of Linguistic Structures

form

(6.130) ñ ñ ñ òòò
o η

0 η
ñ ñ ñ òòò

o η

η 0 ñ ñ ñ òòò
¶ o η

¶ η ¶ η

Now we proceed to o η . Here Σ k o η
:
,

N e�5 0 6 .
(6.131) ñ ñ ñ òòò

η

o η o η

ñ ñ ñ òòò
¶ η

¶ o η ¶ o η

With o η we choose Σ k o η
:
,

Σ e�5 0 6 .
(6.132) ñ ñ ñ òòò

0
o η η

ñ ñ ñ òòò
0

¶ o η ¶ η

Likewise, Σ k o η
is the start symbol of G k in the case of o η .

(6.133) ñ ñ ñ òòò
0

η o η

ñ ñ ñ òòò
0

¶ η ¶ o η

We proceed to the transitive relations. Notice that on binary branching treeso � η � o η and o � η � o η . Now let us look at the relation o � η .

(6.134)

ñ ñ ñ òòò
o � η

η · o � η 0 ñ ñ ñ òòò
o � η

0 η · o � η

ñ ñ ñ òòò
¶ o � η

¶ 7 η · o � η 8 ¶ 7 η · o � η 8

Axiomatic Classes II: Exhaustively Ordered Trees 513

The set of start symbols is Σ e�5 0 � 1 6 . Next we look at o � η .

(6.135) ñ ñ ñ òòò
η · o � η

o � η o � η

ñ ñ ñ òòò
¶ 7 η · o � η 8

¶ o � η ¶ o � η

The set of start symbols is Σ k : , Σ e�5 0 6 .
Finally we study the quantifier 7�� p 8 η . Let η k : , η ¦ K ¾ p § , where K is a new

constant. Our terminal alphabet is now A e¸5 0 � 1 6 , the nonterminal alphabet
N e¸5 0 � 1 6 . We assume that � G1 � H1

θ � is a uniform code for θ , θ an arbitrary
subformula of η k . For every subset Σ of the set ∆ of all subformulae of η k we
put

(6.136) LΣ :
, �

θ � Σ
θ � �

θ � ∆ © Σ

¶ θ

Then � G1 � H1
Σ � is a code for LΣ where

(6.137) H1
Σ :
,w8

θ � Σ
H1

θ t 8
θ � ∆ © Σ

7 N v H1
θ 8

Now we build a new CFG ¡ , G2. Put N2 :
,

N e�5 0 � 1 6 e ℘7 N1 8 . The rules of
G2 are all rules of the form

(6.138) ñ ñ ñ òòò
� X � i � Σ �

� Y0 � j0 � Θ0 ��� Y1 � j1 � Θ1 �
where � X � i �y� H1

Σ , � Y0 � j0 �y� H1
Θ0

, � Y1 � j1 �ª� H1
Θ1

and Σ � Θ0Θ1 is a rule of
G1. (This in turn is the case if there are X , Y0 and Y1 as well as i, j0 and j1
such that � X � i ���¨� Y0 � j0 �@� Y1 � j1 �+� R.) Likewise for unary rules. Now we go
over to the grammar ¡ G3, with N3 :

,
N e ℘7℘7 N1 8=8 . Here we take all rules

of the form

(6.139) ñ ñ ñ òòò
� X ��»y�

� Y0 �®Ó 0 � � Y1 �®Ó 1 �

514 The Model Theory of Linguistic Structures

where » is the set of all Σ for which there are Θ0, Θ1 and i, j0, j1 such that

(6.140) ñ ñ ñ òòò
� X � i � Σ �

� Y0 � j0 � Θ0 � � Y1 � j1 � Θ1 �
is a rule of G2. <
Notes on this section. From complexity theory we know that CFLs, being in
PTIME, actually possess a description using first order logic plus inflationary
fixed point operator. This means that we can describe the set of strings in L 7 G 8
for a CFG by means of a formula that uses first order logic plus inflationary
fixed points. Since we can assume G to be binary branching and invertible,
it suffices to find a constituent analysis of the string. This is a set of subsets
of the string, and so of too high complexity. What we need is a first order
description of the constituency in terms of the string alone. The exercises
describe a way to do this.

Exercise 228. Show the following: b is definable from a , likewise � . Also,
trees can be axiomatized alternatively with a (or h). Show furthermore that
in ordered trees a is uniquely determined from b . Give an explicit definition.

Exercise 229. Let xL y if x and y are sisters and x j y. Show that in ordered
trees L can be defined with j and conversely.

Exercise 230. Let ± be a tree over A and N such that every node that is
not preterminal is at least 2–branching. Let Ex , x0 Â=Â=Â xn © 1 be the associated
string. Define a set C } n3 as follows. � i � j � k �y� C iff the least node above xi
and x j is lower than the least node above xi and xk. Further, for X � N, define
LX } n2 by � i � j �+� LX iff the least node above xi and x j has label X . Show that
C uniquely codes the tree structure ± and LX , X � N, the labelling. Finally,
for every a � A we have a unary relation Ta } n to code the nodes of category
a. Axiomatize the trees in terms of the relations C, LX , X � N, and Ta, a � A.

Exercise 231. Show that a string of length n possesses at most 2cn3
different

constituent structures for some constant c.

Transformational Grammar 515

5. Transformational Grammar

In this section we shall discuss the so–called Transformational Grammar,
or TG. Transformations have been introduced by Zellig Harris. They were
operations that change one syntactic structure into another without changing
the meaning. The idea to use transformations has been adopted by Noam
Chomsky, who developed a very rich theory of transformations. Let us look
at a simple example, a phenomenon known as topicalization.] 0�#�# × 2�,�@�D)k"(#
0�,ï'�)�O
(6.141) s�#�0�,X'.) �] 0>#(# × 2�,#@
D
)ÒO(6.142)

We have two different English sentences, of which the first is in normal seri-
alization, namely SVO, and the second in OSV order. In syntactic jargon we
say that in the second sentence the object has been topicalized. (The metaphor
is by the way a dynamic one. Speaking statically, one would prefer to express
that differently.) The two sentences have different uses and probably also
different meanings, but the meaning difference is hard to establish. For the
present discussion this is however not really relevant. A transformation is a
rule that allows us for example to transform (6.141) into (6.142). Transforma-
tions have the form SD

, | SC. Here SD stands for structural description
and SC for structural change. The rule TOP, for topicalization, may be
formulated as follows.

(6.143) NP1 V NP2 Y
, | NP2 NP1 V Y

This means the following. If a structure can be decomposed into an NP fol-
lowed by a V and a second NP followed in turn by an arbitrary string, then
the rule may be applied. In that case it moves the second NP to the position
immediately to the left of the first NP. Notice that Y is a variable for arbitrary
strings while NP and V are variables for constituents of category NP and V,
respectively. Since a string can possess several NPs or Vs we must have for
every category a denumerable set of variables. Alternatively, we may write¦W § NP. This denotes an arbitrary string which is an NP–constituent. We agree
that (6.143) can also be applied to a subtree of a tree (just as the string re-
placement rules of Thue–processes apply to substrings).

Analogously, we may formulate also the reversal of this rule:

(6.144) NP2 NP1 V Y
, | NP1 V NP2 Y

516 The Model Theory of Linguistic Structures

However, one should be extremely careful with such rules. They often turn
out to be too restrictive and often also too liberal. Let us look again at TOP.
As formulated, it cannot be applied to (6.145) and (6.147), even though topi-
calization is admissible, as (6.146) and (6.148) show.] 0�#�# × B ,'4 / " 2�,�@
DÙ"(#
0�,X'�)�O(6.145) s�#�0�,X'.) �] 0>#(# × B ,.4 / " 2�,#@
D�O(6.146)] 0�#�# × F D&#%"
0�,ï'�2 × 2�,#@
D
)k"�#�0�,X'.)ÒO(6.147) s�#�0�,X'.) �] 0>#(# × F D>#�"�0�,X'	2 × 2�,�@�D)�O(6.148)

The problem is that in the SD V only stands for the verb, not for the complex
consisting of the verb and the auxiliaries. So, we have to change the SD in
such a way that it allows the examples above. Further, it must not be disturbed
by eventually intervening adverbials.

German exemplifies a construction which is one of the strongest argu-
ments in favour of transformations, namely the so–called V2–phenomenon.
In German, the verb is at the end of the clause if that clause is subordinate. In
a main clause, however, the part of the verb cluster that carries the inflection is
moved to second position in the sentence. Compare the following sentences.�=�=�i��î 0 =] 04'.)Ï)�D�,ï' 5 %�" C #�D'&�0�#n,�D&#�"�O(6.149)

..., that Hans his car repairs.] 01'�)É#�D.&�0�#n,>D>#�"Ñ)�D�,ï' 5 %�" C O(6.150)

Hans repairs his car.�=�=�i��î 0 =] 04'.)Å'-, F0/ " ,ï' î ,>D ô &	D>#X4�D / D�'ZTn,&2(2RO(6.151)

..., that Hans not into the opera go wants.] 01'�)kTV,>2�2µ'V, F#/ " ,X' î ,>D ô &	D&#Z4�D / D�'WO(6.152)

Hans wants not into the opera go.�=�=�i��î 0 =] 04'.)�, B ¦ '�"�D>#�#n, F#/ "ý)�D�2�"�D�'ý01% : &	0 = "SO(6.153)

..., that Hans in class rarely PREF–attention.pay.] 01'�)U&�0 = "Â, B ¦ '�"�D&#(#n, F0/ "Ñ)�D�2'"�D4'ý04% : O
(6.154)

Hans attention.pay in class rarely PREF.

As is readily seen, the auxiliaries and the verb are together in the subordinate
clause, in the main clause the last of the series (which carries the inflection)
moves into second place. Furthermore, as the last example illustrates, it can

Transformational Grammar 517

happen that certain prefixes of the verb are left behind when the verb moves.
In transformational grammar one speaks of V2–movement. This is a transfor-
mation that takes the inflection carrier and moves it to second place in a main
clause. A similar phenomenon is what might be called damit- or davor–split,
which is found mainly in northern Germany.Ö 0 / 0'"ÿD&# B , F#/ , B�B D&# < C #Z4�D'T	0�#&'�"�O(6.155)

DA has he me always VOR warned.

He has always warned me of that.Ö 0Ú@ C '�'�"�D�, F#/ D�,ï' : 0 F#/ '-, F#/ " B ,."Ï#�D F#/ '	D4'WO(6.156)

DA could I simply not MIT reckon.

I simply could not reckon with that.

We leave it to the reader to picture the complications that arise when one
wants to formulate the transformations when V2–movement and damit- or
davor–split may operate. Notice also that the order of application of these
rules must be reckoned with.

A big difference between V2–movement and damit–split is that the latter
is optional and may apply in subordinate clauses, while the former is obliga-
tory and restricted to main clauses./ # / 0'" B , F#/ , B�B D># î 0 < C #Z4�D�T
0>#>'�"SO(6.157) ¡ / # B , F0/ , B(B D&# î 0 < C #X4�D�T
0>#&'�" / 0'"SO(6.158) E(F0/ @ C '('�"�D�D�,ï' : 0 F#/ 'V, F0/ " î 0 B ,�"�#�D F#/ '
D�'YO(6.159) ¡ E&F#/Ñî 0 B ,�"ÿD�,ï' : 0 F#/ 'V, F0/ "�#�D F#/ '	D4'X@ C '�'�"�D�O(6.160)

In (6.158) we have reversed the effect of both transformations of (6.155). The
sentence is ungrammatical. If we only apply V2–movement, however, we get
(6.157), which is grammatical. Likewise for (6.160) and (6.159). In contrast
to Harris, Chomsky did not construe transformations as mediating between
grammatical sentences (although also Harris did allow to pass through ille-
gitimate structures). He insisted that there is a two layered process of gener-
ation of structures. First, a simple grammar (context free, preferrably) gen-
erates so–called deep structures. These deep structures may be seen as the
canonical representations, like Polish Notation or infix notation, where the
meaning can be read off immediately. However, these structures may not be
legitimate objects of the language. For example, at deep structure, the verb of

518 The Model Theory of Linguistic Structures

a German sentence appears in final position (where it arguably belongs) but
alas these sentences are not grammatical as main clauses. Hence, transfor-
mations must apply. Some of them apply optionally, for example damit- and
davor–split, some obligatorily, for example V2–movement. At the end of the
transformational cycle stands the surface structure. The second process is
also called (somewhat ambiguously) derivation. The split between these two
processes has its advantages, as can be seen in the case of German. For if we
assume that the main clause is not the deep structure, but derived from a deep
structure that looks like a surface subordinate clause, the entire process for
generating German sentences is greatly simplified. Some have even proposed
that all languages have universally the same deep structure, namely SVO in
(Kayne, 1994); or right branching, allowing both SVO and SOV deep struc-
ture. The latter has been defended in (Haider, 2000) (dating from 1991) and
(Haider, 1995; Haider, 1997). Since the overwhelming majority of languages
belongs to either of these types, such claims are not without justification. The
differences that can be observed in languages are then caused not by the first
process, generating the deep structure, but entirely by the second, the trans-
formational component. However, as might be immediately clear, this is on
the one hand theoretically possible but on the other hand difficult to verify
empirically. Let us look at a problem. In German, the order of nominal con-
stituents is free (within bounds).Ö D># 7 0�"�D&#À) F#/ D4'�@�" î D B } C / 'ýD�,ï'	D4'] %(' î O(6.161) / ,ï'	D�'] %�' î) F0/ D�'�@�" î D&# 7 0�"�D># î D B } C / 'WO(6.162) Ö D B } C / 'Æ) F0/ D�'�@�" î D&# 7 0�"�D>#ÿD�,ï'	D4'] %(' î O(6.163) Ö D B } C / 'Æ) F0/ D�'�@�"ÿD�,X'
D�'] %�' îÏî D&# 7 0�"�D>#SO(6.164)

The father gives a dog to the son.

How can we decide which of the serializations are generated at deep struc-
ture and which ones are not? (It is of course conceivable that all of them are
deep structure serializations and even that none of them is.) This question has
not found a satisfactory answer to date. The problem is what to choose as a
diagnostic tool to identify the deep structure. In the beginning of transforma-
tional grammar it was thought that the meaning of a sentence is assigned at
deep structure. The transformations are not meaning related, they only serve
to make the structure ‘speakable’. This is reminiscent of Harris’ idea that
transformations leave the meaning invariant, the only difference being that
Harris’ conceived of transformations as mediating between sentences of the

Transformational Grammar 519

language. Now, if we assume this then different meanings in the sentences
suffice to establish that the deep structures of the corresponding sentences are
different, though we are still at a loss to say which sentence has which deep
structure. Later, however, the original position was given up (on evidence that
surface structure did contribute to the meaning in the way that deep structure
did) and a new level was introduced, the so–called Logical Form (LF), which
was derived from surface structure by means of further transformations. We
shall not go into this, however. Suffice it to say that this increased even more
the difficulty in establishing with precision the deep structure(s) from which
a given sentence originates.

Let us return to the sentences (6.161) – (6.164). They are certainly not
identical. (6.161) sounds more neutral, (6.163) and (6.162) are somewhat
marked, and (6.164) finally is somewhat unusual. The sentences also go to-
gether with different stress patterns, which increases the problem here some-
what. However, these differences are not exactly semantical, and indeed it is
hard to say what they consist in.

Transformational grammar is very powerful. Every recursively enumer-
able language can be generated by a relatively simple TG. This has been
shown by Stanley Peters and R. Ritchie (1971; 1973). In the exercises the
reader is asked to prove a variant of these theorems. The transformations that
we have given above are problematic for a simple reason. The place from
which material has been moved is lost. The new structure is actually not dis-
tinguishable from the old one. Of course, often we can know what the pre-
vious structure was, but only when we know which transformation has been
applied. However, it has been observed that the place from which an ele-
ment has been moved influences the behaviour of the structure. For example,
Chomsky has argued that

T	01'�"X" C can be contracted to
T	01'�'�0

in American
English; however, this happens only if no element has been placed betweenT	01'�"

and
" C during the derivation. For example, contraction is permitted in

(6.166), in (6.168) however it is not, since
" / D B 01' was the subject of the

lower infinitive (standing to the left of the verb), and had been raised from
there. 3 DÙT	01'�"�" C 2(D�0 < DRO(6.165) 3 DÙT	01'�'	0�2(D�0 < DRO(6.166) s / ,�)�,�)±" / D B 04'ZT
DÚT
04'�"X" C 2(D�0 < Dµ%�) 0�2 C '
D�O(6.167) ¡ s / ,�)Ú,�)\" / D B 01'ZT
DÙT	01'�'�0 2(D�0 < Dµ%.)?0�2 C '	DRO(6.168)

520 The Model Theory of Linguistic Structures

The problem is that the surface structure does not know that the element
" / DB 01' has once been in between

T	01'�"
and

" C . Therefore, one has assumed
that the moved element leaves behind a so–called trace, written t. For other
reasons the trace also got an index, which is a natural number, the same one
that is given to the moved element (= antecedent of the trace). So, (6.142)
‘really’ looks like this.

(6.169)
s�#
0�,X'.)

1 �] 0�#�# × 2�,�@�D) t1
O

We have chosen the index 1 but any other would have done equally well. The
indices as well as the t are not audible, and they are not written either (ex-
cept in linguistic textbooks, of course). Now the surface structure contains
traces and is therefore markedly different from what we actually hear or read.
Whence one assumed — finally — that there is a further process turning a
surface structure into a pronounceable structure, the so–called Phonological
Form (PF). PF is nothing but the phonological representation of the sentence.
On PF there are no traces and no indices, no (or hardly any) constituent brack-
ets.

One of the most important arguments in favour of traces and the instru-
ment of coindexing was the distribution of pronouns. In the theory one distin-
guishes referential expressions (like

] 0�#�# ×
or
" / DÙ"�#�0�,X') from anaphors.

To the latter belong pronouns (E , × C % ,
T�D

) as well as reflexive pronouns
(C '
D)4D�2 :). The distribution of these three is subject to certain rules which
are regulated in part by structural criteria.] 0�#�# × 2�,�@�D) / , B)4D�2 : O(6.170)] 0�#�# × í D�2�,>D < D î " / 0'" A C / 'ZT	0�) #�D
)0& C '�)�, í 2(D : C #(6.171) / , B)�D�2 : O] 0�#�# × í D�2�,>D < D î " C í D�#�D)0& C '.)%, í 2(D : C # / , B)�D�2 : O(6.172)] , B)�D�2 : is a subject–oriented anaphor. Where it appears, it refers to the sub-
ject of the same sentence. Semantically, it is interpreted as a variable which
is identical to the variable of the subject. As (6.171) shows, the domain of
a reflexive ends with the finite sentence. The antecedent of / , B)�D�2 : must
be taken to be John, not Harry. Otherwise, we would have to have / , B in
place of / , B)�D�2 : . (6.172) shows that sometimes also phonetically empty
pronouns can appear. In other languages they are far more frequent (for ex-
ample in Latin or in Italian). Subject pronouns may often be omitted. One

Transformational Grammar 521

says that these languages have an empty pronoun, called pro (‘little PRO’).
Additionally to the question of the subject also structural factors are involved.2 0'"�T	0
) î #n, < ,X'�4 / ,�) F 0�#Ñ04' î /�D�"�D&# � " C�C O(6.173)] ,�) F 0># B 0 î D 2 0�" / 0.&%& × 01' î /�D�"�D># � " C�C O(6.174)

We may understand (6.173) in two ways: either Peter was driving his (= Pe-
ter’s) car or Nat’s car. (6.174) allows only one reading (on condition that ‘his’
refers to Nat, which it does not have to): Peter was happy about Nat’s car,
not Peter’s. This has arguably nothing to do with semantical factors, but only
with the fact that in the first sentence, but not in the second, the pronoun is
bound by its antecedent. Binding is defined as follows.

Definition 6.50 Let ± be a tree with labelling ! . x binds y if (a) the small-
est branching node that properly dominates x dominates y, but x does not
dominate y, and (b) x and y carry the same index.

The structural condition (a) of the definition is called c–command. (A some-
what modified definition is found below.) The antedecent c–commands the
pronoun in case of binding. In (6.173) the pronoun / ,�) is c–commanded by2 0'" . For the smallest constituent properly containing 2 0�" is the entire sen-
tence. In (6.174) the pronoun / ,�) is not c–commanded by 2 0�" . (This is of
course not entirely clear and must be argued for independently.)

There is a rule of distribution for pronouns that is as follows: the reflexive
pronoun has to be bound by the subject of the sentence. A nonreflexive pro-
noun however may not be bound by the subject of the sentence. This applies
to German as well as to English. Let us look at (6.175).

(6.175)
] , B)�D�2 : �] 0>#(# × 2�,�@�D)ÒO

If this sentence is grammatical, then binding is computed not only at sur-
face structure but at some other level. For the pronoun / , B)�D�2 : is not c–
commanded by the subject

] 0�#�# ×
. The structure that is being assumed is

[
] , B)4D�2 : [

] 0>#(# × 2�,�@
D
)
]]. Such consideration have played a role in the

introduction of traces. Notice however that none of the conclusions is in-
evitable. They are only inevitable moves within a certain theory (because it
makes certain assumptions). It has to be said though that binding was the
central diagnostic tool of transformational grammar. Always if it was diag-
nosed that there was no c–command relation between an anaphor and some

522 The Model Theory of Linguistic Structures

element one has concluded that some movement must have taken place from
a position, where c–command still applied.

In the course of time the concept of transformation has undergone revi-
sion. TG allowed deletions, but only if they were recoverable: this means that
if one has the output structure and the name of the transformation that has
been applied one can reconstruct the input structure. (Effectively, this means
that the transformations are partial injective functions.) In the so–called The-
ory of Government and Binding (GB) Chomsky has banned deletion al-
together from the list of options. The only admissible transformation was
movement, which was later understood as copy and delete (which in effect
had the same result but was theoretically a bit more elegant). The movement
transformation was called Move–α and allowed to move any element any-
where (if only the landing site had the correct syntactic label). Everything
else was regulated by conditions on the admissibility of structures.

Quite an interesting complication arose in the form of the so–called par-
asitic gaps.

(6.176)
3 / , F#/ &	0.&	D>#�) î , î × C % : ,>2(D�Tn,." / C %�"�#�D�0 î ,X'�42¹

We are dealing here with two verbs, which share the same direct object (
" C: ,>2(D

and
" C #�D�0 î). However, at deep structure only one them could have

had the overt object phrase
T / , F0/ &�0.&
D&#�) as its object and so at deep struc-

ture we either had something like (6.177) or something like (6.178).× C % î , î : ,&2&DÚT / , F#/ &	0.&
D&#�)�TV,." / C %�"�#�D�0 î ,X'�4H¹(6.177) × C % î , î : ,&2&DÚTV,." / C %�"�#�D�0 î ,X'�4�T / , F0/ &�0.&
D&#�)!¹(6.178)

It was assumed that essentially (6.177) was the deep structure while the verb" C #�D�0 î (in its form
#�D�0 î ,X'�4 , of course) just got an empty coindexed object.

(6.179)
× C % î , î : ,&2(DÚT / , F#/ &	0.&	D>#�) 1

TV,�" / C %�"?#�D�0 î ,ï'�4 e1
¹

However, the empty element is not bound in this configuration. English does
not allow such structures. The transformation that moves the wh–constituent
at the beginning of the sentence however sees to it that a surface structure the
pronoun is bound. This means that binding is not something that is decided
at deep structure alone but also at surface structure. However, it cannot be
one of the levels alone (see (Frey, 1993)). We have just come to see that
deep structure alone gives the wrong result. If one replaces

T / , F#/ &	0.&	D>#�)

Transformational Grammar 523

by
T / , F#/ &	0.&
D&# 0 í C %�" × C %�#�)4D�2 : then we have an example in which the

binding conditions apply neither exclusively at deep structure nor exclusively
at surface structure. And the example shows that traces form an integral part
of the theory.

A plethora of problems have since appeared that challenged the view and
the theory had to be revised over and over again in order to cope with them.
One problem area were the quantifiers and their scope. In German, quanti-
fiers have scope more or less as in the surface structure, while in English
matters are different (not to mention other languages here). Another problem
is coordination. In a coordinative construction we may intuitively speaking
delete elements. However, deletion is not an option any more. So, one has to
assume that the second conjunct contains empty elements, whose distribution
must be explained. The deep structure of (6.180) is for example (6.181). For
many reasons, (6.182) or (6.183) would however be more desirable.� 0�#
2 / 0'" A 0�#n,&0?D�,X' [0 / #�#
0 î 4�D
)�" C / 2&D�'?%�' î /�D�"�D&#(6.180) D�,X'ZF
0 î , C O

Karl has Maria a bicycle stolen and Peter a radio.

Karl has stolen a bicycle from Maria and a radio from Peter.� 0�#
2 1 A 0>#G,&0�D�,X' [0 / #(#
0 î�¦ 4�D)�" C / 2(D�' / 0'" § 2(6.181) %�' î e1
/�D�"�D>#ÿD�,ï'ZF	0 î , C e2

O� 0�#
2 ¦ ¦ A 0>#G,&0�D�,X' [0 / #(#
0 î4§ %�' î¶¦ /�D�"�D&#ÿD�,X' 5 %�" C § §(6.182) 4�D)#" C / 2(D4' / 0'"SO� 0�#
2 ¦ ¦ A 0>#G,&0�D�,X' [0 / #(#
0 î 4�D)#" C / 2(D4' / 0�" §(6.183) %�' î¶¦ /�D�"�D&#ÏD�,X'ZF
0 î , C 4�D)�" C / 2(D�' / 0�"�O § §
We shall conclude this section with a short description of GB. It is perhaps not
an overstatement to say that GB has been the most popular variant of TG, so
that it is perhaps most fruitful to look at this theory rather than previous ones
(or even the subsequent Minimalist Program). GB is divided into several
subtheories, so–called modules. Each of the modules is responsible for its
particular set of phenomena. There is

À Binding Theory,

Á the ECP (Empty Category Principle),

Â Control Theory,

524 The Model Theory of Linguistic Structures

Ã Bounding Theory,

Ä the Theory of Government,

Å Case Theory,

Æ Θ–Theory,

Ç Projection Theory.

The following four levels of representation were distinguished.

Ê D–Structure (formerly deep structure),

Ë S–Structure (formerly surface structure),

Ì Phonetic Form (PF) and

Í Logical Form (LF).

There is only one transformation, called Move–α . It takes a constituent of
category α (α arbitrary) and moves it to another place either by putting it in
place of an empty constituent of category α (substitution) or by adjoining it to
a constituent. Binding Theory however requires that trace always have to be
bound, and so movement always is into a position c–commanding the trace.
Substitution is defined as follows. Here X and Y are variables for strings α
and γ category symbols. i is a variable for a natural number. It is part of the
representation (more exactly, it is part of the label, which we may construe as
a pair of a category symbol and a set of natural numbers). i may occur in the
left hand side (SC) namely, if it figures in the label α . So, if α

, � C � I � , C a
category label and I } ω , α � i :

, � C � I sì5 i 61� .
(6.184) Substitution: ¦ X ¦ e § α Y ¦ Z § α W § , |¨¦ X ¦ Z § α " i Y ¦ ti § α W §
Adjunction is the following transformation.

(6.185) Adjunction: ¦ X ¦Y § α Z § γ , |�¦ ¦Y § α " i ¦X ¦ ti § α Z § γ § γ
Both rules make the constituent move leftward. Corresponding rightward
rules can be formulated analogously. (In present day theory it is assumed
that movement is always to the left. We shall not go into this, however.) In
both cases the constituent on the right hand side, ¦X § α " i, is called the an-
tecedent of the trace, ti. This terminology is not arbitrary: traces in GB are

Transformational Grammar 525

considered as anaphoric elements. In what is to follow we shall not consider
adjunction since it leads to complications that go beyond the scope of this
exposition. For details we refer to (Kracht, 1998). For the understanding of
the basic techniques (in particular with respect to Section 6.7) it is enough if
we look at substitution.

As in TG, the D–structure is generated first. How this is done is not exactly
clear. Chomsky assumes in (1981) that it is freely generated and then checked
for conformity with the principles. Subsequently, the movement transforma-
tion operates until the conditions for an S–structure are satisfied. Then a copy
of the structure is passed on to the component which transforms it into a PF.
(PF is only a level of representation, therefore there must be a process to arrive
at PF.) For example, symbols like ti, e, which are empty, are deleted together
with all or part of the constituent brackets. The original structure meanwhile
is subjected to another transformational process until it has reached the con-
ditions of Logical Form and is directly interpretable semantically. Quantifiers
appear in their correct scope at LF. This model is also known as the T–model.

We begin with the phrase structure, which is conditioned by the theory
of projection. The conditions of theory of projection must in fact be obeyed
at all levels (with the exception of PF). This theory is also known as X–
syntax. It differentiates between simple categorial labels (for example V, N,
A, P, I and C, to name the most important ones) and a level of projection.
The categorial labels are either lexical or functional. Levels of projection
are natural numbers, starting with 0. The higher the number the higher the
level. In the most popular version one distinguishes exactly 3 levels for all
categories (while in (Jackendoff, 1977) it was originally possible to specify
the numbers of levels for each category independently). The levels are added
to the categorial label as superscripts. So N2 is synonymous with

(6.186) ý CAT : N
PROJ : 2 þ

If X is a categorial symbol then XP is the highest projection. In our case NP
is synonymous with N2. The rules are at most binary branching. The non–
branching rules are

(6.187) X j � 1 � X j

X j is the head of X j � 1. There are, furthermore, the following rules:

(6.188) X j � 1 � X j YP � X j � 1 � YP X j

526 The Model Theory of Linguistic Structures

Here, YP is called the complement of X j if j
,

0, and the specifier if j
,

1.
Finally, we have these rules.

(6.189) X j � X j YP � X j � YP X j

Here YP is called the adjunct of X j. The last rules create a certain difficulty.
We have two occurrences of the symbol X j. This motivated the distinction
between a category (= connected sets of nodes carrying the same label) and
segments thereof. The complications that arise from this definition have been
widely used by Chomsky in (1986). The relation head of is transitive. Hence
x with category Ni is the head of y with N j, if all nodes z with x b z b y have
category Nk for some k. By necessity, we must have i ç k ç j.

Heads possess in addition to their category label also a subcategorization
frame. This frame determines which arguments the head needs and to which
arguments it assigns case and/or a θ–role. θ–roles are needed to recover an ar-
gument in the semantic representation. For example, there are roles for agent,
experiencer, theme, instrument and so on. These are coded by suggestive
names such as θa, θe, θth, θinst , and so on.

)�D(D
gets for example the following

subcategorization frame.

(6.190)
)�D�D

: � NP ¦ θe §�� NP ¦ ACC � θth §l�
It is on purpose that the verb does not assign case to its subject. It only as-
signs a θ–role. The case is assigned only by virtue of the verb getting the
finiteness marker. The subcategorization frames dictate how the local struc-
ture surrounding a head looks like. One says that the head licenses nodes
in the deep structure, namely those which correspond to entries of its sub-
categorization frame. It will additionally determine that certain elements get
case and/or a θ–role. Case- and Θ–Theory determine which elements need
case/θ–roles and how they can get them from a head. One distinguishes be-
tween internal and external arguments. There is at most one external ar-
gument, and it is signalled in the frame by underlining it. It is found at deep
structure outside of the maximal projection of the head (some theorists also
think that it occupies the specifier of the projection of the head, but the de-
tails do not really matter here). Further, only one of the internal arguments is a
complement. This is already a consequence of X–syntax; the other arguments
therefore have to be adjuncts at D–structure.

One of the great successes of the theory is the analysis of
)4D�D B . The un-

inflected
)4D�D B has the following frame.

(6.191)
)�D�D B : � INFL2 ¦ θt §l�

Transformational Grammar 527

(INFL is the symbol of inflection. This frame is valid only for the variant
which selects infinitives.) This verb has an internal argument, which must
be realized by the complement in the syntactic tree. The verb assigns a θ–
role to this argument. Once it is inflected, it has a subject position, which is
assigned case but no θ–role. A caseless NP inside the complement must be
moved into the subject position of

)�D(D B in syntax, since being an NP it needs
case. It can only appear in that position, however, if at deep structure it has
been assigned a θ–role. The subject of the embedded infinitive however is a
canonical choice: it only gets a θ–role, but still needs case.0�é!i V 1�â!â!bm1Ï¦ t V ègh 1%f!â(â4Q�§(6.192) ¡ ��â(â!b¢1 [0 é
i ègh 1%f!â!â�Q](6.193)

It is therefore possible to distinguish two types of intransitive verbs, those
which assign a θ–role to their subject (

: 0�2(2
) and those which do not (

)�D(D B).
There were general laws on subcategorization frames, such as

Burzio’s Generalization. A verb assigns case to its governed NP–argument if
and only it assigns a θ–role to its external argument.

The Theory of Government is responsible among other for case assignment.
It is assumed that nominative and accusative could not be assigned by heads
(as we — wrongly, at least according to this theory — said above) but only
in a specific configuration. The simplest configuration is that between head
and complement. A verb having a direct complement licenses a direct object
position. This position is qua structural property (being sister to an element
licensing it) assigned accusative. The following is taken from (von Stechow
and Sternefeld, 1987), p. 293.

Definition 6.51 x with label α governs y with label β iff (1) x and y are
dominated by the same nodes with label XP, X arbitrary, and (2) either α

,
X0, where X is lexical or α

,
AGR0 and (3) x c–commands y. x governs y

properly if x governs y and either α
,

X 0, X lexical, or x and y are coindexed.

(Since labels are currently construed as pairs � X i � P � , where X i is a category
symbol with projection and P a set of natural numbers, we say that x and
y are coindexed if the second component of the label of x and the second
component of the label of y are not disjoint.) The ECP is responsible for the
distribution of empty categories. In GB there is a whole army of different

528 The Model Theory of Linguistic Structures

empty categories: e, a faceless constituent into which one could move, t, the
trace, PRO and pro, which were pronouns. The ECP says among other that t
must always be properly governed, while PRO may never be governed. We
remark that traces are not allowed to move. In Section 6.7 we consider this
restriction more closely. The Bounding Theory concerns itself with the dis-
tance that syntactic processes may cover. It (or better: notions of distance) is
considered in detail in Section 6.7. Finally, we remark that Transformational
Grammar also works with conditions on derivations. Transformations could
not be applied in any order but had to follow certain orderings. A very impor-
tant one (which was the only one to remain in GB) was cyclicity. Let y be the
antecedent of x after movement and z h y. Then let the interval ¦ x � z § be called
the domain of this instance of movement.

Definition 6.52 Let Γ be a set of syntactic categories. x is called a bound-
ing node if the label of x is in Γ. A derivation is called cyclic if for any two
instances of movement β1 and β2 and their domains B1 and B2 the follow-
ing holds: if β1 was applied before β2 then every bounding node from B1 is
dominated (not necessarily properly) by some bounding node from B2 and ev-
ery bounding node from B2 dominates (not necessarily properly) a bounding
node from B1.

Principally, all finite sentences are bounding nodes. However, it has been ar-
gued by Rizzi (and others following him) that the choice of bounding cate-
gories is language dependent.

Notes on this section. This exposition may suffice to indicate how com-
plex the theory was. We shall not go into the details of parametrization of
grammars and learnability. We have construed transformations as acting on
labelled (ordered) trees. No attempt has been made to precisify the action of
transformations on trees. Also, we have followed common practice to write
t V , even though strictly speaking t is a symbol. So, it would have been more
appropriate to write #�V , say, to make absolutely clear that there is a symbol
that gets erased. (In TG, deletion really erased the symbol. Today transfor-
mations may not delete, but deletion must take place on the way to PF, since
there are plenty of ‘empty’ categories.)

Exercise 232. Coordinators like
04' î , C # and

' C " have quite a flexible syntax,
as was already remarked at the end of Section 3.5. We have F 0'"Ñ04' îÏî C 4 ,#�D�0 î 04' î T�#G,."�D , 4(#�D�D�'Ñ04' î?í 24%
D and so on. What difficulties arise in
connection with X–syntax for these words? What solutions can you propose?

GPSG and HPSG 529

Exercise 233. A transformation is called minimal if it replaces at most two
adjacent symbols by at most two adjacent symbols. Let L be a recursively
enumerable language. Construct a regular grammar G and a finite set of min-
imal transformations such that the generated set of strings is L. Here the cri-
terion for a derivation to be finished is that no transformation can be applied.
Hint. If L is recursively enumerable there is a Turing machine which gener-
ates L from a given regular set of strings.

Exercise 234. (Continuing the previous exercise.) We additionally require
that the deep structure generated by G as well as all intermediate structures
conform to X–syntax.

Exercise 235. Write a 2–LMG that accommodates German V2 and damit–
and davor–split.

Exercise 236. It is believed that if traces are allowed to move, we can create
unbound traces by movement of traces. Show that this is not a necessary con-
clusion. However, the ambiguities that arise from allowing such movement
on condition that it does not make itself unbound are entirely harmless.

6. GPSG and HPSG

In the 1980s, several alternatives to transformational grammar were being de-
veloped. One alternative was categorial grammar, which we have discussed
in Chapter 3. Others were the grammar formalisms that used a declarative
(or model theoretic) definition of syntactic structures. These are Generalised
Phrase Structure Grammar (mentioned already in Section 6.1) and Lexical–
Functional Grammar (LFG). GPSG later developed into HPSG. In this sec-
tion we shall deal mainly with GPSG and HPSG. Our aim is twofold. We
shall give an overview of the expressive mechanism that is being used in
these theories, and we shall show how to translate these expressive devices
into a suitable polymodal logic.

In order to justify the introduction of transformational grammar, Chomsky
had given several arguments to show that traditional theories were completely
inadequate. In particular, he targeted the theory of finite automata (which was
very popular in the 1950s) and the structuralism. His criticism of finite au-
tomata is up to now unchallenged. His negative assessment of structuralism,
however, was based on factual errors. First of all, Chomsky has made a cari-
cature of Bloomfields structuralism by equating it with the claim that natural

530 The Model Theory of Linguistic Structures

languages are strongly context free (see the discussion by Manaster–Ramer
and Kac (1990)). Even if this was not the case, his arguments of the insuffi-
ciency of CFGs are questionable. Some linguists, notably Gerald Gazdar and
Geoffrey Pullum, after reviewing these and other proofs eventually came to
the conclusion that contrary to what has hitherto been believed all natural lan-
guages were context free. However, the work of Riny Huybregts and Stuart
Shieber, which we have discussed already in Section 2.7 put a preliminary
end to this story. On the other hand, as Rogers (1994) and Kracht (1995b)
have later shown, the theories of English proposed inside of GB actually pos-
tulated an essentially context free structure for it. Hence English is still (from
a theoretical point of view) strongly context free.

An important argument against context free rules has been the fact that
simple regularities of language such as agreement cannot be formulated in
them. This was one of the main arguments by Paul Postal (1964) against the
structuralists (and other people), even though strangely enough TG and GB
did not have much to say about it either. Textbooks only offer vague remarks
about agreement to the effect that heads agree with their specifiers in certain
features. Von Stechow and Sternefeld (1987) are more precise in this respect.
In order to formulate this exactly, one needs AVSs and variables for values
(and structures). These tools were introduced by GPSG into the apparatus of
context free rules, as we have shown in Section 6.1. Since we have discussed
this already, let us go over to word order variation. Let us note that GPSG
takes over X–syntax more or less without change. It does, however, not insist
on binary branching. (It allows even unbounded branching, which puts it just
slightly outside of context freeness. However, the bound on branching may
seem unnatural, see Section 6.4.) Second, GPSG separates the context free
rules into two components: one is responsible for generating the dominance
relation, the other for the precedence relation between sisters. The following
rule determines that a node with label VP can have daughters, which may
occur in any order.

(6.194) VP � NP ¦ nom § NP ¦ dat § NP ¦ acc § V

This rule stands for no less than 24 different context free rules. In order to get
for example the German word order of the subordinate clause we now add
the following condition.

(6.195) N a V

GPSG and HPSG 531

This says that every daughter with label N is to the left of any daughter with
label V. Hence there only remain 6 context free rules, namely those in which
the verb is at the end of the clause. (See in this connection the examples
(6.161) – (6.164).) For German one would however not propose this analy-
sis since it does not allow to put any adverbials in between the arguments of
the verb. If one uses binary branching trees, the word order problems reap-
pear again in the form of order of discharge (for which GPSG has no special
mechanism). There are languages for which this is better suited. For example,
Staal (1967) has argued that Sanskrit has the following word orders: SVO,
SOV, VOS and OVS. If we allow the following rules without specifying the
linear order, these facts are accounted for.

(6.196) VP � NP ¦ nom § V1 � V1 � NP ¦ acc § V0

All four possibilities can be generated — and no more.
Even if we ignore word order variation of the kind just described there re-

main a lot of phenomena that we must account for. GPSG has found a method
of capturing the effect of a single movement transformation by means of a
special device. It first of all defines metarules, which generate rules from
rules. For example, to account for movement we propose that in addition to¦ ¦ Â=Â=Â Y Â=Â=ÂÈ§ W § V also the tree ¦Yi ¦ Â=Â=Â ti Â=Â=ÂÈ§ W § V will be a legitimate tree. To make
this happen, there shall be an additional unary rule that allows to derive the
latter tree whenever the former is derivable. The introduction of these rules
can be captured by a general scheme, a metarule. However, in the particular
case at hand one must be a bit more careful. It is actually necessary to do a
certain amount of bookkeeping with the categories. GPSG borrows from cat-
egorial grammar the category W ¾ Y , where W and Y are standard categories.
In place of the rule V � W one writes V � Y W ¾ Y . The official notation is

(6.197) ý W
SLASH : Y þ

How do we see to it that the feature ¦ SLASH : Y § is correctly distributed?
Also here GPSG has tried to come up with a principled answer. GPSG distin-
guishes foot features from head features. Their behaviour is quite distinct.
Every feature is either a foot feature or a head feature. The attribute SLASH

is classified as a foot feature. (It is perhaps unfortunate that it is called a fea-
ture and not an attribute, but this is a minor issue.) For a foot feature such as
SLASH, the SLASH–features of the mother are the unification of the SLASH–
features of the daughters, which corresponds to the logical meet. Let us look

532 The Model Theory of Linguistic Structures

more closely into that. If W is an AVS and f a feature then we denote by
f 7 W 8 the value of f in W .

Definition 6.53 Let G be a set of rules over AVSs. f is a foot feature in G if
for every maximally instantiated rule A � B0 Â=Â=Â Bn © 1 the following holds.

(6.198) f 7 A 8 , �
i n

f 7 Bi 8
So, what this says is that the SLASH–feature can be passed on from mother
to any number of its daughters. In this way (Gazdar et al., 1985) have seen
to it that parasitic gaps can also be handled (see the previous section on this
phenomenon). However, extreme care is needed. For the rules do not allow
to count how many constituents of the same category have been extracted.
Head features are being distributed roughly as follows.

Head Feature Convention. Let A $ B0 ����� Bn % 1 be a rule with head Bi, and f
a head feature. Then f (A *m+ f (Bi * .

The exact formulation of the distribution scheme for head features however
is much more complex than for foot features. We shall not go into the details
here.

This finishes our short introduction to GPSG. It is immediately clear that
the languages generated by GPSG are context free if there are only finitely
many category symbols and bounded branching. In order for this to be the
case, the syntax of paths in an AVS was severely restricted.

Definition 6.54 Let A be an AVS. A path in A is a sequence � f i : i b n � such
that fn © 1 :ªÂ=Â=ÂO: f0 7 A 8 is defined. The value of this expression is the value of
the path.

In (Gazdar et al., 1985) it was required that only those paths were legitimate
in which no attribute occurs twice. In this way the finiteness is a simple mat-
ter. The following is left to the reader as an exercise.

Proposition 6.55 Let A be a finite set of attributes and F a finite set of paths
over A. Then every set of pairwise non–equivalent AVSs is finite.

Subsequently to the discovery on the word order of Dutch and Swiss German
this restriction finally had to fall. Further, some people had anyway argued
that the syntactic structure of the verbal complex is quite different, and that

GPSG and HPSG 533

Table 24. An LFG–Grammar

S � NP VP7Ne SUBJ
,·d 8 e , d

NP � Det Ne , d e ,·d
VP � V PPe , d 7Ne OBJ

,·d 8
this applies also to German. The verbs in a sequence of infinitives were argued
to form a constituent, the so called verb cluster. This has been claimed in
the GB framework for German and Dutch. Also, Joan Bresnan, Ron Kaplan,
Stanley Peters and Annie Zaenen argue in (1987) for a different analysis,
based on principles of LFG. Central to LFG is the assumption that there are
three (or even more) distinct structures that are being built simultaneously:

+ c–structure or constituent structure: this is the structure where the lin-
ear precedence is encoded and also the syntactic structure.

+ f–structure or functional structure: this is the structure where the gram-
matical relations (subject, object) but also discourse relations (topic)
are encoded.

+ a–structure or argument structure: this is the structure that encodes
argument relations (θ–roles).

A rule specifies a piece of c-, f- and a–structure together with correspon-
dences between the structures. For simplicity we shall ignore a–structure
from now on. An example is provided in Table 24. The rules have two lines:
the upper line specifies a context free phrase structure rule of the usual kind
for the c–structure. The lower line tells us how the c–structure relates to the
f–structure. These correspondences will allow to define a unique f–structure
(together with the universal rules of language). The rule if applied creates a
local tree in the c–structure, consisting of three nodes, say 0, 00, 01, with
label S, NP and VP, respectively. The corresponding f–structure is different.
This is indicated by the equations. To make the ideas precise, we shall as-
sume two sets of nodes in the universe, C and F , which are sets of c–structure

534 The Model Theory of Linguistic Structures

and f–structure nodes, respectively. And we assume a function FUNC, which
maps C to F . It is clear now how to translate context free rules into first–order
formulae. We directly turn to the f–structure statements. C–structure is a tree,
F–structure is an AVS. Using the function UP to map a node to its mother, the
equation 7Ne SUBJ

,·d 8 is translated as follows:

(6.199) 7Ne SUBJ
,·d 8�7 x 8 :

,
SUBJ : FUNC : UP 7 x 8 , FUNC 7 x 8

In simpler terms: I am my mother’s subject. The somewhat simpler statemente ,·d is translated by

(6.200) 7Ne , d 8�7 x 8 :
,

FUNC : UP 7 x 8 , FUNC 7 x 8
Here the f–structure does not add a node, since the predicate installs itself
into the root node (by the second condition), while the subject NP is its SUBJ–
value. Notice that the statements are local path equations, which are required
to hold of the c–structure node under which they occur. LFG uses the fact that
f–structure is flatter than c–structure to derive the Dutch and Swiss German
sentences using rules of this kind, despite the fact that the c–structures are not
context free.

While GPSG and LFG still assume a phrase structure skeleton that plays
an independent role in the theory, HPSG actually offers a completely homo-
geneous theory that makes no distinction between the sources from which a
structure is constrained. What made this possible is the insight that the at-
tribute value formalism can also encode structure. A very simple possibility
of taking care of the structure is the following. Already in GPSG there was
a feature SUBCAT whose value was the subcategorization frame of the head.
Since the subcategorization frame must map into a structure we require that
in the rules

(6.201) X � Y ¦ SUBCAT : A § B

where B ç A. (Notice that the order of the constituents does not play any
role.) This means nothing but that B is being subsumed under A that is to
say that it is a special A. The difference with GPSG is now that we allow to
stack the feature SUBCAT arbitrarily deep. For example, we can attribute to

GPSG and HPSG 535

the German word
4�D í D�' (‘to give’) the following category.

(6.202)

øüüüüüüüüù
CAT : v

SUBCAT :

øüüüüüüù CAT : NP
CASE : nom

SUBCAT :

øüüù CAT : NP
CASE : dat

SUBCAT : ý CAT : NP
CASE : acc þ

úØÿÿû
úØÿÿÿÿÿÿû
úØÿÿÿÿÿÿÿÿû

The rules of combination for category symbols have to be adapted accord-
ingly. This requires some effort but is possible without problems. HPSG es-
sentially follows this line, however pushing the use of AVSs to the limit. Not
only the categories, also the entire geometrical structure is now coded using
AVSs. HPSG also uses structure variables. This is necessary in particular for
the semantics, which HPSG treats in the same way as syntax. (In this it differs
from GPSG. The latter uses a Montagovian approach, pairing syntactic rules
with semantical rules. In HPSG — and LFG for that matter —, the semantics
is coded up like syntax.) Parallel to the development of GPSG and related
frameworks, the so called constraint based approaches to natural language
processing were introduced. (Shieber, 1992) provides a good reference.

Definition 6.56 A basic constraint language is a finite set F of unary func-
tion symbols. A constraint is either an equation ‘s 7 x 8 , , , t 7 x 8 ’ or a statement
‘s 7 x 8þe ’. A constraint model is a partial algebra ­ , � A � Π � for the signa-
ture. We write ­ÿÐ s

, , ,
t iff for every a, s ®y7 a 8 and t ®y7 a 8 are defined and

equal. ­ÅÐ s 7 x 8-e iff for every a, s ®y7 a 8 is defined.

Often, one has a particular constant o, which serves as the root, and one con-
siders equations of the form s 7 o 8 , , , t 7 o 8 . Whereas the latter type of equation
holds only at the root, the above type of equations are required to hold glob-
ally. We shall deal only with globally valid equations. Notice that we can
encode atomic values into this language by interpreting an atom p as a unary
function fp with the idea being that fp is defined at b iff p holds of b. (Of
course, we wish to have fp 7 fp 7 b 8=8 , fp 7 b 8 if the latter is defined, but we need
not require that.) We give a straightforward interpretation of this language
into modal logic. For each f � F , take a modality, which we call by the same
name. Every f satisfies � f � p �Ë� f � q �&����� f ��7 p � q 8 . (This logic is known asÝ � q(_ É'& , see (Kracht, 1995a).) With each term t we associate a modality in the

536 The Model Theory of Linguistic Structures

obvious way: f µ :
,

f , 7 f 7 t 8=8 µ :
,

f ; tµ . Now, the formula s
, , ,

t is translated
by

(6.203)
7 sµ , , , tµ 8 :

, � sµ � p ��� tµ � p7 s e�8 µ :
, � sµ �K0

Finally, given ­ , � A � Π � we define a Kripke–frame ­ µ :
, � A � R � with x R 7 f 8 y

iff f 7 x 8 is defined and equals y. Then

(6.204) ­ÉÐ s
, , ,

t å ­ µ ÐÝ7 s , , , t 8 µ
Further,

(6.205) ­ÉÐÝ7 s e�8 å ­ µ Ðx7 s e�8 µ
Now, this language of constraints has been extended in various ways. The
attribute–value structures of Section 6.1 effectively extend this language by
boolean connectives. ¦C : A § is a shorthand for � C � Aµ , where Aµ is the modal
formula associated with A. Moreover, following the discussion of Section 6.4
we use o , o , o and o to steer around in the phrase structure skeleton. HPSG
uses a different encoding. It assumes an attribute called DAUGHTERS, whose
value is a list. A list in turn is an AVS which is built recursively using the
predicates FIRST and REST. (The reader may write down the path language
for lists.) The notions of a Kripke–frame and a generalized Kripke–frame are
then defined as usual. The Kripke–frames take the role of the actual syntactic
objects, while the AVSs are simply formulae to talk about them.

The logic L0 is of course not very interesting. What we want to have is
a theory of the existing objects, not just all conceivable ones. A particular
concern in syntactic theory is therefore the formulation of an adequate theory
of the linguistic objects, be it a universal theory of all linguistic objects, or
be it a theory of the linguistic objects of a particular language. We may cast
this in logical terms in the following way. We start with a set (or class) ´ of
Kripke–frames. The theory of that class is p�\�´ . It would be most preferrable
if for any given Kripke–frame ¹ we had ¹xÐ p�\�´ iff ¹ �ì´ . Unfortunately,
this is not always the case. We shall see, however, that the situation is as
good as one can hope for. Notice the implications of the setup. Given, say,
the admissible structures of English, we get a modal logic LM 7 Eng 8 , which is
an extension of L0. Moreover, if LM 7 Univ 8 is the modal logic of all existing

GPSG and HPSG 537

linguistic objects, then LM 7 Eng 8 furthermore is an axiomatic extension of
LM 7 Univ 8 . There are sets Γ and E of formulae such that

(6.206) L0 } LM 7 Univ 8 , L0
� Γ } LM 7 Eng 8 , L0

� Γ � E

If we want to know, for example, whether a particular formula ϕ is satisfiable
in a structure of English it is not enough to test it against the postulates of the
logic L0, nor those of LM 7 Univ 8 . Rather, we must show that it is consistent
with LM 7 Eng 8 . These problems can have very different complexity. While L0
is decidable, this need not be the case for LM 7 Eng 8 nor for LM 7 Univ 8 . The
reason is that in order to know whether there is a structure for a logic that
satisfies the axioms we must first guess that structure before we can check
the axioms on it. If we have no indication of its size, this can turn out to be
impossible. The exercises shall provide some examples. Another way to see
that there is a problem is this. ϕ is a theorem of LM 7 Eng 8 if it can be derived
from L0 s Γ s E using modus ponens (MP), substitution and (MN). However,
Γ s E � L0

ϕ iff ϕ can be derived from L0 s Γ s E using (MP) and (MN)
alone. Substitution, however, is very powerful. Here we shall be concerned
with the difference in expressive power of the basic constraint language and
the modal logic. The basic constraint language allows to express that two
terms (called paths for obvious reasons) are identical. There are two ways in
which such an identity can be enforced. (a) By an axiom: then this axiom
must hold of all structures under consideration. An example is provided by
the agreement rules of a language. (b) As a datum: then we are asked to
satisfy the equation in a particular structure. In modal logic, only equations
as axioms are expressible. Except for trivial cases there is no formula ϕ 7 s � t 8
in polymodal

Ý � q&_ É & such that

(6.207) �Á­ µ � β � x �+Ð ϕ å s ® 7 x 8 , t ® 7 x 8
Hence, modal logic is expressibly weaker than predicate logic, in which such
a condition is easily written down. Yet, it is not clear that such conditions
are at all needed in natural language. All that is needed is to be able to state
conditions of that kind on all structures — which we can in fact do. (See
(Kracht, 1995a) for an extensive discussion.)

HPSG also uses types. Types are properties of nodes. As such, they can
be modelled by unary predicates in I ÞHG

, or by boolean constants in modal
logic. For example, we have represented the atomic values by proposition
constants. In GPSG, the atomic values were assigned only to Type 0 features.

538 The Model Theory of Linguistic Structures

HPSG goes further than that by typing AVSs. Since the AVS is interpreted in
a Kripke–frame, this creates no additional difficulty. Reentrancy is modelled
by path equations in constraint languages, and can be naturally expressed
using modal languages, as we have seen. As an example, we consider the
agreement rule (6.17) again.

(6.208) ö CAT : s ÷ � ý CAT : np
AGR : 1 þ ý CAT : vp

AGRS : 1 þ
In the earlier (Pollard and Sag, 1987) the idea of reentrancy was motivated by
information sharing. What the label 1 says is that any information available
under that node in one occurrence is available at any other occurrence. One
way to make this true is to simply say that the two occurrences of 1 are
not distinct in the structure. (An analogy might help here. In the notation5 a ��5 a � b 6�6 the two occurrences of a do not stand for different things of the
universe: they both denote a, just that the linear notation forces us to write
it down twice.) There is a way to enforce this in modal logic. Consider the
following formula.

(6.209)
� CAT ��h�� o 7 o ¨ �¸� CAT �Po&p+� o 7=� CAT ��+�p+� o ¨¬8=8� o 7 o ¨Ä��� AGR � p � o � AGRS � p 8

This formula says that if we have an S which consists of an NP and a VP, then
whatever is the value of AGR of the NP also is the value of AGRS of the VP.

The constituency structure that the rules specify can be written down using
quantified modal logic. As an exercise further down shows, ��IÌÜ is so pow-
erful that first–order z@{(| can be encoded. (See Section 1.1 for the definition
of z3{&| .) In I ÞHG 7�� � �3� , , , 8 one can write down an axiom that forces sets to be
well–founded with respect to � and even write down the axioms of
 ²Ää (von
Neumann–Gödel–Bernays Set Theory), which differs from z@{(| in having a
simpler scheme for set comprehension. In its place we have this axiom.

Class Comprehension. ()(P *�(*(x *�(,+ y *�()(z *�(z � y - z � x . P (z *4* .
It says that from a set x and an arbitrary subset of the universe P (which
does not have to be a set) there is a set of all things that belong to both x
and P. In presence of the results by Thatcher, Doner and Wright all this may
sound paradoxical. However, the introduction of structure variables has made
the structures into acyclic graphs rather than trees. However, our reformula-
tion of HPSG is not expressed in ��IÌÜ but in the much weaker polymodal

GPSG and HPSG 539

logic. Thus, theories of linguistic objects are extensions of polymodal

Ý
.

However, as (Kracht, 2001a) shows, by introducing enough modalities one
can axiomatize a logic such that a Kripke–frame � F � R � is a frame for this
logic iff � F � R 7�� � �Y8=� is a model of
½ä ² . This means that effectively any higher
order logic can be encoded into HPSG notation, since it is reducible to set
theory, and thereby to polymodal logic. Although this is not per se an argu-
ment against using the notation, it shows that anything goes and that a claim
to the effect that such and such phenomenon can be accounted for in HPSG
is empirically vacuous.

Notes on this section. One of the seminal works in GPSG besides (Gazdar
et al., 1985) is the study of word order in German by Hans Uszkoreit (1987).
The constituent structure of the continental Germanic languages has been a
focus of considerable debate between the different grammatical frameworks.
The discovery of Swiss German actually put an end to the debate whether or
not context free rules are appropriate. In GSPG it is assumed that the domi-
nance and the precedence relations are specified separately. Rules contain a
dominance skeleton and a specification that says which of the orderings is
admissible. However, as Almerindo Ojeda (1988) has shown, GPSG can also
generate cross serial dependencies of the Swiss German type. One only has
to relax the requirement that the daughters of a node must be linearly ordered
to a requirement that the yield of the tree must be so ordered.

Exercise 237. Show that all axioms of z@{(| and also Class Comprehension
are expressible in I ÞHG 7�� � �3� , , , 8 .
Exercise 238. Show that the logic L0 of any number of basic modal operators
satisfying b p ��b q �Ïb 7 p � q 8 is decidable. This shows the decidability of
L0. Hint. Show that any formula is equivalent to a disjunction of conjunctions
of statements of the form � δ � π , where δ is a sequence of modalities and π is
either nonmodal or of the form ¦m §2¨ .

Exercise 239. Write a grammar using LFG–rules of the kind described above
to generate the crossing dependencies of Swiss German.

Exercise 240. Let A be an alphabet, T a Turing machine over A. The compu-
tation of T can be coded onto a grid of numbers ¿ e M . Take this grid to be
a Kripke–structure, with basic relations the immediate horizontal successor
and predecessor, the transitive closure of these relations, and the vertical suc-
cessor. Take constants ca for every a � A s Q sì5 ∇ 6 . c∇ codes the position of
the read write head. Now formulate an axiom ϕT such that a Kripke–structure

540 The Model Theory of Linguistic Structures

satisfies ϕT iff it represents a computation of T .

7. Formal Structures of GB

We shall close this chapter with a survey of the basic mathematical constructs
of GB. The first complex concerns constraints on syntactic structures. GB
has many types of such constraints. It has for example many principles that
describe the geometrical configuration within which an element can operate.
A central definition is that of idc–command, often referred to as c–command,
although the latter was originally defined differently.

Definition 6.57 Let ± , � T �ib�� be a tree, x � y � T. x idc–commands y if for
every z � x we have z f y. A constituent

d
x idc–commands a constituent

d
y

if x idc–commands y.

In (1986), Jan Koster has proposed an attempt to formulate GB without the
use of movement transformations. The basic idea was that the traces in the
surface structure leave enough indication of the deep structure that we can re-
place talk of deep structure and derivations by talk about the surface structure
alone. The general principle that Koster proposed was as follows. Let x be a
node with label δ , and let δ be a so–called dependent element. (Dependency
is defined with reference to the category.) Then there must exist a uniquely
defined node y with label α which c–commands x, and is local to x. Koster
required in addition that α and δ shared a property. However, in formulating
this condition it turns out to be easier to constrain the possible choices of δ
and α . In addition to the parameters α and δ it remains to say what locality
is. Anticipating our definitions somewhat we shall say that we have x R y for
a certain relation R. (Barker and Pullum, 1990) have surveyed the notions of
locality that enter in the definition of R that were used in the literature and
given a definition of command relation. Using this, (Kracht, 1993) developed
a theory of command relations that we shall outline here.

Definition 6.58 Let � T �ib]� be a tree and R } T 2 a relation. R is called a
command relation if there is a function fR : T � T such that (1) – (3) hold.
R is a monotone command relation if in addition it satisfies (4), and tight if
it satisfies (1) – (5).

À Rx :
, 5 y : x R y 6 ,�d fR 7 x 8 .

Formal Structures of GB 541

Á x b fR 7 x 8 for all x b r.

Â fR 7 r 8 , r.

Ã If x ç y then fR 7 x 8@ç fR 7 y 8 .
Ä If x b fR 7 y 8 then fR 7 x 8yç fR 7 y 8 .

The first class that we shall study is the class of tight command relations. Let± be a tree and P } T . We say, x P–commands y if for every z � x with
z � P we have z f y. We denote the relation of P–command by K 7 P 8 . If we
choose P

,
T we exactly get idc–command. The following theorem is left as

an exercise.

Proposition 6.59 Let R be a binary relation on the tree � T �ib]� . R is a tight
command relation iff R

,
K 7 P 8 for some P } T.

Let ± be a tree. We denote by MCr 7l±�8 the set of monotone command relations
on ± . This set is closed under intersection, union and relation composition.
We even have

(6.210)

fR V S 7 x 8 , max 5 fR 7 x 8P� fS 7 x 8Z6
fR U S 7 x 8 , min 5 fR 7 x 8P� fS 7 x 8Z6
fR � S 7 x 8 , 7 fS : fR 8�7 x 8

For union and intersection this holds without assuming monotonicity. For
relation composition, however, it is needed. For suppose x R : S y. Then we
can conclude that x R fR 7 x 8 and fR 7 x 8 S y. Hence x R : S y iff y ç fS 7 fR 7 x 8=8 ,
from which the claim now follows. Now we set

(6.211) øÑë�º17l±�8 :
, � MCr 7l± 8P��t���s���:��øÑë�º47l±�8 is a distributive lattice with respect to t and s . What is more, there

are additional laws of distribution concerning relation composition.

Proposition 6.60 Let R � S � T � MCr 7l±�8 . Then

À R :;7 S t T 8 , 7 R : S 8�t�7 R : T 8 ,7 S t T 8�: R
, 7 S : R 8(t¸7 T : R 8 .

Á R :;7 S s T 8 , 7 R : S 8�s�7 R : T 8 ,7 S s T 8�: R
, 7 S : R 8(s¸7 T : R 8 .

542 The Model Theory of Linguistic Structures

Proof. Let x be an element of the tree. Then

(6.212)

fR � ¯ S U T ° 7 x 8 , fS U T : fR 7 x 8,
min 5 fS 7 fR 7 x 8=8P� fT 7 fR 7 x 8=8Z6,
min 5 fR � S 7 x 8P� fR � T 7 x 8Z6,
f ¯ R � S °òU&¯ R � T ° 7 x 8

The other claims can be shown analogously. <
Definition 6.61 Let ± be a tree, R � MCr 7l±�8 . R is called generated if it can
be produced from tight command relations by means of t , s and : . R is called
chain like if it can be generated from tight relations with : alone.

Theorem 6.62 R is generated iff R is an intersection of chain line command
relations.

Proof. Because of Proposition 6.60 we can move : to the inside of t ands . Furthermore, we can move t outside of the scope of s . It remains to be
shown that the union of two chain like command relations is an intersection
of chain like command relations. This follows from Lemma 6.66. <
Lemma 6.63 Let R

,
K 7 P 8 and S

,
K 7 Q 8 be tight. Then

(6.213) R s S
, 7 R : S 8�t¸7 S : R 8�t K 7 P t Q 8

Proof. Let x be given. We look at fR 7 x 8 and fS 7 x 8 . Case 1. fR 7 x 8»b fS 7 x 8 . Then
fR V S 7 x 8 , fS 7 x 8 . On the right hand side we have fS : fR 7 x 8 , fS 7 x 8 , since S is
tight. fR : fS 7 x 8þf fS 7 x 8 , as well as fK ¯ P U Q ° 7 x 8þf fS 7 x 8 . Case 2. fS 7 x 8�b fR 7 x 8 .
Analogously. Case 3. fS 7 x 8 , fR 7 x 8 . Then fS V R 7 x 8 , fR 7 x 8 , fS 7 x 8 , whence
fR : fS 7 x 8P� fS : fR 7 x 8�f fS V R 7 x 8 . The smallest node above x which is both in
P and in Q is clearly in fS 7 x 8 . Hence we have fK ¯ P U Q ° 7 x 8 , fS 7 x 8 . Hence
equality holds in all cases. <

We put

(6.214) K 7 P 8(! K 7 Q 8 :
,

K 7 P t P 8
The operation ! is defined only on tight command relations. If � Ri : i b m � is a
sequence of command relations, then R0 : R1 :+Â=Â=Â�: Rn © 1 is called its product.
In what is to follow we shall characterize a union of chain like relations as
the intersection of products. To this end we need some definitions. The first
is that of a shuffling. This operation mixes two sequences in such a way that
the liner order inside the sequences is respected.

Formal Structures of GB 543

Definition 6.64 Let ρ
, � ai : i b m � and σ

, � b j : j b n � be sequences of
objects. A shuffling of ρ and σ is a sequence � ck : k b m g n � such that there
are injective monotone functions f : n � m g n and g : m � m g n such that
im 7 f 8�t im 7 g 8 , w and im 7 f 8�s im 7 g 8 , m g n, as well as c f ¯ i ° , ai for all
i b m and cg ¯ j ° , b j for all j b n. f and g are called the embeddings of the
shuffling.

Definition 6.65 Let ρ
, � Ri : i b m � and σ

, � S j : j b n � be sequences of
tight command relations. Then T is called weakly associated with ρ and σ if
there is a shuffling τ

, � Ti : i b m g n � of ρ and σ together with embeddings
f and g such that

(6.215) T
,

T0 : 0 T1 : 1 T2 Â=Â=Â=: n © 2 Tn © 1

where : i �Ã51:(��!&6 for i b n v 1 and : i , : always if 5 i � i g 1 6�} im 7 f 8 or5 i � i g 1 6×} im 7 g 8 .
If m

,
n
,

2, we have the following shufflings.

(6.216)
� R0 � R1 � S0 � S1 �P� � R0 � S0 � R1 � S1 �P� � R0 � S0 � S1 � R1 �P�� S0 � R0 � R1 � S1 �P� � S0 � R0 � S1 � R1 �P� � S0 � S1 � R0 � R1 �

The sequence � R1 � S0 � S1 � R0 � is not a shuffling because the order of the Ri
is not respected. In general there exist up to y m � n

n z different shufflings. For
every shuffling there are up to 2n © 1 weakly associated command relations (if
n ç m). For example the following command relations are weakly associated
to the third shuffling.

(6.217) R0 ! S0 : S1 ! S1 � R0 : S0 : S1 : R1

The relation R0 : S0 ! S1 : R1 is however not weakly associated to it since !
may not occur in between two S.

Lemma 6.66 Let ρ
, � Ri : i b m � and σ

, � Si : i b n � be sequences of tight
command relations with product T and U, respectively. Then T s U is the
intersection of all chain like command relations which are products of se-
quences weakly associated with a shuffling of ρ and σ .

In practice one has restricted attention to command relations which are
characterized by certain sets of nodes, such as the set of all maximal projec-
tions, the set of all finite sentences, the set of all sentences in the indicative

544 The Model Theory of Linguistic Structures

mood and so on. If we choose P to be the set of nodes carrying a label sub-
suming the category of finite sentences, then we get the following: if x is a
reflexive anaphor, it has to be c–commanded by a subject, which it in turn
P–commands. (The last condition makes sure that the subject is a subject of
the same sentence.) There is a plethora of similar examples where command
relations play a role in defining the range of phenomena. Here, one took not
just any old set of nodes but those that where definable. To precisify this, let�l±��_!ï� with ! : T � N be a labelled tree and Q } N. Then K 7 Q 8 :

,
K 7N!�© 1 7 Q 8=8

is called a definable tight command relation.

Definition 6.67 Let ± be a tree and R } T e T. P is called a (definable) com-
mand relation if it can be obtained from definable tight command relations
by means of composition, union and intersection.

In follows from the previous considerations that the union of definable rela-
tions is an intersection of chains of tight relations. A particular role is played
by subjacency. The antecedent of a trace must be 1–subjacent to a trace. As
is argued in (Kracht, 1998) on the basis of (Chomsky, 1986) this relation is
exactly

(6.218) K 7�^`p48�: K 7_K4p48
The movement and copy–transformations create so–called chains. Chains

connect elements in different positions with each other. The mechanism in-
side the grammar is coindexation. For as we have said in Section 6.5 traces
must be properly governed, and this means that an antecendent must c–com-
mand its trace in addition to being coindexed with it. This is a restriction
on the structures as well as on the movement transformations. Using coin-
dexation one also has the option of associating antecedent and trace with-
out assuming that anything has ever moved. The transformational history can
anyway be projected form the S–structure up to minor (in fact inessential)
variations. This means that we need not care whether the S–structure has been
obtained by transformations or by some other process introducing the indexa-
tion (this is what Koster has argued for). The association between antecedent
and trace can also be done in a different way, namely by collecting sets of
constituents. We call a chain a certain set of constituents. In a chain the mem-
bers may be thought to be coindexed, but this is not necessary. Chomsky has
once again introduced the idea in the 1990s that movement is the sequence of
copying and deletion and made this one of the main innovations of the reform

Formal Structures of GB 545

in the Minimalist Program (see (Chomsky, 1993)). Deletion here is simply
marking as phonetically empty (so the copy remains but is marked). However,
the same idea can be introduced into GB without substantial change. Let us
do this here and introduce in place of Move–α the transformation Copy–α .
It will turn out that it is actually not necessary to say which of the members
of the chain has been obtained by copying from which other member. The
reason is simple: the copy (= antecedent) c–commands the original (= trace)
but the latter does not c–command the former. Knowing who is in a chain
with whom is therefore enough. This is the central insight that is used in the
theory of chains in (Kracht, 2001b) which we shall now outline. We shall see
below that copying gives more information on the derivation than movement,
so that we must be careful in saying that nothing has changed by introducing
copy–movement.

Recall that constituents are subtrees. In what is to follow we shall not
distinguish between a set of nodes and the constituent that is based on that
set. Say that x ac–commands y if x and y are incomparable, x idc–commands
y but y does not idc–command x.

Definition 6.68 Let ± be a tree. A set ∆ of constituents of ± which is linearly
ordered with respect to ac–command is called a chain in ± . The element
which is highest with respect to ac–command is called the head of ∆, the
lowest the foot. ∆ is a copy chain if any two members are isomorphic. ∆ is a
trace chain if all non heads are traces.

The definition of chains can be supplemented with more detail in the case of
copy chains. This will be needed in the sequel.

Definition 6.69 Let ± be a tree. A copy chain ¡ in ± is a pair � ∆ � Φ � for which
the following holds.

À ∆ is a chain.

Á Φ
, 5 ϕ µ é � : ëY� � � ∆ 6 is a family of isomorphisms such that for allëY� � �ã­�� ∆ we have

(a) ϕ µ é µ , 1 µ
(b) ϕ µ é ® , ϕ µ é � : ϕ� é ®

The chain associated with � ∆ � Φ � is ∆.

546 The Model Theory of Linguistic Structures

Often we shall identify a chain ¡ with its associated chain. The isomorphisms
give explicit information which elements of the various constituents are coun-
terparts of which others.

Definition 6.70 Let ± be a tree and / , � ∆ � Φ � a copy chain ¡ . Then we put
x Ø10 y if there is a map ϕ � Φ such that ϕ 7 x 8 , y. We put ¦ x §20 :

, 5 y : x Ø	0 y 6 .
If C is a set of copy chains ¡ then let Ø C be the smallest equivalence relation
generated by all Ø30 , /Ò� C. Further, let ¦ x § C :

, 5 y : x Ø C y 6 .
Definition 6.71 Let � ∆ � Φ � be a copy chain ¡ , ë@� � � ∆. ë is said to be im-
mediately above

�
if there is no � � ∆ distinct from ë and

�
which ac–

commands
�

and is ac–commanded by ë . A link of ∆ is a triple ��ëY� ϕ � é µ�� � �where ë is immediately above
�

. ϕ is called a link map if it occurs in a link.
An ascending map is a composition of link maps.

Lemma 6.72 Let ϕ be a link map. Then t 7 ϕ 7 x 8=8@b t 7 x 8 .
Proof. Let ϕ

,
ϕ µ é � , ë ,\d v,

� ,�d
w. Further, let t µ 7 x 8 be the depth of x

in ë , t � 7 ϕ 7 x 8=8 the depth of ϕ 7 x 8 in
�

. Then t µ
7 x 8 , t� 7 ϕ 7 x 8=8 , since ϕ is
an isomorphism. On the other hand t 7 x 8 , t 7 v 8�g t µ	7 x 8 and t 7 ϕ 7 x 8=8 , t 7 w 8�g
t � 7 ϕ 7 x 8=8 , t 7 w 8�g t µ�7 x 8 . The claim now follows from the next lemma given
the remark that v c–commands w, but w does not c–command v. <
Lemma 6.73 Let ± , � T �ib]� be a tree, x � y � T. If x ac–commands y, t 7 x 83ç
t 7 y 8 .
Proof. There exists a uniquely defined z with z h x. By definition of c–
command we have z f y. But y �, z, since y is not comparable with x. Hence
y b z. Now we have t 7 x 8 , t 7 z 8�g 1 and t 7 y 8;� t 7 z 8 , t 7 x 8�v 1. Whence the
claim. <

We call a pair �l±�� C � a copy chain tree (CCT) if C is a set of copy chains ¡
on ± , ± a finite tree. We consider among other the following constraints.

Uniqueness. Every constituent of 4 is contained in exactly one chain.
Liberation. Let Γ & ∆ be chain, 5�� Γ and 6 0 &�6 1 � ∆ with 6 0 7+�6 1 such that6 0 &�6 1 8 5 . Then 5 is the foot of Γ.

Lemma 6.74 Let K be a CCT which satisfies Uniqueness and Liberation.
Further, let ϕ and ϕ k be link maps with im 7 ϕ 8�t im 7 ϕ k 8]�, w . Then already
ϕ
,

ϕ k .

Formal Structures of GB 547

Proof. Let ϕ : ëx� �
, ϕ k : ë�k
� � k be link maps. If im 7 ϕ 8
t im 7 ϕ k 8×�, w

then
� } � k or

� k�} �
. Without loss of generality we may assume the first.

If
� m � k then also ë¸} � k , since

�
c–commands ë . By Liberation

� k is the
foot of its chain, in contradiction to our assumption. Hence we have

� , � k .
By Uniqueness, ë , ë k and

�
are therefore in the same chain. Since ϕ and ϕ k

are link maps, we must have ë , ë»k . Hence ϕ
,

ϕ k . <
Definition 6.75 Let K be a CCT. x is called a root if x is not in the image of
a link map.

Then proof of the following theorem is now easy to provide. It is left for the
reader.

Proposition 6.76 Let K be a CCT which satisfies Uniqueness and Liberation.
Let x be an element and τi, i b m, ϕ j, j b n, link maps, and y, z roots such
that

(6.219) x
,

τm © 1 : τm © 2 :yÂ=Â=Â=: τ0 7 y 8 , ϕn © 1 : ϕn © 2 :yÂ=Â=ÂZ: ϕ0 7 z 8
Then we have y

,
z, m

,
n and τi

,
ϕi for all i b n.

Hence, for given x there is a uniquely defined root xr with x Ø C xr. Further,
there exists a unique sequence � ϕi : i b n � of link maps such that x is the
image of ϕn © 1 :YÂ=Â=Âi: ϕ0. This sequence we call the canonical decomposition
of x.

Proposition 6.77 Let K be a CCT satisfying Uniqueness and Liberation.
Then the following are equivalent.

À x Ø C y.

Á xr
,

yr.

Â There exist two ascending maps χ and τ with y
,

τ : χ © 1 7 x 8 .
Proof. À | Â. Let x Ø C y. Then there exists a sequence � σi : i b p � of link
maps or inverses thereof such that y

,
σp © 1 :ªÂ=Â=ÂP: σ0 7 x 8 . Now if σi is a link

map and σi � 1 an inverse link map, then σi � 1
,

σ © 1
i . Hence we may assume

that for some q ç p all σi, i b q, are inverse link maps and all σi, p � i f q,
are link maps. Now put τ :

,
σp : σp © 1 Â=Â=Â=: σq and χ :

,
σ0 : σ1 :YÂ=Â=Â�: σq © 1. χ

and τ are ascending maps. So, Â obtains. Â | Á. Let ascending maps χ and

548 The Model Theory of Linguistic Structures

τ be given with y
,

τ : χ © 1 7 x 8 . Put u :
,

χ © 1 7 x 8 . Then u
,

ρ 7 ur 8 for some
ascending map ρ . Further, x

,
χ 7 u 8 , χ : ρ 7 ur 8 and y

,
τ 7 u 8 , τ : ρ 7 ur 8 .

Now, ur is a root and x as well as y are images of ur under ascending maps.
Hence ur is a root of x and y. This however means that ur

,
xr
,

yr. Hence,
Á obtains. Á | À is straightforward. <

The proof also establishes the following fact.

Lemma 6.78 Every ascending map is a canonical decomposition. Every com-
position of maps equals a product τ : χ © 1 where τ and χ are ascending maps.
A minimal composition of link maps and their inverses is unique.

Let x be an element and � ϕi : i b n � its canonical decomposition. Then we
call

(6.220) TK 7 x 8 :
, 5 ϕ j © 1 : ϕ j © 2 :yÂ=Â=ÂZ: ϕ0 7 x 8 : j ç n 6

the trajectory of x. The trajectory mirrors the history of x in the process of
derivation. We call root line of x the set

(6.221) WK 7 x 8 :
, 5 y : y � TK 7 x 8P� y idc–commands xr 6

Notice that xr idc–commands itself. The peak of x is the element of WK 7 x 8 of
smallest depth. We write xπ for the peak of x and πx for the ascending map
which sends x to xπ .

Definition 6.79 Let K be a CCT satisfying Uniqueness and Liberation. If r
is the root of the tree then r is the zenith of r, the zenith map is ζr :

,
1T . If

x �, r then the zenith map is the composition ζy : πx, where y h xπ . The zenith
of x equals ζy : πx 7 x 8 . We write xζ for the zenith of x.

Definition 6.80 A link map is called orbital if it occurs in a minimal decom-
position of the zenith map.

At last we can formulate the following restriction on CCTs.

No Recycling. All link maps are orbital.

The effect of a copy transformation is that (1) it adds a new constituent
and (2) this constituent is added to an already existing chain as a head. Hence
the whole derivation can be thought of as a process which generates a tree
together with its chains. These can be explicitly described and this eliminates
the necessity of talking about transformations.

Formal Structures of GB 549

Definition 6.81 A copy chain structure (CCS) is a CCT K
, �l±�� C � which

satisfies Uniqueness, Liberation and No Recycling.

Everything that one wants to say about transformations and derivations can be
said also about copy chain structures. The reason for this is the following fact.
We call a CCT simply a tree if every chain consists of a single constituent.
Then also this tree is a CCS. A transformation can naturally be defined as an
operation between CCSs. It turns out that Copy–α turns a CCS into a CCS.
The reason for this is that traces have to be bound and may not be moved.
(Only in order to reflect this in the definition of the CCSs the condition No
Recycling has been introduced. Otherwise it was unnecessary.) The following
now holds.

Theorem 6.82 A CCT is a CCS iff it is obtained from a tree by successive
application of Copy–α .

Transformational grammar and HPSG are not as different as one might think.
The appearance to the contrary is created by the fact that TG is written up us-
ing trees, while HPSG has acyclic structures, which need not be trees. In this
section we shall show that GB actually defines structures that are more simi-
lar to acyclic graphs than to trees. The basis for the alternative formulation is
the idea that instead of movement transformations we define an operation that
changes the dominance relation. If the daughter constituent z of x moves and
becomes a daughter constituent of y then we can simply add to the dominance
relation the pair � z � y � . This rather simple idea has to be worked out carefully.
For first we have to change from using the usual transitive dominance relation
the immediate dominance relation. Second one has to take care of the linear
order of the elements at the surface since it is now not any more represented.

Definition 6.83 A multidominance structure (MDS) is a triple � M �
aØ� r � such
that � M �
a�� is a directed acyclic graph with root r and for every x b r the set
M 7 x 8 :

, 5 y : x a y 6 is linearly ordered by b .

With an MDS we only have coded the dominance relation between the con-
stituents. In order to include order we cannot simply add another relation as
we did with trees. Depending on the branching number, a fair number of new
relations will have to be added, which represent the relations the ith daughter
of (where i b n, the maximum branching number). Since we are dealing with
binary branching trees we need only two of these relations.

550 The Model Theory of Linguistic Structures

Definition 6.84 An ordered (binary branching) multidominance structure
(OMDS) is a quadruple � M �
a 0 �
a 1 � r � such that the following holds:

À � M �
a 0 s	a 1 � r � is an MDS.

Á From x h 0 y and x h 0 z follows y
,

z.

Â From x h 1 y and x h 1 z follows y
,

z.

Ã If x h 1 z for some z then there exists a y �, z with x h 0 y.

(The reader may verify that Á and Ã together imply that h 0 tbh 1
, w .) Let�l±��ib¬�
j]� be a binary branching ordered tree. Then we put x a 0 y if x is a

daughter of y and there is no daughter z of y with z j x. Further, we write
x a 1 y if x is a daughter of y but not x a 0 y.

Theorem 6.85 Let K
, �l±�� C � be a CCS over an ordered binary branching

tree with root r. Put M :
, ¦ x § C , x � T , as well as for i

,
0 � 1, ¦ x § C a i ¦ y § C iff

there is an x k�Ø C x and an y k�Ø C y with x k�a i y k . Finally let

(6.222) M 7 K 8 :
, � M �
a 0 �
a 1 �Z¦ r § K �

Then M 7 K 8 is an OMDS.

Now we want to deal with the problem of finding the CCS from the OMDS.

Definition 6.86 Let � M �
a 0 �
a 1 � r � be an OMDS. An identifier is a sequence
I
, � xi : i b n � such that r h x0 and xi h xi � 1 for all i � n. s>7løÑ8 denotes the

set of all identifiers of ø . The address of I is that sequence � γi : i b n � such
that for all i b n one has xi a γi

xi © 1.

The following is easy to see.

Proposition 6.87 The set of addresses of an OMDS is a tree domain.

This means that we have already identified the tree structure. What remains
to do is to find the chains. The order is irrelevant, so we ignore it. At first we
want to establish which elements are overt. In a CCS an element x is called
overt if for every y f x the constituent

d
y is the head of its chain. This we can

also describe in the associated MDS. We say a pair � x � y � is a link in � M �
aØ� r �
if x a y. The link is maximal if y is maximal with respect to b in M 7 x 8 . An
S–identifier is an identifier I

, � xi : i b n � where � xi © 1 � xi � is a maximal link
for all i b n. (For the purpose of this definition, x © 1 is the root.) The overt
elements are exactly the S–identifiers.

Formal Structures of GB 551

Definition 6.88 Let ø , � M �
a¬� r � and ø k , � M kÁ�
a k�� r k � be MDSs. Then øÿk
is called a link extension of ø if M k , M, r k , r and a k , a?sÅ5(� x � y �Z6 ,
where � x � y � is maximal in ø k .
One finds out easily that if K k is derived from K by simple copying then
M 7 K k 8 is isomorphic to a link extension of M 7 K 8 . Let conversely ø k be a
link extension of ø and K a CCS such that M 7 K 8+Ê, ø . Then we claim that
there is a CCS K k for which M 7 K k 8�Ê, øÏk and which results by copying from
K. This is unique up to isomorphism. The tree is given by s>7lø k 8 . Further,
let the tree of K be exactly ä�7løÑ8 . First we have s>7løÑ8 � s>7løýk 8 , and the
identity is an embedding whose image contains all identifiers which do not
contain the subsequence x;y. Let now y k be maximal with respect to b inø . Further, let I be the S–identifier of y and I k the S–identifier of y k in ø .
Then I k , I;J for some J since y k�b y. Define ϕ : I;J;x;K �� I;x;K. This
is an isomorphism of the constituent

d
I;J;x onto the constituent

d
I;x. Now

we define the chains ¡ on s>7lø k 8 . Let / , � ∆ � Φ � be the chain of K which
contains the constituent

d
I;J;xK . Then let /Ùk :

, � ∆ s�5 im 7 ϕ 8Z6>� Φ k�� , where
Φ k : , Φ sÙ5 ϕ : χ : χ � Φ 6+sÙ5 χ : ϕ © 1 : χ � Φ � . For every other chain È letÈ
k :

, È . Finally for an identifier L b I;J;x;K we put ´ L :
, ��5 d L 6>��5 1 ß L 61� .

Then we put

(6.223) K k : , �2s>7lø k 8P�ibØ� ε ��5%È k : ÈÙ� C 6»sì5½´ L : L b I;J;x;K 61�
This is a CCS. Evidently it satisfies Uniqueness. Further, Liberation is satis-
fied as one easily checks. For No Recycling it suffices that the new link map
is orbital. This is easy to see.

Now, how does one define the kinds of structures that are common in GB?
One approximation is the following. We say a trace chain structure is a pair�l±�� C � where C is a set of trace chains. If we have a CCS we get the trace
chain structure relatively easily. To this end we replace all maximal nonovert
constituents in a tree by a trace (which is a one node tree). This however
deletes some chain members! Additionally it may happen that some traces are
not any more bound. Hence we say that a trace chain structure is a pair �l±�� C �
which results from a CCS by deleting overt constituents. Now one can define
trace chain structures also from MDSs, and it turns out that if two CCSs K and
K k have isomorphic MDSs then their trace chain structures are isomorphic.
This has the following reason. An MDS is determined from ± and Ø C alone.
We can determine the root of every element from ± and Ø C, and further also
the root line. From this we can define the peak of every element and therefore

552 The Model Theory of Linguistic Structures

also the zenith. The overt elements are exactly the elements in zenith position.
Except for the overt element, the trace chain structure contains also the traces.
These are exactly the overt daughters of the overt elements.

Let us summarize. There exists a biunique correspondence between deriva-
tions of trace chain structures, derivations of CCSs and derivations of MDSs.
Further, there is a biunique correspondence between MDSs and trace chain
structures. Insofar the latter two structures are exactly equivalent. CCSs con-
tain more information over the derivation (see the exercises).

Exercise 241. This example shows why we cannot use the ordering b in
the MDSs. Let ø , ��5 0 � 1 � 2 6>�
a¬� 0 � and ø k , ��5 0 � 1 � 2 6>�
a�kÈ� 0 � with a ,5(� 2 � 1 �P�Z� 1 � 0 �Z6 and a k , aÏs;5(� 2 � 0 �Z6 . Evidently a � , a k � . Construct s>7løÑ8
and s�7løÿk�8 as well as the connected CCS.

Exercise 242. Prove Proposition 6.59.

Exercise 243. Show Lemma 6.66.

Exercise 244. Show that ac–command is transitive.

Exercise 245. Show Proposition 6.76.

Exercise 246. Let the CCS in Figure 18 be given. The members of a chain
are annotated by the same upper case Greek letter. Trivial chains are not
shown. Let the link maps be ϕΓ : 2 �� 4, ϕ∆ : i �� i g 6 7 i b 6 8 , and also
ϕΘ : i �� i g 13 7 i b 13 8 . Compute ¦ i § C for every i. If instead of ϕ∆ we take
the map ϕ k∆ how do the equivalence classes change?

(6.224) ϕ k∆ : 1 �� 8 � 2 �� 7 � 3 �� 9 � 4 �� 10 � 5 �� 11

Determine the peak and the zenith of every element and the maps.

Exercise 247. Let d 7 n 8 be the largest number of nonisomorphic CCSs which
have (up to isomorphism) the same MDS. Show that d 7 n 83� O 7 2n 8 .

Formal Structures of GB 553

!
1

òòòò !
2

£
Γ

òòòò ! 4!3

!5

ñ ñ ñ ñ
ñ ñ ñV©∆!6

ñ ñ ñ ñ
ñ ñ ñ ñ

ñ ñ ñ ñ
ñ ñ ñ ñ

ñ ñ ñ ñ
ñ ñ ñ ñ

!12

!13

!
7

òòòò !
8

òòòò !
10

!9

! 11

ñ ñ ñ ñ
ñ ñ ñV©Θ

!26

! 25

!19

ò ò ò ò ò ò ò ò ò ò ò ò
!18 ò ò ò ò!16 ò ò ò ò!

14
!

15

!
17

! 24

!22 !
23ò ò ò ò !
21

!
20

ò ò ò ò!27

!29

!
28

Figure 18. A Copy–Chain Structure

Bibliography

Ajdukiewicz, Kazimierz
1936 Die syntaktische Konnexität [The syntactic connectivity]. Studia

Philosophica 1:1 – 27.

Barendregt, Henk
1985 The Lambda Calculus. Its Syntax and Semantics. Studies in Logic and

the Foundations of Mathematics 103. 2nd ed. Amsterdam: Elsevier.

Barker, Chris, and Pullum, Geoffrey.
1990 A theory of command relations. Linguistics and Philosophy 13:1–34.

Bauer, Brigitte L. M.
1995 The Emergence and Development of SVO Patterning in Latin and

French. Oxford: Oxford University Press.

Bird, Steven, and Ellison, Mark
1994 One–level phonology: Autosegmental representations and rules as fi-

nite automata. Computational Linguistics 20:55 – 90.

Blackburn, Patrick
1993 Modal logic and attribute value structures. In Diamonds and Defaults,

Maarten de Rijke (ed.), 19 – 65. (Synthese Library 229.) Dordrecht:
Kluwer.

Blok, Wim J., and Pigozzi, Don J.
1990 Algebraizable logics. Memoirs of the Americal Mathematical Society,

77(396).

Bochvar, D. A.
1938 On a three–valued logical calculus and its application to the analysis

of contradictions. Mathematicheskii Sbornik 4:287 – 308.

Böttner, Michael, and Thümmel, Wolf (eds.)
2000 Variable–free Semantics. Artikulation und Sprache 3. Osnabrück: se-

colo Verlag.

Bresnan, Joan, Kaplan, Ronald M., Peters, Stanley, and Zaenen, Annie
1987 Cross–Serial Dependencies in Dutch. In The Formal Complexity of

Natural Language, Walter Savitch, Emmon Bach, William Marsch,
and Gila Safran–Naveh (eds.), 286 – 319. Dordrecht: Reidel.

Büchi, J.
1960 Weak second–order arithmetic and finite automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6:66 – 92.

556 Bibliography

Burmeister, Peter
1986 A Model Theoretic Oriented Approach to Partial Algebras. Berlin:

Akademie Verlag.
2002 Lecture Notes on Universal Algebra. Many Sorted Partial Algebras.

Manuscript available via internet.

Burris, Stanley, and Sankappanavar, H. P.
1981 A Course in Universal Algebra. Graduate Texts in Mathematics 78.

Berlin/New York: Springer.

Buszkowski, Wojciech
1997 Mathematical linguistics and proof theory. In Handbook of Logic and

Language, Johan van Benthem and Alice ter Meulen (eds.), 683 – 736.
Amsterdam: Elsevier.

Carpenter, Bob
1992 The Logic of Typed Feature Structures. Cambridge Tracts in Theoreti-

cal Computer Science 32. Cambridge: Cambridge University Press.

Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J.
1981 Alternation. Journal of the Association for Computing Machinery

28:114 – 133.

Chomsky, Noam and Halle, Morris
1968 The sound pattern of English. New York: Harper and Row.

Chomsky, Noam
1959 On certain formal properties of grammars. Information and Control

2:137 – 167.
1962 Context–free grammars and pushdown storage. MIT Research Labo-

ratory of Electronics Quarterly Progress Report 65.
1981 Lecture Notes on Government and Binding. Dordrecht: Foris.
1986 Barriers. Cambridge (Mass.): MIT Press.
1993 A minimalist program for linguistic theory. In The View from Building

20: Essays in Honour of Sylvain Bromberger, Ken Hale and Samuel J.
Keyser (eds.), 1 – 52. Cambridge (Mass.): MIT Press.

Church, Alonzo
1933 A set of postulates for the foundation of logic. Annals of Mathematics

2:346 – 366.
1940 A formulation of the simple theory of types. Journal of Symbolic Logic

5:56 – 68.

Coulmas, Florian
2003 Writing Systems. An introduction to their linguistic analysis. Cam-

bridge: Cambridge University Press.

Bibliography 557

Culy, Christopher
1987 The Complexity of the Vocabulary of Bambara. In The Formal Com-

plexity of Natural Language, Walter Savitch, Emmon Bach, William
Marsch, and Gila Safran–Naveh (eds.), 345 – 351. Dordrecht: Reidel.

Curry, Haskell B.
1930 Grundlagen der kombinatorischen Logik [Foundations of combinatory

logic]. American Journal of Mathematics 52:509 – 536, 789 – 834.
1977 Foundations of Mathematical Logic. 2nd ed. New York: Dover Publi-

cations.

Davey, B. A., and Priestley, H. A.
1990 Lattices and Order. Cambridge: Cambridge University Press.

Deutsch, David, Ekert, Artur, and Luppacchini, Rossella
2000 Machines, logic and quantum physics. Bulletin of Symbolic Logic

6:265 – 283.

Doner, J. E.
1970 Tree acceptors and some of their applications. Journal of Computer

and Systems Sciences 4:406 – 451.

Dowty, David R., Wall, Robert E., and Peters, Stanley
1981 Introduction to Montague Semantics. Synthese Library 11. Dordrecht:

Reidel.

Dresner, Eli
2001 Tarski’s Restricted Form and Neale’s Quantificational Treatment of

Proper Names. Linguistics and Philosophy 24:405 – 415.
2002 Holism, Language Acquisition, and Algebraic Logic. Linguistics and

Philosophy 25:419 – 452.

Dymetman, Marc
1991 Inherently reversible grammars, logic programming and computabil-

ity. In Proceedings of the ACL Workshop: Reversible Grammars in
Natural Language Processing.

1992 Transformations de Grammaires Logiques et Réversibilité [Transfor-
mations of Logical Grammars and Reversibility]. Ph. D. diss., Univer-
sité Joseph Fourier, Grenoble.

Ebbinghaus, Hans-Dieter, and Flum, Jörg
1995 Finite Model Theory. Perspectives in Mathematical Logic. Berlin/New

York: Springer.

Ebert, Christian, and Kracht, Marcus
2000 Formal syntax and semantics of case stacking languages. In Proceed-

ings of the EACL 2000.

558 Bibliography

van Eijck, Jan
1994 Presupposition failure: a comedy of errors. Formal Aspects of Com-

puting 3.

Eisenberg, Peter
1973 A Note on ‘Identity of Constituents’. Linguistic Inquiry 4:417 – 420.

Ewen, Colin J., and van der Hulst, Harry
2001 The Phonological Structure of Words. Cambridge: Cambridge Univer-

sity Press.

Ferreirós, José
2001 The road to modern logic — an interpretation. The Bulletin of Sym-

bolic Logic 7:441 – 484.

Fiengo, Robert, and May, Robert
1994 Indices and Identity. Linguistic Inquiry Monographs 24. Cambridge

(Mass.): MIT Press.

Fine, Kit
1992 Transparency, Part I: Reduction. Unpublished manuscript, UCLA.

Frege, Gottlob
1962 Funktion und Begriff [Function and Concept]. In Funktion, Begriff,

Bedeutung. Fünf logische Studien [Function, Concept, Meaning. Five
logical Studies], Günther Patzig (ed.), 17 – 39. Göttingen: Vanden-
hoeck & Ruprecht.

Frey, Werner
1993 Syntaktische Bedingungen für die semantische Interpretation [Syntac-

tic Conditions for the Semantic Interpretation]. Number 35 in Studia
Grammatica. Berlin: Akademie Verlag.

Fromkin, V. (ed.)
2000 Linguistics: An Introduction to linguistic theory. London: Blackwell.

Gamut, L. T. F.
1991a Logic, Language and Meaning. Vol. 1: Introduction to Logic. Chicago:

The University of Chicago Press.
1991b Logic, Language and Meaning. Vol. 2: Intensional Logic and Logical

Grammar. Chicago: The University of Chicago Press.

Gärdenfors, Peter
1988 Knowledge in Flux. Cambridge (Mass.): MIT Press.

Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey, and Sag, Ivan.
1985 Generalized Phrase Structure Grammar. London: Blackwell.

Gazdar, Gerald, Pullum, Geoffrey, Carpenter, Bob, Hukari, T., and Levine, R.
1988 Category structures. Computational Linguistics 14:1 – 19.

Bibliography 559

Geach, Peter
1972 A Program for Syntax. In Semantics for Natural Language, Donald

Davidson and Gilbert Harman (eds.). (Synthese Library 40.) Dor-
drecht: Reidel.

Geller, M. M., and Harrison, M. A.
1977 On LR (k * grammars and languages. Theoretical Computer Science

4:245 – 276.

Geurts, Bart
1998 Presupposition and Anaphors in Attitude Contexts. Linguistics and

Philosophy 21:545 – 601.

Ginsburg, Seymour and Spanier, Edwin H.
1964 Bounded ALGOL–Like Languages. Transactions of the American

Mathematical Society 113:333 – 368.
1966 Semigroups, Presburger Formulas, and Languages. Pacific Journal of

Mathematics 16:285 – 296.

Ginsburg, Seymour
1975 Algebraic and Automata–Theoretic Properties of Formal Languages.

Amsterdam: North–Holland.

Goldstern, Martin, and Judah, Haim
1995 The Incompleteness Phenomenon. Wellesley (Mass.): AK Peters.

Grätzer, George
1968 Universal Algebra. New York: van Nostrand.
1971 Lattice Theory: First Concepts and Distributive Lattices. Freeman.

Greibach, Sheila A.
1967 A new normal–form theorem for context–free phrase structure gram-

mars. Journal of the Association for Computing Machinery 13:42 –
52.

Grewendorf, Günter, Hamm, Friedrich, and Sternefeld, Wolfgang
1987 Sprachliches Wissen. Eine Einführung in moderne Theorien der gram-

matischen Beschreibung [Knowledge of Language. An Introduction
to Modern Theories of Grammatical Description]. Number 695 in
suhrkamp taschenbuch wissenschaft. Frankfurt a.M.: Suhrkamp Ver-
lag.

Groenink, Annius V.
1997a Mild context–sensitivity and tuple–based generalizations of context–

grammar. Linguistics and Philosophy 20:607–636.
1997b Surface without Structure. Word Order and Tractability Issues in Nat-

ural Language Analysis. Ph. D. diss., University of Utrecht.

560 Bibliography

de Groote, Philippe
2001 Towards Abstract Categorial Grammars. In Association for Computa-

tional Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, 148 – 155, Toulouse.

Haider, Hubert
1991 Die menschliche Sprachfähigkeit — exaptiv und kognitiv opak [The

human language faculty — exaptive and cognitively opaque]. Kogni-
tionswissenschaft 2:11 – 26.

1993 Deutsche Syntax — generativ. Vorstudien zur Theorie einer projek-
tiven Grammatik [German Syntax — generative. Preliminary studies
towards a theory of projective grammar]. Tübingen: Gunter Narr Ver-
lag.

1995 Downright down to the right. In On Extraction and Extraposition,
U. Lutz and J. Pafel (eds.), 145 – 271. Amsterdam: John Benjamins.

1997 Extraposition. In Rightward Movement, D. Beerman, D. LeBlanc, and
H. van Riemsdijk (eds.), 115 – 151. Amsterdam: John Benjamins.

2000 Branching and Discharge. In Lexical Specification and Insertion, Pe-
ter Coopmans, Martin Everaert, and Jane Grimshaw (eds.), 135 – 164.
(Current Issues in Linguistic Theory 197.) Amsterdam: John Ben-
jamins.

Halmos, Paul
1956 Homogeneous locally finite polyadic boolean algebras of infinite de-

gree. Fundamenta Mathematicae 43:255 – 325.

Hamm, Friedrich, and van Lambalgen, Michiel
2003 Event Calculus, Nominalization and the Progressive. Linguistics and

Philosophy 26:381 – 458.

Harkema, Henk
2001 A Characterization of Minimalist Languages. In Logical Aspects of

Computational Linguistics (LACL ’01), Philippe de Groote, Glyn Mor-
rill, and Christian Retoré (eds.), 193 – 211. (Lecture Notes in Artificial
Intelligence 2099.) Berlin/New York: Springer.

Harris, Zellig S.
1963 Structural Linguistics. The University of Chicago Press.
1979 Mathematical Structures of Language. Huntington (NY): Robert E.

Krieger Publishing Company.

Harrison, Michael A.
1978 Introduction to Formal Language Theory. Reading (Mass.): Addison

Wesley.

Hausser, Roland R.
1984 Surface Compositional Grammar. München: Wilhelm Finck Verlag.

Bibliography 561

Heim, Irene
1983 On the projection problem for presuppositions. In Proceedings of the

2nd West Coast Conference on Formal Linguistics, M. Barlow and
D. Flickinger, D. Westcoat (eds.), 114 – 126, Stanford University.

Hendriks, Herman
2001 Compositionality and Model–Theoretic Interpretation. Journal of

Logic, Language and Information 10:29 – 48.

Henkin, Leon, Monk, Donald, and Tarski, Alfred
1971 Cylindric Algebras. Part 1. Studies in Logic and the Foundation of

Mathematics 64. Amsterdam: North–Holland.

Hindley, J. R., Lercher, B., and Seldin, J. P.
1972 Introduction to Combinatory Logic. London Mathematical Society

Lecture Notes 7. Oxford: Oxford University Press.

Hindley, J. R. and Longo, L.
1980 Lambda calculus models and extensionality. Zeitschrift für mathema-

tische Logik und Grundlagen der Mathematik 26:289 – 310.

Hintikka, Jaakko
1962 Knowledge and Belief. An Introduction into the logic of the two no-

tions. Ithaca: Cornell University Press.

Hodges, Wilfrid
2001 Formal features of compositionality. Journal of Logic, Language and

Information 10:7 – 28.

Hopcroft, John E., and Ullman, Jeffrey D.
1969 Formal Languages and their Relation to Automata. Reading (Mass.):

Addison Wesley.

van der Hulst, Harry
1984 Syllable Structure and Stress in Dutch. Dordrecht: Foris.

Huybregts, Riny
1984 Overlapping Dependencies in Dutch. Utrecht Working Papers in Lin-

guistics 1:3 – 40.

IPA
1999 Handbook of the International Phonetic Association. Cambridge:

Cambridge University Press.

Jackendoff, Ray
1977 X–Syntax: A Study of Phrase Structure. Linguistic Inquiry Mono-

graphs 2. Cambridge (Mass.): MIT Press.

Jacobson, Pauline
1999 Toward a Variable–Free semantics. Linguistics and Philosophy 22:117

– 184.

562 Bibliography

2002 The (Dis)Organisation of the Grammar: 25 Years. Linguistics and Phi-
losophy 25:601 – 626.

Johnson, J. S.
1969 Nonfinitizability of classes of representable polyadic algebras. Journal

of Symbolic Logic 34:344 – 352.

Johnson, Mark
1988 Attribute–Value Logic and the Theory of Grammar. CSLI Lecture

Notes 16. Stanford: CSLI.

Jones, Burton W.
1955 The Theory of Numbers. New York: Holt, Rinehart and Winston.

Joshi, Aravind, Levy, Leon S., and Takahashi, Masako
1975 Tree Adjunct Grammars. Journal of Computer and System Sciences

10:136 – 163.

Joshi, Aravind K.
1985 Tree adjoining grammars: How much context–sensitivity is required

to provide reasonable structural descriptions? In Natural Language
Parsing. Psychological, Computational, and Theoretical Perspectives,
David Dowty, Lauri Karttunen, and Arnold Zwicky (eds.), 206–250.
Cambridge: Cambridge University Press.

Just, Winfried and Weese, Martin
1996 Discovering Modern Set Theory. Vol. I: The Basics. Graduate Studies

in Mathematics 8. AMS.
1997 Discovering Modern Set Theory. Vol. II: Set–Theoretic Tools for Every

Mathematician. Graduate Studies in Mathematics 18. AMS.

Kac, Michael B., Manaster–Ramer, Alexis, and Rounds, William C.
1987 Simultaneous–Distributive Coordination and Context–Freeness. Com-

putational Linguistics 13:25 – 30.

Kaplan, Ron M., and Kay, Martin
1994 Regular Models of Phonological Rule Systems. Computational Lin-

guistics 20:331 – 378.

Karttunen, Lauri
1974 Presuppositions and linguistic context. Theoretical Linguistics 1:181

– 194.

Kasami, Tadao, Seki, Hiroyuki, and Fujii, Mamoru
1987 Generalized context–free grammars, multiple context–free grammars

and head grammars. Technical report, Osaka University.

Bibliography 563

Kasami, Tadao
1965 An efficient recognition and syntax–analysis algorithm for context–

free languages. Technical report, Air Force Cambridge Research Lab-
oratory, Bedford (Mass.). Science Report AFCRL–65–758.

Kayne, Richard S.
1994 The Antisymmetry of Syntax. Linguistic Inquiry Monographs 25. Cam-

bridge (Mass.): MIT Press.

Keenan, Edward L., and Faltz, Leonard L.
1985 Boolean Semantics for Natural Language. Dordrecht: Reidel.

Keenan, Edward L., and Westerståhl, Dag
1997 Generalized quantifiers. In Handbook of Logic and Language, Johan

van Benthem and Alice ter Meulen (eds.), 835 – 893. Amsterdam:
Elsevier.

Kempson, Ruth
1975 Presupposition and the delimitation of semantics. Cambridge: Cam-

bridge University Press.

Kleene, Stephen C.
1956 Representation of events in nerve nets. In Automata Studies, C. E.

Shannon and J. McCarthy (eds.), 3 – 40. Princeton: Princeton Uni-
versity Press.

Knuth, Donald
1956 On the translation of languages from left to right. Information and

Control 8:607 – 639.

Koskenniemi, Kimmo
1983 Two–level morphology. A general computational model for word–

form recognition. Technical Report 11, Department of General Lin-
guistics, University of Helsinki.

Koster, Jan
1986 Domains and Dynasties: The Radical Autonomy of Syntax. Dordrecht:

Foris.

Koymans, J. P. C.
1982 Models of the Lambda Calculus. Information and Control 52:306 –

332.

Kracht, Marcus
1993 Mathematical aspects of command relations. In Proceedings of the

EACL 93, 241 – 250.
1994 Logic and Control: How They Determine the Behaviour of Presup-

positions. In Logic and Information Flow, Jan van Eijck and Albert
Visser (eds.), 88 – 111. Cambridge (Mass.): MIT Press.

564 Bibliography

1995a Is there a genuine modal perspective on feature structures? Linguistics
and Philosophy 18:401 – 458.

1995b Syntactic Codes and Grammar Refinement. Journal of Logic, Lan-
guage and Information 4:41 – 60.

1997 Inessential Features. In Logical Aspects of Computational Linguistics
(LACL ’96), Christian Retoré (ed.), 43 – 62. (Lecture Notes in Artifi-
cial Intelligence 1328.) Berlin/New York: Springer.

1998 Adjunction Structures and Syntactic Domains. In The Mathematics of
Sentence Structure. Trees and Their Logics, Uwe Mönnich and Hans-
Peter Kolb (eds.), 259 – 299. (Studies in Generative Grammar 44.)
Berlin: Mouton de Gruyter.

1999 Tools and Techniques in Modal Logic. Studies in Logic and the Foun-
dations of Mathematics 142. Amsterdam: Elsevier.

2001a Modal Logics That Need Very Large Frames. Notre Dame Journal of
Formal Logic 42:141 – 173.

2001b Syntax in Chains. Linguistics and Philosophy 24:467 – 529.
2003 Against the feature bundle theory of case. In New Perspectives on Case

Theory, Eleonore Brandner and Heike Zinsmeister (eds.), 165 – 190.
Stanford: CSLI.

Kuroda, S. Y.
1964 Classes of languages and linear bounded automata. Information and

Control 7:207 – 223.

Lamb, Sydney M.
1966 Outline of Stratificational Grammar. Washington: Georgetown Uni-

versity Press.

Lambek, Joachim
1958 The Mathematics of Sentence Structure. The American Mathematical

Monthly 65:154 – 169.

Landweber, Peter S.
1963 Three theorems on phrase structure grammars of type 1. Information

and Control 6:131 – 137.

Langholm, Tore
2001 A Descriptive Characterisation of Indexed Grammars. Grammars

4:205 – 262.

Lehmann, Winfred P.
1993 Theoretical Bases of Indo–European Linguistics. London: Routledge.

Leibniz, Gottfried Wilhelm
2000 Die Grundlagen des logischen Kalküls (Lateinisch–Deutsch) [The

Foundations of the Logical Calculus (Latin–German)]. Philosophische
Bibliothek 525. Hamburg: Meiner Verlag.

Bibliography 565

Levelt, Willem P.
1991 Speaking. From Intention to Articulation. 2nd ed. Cambridge (Mass.):

MIT Press.

Lyons, John
1968 Introduction to Theoretical Linguistics. Cambridge: Cambridge Uni-

versity Press.
1978 Semantics. Vol. 1. Cambridge: Cambridge University Press.

Manaster–Ramer, Alexis, and Kac, Michael B.
1990 The Concept of Phrase Structure. Linguistics and Philosophy 13:325

– 362.

Manaster–Ramer, Alexis, Moshier, M. Andrew, and Zeitman, R. Suzanne
1992 An Extension of Ogden’s Lemma. Manuscript. Wayne State Univer-

sity, 1992.

Manaster–Ramer, Alexis
1986 Copying in natural languages, context–freeness and queue grammars.

In Proceedings of the 24th Annual Meeting of the Association for Com-
putational Linguistics, 85 – 89.

Markov, A. A.
1947 On the impossibility of certain algorithms in the theory of associative

systems (Russian). Doklady Akadémii Nauk SSSR 55:587 – 590.

Marsh, William, and Partee, Barbara H.
1987 How Non–Context Free is Variable Binding? In The Formal Com-

plexity of Natural Language, Walter Savitch, Emmon Bach, William
Marsch, and Gila Safran–Naveh (eds.), 369 – 386. Dordrecht: Reidel.

Mel’čuk, Igor
1988 Dependency Syntax: Theory and Practice. SUNY Linguistics Series.

Albany: State University of New York Press.
2000 Cours de Morphologie Générale [General Morphology. A Course-

book]. Volume 1 – 5. Montréal: Les Presses de l’Université de
Montréal.

Meyer, A. R.
1982 What is a model of the lambda calculus? Information and Control

52:87 – 122.

Michaelis, Jens, and Kracht, Marcus
1997 Semilinearity as a syntactic invariant. In Logical Aspects of Compu-

tational Linguistics (LACL ’96), Christian Retoré (ed.), 329 – 345.
(Lecture Notes in Artificial Intelligence 1328.) Heidelberg: Springer.

566 Bibliography

Michaelis, Jens, and Wartena, Christian
1997 How linguistic constraints on movement conspire to yield languages

analyzable with a restricted form of LIGs. In Proceedings of the Con-
ference on Formal Grammar (FG ’97), Aix en Provence, 158–168.

1999 LIGs with reduced derivation sets. In Constraints and Resources in
Natural Language Syntax and Semantics, Gosse Bouma, Geert–Jan M.
Kruijff, Erhard Hinrichs, and Richard T. Oehrle (eds.), 263–279. Stan-
ford: CSLI.

Michaelis, Jens
2001a Derivational minimalism is mildly context–sensitive. In Logical As-

pects of Computational Linguistics (LACL ’98), Michael Moortgat
(ed.), 179 – 198. (Lecture Notes in Artificial Intelligence 2014.) Hei-
delberg: Springer.

2001b On Formal Properties of Minimalist Grammars. Ph. D. diss., Univer-
sität Potsdam.

2001c Transforming linear context–free rewriting systems into minimalist
grammars. In Logical Aspects of Computational Linguistics (LACL
’01), Philippe de Groote, Glyn Morrill, and Christian Retoré (eds.),
228 – 244. (Lecture Notes in Artificial Intelligence 2099.) Heidelberg:
Springer.

Miller, Philip H.
1991 Scandinavian Extraction Phenomena Revisited: Weak and Strong

Generative Capacity. Linguistics and Philosophy 14:101 – 113.
1999 Strong Generative Capacity. The Semantics of Linguistic Formalisms.

Stanford: CSLI.

Mitchell, J. C.
1990 Type systems for programming languages. In Handbook of Theoreti-

cal Computer Science, Vol B. Formal Models and Semantics, Jan van
Leeuwen (ed.), 365 – 458. Amsterdam: Elsevier.

Monk, Donald J.
1969 Nonfinitizability of classes of representable cylindric algebras. Jour-

nal of Symbolic Logic 34:331 – 343.
1976 Mathematical Logic. Berlin, Heidelberg: Springer.

Mönnich, Uwe
1999 On cloning context–freeness. In The Mathematics of Sentence Struc-

ture. Trees and their Logics, Hans-Peter Kolb and Uwe Mönnich
(eds.), 195 – 229. (Studies in Generative Grammar 44.) Berlin: Mou-
ton de Gruyter.

Bibliography 567

Moschovakis, Yannis
1994 Sense and denotation as algorithm and value. In Proceedings of the

ASL Meeting 1990, Helsinki, Juha Oikkonen and Jouko Väänänen
(eds.), 210 – 249. (Lecture Notes in Logic 2.) Berlin and Heidelberg:
Springer.

Myhill, John
1960 Linear bounded automata. Technical report, Wright–Patterson Air

Force Base.

Ogden, R. W., Ross, R, J., and Winkelmann, K.
1985 An “Interchange Lemma” for Context Free Languages. SIAM Journal

of Computing 14:410 – 415.

Ogden, R. W.
1968 A helpful result for proving inherent ambiguity. Mathematical Systems

Sciences 2:191 – 194.

Ojeda, Almerindo E.
1988 A Linear Precedence Account of Cross–Serial Dependencies. Linguis-

tics and Philosophy 11:457 – 492.

Pentus, Mati
1995 Models for the Lambek calculus. Annals of Pure and Applied Logic

75:179 – 213.
1997 Product–Free Lambek–Calculus and Context–Free Grammars. Jour-

nal of Symbolic Logic 62:648 – 660.

Peters, Stanley P., and Ritchie, R. W.
1971 On restricting the base component of transformational grammars. In-

formation and Control 18:483 – 501.
1973 On the generative power of transformational grammars. Information

Sciences 6:49 – 83.

Pigozzi, Don J., and Salibra, Antonino
1995 The Abstract Variable–Binding Calculus. Studia Logica 55:129 – 179.

Pigozzi, Don J.
1991 Fregean Algebraic Logic. In Algebraic Logic, Hajnal Andréka, Donald

Monk, and István Németi (eds.), 475 – 504. (Colloquia Mathematica
Societatis János Bolyai 54.), Budapest and Amsterdam: János Bolyai
Matematikai Társulat and North–Holland.

Pogodalla, Sylvain
2001 Réseaux de preuve et génération pour les grammaires de type logiques

[Proof nets and generation for type logical grammars]. Ph. D. diss.,
Institut National Polytechnique de Lorraine.

568 Bibliography

Pollard, Carl J., and Sag, Ivan
1987 Information–Based Syntax and Semantics. Vol. 1. CSLI Lecture Notes

13. Stanford: CSLI.
1994 Head–Driven Phrase Structure Grammar. Chicago: The University of

Chicago Press.

Pollard, Carl J.
1984 Generalized Phrase Structure Grammar, Head Grammars and Natural

Language. Ph. D. diss., Stanford University.

Port, R. F., and O’Dell, M. L.
1985 Neutralization of syllable–final voicing in German. Technical Re-

port 4, Indiana University, Bloomington.

Post, Emil L.
1936 Finite combinatory processes – formulation. Journal of Symbolic

Logic 1:103 – 105.
1943 Formal reductions of the combinatorial decision problem. Americal

Journal of Mathematics 65:197 – 215.
1947 Recursive unsolvability of a problem of Thue. Journal of Symbolic

Logic 11:1 – 11.

Postal, Paul
1964 Constituent Structure: A Study of Contemporary Models of Syntax.

The Hague: Mouton.

Prucnal, T., and Wroński, A.
1974 An algebraic characterization of the notion of structural completeness.

Bulletin of Section Logic of the Polish Academy of Sciences 3:20 – 33.

Quine, Willard van Orman
1960 Variables explained away. Proceedings of American Philosophical So-

ciety 104:343 – 347.

Radzinski, Daniel
1990 Unbounded Syntactic Copying in Mandarin Chinese. Linguistics and

Philosophy 13:113 – 127, 1990.

Rambow, Owen
1994 Formal and Computational Aspects of Natural Language Syntax. Ph.

D. diss., University of Pennsylvania.

Recanati, François
2000 Oratio Obliqua, Oratio Recta. An Essay on Metarepresentation. Cam-

bridge (Mass.): MIT Press.

Roach, Kelly
1987 Formal properties of head grammars. In Mathematics of Language,

Alexis Manaster–Ramer (ed.), 293–347. Amsterdam: John Benjamins.

Bibliography 569

Rogers, James
1994 Studies in the Logic of Trees with Applications to Grammar For-

malisms. Ph. D. diss., University of Delaware, Department of Com-
puter & Information Sciences.

Rounds, William C.
1988 LFP: A Logic for Linguistic Description and an Analysis of its Com-

plexity. Computational Linguistics 14:1 – 9.

Russell, Bertrand
1905 On denoting. Mind 14:479 – 493.

Sain, Ildikó, and Thompson, Richard S.
1991 Finite Schema Axiomatization of Quasi–Polyadic Algebras. In Al-

gebraic Logic, Hajnal Andréka, Donald Monk, and István Németi
(eds.), 539 – 571. (Colloquia Mathematica Societatis János Bolyai
54.) Budapest and Amsterdam: János Bolyai Matematikai Társulat and
North–Holland.

Salomaa, Arto K.
1973 Formal Languages. New York: Academic Press.

van der Sandt, Rob A.
1988 Context and Presupposition. London: Croom Helm.

de Saussure, Ferdinand
1965 Course in General Linguistics. Columbus: McGraw–Hill.

Sauvageot, Aurélien
1971 L’Edification de la Langue Hongroise [The building of the Hungarian

language]. Paris: Klincksieck.

Schönfinkel, Moses
1924 Über die Bausteine der mathematischen Logik [On the building blocks

of mathematical logic]. Mathematische Annalen 92:305 – 316.

Seki, Hiroyuki, Matsumura, Takashi, Fujii, Mamoru, and Kasami, Tadao.
1991 On multiple context–free grammars. Theoretical Computer Science

88:191 – 229.

Sestier, A.
1960 Contributions à une théorie ensembliste des classifications linguis-

tiques [Contributions to a set–theoretical theory of classifications]. In
Actes du Ier Congrès de l’AFCAL, 293 – 305, Grenoble.

Shieber, Stuart
1985 Evidence against the Context–Freeness of Natural Languages. Lin-

guistics and Philosophy 8:333 – 343.

570 Bibliography

1992 Constraint–Based Grammar Formalisms. Cambridge (Mass.): MIT
Press.

Smullyan, Raymond M.
1961 Theory of Formal Systems. Annals of Mathematics Studies 47. Prince-

ton: Princeton University Press.

Staal, J. F.
1967 Word Order in Sanskrit and Universal Grammar. Foundations of Lan-

guage, Supplementary Series No. 5. Dordrecht: Reidel.

Stabler, Edward P.
1997 Derivational Minimalism. In Logical Aspects of Computational Lin-

guistics (LACL ’96), Christian Retoré (ed.), 68 – 95. (Lecture Notes in
Artificial Intelligence 1328.) Heidelberg: Springer.

von Stechow, Arnim, and Sternefeld, Wolfgang
1987 Bausteine syntaktischen Wissens. Ein Lehrbuch der generativen

Grammatik [Building blocks of syntactic knowledge. A textbook of
generative grammar]. Opladen: Westdeutscher Verlag.

Steedman, Mark
1990 Gapping as constituent coordination. Linguistics and Philosophy

13:207 – 263.
1996 Surface Structure and Interpretation. Linguistic Inquiry Monographs

30. Cambridge (Mass.): MIT Press.

Tarski, Alfred
1983 The concept of truth in formalized languages. In Logic, Semantics,

Metamathematics, J. Corcoran (ed.), 152 – 178. Indianapolis: Hackett
Publishing.

Tesnière, Lucien
1982 Eléments de syntaxe structurale [Elements of structural syntax]. 4th

ed. Paris: Klincksieck.

Thatcher, J. W., and Wright, J. B.
1968 Generalized finite automata theory with an application to a decision

problem of second–order logic. Mathematical Systems Theory 2:57 –
81.

Thue, Axel
1914 Probleme über Veränderungen von Zeichenreihen nach gegebe-

nen Regeln [Problems concerning changing strings according to
given rules]. Skrifter utgit av Videnskapsselkapet i Kristiania, I.
Mathematisk–naturvidenskabelig klasse 10.

Bibliography 571

Trakhténbrodt, B. A.
1950 Névozmožnost’ algorifma dlá problémy razréšimosti na konéčnyh

klassah [Impossibility of an algorithm for the decision problem of fi-
nite classes]. Doklady Akadémii Nauk SSSR, 569 – 572.

Turing, Alan M.
1936 On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society
42:230 – 265.

Uszkoreit, Hans
1987 Word Order and Constituent Structure in German. CSLI Lecture Notes

8. Stanford: CSLI.

Vaught, Robert L.
1995 Set Theory. An Introduction. 2nd ed. Basel: Birkhäuser.

Frank Veltman.
1985 Logics for Conditionals. Ph. D. diss., Department of Philosophy, Uni-

versity of Amsterdam.

Vijay–Shanker, K., Weir, David J., and Joshi, Aravind K.
1986 Tree adjoining and head wrapping. In Proceedings of the 11th In-

ternational Conference on Computational Linguistics (COLING ’86),
Bonn, 202–207.

1987 Characterizing structural descriptions produced by various grammar
formalisms. In Proceedings of the 25th Meeting of the Association for
Computational Linguistics (ACL ’87), Stanford, CA, 104 – 111.

Villemonte de la Clergerie, Eric
2002a Parsing MCS Languages with Thread Automata. In Proceedings of

the Sixth International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+6), Venezia.

2002b Parsing mildly context–sensitive languages with thread automata. In
Proceedings of the 19th International Conference on Computational
Linguistics (COLING 02), Taipei.

Weir, David J.
1988 Characterizing Mildly Context–Sensitive Grammar Formalisms. Ph.

D. diss., University of Pennsylvania, Philadelphia.

Younger, D. H.
1967 Recognition and parsing of context–free languages in time n3. Infor-

mation and Control 10:189 – 208.

Zadrozny, Wlodek
1994 From Compositional Semantics to Systematic Semantics. Linguistics

and Philosophy 17:329 – 342.

572 Bibliography

Zimmermann, Thomas Ede
1999 Meaning Postulates and the Model–Theoretic Approach to Natural

Language Semantics. Linguistics and Philosophy 22:529 – 561.

Index

- , 19 , = , 3 , : , 1� , + , 8 , 1
℘, ℘f in, 1
ω , ℵ0, 3
℘(M * , 3
R ; S, R = S, 4
∆, Rn, R < , R ÷ , 5
χN , 5= , > , 5
f ? P, 5
f ÔX Ö , 5
TmΩ, 64A@ Ω (X * , 7Ô x Ö Θ, 9�) Θ, 9
ker, 9BDC E (E * , 11F w,
F s, 131x G 1y, ε , 175 1x 5 , 17

Z (�1x * , 181x i, ∏i H n 1xn, 18I (A * , 201xT , 22
CL (M * , ZL (P * , 24
L � M, Ln, L < , L ÷ , L) M, L J M, 24
LP, LS, 24K

, L , 24M
L, 24

PNΩ, 26
M JNJ L, L)P) M, 29; , 44O

x, P x, 44Q , 44
b (,R * , 44
x ; y, 44S , 45
h (x * , d (x * , 45

Ô x Ö , 46
k (x * , 46
T)S1x, 49
G Tç1x, T G 1x, 53
L (G * , 53U

T , U n
T , U ÷T , 53

Xε , 541α $ 1β , 54
der (G & 1α * , der (G * , 58
in (x & f * , out (x & f * , 67R Ô V)XW : YHÖ , 68Z[Z

,
Z]\

,
\1Z

,
\	\

, 68
Lγ (Γ * , 69
LB (G * , 701x G q G 1y T T 1x1 G q1 G 1y1, 82
C (T * , 82
L (T * , 83
L (^�½* , 96� d , 96� , = , ÷ , 97< , 98
der (`_½* , 105
Lc (G * , 111
∆, 122
∆s, 123a
k b 1x, 1241α U n

L 1γ , 125
X c Y , d�c
e , 129
ΠΩ, 133W (A * , Ωn, 149
µ , 149
U - V , nU , ωU , 150
Σ (U ;V * , 150
σa (gfF* , µ (gfF* , 161
L (^h�* , M (�h�* , 177i
F & Ω j , 181

ε , γ , µ , 181
f ε , f γ , f µ , 182

574 Index

υ , 183
Taut k#(N� &2ll l * , 192
Σ k\(A * , 193T k ϕ , 193F

, 194
ϕ m , Ô ϕ Ö , 205nporq

, 207s
α &,t α &�. α , 211

(ext), 211s
β > β &�. β , 212

M $ N, 215uwvwv (x & y * , 215x , y , 215z
, { , | , 216} � , 217

Cat ì�~ � (C * , 225�
γ � , 229� ò , � ó , 229ú , û , 233

CCG (�� * , 234ÿ , � , 234Ô α Ö ζ , Ôα Ö , 239; , 239B � ,
B � - (cut),

B � % , 241�
, � , 244

focc (x & M * , 245
§ (Γ * , 247�

, 247�
, 248� , � � , � � % , 250� , 256

Lm, 263
L �m , 264��� , � , 294� (X * , 299f X , 300
At (gfF* , 301
Pt (��½* , 302� }

, T���� , 305
Θ � , 307
td , 308
A . B, 309

? , 311� &,� , 311�
, 312T L & � L, 312ÔKJ Ö , Ô BJ Ö , 314���
, 314�]�
, 314K
, � ,
K

, � , 314�
, � , 315

∇ � , 321�
��
, T��`��� , 325

Mα � Nα , 327�]�� v , 327
∆a, 335
supp (π * , 336
f ¡ , 340
x ¢ , x ¢ , 348Ô 1x Ö AΣ, 349£ � , 354T 2, T 3, 355. Ù , ¤ Ù , $ Ù , 358O

, 359. 3, 3599�¥ , = ¥ , 362
Ω ¦ , 371
ξ (�1x * , 375
w (21x * , 375T G, 384« , § , t , ζ , ι , 396¨ (��½* , 397
D (G * , 415© (�4å* , 415
X ª , 416
K (α * , 431
Sent � ~ Þ , 438«

Σ, 438�	��
 (Ω * , 467
Ωm, 469
δ (^�½* , 472¬

Px) x ­ ϕ , 476
G1 ® G2, 479
ContL (a * , 489

Index 575

�°¯ �
,
�°¯ �N±

,
���°¯ �N±

, 491
FL (χ * , 493�	��
 b, 505� , � < , � , � < , � , � < , � , � < , 506
s + t, s P , 535W²5�³T(^4å* , 541
K (P *]´ K (Q * , 542
x µ�¶ y, Ô x Ö^¶ , 546
πx, xπ , ζx, xζ , 548

A–form, 371
A–meaning, 349
a–structure, 533
absorption, 297
abstract family of languages, 64
ac–command, 545
accessibility relation, 312
address, 550
adjunct, 526
adjunction tree, 76
AFL, 64
Ajdukiewicz, Kazimierz, 225
Ajdukiewicz–Bar Hillel Calculus, 225
algebra, 6

Ω–, 6
n–generated, 181
boolean, 296
freeely (κ-)generated, 7
many–sorted, 12
product, 9

algebra of structure terms, xi
ALGOL, 55, 170
allomorph, 32
allophone, 487
ALOGSPACE, 379
alphabet, 17

input, 500
output, 500

Alt, Helmut, vii
analysis problem, 54
anaphor, 520
antecedent, 198, 524
antitonicity, 304

applicative structure, 214
combinatorially complete, 220
extensional, 214
partial, 214
typed, 214

Arabic, 400, 458
archiphoneme, 485
argument, 38

external, 526
internal, 526

argument key, 375
argument sign, 448
ARO, 389
assertion, 359
assignment, 193
associativity, 18, 297

left– ·Û , 26
right– ·Û , 26

assumption, 204
atom, 301
attribute, 462

definite, 467
set valued, 467
Type 0, 463
Type 1, 463

attribute–value structure (AVS), 462
automaton

deterministic finite state, 95
finite state, 95
pushdown, 118

automorphism, 8
AVS (see attribute value structure), 462
axiom, 193

primitive, 199
axiom schema, 193

instance, 193
axiomatization, 317

Büchi, J., xiii, 471
Backus–Naur form, 55
backward deletion, 280
Bahasa Indonesia, 37, 445, 451
Bar–Hillel, Yehoshua, 225, 227

576 Index

Beth property
global, 495

binding, 521
bivalence, 359, 360
blank, 24, 81
block, 431
Blok, Wim, 317
Bloomfield, Leonard, 529
Boole, George, 308
boolean algebra, 296

atomic, 302
complete, 304
with operators (BAO), 315

boolean function, 374
monotone, 378

bounding node, 528
bracketing analysis, 110
branch, 44
branch expression, 117
branching number, 44, 383
Bresnan, Joan, 533
Burzio, Luigi, 527

c–command, 521, 540
C–model, 364
c–structure, 533
cancellation, 145
cancellation interpretation, 240
canonical decomposition, 547
canonical Leibniz congruence, 321
canonical Leibniz meaning, 321
cardinal, 3
Carnap, Rudolf, 311
case, 41, 455
Catalan numbers, 52
Categorial Grammar, 274
categorial grammar

AB– ·Û , 226
categorial sequent grammar, 241
category, 53, 181, 225, 526

µ– ·Û , 292
basic, 225, 241
distinguished, 241

functional, 525
lexical, 525
thin, 264

category assignment, 225, 226
category complex, 240
CCG (see combinatory categorial gram-

mar), 233
CCS (see copy chain structure), 549
CCT (see copy chain tree), 546
cell, 374
centre tree, 76
chain, 43, 545

associated, 545
copy ·Û , 545
foot ·Û , 545
head ·Û , 545
trace ·Û , 545

Chandra, A. K., 372, 379
channel, 33
characteristic function, 5
chart, 128
Chinese, 34, 400
Chomsky Normal Form, 111
Chomsky, Noam, ix, xii, 51, 65, 90,

165, 367, 414, 448, 486, 517,
519, 522, 525, 529, 544

Chrysippos, 308
Church, Alonzo, 92, 224, 272, 443
class, 3

axiomatic, 471
finitely MSO–axiomatisable, 471

closure operator, 14
Cocke, J., 130
coda, 499
code, 478, 479, 510

uniform, 511
coding

dependency, 51
structural, 51

Coding Theorem, 480
colour functional, 68
combinator, 217

Index 577

stratified, 219
typed, 218

combinatorial term, 217
stratified, 219
typed, 218

combinatory algebra, 221
extensional, 221
partial, 221

combinatory categorial grammar, 233,
432

combinatory logic, 217
command relation, 540

chain like, 542
definable, 544
generated, 542
monotone, 540
product of ·Û s, 542
tight, 540
weakly associated, 543

commutativity, 297
Commuting Instances Lemma, 58, 60,

65
Compactness Theorem, 196
complement, 38, 296, 526
complementary distribution, 489
compositionality, x, 177
comprehension, 2
computation, 118
computation step, 81
concept, 15
conclusion, 198
configuration, 82, 118
congruence

fully invariant, 10
strong, 13
weak, 13

congruence relation, 8
admissible, 287

connective
Bochvar, 355
strong Kleene, 362

consequence, 194

n–step ·Û , 286
consequence relation, 286

equivalential, 319
finitary, 286
finitely equivalential, 319
global, 312
local, 312
structural, 286

constant, 5
eliminable, 493

constant growth property, 369
constituent, 45, 72

G– ·Û , 132
accidental, 132
continuous, 46

constituent analysis, 111
Constituent Lemma, 47
constituent part

left, right, 73
constituent structure, 48
Constituent Substitution Theorem, 72
constraint, 535

basic, 535
context, 14, 22, 309

n– ·Û , 407
extensional, 311
hyperintensional, 309
intensional, 311
left, 141
local, 359

context change, 359
context set, 438, 489
contractum, 212
contradiction, 192
conversion

α–, β–, η– ·Û , 211
conversioneme, 454
cooccurrence restrictions, 494
copy chain structure, 549
copy chain tree, 546
copy chain ¸ , 545
Copy–α , 545

578 Index

Curry, Haskell B., 218, 221, 223, 224
Curry–Howard–Isomorphism, 221
cut, 72

degree of a ·Û , 201
weight of a ·Û , 201

Cut Elimination, 201, 242
cut–weight, 201
cycle, 43
cyclicity, 528
cylindric algebra, 335

locally finite dimensional, 335
Czelakowski, Janusz, 318

DAG, 43
damit–split, 517
de Groote, Philippe, 458
de Morgan law, 298
de Morgan, Augustus, 308
de Saussure grammar, 448
de Saussure sign, 448
de Saussure, Ferdinand, 190, 447
decidable set, 84
Deduction Theorem, 194, 365
deductively closed set, 287
deep structure, 517
definability, 152
definition

global explicit, 495
global implicit, 492

dependency syntax, 51
depth, 45
derivation, 53, 58, 69, 415, 518

end of a ·Û , 58
start of a ·Û , 58

derivation grammar, 415
derivation term, 179
Devanagari, 34
devoicing, 485, 486
diagonal, 5
dimension, 150, 335, 336
direct image, 5
discontinuity degree, 407
distribution classes, 24

domains
disjoint, 58

domination, 45
Doner, J. E., xiii, 510
double negation, 298
Dresner, Eli, 295
Dutch, 533
dyadic representation, 19

Ebert, Christian, vii, 372
edge, 66
element

overt, 550
elementary formal system, 392
embedding, 543
end configuration, 83
endomorphism, 8
English, 31, 36, 165, 168, 172, 451,

488, 515, 519, 523
environment, 340
equation, 10

reduced, 153
sorted, 12

equationally definable class, 11
equivalence, 108, 292
equivalence class, 9
equivalence relation, 4
equivalential term, 319

set of ·Û s, 319
Erilt, Lumme, vii
exponent, 181
exponents

syntactically indistinguishable, 438
EXPTIME, 92
extension of a node, 46
extent, 14

f–structure, 533
Fabian, Benjamin, vii
factorization, 9
faithfulness, 510
Faltz, Leonard L., 304
feature, 531

Index 579

distinctive, 37
foot, 531
head, 531
suprasegemental, 36

field of sets, 299
Fiengo, Robert, 443
filter, 287, 303
Fine, Kit, 134
finite intersection property, 303
finite state automaton

partial, 497
Finnish, 34, 35, 456, 489, 504
first–order logic, 269, 325
Fisher–Ladner closure, 493
FOL, 269, 325
forest, 43
formula

codable, 478, 510
contingent, 192
cut– ·Û , 198
main, 198
well–formed, 192

FORTH, 26
forward deletion, 280
foundation, 2
frame consequence

global, 313
local, 312

Frege, Gottlob, 224, 308, 440
French, 31, 34–36
Fujii, Mamoru, 413
function, 5

bijective, 5
bounded, 348
computable, 84
finite, 348
injective, 5
partial, 5
surjective, 5

functional head, 459
functor, 38
functor sign, 448

γ–graph, 66
Gärdenfors model, 364
Gärdenfors, Peter, 364
Gärtner, Hans–Martin, vii
Gödel, Kurt, 326
Gaifman, Haim, 227
Galois correspondence, 13
Gazdar, Gerald, 165, 530
GB (see Theory of Government and

Binding), 522
Gehrke, Stefanie, vii
Geller, M. M., 143
Generalized Phrase Structure Gram-

mar, 462, 529
generalized quantifier, 279
Gentzen calculus, 198
German, 31, 35, 36, 40, 165, 452, 457,

461, 488, 489, 517, 523, 530,
533, 539

Ginsburg, Seymour, 147, 158
government, 527

proper, 527
GPSG (see Generalized Phrase Struc-

ture Grammar), 462
grammar, 53

LR (k * – ·Û , 139
ambiguous, 135
Chomsky Normal Form, 111
context free, 54
context sensitive, 54
de Saussure, 448
derivation, 415
inherently opaque, 133
invertible, 112
left regular, 103
left transparent, 141
linear, 127
natural, 439
noncontracting, 61
of Type 0,1,2,3, 54
perfect, 113
reduced, 109

580 Index

regular, 54
right regular, 103
slender, 107
standard form, 111
strict deterministic, 125
strictly binary, 95
transparent, 133

grammar ¸ , 60
faithful, 478
product of ·Û s, 510

grammatical relation, 38
graph

connected, 43
directed, 43
directed acyclic, 43
directed transitive acyclic (DTAG),

43
graph grammar, 69

context free, 69
greatest lower bound (glb), 297
Greibach Normal Form, 113
Groenink, Annius, xii, 381, 392, 409

H–grammar, 292
H–semantics, 292
Halle, Morris, 486
Halmos, Paul, 336
Hanke, Timo, vii
Harkema, Henk, 414
Harris, Zellig S., 278, 423, 457, 517
Harrison, M. A., 143
Hausser, Roland, 446
head, 38, 525
Head Driven Phrase Structure Gram-

mar, 529, 463
head grammar, 406
height, 45
Heim, Irene, 360
hemimorphism, 315
Henkin frame, 272
Henkin, Leon, 331
Herbrand–universe, 384
Hilbert (style) calculus, 192

Hindi, 31, 34, 36
Hindley, J. R., 342
Hodges, Wilfrid, vii, 292, 293, 435
homomorphism, 8, 13

ε–free, 63
sorted, 12
strong, 13
weak, 13

Horn–formula, 382
Howard, William, 221
HPSG (see Head Driven Phrase Struc-

ture Grammar), 463
Hungarian, 35, 40, 503
Husserl, Edmund, 224
Huybregts, Riny, 165, 530

I–model, 363
idc–command, 540
idempotence, 297
identifier

S– ·Û , 550
independent pumping pair, 75
index, 337
index grammar, 425

linear, 425
right linear, 429
simple, 426

index scheme, 424
context free, 424
linear, 424
terminal, 424

Indo–European, 503
instantiation, 424
intent, 14
Interchange Lemma, 80, 168
interpolant, 259
interpolation, 259
interpretation

group valued, 258
interpreted language

boundedly reversible, 348
finitely reversible, 348
strongly context free, 344

Index 581

weakly context free, 344
interpreted string language, 177
intersectiveness, 304
intuitionistic logic, 192
isomorphism, 8
Italian, 520

Jäger, Gerhard, vii
Japanese, 40
Johnson, J. S., 342
join, 296
join irreducibility, 298
Joshi, Aravind, 161, 369, 406, 418

Kac, Michael B., 530
Kanazawa, Makoto, vii
Kaplan, Ron, 486, 502, 533
Kartttunen, Lauri, 360
Kasami, Tadao, 130, 413
Kay, Martin, 486, 502
Keenan, Edward L., vii, 304
Kempson, Ruth, 354
key, 371
Kleene star, 24
Kleene, Stephen C., 92, 100, 362
Kobele, Greg, vii
Kolb, Hap, vii
Koniecny, Franz, vii
Kosiol, Thomas, vii
Koskenniemi, Kimmo, 486
Koymans, J. P. C., 342
Kozen, Dexter C., 372, 379
Kracht, Marcus, 369, 372, 530, 539
Kripke–frame, 312, 468

generalized, 312
Kripke–model, 468
Kronecker symbol, 149
Kuroda, S.–Y., 90

λ–algebra, 221
λ–term, 209

closed, 209
congruent, 211

contraction, 212
evaluated, 212
pure, 209
relevant, 448

λ ¹ –term, 254
linear, 254
strictly linear, 254

λΩ–term, 208
L–frame, 268
labelling function, 43
Lambek, Joachim, 225, 250
Lambek–Calculus, 225, 250

Nonassociative, 250
Landweber, Peter S., 90
Langholm, Tore, 433
language, 23

LR (k * – ·Û , 139
k–pumpable, 409
n–turn, 127·Û accepted by stack, 119·Û accepted by state, 119
2–template, 497
accepted, 83
almost periodical, 159
context free, 55, 103
context free deterministic, 122
context sensitive, 55
decidable, 85
Dyck–, 123
finite index, 103
head final, 40
head initial, 40
inherently ambiguous, 135
interpreted, 177
linear, 127, 150
mirror, 122
NTS– ·Û , 136
of Type 0,1,2,3, 54
OSV–, OVS–, VOS–, 39
prefix free, 122
propositional, 285
PTIME, 300

582 Index

recursively enumerable, 84
regular, 55, 95
semilinear, 150
SOV–, SVO–, VSO–, 39
strict deterministic, 123
string, 23
ultralinear, 127
verb final, 40
verb initial, 40
verb medial, 40
weakly semilinear, 381

language ¸ , 487
Latin, 39, 40, 447, 457, 520
lattice, 297

bounded, 298
distributive, 298
dual, 308

law of the excluded middle, 363
LC–calculus, 145
LC–rule, 145
leaf, 44
least upper bound (lub), 297
left transparency, 141
Leibniz equivalence, 321
Leibniz operator, 321
Leibniz’ Principle, 290, 291, 293, 296,

308–311, 317, 320–323, 434,
435, 438, 444–447

Leibniz, Gottfried W., 290
letter, 17, 35
letter equivalence, 150
Levy, Leon S., 161
lex, 31
LFG (see Lexical Functional Gram-

mar), 529
Liberation, 546
licensing, 465, 526
LIG, 425
ligature, 34
Lin, Ying, vii
linearisation, 104

leftmost, 105

link, 546, 550
maximal, 550

link extension, 551
link map, 546

orbital, 548
Lipták, Zsuzsanna, vii
literal movement grammar

n–branching, 422
definite, 394
linear, 402
monotone, 408
noncombinatorial, 387
nondeleting, 386
simple, 387

literal movement grammar (LMG), 383
Little Deduction Theorem, 195
little pro, 521
LMG (see literal movement grammar),

383
logic, 318, 471

boolean, 192
classical, 192
first–order, 269, 325
Fregean, 320
intuitionistic, 192

logical form, 519
LOGSPACE, 372
Longo, G., 342
loop, 257

Mönnich, Uwe, vii, 78
Malay, 451
Manaster–Ramer, Alexis, vii, 530
Mandarin, 400, 444, 458
map

ascending, 546
discriminating, 487

Markov, A. A., 90
matrix, 286

canonical, 287
reduced, 287

matrix semantics, 287
adequate, 287

Index 583

Matsumura, Takashi, 413
May, Robert, 443
MDS (see multidominance structure),

549
meaning

A– ·Û , 349
meaning postulate, 318
meet, 296
meet irreducibility, 298
meet prime, 298
Mel’čuk, Igor, 42, 51, 190, 451
mention, 309
metarule, 531
Michaelis, Jens, vii, 369, 413, 429
Miller, Philip H., 174
Minimalist Program, 523
mirror string, 22
modal logic, 311

classical, 311
monotone, 311
normal, 311
quasi–normal, 311

modality
universal, 475

mode, x, 181
model, 468
model class, 471
module, 523
Modus Ponens (MP), 193, 204
Monk, Donald, 342
monoid, 19

commutative, 147
monotonicity, 304
Montague Grammar (see Montague Se-

mantics), 190
Montague Semantics, 190, 228, 269,

273, 343, 350, 353, 354
Montague, Richard, 269, 274, 291, 300,

311, 315, 440–443, 446
morph, 30
morpheme, 32
morphology, 30

move
ε– ·Û , 118

Move–α , 522
MSO (see monadic second order logic),

467
multidominance structure, 549

ordered, 549
multigraph, 66
multimodal algebra, 315
MZ–structure, 473

Németi, István, vii
natural deduction, 204
natural deduction calculus, 206
natural number, 3
network, 375

goal, 375
monotone, 377

NEXPTIME, 92
No Recycling, 548
node

active, 70
central, 414
daughter, 44
mother, 44
nonactive, 70

nonterminal
completable, 107
reachable, 107

normal form, 212
notation

infix, 25
Polish, 26
Reverse Polish, 26

NP, 92
NTS–property, 136
nucleus, 499
number, 375

object, 38
occurrence, 435
OMDS (see ordered multidominance

structure), 549

584 Index

one, 297
onset, 499
operator

dual, 311
necessity, 311
possibility, 311

order
crossing, 166
nesting, 166

ordered set, 4
ordering, 4

exhaustive, 47
lexicographical, 18
numerical, 18

ordinal, 3
overlap, 44, 411

p–category, 431
parasitic gap, 522
Parikh map, 150
Parikh, Rohit, 135, 151, 162
parsing problem, 54
Parsons, Terry, vii
partition, 4

strict, 124
path, 44, 532
PDL (see propositional dynamic logic),

490
Peirce, Charles S., 190
Pentus, Mati, xii, 258, 264, 268, 269
permutation, 336, 385
Peters, Stanley, 533
phenogrammar, 443
phone, 30
phoneme, 31, 35, 488
phonemicization, 488
Phonological Form, 520
phonology, 30
Pigozzi, Don, 317
Pogodalla, Sylvain, 353
point, 302
Polish Notation, 42, 55, 133, 179, 180
Pollard, Carl, 406

polyadic algebra
finitary, 336

polymorphism, 237
polynomial, 8
polyvalency, 41
portmanteau morph, 457
position, 22
Post, Emil, 65, 80, 90, 92
Postal, Paul, 165, 530
postfix, 22
postfix closure, 24
precedence, 23
Predecessor Lemma, 44
predicate, 383
prefix, 22
prefix closure, 24
premiss, 198
Presburger, 157
Presburger Arithmetic, 147, 160
presentation, 90
presupposition, 354

generic, 358, 359
priorisation, 105
problem

ill–conditioned, 281
product, 479
product of algebras, 9
product of grammars ¸ , 479
production, 54

X– ·Û , 114
contracting, 54
expanding, 54
left recursive, 114
strictly expanding, 54

productivity, 54
program

elementary, 490
progress measure, 437
projection, 254, 510
projection algorithm, 359
proof, 193

length of a ·Û , 193

Index 585

proof tree, 199, 206
propositional dynamic logic, 490

elementary, 491
propositional logic

inconsistent, 307
Prucnal, T., 319
PSPACE, 92
PTIME, 92
Pullum, Geoffrey, 165, 530
Pumping Lemma, 74, 80
pushdown automaton, 118

deterministic, 122
simple, 119

Putnam, Hilary, 90

QML (see quantified modal logic), 468
quantified modal logic, 468
quantifier

restricted, 475
quantifier elimination, 157
quasi–grammar, 60
Quine, Willard van Orman, 336

R–simulation, 108
Radzinski, Daniel, 401, 444
Rambow, Owen, 369
Ramsey, Frank, 364
readability

unique, 25
realization, 182, 487
Recanati, François, 322
recognition problem, 54
recursively enumerable set, 84
redex, 212
reducibility, 109
reduction, 138
reference, 310
referential expression, 520
register, 283
regular relation, 501
relation, 4

reflexive, 4
regular, 501

symmetric, 4
transitive, 4

replacement, 211, 435
representation, 25
representative

unique, 25
restrictiveness, 304
RG, CFG, CSG, GG, 57
rhyme, 499
Riggle, Jason, vii
RL, CFL, CSL, GL, 57
Roach, Kelly, 406
Rogers, James, 530
Roorda, Dirk, 258, 263
root, 43, 547
Rounds, William, xii, 381
rule, 53, 199, 206

admissible, 201
definite, 394
downward linear, 386
downward nondeleting, 386
eliminable, 201
finitary, 199, 206, 286
instance, 384
instance of a ·Û , 57
monotone, 408
noncombinatorial, 387
simple, 387
skipping of a ·Û , 114
terminal, 54
upward linear, 386
upward nondeleting, 386

rule instance
domain of a ·Û , 57

rule of realization, 30
rule scheme, 424
rule simulation

backward, 108
forward, 108

Russell, Bertrand, 354, 440

Sain, Ildikó, 336, 342
Salinger, Stefan, vii

586 Index

sandhi, 496
Schönfinkel, Moses, 220, 224
search

breadth–first, 106
depth–first, 105

second order logic, 467
monadic, 467

segment, 17, 36, 526
segmentability, 36
Seki, Hiroyuki, 413
semantics

primary, 289
secondary, 289

seme, 31
semi Thue system, 53
semigroup

commutative, 147
semilattice, 297
sense, 310
sentence, 171
sequent, 198, 240

thin, 264
sequent calculus, 199
sequent proof, 198
Sestier–closure, 24
Sestier–operator, 24
set, 1 ·Û of worlds, 312

cofinite, 302
consistent, 195, 287
countable, 3
deductively closed, 287
downward closed, 196
maximally consistent, 287

Shamir, E., 227
Shieber, Stuart, 165, 530
shift, 138
shuffling, 543
sign, x, 181

category, x
de Saussure, 448
exponent, x

meaning, x
realization, 186

sign complex, 244
sign grammar

AB– ·Û , 230
context free, 343
progressive, 437
quasi context free, 343
strictly progressive, 437

sign system
compositional, 186
context free, 343
linear, 185
modularly decidable, 189
strictly compositional, 440
weakly compositional, 186

signature, 6
constant expansion, 6
functional, 15
relational, 15
sorted, 12

signified, 447
signifier, 447
simple type theory (STT), 272, 326
singulare tantum, 444
SO (see second order logic), 467
sonoricity hierarchy, 498
sort, 12
Spanier, Edwin H., 147, 158
SPE–model, 486
specifier, 526
Staal, J. F., 531
Stabler, Edward P., vii, 414
stack alphabet, 118
stack move, 126
Stamm, Harald, vii
standard form, 59, 111
start graph, 69
start symbol, 53
state, 81, 500

accepting, 81, 95, 500
initial, 81, 95, 500

Index 587

Staudacher, Peter, vii
Steedman, Mark, 278
stemma, 51
Sternefeld, Wolfgang, vii, 530
Stockmeyer, L. J., 372, 379
strategy, 138

bottom–up, 146
generalized left corner, 146
top–down, 146

stratum, 30
deep, 32
morphological, 30
phonological, 30
semantical, 30
surface, 32
syntactical, 30

string, 17
associated, 46
length, 17
representing, 25

string sequence, 58
associated, 58

string term, 448
progressive, 448
weakly progressive, 448

string vector algebra, 397
structural change, 515
structural description, 515
structure, 15, 468
structure over A, 43
structure term, 182

definite, 182
orthographically definite, 182
semantically definite, 182
sentential, 293
syntactically definite, 182

structures
A– ·Û , 43
connected, 473

subalgebra, 9
strong, 13

subcategorization frame, 526

subframe
generated, 317

subgraph, 45
subjacency, 544
subject, 38
substitution, 285, 384

string, 22
substitutions, 7
substring, 22
substring occurrence, 22

contained, 23
overlapping, 23

subtree, 45
local, 70

succedent, 198
suffix, 22
supervaluation, 361
suppletion, 457
support, 336
surface structure, 518
Suszko, Roman, 318
Swiss German, 165, 167, 454, 539
symbol

nonterminal, 53
terminal, 53

synonymy, 292
H– ·Û , 292
Husserlian, 292
Leibnizian, 293

syntax, 30
system of equations

proper, 98
simple, 98

T–model, 525
TAG, 416
Takahashi, Masako, 161
Tarski’s Principle, 435
Tarski, Alfred, 435
tautology, 192
Tchao, Ngassa, vii
tectogrammar, 443
template, 496

588 Index

template language, 496
boundary, 496

term, 6
Ω– ·Û , 6
equivalential, 319
level of a ·Û , 6
regular, 97

term algebra, 7
term function, 8

clone of, 8
term replacement system, 78
Tesnière, Lucien, 51
text, 359

coherent, 359
TG (see Transformational Grammar),

515
Thatcher, J. W., xiii, 510
theory, 317, 322

MSO–, 471
Theory of Government and Binding,

522
thin category, 264
Thompson, Richard S., 336, 342
Thue system, 53
Thue, Axel, 65
topicalisation, 515
trace, 520, 524
trace chain structure, 551
trajectory, 548
Trakhténbrodt, B. A., 285
transducer

deterministic finite state, 500
finite state, 499

Transducer Theorem, 167, 501
transformation, 336
Transformational Grammar, 515
transition, 118
transition function, 95, 118, 500
transitive closure, 5
transparency, 133
transposition, 336
tree, 44, 549

correctly labelled, 226
ordered, 46
partial G– ·Û , 132
properly branching, 48

tree adjoining grammar
standard, 416

tree adjunction grammar
unregulated, 77

tree domain, 49
truth, 193
truth value, 286

designated, 286
Turing machine, 81

alternating, 378
deterministic, 81
linearly space bounded, 90
logarithmically space bounded, 372
multitape, 85
universal, 89

Turing, Alan, 80, 92
turn, 126
type, 181, 337
type raising, 241

ultrafilter, 303
umlaut, 32, 33, 35, 485
underspecification, 465
unfolding map, 183
unification, 531
uniqueness, 546
unit, 18
use, 309
Uszkoreit, Hans, 539
UTAG, 77

V2–movement, 517
valuation, 211, 282, 312, 384
value, 462

atomic, 463
van der Hulst, Harry, 499
van Eijck, Jan, 360
van Fraassen, Bas, 361
variable

Index 589

bound, 171, 209
free, 209
occurrence, 209
propositional, 192
structure ·Û , 464

variety, 10
congruence regular, 320

vector
cyclic, 150

Veltman, Frank, 364
verb

intransitive, 41
transitive, 41

verb cluster, 533
vertex, 66
vertex colour, 66
vertex colouring, 66
Vijay–Shanker, K., 406, 418
Villemonte de la Clergerie, Eric, 414
von Humboldt, Alexander, 443
von Stechow, Arnim, 530

Wartena, Christian, 429

Weir, David, 406, 418
well–ordering, 3
wff, 192
word, 36, 487
word order

free, 41
Wright, J. B., xiii, 510
Wroński, Andrzej, 319

ξ –rule, 211
X–syntax, 353, 525
XML, 123

Younger, D. H., 130

Z–structure, 470
Zaenen, Annie, 533
zero, 296
Zwicky, Arnold, 172

