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Introduction

This book is — as the title suggests — a book about the mathematical study
of language, that is, about the description of language and languages with
mathematical methods. It is intended for students of mathematics, linguis-
tics, computer science, and computational linguistics, and also for all those
who need or wish to understand the formal structure of language. It is a math-
ematical book; it cannot and does not intend to replace a genuine introduction
to linguistics. For those who are not acquainted with general linguistics we
recommend (Lyons, 1968), which is a bit outdated but still worth its while.
For a more recent book see (Fromkin, 2000). No linguistic theory is discussed
here in detail. This text only provides the mathematical background that will
enable the reader to fully grasp the implications of these theories and un-
derstand them more thoroughly than before. Several topics of mathematical
character have been omitted: there is for example no statistics, no learning
theory, and no optimality theory. All these topics probably merit a book of
their own. On the linguistic side the emphasis is on syntax and formal seman-
tics, though morphology and phonology do play a role. These omissions are
mainly due to my limited knowledge. However, this book is already longer
than I intended it to be. No more material could be fitted into it.

The main mathematical background is algebra and logic on the semantic
side and strings on the syntactic side. In contrast to most introductions to for-
mal semantics we do not start with logic — we start with strings and develop
the logical apparatus as we go along. This is only a pedagogical decision.
Otherwise, the book would start with a massive theoretical preamble after
which the reader is kindly allowed to see some worked examples. Thus we
have decided to introduce logical tools only when needed, not as overarching
concepts.

We do not distinguish between natural and formal languages. These two
types of languages are treated completely alike. I believe that it should not
matter in principle whether what we have is a natural or an artificial prod-
uct. Chemistry applies to naturally occurring substances as well as artificially
produced ones. All I will do here is study the structure of language. Noam
Chomsky has repeatedly claimed that there is a fundamental difference be-
tween natural and nonnatural languages. Up to this moment, conclusive evi-
dence for this claim is missing. Even if this were true, this difference should
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not matter for this book. To the contrary, the methods established here might
serve as a tool in identifying what the difference is or might be. The present
book also is not an introduction to the theory of formal languages; rather, it
is an introduction to the mathematical theory of linguistics. The reader will
therefore miss a few topics that are treated in depth in books on formal lan-
guages on the grounds that they are rather insignificant in linguistic theory.
On the other hand, this book does treat subjects that are hardly found any-
where else in this form. The main characteristic of our approach is that we
do not treat languages as sets of strings but as algebras of signs. This is much
closer to the linguistic reality. We shall briefly sketch this approach, which
will be introduced in detail in Chapter 3.

A sign o is defined here as a triple (e,c,m), where e is the exponent of o,
which typically is a string, ¢ the (syntactic) category of o, and m its mean-
ing. By this convention a string is connected via the language with a set of
meanings. Given a set X of signs, e means m in X if and only if (= iff) there
is a category c¢ such that {e,c,m) € X. Seen this way, the task of language
theory is not only to say which are the legitimate exponents of signs (as we
find in the theory of formal languages as well as many treatises on generative
linguistics which generously define language to be just syntax) but it must
also say which string can have what meaning. The heart of the discussion is
formed by the principle of compositionality, which in its weakest formulation
says that the meaning of a string (or other exponent) is found by homomor-
phically mapping its analysis into the semantics. Compositionality shall be
introduced in Chapter 3 and we shall discuss at length its various ramifica-
tions. We shall also deal with Montague Semantics, which arguably was the
first to implement this principle. Once again, the discussion will be rather ab-
stract, focusing on mathematical tools rather than the actual formulation of
the theory. Anyhow, there are good introductions to the subject which elim-
inate the need to include details. One such book is (Dowty ef al., 1981) and
the book by the collective of authors (Gamut, 1991b). A system of signs is
a partial algebra of signs. This means that it is a pair (¥,M), where X is a
set of signs and M a finite set, the set of so—called modes (of composition).
Standardly, one assumes M to have only one nonconstant mode, a binary
function e, which allows one to form a sign o, ® 6, from two signs ¢, and G,.
The modes are generally partial operations. The action of e is explained by
defining its action on the three components of the respective signs. We give a
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simple example. Suppose we have the following signs.

‘runs’ = (runms,v,p)
‘Paul’ = (Paul,n,n)

Here, v and n are the syntactic categories (intransitive) verb and proper name,
respectively. 7 is a constant, which denotes an individual, namely Paul, and p
is a function from individuals to the set of truth values, which typically is the
set {0, 1}. (Furthermore, p(x) = 1 if and only if x is running.) On the level
of exponents we choose word concatenation, which is string concatenation
(denoted by ™) with an intervening blank. (Perfectionists will also add the
period at the end...) On the level of meanings we choose function application.
Finally, let o be a partial function which is only defined if the first argument
is n and the second is v and which in this case yields the value . Now we put

(e,cq,m ) ®(ey,Cy,my) = (e?lj’\ez,c1 0y, my(my))
Then ‘Paul’ e ‘runs’ is a sign, and it has the following form.
‘Paul’e ‘runs’ := (Paul rums,t,p(7))

We shall say that this sentence is true if and only if p(7) = 1; otherwise we
say that it is false. We hasten to add that ‘Paul’ e ‘Paul’ is not a sign. So,
e is indeed a partial operation.

The key construct is the free algebra generated by the constant modes
alone. This algebra is called the algebra of structure terms. The structure
terms can be generated by a simple context free grammar. However, not ev-
ery structure term names a sign. Since the algebras of exponents, categories
and meanings are partial algebras, it is in general not possible to define a ho-
momorphism from the algebra of structure terms into the algebra of signs.
All we can get is a partial homomorphism. In addition, the exponents are
not always strings and the operations between them not only concatenation.
Hence the defined languages can be very complex (indeed, every recursively
enumerable language ¥ can be so generated).

Before one can understand all this in full detail it is necessary to start off
with an introduction into classical formal language theory using semi Thue
systems and grammars in the usual sense. This is what we shall do in Chap-
ter 1. It constitutes the absolute minimum one must know about these matters.
Furthermore, we have added some sections containing basics from algebra,
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set theory, computability and linguistics. In Chapter 2 we study regular and
context free languages in detail. We shall deal with the recognizability of
these languages by means of automata, recognition and analysis problems,
parsing, complexity, and ambiguity. At the end we shall discuss semilinear
languages and Parikh’s Theorem.

In Chapter 3 we shall begin to study languages as systems of signs. Sys-
tems of signs and grammars of signs are defined in the first section. Then
we shall concentrate on the system of categories and the so—called categorial
grammars. We shall introduce both the Ajdukiewicz—Bar Hillel Calculus and
the Lambek—Calculus. We shall show that both can generate exactly the con-
text free string languages. For the Lambek—Calculus, this was for a long time
an open problem, which was solved in the early 1990s by Mati Pentus.

Chapter 4 deals with formal semantics. We shall develop some basic con-
cepts of algebraic logic, and then deal with boolean semantics. Next we shall
provide a completeness theorem for simple type theory and discuss various
possible algebraizations. Then we turn to the possibilities and limitations of
Montague Semantics. Then follows a section on partiality and presupposition.

In the fifth chapter we shall treat so—called PTIME languages. These are
languages for which the parsing problem is decidable deterministically in
polynomial time. The question whether or not natural languages are con-
text free was considered settled negatively until the 1980s. However, it was
shown that most of the arguments were based on errors, and it seemed that
none of them was actually tenable. Unfortunately, the conclusion that natu-
ral languages are actually all context free turned out to be premature again.
It now seems that natural languages, at least some of them, are not context
free. However, all known languages seem to be PTIME languages. Moreover,
the so—called weakly context sensitive languages also belong to this class. A
characterization of this class in terms of a generating device was established
by William Rounds, and in a different way by Annius Groenink, who intro-
duced the notion of a literal movement grammar. We shall study these types
of grammars in depth. In the final two sections we shall return to the question
of compositionality in the light of Leibniz’ Principle, and then propose a new
kind of grammars, de Saussure grammars, which eliminate the duplication of
typing information found in categorial grammar.

The sixth chapter is devoted to the logical description of language. This
approach has been introduced in the 1980s and is currently enjoying a revival.
The close connection between this approach and the so—called constraint—
programming is not accidental. It was proposed to view grammars not as
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generating devices but as theories of correct syntactic descriptions. This is
very far away from the tradition of generative grammar advocated by Chom-
sky, who always insisted that language contains a generating device (though
on the other hand he characterizes this as a theory of competence). However,
it turns out that there is a method to convert descriptions of syntactic struc-
tures into syntactic rules. This goes back to ideas by Biichi, Wright as well
as Thatcher and Doner on theories of strings and theories of trees in monadic
second order logic. However, the reverse problem, extracting principles out of
rules, is actually very hard, and its solvability depends on the strength of the
description language. This opens the way into a logically based language hi-
erarchy, which indirectly also reflects a complexity hierarchy. Chapter 6 ends
with an overview of the major syntactic theories that have been introduced in
the last 25 years.

NOTATION. Some words concerning our notational conventions. We use
typewriter font for true characters in print. For example: Maus is the German
word for ‘mouse’. Its English counterpart appears in (English) texts either as
mouse or as Mouse, depending on whether or not it occurs at the beginning
of a sentence. Standard books on formal linguistics often ignore these points,
but since strings are integral parts of signs we cannot afford this here. In
between true characters in print we also use so—called metavariables (place-
holders) such as a (which denotes a single letter) and X (which denotes a
string). The notation c; is also used, which is short for the true letter ¢ fol-
lowed by the binary code of i (written with the help of appropriately chosen
characters, mostly 0 and 1). When defining languages as sets of strings we
distinguish between brackets that appear in print (these are ( and ) ) and those
which are just used to help the eye. People are used to employ abbreviatory
conventions, for example 5+7+4 in place of (5+(7+4)). Similarly, in logic
one uses pyA (<p4) or even pyA-p,4 in place of (pyA(ap4)). We shall follow
that usage when the material shape of the formula is immaterial, but in that
case we avoid using the true function symbols and the true brackets ‘(’ and
*)’, and use ‘(” and ‘) instead. For pyA(-p,) is actually not the same as
(poA(=p4)). To the reader our notation may appear overly pedantic. How-
ever, since the character of the representation is part of what we are studying,
notational issues become syntactic issues, and syntactical issues simply can-
not be ignored. Notice that ‘(" and ‘)’ are truly metalinguistic symbols that
are used to define sequences. We also use sans serife fonts for terms in for-
malized and computer languages, and attach a prime to refer to its denotation
(or meaning). For example, the computer code for a while-loop is written
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semi—formally as while i < 100 do x :=x X (x+ i) od. This is just a string
of symbols. However, the notation see’(john’, paul’) denotes the proposition
that John sees Paul, not the sentence expressing that.
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Chapter 1
Fundamental Structures

1. Algebras and Structures

In this section we shall provide definitions of basic terms and structures which
we shall need throughout this book. Among them are the notions of algebra
and structure. Readers for whom these are entirely new are advised to read
this section only cursorily and return to it only when they hit upon something
for which they need background information.

We presuppose some familiarity with mathematical thinking, in particu-
lar some knowledge of elementary set theory and proof techniques such as
induction. For basic concepts in set theory see (Vaught, 1995) or (Just and
Weese, 1996; Just and Weese, 1997); for background in logic see (Goldstern
and Judah, 1995). Concepts from algebra (especially universal algebra) can
be found in (Burris and Sankappanavar, 1981) and (Gritzer, 1968), and in
(Burmeister, 1986) and (Burmeister, 2002) for partial algebras; for general
background on lattices and orderings see (Griitzer, 1971) and (Davey and
Priestley, 1990).

We use the symbols U for the union, N for the intersection of two sets.
Instead of the difference symbol M\N we use M — N. & denotes the empty
set. (M) denotes the set of subsets of M, @,,(M) the set of finite subsets
of M. Sometimes it is necessary to take the union of two sets that does not
identify the common symbols from the different sets. In that case one uses
+. We define M+ N :=M x {0} UN x {1} (x is defined below). This is
called the disjoint union. For reference, we fix the background theory of sets
that we are using. This is the theory ZFC (Zermelo Fraenkel Set Theory with
Choice). It is essentially a first order theory with only two two place relation
symbols, € and =. (See Section 3.8 for a definition of first order logic.) We
define x C y by (Vz)(z € x = x € y). Its axioms are as follows.

1. Singleton Set Axiom. (Vx)(3y)(Vz)(z € y +» z=1x).
This makes sure that for every x we have a set {x}.

2. Powerset Axiom. (Vx)(3y)(Vz)(z €y > 2 C x).
This ensures that for every x the power set £(x) of x exists.
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3. Set Union. (Vx)(3y)(Vz)(z € y <> (3u)(z € uAu € x)).
u is denoted by (J,¢, z or simply by [Jx. The axiom guarantees its exis-
tence.

4. Extensionality. (Vx)(Vy)(x =y +> (Vz)(z €x <>z € y)).

5. Replacement. If f is a function with domain x then the direct image of
x under f is a set. (See below for a definition of function.)

6. Weak Foundation.

(V) (x# 2= () exA(V2)(z€x =2 ¢Y)))

This says that in every set there exists an element that is minimal with
respect to €.

7. Comprehension. If x is a set and ¢ a first order formula with only y
occurring free, then {y :y € x A @(y)} also is a set.

8. Axiom of Infinity. There exists an x and an injective function f: x — x
such that the direct image of x under f is not equal to x.

9. Axiom of Choice. For every set of sets x there is a function f: x — [Jx
with f(y) € yforall y € x.

We remark here that in everyday discourse, comprehension is generally ap-
plied to all collections of sets, not just elementarily definable ones. This dif-
ference will hardly matter here; we only mention that in monadic second
order logic this stronger from of comprehension is expressible and also the
axiom of foundation.

Full Comprehension. For every class P and every set x, {y:y € x and x € P}
is a set.

Foundation is usually defined as follows
Foundation. There is no infinite chain xy 3 x; 3 x, 3 ---.
In mathematical usage, one often forms certain collections of sets that can be

shown not to be sets themselves. One example is the collection of all finite
sets. The reason that it is not a set is that for every set x, {x} also is a set. The
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function x — {x} is injective (by extensionality), and so there are as many
finite sets as there are sets. If the collection of finite sets were a set, say y, its
powerset has strictly more elements than y by a theorem of Cantor. But this is
impossible, since y has the size of the universe. Nevertheless, mathematicians
do use these collections (for example, the collection of Q—-algebras). This is
not a problem, if the following is observed. A collection of sets is called a
class. A class is a set iff it is contained in a set as an element. (We use ‘iff’ to
abbreviate ‘if and only if’.)
In set theory, numbers are defined as follows.

0:=0

1.1
(-1 n+1:={k:k<n}={0,1,2,...,n—1}

The set of so—constructed numbers is denoted by . It is the set of natural
numbers. In general, an ordinal (number) is a set that is transitively and
linearly ordered by €. (See below for these concepts.) For two ordinals x and
A, either k¥ € A (for which we also write Kk < A)or Kk =A or A € k.

Theorem 1.1 For every set x there exists an ordinal K and a bijective func-
tion f: K = x.

f is also referred to as a well-ordering of x. The finite ordinals are exactly
the natural numbers defined above. A cardinal (number) is an ordinal kK
such that for every ordinal A < K there is no onto map f: A — K. It is not
hard to see that every set can be well-ordered by a cardinal number, and this
cardinal is unique. It is denoted by |M| and called the cardinality of M. The
smallest infinite cardinal is denoted by X . The following is of fundamental
importance.

Theorem 1.2 For two sets x, y exactly one of the following holds: |x| < |y
x| = Iyl or [x| > |yl.

i

By definition, X, is actually identical to @ so that it is not really necessary to
distinguish the two. However, we shall do so here for reasons of clarity. (For
example, infinite cardinals have a different arithmetic than ordinals.) If M is
finite, its cardinality is a natural number. If |M| = X, M is called countable;
it is uncountable otherwise. If M has cardinality , the cardinality of (M)
is denoted by 2¥. 2%0 is the cardinality of the set of all real numbers. 20 is
strictly greater than X, (but need not be the smallest uncountable cardinal).
We remark here that the set of finite sets of natural numbers is countable.
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If M is a set, a partition of M is a set P C (M) such that every member
of P is nonempty, | JP =M and for all A,B € P such that A #B,ANB=@.If
M and N are sets, M x N denotes the set of all pairs (x,y), where x € M and
y € N. A definition of (x,y), which goes back to Kuratowski and Wiener, is
as follows.

(1.2) (oy) = {x {x,y}}
Lemma 1.3 (x,y) = (u,v) iff x=uand y = v.

Proof. By extensionality, if x = u and y = v then (x,y) = (u,v). Now assume
that (x,y) = (u,v). Then either x = u or x = {u, v}, and {x,y} = uor {x,y} =
{u,v}. Assume that x = u. If u = {x,y} then x = {x,y}, whence x € x, in
violation to foundation. Hence we have {x,y} = {u,v}. Since x = u, we must
have y = v. This finishes the first case. Now assume that x = {u,v}. Then
{x,y} = u cannot hold, for then u = {{u,v},y}, whence u € {u,v} € u. So,
we must have {x,y} = {u,v}. However, this gives x = {x,y}, once again a
contradiction. So, x =« and y = v, as promised. O

With these definitions, M X N is a set if M and N are sets. A relation
from M to N is a subset of M x N. We write xRy if (x,y) € R. Particularly
interesting is the case M = N. A relation R C M X M is called reflexive if
xRx for all x € M; symmetric if from xRy follows that yRx. R is called
transitive if from xRy and yRz follows xR z. An equivalence relation on M
is a reflexive, symmetric and transitive relation on M. A pair (M, <) is called
an ordered set if M is a set and < a transitive, irreflexive binary relation on
M. < is then called a (strict) ordering on M and M is then called ordered
by <. < is linear if for any two elements x,y € M either x < y or x =y
or y < x. A partial ordering is a relation which is reflexive, transitive and
antisymmetric; the latter means that from xRy and y Rx follows x = y.

If RC M x N is arelation, we write R~ := {(x,y) : yRx} for the so—called
converse of R. This is a relation from NtoM. If SCN xPand T CM x N
are relations, put

(1.3) RoS:={(x,y) : for some z: xRzSy}
RUT :={(x,y) : xRy or xT y}

We have RoS C M xPand RUT C M x N.In case M = N we still make fur-
ther definitions. We put A, := {(x,x) : x € M} and call this set the diagonal
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on M. Now put
(1.4) R :=A, R™ ! :=RoR"
Rt:= |J K R =R

O<icw i€cw

R™ is the smallest transitive relation which contains R. It is therefore called
the transitive closure of R. R* is the smallest reflexive and transitive relation
containing R.

A partial function from M to N is a relation f C M X N such that if
xfy and xfz then y = z. f is a function if for every x there is a y such
that x f y. We write y = f(x) to say that xfy and f: M — N to say that
f is a function from M to N. If P C M then f | P := fN (P x N). Further,
f: M — N abbreviates that f is a surjective function, that is, every y € N
is of the form y = f(x) for some x € M. And we write f: M »— N to say
that f is injective, that is, for all x,x’ € M, if f(x) = f(x') then x = x'. f is
bijective if it is injective as well as surjective. Finally, we write f: x +— y if
y=f(x). If X CM then f[X]:= {f(x) : x € X} is the so—called direct image
of X under f. We warn the reader of the difference between f(X) and f[X].
For example, let suc: @ — ®: x — x4+ 1. Then according to the definition
of natural numbers above we have suc(4) =5 and suc[4] = {1,2,3,4}, since
4=4{0,1,2,3}. Let M be an arbitrary set. There is a bijection between the set
of subsets of M and the set of functions from M to 2 = {0, 1}, which is defined
as follows. For N C M we call x, : M — {0,1} the characteristic function
of N if yy(x) = 1iff x € N. Let y € N and Y C N; then put f~!(y) := {x:
f(x) =y} and f71[Y]:={x: f(x) € Y}.If fis injective, f~!(y) denotes the
unique x such that f(x) =y (if that exists). We shall see to it that this overload
in notation does not give rise to confusions.

M", n € @, denotes the set of n—tuples of elements from M.

(1.5) M' =M M =M x M

In addition, M := 1(= {@}). Then an n-tuple of elements from M is an ele-
ment of M". Depending on need we shall write (x; : i <n) or (X, X;,...,%,_;)
for a member of M".

An n—ary relation on M is a subset of M", an n—ary function on M is
a function f: M" — M. n = 0 is admitted. A O-ary relation is a subset of 1,
hence it is either the empty set or the set 1 itself. A O—ary function on M is a
function c: 1 — M. We also call it a constant. The value of this constant is
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the element c(@). Let R be an n—ary relation and X € M". Then we write R(X)
in place of X € R.

Now let F be a set and Q: F — ®. The pair (F,Q), also denoted by Q
alone, is called a signature and F the set of function symbols.

Definition 1.4 Let Q: F — @ be a signature and A a nonempty set. Further,
let T1 be a mapping which assigns to every f € F an Q(f)—ary function on A.
Then we call the pair U := (A,I1) an Q-algebra. Q-algebras are in general
denoted by upper case German letters.

In order not to get drowned in notation we write f for the function II(f). In
place of denoting 2 by the pair (A,IT) we shall denote it somewhat ambigu-
ously by (A, {f* : f € F}). We warn the reader that the latter notation may
give rise to confusion since functions of the same arity can be associated with
different function symbols. However, this problem shall not arise.

The set of Q—terms is the smallest set Tm, such thatif f € F andz; € Tm,,,
i < Q(f), also f(t,,-.- o f)_l) € Tm,. Terms are abstract entities; they are
not to be equated with functions nor with the strings by which we denote
them. To begin we define the level of a term. If Q(f) = 0, then f() is a term
of level 0, which we also denote by “f”. If ¢,, i < Q(f), are terms of level n,,
then f(z,, ... Loy ;) isaterm of level 1 +max{n; :i < Q(f)}. Many proofs
run by induction on the level of terms, we therefore speak about induction on
the construction of the term. Two terms u and v are equal, in symbols u = v,
if they have identical level and either they are both of level 0 and there is an
feFsuchu=v=f()orthereisan f € F, and terms s,, t,, i < Q(f), such
that u = f(so,...,sg(f)_l) and v = f(to,...,tg(f)_l) as well as 5, = ¢, for all
i < Q(f).

An important example of an Q—algebra is the so—called ferm algebra. We
choose an arbitrary set X of symbols, which must be disjoint from F. The
signature is extended to F U X such that the symbols of X have arity 0. The
terms over this new signature are called Q—terms over X. The set of Q-
terms over X is denoted by Tmg,(X). Then we have Tmg, = Tm,(@). For
many purposes (indeed most of the purposes of this book) the terms Tm, are
sufficient. For we can always resort to the following trick. For each x € X add
a O—ary function symbol x to F. This gives a new signature Q,, also called
the constant expansion of Q by X. Then TmQX can be canonically identified
with Tmg (X).

There is an algebra which has as its objects the terms and which interprets



Algebras and Structures 7

the function symbols as follows.
(1.6) I(f): (12 i <Q(f)) Hf(toa---atg(f),l)

Then Tmg,(X) := (Tmg(X),IT) is an Q-algebra, called the term algebra
generated by X. It has the following property. For any Q-algebra 2( and any
map v: X — A there is exactly one homomorphism ¥: Tmg,(X) — 2 such
that v [ X = v. This will be restated in Proposition 1.6.

Definition 1.5 Let 2 be an Q-algebra and X C A. We say that X generates
A if A is the smallest subset which contains X and which is closed under all
functions f2. If|X| = k we say that 2 is k—generated. Let X be a class of Q—
algebras and AU € K. We say that U is freely generated by X in X if for every
B € K and maps v: X — B there is exactly one homomorphism v: 2 — B
such that v | X = v. If |X| = x we say that U is freely k—generated in X.

Proposition 1.6 Let Q be a signature, and let X be disjoint from F. Then the
term algebra over X, Tmy(X), is freely generated by X in the class of all
Q-—algebras.

The following is left as an exercise. It is the justification for writing §t 4 (k)
for the (up to isomorphism unique) freely k—generated algebra of X. In vari-
eties such an algebra always exists.

Proposition 1.7 Let X be a class of Q—algebras and x a cardinal number. If
A and B are both freely k—generated in X they are isomorphic.

Maps of the form 6 : X — Tmg (X), as well as their homomorphic extensions
are called substitutions. If 7 is a term over X, we also write o(¢) in place of
G (). Another notation, frequently employed in this book, is as follows. Given
terms s;, i < n, we write [s;/x;: i < n|t in place of (), where o is defined as
follows.

(1.7) o(y) = {si ify=x,

y else.

(Most authors write #[s; /x;: i < n], but this notation will cause confusion with
other notation that we use.)

Terms induce term functions on a given Q-algebra 2. Let 7 be a term with
variables x;, i < n. (None of these variables has to occur in the term.) Then
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%1 A" — A is defined inductively as follows (with @ = (a, : i < Q(f))).

(1.8) xHd) =a,

1

(f (2, --- atg(f)_l))m(d) = (@), atggzl(_f)_1(5))

We denote by Clo,(2l) the set of n—ary term functions on 2(. This set is also
called the clone of n—ary term functions of 2. A polynomial of 2 is a
term function over an algebra that is like 2 but additionally has a constant
for each element of A. (So, we form the constant expansion of the signature
with every a € A. Moreover, a (more exactly, a()) shall have value a in A.)
The clone of n—ary term functions of this algebra is denoted by Pol, (). For
example, ((x,+x,)-x,) is a term and denotes a binary term function in an
algebra for the signature containing only - and +. However, (24 (x,-x,)) isa
polynomial but not a term. Suppose that we add a constant 1 to the signature,
with denotation 1 in the natural numbers. Then (2+ (x-x,)) is still not a term
of the expanded language (it lacks the symbol 2), but the associated function
actually is a term function, since it is identical with the function induced by
the term ((141) + (x,-x,))-

Definition 1.8 Let A = (A, {f*: f € F}) and B = (B,{f®: f € F}) be Q-
algebras and h: A — B. h is called a homomorphism if for every f € F and
every Q(f)—tuple ¥ € A2) we have

(1.9) h(fA @) = 2 (h(xg) h(x,), - hlxgqpy )

We write h: A — B if h is a homomorphism from 2 to B. Further, we write
h: A — B if his a surjective homomorphism and h: A ~— B if h is an injec-
tive homomorphism. h is an isomorphism if h is injective as well as surjective.
B is called isomorphic to 2, in symbols U = B if there is an isomorphism
from A to B. If A = B we call h an endomorphism of U, if h is additionally
bijective then h is called an automorphism of 4.

If h: A — B is an isomorphism from 2 to %8 then 2~': B — A is an isomor-
phism from ‘B to .

Definition 1.9 Ler A be an Q-algebra and © a binary relation on A. O is
called a congruence relation on 2L if © is an equivalence relation and for all
f €F and all %,5 € A%) we have:

(1.10)  Ifx;®y, for all i < Q(f) then f* (%) © f2(3).
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We also write X ® ¥ in place of ‘x; @y, for all i < Q(f)’. If ® is an equivalence
relation put

(1.11) [x]®:={y:xOy}

We call [x]® the equivalence class of x. Then for all x and y we have ei-
ther [x]® = [y]® or [x|®@N[y]® = @. Further, we always have x € [x]®. If ®
additionally is a congruence relation then the following holds: if y; € [x,]®
for all i < Q(f) then f2(¥) € [f*(¥)]®. Therefore the following definition is
independent of representatives.

(1.12)  [fM6(x,]e, (10, g )1 1©) = ()]0

Namely, let y, € [x,]©, ... Yao(r)-1 € [xQ(f)—l]@' Theny; ®x; for all i < Q(f).
Then because of (1.10) we immediately have f#(¥) ® f*(%). This simply
means f2(y) € [f%(¥)]©. Put

(1.13) A/O:={[x]®@:xe€ A}

(1.14)  A/0:=(A/0,{[fM®: feF})

We call (/0@ the factorization of 2 by @. The map hg: x > [x]® is easily

proved to be a homomorphism.
Conversely, let #: A — B be a homomorphism. Then put

(1.15) ker(h) := {(x,y) € A% h(x) = h(y)}

ker(h) is a congruence relation on 2(. Furthermore, 2(/ker(h) is isomorphic
to 9B if 4 is surjective. A set B C A is closed under f € F if for all ¥ € B(/)
we have f3(¥) € B.

Definition 1.10 Let (A,{f® : f € F}) be an Q-algebra and B C A closed
under all f € F. Put f® := f% | B, The pair (B,{f® : f € F}) is called
a subalgebra of .

The product of the algebras 2, i € I, is defined as follows. The carrier set is
the set of functions a: I — [J,¢;A; such that ¢(i) € A; for all i € 1. Call this
set P. For an n—ary function symbol f put

(1.16) (e, a,_,)()
= (M (0(D), S (0 (D), Sty ()
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The resulting algebra is denoted by [];c;%l;. One also defines the product
2A x 9B in the following way. The carrier set is A X B and for an n—ary function
symbol f we put

(L17) B ({ag,by)s---5(a,_15b, 1))
= (fHag,--ra,_ 1), [P (bys---1b, 1))

The algebra 2 x B is isomorphic to the algebra [],;.,2l;, where 2, := %,
A, :=B. However, the two algebras are not identical. (Can you verify this?)

A particularly important concept is that of a variety or equationally defin-
able class of algebras.

Definition 1.11 Let Q be a signature. A class of Q—algebras is called a va-
riety if it is closed under isomorphic copies, subalgebras, homomorphic im-
ages, and (possibly infinite) products.

LetV :={x;:i € w} be the set of variables. An equation is a pair (s,7) of Q—
terms (involving variables from V). We introduce a formal symbol ‘=" and
write s = ¢ for this pair. An algebra 2 satisfies the equation s = ¢ iff for all
maps v:V — A, V(s) =(¢). We then write A F s =17. A class K of Q-algebras
satisfies this equation if every algebra of X satisfies it. We write KX F s =1.

Proposition 1.12 The following holds for all classes X of Q—algebras.
O XKEs=s.
@ IfKEs=tthenXKEt=s.
@ IfXEs=tit=uthen XEs=u.
@ IfKEs; =t foralli < Q(f) then K E f(5) = f(7).

® IfKEs=tand 6:V — Tmy(V) is a substitution, then X F c(s) =

o ().

The verification of this is routine. It follows from the first three facts that
equality is an equivalence relation on the algebra Tm(V'), and together with
the fourth that the set of equations valid in X form a congruence on Tm, (V).
There is a bit more we can say. Call a congruence ® on 2 fully invariant if for
all endomorphisms /: A — 2A: if x @ y then ~(x) ® h(y). The next theorem fol-
lows immediately once we observe that the endomorphisms of Tm, (V) are
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exactly the substitution maps. To this end, let #: Tm, (V) = Tm(V). Then
h is uniquely determined by 4 [ V, since Tm, (V') is freely generated by V. It
is easily computed that % is the substitution defined by & [ V. Moreover, ev-
ery map v: V — Tm, (V) induces a homomorphism v: Tmg, (V) = Tmg(V),
which is unique. Now write Eq(X) := {(s,t) : KX F s =1}.

Corollary 1.13 Let X be a class of Q-algebras. Then Eq(X) is a fully in-
variant congruence on Tmg (V).

Let E be a set of equations. Then put
(1.18) Alg(E) :={: forall (s,r) cE:AFs=1}

This is a class of Q-algebras. Classes of Q-algebras that have the form
Alg(E) for some E are called equationally definable.

Proposition 1.14 Let E be a set of equations. Then Alg(E) is a variety.
We state without proof the following result.

Theorem 1.15 (Birkhoff) Every variety is an equationally definable class.
Furthermore, there is a biunique correspondence between varieties and fully
invariant congruences on the algebra Tmg(X,).

The idea for the proof is as follows. It can be shown that every variety has free
algebras. For every cardinal number K, §t,.(k) exists. Moreover, a variety is
uniquely characterized by Ft,.(X,). In fact, every algebra is a subalgebra of
a direct image of some product of Ft,(X ). Thus, we need to investigate
the equations that hold in the latter algebra. The other algebras will satisfy
these equations, too. The free algebra is the image of Tm(V) under the
map x; — i. The induced congruence is fully invariant, by the freeness of
Stq(X). Hence, this congruence simply is the set of equations valid in the
free algebra, hence in the whole variety. Finally, if E is a set of equations, we
write EFt = uif AF ¢t = u for all A € Alg(E).

Theorem 1.16 (Birkhoff) E Ft = u ifft = u can be derived from E by means
of the rules given in Proposition 1.12.

The notion of an algebra can be extended into two directions, both of
which shall be relevant for us. The first is the concept of a many—sorted alge-
bra.
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Definition 1.17 A sorted signature is a triple (F,8,Q), where F and 8 are
sets, the set of function symbols and of sorts, respectively, and Q: F — 8§
a function assigning to each element of F its so—called signature. We shall
denote the signature by the letter Q, as in the unsorted case.

So, the signature of a function is a (nonempty) sequence of sorts. The last
member of that sequence tells us what sort the result has, while the others tell
us what sort the individual arguments of that function symbol have.

Definition 1.18 A (sorted) Q-algebra is a pair A = ({As : 0 € 8§},11) su
that for every o € 8 Ay is a set and for every f € F such that Q(f) =
i<n+1)

<

(1.19)  TI(f): Ag X Ag, XX Ag

n—1

— Ag,

If B = ({Bs : 0 € 8},X) is another Q—algebra, a (sorted) homomorphism
Jrom A to B is a set {hs: Ac — B : 0 € 8} of functions such that for each
f € F with signature (c;:i <n+1):

(1.20) he, (fm(%a cealy_y)) = f%(hoo(ao)a -rhe_ (a,_1))
A many-sorted algebra is an Q—algebra of some signature Q.

Evidently, if § = {o} for some o, then the notions coincide (modulo trivial
adaptations) with those of unsorted algebras. Terms are defined as before, but
now they are sorted. First, for each sort we assume a countably infinite set
Vs of variables. Moreover, V; NV, = & whenever ¢ # 7. Now, every term is
given a unique sort in the following way.

@ If x € Vg, then x has sort ©.

@ f(ty,---,t,_,) has sort 0, if Q(f) = (0, :i <n+1) and ¢, has sort o,
for all i < n.

The set of terms over V is denoted by Tmg(V). This can be turned into a
sorted Q—algebra; simply let Tm, (V)4 be the set of terms of sort 6. Again,
given a map v that assigns to a variable of sort ¢ an element of A, there is a
unique homomorphism v from the Q—algebra of terms into 2. If ¢ has sort o,
then v(r) € As. A sorted equation is a pair (s,7), where s and ¢ are of equal
sort. We denote this pair by s = t. We write 2 F s = ¢ if for all maps v into
A, ¥(s) = v(t). The Birkhoff Theorems have direct analogues for the many
sorted algebras, and can be proved in the same way.
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Sorted algebras are one way of introducing partiality. To be able to com-
pare the two approaches, we first have to introduce partial algebras. We shall
now return to the unsorted notions, although it is possible — even though not
really desirable — to introduce partial many—sorted algebras as well.

Definition 1.19 Let Q be an unsorted signature. A partial Q—algebra is a
pair (A, I1), where A is a set and for each f € F: I1(f) is a partial function
from A2 10 A.

The definitions of canonical terms split into different notions in the partial
case.

Definition 1.20 Let 1 and B be partial Q—algebras, and h: A — B a map.
h is a weak homomorphism from 2 to B if for every @ € A%) we have
h(f2(a@)) = f®(h(@)) if both sides are defined. h is a homomorphism if it is
a weak homomorphism and for every @ € A2) if h(f*(&)) is defined then so
is fB(h(a)). Finally, h is a strong homomorphism if it is a homomorphism
and h(f2(ad)) is defined iff f2(h(a)) is. A is a strong subalgebra of B if
A C B and the identity map is a strong homomorphism.

Definition 1.21 An equivalence relation ® on A is called a weak congruence
of U if for every f € F and every d,¢ € A%) ifd © ¢ and f*(a@), f2(¢) are
both defined, then f*(d@) ® f*(2). © is strong if in addition f*(d) is defined
iff f2(@) is.

It can be shown that the equivalence relation induced by a weak (strong)
homomorphism is a weak (strong) congruence, and that every weak (strong)
congruence defines a surjective weak (strong) homomorphism.

Let v: V — A be a function, t = f(sO,...,sQ(f)_l) a term. Then v(¢) is
defined iff (a) ¥(s;) is defined for every i < Q(f) and (b) f* is defined on
(v(s;) : i < n). Now, we write (A,v) F" s =1 if ¥(s) = 9(¢) in case both are
defined and equal; (2(,v) E* s =t if ¥(s) is defined iff ¥(¢) is and if one is
defined the two are equal. An equation s =1 is said to hold in 2 in the weak
(strong) sense, if (A, v) EY s =1 ((A,v) E* s =1¢) for all v: V — A. Proposi-
tion 1.12 holds with respect to F* but not with respect to F". Also, algebras
satisfying an equation in the strong sense are closed under products, strong
homomorphic images and under strong subalgebras.

The relation between classes of algebras and sets of equations is called
a Galois correspondence. It is useful to know a few facts about such cor-
respondences. Let A, B be sets and R C A X B (A and B may in fact also be
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classes). The triple (A,B,R) is called a context. Now define the following
operators:

(121) T pA) = @(B): O {yeB: forallx€ O: xRy}
(122)  +: @(B) = @(A): P> {x€A: forally € P: xRy}
One calls OT the intent of O C A and P! the extent of P C B.

Theorem 1.22 Let (A,B,R) be a context. Then the following holds for all
0,0* C A and all P,P* CB.

® OCPifOTDP.

@ IfO C O* then O' D O*".
® IfP C P* then P* D P*.
@ 0Con.

® PC P,

Proof. Notice that if (A,B,R) is a context, (B,A,R™) also is a context, and
so we only need to show @, @ and @. ®. O C P* iff every x € O stands in
relation R to every member of P iff P C OT. @.If O C 0* and y € O*", then
for every x € O*: x Ry. This means that for every x € O: x R y, which is the
same as y € OT. @. Notice that 0T D O" by @ implies O C oM. O

Definition 1.23 Let M be a set and H : o(M) — g2(M) a function. H is called
a closure operator on M if for all X,Y C M the following holds.

® X CH(X).
@ IfX CY then H(X) C H(Y).
@ H(X)=H(H(X)).

A set X is called closed if X = H(X).

Proposition 1.24 Let (A, B,R) be a context. Then O — O™ and P+ P\T are
closure operators on A and B, respectively. The closed sets are the sets of the
form P* for the first, and O for the second operator:
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Proof. We have O C O™, from which OT D O™'. On the other hand, OT C
O™, so that we get 0" = O™, Likewise, P* = P is shown. The claims
now follow easily. O

Definition 1.25 Let (A,B,R) be a context. A pair (O,P) € ¢(A) x (B) is
called a concept if O = P* and P = O'.

Theorem 1.26 Let (A,B,R) be a context. The concepts are exactly the pairs
of the form (P*,P*"), P C B, or, alternatively, the pairs of the form (O™, 0"),
0 CA.

As a particular application we look again at the connection between classes of
Q-algebras and sets of equations over Q—terms. (It suffices to take the set of
Q-algebras of size < k for a suitable x to make this work.) Let Alg, denote
the class of Q-algebras, Eq, the set of equations. The triple (Alg,Eqq,F) is
a context, and the map T is nothing but Eq and the map + nothing but Alg. The
classes Alg(E) are the equationally definable classes, Eq(X) the equations
valid in K. Concepts are pairs (K, E) such that X = Alg(E) and E = Eq(X).
Often we shall deal with structures in which there are also relations in
addition to functions. The definitions, insofar as they still make sense, are
carried over analogously. However, the notation becomes more clumsy.

Definition 1.27 Let F and G be disjoint sets and Q: F — ® as well as
E: G — o functions. A pair U = (A,T) is called an (Q, E)—structure if for
all f € F 3(f) is an Q(f)—ary function on A and for each g € G J(g) is a
E(g)—ary relation on A. Q is called the functional signature, = the relational
signature of 2.

Whenever we can afford it we shall drop the qualification ‘(Q,E)’ and sim-
ply talk of ‘structures’. If (A,J) is an (Q,ZE)-structure, then (A,J [ F) is an
Q-algebra. An Q-algebra can be thought of in a natural way as a (Q, &)—
structure, where @ is the empty relational signature. We use a convention
similar to that of algebras. Furthermore, we denote relations by upper case
Roman letters such as R, S and soon. Let A = (A, {f*: f € F},{R* :R€ G})
and B = (B, {f? : f € F},{R® : R € G}) be structures of the same signature.
A map h: A — B is called an isomorphism from 2 to B, if 4 is bijective and
for all f € F and all ¥ € A%) we have

(1.23)  h(f2(®) = f2(h(®))
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as well as for all R € G and all ¥ € A=(R)

(124 R*(®) &  RP(h(xy),h(x)),- -, hlezge )

Exercise 1. Since y — {y} is an embedding of x into &(x), we have |x| <
|@2(x)|. Show that |g@(x)| > |x| for every set. Hint. Let f : x — (x) be any
function. Look at the set {y: y & f(y)} C x. Show that it is not in im(f).

Exercise 2. Let f: M — N and g: N — P. Show that if go f is surjective, g
is surjective, and that if go f is injective, f is injective. Give in each case an
example that the converse fails.

Exercise 3. In set theory, one writes M for the set of functions from N to M.
Show that if [N| = n and |M| = m, then |YM| = m". Deduce that [N M| = |M"|.
Can you find a bijection between these sets?

Exercise 4. Show that for relations R,R' CM x N, S,5' C N x P we have
(125a) (RUR)oS= (RoS)U(R'oS)

(125b)  Ro(SUS')=(RoS)U(RoS)

Show by giving an example that analogous laws for N do not hold.

Exercise 5. Let 2 and B be Q-algebras for some signature 2. Show that if
h: A — B is a surjective homomorphism then B is isomorphic to 2(/® with
x Oy iff h(x) = h(y).

Exercise 6. Show that every Q-algebra 2 is the homomorphic image of a
term algebra. Hint. Take X to be the set underlying 2.

Exercise 7. Show that 2l x %8 is isomorphic to ], (0,1} A, where 4, = 2,
2, =B. Show also that (2 x 9B) x € is isomorphic to A x (B x ).

Exercise 8. Prove Proposition 1.7.

2. Semigroups and Strings

In formal language theory, languages are sets of strings over some alpha-
bet. We assume throughout that an alphabet is a finite, nonempty set, usually
called A. It has no further structure (but see Section 1.3), it only defines the
material of primitive letters. We do not make any further assumptions on the
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size of A. The Latin alphabet consists of 26 letters, which actually exist in two
variants (upper and lower case), and we also use a few punctuation marks and
symbols as well as the blank. On the other hand, the Chinese ‘alphabet’ con-
sists of several thousand letters!

Strings are very fundamental structures. Without a proper understanding
of their workings one could not read this book, for example. A string over A is
nothing but the result of successively placing elements of A after each other. It
is not necessary to always use a fresh letter. If, for example, A = {a,b, c,d},
then abb, bac, caaba are strings over A. We agree to use typewriter font
to mark actual symbols (= pieces of ink), while letters in different font are
only proxy for letters (technically, they are variables for letters). Strings are
denoted by a vector arrow, for example w, X, ¥ and so on, to distinguish them
from individual letters. Since paper is of bounded length, strings are not really
written down in a continuous line, but rather in several lines, and on several
pieces of paper, depending on need. The way a string is cut up into lines
and pages is actually immaterial for its abstract constitution (unless we speak
of paragraphs and similar textual divisions). We wish to abstract from these
details. Therefore we define strings formally as follows.

Definition 1.28 Let A be a set. A string over A is a function X: n — A for
some natural number n. n is called the length of X and is denoted by |X|. X(i),
i < n, is called the ith segment or the ith letter of X. The unique string of
length 0 is denoted by €. If X: m — A and ¥: n — A are strings over A then
X"y denotes the unique string of length m+ n for which the following holds:

x(Jj) ifj<m,
Y(j—m) else.

(1.26)  (FV)()) = {

We often write X3 in place of X~y. In connection with this definition the set A
is called the alphabet, an element of A is also referred to as a letter. Unless
stated otherwise, A is finite and nonempty.

So, a string may also be written using simple concatenation. Hence we have
abc"baca = abcbaca. Note that there no blank is inserted between the two
strings; for the blank is a letter. We denote it by 0. Two words of a language
are usually separated by a blank possibly using additional punctuation marks.
That the blank is a symbol is felt more clearly when we use a typewriter. If
we want to have a blank, we need to press down a key in order to get it. For
purely formal reasons we have added the empty string to the set of strings.
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It is not visible (unlike the blank). Hence, we need a special symbol for it,
which is €, in some other books also A. We have

(1.27) X e=¢eg X=X

We say, the empty string is the unit with respect to concatenation. For any
triple of strings X, ¥ and 7 we have

(1.28) () =@"y)"7

We therefore say that concatenation, ", is associative. More on that below.
We define the notation X' by induction on i.

=0

X i=¢
(1.29) Sitl _ ine
Furthermore, we define [];_, X; as follows.
(130  J%=e IT =3 %
i<0 i<nt1 i<n

Note that the letter a is technically distinct from the string X: 1 — A: 0+~ a.
They are nevertheless written in the same way, namely a. If X is a string over
A and A C B, then X is a string over B. The set of all strings over A is denoted
by A*.

Let < be a linear order on A. We define the so—called lexicographical
ordering (with respect to <) as follows. Put X <, y if there exist i, V and w
as well as @ and b such that X = ##~a"V, y = ti”b"w and a < b. Notice that
X <, ¥ can obtain even if X is longer than y. Another important ordering is the
following one. Let u(a) := k if a is the kth symbol of A in the ordering <.
Further, put n:= [A|. For ¥ = xyx; ---x, | we associate the following number.

p—1 )
(131 Z® =Y (ulx,)+ 1) (n+1)P7!

i=0
Now put X <, ¥ if and only if Z(X) < Z(¥). This ordering we call the nu-
merical ordering. Notice that both orderings depend on the choice of <. We
shall illustrate these orderings with A := {a,b} and a < b. Then the numerical
ordering is as follows.

v |

)
Z® |0

a b aa ab ba bb aaa aab aba
1 2 4 5 7 8 13 14 16
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/g\
a b
aa ab ba bb

Figure 1. The Tree A*

This ordering is linear. The map sending i € @ to the ith element in this se-
quence is known as the dyadic representation of the numbers. In the dyadic
representation, 0 is represented by the empty string, 1 by a, 2 by b, 3 by aa
and so on. (Actually, if one wants to avoid using the empty string here, one
may start with a instead.)

The lexicographical ordering is somewhat more complex. We illustrate it
for words with at most four letters.

g, a, aa, aaa, aaaa, aaab,
aab, aaba, aabb, ab, aba, abaa,
abab, abb, abba, abbb, b, ba,

baa, baaa, baab, bab, baba, babb,
bb, bba, bbaa, bbab, bbb, bbba,
bbbb

In the lexicographical as well as the numerical ordering € is the smallest
element. Now look at the ordered tree based on the set A*. It is a tree in which
every node is n—ary branching (cf. Section 1.4). Then the lexicographical
ordering corresponds to the linearization obtained by depth—first search in this
tree, while the numerical ordering corresponds to the linearization obtained
by breadth—first search (see Section 2.2).

A monoid is a triple 9T = (M, 1,0) where o is a binary operation on M
and 1 an element such that for all x,y,z € M the following holds.

(1.32a) xol=x
(1.32b) lox=x
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(1.32¢)  xo(yoz) = (xoy)oz

A monoid is therefore an algebra with signature Q: 1+ 0,- — 2, which in
addition satisfies the above equations. An example is the algebra (4,0, max)
(recall that 4 = {0,1,2,3}), or (®,0,+).

Proposition 1.29 Ler 3(A) := (A*,€,-). Then 3(A) is a monoid.

The function which assigns to each string its length is a homomorphism from
3(A) onto the monoid (®,0,+). It is surjective, since A is always assumed to
be nonempty. 3(A) are special monoids:

Proposition 1.30 The monoid 3(A) is freely generated by A.

Proof. Let 1 = (N, 1,0) be a monoid and v: A — N an arbitrary map. Then
we define a map v as follows.

v(e) :

v(X"a) :

1

V(X) ov(a)

(1.33)

This map is surely well defined. For the defining clauses are mutually exclu-
sive. Now we must show that this map is a homomorphism. To this end, let X
and y be words. We shall show that

(1.34) V(X7Y) =9(X) o V()
This will be established by induction on the length of ¥. If it is 0, the claim

is evidently true. For we have ¥ = €, and hence 7(X"y) = v(X) = ¥(X) o1 =
V(X) ov(¥). Now let |[¥| > 0. Then ¥ = w"a for some a € A.

(1.35) = (

Il
<l <l
~—~
=i
SN—
(e]
<l
—
=<y
SN—

This shows the claim. O

The set A is the only set that generates 3(A) freely. For a letter cannot
be produced from anything longer than a letter. The empty string is always
dispensable, since it occurs anyway in the signature. Hence any generating set
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must contain A, and since A generates A* it is the only minimal set that does
so. A non—-minimal generating set can never freely generate a monoid. For
example, let X = {a,b,bba}. X generates 3(A), but it is not minimal. Hence
it does not generate 3(A) freely. For example, let v: a+ a,b — b,bba > a.
Then there is no homomorphism that extends v to A*. For then on the one
hand v(bba) = a, on the other ¥(bba) = v(b)"v(b)"v(a) = bba.

The fact that A generates 3(A) freely has various noteworthy consequences.
First, a homomorphism from 3(A) into an arbitrary monoid need only be
fixed on A in order to be defined. Moreover, any such map can be extended
to a homomorphism into the target monoid. As a particular application we
get that every map v: A — B* can be extended to a homomorphism from
3(A) to 3(B). Furthermore, we get the following result, which shows that
the monoids 3(A) are up to isomorphism the only freely generated monoids
(allowing infinite alphabets). They reader may note that the proof works for
algebras of any signature.

Theorem 1.31 Let 9 = (M, 0,1) and N = (N, o, 1) be freely generated mo-
noids. Then either © or @ obtains.

@ There is an injective homomorphism i: 9 »— N and a surjective ho-
momorphism h: N — M such that hoi = 1,,.

@ There exists an injective homomorphism i: N »— 9N and a surjective
homomorphism h: 9 — N such that hoi = 1.

Proof. Let 9 be freely generated by X, 21 freely generated by Y. Then either
|X| < |Y|or |Y]| < |X]|. Without loss of generality we assume the first. Then
there is an injective map p: X »— Y and a surjective map ¢: ¥ — X such that
gop = 1y. Since X generates 9N freely, there is a homomorphism p: 91 — N
with p | X = p. Likewise, there is a homomorphism g: 9T — 9 such that
q 'Y = g, since N is freely generated by Y. The restriction of go p to X is
the identity. (For if x € X then go p(x) = g(p(x)) = ¢(p(x)) = x.) Since X
freely generates 91, there is only one homomorphism which extends 1, on
90 and this is the identity. Hence gop = 1,,. It immediately follows that g is
surjective and P injective. Hence @ obtains. If |Y| < |X| holds, @ is shown in
the same way. O

Theorem 1.32 In 3(A) the following cancellation laws hold.

@ i =", then ¥ =7
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@ [fi"X ="y, theni=7.

X! is defined as follows.

T

(1.36) 1= 1 =1]x-1-

i<n i<n
%7 is called the mirror string of X. It is easy to see that (X7 )7 = ¥. The reader
is asked to convince himself that the map X — ¥! is not a homomorphism if
|A] > 1.

Definition 1.33 Ler X,y € A*. Then X is a prefix of ¥ if y = X" for some
ii € A*. X is called a postfix or suffix of ¥ if y = i"X for some ii € A*. X is
called a substring of ¥ if y = i~ X"V for some i,V € A*.

It is easy to see that X is a prefix of ¥ exactly if ¥7 is a postfix of ' . Notice that
a given string can have several occurrences in another string. For example,
aa occurs four times is aaaaa. The occurrences are in addition not always
disjoint. An occurrence of X in y can be defined in several ways. We may for
example assign positions to each letters. In a string xx, ...x,_; the numbers
< n+1 are called positions. The positions are actually thought of as the
spaces between the letters. The ith letter, x;, occurs between the position i and
the position i+ 1. The substring []; j<kX; oceurs between the positions i and
k. The reason for doing it this way is that it allows us to define occurrences
of the empty string as well. For each i, there is an occurrence of € between
position i and position i. We may interpret positions as time points in between
which certain events take place, here the utterance of a given sound. Another
definition of an occurrence is via the context in which the substring occurs.

Definition 1.34 A context is a pair C = (y,7) of strings. The substitution of
X into C, in symbols C(X), is defined to be the string y~X"Z. We say that X
occurs in Vin the context C if V = C(X). Every occurrence of X in a string v
is uniquely defined by its context. We call C a substring occurrence of X in V.

Actually, given X and V, only one half of the context defines the other. How-
ever, as will become clear, contexts defined in this way allow for rather con-
cise statements of facts in many cases. Now consider two substring occur-
rences C, D in a given word 7. Then there are various ways in which the
substrings may be related with respect to each other.
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Definition 1.35 Let C = (ii,,ii,) and D = (V,,V,) be occurrences in 7 of the
strings X and y, respectively. We say that C precedes D if ii,”X is a prefix of
V,. C and D overlap if C does not precede D and D does not precede C. C is
contained in D if V, is a prefix of ii, and V, is a suffix of il,.

Notice that if X is a substring of ¥ then every occurrence of ¥ contains an oc-
currence of X; but not every occurrence of X is contained in a given occurrence
of y.

Definition 1.36 A (string) language over the alphabet A is a subset of A*.

This definition admits that L = & and that L = A*. Moreover, € € L also
may occur. The admission of € is often done for technical reasons (like the
introduction of a zero).

Theorem 1.37 Suppose A is not empty, and |A| < X ;. Then there are exactly
2%0 languages.

Proof. This is a standard counting argument. We establish that |[A*| = X,
The claim then follows since there are as many languages as there are subsets
of X, namely 2%0. If A is finite, we can enumerate A* by enumerating the
strings of length O, the strings of length 1, the strings of length 2, and so
on. If A is infinite, we have to use cardinal arithmetic: the set of strings of
length k of any finite k is countable, and A* is therefore the countable union
of countable sets, again countable. O

One can prove the previous result directly using the following argument.
(The argument works even when C is countably infinite.)

Theorem 1.38 Letr C = {c, : i < p}, p > 2, be an arbitrary alphabet and
A ={a,b}. Further, let V be the homomorphic extension of v: c; — a'”b. The
map S+ V[S]: @(C*) — @(A*) defined by V (S) =V|[S] is a bijection between
#(C*) and those languages which are contained in the direct image of V.

The proof is an exercise. The set of all languages over A is closed under N,
U, and —, the relative complement with respect to A*. Furthermore, we can
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define the following operations on languages.

(1.37a) L-M:={X"y:Xe€LyyeM}
(1.37b) LY :={¢}

(137¢c) L'l.=1".L

(1.37d) L=Jr

new
(1.37e) L= J r

O<new
(1.37)  L/M:={yeA*:(IXxeM)(y X€l)}
(1.37g) M\L:={jeA*: (IxeM)X"yeL)}

* is called the Kleene star. For example, L/A* is the set of all strings which
can be extended to members of L; this is exactly the set of prefixes of mem-
bers of L. We call this set the prefix closure of L, in symbols L”. Analogously,
LS := A*\L is the suffix or postfix closure of L. It follows that (L)S is noth-
ing but the substring closure of L.

In what is to follow, we shall often encounter string languages with a spe-
cial distinguished symbol, the blank, typically written O. Then we use the
abbreviation

(1.38) Xoy:=x"0"y LoM :={Xoy:X€ LyeM}

Let L be a language over A, C = (¥,¥) a context and # a string. We say that
C accepts i in L, and write ii 4, C, if C(ii) € L. The triple (A*,A* X A*,H,) is
a context in the sense of the previous section. Let M C A* and P C A* x A*.
Then denote by C, (M) the set of all C which accept all strings from M in
L (intent); and denote by Z, (P) the set of all strings which are accepted by
all contexts from P in L (extent). We call M (L-)closed if M = Z, (C, (M)).
The closed sets form the so—called distribution classes of strings in a lan-
guage. Z, (C,(M)) is called the Sestier—closure of M and the map S, : M —
Z,(C;(M)) the Sestier-operator. From Proposition 1.24 we immediately get
this result.

Proposition 1.39 The Sestier—operator is a closure operator.

For various reasons, identifying terms with strings that represent them is
a dangerous affair. As is well-known, conventions for writing down terms
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can be misleading, since they might be ambiguous. Therefore we defined the
term as an entity in itself. The string by which we denote the term is only as
a representative of that term.

Definition 1.40 Let Q be a signature. A representation of terms (by means
of strings over A) is a relation R C Tmg, XA* such that for each term t there
exists a string X with (t,X) € R. X is called a representative or representing
string of t with respect to R. X is called unambiguous if from (t,X), (u,X) € R
it follows that t = u. R is called unique or uniquely readable if every X € A*

is unambiguous.

R is uniquely readable iff it is an injective function from Tmg to A* (and
therefore its converse a partial injective function). We leave it to the reader
to verify that the representation defined in the previous section is actually
uniquely readable. This is not self evident. It could be that a term possesses
several representing strings. Our usual way of denoting terms is in fact not
uniquely readable. For example, one writes 2 + 3 4 4 even though this could
be arepresentative of the term +(+(2,3),4) or of the term +(2,+(3,4)). This
hardly matters, since the two terms denote the same number, but nevertheless
they are different terms.

There are many more conventions for writing down terms. We give a few
examples. (a) A binary symbol is typically written in between its arguments
(this is called the infix notation). So, we do not write +(2,3) but (2+3). (b)
Outermost brackets may be omitted: (2+3) denotes the same term as 2+3.
(c) The multiplication sign binds stronger than +. So, the following strings all
denote the same term.

(1.39) (2+(3%5)) 2+(3%5) (2+3%5) 2+3x*5

In logic, it was customary to use dots in place of brackets. In this notation,
PAq .- -+.p means the same as the more common (pAq)-+p. The dots are placed
to the left or right (sometimes both) of the operation sign. Ambiguity is re-
solved by using more than one dot, for example *:’. (See (Curry, 1977) on this
notation.) Also, let o be a binary operation symbol, written in infix notation.
Suppose that £ defines a string for every term in the following way.

L(x) :=x x basic
(1.40) £(o(x,y)) :=£(x)oy y basic
L(o(x,1)) :=£(x) o (£(1)) t complex
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If £(¢) represents ¢, we say that o is left—associative. If on the other hand p ()
represents the term ¢, o is said to be right-associative.

p(y) =x y basic
(1.41) p(o(x,y)) :=x0p(y) x basic
£(o(1,y)) = (p(t)) o p(y) t complex

Since the string (2+3) *5 represents a different term than 2+3*5 (and both
have a different value) the brackets cannot be omitted. That we can do with-
out brackets is an insight we owe to the Polish logician Jan Lukasiewicz. In
his notation, which is also called Polish Notation (PN), the function symbol
is always placed in front of its arguments. Alternatively, the function symbol
may be consistently placed behind its arguments (this is the so—called Re-
verse Polish Notation, RPN). There are some calculators (in addition to the
programming language FORTH) which have implemented RPN. In place of
the (optional) brackets there is a key called ‘enter’. It is needed to separate
two successive operands. For in RPN, the two arguments of a function follow
each other immediately. If nothing is put in between them, both the terms
+(13,5) and +(1,35) would both be written 135+. To prevent this, ‘enter’
is used to separate the first from the second input string. You therefore need
to enter into the computer 135+. (Here, the box is the usual way in
computer handbooks to turn a sequence into a ‘key’. In Chapter 3 we shall
deal again with the problem of writing down numbers.) Notice that in prac-
tice (i.e. as far as the tacit conventions go) the choice between Polish and
Reverse Polish Notation only affects the position of the function symbol, and
not the way in which arguments are placed with respect to each other. For
example, suppose there is a key for the exponential function. Then to

get the result of 23, you enter 23 on a machine using RPN and
23= on a machine using PN. Hence, the relative order between

base (2) and exponent (3) remains. (Notice incidentally the need for typing in
= or something else that indicates the end of the second operand in PN!) This
effect is also noted in natural languages: the subject precedes the object in
the overwhelming majority of languages irrespective of the place of the verb.
The mirror image of an VSO language is an SOV language, not OSV.

Now we shall show that Polish Notation is uniquely readable. Let F be a
set of symbols and Q a signature over F. Each symbol f € F is assigned an
arity Q(f). Next, we define a set of strings over F, which we assign to the
various terms of Tmg,. PN, is the smallest set M of strings over F for which
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the following holds.
Forall f € F andforall X, € M, i < Q(f):
X, ”A)_C'Q(f)—l EM.

(Notice the special case n = 0. Further, notice that no special treatment is
needed for variables, by the remarks of the preceding section.) This defines
the set PN, members of which are called well-formed strings. Next we
shall define which string represents which term. The string ‘f”, Q(f) =0,
represents the term ‘f”. If X; represents #;, i < Q(f), then f~X,"--- “569( -1
represents f(z,... slo( f)—l)‘ We shall now show that this relation is bijective.
(A different proof than the one used here can be found in Section 2.4, proof
of Theorem 2.61.) Here we use an important principle, namely induction over
the length of the string. The following is for example proved by induction on

@ No proper prefix of || is a well-formed string.

@ If X¥is a well-formed string then X has length at least 1 and the following
holds.

(a) If |X¥| = 1, then X = f for some f € F with Q(f) =0.

(b) If |X| > 1, then there are f and ¥ such that X = /"y, and ¥ is
the concatenation of exactly Q(f) many uniquely defined well-
formed strings.

The proof is as follows. Let 7 and u be terms represented by X. Let |¥| = 1.
Thent = u = f, for some f € F with Q(f) = 0. A proper prefix is the empty
string, which is clearly not well formed. Now for the induction step. Let X
have length at least 2. Then there is an f € F and a sequence Y, i < Q(f), of
well-formed strings such that

(1.42) X=f"y,"" --’“j)'g(f)_l
Therefore for each i < Q(f) there is a term u; represented by ¥,. By @, the

u, are uniquely determined by the ¥,;. Furthermore, the symbol f is uniquely
determined, too. Now let Z,, i < Q(f), be well-formed strings with

(143) .;C' = fAZOA st AZQ(f)il
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Then ¥, = Z,. For no proper prefix of Z is a well-formed term, and no proper
prefix of ¥, is a term. But they are prefixes of each other, so they cannot be
proper prefixes of each other, that is to say, they are equal. If Q(f) = 1, we are
done. Otherwise we carry on in the same way, establishing by the same argu-
ment that ¥, =Z,,, =7,, and so on. The fragmentation of the string in Q(f)
many well-formed strings is therefore unique. By inductive hypothesis, the
individual strings uniquely represent the terms u;. So, X uniquely represents
the term f(if). This shows @.

Finally, we shall establish @. Look again at the decomposition (1.42). If
ii is a well-formed prefix, then i # €. Hence ii = f"V for some ¥ which can
be decomposed into Q(f) many well-formed strings w,. As before we shall
argue that w;, = X, for every i < Q(f). Hence i = X, which shows that no
proper prefix of X is well-formed.

Notes on this section. Throughout this book the policy is to regard any lin-
guistic object as a string. Strings are considered the fundamental structures.
This in itself is no philosophical commitment, just a matter of convenience.
Moreover, when we refer to sentences qua material objects (signifiers) we
take them to be strings over the Latin alphabet. This again is only a matter
of convenience. Formal language theory very often treats words rather than
letters as units. If one does so, their composite nature has to be ignored. Yet,
while most arguments can still be performed (since a transducer can be used
to switch between these representations), some subtleties can get lost in this
abstraction. We should also point out that since alphabets must be finite, there
can be no infinite set of variables as a primitive set of letters, as is often as-
sumed in logic.

Exercise 9. Prove Theorem 1.38.

Exercise 10. (The ‘Typewriter Model’.) Fix an alphabet A. For each a € A as-
sume a unary symbol s,. Finally, let O be a zeroary symbol. This defines
the signature ¥. Define a map ¢ : Tmy, — A* as follows. 7(0) := &, and
7(s4(s)) := t(s)"a. Show that 7 is bijective. Further, show that there is no
term u over ¥ such that 7(u(x,y)) = 7(x)"7(y), and not even a term v(y)
such that 7(v.(y)) = ¥~ 7(y), for any given ¥ € A*. On the other hand there
does exist a wy such that 7(wy(x)) = 7(x)"¥ for any given y € A*.

Exercise 11. Put Z*(X) := Zi<p[.t(xi)np_i_1. Now put X <. ¥ if and only if
Z*(X) < Z*(¥). Show that <. is transitive and irreflexive, but not total.

Exercise 12. Show that the postfix relation is a partial ordering, likewise the
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prefix and the subword relation. Show that the subword relation is the transi-
tive closure of the union of the postfix relation with the prefix relation.

Exercise 13. Let F, X and {(,) } be three pairwise disjoint sets, Q a signa-
ture over F. We define the following function from Q—terms into strings over
FUXU{(O}:

+ .

X

(149 b o CH e

™)

X
(> )-1) =

(To be clear: we represent terms by the string that we have used in Section 1.1
already.) Prove the unique readability of this notation. Notice that this does
not already follow from the fact that we have chosen this notation to begin
with. (We might just have been mistaken ...)

Exercise 14. Give an exact upper bound on the number of prefixes (postfixes)
of a given string of length n, n a natural number. Also give a bound for the
number of subwords. What can you say about the exactness of these bounds
in individual cases?

Exercise 15. Let L,M C A*. Define

(1.45a) L//M:={y:(VXeM)(yX
(145b)  M\\L:={y: (VXxeM)(X"y

Show the following for all L,M,N C A*:

(146) MCI\N & L-MCN <« LCN//M

Exercise 16. Show that not all equivalences are valid if in place of \\ and //
we choose \ and /. Which implications remain valid, though?

3. Fundamentals of Linguistics

In this section we shall say some words about our conception of language
and introduce some linguistic terminology. Since we cannot define all the
linguistic terms we are using, this section is more or less meant to get those
readers acquainted with the basic linguistic terminology who wish to read the
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Semantical Stratum

Syntactical Stratum

Morphological Stratum

Phonological Stratum

Figure 2. The Strata of Language

book without going through an introduction into linguistics proper. (However,
it is recommended to have such a book at hand.)

A central tool in linguistics is that of postulating abstract units and hier-
archization. Language is thought to be more than a mere relation between
sounds and meanings. In between the two realms we find a rather rich ar-
chitecture that hardly exists in formal languages. This architecture is most
clearly articulated in (Harris, 1963) and also (Lamb, 1966). Even though lin-
guists might disagree with many details, this basic architecture is assumed
even in most current linguistic theories. We shall outline what we think is
minimal consensus. Language is organized in four levels or layers, which
are also called strata, see Figure 2: the phonological stratum, the morpho-
logical stratum, the syntactic stratum and the semantical stratum. Each
stratum possesses elementary units and rules of combination. The phonolog-
ical stratum and the morphological stratum are adjacent, the morphological
stratum and the syntactic stratum are adjacent, and the syntactic stratum and
the semantic stratum are adjacent. Adjacent strata are interconnected by so—
called rules of realization. On the phonological stratum we find the mere
representation of the utterance in its phonetic and phonological form. The el-
ementary units are the phones. An utterance is composed from phones (more
or less) by concatenation. The terms ‘phone’, ‘syllable’, ‘accent’ and ‘tone’
refer to this stratum. In the morphological stratum we find the elementary
signs of the language (see Section 3.1), which are called morphs. These are
defined to be the smallest units that carry meaning, although the definition of
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‘smallest’ may be difficult to give. They are different from words. The word
sees is a word, but it is the combination of two morphs, the root see and
the ending of the third person singular present, s. The units of the syntactical
stratum are called lexes, and they more or less are the same as words. The
units of the semantical stratum are the semes.

On each stratum we distinguish concrete from abstract units. The concrete
forms represent substance, while the abstract ones represent the form only.
While the relationship between these two levels is far from easy, we will sim-
plify the matter as follows. The abstract units are seen as sets of concrete ones.
The abstraction is done in such a way that the concrete member of each class
that appears in a construction is defined by its context, and that substitution of
another member results simply in a non well-formed unit (or else in a virtu-
ally identical one). This definition is deliberately vague; it is actually hard to
make precise. The interested reader is referred to the excellent (Harris, 1963)
for a thorough discussion of the structural method. We shall also return to this
question in Section 6.3. The abstract counterpart of a phone is a phoneme.
A phoneme is simply a set of phones. The sounds of a single language are a
subset of the entire space of human sounds, partitioned into phonemes. This
is to say that two distinct phonemes of a languages are disjoint. We shall deal
with the relationship between phones and phonemes in Section 6.3. We use
the following notation. We enclose phonemes in slashes while square brack-
ets are used to name phones. So, if [p] denotes a phone then /p/ is a phoneme
containing [p]. (Clearly, there are infinitely many sounds that may be called
[pl, but we pick just one of them.) An index is used to make clear which lan-
guage the phoneme belongs to. For phonemes are strictly language bound. It
makes little sense to compare phonemes across languages. Languages cut up
the sound continuum in a different way. For example, let [p] and [ph] be two
distinct phones, where [p] is a phone corresponding to the letter p in spit,
[p"] a phone corresponding to the letter p in put. Hindi distinguishes these
two phones as instantiations of different phonemes: /p/, N /p"/y = @. En-
glish does not. So, /p/r = /p"/ 5. Moreover, the context determines whether
what is written p is pronounced either as [p] or as [p"]. Actually, in English
there is no context in which both will occur. Finally, French does not even
have the sound [p"]. We give another example. The combination of the let-
ters ch is pronounced in two noticeably distinct ways in German. After [1], it
sounds like [¢], for example in Licht [lict], but after [a] it sounds like [x] as
in Nacht [naxt]; the choice between these two variants is conditioned solely
by the preceding vowel. It is therefore assumed that German does not possess
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Table 1. German Plural Morphs

singular | plural H ‘

Wagen | Wagen ‘car’
Auto Autos ‘car’
Bus Busse ‘bus’
Licht | Lichter || ‘light’
Vater Vater ‘father’
Nacht | Nachte ‘night’

two phonemes but only one, written ch, which is pronounced in these two
ways depending on the context.

In the same way one assumes that German has only one plural morpheme
even though there is a fair number of individual plural morphs. Table 1 shows
some possibilities of forming the plural in German. The plural can be ex-
pressed either by no change, or by adding an s—suffix, an e—suffix (the redu-
plication of s in Busse is a phonological effect and needs no accounting for
in the morphology), an er—suffix, or by umlaut or a combination of umlaut
together with an e—suffix. (Umlaut is another name for the following change
of vowels: a becomes &, o becomes 6, and u becomes 1. All other vowels
remain the same. Umlaut is triggered by certain inflectional or derivational
suffixes.) All these are clearly different morphs. But they belong to the same
morpheme. We therefore call them allomorphs of the plural morpheme. The
differentiation into strata allows to abstract away from irregularities. Moving
up one stratum, the different members of an abstraction class are not distin-
guished. The different plural morphs for example, are defined as sequences of
phonemes, not of phones. To decide which phone is to be inserted is the job
of the phonological stratum. Likewise, the word Lichter is ‘known’ to the
syntactical stratum only as a plural nominative noun. That it consists of the
root morph Licht together with the morph er rather than any other plural
morph is not visible in the syntactic stratum. The difference between con-
crete and abstract carries over in each stratum in the distinction between a
surface and a deep sub—stratum. The morphotaxis has at deep level only the
root Licht and the plural morpheme. At the surface, the latter gets realized
as er. The step from deep to surface can be quite complex. For example, the
plural Ndchte of Nacht is formed by changing the root vowel and adding
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the suffix e. (Which of the vowels of the root are subject to umlauted must
be determined by the phonological stratum. For example, the plural of Altar
‘altar’ is Altdre and not Altare or Altdre!) As we have already said, on
the so—called deep morphological (sub—)stratum we find only the combina-
tion of two morphemes, the morpheme Nacht and the plural morpheme. On
the syntactical stratum (deep or surface) nothing of that decomposition is vis-
ible. We have one lex(eme), Nachte. On the phonological stratum we find a
sequence of 5 (!) phonemes, which in writing correspond to n, &, ch, t and
e. This is the deep phonological representation. On the surface, we find the
allophone [¢] for the phoneme (written as) ch.

In Section 3.1 we shall propose an approach to language by means of
signs. This approach distinguishes only 3 dimensions: a sign has a realization,
it has a combinatorics and it has a meaning. While the meaning is uniquely
identifiable to belong to the semantic stratum, for the other two this is not
clear. The combinatorics may be seen as belonging to the syntactical stratum.
The realization of a sign, finally, could be spelled out either as a sequence of
phonemes, as a sequence of morphemes or as a sequence of lexemes. Each
of these choices is legitimate and yields interesting insights. However, notice
that choosing sequences of morphemes or lexemes is somewhat incomplete
since it further requires an additional algorithm that realizes these sequences
in writing or speaking.

Language is not only spoken, it is also written. However, one must distin-
guish between letters and sounds. The difference between them is foremost a
physical one. They use a different channel. A channel is a physical medium
in which the message is manifested. Language manifests itself first and fore-
most acoustically, even though a lot of communication is done in writing. We
principally learn a language by hearing and speaking it. Mastery of writing
is achieved only after we are fully fluent just speaking the language, even
though our views of language are to a large extent shaped by our writing cul-
ture (see (Coulmas, 2003) on that). (Sign languages form an exception that
will not be dealt with here.) Each channel allows — by its mere physical
properties — a different means of combination. A piece of paper is a two di-
mensional thing, and we are not forced to write down symbols linearly, as we
are with acoustical signals. Think for example of the fact that Chinese charac-
ters are composite entities which contain parts in them. These are combined
typically by juxtaposition, but characters are aligned vertically. Moreover,
the graphical composition internally to a sign is of no relevance for the ac-
tual sound that goes with it. To take another example, Hindi is written in a
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syllabic script, which is called Devanagari. Each simple consonantal letter
denotes a consonant plus a. Vowel letters may be added to these in case the
vowel is different from a. (There are special characters for word initial vow-
els.) Finally, to denote consonantal clusters, the consonantal characters are
melted into each other in a particular way. There is only a finite number of
consonantal clusters and the way the consonants are melted is fixed. The in-
dividual consonants are usually recognizable from the graphical complex. In
typesetting there is a similar phenomenon known as ligature. The graphemes
f and i melt into one when the first is before the second: ‘fi’. (Typewriters
have no ligature, for obvious reasons. So you get £i.) Also, in mathematics
the possibilities of the graphical channel are widely used. We use indices,
superscripts, subscripts, underlining, arrows and so on. Many diagrams are
therefore not so easy to linearize. (For example, X is spelled out as x hat,
X as x bar.) Sign languages also make use of the three—dimensional space,
which proves to require different perceptual skills than spoken language.
While the acoustic manifestation of language is in some sense essential
for human language, its written manifestation is typically secondary, not only
for the individual human being, as said above, but also from a cultural his-
toric point of view. The sounds of the language and the pronunciation of
words is something that comes into existence naturally, and they can hardly
be fixed or determined arbitrarily. Attempts to stop language from changing
are simply doomed to failure. Writing systems, on the other hand, are cul-
tural products, and subject to sometimes severe regimentation. The effect is
that writing systems show much greater variety across languages than sound
systems. The number of primitive letters varies between some two dozen and
a few thousand. This is so since some languages have letters for sounds (more
or less) like Finnish (English is a difficult case), others have letters for syl-
lables (Hindi, written in Devanagari) and yet others have letters for words
(Chinese). It may be objected that in Chinese a character always stands for a
syllable, but words may consist of several syllables, hence of several charac-
ters. Nevertheless, the difference with Devanagari is clear. The latter shows
you how the word sounds like, the former does not, unless you know charac-
ter by character how it is pronounced. If you were to introduce a new syllable
into Chinese you would have to create a new character, but not so in De-
vanagari. But all this has to be taken with care. Although French uses the
Latin alphabet it becomes quite similar to Chinese. You may still know how
to pronounce a word that you see written down, but from hearing it you are
left in the dark as to how to spell it. For example, the following words are
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pronounced completely alike: au, haut, eau, eaux; similarly vers, vert,
verre, verres.

In what is to follow, language will be written language. This is the current
practice in such books as this one; but it requires comment. We are using the
so—called Latin alphabet. It is used in almost all European countries, while
each country typically uses a different set of symbols. The difference is slight,
but needs accounting for (for example, when you wish to produce keyboards
or design fonts). Finnish, Hungarian and German, for example, use &, 6 and
i. The letter 8 is used in the German alphabet (but not in Switzerland). In
French, one uses ¢, also accents, and so on. The resource of single characters,
which we call letters, is for the European languages somewhere between 60
and 100. Besides each letter, both in upper and lower case, we also have
the punctuation marks and some extra symbols, not to forget the ubiquitous
blank. Notice, however, that not all languages have a blank (Chinese is a
case in point, and also the Romans did not use any blanks). On the other
hand, one blank is not distinct from two. We can either decide to disallow
two blanks in a row, or postulate that they are equal to one. (So, the structure
we look at is 3(A)/{0 = O~0O}.) A final problem area to be considered
is our requirement that sign composition is additive. This means that every
change that occurs is underlyingly viewed as adding something that was not
there. This can yield awkward results. While the fact that German umlaut is
graphically speaking just the addition of two dots (a becomes &, o becomes 6,
u becomes 1ii), the change of a lower case letter to an upper case letter cannot
be so analysed. This requires another level of representation, one at which
the process is completely additive. This is harmless, if we only change the
material aspect (substance) rather than the form.

The counterpart of a letter in the spoken languages is the phoneme. Ev-
ery language utterance can be analyzed into a sequence of phonemes (plus
some residue about which we will speak briefly below). There is generally
no biunique correspondence between phonemes and letters. The connection
between the visible and the audible shape of language is everything but pre-
dictable or unambiguous in either direction. English is a perfect example.
There is hardly any letter that can unequivocally be related to a phoneme. For
example, the letter g represents in many cases the phoneme [g] unless it is
followed by h, in which case the two typically together represent a sound that
can be zero (as in sought [so:t]), or £ (as in laughter ([la:fts]). To add to
the confusion, the letters represent different sets of phones in different lan-
guages. (Note that it makes no sense to speak of the same phoneme in two
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different languages, as phonemes are abstractions that are formed within a
single language.) The letter u has many different manifestations in English,
German and French that are hardly compatible. This has prompted the in-
vention of an international standard, the so—called International Phonetic
Alphabet (IPA, see (IPA, 1999)). Ideally, every sound of a given language
can be uniquely transcribed into IPA such that anyone who is not acquainted
with the language can reproduce the utterances correctly. The transcription of
a word into this alphabet therefore changes whenever its sound manifestation
changes, irrespective of the spelling norm. Unfortunately, the transcription
must ultimately remain inconsequential, because even in the IPA letters stand
for sets of phones, but in every language the width of a phoneme (= the set of
phones it contains) is different. For example, if (English) /p/ contains both
(Hindi) /p/, and /p"/,, we either have to represent p in English by (at least)
two letters or else give up the exact correspondence.

The carriers of meaning are however not the sounds or letters (there is
simply not enough of them); it is certain sequences thereof. Sequences of
letters that are not separated by a blank or a punctuation mark other than ‘-’
are called words. Words are units which can be analyzed further, for example
into letters, but for the most part we shall treat them as units. This is the reason
why the alphabet A in the technical sense will often not be the alphabet in the
sense of ‘stock of letters’ but in the sense of ‘stock of words’. However, since
most languages have infinitely many words (due to compounding), and since
the alphabet A must be finite, some care must be exercised in choosing the
alphabet. Typically, it will exclude the compound words, but it will have to
include all idioms.

We have analyzed words into sequences of letters or sounds, and sen-
tences into sequences of words. This implies that sentences and words can
always be so analyzed. This is what we shall assume throughout this book.
The individual occurrences of sounds (letters) are called segments. For ex-
ample, the (occurrences of the) letters n, o, and t are the segments of not.
The fact that words can be segmented is called segmentability property. At
closer look it turns out that segmentability is an idealization. For example,
a question differs from an assertion in its intonation contour, which is the
rise and fall of the pitch during the utterance. The contour shows distribution
over the whole sentence but follows specific rules. It is of course different in
different languages. (Falling pitch at the end of a sentence, for example, may
accompany questions in English, but not in German.) Because of its nature,
intonation contour is called a suprasegmental feature. There are more, for
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example emphasis. Segmentability differs also with the channel. In writing, a
question is marked by a segmental feature (the question mark), but emphasis
is not. Emphasis is typically marked by underlining or italics. For example,
if we want to emphasize the word ‘board’, we write board or board. As can
be seen, every letter is underlined or set in italics, but underlining or ital-
ics is usually not something that is meant to emphasize those letters that are
marked by it; rather, it marks emphasis of the entire word that is composed
from them. We could have used a segmental symbol, just like quotes, but the
fact of the matter is that we do not. Disregarding this, language typically is
segmentable.

However, even if this is true, the idea that the morphemes of the language
are sequences of letters is largely mistaken. To give an extreme example,
the plural is formed in Bahasa Indonesia by reduplicating the noun. For ex-
ample, the word anak means ‘child’, the word anak-anak therefore means
‘children’, the word orang means ‘man’, and orang-orang means ‘men’.
Clearly, there is no sequence of letters or phonemes that can be literally said
to constitute a plural morph. Rather, it is the function f: A* — A*: X — X-X,
sending each string to its duplicate (with an interspersed hyphen). Actually,
in writing the abbreviation anak2 and orang?2 is commonplace. Here, 2 is a
segmentable marker of plurality. However, notice that the words in the sin-
gular or the plural are each fully segmentable. Only the marker of plurality
cannot be identified with any of the segments. This is to some degree also
the case in German, where the rules are however much more complex, as we
have seen above. The fact that morphs are (at closer look) not simply strings
will be of central concern in this book.

Finally, we have to remark that letters and phonemes are not unstructured
either. Phonemes consist of various so—called distinctive features. These are
features that distinguish the phonemes from each other. For example, [p] is
distinct from [b] in that it is voiceless, while [b] is voiced. Other voiceless
consonants are [k], [t], while [g] and [d] are once again voiced. Such features
can be relevant for the description of a language. There is a rule of German
(and other languages, for example Russian) that forbids voiced consonants
to occur at the end of a syllable. For example, the word Jagd ‘hunting’ is
pronounced [ja:kt], not [ja:gd]. This is so since [g] and [d] may not occur
at the end of the syllable, since they are voiced. Now, first of all, why do
we not write Jakt then? This is so since inflection and derivation show that
when these consonants occur non—finally in the syllable they are voiced: we
have Jagden ['ya:kden] ‘huntings’, with [d] now in fact being voiced, and
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also jagen ['ya:gon] ‘to hunt’. Second: why do we not propose that voiceless
consonants become voiced when syllable initial? Because there is plenty of
evidence that this does not happen. Both voiced and voiceless sounds may
appear at the beginning of the syllable, and those ones that are analyzed as
underlyingly voiceless remain so in whatever position. Third: why bother
writing the underlying consonant rather than the one we hear? Well, first of
all, since we know how to pronounce the word anyway, it does not matter
whether we write [d] or [t]. On the other hand, if we know how to write the
word, we also know a little bit about its morphological behaviour. What this
comes down to is that to learn how to write a language is to learn how the lan-
guage works. Now, once this is granted, we shall explain why we find [k] in
place of [g] and [t] in place of [d]. This is because of the internal organisation
of the phoneme. The phoneme is a set of distinctive features, one of which (in
German) is [£voiced]. The rule is that when the voiced consonant may not
occur, it is only the feature [+voiced] that is replaced by [—voiced]. Every-
thing else remains the same. A similar situation is the relationship between
upper and lower case letters. The rule says that a sentence may not begin with
a lower case letter. So, when the sentence begins, the first letter is changed to
its upper case counterpart if necessary. Hence, letters too contain distinctive
features. Once again, in a dictionary a word always appears as if it would
normally appear elsewhere. Notice by the way that although each letter is by
itself an upper or a lower case letter, written language attributes the distinc-
tion upper versus lower case to the word not to the initial letter. Disregard-
ing some modern spellings in advertisements (like in Germany InterRegio,
eBusiness and so on) this is a reasonable strategy. However, it is neverthe-
less not illegitimate to call it a suprasegmental feature.

In the previous section we have talked extensively about representations
of terms by means of strings. In linguistics this is an important issue, which is
typically discussed in conjunction with word order. Let us give an example.
Disregarding word classes, each word of the language has one (or several)
arities. The finite verb see has arity 2. The proper names Paul and Marcus
on the other hand have arity 0. Any symbol of arity > 0 is called a functor
with respect to its argument. In syntax one also speaks of head and comple-
ment. These are relative notions. In the term see(Marcus, Paul), the functor
or head is see, and its arguments are Paul and Marcus. To distinguish these
arguments from each other, we use the terms subject and object. Marcus is
the subject and Paul is the object of the sentence. The notions ‘subject’ and
‘object’ denote so—called grammatical relations. The correlation between
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argument places and grammatical relations is to a large extent arbitrary, and
is of central concern in syntactical theory. Notice also that not all arguments
are complements. Here, syntactical theories diverge as to which of the argu-
ments may be called ‘complement’. In generative grammar, for example, it is
assumed that only the direct object is a complement.

Now, how is a particular term represented? The representation of see is
sees, that of Marcus is Marcus and that of Paul is Paul. The whole term
(1.47) is represented by the string (1.48).

(1.47) see(Marcus, Paul)

(1.48) Marcus sees Paul.

So, the verb appears after the subject, which in turn precedes the object. At
the end, a period is placed. However, to spell out the relationship between
a language and a formal representation is not as easy as it appears at first
sight. For first of all, the term should be something that does not depend on
the particular language we choose and which gives us the full meaning of the
term (so it is like a language of thought or an interlingua, if you wish). So
the above term shall mean that Marcus sees Paul. We could translate the En-
glish sentence (1.48) by choosing a different representation language, but the
choice between languages of representation should actually be immaterial as
long as they serve the purpose. This is a very rudimentary picture but it works
well for our purposes. We shall return to the idea of producing sentences from
terms in Chapter 3. Now look first at the representatives of the basic symbols
in some other languages.

see Marcus | Paul
German sieht | Marcus | Paul
(1.49) . .
Latin vidit | Marcus | Paulus
Hungarian || 14tja | Marcus | P4l

Here is how (1.47) is phrased in these languages.

(1.50) Marcus sieht Paul.
(1.51) Marcus Paulum vidit.
(1.52) Marcus latja Palt.

English is called an SVO-language, since in transitive constructions the sub-
ject precedes the verb, and the verb in turn the object. This is exactly the infix
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notation. (However, notice that languages do not make use of brackets.) One
uses the mnemonic symbols ‘S’, “V’ and ‘O’ to define the following basic
6 types of languages: SOV, SVO, VSO, OSV, OVS, VOS. These names tell
us how the subject, verb and object follow each other in a basic transitive
sentence. We call a language of type VSO or VOS verb initial, a language
of type SOV or OSV verb final and a language of type SVO or OVS verb
medial. By this definition, German is SVO, Hungarian too, hence both are
verb medial and Latin is SOV, hence verb final. These types are not equally
distributed. Depending on the method of counting, 40 — 50 % of the world’s
languages are SOV languages, up to 40 % SVO languages and another 10 %
are VSO languages. This means that in the vast majority of languages the
order of the two arguments is: subject before object. This is why one does
not generally emphasize the relative order of the subject with respect to the
object. There is a bias against placing the verb initially (VSO), and a slight
bias to put it finally (SOV) rather than medially (SVO).

One speaks of a head final (head initial) language if a head is consis-
tently put at the end behind all of its arguments (at the beginning, before
all the arguments). One denotes the type of order by XH (HX), X being the
complement, H the head. There is no notion of a head medial language for the
reason that most heads only have one complement. It is often understood that
the direct object is the only complement of the verb. Hence, the word orders
SVO and VOS are head initial, OVS and SOV head final. (The orders VSO
and OSV are problematic since the verb is not adjacent to its object.) A verb
is a head, however a very important one, since it basically builds the clause.
Nevertheless, different heads may place their arguments differently, so a lan-
guage that is verb initial need not be head initial, a language that is verb final
need not be head final. Indeed, there are few languages that are consistently
head initial (medial, final). Japanese is rather consistently head final. Even a
relative clause precedes the noun it modifies. Hungarian is a mixed case: ad-
jectives precede nouns, there are no prepositions, only postpositions, but the
verb tends to precede its object.

For the interested reader we give some more information on the languages
shown above. First, Latin was initially an SOV language, however word order
was not really fixed (see (Lehmann, 1993) and (Bauer, 1995)). In fact, any of
the six permutations of the sentence (1.51) is grammatical. Hungarian is more
complex, again the word order shown in (1.52) is the least marked, but the
rule is that discourse functions determine word order. (Presumably this is true
for Latin as well.) German is another special case. Against all appearances
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there is all reason to believe that it is actually an SOV language. You can see
this by noting first that only the carrier of inflection appears in second place,
for example only the auxiliary if present. Second, in a subordinate clause all
parts of the verb including the carrier of inflection are at the end.

(1.53) Marcus sieht Paul.
Marcus sees Paul.
(1.54) Marcus will Paul sehen.
Marcus wants to see Paul.
(1.55) Marcus will Paul sehen koOnnen.
Marcus wants to be able to see Paul.
(1.56) ...,weil Marcus Paul sieht.
..., because Marcus sees Paul.
(1.57) ...,weil Marcus Paul sehen will.
..., because Marcus wants to see Paul.
(1.58) ...,weil Marcus Paul sehen koénnen will.

..., because Marcus wants to be able to see Paul.

So, the main sentence is not always a good indicator of the word order. Some
languages allow for alternative word orders, like Latin and Hungarian. This
is not to say that all variants have the same meaning or significance; it is only
that they are equal as representatives of (1.47). We therefore speak of Latin
as having free word order. However, this only means that the head and the
argument can assume any order with respect to each other, not that simply all
permutations of the words mean the same.

Now, notice that subject and object are coded by means of so—called cases.
In Latin, the object carries accusative case, so we find Paulum instead of
Paulus. Likewise, in Hungarian we have P41t in place of P4l, the nomina-
tive. So, the way a representing string is arrived at is rather complex. We shall
return again to case marking in Chapter 5.

Natural languages also display so—called polyvalency. We say that a word
is polyvalent if it can have several arities (even with the same meaning). The
verb to roll can be unary (= intransitive) as well as binary (= transitive
if the second argument is accusative, intransitive otherwise). This is not al-
lowed in our definition of signature. However, it can easily be modified to
account for polyvalent symbols.
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Notes on this section. The rule that spells out the letters ch in German
is more complex than the above explications show. For example, it is [x] in
fauchen but [¢] in Frauchen. This may have two reasons: (a) There is a mor-
pheme boundary between u and ch in the second word but not in the first. This
morpheme boundary induces the difference. (b) The morpheme chen is spe-
cial in that ch will always be realized as [¢]. The difference between (a) and
(b) is that while (a) defines a realization rule that uses only the phonological
representation, (b) uses morphological information to define the realization.
Mel’¢uk defines the realization rules as follows. In each stratum, there are
rules that define how deep representations get mapped to surface represen-
tations. Across strata, going down, the surface representations of the higher
stratum get mapped into abstract representations of the lower stratum. (For
example, a sequence of morphemes is first realized as a sequence of morphs
and then spelled out as a sequence of phonemes, until, finally, it gets mapped
onto a sequence of phones.) Of course, one may also reverse the process.
However, adjacency between (sub-)strata remains as defined.

Exercise 17. Show that in Polish Notation, unique readability is lost when
there exist polyvalent function symbols.

Exercise 18. Show that if you have brackets, unique readability is guaranteed
even if you have polyvalency.

Exercise 19. We have argued that German is a verb final language. But is it
strictly head final? Examine the data given in this section as well as the data
given below.

(1.59) Josef pfliickt eine schone Rose fiir Maria.
Josef is.picking a beautiful rose for Mary
(1.60) Heinrich ist dicker als Josef.

Heinrich is fatter than Josef

Exercise 20. Even if languages do not have brackets, there are elements that
indicate clearly the left or right periphery of a constituent. Such elements are
the determiners the and a(n). Can you name more? Are there elements in
English indicating the right periphery of a constituent? How about demon-
stratives like this or that?

Exercise 21. By the definitions, Unix is head initial. For example, the com-
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mand 1pr precedes its arguments. Now study the way in which optional ar-
guments are encoded. (If you are sitting behind a computer on which Unix
(or Linux) is running, type man lpr and you get a synopsis of the command
and its syntax.) Does the syntax guarantee unique readability? (For the more
linguistic minded reader: which type of marking strategy does Unix employ?
Which natural language you know of corresponds best to it?)

4. Trees

Strings can also be defined as pairs (£, £) where £ = (L, <) is a finite linearly
ordered set and £: L — A a function, called the labelling function. Since L is
finite we have (L, <) = (n, €) for n:=|L|. (Recall that n is a set that is linearly
ordered by €.) Replacing (L, <) by the isomorphic (n,€), and eliminating
the redundant €, a string is often defined as a pair (n,£), where n is a natural
number. In what is to follow, we will very often have to deal with extensions
of relational structures (over a given signature Z) by a labelling function.
They have the general form (M,J,¢), where M is a set, J an interpretation
and £ a function from M to A. These structures shall be called structures
over A or A—structures.

A very important notion in the analysis of language is that of a tree. A tree
is a special case of a directed graph. A directed graph is a structure (G, <),
where < C G? is a binary relation. As is common usage, we shall write x <y
if x <y orx=y. Also, x and y are called comparable if x <yory<x. A
(directed) chain of length & is a sequence (x; : i < k+ 1) such that x; <x;_ |
for all i < k. An undirected chain of length k is a sequence (x; : i < k+ 1)
where x; <x;,; orx;,; <x; foralli <k. A directed graph is called connected
if for every two elements x and y there is an undirected chain from x to y. A
directed chain of length k is called a cycle of length k if x, = x,. A binary
relation is called cycle free if it only has cycles of length 0. A root is an
element r such that for every x x <* r, where <* is the reflexive, transitive
closure of <.

Definition 1.41 A directed acyclic graph (a DAG) is a pair & = (G, <) such
that < C G? is an acyclic relation on G. If < is transitive, & is called a
directed transitive acyclic graph (DTAG).

Definition 1.42 & = (G, <) is called a forest if < is transitive and irreflexive
and if x < y and x < z then y and z are comparable. A forest with a root is
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called a tree.

In a connected rooted DTAG the root is comparable with every other ele-
ment since the relation is transitive. Furthermore, in presence of transitivity
< is cycle free iff it is irreflexive. For if < is not irreflexive it has a cycle of
length 1. Conversely, if there is a cycle (x; : i < k+ 1) of length k > 0, we
immediately have x, < x, = X, by transitivity.

If x < y and there is no z such that x < z <y, x is called a daughter of y,
and y the mother of x, and we write x < y.

Lemma 1.43 Ler (T, <) be a finite tree. If x < y then there exists a X such
that x <X <y and a'y such that x <y < y. X and y are uniquely determined
by x and y. O

The proof is straightforward. In infinite trees this need not hold. We define
xoy by x <yory<xand say that x and y overlap. The following is also
easy.

Lemma 1.44 (Predecessor Lemma) Let X be a finite tree and x and y nodes
which do not overlap. Then there exist uniquely determined u, v and w, such
that x <u<w,y<v-<wandv#u. O

A node branches n times downwards if it has exactly n daughters; and it
branches n times upwards if it has exactly n mothers. We say that a node
branches upwards (downwards) if it branches upwards or downwards at
least 2 times. A finite forest is characterized by the fact that it is transitive, ir-
reflexive and no node branches upwards. Therefore, in connection with trees
and forests we shall speak of ‘branching’ when we mean ‘downward branch-
ing’. x is called a leaf if there is no y < x, that is, if x branches 0 times. The
set of leaves of & is denoted by b(®).
Further, we define the following notation.

(1.61) lx={y:y<x} tx:={y:y>x}

By definition of a forest, 1 x is linearly ordered by <. Also, |x together with
the restriction of < to | x is a tree.

A set P C G is called a path if it is linearly ordered by < and convex, that
is to say, if x,y € P then z € P for every z such that x < z < y. The length
of P is defined to be |P| — 1. A branch is a maximal path with respect to set
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inclusion. The height of x in a DTAG, in symbols A (x) or simply A(x), is
the maximal length of a branch in | x. It is defined inductively as follows.

(1.62)  h(x):=

0 if x is a leaf,
1 +max{h(y) :y <x} otherwise.

Dually we define the depth in a DTAG.

0 . .
(1.63) d(x) = 1 XISa'roo
1+ max{d(y) :y > x} otherwise.

For the entire DTAG & we set
(1.64) h(®) :={h(x):x€T}
and call this the height of &. (This is an ordinal, as is easily verified.)

Definition 1.45 Let & = (G,<;) and $) = (H,<y) be directed graphs and
G C H. Then & is called a subgraph of $) if <; = <y NG2.

If & and $ are DTAG, forests or trees, then & is a sub—DTAG, subforest and
subtree of §), respectively. A subtree of §) with underlying set | x is called a
constituent of ).

Definition 1.46 Let A be an alphabet. A DAG over A (or an A-DAG) is a pair
(&,£) such that ® = (G,<) is a DAG and £: G — A an arbitrary function.

Alternatively, we speak of DAGs with labels in A, or simply of labelled
DAGs if it is clear which alphabet is meant. Similarly with trees and DTAGs.
The notions of substructures are extended analogously.

The tree structure in linguistic representations encodes the hierarchical re-
lations between elements and not their spatial or temporal relationship. The
latter have to be added explicitly. This is done by extending the signature by
another binary relation symbol, C. We say that x is before y and that y is
after x if x C y is the case. We say that x dominates y if x > y. The relation
[ articulates the temporal relationship between the segments. This is first of
all defined on the leaves, and it is a linear ordering. (This reflects the insis-
tance on segmentability. It will have to be abandoned once we do not assume
segmentability.) Each node x in the tree has the physical span of its segments.
This allows to define an ordering between the hierarchically higher elements
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as well. We simply stipulate that x  y iff all leaves below x are before all
leaves below y. This is not unproblematic if nodes can branch upwards, but
this situation we shall rarely encounter in this book. The following is an in-
trinsic definition of these structures.

Definition 1.47 An ordered tree is a triple (T, <,) such that the following
holds.

(otl) (7,<) is a tree.
(ot2) L is a linear, strict ordering on the leaves of (T, <).

(ot3) If xC zandy < x then alsoy C z.
IfxCzandy < zthen also x C y.

(ot4) Ifxis not aleaf and for ally < xy C z then also x C z.
If zis not a leaf and for all y < z x C y then also x C z.

The condition (ot2) requires that the ordering is coherent with the ordering
on the leaves. It ensures that x C y only if all leaves below x are before all
leaves below y. (ot3) is a completeness condition ensuring that if the latter
holds, then indeed x C y.

We agree on the following notation. Let x € G. Put [x] := [ xNb(&). We
call this the extension of x. [x] is linearly ordered by . If a labelling function
£ is given in addition, we write k(x) := ([x],C,£ | [x]) and call this the asso-
ciated string of x. It may happen that two nodes have the same associated
string. The string associated with the entire tree is

(1.65) k(&) := (b(®),C,2 | b(S))

A constituent is called continuous if the associated string is convex with
respect to C. A set M is convex (with respect to C) if for all x,y,z € M: if
xC zC ythen z € M as well.

For sets M, N of leaves put M C N iff for all x € M and all y € N we have
x C y. From (ot4) and (ot3) we derive the following:

(1.66) xCy < [XCp

This property shows that the orderings on the leaves alone determines the
relation [ uniquely.
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Theorem 1.48 Ler (T, <) be a tree and T a linear ordering on its leaves.
Then there exists exactly one relation ' D  such that (T,<,C') is an or-
dered tree.

We emphasize that the ordering ' cannot be linear if the tree has more than
one element. It may even happen that ' = . One can show that overlapping
nodes can never be comparable with respect to . For let xoy, say x < y. Let
u < x be a leaf. Assume x [ y; then by (ot3) u C y as well as u C u. This
contradicts the condition that [ is irreflexive. Likewise y C x cannot hold.
So, nodes can only be comparable if they do not overlap. We now ask: is it
possible that they are comparable exactly when they do not overlap? In this
case we call C exhaustive. Theorem 1.49 gives a criterion on the existence
of exhaustive orderings. Notice that if M and N are convex sets, then so is
M N N. Moreover, if MNN = & then either M — N or N _ M. Also, M is
convex iff forall u: u T M or M C u.

Theorem 1.49 Let (T,<) be a tree and T a linear ordering on the leaves.
There exists an exhaustive extension of L iff all constituents are continuous.

Proof. By Theorem 1.48 there exists a unique extension, C’. Assume that
all constituents are continuous. Let x and y are nonoverlapping nodes. Then
[x] N[y] = @. Hence [x] C [y] or [y] C [x]. since both sets are convex. So,
by (1.66) we have x C' y or y C' x. The ordering is therefore exhaustive.
Conversely, assume that [’ is exhaustive. Pick x. We show that [x] is convex.
Let u be a leaf and u ¢ [x]. Then u does not overlap with x. By hypothesis,
u ' x or x ' u, whence [u] C [x] or [x] CC [«], by (1.66). This means nothing
but that either u  y for all y € [x] or y T u for all y € [x]. So, [x] is convex. O

Lemma 1.50 (Constituent Lemma) Assume (T,<,C,£) is an exhaustively
ordered A—tree. Furthermore, let p < q. Then there is a context C = (ii,V)
such that

(1.67)  k(g) =C(k(p)) =i"k(p)"¥

The converse does not hold. Furthermore, it may happen that C = (€,&) — in
which case k(g) = k(p) — without g < p.

Proposition 1.51 Let (T, <,C) be an ordered tree and x € T. x is 1-branch-
ing iff [x] = [y] for some y < x.
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Proof. Let x be a 1-branching node with daughter y. Then we have [x] = [y]
but x # y. So, the condition is necessary. Let us show that is sufficient. Let
x be minimally 2-branching. Let u < x. There is a daughter z < x such that
u < z, and there is z’ < x different from z. Then [u] C [z] C [x] as well as
[z'] C [x]. All sets are nonempty and [z'] N [z] = @. Hence [z] C [x] and so also
1] S [ O

We say that a tree is properly branching if it has no 1-branching nodes.

There is a slightly different method of defining trees. Let 7" be a set and <
a cycle free relation on 7" such that for every x there is at most one y such that
x < y. And let there be exactly one x which has no <—successor (the root).
Then put <:=<*. (T, <) is a tree. And x < y iff x is the daughter of y. Let
D(x) be the set of daughters of x. Now let P be a relation such that (a) y P 7
only if y and z are sisters, (b) PT, the transitive closure of P, is a relation that
linearly orders D(x) for every x, (c) for every y there is at most one z such that
y P z and at most one 7’ such that 7/ P y. Then put x C y iff there is z such that
(a) x <X < z for some X, (b) y < y < y for some ¥, (c) X PT y. < and P are the
immediate neighbourhood relations in the tree.

Proposition 1.52 Let (T,<,C) be an exhaustively ordered tree. Then x C y
iff there are X' > x and y' > y which are sisters and x' C y'.

Finally we mention a further useful concept, that of a constituent structure.

Definition 1.53 Let M be a set. A constituent structure over M is a system €
of subsets of M with the following properties.

(csl) {x} € € foreveryxe M,
(cs2) g, Meg,

(cs3) ifS,TECandS,@TaswellasTgSthenSﬂT:Q

Proposition 1.54 Let M be a nonempty set. There is a biunique correspon-
dence between finite constituent structures over M and finite properly branch-
ing trees whose set of leaves is {{x} : x € M'}.

Proof. Let (M,C) be a constituent structure. Then (€, C) is a tree. To see
this, one has to check that C is irreflexive and transitive and that it has a root.
This is easy. Further, assume that S C 7,U. Then UNT D S # &, because of
condition (cs2). Moreover, because of (cs3) we musthave U C T or T C U.
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This means nothing else than that 7 and U are comparable. The set of leaves
is exactly the set {{x} : x € M}. Conversely, let T = (T, <) be a properly
branching tree. Put M := b(%) and € := {[x] : x € T'}. We claim that (M, &) isa
constituent structure. For (cs1), notice that for every u € b(®), [u] = {u} € €.
Further, for every x [x] # &, since the tree is finite. There is a root r of ¥, and
we have [r] = M. This shows (cs2). Now we show (cs3). Assume that [x] Z [y]
and [y] ¢ [x]. Then x and y are incomparable (and different). Let u be a leaf
and u € [x], then we have u < x. u <y cannot hold since 1 u is linear, and then
x and y would be comparable. Likewise we see that from u <y we get u £ x.
Hence [x] N [y] = @. The constructions are easily seen to be inverses of each
other (up to isomorphism). O

In general we can assign to every tree a constituent structure, but only
if the tree is properly branching it can be properly reconstructed from this
structure. The notion of a constituent structure can be extended straightfor-
wardly to the notion of an ordered constituent structure, and we can introduce
labellings.

We shall now discuss the representation of terms by means of trees. There
are two different methods, both widely used. Before we begin, we shall intro-
duce the notion of a tree domain.

Definition 1.55 Let T C @* be a set of finite sequences of natural numbers.
T is called a tree domain if the following holds.

(tdl) IfX"ie€T thenXeT.
(td2) IfX"i€T and j<ithenalsoX"jeT.

We assign to a tree domain 7 an ordered tree in the following way. The set
of nodes is T, (1) X < ¥ iff ¥ is a proper prefix of ¥ and (2) X C ¥ iff there are
numbers i, j and sequences i, ¥, w such that (a) i < jand (b) X =4d"i"V, ¥ =
i~ j~w. (This is exactly the lexicographical ordering.) Together with these
relations, T is an exhaustively ordered finite tree, as is easily seen. Figure 3
shows the tree domain 7' = {¢,0,1,2,10,11,20,200}. If T is a tree domain

and X € T then put
(1.68) T/x:={y:X"yeT}

This is the constituent below X. (To be exact, it is not identical to this con-
stituent, it is merely isomorphic to it. The (unique) isomorphism from 7'/X
onto the constituent | X is the map y +— X"¥.)
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()/]“ 2
10 11 20
200

Figure 3. A Tree Domain

Conversely, let (T, <,C) be an exhaustively ordered tree. We define a tree
domain T by induction on the depth of the nodes. If d(x) = 0, let xP := £. In
this case x is the root of the tree. If xP is defined, and y a daughter of x, then
put yB := xB~i if y is the ith daughter of x counting from the left (starting, as
usual, with 0). (Hence we have |x#| = d(x).) We can see quite easily that the
so defined set is a tree domain. For we have i € T as soon as ii”j € TP for
some j. Hence (td1) holds. Further, if #~i € T, say #~i = yP then y is the ith
daughter of a node x. Take j < i. Then let z be the jth daughter of x (counting
from the left). It exists, and we have zf = i~ j. Moreover, it can easily be
shown that the relations defined on the tree domain are exactly the ones that
are defined on the tree. In other words the map x — xP is an isomorphism.

Theorem 1.56 Let ¥ = (T, <,C) be a finite, exhaustively ordered tree. The
function x — xP is an isomorphism from % onto the associated tree domain
(3B, <,C). Furthermore, ¥ = L iff T8 = 4P, O

Terms can be translated into labelled tree domains. Each term ¢ is assigned
a tree domain ¢” and a labelling function r*. The labelled tree domain as-
sociated with ¢ is 1" := (¢*,1*). We start with the variables. x” := {¢}, and
x*: € > x. Assume that the labelled tree domains /", i < n— 1, are defined,
and put n := Q(f). Let s := f(t,,...,t,_,); then

(1.69) s’ :={e}u|J{i"¥:¥ e’}

i<n
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Then s? is defined as follows.
(1.70)  sMe):=f sM(jF) =14 ()

This means that s™ consists of a root named f which has n daughters, to which
the labelled tree domains of #,...,z, , are isomorphic. We call the repre-
sentation which sends ¢ to ¢ the dependency coding. This coding is more
efficient that the following, which we call structural coding. We choose a
new symbol, 7', and define by induction to each term ¢ a tree domain € and a
labelling function 7#. Put x := {g,0}, x* (&) := T, x*(0) := x. Further let for
s=f(tys---sty_y)

s i={e,0}u |J {i"®:¥er)

O<i<n+1

(1.71) s*(g) ==

(Compare the structural coding with the associated string in the notation with-
out brackets.) In Figure 4 both codings are shown for the term (3+(5%7))
for comparison. The advantage of the structural coding is that the string as-
sociated to the labelled tree domain is also the string associated to the term
(with brackets dropped, as the tree encodes the structure anyway).

Notes on this section. A variant of the dependency coding of syntactic
structures has been proposed by Lucien Tesniere in (1982). He called tree
representations stemmata (sg. stemma). This notation (and the theory sur-
rounding it) became known as dependency syntax. See (Mel’¢uk, 1988) for
a survey. Unfortunately, the stemmata do not coincide with the dependency
trees defined here, and this creates very subtle problems, see (Mel’¢uk, 1988).
Noam Chomsky on the other hand proposed the more elaborate structural
coding, which is by now widespread in linguistic theory.

Exercise 22. Define ‘exhaustive ordering’ on constituent structures. Show
that a linear ordering on the leaves is extensible to an exhaustive ordering in
a tree iff it is in the related constituent structure.

Exercise 23. Let ¥ = (T, <) be a tree and [ a binary relation such that x C y
only if x,y are daughters of the same node (that is, they are sisters). Further,
the daughter nodes of a given node shall be ordered linearly by . No other
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/\
3 /*\ + T T
5 7

Figure 4. Dependency Coding and Structural Coding

relations shall hold. Show that this ordering can be extended to an exhaustive
ordering on %.

Exercise 24. Show that the number of binary branching exhaustively ordered
trees over a given string is exactly

1 (2n
1.72 C,=
(1.72) n—l—l(n)

These numbers are called Catalan numbers.

Exercise 25. Show that C,, < ﬁﬂ. (One can prove that (zn") approximates
the series \;% in the limit. The latter even majorizes the former. For the exer-

cise there is an elementary proof.)

Exercise 26. Let L be finite with n elements and < a linear ordering on L.
Construct an isomorphism from (L, <) onto (n, €).

5. Rewriting Systems

Languages are by Definition 1.36 arbitrary sets of strings over a (finite) al-
phabet. However, languages that interest us here are those sets which can
be described by finite means, particularly by finite processes. These can be
processes which generate strings directly or by means of some intermedi-
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ate structure (for example, labelled trees). The most popular approach is by
means of rewrite systems on strings.

Definition 1.57 Let A be a set. A semi Thue system over A is a finite set
T ={(%,¥,) :i <m} of pairs of A=strings. If T is given, write i =% V if there
are 5,1 and some i < m such that ii = §°%,°1 and V = §°y,"1. We write i =% ¥
ifii =V, and ii =" V if there is a Z such that i =1, Z =% V. Finally, we write
i =7 Vifi="4 "V for some n € o, and we say that V is derivable in T from ii.

We can define =} also as follows. & =1 ¥ iff there exists a context C and
(¥,¥) € T such that ii = C(X) and ¥ = C(¥). A semi Thue system 7 is called a
Thue system if from (X,y) € T follows (¥,X) € T. In this case V is derivable
from ii iff @ is derivable from V. A derivation of ¥ from X in 7 is a finite
sequence (V, : i < n+ 1) such that ¥, =¥, ¥, = ¥ and for all i < n we have
v, =1 V,, . The length of this derivation is n. (A more careful definition will
be given on Page 57.) Sometimes it will be convenient to admit ¥, | = V; even
if there is no corresponding rule.

A grammar differs from a semi Thue system as follows. First, we intro-
duce a distinction between the alphabet proper and an auxiliary alphabet, and
secondly, the language is defined by means of a special symbol, the so called
start symbol.

Definition 1.58 A grammar is a quadruple G = (S,N,A,R) such that N,A
are nonempty disjoint sets, S € N and R a semi Thue system over NUA such
that (¥,1) € R only if ¥ & A*. We call S the start symbol, N the nonterminal
alphabet, A the terminal alphabet and R the set of rules.

Elements of the set N are also called categories. Notice that often the word
‘type’ is used instead of ‘category’, but this usage is dangerous for us in view
of the fact that ‘type’ is reserved here for types in the A—calculus. As a rule,
we choose § = S. This is not necessary. The reader is warned that S need not
always be the start symbol. But if nothing else is said it is. As is common
practice, nonterminals are denoted by upper case Roman letters, terminals by
lower case Roman letters. A lower case Greek letter signifies a letter that is
either terminal or nonterminal. The use of vector arrows follows the practice
established for strings. We write G - 7 or I 7 in case that § =% ¥ and say
that G generates 7. Furthermore, we write ¥+ 7} if ¥ =% 7. The language
generated by G is defined by

(1.73)  L(G):={¥€A*:GF X}
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Notice that G generates strings which may contain terminal as well as nonter-
minal symbols. However, those that contain also nonterminals do not belong
to the language that G generates. A grammar is therefore a semi Thue system
which additionally defines how a derivation begins and how it ends.

Given a grammar G we call the analysis problem (or parsing problem)
for G the problem (1) to say for a given string whether it is derivable in G
and (2) to name a derivation in case that a string is derivable. The problem
(1) alone is called the recognition problem for G.

A rule (@, B ) is often also called a production and is alternatively writ-
ten & — f. We call & the left hand side and 3 the right hand side of the
production. The productivity p(p) of a rule p = & — ﬁ is the difference
|B| = |&|. p is called expanding if p(p) > 0, strictly expanding if p(p) > 0
and contracting if p(p) < 0. A rule is terminal if it has the form & — X
(notice that by our convention, X € A*).

This notion of grammar is very general. There are only countably many
grammars over a given alphabet — and hence only countably many languages
generated by them —; nevertheless, the variety of these languages is bewil-
dering. We shall see that every recursively enumerable language can be gener-
ated by some grammar. So, some more restricted notion of grammar is called
for. Noam Chomsky has proposed the following hierarchy of grammar types.
(Here, X is short for X U{€e}.)

= Any grammar is of Type 0.

%= A grammar is said to be of Type 1 or context sensitive if all rules are
of the form 6,X 1), — N, &1, and either (i) always & # € or (i) S — €
is arule and S never occurs on the right hand side of a production.

= A grammar is said to be of Type 2 or context free if it is context sen-
sitive and all productions are of the form X — @.

1 A grammar is said to be of Type 3 or regular if it is context free and
all productions are of the form X — @& where & € A, - N.

A context sensitive rule 1, X7, — 1, &1, is also written
(1.74) X—a/f,_1,

One says that X can be rewritten into @& in the context 7, 7),. A language
is said to be of Type i if it can be generated by a grammar of Type i. It is
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not relevant if there also exists a grammar of Type j, j # i, that generates this
language in order for it to be of Type i. We give examples of grammars of
Type 3, 2 and 0.

EXAMPLE 1. There are regular grammars which generate number expres-
sions. Here a number expression is either a number, with or without sign, or a
pair of numbers separated by a dot, again with or without sign. The grammar
is as follows. The set of terminal symbols is {0,1,2,3,4,5,6,7,8,9,+,-, .},
the set of nonterminals is {V, Z,F,K,M}. The start symbol is V and the produc-
tions are

Vo+Z|-2|Z
Z—0Z|1Z|2Z|---|9Z|F

(1.75) F—0|1]|2]|---]|9]K
K— .M
M—OM|1M|2M|---|OM|O| 1| 2] ---|9

Here, we have used the following convention. The symbol ‘|” on the right
hand side of a production indicates that the part on the left of this sign and the
one to the right are alternatives. So, using the symbol ‘|” saves us from writing
two rules expanding the same symbol. For example, V can be expanded either
by +Z, -Z or by Z. The syntax of the language ALGOL has been written
down in this notation, which became to be known as the Backus-Naur Form.
The arrow was written ‘::=". (The Backus—Naur form actually allowed for
context—free rules.)

EXAMPLE 2. The set of strings representing terms over a finite signature
with finite set X of variables can be generated by a context free grammar. Let
F ={F,;:i <m} and Q(i) := Q(F,).

(1760 T — FT  (i<m)

Since the set of rules is finite, so must be F. The start symbol is T. This
grammar generates the associated strings in Polish Notation. Notice that this
grammar reflects exactly the structural coding of the terms. More on that
later. If we want to have dependency coding, we have to choose instead the
following grammar.

17 S— FJ.OFj1 .. 'Fjg(,-),l

Fio Py o Fp
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This is a scheme of productions. Notice that for technical reasons the root
symbol must be S. We could dispense with the first kind of rules if we are
allowed to have several start symbols. We shall return to this issue below.

EXAMPLE 3. Our example for a Type 0 grammar is the following, taken
from (Salomaa, 1973).

(a) X, = a X, — aXX,Z
(b) X,Z — aa
(c) Xa — aa Ya — aa
X,Z Y, YXZ
g @ Tz 2N
() XY, — Y,YX YY, — Y,¥Y
(f) a¥; — aXXvX,
(2) XY — XY, Y,Y - YY,
Y,X — YK,

X, is the start symbol. This grammar generates the language {a"2 :n > 0}.
This can be seen as follows. To start, W1th (a) one can either generate the
string a or the string aXXQZ Let 7. = axd, X, Z, 5 € {X,Y}*. We consider
derivations which go from 7, to a terminal string. At the beginning, only (b)
or (d) can be applied. Let it be (b). Th_qn we can only continue with (c) and
then we create a string of length 44 |§;|. Since we have only one letter, the
string is uniquely determined. Now assume that (d) has been chosen. Then we
get the string aX;Y, YXZ. The only possibility to continue is using (e). This
moves the index 1 stepwise to the left and puts Y before every occurrence of
an X. Finally, it hits a and we use (f) to get aXXYX, 6/ YYXZ. Now there is no
other choice but to move the index 2 to the right w1th the help of (g). This
gives a string 7, | = aX5L+1X2Z with 6 = XYXS’YY We have

(1.79) 18,11 = 18] +£:(8) +5

where £,(8;) counts the number of X in 5 Since £, (5+1) . (Sl) +2, 50 =g,

we conclude that EX(SI.) = 2i and so \5i| = (i+1)>—4,i> 0. Hence, || =
(i+ 1)2, as promised.

In the definition of a context sensitive grammar the following must be
remembered. By intention, context sensitive grammars only consist of non-
contracting rules. However, since we must begin with a start symbol, there
would be no way to derive the empty string if no rule is contracting. Hence,
we do admit the rule S — €. But in order not to let other contracting uses of
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this rule creep in we require that S is not on the right hand side of any rule
whatsoever. Hence, S — € can only be applied once, at the beginning of the
derivation. The derivation immediately terminates. This condition is also in
force for context free and regular grammars although without it no more lan-
guages can be generated (see the exercises). For assume that in a grammar
G with rules of the form X — & there are rules where S occurs on the right
hand side of a production, and nevertheless replace S by Z in all rules which
are not not of the form S — €. Add also all rules S — &', where § — @ is a
rule of G and @' results from @ by replacing S by Z. This is a context free
grammar which generates the same language, and even the same structures.
(The only difference is with the nodes labelled S or Z.)

The class of regular grammars is denoted by RG, the class of all context
free grammars by CFG, the class of context sensitive grammars by CSG and
the class of Type 0 grammars by GG. The languages generated by these gram-
mars is analogously denoted by RL, CFL, CSL and GL. The grammar classes
form a proper hierarchy.

(1.80)  RG C CFG C CSG C GG

This is not hard to see. It follows immediately that the languages generated
by these grammar types also form a hierarchy, but not that the inclusions are
proper. However, the hierarchy is once again strict.

(1.81)  RLCCFLCCSLCGL

We shall prove each of the proper inclusions. In Section 1.7 (Theorem 1.96)
we shall show that there are languages of Type O which are not of Type 1.
Furthermore, from the Pumping Lemma (Theorem 1.81) for CFLs it follows
that {a"b"c" : n € w} is not context free. However, it is context sensitive
(which is left as an exercise in that section). Also, by Theorem 1.65 below,
the language {a"2 :n € @} has a grammar of Type 1. However, this language
is not semilinear, whence it is not of Type 2 (see Section 2.6). Finally, it will
be shown that {a"b" : n € @} is context free but not regular. (See Exercise 51.)

Let p =7 — 7. We call a triple A = (&,C,z) an instance of p if C is
an occurrence of 7 in & and also an occurrence of 7} in z This means that
there exist X, and K, such that C = (X;,X,) and & = k,"7"K, as well as

—

{ =K ,"1N"K,. We call C the domain of A. A derivation of length n is a
sequence (A, : i < n) of instances of rules from G such that A, = (&;,C;, {.) for
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i<nandforevery j<n—1a Z_f i G, is called the start of the derivation,

j+1
En_l the end. We denote by der(G, &) the set of derivations G from the string
¢ and der(G) :=der(G,S).

This definition has been carefully chosen. Let (A; : i < n) be a deriva-
tion in G, where A; = (&;,C;, &, ;) (i < n). Then we call (& : i <n+ 1) the
(associated) string sequence. Notice that the string sequence has one more
element than the derivation. In what is to follow we shall often also call the
string sequence a derivation. However, this is not quite legitimate, since the
string sequence does not determine the derivation uniquely. Here is an exam-
ple. Let G consist of the rules S — AB, A — AA and B — AB. Take the string

sequence (S,AB,AAB). There are two derivations for this sequence.

(1.82a) ((S,(e,€),AB), (AB, (€,B),AAB))
(1.82b)  ((S,(e,€),AB),(AB, (A, ¢€),AAB))

After application of a rule p, the left hand side 7 is replaced by the right
hand side, but the context parts K, and K, remain as before. It is intuitively
clear that if we apply a rule to parts of the context, then this application could
be permuted with the first. This is clarified in the following definition and
theorem.

Definition 1.59 Let (., (ﬁl,fz),ﬁ) be an instance of the rule p = 1 — ¥,
and let <B, (Hy,1,),7) be an instance of 6 = z — E We call the domains of
these applications disjoint if either (a) ﬁl“é is a prefix of i, or (b) 5’“%2 is
a suffix of i,.

Lemma 1.60 (Commutlng Instances) Ler (@,C B) be an instance of p =
i — 3, and ([3 D, ) an instance of 6 = C — <§ Suppose that the instances

are disjoint. Then there exists an instance (¢&,D',8) of ¢ as well as an in-
stance (8,C',¥) of p, and both have disjoint domains.

The proof is easy and left as an exercise. Analogously, suppose that to the
same string the rule p can be applied with context C and the rule ¢ can be
applied with context D. Then if C precedes D, after applying one of them the
domains remain disjoint, and the other can still be applied (with the context
modified accordingly).
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We give first an example where the instances are not disjoint. Let the fol-
lowing rules be given.

AX — XA XA — Xa

(1.83) XB — Xb X¥a — a

There are two possibilities to apply the rules to AXB. The first has domain
(&,B), the second the domain (A, €). The domains overlap and indeed the first
rule when applied destroys the domain of the second. Namely, if we apply
the rule AX — XA we cannot reach a terminal string.

(1.84) AXB = XAB = XaB
If on the other hand we first apply the rule XB — Xb we do get one.
(1.85) AXB = AXb = XAb = Xab => ab

So much for noncommuting instances. Now take the string AXXB. Again, the
two rules are in competition. However, this time none destroys the applica-
bility of the other.

(1.86)  AXXB = AXXb => XAXb

1.87) AXXB = XAXB = XAXb

As before we can derive the string ab. Notice that in a CFG every pair of rules
that are in competition for the same string can be used in succession with
either order on condition that they do not compete for the same occurrence of
a nonterminal.

Definition 1.61 A grammar is in standard form if all rules are of the form
XV, X%

In other words, in a grammar in standard form the right hand side either
consists of a string of nonterminals or a string of terminals. Typically, one
restricts terminal strings to a single symbol or the empty string, but the dif-
ference between these requirements is actually marginal.

Lemma 1.62 For every grammar G of Type i there exists a grammar H of
Type i in standard form such that L(G) = L(H).
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Proof. Put N' := {N,:a € AYUN and h:a+s N, X — X : NUA — N'. For
each rule p let 4(p) be the result of applying & to both strings. Finally, let
R :={h(p) :p e R}U{N, > a:a € A}, H := (S,N',A,R'). Tt is easy to
verify, using the Commuting Instances Lemma, that L(H) = L(G). (See also
below for proofs of this kind.) O

We shall now proceed to show that the conditions on Type 0 grammars
are actually insignificant as regards the class of generated languages. First,
we may assume a set of start symbols rather than a single one. Define the
notion of a grammar* (of Type i) to be a quadruple G = (£,N,A,R) such
that X C N and for all S € X, (S,N,A,R) is a grammar (of Type i). Write
G | 7 if there is an S € X such that § =% 7. We shall see that grammars*
are not more general than grammars with respect to languages. Let G be a
grammar*. Define G¥ as follows. Let S¥ ¢ AUN be a new nonterminal and
add the rules S¥ — X to R for all X € X. It is easy to see that L(G") = L(G).
(Moreover, the derivations differ minimally.) Notice also that we have not
changed the type of the grammar.

The second simplification concerns the requirement that the set of termi-
nals and the set of nonterminals be disjoint. We shall show that it too can be
dropped without increasing the generative power. We shall sometimes work
without this condition, as it can be cumbersome to deal with.

Definition 1.63 A quasi-grammar is a quadruple (S,N,A,R) such that A
and N are finite and nonempty sets, S € N, and R a semi Thue system over
N UA such that if (&, B) € R then & contains a symbol from N.

Proposition 1.64 For every quasi—grammar there exists a grammar which
generates the same language.

Proof. Let (S,N,A, R) be a quasi—grammar. Put N, := NNA. Then assume for
every a € Ny anew symbol Y,. PutY :={Y,:a € N;}, N°:= (N—-N,)UY,
A°:=A.Now N°NA°=@. Weput 8°:=Sif SZA and 8° :=Yq if S € A.
Finally, we define the rules. Let ¢&° be the result of replacing every occurrence
of an a € N, by the corresponding Y,. Then let

(1.88) R :={3°—p°:a—fecRU{Y,~>a:acN,}
Put G° := (8°,N°,A°,R°). We claim that L(G°) = L(G). To that end we define

a homomorphism %: (AUN)* — (A°UN°)* by h(a) := a for a € A—N,,
h(a) := Y, for a € N; and h(X) := X for all X € N —N,. Then h(S) = 8°
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as well as hA(R) C R°. From this it immediately follows that if G F @& then
G° I h(@). (Induction on the length of a derivation.) Since we can derive &
in G° from h(&), we certainly have L(G) C L(G°). For the converse we have
to convince ourselves that an instance of a rule Y, — a can always be moved
to the end of the derivation. For if & — B is arule then it is of type Y, — b and
replaces a Y, by b; and hence it commutes with that instance of the first rule.

Or it is of a different form, namely &° — E °: since a does not occur in &°,
these two instances of rules commute. Now that this is shown, we conclude
from G° F @& already G° - &°. This implies G - ¢. O

The last of the conditions, namely that the left hand side of a production
must contain a nonterminal, is also no restriction. For let G = (S,N,A,R) be a
grammar which does not comply with this condition. Then for every terminal
aleta' be anew symbol and let A' := {a' : a € A}. Finally, for each rule p =
o — ﬁ let p! be the result of replacing every occurrence of an a € A by a' (on
every side of the production). Now set 8’ := S if S ¢ A and S’ := S otherwise,
R :={p':p eR}U{a' — a:a € A}.Finally put G' := (S, NUA",A,R'). Tt
is not hard to show that L(G’) = L(G). These steps have simplified the notion
of a grammar considerably. Its most general form is (X,N,A,R), where L C N
is the set of start symbols and R C (NUA)* x (NUA)* a finite set.

Next we shall show a general theorem for context sensitive languages. A
grammar is called noncontracting if either no rule is contracting or only the
rule S — € is contracting and in this case the symbol S never occurs to the
right of a production. Context sensitive grammars are contracting. However,
not all noncontracting grammars are context sensitive. It turns out, however,
that all noncontracting grammars generate context sensitive languages. (This
can be used also to show that the context sensitive languages are exactly those
languages that are recognized by a linearly space bounded Turing machine.)

Theorem 1.65 A language is context sensitive iff there is a noncontracting
grammar that generates it.

Proof. (=) Immediate. (<) Let G be a noncontracting grammar. We shall
construct a grammar G* which is context sensitive and such that L(G*) =
L(G). To this end, let p = X, X, --- X, | =YY, ---Y,_,, m <n, be a produc-
tion. (As remarked above, we can reduce attention to such rules and rules of
the form X — a. Since the latter are not contracting, only the former kind
needs attention.) We assume m new symbols, Z,, Z,,...,Z _,. Let p‘ be the
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following set of rules.

XXy Xy = ZXy - Xy
2oX\ Xy Xy > 202Xy X,

AR/ R /AR
ZyZy 2, | = YoZ, 2

‘m—1 ‘m—1

WZiZy 2, 2 YoY\2y -2, _,

(1.89)

YWY, 2, =YY,
Let G* be the result of replacing all non context sensitive rules p by p*®.
The new grammar is context sensitive. Now let us be given a derivation in
G. Then replace every instance of a rule p by the given sequence of rules in
p®. This gives a derivation of the same string in G®. Conversely, let us be
given a derivation in G*. Now look at the following. If somewhere the rule
p* is applied, and then a rule from pl* then the instances commute unless
p; = p and the second instance is inside that of that rule instance of p*.
Thus, by suitably reordering the derivation is a sequence of segments, where
each segment is a sequence of the rule p*® for some p, so that it begins with X
and ends with Y. This can be replaced by p. Do this for every segment. This
yields a derivation in G. O
Given that there are Type 0 languages that are not Type 0 (Theorem 1.96)
the following theorem shows that the languages of Type 1 are not closed
under arbitrary homomorphisms.

Theorem 1.66 Let a,b & A be (distinct) symbols. For every language L over
A of Type O there is a language M over AU{a,b} of Type 1 such that for
every X € L there is an i with a’b¥ € M and every ¥y € M has the form a'oX
with X € L.

Proof. We put N* := NU{A,B,S*}. Let
(1.90) p=XX---X, _, =YY --Y _,
be a contracting rule. Then put

(191)  p*:=XX,---X, | = A"V Y, ---Y

n—1



Rewriting Systems 63

p* is certainly not contracting. If p is not contracting then put p* := p. Let
R* consist of all rules of the form p* for p € R as well as the following rules.

s* 5 BS
XA—AX (X eN%

BA — aB
B—b

(1.92)

Let M := L(G*). Certainly, ¥ € M only if ¥ = a’bX for some ¥ € A*. For strings
contain B (or b) only once. Further, A can be changed into a only if it occurs
directly before B. After that we get B followed by a. Hence b must occur
after all occurrences of a but before all occurrences of B. Now consider the
homomorphism v defined by v: A,a,B,b,S* > gandv: X — X for X €N,
v: asafora €A If (i < n) is a derivation in G* then (v(&,): 0 < i < n)
is a derivation in G (if we disregard repetitions). In this way one shows that
a’b¥ € M implies ¥ € L(G). Next, let ¥ € L(G). Let (& : i < n) be a derivation
of X in G. Then do the following. Define Bo = S* and B1 = BS. Further,
let Ei 41 be of the form BAki @; for some k; which is determined inductively.
It is easy to see that Ei 1 oa Ei 12> SO that one can complete the sequence

( Bi :i < n+1) to a derivation. From BA*¥ one can derive a*"b¥. This shows
that a¥bx € M, as desired. O

Now let v: A — B* be a map. v (as well as the generated homomorphism
V) is called e—free if v(a) # € for all a € A.

Theorem 1.67 Let L, and L, be languages of Type i, 0 < i < 3. Then the
following are also languages of Type i.

® L,UL,, L,-L,, L},
@ V[L,], where v is efree.
If i # 1 then V[L,] also is of Type i even if v is not efree.

Proof. Before we begin, we remark the following. If L C A* is a language and
G = (S,N,A,R) a grammar over A which generates L then for an arbitrary
B DA (S,N,B,R) is a grammar over B which generates L C B*. Therefore we
may now assume that L, and L, are languages over the same alphabet. @ is
seen as follows. We have G, = (S,,N,,A,R,) and G, = (S,,N,,A,R,) with
L(G,) = L(G,). By renaming the nonterminals of G, we can see to it that
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N,NN, = @. Now we put N; := N, UN,U{S®} (where S® ¢ N, UN,) and
R:=R,UR,U{S® —,,5° — 8,}. This defines G, := (S°,N;,A,R;). This
is a grammar which generates L, U L,. We introduce a new start symbol S*
together with the rules S* — §,S, where S, is the start symbol of G, and G,
the start symbol of G,. This yields a grammar of Type i except if i = 3. In this
case the fact follows from the results of Section 2.1. It is however not difficult
to construct a grammar which is regular and generates the language L, - L,.
Now for Lj. Let S be the start symbol for a grammar G which generates L.
Then introduce a new symbol St as well as a new start symbol S* together
with the rules

S*—e|s|sst

1.93
(1.95) st —s|sst

This grammar is of Type i and generates L. (Again the case i = 3 is an ex-
ception that can be dealt with in a different way.) Finally, @. Let v be e—free.
We extend it by putting v(X) := X for all nonterminals X. Then replace the
rules p = & — ff by ¥(p) := ¥(&) — ¥(B). If i = 0,2, this does not change the
type. If i = 1 we must additionally require that v is e-free. For if yX 5 Yo 5
is a rule and & is a terminal string we may have (o) = €. This is however
not the case if v is é—free. If i = 3 again a different method must be used. For
now — after applying the replacement — we have rules of the form X — XY
and X — X, X = xx, ---x,_,. Replace the latter by X — x,Z,, Z; — x,Z;, and
Z,_,—x, YandZ ,— x,_,,respectively. O

n n—1°

Definition 1.68 Ler A be a (possibly infinite) set. A nonempty set 8 C f(A*)
is called an abstract family of languages (AFL) over A if the following holds.

@ For every L € S there is a finite B C A such that L C B*.
@ Ifh: A* — A* is a homomorphism and L € 8 then also h[L] € 8.

® Ifh: A* — A* is a homomorphism and L € 8, B C A finite, then also
W= [L]NB* € 8.

@ IfL € § and R is a regular language then LNR € 8.
® IfL,,L, €8 thenalsoL,UL, €S andL,-L, €S.

We still have to show that the languages of Type i are closed with respect to
intersections with regular languages. A proof for the Types 3 and 2 is found
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in Section 2.1, Theorem 2.14. This proof can be extended to the other types
without problems.

The regular, the context free and the Type 0 languages over a fixed al-
phabet form an abstract family of languages. The context sensitive languages
fulfill all criteria except for the closure under homomorphisms. It is easy to
show that the regular languages over A form the smallest abstract family of
languages. More on this subject can be found in (Ginsburg, 1975).

Notes on this section. It is a gross simplification to view languages as sets
of strings. The idea that they can be defined by means of formal processes did
not become apparent until the 1930s. The idea of formalizing rules for trans-
forming strings was first formulated by Axel Thue (1914). The observation
that languages (in his case formal languages) could be seen as generated from
semi Thue systems, is due to Emil Post. Also, he has invented independently
what is now known as the Turing machine and has shown that this machine
does nothing but string transformations. The idea was picked up by Noam
Chomsky and he defined the hierarchy which is now named after him (see
for example (Chomsky, 1959), but the ideas have been circulating earlier). In
view of Theorem 1.66 it is unclear, however, whether grammars of Type O or
1 have any relevance for natural language syntax, since there is no notion of
a constituent that they define as opposed to context free grammars. There are
other points to note about these types of grammars. (Langholm, 2001) voices
clear discontentment with the requirement of a single start symbol, which is
in practice anyway not complied with.

Exercise 27. Let T be a semi Thue system over A and A C B. Then T is
also a semi Thue system 7’ over B. Characterize =7,C B* x B* by means of
=7C A* X A*. Remark. This exercise shows that with the Thue system we
also have to indicate the alphabet on which it is based.

Exercise 28. Let A be a finite alphabet. Every string X is the value of a con-
stant term X composed from constants a for every a € A, the symbol &, and
~. Let T be a Thue system over A. Write TF := {x¥f =3¢ : (%) € T}. Let M
be consist of Equations (1.27) and (1.28). T is an equational theory. Show
that ¥ =% Viff ¥ =4 ¥iff TEUM F3F = yE.

Exercise 29. Prove the Commuting Instances Lemma.
Exercise 30. Show that every finite language is regular.

Exercise 31. Let G be a grammar with rules of the form X — @&. Show that
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L(G) is context free. Likewise show that L(G) is regular if all rules have the
form X — oy~ o, where oy € AU{¢} and o) € NU{¢e}.

Exercise 32. Let G be a grammar in which every rule distinct from X — a is
strictly expanding. Show that a derivation of a string of length n takes at most
2n steps.

Exercise 33. Show that the language {a"b" : n € ®} is context free.

Exercise 34. Write a Type 1 grammar for the language {a"b"c" : n € @} and
one for {X"X:X € A*}.

6. Grammar and Structure

Processes that replace strings by strings can often be considered as processes
that successively replace parts of structures by structures. In this section we
shall study processes of structure replacement. They can in principle operate
on any kind of structure. But we will restrict our attention to algorithms that
generate ordered trees. There are basically two kinds of algorithms: the first is
like the grammars of the previous section, generating intermediate structures
that are not proper structures of the language; and the second, which generates
in each step a structure of the language.

Instead of graphs we shall deal with so—called multigraphs. A directed
multigraph is a structure (V, (K : i < n)) where is V a set, the set of ver-
tices, and K; C V x V a disjoint set, the set of edges of type i. In our case
edges are always directed. We shall not mention this fact explicitly later on.
Ordered trees are one example among many of (directed) multigraphs. For
technical reasons we shall not exclude the case V = &, so that (&, (& : i < n))
also is a multigraph. Next we shall introduce a colouring on the vertices. A
vertex—colouring is a function u,, : V — F,, where F;, is a nonempty set, the
set of vertex colours. Think of the labelling as being a vertex colouring on
the graph. The principal structures are therefore vertex coloured multigraphs.
However, from a technical point of view the different edge relations can also
be viewed as colourings on the edges. Namely, if v and w are vertices, we
colour the edge (v,w) by the set {i: (v,w) € K;}. This set may be empty.

Definition 1.69 An (F,, Fy)—coloured multigraph or simply a y-graph (over
Fy, and Fy) is a triple (V, L, Ug), where V is a (possibly empty) set and
My V = F,aswell as pg: VXV — @(Fy) are functions.
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Figure 5. Graph Replacement

Now, in full analogy to the string case we shall distinguish terminal and non-
terminal colours. For simplicity, we shall study only replacements of a single
vertex by a graph. Replacing a vertex by another structure means embedding
a structure into some other structure. We need to be told how to do so. Before
we begin we shall say something about the graph replacement in general. The
reader is asked to look at Figure 5. The graph & is the result of replacing in
&, the encircled dot by &,. The edge colours are 1 and 2 (the vertex colours
pose no problems, so they are omitted here for clarity).

Let & = (E, U, lig) be a y—graph and M, and M, be disjoint subsets of E
with M; UM, = E. Put MM, = (M,, u},, u.), where wl, ==, | M; and pf =
Ug | M; x M,. These graphs do not completely determine & since there is
no information on the edges between them. We therefore define functions
in,out: M, x Fz — @(M,), which for every vertex of M, and every edge
colour name the set of all vertices of M, which lie on an edge with a vertex
that either is directed into M, or goes outwards from M.

(1.942) in(x, f) = {y e M, : f € pg({»x))}
(1.94b)  out(x, f) :={y e M, : f € ug((x,y)}

It is clear that 901, 91, and the functions in and out determine & completely.
In our example we have

(1.95) in(p,1) = {x} in(p,2) =90
out(p,1) =& out(p,2) = {w,y}
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Now assume that we want to replace 91, by a different graph §). Then not
only do we have to know §) but also the functions in,out: H x F, — @(M,).
This, however, is not the way we wish to proceed here. We want to formu-
late rules of replacement that are general in that they do not presuppose exact
knowledge about the embedding context. We shall only assume that the func-
tions in(x, f) and out(x, f), x € H, are systematically defined from the sets
in(y,g), out(y,g), y € M,. We shall therefore only allow to specify how the
sets of the first kind are formed from the sets of the second kind. This we do
by means of four so—called colour functionals. A colour functional from £}
to 9, is a map

(1.96) §: Hx Fy = (M, X Fy)

In our case a functional is a function from {a,b,c} x {1,2} to @p({p} x
{1,2}). We can simplify this to a function from {a,b,c} x {1,2} to ({1,2}).
The colour functionals are called JJ, J9O, O7J and 8. For the example of
Figure 5 we get the following colour functionals (we only give values when
the functions do not yield @).

(1.97) 33: (b, 1) — {1} 07T: (a,2) — {1}
10: o 0O (c,2) — {2}
The result of substituting 91, by $) by means of the colour functionals from

§ is denoted by &[$)/M, : F|. This graph is the union of M, and §) together
with the functions in* and out™, which are defined as follows.

in®(x, )= |J(in(x, ) 8 €J3(x, f))
(1.98) U(ou 1g € OT3(x, 1))
outt(x, f) :== U(Ou (x, ) g€ 0O(x, f))
U(m 18 €I90(x, f))

If g € 33(x, f) we say that an edge with colour g into x is transmitted as
an ingoing edge of colour f to y. If g € OJ(x, f) we say that an edge with
colour g going out from x is transmitted as an ingoing edge with colour f to
y. Analogously for JO and ©9O. So, we do allow for an edge to change colour
and direction when being transmitted. If edges do not change direction, we
only need the functionals JJ and O£, which are then denoted simply by J
and ©. Now we look at the special case where M, consists of a single element,
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say x. In this case a colour functional simply is a function §: H x Fp —
(F).

Definition 1.70 A context free graph grammar with edge replacement — a
context free y—grammar for short — is a quintuple of the form

(1.99) I'=(6,F,F  ,F,R)

in which Fy, is a finite set of vertex colours, Fy a finite set of edge colours,
Fr' C Fy a set of so—called terminal vertex colours, & a y-graph over F,,
and Fy, the so—called start graph, and finally R a finite set of triples (X, 9, F)
such that X € F, — F}' is a nonterminal vertex colour; §) a y-graph over F,
and Fy and T is a matrix of colour functionals.

A derivation in a y—grammar I" is defined as follows. For y—graphs & and $
with the colours F,, and Fy, ® =} $ means that there is (X,9,F) € R such
that $ = B[M/X : F], where X is a subgraph consisting of a single vertex x
having the colour X. Further we define =% to be the reflexive and transitive
closure of =% and finally we put ' & if & =% &. A derivation terminates
if there is no vertex with a nonterminal colour. We write L,(I") for the class
of y—graphs that can be generated from I'. Notice that the edge colours only
the vertex colours are used to steer the derivation.

We also define the productivity of a rule as the difference between the
cardinality of the replacing graph and the cardinality of the graph being re-
placed. The latter is 1 in context free y—grammars, which is the only type
we shall study here. So, the productivity is always > —1. It equals —1 if the
replacing graph is the empty graph. A rule has productivity O if the replacing
graph consists of a single vertex. In the exercises the reader will be asked to
verify that we can dispense with rules of this kind.

Now we shall define two types of context free y—grammars. Both are con-
text free as y—grammars but the second type can generate non—CFLs. This
shows that the concept of y—grammar is more general. We shall begin with
ordinary CFGs. We can view them alternatively as grammars for string re-
placement or as grammars that replace trees by trees. For that we shall now
assume that there are no rules of the form X — €. (For such rules generate
trees whose leaves are not necessarily marked by letters from A. This case
can be treated if we allow labels to be in A = AU {€}, which we shall not do
here.) Let G = (S,A,N,R) be such a grammar. We put F}, := AU (N x 2). We
write X© for (X,0) and X! for (X,1). i/ := AUN x {0}. F := {<,C}. Fur-
thermore, the start graph consists of a single vertex labelled S! and no edge.
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The rules of replacement are as follows. Let p = X — ot -~ o, _, be arule
from G, where none of the ; is €. Then we define a y—graph §),, as follows.

Hp = {y; 1i <n}U{x}. py (x) = X°, py (v;) = & if o € A and py (v,) = o
if o, € N.

up'({<}) =
uz'({ch):

This defines §),. Now we define the colour functionals. For u € n we put

Jpo(u,C) :={C} Opu,C):={C}
Jp(u, <) :i={<} Opu,<) :={<}

(y;,x) 1 i < n},

(1.100) Y
(Vpy;) ri<j<n}.

{
{

(1.101)

Finally we put p¥ := (X, 9,,{3,,0,}). R := {p”: p €R}.
(1.102) G :=(&,F,,F} ,F,R")

We shall show that this grammar yields exactly those trees that we associate
with the grammar G. Before we do so, a few remarks are in order. The nonter-
minals of G are now from a technical viewpoint terminals since they are also
part of the structure that we are generating. In order to have any derivation
at all we define two equinumerous sets of nonterminals. Each nonterminal N
is split into the nonterminal N ! (which is nonterminal in the new grammar)
and N° (which is now a terminal vertex colour). We call the first kind ac-
tive, nonactive the second. Notice that the rules are formulated in such a way
that only the leaves of the generated trees carry active nonterminals. A sin-
gle derivation step is displayed in Figure 6. In it, the rule X — AcA has been
applied to the tree to the left. The result is shown on the right hand side. It
is easy to show that in each derivation only leaves carry active nonterminals.
This in turn shows that the derivations of the y—grammar are in one to one
correspondence with the derivations of the CFGs. We put

(1.103)  Ly(G) := h[L,(YG)]

This is the class of trees generated by yG, with X° and X! mapped to X
for each X € N. The rules of G can therefore be interpreted as conditions
on labelled ordered trees in the following way. € is called a local subtree
of B if (i) it has height 2 (so it does not possess inner nodes) and (ii) it
is maximal with respect to inclusion. For a rule p =X — Y,Y,---Y,_| we
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Figure 6. Replacement in a Context Free Grammar

define Ly := {y; : i <n}U{x}, <p:={({y,x) i <n}, Cpi={{y;y;)1i <
Jj < n},and finally £, (x) := X, £(y;) =Y. £, := (Lp,<p,Cp,%p). Now, an
isomorphism between labelled ordered trees B = (B, <gq,Cg,4e) and € =
(C,<¢Ceybe) is a bijective map h: B — C such that h[<gz] = <, h[Cy
| =C¢ and £, (h(x)) = £g(x) for all x € B.

Proposition 1.71 Let G = (S,N,A,R). B € Ly(G) iff every local tree of B is
isomorphic to an £, such that p € R.

Theorem 1.72 Let B be a set of trees over an alphabet AU N with terminals
from A. Then B = Lg(G) for a CFG G iff there is a finite set {£;: i < n} of
trees of height 2 and an S such that 5 € B exactly if

® the root carries label S,
@ a label is terminal iff the node is a leaf, and

@ every local tree is isomorphic to some £,.

We shall derive a few useful consequences from these considerations. It is
clear that YG generates trees that do not necessarily have leaves with terminal
symbols. However, we do know that the leaves carry labels either from A or
from N'! := N x {1} while all other nodes carry labels from N := N x {0}.
For a labelled tree we define the associated string sequence k(*8) in the usual
way. This is an element of (AUN")*. Let v: AU (N x 2) — AUN be defined
by v(a) :=a,a € A and v(X°) := v(X!) := X for X € N.
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Lemma 1.73 Let YG & B and & = k(*B). Then & € (AUN")* and G +9(&).

Proof. Induction over the length of the derivation. If the length is O then
& = s' and ¥(S!) = S. Since G - S this case is settled. Now let B be the
result of an application of some rule p¥ on € where p = X — 7. We then have
k(€) € (AUN')*. The rule p? has been applied to a leaf; this leaf corresponds
to an occurrence of X! in k(€). Therefore we have k(€) = 7j,” X' 7,. Then
k($B) =1,”7"1},. k(B) is the result of a single application of the rule p from

k(€). O

Definition 1.74 Let B be a labelled ordered tree. A cut through B is a max-
imal set that contains no two elements comparable by <. If B is exhaustively
ordered, a cut is linearly ordered and labelled, and then we also call the
string associated to this set a cut.

Proposition 1.75 Let yG B and let & be a cut through 8. Then G - v(&).

This theorem shows that the tree provides all necessary information. If you
have the tree, all essential details of the derivation can be reconstructed (up
to commuting applications of rules). Now let us be given a tree 98 and let o
be a cut. We say that an occurrence C of ¥ in ¢ is a constituent of category
X in 9B if this occurrence of ¥ in & is that cut defined by & on |x where
x carries the label X. This means that & = 1, 7"%,, C = (1},,7,), and x
contains exactly those nodes that do not belong to 7, or 7,. Further, let G be
a CFG. A substring occurrence of ¥ is a G—constituent of category X in ¢ if
there is a YG—tree for which there exists a cut & such that the occurrence 7 is
a constituent of category X. If G is clear from the context, we shall omit it.

Lemma 1.76 Let B be a YG—tree and ©. a cut through $B. Then there exists
a tree € with associated string ¥ and v(y) = v(&).

Lemma 1.77 Let G+ 0,"7 ¢, C = (¢, 0,) an occurrence of ¥ as a G—
constituent of category X. Then C is a G—constituent occurrence of X in
CX)=0a,"X"a,.

For a proof notice that if ¢, "7~ @, is a cut and ¥ is a constituent of category
X therein then &, X" @, also is a cut.

Theorem 1.78 (Constituent Substitution) Suppose that C is an occurrence
of B as a G—constituent of category X. Furthermore, let X \- 7. Then G +
C(Y) = 0,”7" &, and C is a G—constituent occurrence of ¥ of category X.
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Proof. By assumption there is a tree in which E is a constituent of category
X ina~ ﬁ“&z. Then there exists a cut &, ~X" @, through this tree, and by
Lemma 1.76 there exists a tree with associated string &, "X~ @,. Certainly
we have that X is a constituent in this tree. However, a derivation X . 7
can in this case be extended to a yG—derivation of ¢&,~7" @, in which ¥ is a
constituent. O

Lemma 1.79 Let G be a CFG. Then there exists a number k, such that for
each derivation tree of a string of length > k, there are two constituents |y
and | z of identical category such that y < z or z <y, and the associated
strings are different.

Proof. To begin, notice that nothing changes in our claim if we eliminate the
unproductive rules. This does not change the constituent structure. Now let
7 be the maximum of all productivities of rules in G, and v := |N/|. Then let
kg = (1+ 7)Y+ 1. We claim that this is the desired number. (We can assume
that 7 > 0. Otherwise G only generates strings of length 1, and then k; := 2
satisfies our claim.) For let X be given such that |X| > k. Then there exists in
every derivation tree a branch of length > v. (If not, there can be no more than
7V leaves.) On this branch we have two nonterminals with identical label. The
strings associated to these nodes are different since we have no unproductive
rules. O

We say, an occurrence C is a left constituent part (right constituent
part) if C is an occurrence of a prefix (suffix) of a constituent. An occurrence
of X contains a left constituent part 7 if some suffix of X is a left constituent
part. We also remark that if i is a left constituent part and a proper substring
of X then X = V¥, # with V| a possibly empty sequence of constituents and V a
right constituent part. This will be of importance in the sequel.

Lemma 1.80 Ler G be a CFG. Then there exists a number kg, such that for
every derivation tree of a string X and every occurrence in X of a string 7
of length > ki; 7 contains two different left or two different right constituent
parts ¥ and y, of constituents that have the same category. Moreover, ¥ is a
prefix of | or ¥, a prefix of ¥ in case that both are left constituent parts, and y
is a suffix of ¥, or ¥, a suffix of y in case that both are right constituent parts.

Proof. Let v := |N| and let  be the maximal productivity of a rule from G.
We can assume that & > 2. Put kj; := (2+27)". We show by induction on
the number m that a string of length > (2+2x)™ has at least m left or at least
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m right constituent parts that are contained in each other. If m = 1 the claim
is trivial. Assume that it holds for m > 1. We shall show that it also holds
for m+ 1. Let Z be of length > (2+27)™ . Let ¥ =[], ¥; for certain
X; with length at least (24 27)™. By induction hypothesis each X, contains
at least m constituent parts. Now we do not necessarily have (27 + 2)m con-
stituent parts in X. For if X; contains a left part then X; with j > i may contain
the corresponding right part. (There is only one. The sections in between con-
tain subwords of that constituent occurrence.) For each left constituent part
we count at most one (corresponding) right constituent part. In total we have
at least (14 m)m > m+ 1 constituent parts. However, we have to verify that
at least m+ 1 of these are contained inside each other. Assume this is not the
case, for all i. Then X;, i < 27 + 2, contains exactly m left or exactly m right
constituent parts. Case 1. X, contains m left constituent parts inside each other.
If X, also contains m left constituent parts inside each other, we are done. Now
suppose that this is not the case. Then X, contains m right constituent parts
inside each other. Then we obviously get m entire constituents stacked inside
each other. Again, we would be done if ¥, contained m right constituent parts
inside each other. If not, then X, contains exactly m left constituent parts. And
again we would be done if these would not correspond to exactly m right part
that X; contains. And so on. Hence we get a sequence of length 7 of con-
stituents which each contain m constituents stacked inside each other. Now
three cases arise: (a) one of the constituents is a left part of some constituent,
(b) one of the constituent is a right part of some constituent. (For if neither
is the case, we have a rule of arity > 7, a contradiction.) In Case (a) we evi-
dently have m+ 1 left constituent parts stacked inside each other, and in Case
(b) m+ 1 right constituent parts. Case 2. X, contains m right hand constituents
stacked inside each other. Similarly. This shows our auxiliary claim. Putting
m := VvV + 1 the main claim now follows. O

Theorem 1.81 (Pumping Lemma) Given a CFL L there exists a p; such
that for every string 7 € L of length at least p; and an occurrence of a string
7 of length at least p; inZ, Z possesses a decomposition

(1.104) Z=u"X"vVy"w
such that the following holds.
O X"y #e.

@ Either the occurrence of X or the occurrence of y is contained in the
specified occurrence of V.



Grammar and Structure 75

@ {#X'~ vy ~w:icw}CL

(The last property is called the pumpability of the substring occurrences of
X and y.) Alternatively, in place of @ one may require that |V| < p,. Further
we can choose p; in such a way that every derivable string 7 with designated
occurrences of a string ¢ of length > p can be decomposed in the way given.

Proof. Let G be a grammar which generates L. Let p; be the constant defined
in Lemma 1.80. We look at a G—tree of 7 and the designated occurrence of 7.
Suppose that 7 has length at least p, . Then there are two left or two right con-
stituent parts of identical category contained in 7. Without loss of generality
we assume that 7 contains two left parts. Suppose that these parts are not fully
contained in 7. Then 7 = §X5'| where X5, and §, are left constituent parts of
identical category, say X. Now |¥| > 0. There are §, and ¥ such that V := ¥, 5,
and X5, 5,¥ are constituents of category X.
Hence there exists a decomposition

(1.105) Z=u"x"v'y"w

where V is a constituent of the same category as XV satisfying @ and @. By
the Constituent Substitution Theorem we may replace the occurrence of XvV'y
by ¥ as well as ¥ by XV¥. This yields @, after an easy induction. Now let the
smaller constituent part be contained in 7 but not the larger one. Then we have
a decomposition 7 = §XV§,; such that ¥ is a constituent part of category X and
XV§| aleft constituent part of a constituent of category X. Then there exists a
§, such that also XV §, is a constituent of category X. Now put y := §,5,. Then
we also have ¥ # €. The third case is if both parts are proper substrings of 7.
Also here we find the desired decomposition. If we want to have in place of
@ that ¥ is as small as possible then notice that ¥ already is a constituent. If it
has length > (1+ 7)Y then there is a decomposition of ¥ such that it contains
pumpable substrings. Hence in place of @ we may require that [V| < p.. O

The Pumping Lemma can be stated more concisely as follows. For every
large enough derivable string X there exist contexts C, D, where C # (&, €),
and a string ¥ such ¥ = D(C(¥)), and D(CX(¥)) € L for every k € ®. The
strongest form of a pumping lemma is the following. Suppose that we have
two decompositions into pumping pairs i, "X, "V, "V, "W, il, "X, "V, 7Y, " W,.
We say that the two pairs are independent if either (1a) i, ~X,”V, ", is a pre-
fix of it,, or (1b) ii,"X,”V,"¥, is a prefix of ii |, or (1¢) i, "X, is a prefix of i,
and y, "W, a suffix of w,, or (1d) ii,"X, is a prefix of ii; and y, "W, a suffix of
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w, and (2) each of them can be pumped any number of times independently
of the other.

Theorem 1.82 (Manaster-Ramer & Moshier & Zeitman) Let L be a CFL.
Then there exists a number m; such that if X € L and we are given km; occur-
rences of letters in X there are k independent pumping pairs, each of which
contains at least one and at most m; of the occurrences.

This theorem implies the well-known Ogden’s Lemma (see (Ogden, 1968)),
which says that given at least m; occurrences of letters, there exists a pumping
pair containing at least one and at most m; of them.

Notice that in all these theorems we may choose i = 0 as well. This means
that not only we can pump ‘up’ the string so that it becomes longer except
if i =1, but we may also pump it ‘down’ (i = 0) so that the string becomes
shorter. However, one can pump down only once. Using the Pumping Lemma
we can show that the language {a"b"c” : n € ®} is not context free.

For suppose the contrary. Then there is an m such that for all k > m the
string a*b*ck can be decomposed into

(1.106)  a*bfck =~ v woxy
Furthermore there is an ¢ > k such that
(1.107)  allct =i v w x>y

The string V"X contains exactly £ — k times the letters a, b and c. It is clear
that we must have ¥ C a* Ub* U ¢*. For if ¥ contains two distinct letters,
say b and ¢, then ¥ contains an occurrence of b before an occurrence of ¢
(certainly not the other way around). But then v 2 contains an occurrence of
c before an occurrence of b, and that cannot be. Analogously it is shown that
¥ € a* Ub* U c*. But this is a contradiction. We shall meet this example of a
non—CFL quite often in the sequel.

The second example of a context free graph grammar shall be the so—
called tree adjunction grammars. We take an alphabet A and a set N of non-
terminals. A centre tree is an ordered labelled tree over AU N such that all
leaves have labels from A all other nodes labels from N. An adjunction tree
is an ordered labelled tree over AUN which is distinct from ordinary trees
in that of the leaves there is exactly one with a nonterminal label; this label
is the same as that of the root. Interior nodes have nonterminal labels. We
require that an adjunction tree has at least one leaf with a terminal symbol.
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X
Y ¢ A a
X
b b
a A a

Figure 7. Tree Adjunction

An unregulated tree adjunction grammar, briefly UTAG, over N and A,
is a quadruple (C,N,A,A) where C is a finite set of centre trees over N and
A, and A a finite set of adjunction trees over N and A. An example of a tree
adjunction is given in Figure 7. The tree to the left is adjoined to a centre tree
with root X and associated string bXb; the result is shown to the right. Tree
adjunction can formally be defined as follows. Let 8 = (B, <,C,£) be a tree
and 2 = (A, <,C,m) an adjunction tree. We assume that r is the root of 2
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and that s is the unique leaf such that m(r) = m(s). Now let x be a node of B
such that £(x) = m(r). Then the replacement of x by B is defined by naming
the colour functionals. These are

{C,<} ifsCy,

1.108 J33,(y,C) = D3,(y,C) =2
( ) p(y ) {{E} clse. p(y )
if
= { ErES 09, () == {C}
else.
if y >
(1.109)  33,(y,< :{ ity 2s. 30, (5,<) =@
else.
OJp(y,<) =2 00, <) :={<}

Two things may be remarked. First, instead of a single start graph we have a
finite set of them. This can be remedied by standard means. Second, all vertex
colours are terminal as well as nonterminal. One may end the derivation at any
given moment. We have noticed in connection with grammars for strings that
this can be remedied. In fact, we have not defined context free y—grammars
but context free quasi y—grammars*. However, we shall refrain from being
overly pedantic. Suffice it to note that the adjunction grammars do not define
the same kind of generative process if defined exactly as above.

Finally we shall give a graph grammar which generates all strings of the
form a"b"c", n > 0. The idea for this grammar is due to Uwe Ménnich (1999).
We shall exploit the fact that we may think of terms as structures. We posit
a ternary symbol, F, which is nonterminal, and another ternary symbol, £,
which is terminal. Further, there is a binary terminal symbol ~. The rules
are as follows. (To enhance readability we shall not write terms in Polish
Notation but by means of brackets.)

F(x,y,2) = F(a"x,07y,c"2),

1.110
( ) F(x,y,2) = £(x,,2).

These rules constitute a so—called term replacement system. The start term
is F(a,b,c). Now suppose that u — v is a rule and that we have derived a
term ¢ such that u® occurs in ¢ as a subterm. Then we may substitute this
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occurrence by v°®. Hence we get the following derivations.

F(a,b,c) —
F(a,b,c) —

a,b,c),

~

a"a,b"b,c"¢c

)
a"a,b"b,c"¢)
(1.111D) )

£(
F(
— £(

F(a,b,c) > F(a"a,b"b,c ¢
—F(a"(a"a),b”(b7b),c"(c"c))
—f(a"(a"a),b”(b7b),c"(c"c))

Notice that the terms denote graphs here. We make use of the dependency
coding. Hence the associated strings to these terms are abc, aabbcc and
aaabbbccc.

In order to write a graph grammar which generates the graphs for these
terms we shall have to introduce colours for edges. Put F, := {0,1,2,C, <},
F, := {F,f,a,b,c}, and F{/ := {£,a,b,c}. The start graph is as follows. It
has four vertices, p, g, r and s. (< is empty (!), and g C r C s.) The labelling
isp—F,g—a r—bands+— c.

F
(1.112) %Iy

There are two rules of replacement. The first can be written schematically
as follows. The root, x, carries the label F and has three incoming edges;
their colours are 0, 1 and 2. These come from three disjoint subgraphs, &,
&, and &,, which are ordered trees with respect to < and C and in which
there are no edges with colour 0, 1 and 2. In replacement, x is replaced by a
graph consisting of seven vertices, p, g;, r; and s;, i < 2, where g; C riE S

i,j,k <2,and ¢ g p,r 5 pand s % p. <=1{{491,490),{r{>70),{51,50) }- The
colouring is

p —F qy »° ry =7 55 97

(1.113) g, —a r, —=b s —c

(With {p,q,,r,,s,} we reproduce the begin situation.) The tree &, is attached
to g, to the right of ¢, &, to r, to the right of , and &, to s, to the right of
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s,. Additionally, we put x < p for all vertices x of the &,. (So, the edge (x, p)
has colour < for all such x.) By this we see to it that in each step the union of
the relations <, 0, 1 and 2 is the intended tree ordering and that there always
exists an ingoing edge with colour 0, 1 and 2 into the root.

The second replacement rule replaces the root by a one vertex graph with
label £ at the root. This terminates the derivation. The edges with label 0, 1
and 2 are transmitted under the name <. This completes the tree. It has the
desired form.

Exercise 35. Strings can also be viewed as multigraphs with only one edge
colour. Show that a CFG for strings can also be defined as a context free
Y—grammar on strings. We shall show in Section 2.6 that CFLs can also be
generated by UTAGs, but that the converse does not hold.

Exercise 36. Show that for every context free y—grammar I there exists a
context free y—grammar A which has no rules of productivity —1 and which
generates the same class of graphs.

Exercise 37. Show that for every context free y—grammar there exists a con-
text free y—grammar with the same yield and no rules of productivity < 0.

Exercise 38. Define unregulated string adjunction grammars in a similar way
to UTAGs. Take note of the fact that these are quasi—grammars. Characterize
the class of strings generated by these grammars in terms of ordinary gram-
mars.

Exercise 39. Show that the language {W™W : w € A*} is not context free
but that it satisfies the Pumping Lemma. (It does not satisfy the Interchange
Lemma (2.111).)

7. Turing machines

We owe to (Turing, 1936) and (Post, 1936) the concept of a machine which
is very simple and nevertheless capable of computing all functions that are
believed to be computable. Without going into the details of what makes a
function computable, it is nowadays agreed that there is no loss if we define
‘computable’ to mean computable by a Turing machine. The essential idea
was that computations on objects can be replaced by computations on strings.
The number n can for example be represented by 7+ 1 successive strokes on
a piece of paper. (So, the number O is represented by a single stroke. This is
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really necessary.) In addition to the stroke we have a blank, which is used to
separate different numbers. The Turing machine, however powerful, takes a
lot of time to compute even the most basic functions. Hence we agree from
the start that it has an arbitrary, finite stock of symbols that it can use in
addition to the blank. A Turing machine is a physical device, consisting of a
tape which is infinite in both directions. That is, it contains cells numbered
by the set of integers (but the numbering is irrelevant for the computation).
Each cell may carry a symbol from an alphabet A or a blank. The machine
possesses a read and write head, which can move between the cells, one at
a time. Finally, it has finitely many states, and can be programmed in the
following way. We assign instructions for the machine that tell it what to do
on condition that it is in state g and reads a symbol a from the tape. These
instruction tell the machine whether it should write a symbol, then move the
head one step or leave it at rest, and subsequently change to a state g’

Definition 1.83 A (nondeterministic) Turing machine is a quintuple

(1.114) T =(A,L,Q,q,,f)

where A is a finite set, the alphabet, L ¢ A is the so—called blank, Q a finite
set, the set of (internal) states, q, € Q the initial state and

(1.115)  f: A, xQ— (A, x {~1,0,1} x Q)

the transition function. If for allb € A; and q € Q |f(b,q)| < 1, the machine
is called deterministic.

Here, we have written A, in place of AU{L}. Often, we use L or even [J
as particular blanks. What this describes physically is a machine that has a
two—sided infinite tape (which we can think of as a function 7: Z — A,),
with a read/write head positioned on one of the cells. A computation step
is as follows. Suppose the machine scans the symbol a in state ¢ and is on
cell i € Z. Then if {b,1,q') € f(a,q), the machine may write b in place of a,
advance to cell i+ 1 and change to state ¢'. If (b,0,4') € f(a,q) the machine
may write b in place of a, stay in cell i and change to state ¢’. Finally, if
(b,—1,q4") € f(a,q), the machine may write b in place of a, move to cell i — 1
and switch to state ¢'. Evidently, in order to describe the process we need (i)
the tape, (ii) the position of the head of that tape, (iii) the state the machine is
currently in. We assume throughout that the tape is almost everywhere filled
by a blank. (The locution ‘almost all’ and ‘almost everywhere’ is often used
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in place ‘all but finitely many’ and ‘all but finitely many places’, respectively.)
This means that the content of the tape plus the information on the machine
may be coded by a single string, called configuration. Namely, if the tape is
almost everywhere filled by a blank, there is a unique interval [m,n| which
contains all non—blank squares and the head of the machine. Suppose that the
machine head is on Tape £. Then let X, be the string defined by the interval
[m,£ — 1] (it may be empty), and X, the string defined by the interval [£,n].
Finally, assume that the machine is in state g. Then the string X, ~¢"X, is the
configuration corresponding to that phyical configuration. So, the state of the
machine is simply written behind the symbol of the cell that is being scanned.
(Obviously, A and Q are assumed to be disjoint.)

Definition 1.84 Ler T = (A,L,Q,q,, f) be a Turing machine. A T—configu-
ration is a string Xqy € A} x Q X A} such that X does not begin and y does not
end with a blank.

This configuration corresponds to a situation that the tape is almost empty
(that is, almost all occurrences of symbols on it are blanks). The nonempty
part is a string X, with the head being placed somewhere behind the prefix ii.
Since X = #iV for some ¥, we insert the state the machine is in between i and
V. The configuration omits most of the blanks, whence we have agreed that
ligv is the same configuration as (liigV and the same #igv].

We shall now describe the working of the machine using configurations.
We say, X"¢"y is transformed by 7" in one step into X, "¢, "y, and write
X"q"yE, X,7q,”¥, if one of the following holds.

® X, =X, and for some V and b and ¢ we have y = b"V and y, = ¢V, as
well as (c,0,q,) € f(b,q).

@ We have X, =X"cand y=b"y, as well as (¢, 1,q,) € f(b,q).
® Wehave X =X,"cand ¥, = b~y as well as (c,—1,q,) € f(b,q).

Now, for T—configurations Z and Z' we define Z ;. Z' inductively by (a)
ZH).Z'iff Z=7"and (b) Z l—'%‘“ Z' iff for some Z" we have Z+}. 2"+, Z'.

It is easy to see that we can define a semi Thue system on configurations
that mimicks the computation of 7. The canonical Thue system, C(T), is
shown in Table 2. (x and y range over A; and g and ¢’ over Q.) Notice that
we have to take care not to leave a blank at the left and right end of the
strings. This is why the definition is more complicated than expected. The
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Table 2. The Canonical Thue System

C(T) = {(tigxv,iiyg'V) : (y,1,4') € f(x,q):li # € ory € A;
V#£eorxeA}
iig,iyq') : (v,1,4') € f(O,q);ii #€orye A}

-

< 7
(gxv,¢'V) : (O,1,¢') € f(x,q);V #£€orx €A}
o.4): 0] €700 € (100}

CcC CCCcC

i#eorxcAv#eorycA}

(qv,d'y) : (y,—1,4') € f(O,q);V #€ory € A}

(ixg,iiq') : (O, ~1,q') € f(x,q);ii #€orx € A}
(iigxv,iiq'yv) : (y,0,4") € f(x,q);

V#eorx,y €A}

cC C

alphabet of the semi Thue system is (QUA, )*. The following is easily shown
by induction.

Proposition 1.85 Let T be a Turing machine, C(T) be its associated semi
Thue system. Then for all T—configurations Z and Z' and for alln > 0: Z+4. Z'
iff Z :%(T) Z'. Moreover, if Z is a T—configuration and Z :>2(T) i for an
arbitrary string ii € (QUA,)*, then ii is a T—configuration and Z V}. ii.

Of course, the semi Thue system defines transitions on strings that are not
configurations, but this is not relevant for the theorem.

Definition 1.86 Let T be a Turing machine, Z a configuration and X € A*.
Z is called an end configuration if there is no configuration Z' such that
Z 't Z'. T accepts X if there is an end configuration Z such that q,"X 5 Z.
The language accepted by T, L(T), is the set of all strings from A* which are
accepted by T.

It takes time to get used to the concept of a Turing machine and the languages
that are accepted by such machines. We suggest to the interested reader to
play a little while with these machines and see if he can program them to
compute a few very easy functions. A first example is the machine which
computes the successor function on binary strings. Assume our alphabet is
{0,1}. We want to build a machine which computes the next string for X in
the numerical encoding (see Section 1.2 for its definition). This means that if
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Table 3. The Successor Machine

Q() 0 = <OalaQO>
1 = <1717QO)
0 = <Da_17Q1>
Q1 0 = <1a_1aq2>
1 = <07 17q1>
O — (0,—1,q5)
QZ 0 = <07_1aq2>
1 = <1a_17Q2>
D — <|:|701q3>
a3

the machine starts with g, "X it shall halt in the configuration ¢,”y where ¥ is
the word immediately following X in the numerical ordering. (If in the sequel
we think of numbers rather than strings we shall simply think instead of the
string X of the number n, where X occupies the nth place in the numerical
ordering.)

How shall such a machine be constructed? We need four states, g;, i < 4.
First, the machine advances the head to the right end of the string, staying in
g, until it reads (. Finally, when it hits [J, it changes to state g, and starts
moving to the left. As long as it reads 1, it changes 1 to 0 and continues in
state ¢,, moving to the left. When it hits 0, it replaces it by 1, moves left and
changes to state g,. When it sees a blank, that blank is filled by 0 and the
machine changes to state g5, the final state. In g,, the machine simply keeps
moving leftwards until it hits a blanks and then stops in state ¢5. The machine
is shown in Table 3. (If you want a machine that computes the successor
in the binary encoding, you have to replace Line 6 by O +— (1,—1,¢5).) In
recursion theory the notions of computability are defined for functions on the
set of natural numbers. By means of the function Z, which is bijective, these
notions can be transferred to functions on strings.

Definition 1.87 Let A and B be alphabets and f: A* — B* a function. f is
called computable if there is a deterministic Turing machine T such that for
every X € A* there is a q, € Q such that q,"X =} q,” f(X) and q,” f(X) is an
end configuration. Let L C A*. L is called recursively enumerable if L = &
or there is a computable function f: {0,1}* — A* such that f[{0,1}*] =L.
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L is decidable if both L and A* — L are recursively enumerable.

Lemma 1.88 Let f: A* — B* and g: B* — C* be computable functions.
Then go f: A* — C* is computable as well.

The proof is a construction of a machine U from machines T and T' comput-
ing f and g, respectively. Simply write 7 and 7' using disjoint sets of states,
and then take the union of the transition functions. However, make the transi-
tion function of T first such that it changes to the starting state of 7' as soon
as the computation by T is finished (that is, whenever T" does not define any
transitions).

Lemma 1.89 Let f: A* — B* be computable and bijective. Then f~': B* —
A* also is computable (and bijective).

Write a machine that generates all strings of A* in successive order (using the
successor machine, see above), and computes f(X) for all these strings. As
soon as the target string is found, the machine writes X and deletes everything
else.

Lemma 1.90 Ler A and B be finite alphabets. Then there are computable
bijections f: A* — B* and g: B* — A* such that f = g L

In this section we shall show that the recursively enumerable sets are exactly
the sets which are accepted by a Turing machine. Further, we shall show that
these are exactly the Type O languages. This establishes the first correspon-
dence result between types of languages and types of automata. Following
this we shall show that the recognition problem for Type O languages is in
general not decidable. The proofs proceed by a series of reduction steps for
Turing machines. First, we shall generalize the notion of a Turing machine.
A k—tape Turing machine is a quintuple (A,L,Q,q,, f) where A, L, Q, and
q, are as before but now

(1.116)  f: A¥ x 0 — (A% x {~1,0,1} x Q)

This means, intuitively speaking, that the Turing machine manipulates k tapes
in place of a single tape. There is a read and write head on each of the tapes.
In each step the machine can move only one of the heads. The next state
depends on the symbols read on all the tapes plus the current internal state.
The initial configuration is as follows. All tapes except the first are empty.
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The heads are anywhere on these tapes (we may require them to be in posi-
tion 0). On the first tape the head is immediately to the left of the input. The
k—tape machine has k — 1 additional tapes for recording intermediate results.
The reader may verify that we may also allow such configurations as initial
configurations in which the other tapes are filled with some finite string, with
the head immediately to the left of it. This does not increase the recognition
power. However, it makes the definition of a machine easier which computes
a function of several variables. We may also allow that the information to the
right of the head consists in a sequence of strings each separated by a blank
(so that when two successive blanks follow the machine knows that the input
is completely read). Again, there is a way to recode these machines using
a basic multitape Turing machine, modulo computable functions. We shall
give a little more detail concerning the fact that also k—tape Turing machines
(in whatever of the discussed forms) cannot compute more functions than
1-tape machines. For this define the following coding of the k tapes using
a single tape. We shall group 2k cells together to a macro cell. The (micro)
cell 2kp + 2m corresponds to the entry on cell p on Tape m. The (micro) cell
number 2kp 4 2m 41 only contains 1 or 0 depending on whether the head of
the machine is placed on cell p on tape m. (Hence, every second micro cell
is filled only with 1 or 0.) Now given a k—tape Turing machine 7" we shall
define a machine U that simulates 7" under the given coding. This machine
operates as follows. For a single step of 7 it scans the actual string for the
positions of the read and write heads and remembers the symbols on which
they are placed (they can be found in the adjacent cell). Remembering this
information requires only finite amount of memory, and can be done using
the internal states. The machine scans the tape again for the head that will
have to be changed in position. (To identify it, the machine must be able to
do calculations modulo 2k. Again finite memory is sufficient.) It adjusts its
position and the content of the adjacent cell. Now it changes into the appro-
priate state. Notice that each step of T costs 2k - |X| time for U to simulate,
where X is the longest string on the tapes. If there is an algorithm taking f(n)
steps to compute then the simulating machine needs at most 2k(f(n) 4 n)?
time to compute that same function under simulation. (Notice that in f(n)
steps the string(s) may acquire length at most f(n) + n.)

We shall use this to show that the nondeterministic Turing machines can-
not compute more functions than the deterministic ones.

Proposition 1.91 Let L = L(T) for a Turing machine. Then there is a deter-



Turing machines 87

ministic Turing machine U such that L = L(U).

Proof. Let L = L(T). Choose a number b such that | f(g,x)| < b forall g € Q,
x € A. We fix an ordering on f(g,x) for all x and g. V is a 3—tape machine
that does the following. On the first tape V writes the input X. On the second
tape we generate all sequences p of numbers < b of length n, for increasing n.
These sequences describe the action sequences of T. For each sequence p =
aya, ---a,_, we copy X from Tape 1 onto Tape 3 and let V work as follows.

The head on Tape 2 is to the left of the sequence . In the first step V
follows the ath alternative for machine T on the 3rd tape and advances head
number 2 one step to the right. In the second step it follows the alternative a
in the transition set of T and executes it on Tape 3. Then the head of Tape 2 is
advanced one step to the right. If a, _; < b and the a,_ st alternative does not
exist for 7' but there is a computation for aya, ---a,_,d' for some a’ < a,_,,
V exits the computation on Tape 3 and deletes p on Tape 2. If a,_, = b, the
a, st alternative does not exist for 7', and none exists for any a’ < b, then V
halts. In this way V executes on Tape 3 a single computation of T for the input
and checks the prefixes for paths for which a computation exists. Clearly, V
is deterministic. It halts iff for some n T halts on some alternative sequences
of length n — 1. O

It is easy to see that we can also write a machine that enumerates all pos-
sible outputs of 7 for a given input.

Lemma 1.92 L is recursively enumerable iff L = L(T) for a Turing machine
T.

Proof. The case L = & has to be dealt with separately. It is easy to construct
a machine that halts on no word. This shows the equivalence in this case.
Now assume that L # &. Let L be recursively enumerable. Then there exists
a function f: {0,1}* — A* such that f[{0,1}*] = L and a Turing machine U
which computes f. Now we construct a (minimally) 3—tape Turing machine
V as follows. The input X will be placed on the first tape. On the second tape
V generates all strings y € {0,1}* starting with €, in the numerical order. In
order to do this we use the machine computing the successors in this ordering.
If we have computed the string ¥ on the second tape the machine computes
the value f(¥) on the third tape. (Thus, we emulate machine 7 on the third
tape, with input given on the second tape.) Since f is computable, V halts on
Tape 3. Then it compares the string on Tape 3, f(¥), with X. If they are equal,
it halts, if not it computes the successor of ¥ and starts the process over again.
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It is easy to see that L = L(V'). By the previous considerations, there is a one
tape Turing machine W such that L = L(W). Now conversely, let L = L(T)
for some Turing machine 7. We wish to show that L is recursively enumer-
able. We may assume, by the previous theorem, that 7' is deterministic. We
leave it to the reader to construct a machine U which computes a function
f:{0,1}* — A* whose image is L. O

Theorem 1.93 The following are equivalent.
@ L is of Type 0.
@ L is recursively enumerable.
® L= L(T) for a Turing machine T.

Proof. We shall show @ = @ and ® = ®. The theorem then follows with
Lemma 1.92. Let L be of Type 0. Then there is a grammar (S, N, A, R) which
generates L. We have to construct a Turing machine which lists all strings that
are derivable from S. To this end it is enough to construct a nondeterministic
machine that matches the grammar. This machine always starts at input S and
in each cycle it scans the string for a left hand side of a rule and replaces that
substring by the right hand side. This shows @. Now let L = L(T') for some
Turing machine. Choose the following grammar G: in addition to the alphabet
let X be the start symbol, 0 and 1 two nonterminals, and let each g € Q Y, be
a nonterminal. The rules are as follows.

X —X0|X1|Y,

Y b —cY, if (c,1,r) € f(b,q)

(L117)  Y,b—Yc i (¢,0,7) € f(b,q)
Y,b —Y,.ch if (¢,—1,r) € f(b,q)
Y,b —b if f(b,q) = @

Starting with X this grammar generates strings of the form Y, X, where X is
a binary string. This codes the input for 7. The additional rules code in a
transparent way the computation of 7" on the string. If the computation stops,
it is allowed to eliminate Y,. If the string is terminal it will be generated by
G. In this way it is seen that L(G) = L(T). O

Now we shall derive an important fact, namely that there exist undecidable
languages of Type 0. We first of all note that Turing machines can be regarded
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as semi Thue systems, as we have done earlier. Now one can design a machine
U which takes two inputs, one being the code of a Turing machine 7" and the
other a string X, and U computes what T computes on X. Such a machine is
called a universal Turing machine. The coding of Turing machines can be
done as follows. We only use the letters a, b and c, which are, of course,
also contained in the alphabet B. Let A = {a, : i < n}. Then let ¥(a,) be the
number i in dyadic coding (over {a,b}, where a replaces 0 and b replaces
1). The number O is coded by a to distinguish it from €. Furthermore, we
associate the number n with the blank, L. The states are coded likewise; we
assume that Q = {0, 1,...,n— 1} for some n and that g, = 0. Now we still
have to write down f. f is a subset of

(1.118) A xQOxA; x{-1,0,1} xQ
Each element (a,q,b,m,r) of f can be written down as
(1.119) X ¢ c i ¢y ¢ Ve

where ¥ = y(a), i = Z"'(q), ¥ = y(b), ¥ = Z~(r). Further, we have [i = a if
m=—1,d=bif m=0and i =ab if m=1. Now we simply write down f
as a list, the entries being separated by cc. (This is not necessary, but is easier
to handle.) We call the code of T T*. The set of all codes of Turing machines
is decidable. (This is essential but not hard to see.) It should not be too hard
to see that there is a machine U with two tapes, which for two strings X and y
does the following. If ¥ = T'* for some T then U computes on ¥ exactly as T
does. If ¥ is not the code of a machine, U moves into a special state and stops.

Suppose that there is a Turing machine V which decides for given X and
T* wether or not X € L(T). Now we construct a two tape machine W as
follows. The input is ¥, and it is given on both tapes. If ¥ = T* for some
T then W computes T on X. (This is done by emulating V.) If T halts on X,
we send W into an infinite loop. If 7' does not halt, W shall stop. (If X is not
the code of a machine, the computation stops right away.) Now we have the
following: W*® € L(W) exactly if W*® ¢ L(W). For W*® € L(W) exactly when
W stops if applied to W*. This however is the case exactly if W does not
stop. If on the other hand W* ¢ L(W) then W does not stop if applied to W*,
which we can decide with the help of machine V, and then W does halt on the
input W*. Contradiction. Hence, V cannot exist. There is, then, no machine
that can decide for any Turing machine (in code) and any input whether that
machine halts on that string. It is still conceivable that this is decidable for
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every T, but that we simply do not know how to extract such an algorithm for
given T'. Now, in order to show that this too fails, we use the universal Turing
machine U, in its single tape version. Suppose that L(U) is decidable. Then
we can decide whether U halts on ¥"L"T*. Since U is universal, this means
that we can decide for given T and given X whether T halts on X. We have
seen above that this is impossible.

Theorem 1.94 (Markov, Post) There is a recursively enumerable set which
is not decidable.

So we also shown that the Type 1 languages are properly contained in the
Type 0 languages. For it turns out that the Type 1 languages are all decidable.

Theorem 1.95 (Chomsky) Every Type I language is decidable.

Proof. Let G be of Type 1 and let X be given. Put n:= |X| and o := [AUN].
If there is a derivation of X that has length > a”, there is a string that occurs
twice in it, since all occurring strings must have length < n. Then there exists
a shorter derivation for X. So, X € L(G) iff it has a G—derivation of length
< «". This is decidable. O

Corollary 1.96 CSL C GL.

Chomsky (1959) credits Hilary Putnam with the observation that not all de-
cidable languages are of Type 1. Actually, we can give a characterization of
context sensitive languages as well. Say that a Turing machine is linearly
space bounded if given input X it may use only O(|X|) on each of its tapes.
Then the following holds.

Theorem 1.97 (Landweber, Kuroda) A language L is context sensitive iff
L = L(T) for some linear space bounded Turing machine T.

The proof can be assembled from Theorem 1.65 and the proof of Theo-
rem 1.93.

We briefly discuss so—called word problems. Recall from Section 1.5 the
definition of a Thue process 7. Let A be an alphabet. Consider the monoid
3(A). The set of pairs (s,7) € A* x A* such that s =7} ¢ is a congruence on
3(A). Denote the factor algebra by Mton(T). (One calls the pair (A,T) a pre-
sentation of Dton(7').) It can be shown to be undecidable whether 9ton(T') is
the one element monoid. From this one deduces that it is undecidable whether
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or not Mon(7) is a finite monoid, whether it is isomorphic to a given finite
monoid, and many more.

Before we close this chapter we shall introduce a few measures for the
complexity of computations. In what is to follow we shall often have to deal
with questions of how fast and with how much space a Turing machine can
compute a given problem. Let f: @ — ® be a function, T a Turing machine
which computes a function g: A* — B*. We say that T needs O(f)-space
if there is a constant ¢ such that for all but finitely many X € A* there is a
computation of an accepting configuration ¢, g(X) from g,”x in which every
configuration has length < ¢ x f(|¥|). For a multi tape machine we simply
add the lengths of all words on the tapes. We say that T needs O(f)-time
if for almost all ¥ € A* there is a k < ¢ x f(|¥|) such that g,"% % ¢, g(%).
We denote by DSPACE(f) (DTIME(f)) the set of all functions which for
some k are computable by a deterministic k—tape Turing machine in O(f)-
space (O(f)-time). Analogously the notation NSPACE(f) and NTIME(f)
is defined for nondeterministic machines. We always have

(1.120)0 DTIME(f) C NTIME(f) C NSPACE(f)
as well as
(1.121)  DSPACE(f) C NSPACE(f)

For a machine can fill at most k cells in k steps, regardless of whether it is de-
terministic or nondeterministic. This applies as well to multi tape machines,
since they can only write on one cell and move one head at a time.

The reason for not distinguishing between the time complexity f(n) and
the cf(n) (c a constant) is the following result.

Theorem 1.98 (Speed Up Theorem) Let f be a computable function and let
T be a Turing machine which computes f(X) in at most g(|X|) steps (using at
most h(|X|) cells) where inf,,_,. g(n) /n = oo. Further, let ¢ be an arbitrary real
number > 0. Then there exists a Turing machine U which computes f in at
most ¢ - g(|X|) steps (using at most ¢ - h(|X|) cells).

The proof results from the following fact. In place of the original alphabet
A, we may introduce a new alphabet B}, := AUBU {L'}, where each sym-
bol from B corresponds to a sequence of length k of symbols from A, . The
symbol L' then corresponds to L*. The alphabet A 1 1s still used for giving the
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input. The new machine, upon receiving X recodes the input and calculates
completely inside B .

Since to each single letter corresponds a block of k letters in the original
alphabet, the space requirement shrinks by the factor k. (However, we need
to ignore the length of the input.) Likewise, the time is cut by a factor k, since
one move of the head simulates up to k moves. However, the exact details are
not so easy to sum up. They can be found in (Hopcroft and Ullman, 1969).

Typically, one works with the following complexity classes.

Definition 1.99 PTIME is the class of functions computable in deterministic
polynomial time, NP the class of functions computable in nondeterministic
polynomial time. PSPACE is the class of functions computable in polyno-
mial space, EXPTIME (NEXPTIME) the class of functions computable in
deterministic (nondeterministic) exponential time.

Definition 1.100 A language L C A* is in a complexity class P iff x; € P.

Notes on this section. In the mid 1930s, several people have independently
studied the notion of feasibility. Alonzo Church and Stephen Kleene have de-
fined the notion of A—definablity and of a general recursive function, Emil
Post and Alan Turing the notion of computability by a certain machine, now
called the Turing machine. All three notions can be shown to identify the
same class of functions, as these people have subsequently shown. It is known
as Church’s Thesis that these are all the functions that humans can compute,
but for the purpose of this book it is irrelevant whether it is correct. We shall
define the A—calculus later in Chapter 3, without going into the details al-
luded to here, however. It is to be kept in mind that the Turing machine is a
physical device. Hence, its computational capacities depend on the structure
of the space—time continuum. This is not any more a speculation. Quantum
computing exploits the different physical behaviour of quantum physics to do
parallel computation. This radically changes the time complexity of problems
(see (Deutsch et al., 2000)). This asks us to be cautious not to attach too much
significance to complexity results in connection with human behaviour since
we do not know too well how the brain works.

Exercise 40. Construct a Turing machine which computes the lexicographic
predecessor of a string, and which returns € for input €.

Exercise 41. Construct a Turing machine which, given a list of strings (each
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string separated from the next by a single blank), moves the first string onto
the end of the list.

Exercise 42. Let T be a Turing machine over A. Show how to write a Turing
machine over {0,1} which computes the same partial function over A under
a coding that assigns each letter of A a unique block of fixed length.

Exercise 43. In many definitions of a Turing machine the tape is only one
sided. Its cells can be numbered by natural numbers. This requires the in-
troduction of a special symbol # that marks the left end of the tape, or of a
predicate left-end, which is true each time the head is at the left end of the
tape. The transitions are different depending on whether the machine is at the
left end of the tape or not. (There is an alternative, namely to stop the compu-
tation once that the left end is reached, but this is not recommended. Such a
machine can compute only very uninteresting functions.) Show that for a Tur-
ing machine with a one sided tape there is a corresponding Turing machine
in our sense computing the same function, and that for each Turing machine
in our sense there is a one sided machine computing the same function.

Exercise 44. Prove Lemma 1.90. Hint. Show first that it is enough to look at
the case |[A| = 1.

Exercise 45. Show that L C A* is decidable iff x, : A* — {0,1} is com-
putable.






Chapter 2
Context Free Languages

1. Regular Languages

Type 3 or regular grammars are the most simple grammars in the Chomsky
Hierarchy. There are several characterizations of regular languages: by means
of finite state automata, by means of equations over strings, and by means of
so—called regular expressions. Before we begin, we shall develop a simple
form for regular grammars. First, all rules of the form X — Y can be elimi-
nated. To this end, the new set of rules will be

RV:= {X—a¥:Xk,a¥}

2.1 . 2.
U{X = X:XF X XA}

It is easy to show that the grammar with R in place of R generates the same
strings. We shall introduce another simplification. For each a € A we intro-
duce a new nonterminal U,,. In place of the rules X — a we now add the rules
X —aU, as well as U, — €. Now every rule with the exception of U, — €
is strictly expanding. This grammar is therefore not regular if € € L(G) but
it generates the same language. However, the last kind of rules can be used
only once, at the end of the derivation. For the derivable strings all have the
form XY withX € A* and Y € N. If one applies a rule Y — ¢ then the nonter-
minal disappears and the derivation is terminated. We call a regular grammar
strictly binary if there are only rules of the form X — aY or X — €.

Definition 2.1 Let A be an alphabet. A (partial) finite state automaton is a
quintuple A = (A, Q,i,,F, 8) such that Q is a finite set, i, € Q, F C Q and
0: QxA— @(Q). Qs the set of states, i is called the initial state, F the set
of accepting states and S the transition function. 2 is called deterministic if
0(g,a) contains exactly one element for each g € Q and a € A.

0 can be extended to sets of states and strings in the following way (S C Q,
acAh).

(2.2a) 0(S,¢):
(2.2b) o(S,a) :
(2.2¢) 0(8,X"a) :

S

(6(q,a) :q €S)
0(6(S,%),a)
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With this defined, we can now define the accepted language.
(2.3) L(A) ={x:0({iy},X) NF # o}

2 is strictly partial if there is a state ¢ and some a € A such that 6(g,a) = &.
An automaton can always be transformed into an equivalent automaton which
is not partial. Just add another state g, and add to the transition function the
following transitions.

0(q,a) if 6(q,a) # @ and ,

9o if §(q,a) = @ or g = qy.

Furthermore, g shall not be an accepting state. In the case of a deterministic
automaton we have &(g,X) = {¢'} for some ¢'. In this case we think of the
transition function as yielding states from states plus strings, that is, we now
have 8(q,X) = ¢'. Then the definition of the language of an automaton 2l can
be refined as follows.

25) L) ={%:8(iy,%) € F}

For every given automaton there is a deterministic automaton that accepts the
same language. Put

(2.6) A = (A, 2(0),{iy},F*, 8)

where F?:= {G C Q:GNF # @} and § is the transition function of 2A
extended to sets of states.

Proposition 2.2 2¢ is deterministic and L(A¢) = L(2). Hence every lan-
guage accepted by a finite state automaton is a language accepted by a de-
terministic finite state automaton.

The proof is straightforward and left as an exercise. Now we shall first show
that a regular language is a language accepted by a finite state automaton. We
may assume that G is (almost) strictly binary, as we have seen above. So, let
G=(S,N,A,R). Weput Q;:=N,i,:=8,F;:={X:X = e €R}aswellas

2.7) 05(X,a):={Y :X = aY €R}

Now put A := (A, Qi Fg, 05)-
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Lemma 2.3 Forall X,Y € N and X we have Y € §(X,X) iff X =x X"Y.

Proof. Induction over the length of X. The case |¥| = € is evident. Let X =
a € A. ThenY € 6;(X,a) by definition iff X — a¥ € R, and from this we get
X =% aY. Conversely, from X =% aY follows that X — aY € R. For since
the derivation uses only strictly expanding rules except for the last step, the
derivation of aY from X must be the application of a single rule. This finishes
the case of length 1. Now let ¥ = " a. By definition of J,; we have

(28) 5G(X7)_é) = 6G(5G(X’y)’a)

Hence there is a Z such that Z € §;(X,y) and Y € 6,;(Z,a). By induction
hypothesis this is equivalent with X =% y~Z and Z =% aY. From this we
get X =5 ¥ a”Y =X"Y. Conversely, from X =% XY we get X =% V" Z
and Z =} aY for some Z, since G is regular. Now, by induction hypothesis,
Z € 0;(X,¥) andY € 85(Z,a), and so Y € 54(X,X). O

Proposition 2.4 L(2 ;) = L(G).

Proof. It is easy to see that L(G) ={X: GFX"Y,Y — € € R}. By Lemma 2.3
X"Y € L(G) iff S =% X"Y. The latter is equivalent with ¥ € J;(S,%). And
this is nothing but X € L( ;). Hence L(G) = L(2,;). O

Given a finite state automaton 2 = (A, Q, i, F,0) put Ny := Q, Sy = i,.
Ry consists of all rules of the form X — aY where Y € 6(X,a) as well as
all rules of the form X — € for X € F. Finally, Gy = (Sy, Ny, A, Ry). Gy is
strictly binary and Q[Gm = 2. Therefore we have L(Gy) = L(2).

Theorem 2.5 The regular languages are exactly those languages that are
accepted by some deterministic finite state automaton. O

Now we shall turn to a further characterization of regular languages. A reg-
ular term over A is a term which is composed from A with the help of the
symbols 0 (O-ary), € (0-ary), - (binary), U (binary) and * (unary). A regular
term defines a language over A as follows.

(2.9a) L(0) :=

(2.9b) L(e) :={¢}

(2.9¢) L(a) := {a}

(2.9d) L(R-S) :=L(R)-L(S)
(2.9¢)  L(RUS):=L(R)UL(S)
(2.90) L(R*) :=L(R)"



98 Context Free Languages

(Commonly, one writes R in place of L(R), a usage that we will follow in the
sequel to this section.) Also, R™ := R* - R is an often used abbreviation. Lan-
guages which are defined by a regular term can also be viewed as solutions
of some very simple systems of equations. We introduce variables (say X, Y
and Z) which are variables for subsets of A* and we write down equations for
the terms over these variables and the symbols 0, €, a (a € A), -, U and *. An
example is the equation X = bU aX, whose solution is X = a*b.

Lemma 2.6 Assume R # 0 and € ¢ L(R). Then R* is the unique solution of
X=€eUR - X.

Proof. The proof is by induction over the length of X¥. ¥ € X means by defi-
nition that ¥ € eUR-X. If X = € then X € R*. Hence let X # €; then X € R- X
and so it is of the form i, X, where i, € R and X, € X. Since i, # €, X,
has smaller length than X. By induction hypothesis we therefore have X, € R*.
Hence X € R*. The other direction is as easy. O

Lemma 2.7 Let C,D be regular terms, D # 0 and € ¢ L(D). The equation
(2.10) X=CUD-X
has exactly one solution, namely X = D* - C. O

We shall now show that regular languages can be seen as solutions of systems
of equations. A general system of string equations is a set of equations of the
form X; = QUU,_,, T* where Q is a regular term and the 7" have the form
R- X, where R is a regular term. Here is an example.

X, =a*Uc-a-b-X;

@11 X, =cU c-b3-X0

Notice that like in other systems of equations a variable need not occur to the
right in every equation. Moreover, a system of equations contains any given
variable only once on the left. The system is called proper if for all i and j
we have € ¢ L(T,’) We shall call a system of equations simple if it is proper
and Q as well as the T,’ consist only of terms made from elements of A using
€ and U. The system displayed above is proper but not simple.

Let now (S,N,A,R) be a strictly binary regular grammar. Introduce for
each nonterminal X a variable Q. This variable Q shall stand for the set of
all strings which can be generated from X in this grammar, that is, all strings
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-

X for which X =% X. This latter set we denote by [X]. We claim that the Qy
so interpreted satisfy the following system of equations.

Oy= (JHe:Y »eckR}

(2.12)
Ul J{a-Qy:Y = aX € R}

This system of equations is simple. We show Q, = [Y] for all Y € N. The
proof is by induction over the length of the string. To begin, we show that
Qy C [Y]. For let y € Q. Then either y = € and ¥ — € € R or we have
y=a"XwithX € Qy and Y — a”X € R. In the first case ¥ — € € R, whence
€ € [Y]. In the second case |X| < |¥| and so by induction hypothesis X € [X],
hence X =% ¥. Then we have Y =% a~X = ¥, from which ¥ € [Y]. This shows
the first inclusion. Now we show that [Y] C Q,. To this end let Y =% ¥. Then
either y = € and so Y — &€ € R or y = a” X for some X. In the first case y € Qy,
by definition. In the second case there must be an X such that Y — aX € R
and X =% X. Then [¥| < |J| and therefore by induction hypothesis ¥ € Q.
Finally, by definition of Qy, y € Qy, which had to be shown.

So, a regular language is the solution of a simple system of equations.
Conversely, every simple system of equations can be rewritten into a regular
grammar which generates the solution of this system. Finally, it remains to
be shown that regular terms describe nothing but regular languages. What we
shall establish is more general and derives the desired conclusion. We shall
show that every proper system of equations which has as many equations as
it has variables has as its solution for each variable a regular language. To
this end, let such a system X; = |J; <, Tj" be given. We begin by eliminating
X, from the system of equations. We distinguish two cases. (1) X, appears in
the equation X, = J, <m, T,’ only to the left. This equation is fixed, and called
the pivot equation for X,. Then we can replace X, in the other equations
by U; <m, T,’ (2) The equation is of the form X, = CUD-X,, C a regular
term, which does not contain X,,, D free of variables and & ¢ L(D). Then
X, = D*-C by Lemma 2.7. Now X, does not occur and we can replace X,
in the other equations as in (1). The system of equations that we get is not
simple, even if it was simple at the beginning. We can proceed in this fashion
and eliminate step by step the variables from the right hand side (and putting
aside the corresponding pivot equations) until we reach the last equation. The
solution for X, _, does not contain any variables at all and is a regular term.
The solution can be inserted into the other equations, and then we continue
with X, _,, then with X, 5, and so on. As an example, we take the following
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system of equations.

O X, = aUa-X, Ub-X, Uc-X,
X, = c-X, Ua-X,
X, = bUa-X, Ub-X,

am x, = at Ua'b-X, Ua*c-X,
X, = ca® Uca*b-X;, U(ca*cUa)-X,
X, = ©bUaa® U(atbUb)-X, Ua*c-X,

am x, = (ca*b)*cat U(ca*d)*(ca*cUa) X,
X, = (bUaa")U[a*b(ca*b)*(ca*cUa)Ua*c]-X,

V) X, = [a*b(ca*b)*(ca*cUa)Ua*c]*(bUaa™)

Now that X, is known, X, can be determined by inserting the regular term for
X,, and, finally, X, is obtained by inserting the values for X, and X;.

Theorem 2.8 (Kleene) Let L be a language over A. Then the following are
equivalent:

® L is regular.
@ L= L(2) for a finite, deterministic automaton 2 over A.
® L = L(R) for some regular term R over A.

@ L is the solution for X, of a simple system of equations over A with
variables X;, i < m.

Further, there exist algorithms which (i) for a given automaton 2 compute a
regular term R such that L(2) = L(R); (ii) for a given regular term R compute
a simple system of equations ¥ over X whose solution for a given variable X,
is exactly L(R); and (iii) which for a given simple system of equations X over
{X; 1 i < m} compute an automaton 2 such that X is its set of states and the
solution for X; is exactly the set of strings which send the automaton from

state X, into X;. O

This is the most important theorem for regular languages. We shall derive
a few consequences. Notice we can turn a finite state automaton 2l into a
Turing machine T accepting the same language in linear time and no addi-
tional space. Therefore, the recognition problem for regular languages is in
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DTIME(n) and in DSPACE(n). This also applies to the parsing problem, as
is easily seen.

Corollary 2.9 The recognition and the parsing problem are in DTIME(n)
and DSPACE(n).

Corollary 2.10 The set of regular languages over A is closed under inter-
section and relative complement. Further, for given regular terms R and S
one can determine terms U and V such that L(U) = A* — L(R) and L(V) =
L(R)NL(S).

Proof. It is enough to do this construction for automata. Using Theorem 2.8
it follows that we can do it also for the corresponding regular terms. Let 2 =
(A,Q,iy,F, o). Without loss of generality we may assume that 2 is determin-
istic. Then let A~ := (A, Q,i,,0 — F,5). We then have L(A~) = A* — L().
This shows that for given 2 we can construct an automaton which accepts the
complement of L(2). Now let 2" = (A,Q', i, F',d'). Put

(2.13) Ax A :=(A,0x O, iy, i), F X F',8 x 8')

where
Q14 (6x8V({g,q),a) = {(nr) :r€ 8(q,a),” € 8'(da)}
It is easy to show that L(2 x ') = L(A) N L(A"). O

The proof of the next theorem is an exercise.

Theorem 2.11 Let L and M be regular languages. Then so are L/M and
M\L. Moreover, LT, LF := L/A* as well as LS := A*\L are regular.

Furthermore, the following important consequence can be established.

Theorem 2.12 Let A and B be finite state automata. Then it is decidable
whether L(2) = L(*B).

Proof. Let 2 and B be given. By Theorem 2.8 we can compute a regular
term R with L(R) = L(2A) as well as a regular term S with L(S) = L(*B).
Then L(2A) = L(%B) iff L(R) = L(S) iff (L(R) — L(S)) U(L(S) — L(R)) = @.
By Corollary 2.10 we can compute a regular term U such that

2.15)  L(U) = (L(R) = L(S)) U (L(S) — L(R))
Hence L(2() = L(®B) iff L(U) = @. This is decidable by Lemma 2.13. O
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Lemma 2.13 The problem ‘L(R) = &’, where R is a regular term, is decid-
able.

Proof. By induction on R. If R = € or R = a then L(R) # &. If R = 0 then by
definition L(R) = &. Now assume that the problems ‘L(R) = & and ‘L(S) =
@’ are decidable. Notice that (a) L(RUS) = @ iff L(R) = @ and L(S) = &,
(b) L(R-S) = @ iff L(R) = @ or L(S) = @ and (c) L(R*) = @ iff L(R) = @.
All three problems are decidable. O

We conclude with the following theorem, which we have used already in
Section 1.5.

Theorem 2.14 Let L be context free and R regular. Then LN R is context free.

Proof. Let be G = (S,N,A,R) be a CFG with L(G) = L and 2 = (n,0, F, §)
a deterministic automaton consisting of n states such that L() = R. We may
assume that rules of G are of the form X — a or X — Y. We define new
nonterminals, which are all of the form X/, where i,j<nand X € N. The
interpretation is as follows. X stands for the set of all strings & € A* such that
X b @. "X/ stands for the set of all & such that X b & and 6(i, &) = j. We
have a set of start symbols, consisting of all °S/ with j € F. As we already
know, this does not increase the generative power. Arule X — Y)Y, ---Y,_, is
now replaced by the set of all rules of the form

i i yig~ioyi~ Aoy
2.16) X/ olylnyin eyl

Finally, we take all rules of the form X/ — a, §(i,a) = j. This defines the
grammar G,. We shall show: F-, X iff -, X and X € L(2). (=) Let B be a G'—

tree with associated string ¥. The map ‘X’ + X turns 98 into a G-tree. Hence
X € L(G). Further, it is easily shown that §(0,x,x, ---x;) = k;, where ki xk;
is the node dominating x;. Also, if [¥| = n, then 0sk: is the top node and by
construction k, € F. Hence §(X,0) € F and so X € L(). (<) Let X € L(G)
and X € L(21). We shall show that X € L(G"). We take a G-tree B for X. We
shall now prove that one can replace the G-nonterminals in B in such a way
by G"—nonterminals that we get a G,—tree. The proof is by induction on the
height of a node. We begin with nodes of height 1. Let X = [],_, x;; and let X;
be the nonterminal above x;. Further let §(0,]],.;x;) = j;- Then p, = 0 and
pn € F. We replace X; by PiX7i+1. We say that two nodes x and y connect if
they are adjacent and for the labels ‘X7 of x and ¥Y* of y we have j = k. Let x
be a node of height n 41 with label X and let x be mother of the nodes with
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labels Y)Y, ---Y, _, in G. We assume that below x all nodes carry labels from
G" in such a way that adjacent nodes connect. Then there exists a rule in G,
such that X can be labelled with superscripts, the left hand superscript of Y,
to its left and the right hand superscript of ¥, _, to its right. All adjacent nodes
of height n+ 1 connect, as is easily seen. Further, the leftmost node carries
the left superscript 0, the rightmost node carries a right superscript p,, which
is an accepting state. Eventually, the root has superscripts as well. It carries
the label °S”r, and so we have a G,—tree. O

Exercise 46. Prove Theorem 2.11.

Exercise 47. Show that a language is regular iff it can be generated by a
grammar with rules of the form X - Y, X — Ya, X -+ aand X — €. Such a
grammar is called left regular, in contrast to the grammars of Type 3, which
we also call right regular. Show also that it is allowed to add rules of the
form X — Xand X — YX.

Exercise 48. Show that there is a grammar with rules of the form X — a,
X — aY and X — Ya which generates a nonregular language. This means
that a Type 3 grammar may contain (in general) only left regular rules or only
right regular rules, but not both.

Exercise 49. Show that if L and M are regular, then so are L/M and M\L.

Exercise 50. Let L be a language over A. Define an equivalence relation ~ ¢
over A* as follows. X ~ ¥ iff for allZ € A* we have X"Z € L& Y Z € L. Lis
said to have finite index if there are only finitely many equivalence classes
with respect to ~¢. Show that L is regular iff it has finite index.

Exercise 51. Show that the language {a"b" : n € w} does not have finite
index. Hence it is not regular.

Exercise 52. Show that the intersection of a context sensitive language with
a regular language is again context sensitive.

Exercise 53. Show that L is regular iff it is accepted by a read only 1-tape
Turing machine.
2. Normal Forms

In the remaining sections of this chapter we shall deal with CFGs and their
languages. In view of the extensive literature about CFLs it is only possible
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to present an overview. In this section we shall deal in particular with nor-
mal forms. There are many normal forms for CFGs, each having a different
purpose. However, notice that the transformation of a grammar into a normal
form necessarily destroys some of its properties. So, to say that a grammar
can be transformed into another is meaningless unless we specify exactly
what properties remain constant under this transformation. If, for example,
we are only interested in the language generated then we can transform any
CFG into Chomsky Normal Form. However, if we want to maintain the con-
stituent structures, then only the so—called standard form is possible. A good
exposition of this problem area can be found in (Miller, 1999).

Before we deal with reductions of grammars we shall study the relation-
ship between derivations, trees and sets of rules. To be on the safe side, we
shall assume that every symbol occurs at least once in a tree, that is, that the
grammar is slender in the sense of Definition 2.17. From the considerations
of Section 1.6 we conclude that for any two CFGs G = (S,N,A,R) and G' =
(S',N",A,R") Ly(G) = Ly(G") iff der(G) = der(G'). Likewise we see that for
all X € NUN' der(G,X) = der(H,X) iff R=R'. Now let G = (S,N,A,R) and
a sequence I = (&, : i < n) be given. In order to test whether I' is a G—string
sequence we have to check for each i < n— 1 whether &, ; can be derived
from &; with a single application of a rule. To this end we have to choose
an @&; and apply a rule and check whether the string obtained equals &, ;.
Checking this needs a X |&] steps, where a; is a constant which depends
only on G. Hence for the whole derivation we need Y,;_, a;|@;]| steps. This
can be estimated from above by a; X n x |¢,_,| and if G is strictly expand-
ing also by a; x |&,_,|*. It can be shown that there are grammars for which
this is the best possible bound. In order to check for an ordered labelled tree
whether it can be generated by yG we need less time. We only need to check
for each node whether the local tree at x conforms to some rule of G. This
can be done in constant time. The time therefore only linearly depends on the
size of the tree.

There is a tight connection between derivations and trees. To begin, a
derivation has a unique tree corresponding to it. Simply translate the deriva-
tion in G into a derivation in yG. Conversely, however, there may exist many
derivations for the same tree. Their number can be very large. However, we
can obtain them systematically in the following way. Let 8 be an (exhaus-
tively ordered, labelled) tree. Call <1 C B? alinearisation if < is an irreflex-
ive, linear ordering and from x > y follows x <1y. Given a linearisation, a
derivation is found as follows. We begin with the element which is smallest
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with respect to <. This is, as is easy to see, the root. The root carries the label
S. Inductively, we shall construct cuts &; through 9B such that the sequence
(@ : i < n) is a derivation of the associated string. (Actually, the derivation
is somewhat more complex than the string sequence, but we shall not com-
plicate matters beyond need here.) The beginning is clear: we put ¢, := S.
Now assume that ¢; has been established, and that it is not identical to the
associated string of ‘B. Then there exists a node y with nonterminal label in
@;. (There is a unique correspondence between nodes of the cut and segments
of the strings ¢.) We take the smallest such node with respect to <. Let its
label be Y. Since we have a G-tree, the local tree with root y corresponds to
a rule of the form ¥ — f for some B. In @, y defines a unique instance of that

rule. Then ¢, 1 1s the result of replacing that occurrence of Y by E The new
string is then the result of applying a rule of G, as desired.

It is also possible to determine for each derivation a linearisation of the
tree which yields that derivation in the described manner. However, there can
be several linearisations that yield the same derivation.

Theorem 2.15 Let G be a CFG and 8 € Ly(G). Further, let < be a lineari-
sation of 8. Then < determines a G—derivation der(<1) of the string which is
associated to B. If <« is another linearisation of B then der(«) = der(<) is
the case iff € and < coincide on the interior nodes of B. O

Linearisations can also be considered as top down search strategies on a tree.
We shall present examples. The first is a particular case of the so—called
depth—first search and the linearisation shall be called leftmost linearisa-
tion. It is as follows. x <y iff x > y or x C y. For every tree there is exactly one
leftmost linearisation. We shall denote the fact that there is a leftmost deriva-
tion of & from X by X I—gG 0. We can generalize the situation as follows. Let
<« be a linear ordering uniformly defined on the leaves of local subtrees. That
is to say, if B and € are isomorphic local trees (that is, if they correspond to
the same rule p) then « orders the leaves 95 linearly in the same way as <
orders the leaves of € (modulo the unique (!) isomorphism). In the case of
the leftmost linearisation the ordering is the one given by C. Now a minute’s
reflection reveals that every linearisation of the local subtrees of a tree in-
duces a linearisation of the entire tree but not conversely (there are orderings
which do not proceed in this way, as we shall see shortly). X -3 & denotes
the fact that there is a derivation of & from X determined by «. Now call 7
a priorisation for G = (S,N,A,R) if & defines a linearisation on the local tree
$)p, for every p € R. Since the root is always the first element in a linearisa-
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tion, we only need to order the daughters of the root node, that is, the leaves.

-

Let this ordering be «. We write X -7, ¢ if X =3 & for the linearisation <
defined by 7.

Proposition 2.16 Let 7w be a priorisation. Then X FT X iff X = X.

A different strategy is the breadth—first search. This search goes through the
tree in increasing depth. Let S, be the set of all nodes x with d(x) = n. For
each n, S, shall be ordered linearly by . The breadth—first search is a lin-
earisation A, which is defined as follows. (a) If d(x) = d(y) then x Ay iff
xC y, and (b) if d(x) < d(y) then x A y. The difference between these search
strategies, depth—first and breadth—first, can be made very clear with tree do-
mains (see Section 1.4). The depth—first search traverses the tree domain in
the lexicographical order, the breadth—first search in the numerical order. Let
the following tree domain be given.

/N
0 1 2

00 10 11 20

The depth—first linearisation is

2.17) £,0,00,1,10,11,2,20

The breadth—first linearisation, however, is
(2.18) £,0,1,2,00,10,11,20

Notice that with these linearisations the tree domain ®* cannot be enumer-
ated. Namely, the depth—first linearisation begins as follows.

(2.19) €,0,00,000,0000,...
So we never reach 1. The breadth—first linearisation goes like this.

(220)  £0,1,2,3,...
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So, we never reach 00. On the other hand, ®* is countable, so we do have a
linearisation, but it is more complicated than the given ones.

The first reduction of grammars we look at is the elimination of superflu-
ous symbols and rules. Let G = (S,A,N,R) be a CFG. Call X € N reachable
ifGFa X “E for some ¢ and E X is called completable if there is an X
such that X =% X.

S — AB A — CB
2.21) B — AB A — x
D — Ay C —- vy

In the given grammar A, C and D are completable, and S, A, B and C are reach-
able. Since S, the start symbol, is not completable, no symbol is both reach-
able and completable. The grammar generates no terminal strings.

Let N’ be the set of symbols which are both reachable and completable.
If S ¢ N' then L(G) = @. In this case we put N’ := {S} and R' := &. Oth-
erwise, let R’ be the restriction of R to the symbols from A UN’. This de-
fines G’ = (S,N’,A,R'). It may be that throwing away rules may make some
nonterminals unreachable or uncompletable. Therefore, this process must be
repeated until G’ = G, in which case every element is both reachable and
completable. Call the resulting grammar G*. It is clear that G - & iff G* |- @.
Additionally, it can be shown that every derivation in G is a derivation in G*
and conversely.

Definition 2.17 A CFG is called slender if either L(G) = & and G has no
nonterminals except for the start symbol and no rules; or L(G) # & and every
nonterminal is both reachable and completable.

Two slender grammars have identical sets of derivations iff their rule sets are
identical.

Proposition 2.18 Let G and H be slender. Then G = H iff der(G) = der(H).

Proposition 2.19 For every CFG G there is an effectively constructable slen-
der CFG G* = (S,N°,A,R®) such that N°* C N, which has the same set of
derivations as G. In this case it also follows that Ly(G*) = Lg(G). O

Next we shall discuss the role of the nonterminals. Since these symbols do
not occur in L(G), their name is irrelevant for the purposes of L(G). To make
this precise we shall introduce the notion of a rule simulation. Let G and
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G' be grammars with sets of nonterminals N and N'. Let ~ C N X N’ be a
relation. This relation can be extended to a relation & C (NUA)* x (N'UA)*
by putting & ~ ﬁ if & and ﬁ are of equal length and «; ~ fB; for every i. A
relation ~ C N x N is called a forward rule simulation or an R-simulation
if (0) S~8,(1)if X - & € R and X ~ Y then there exists a ﬁ such that
d~BandY — B eR,and (2)ifY = f € R and X ~ Y then there exists
an & such that & ~ [3 and X — & € R. A backward simulation is defined
thus. (0) From S ~ X follows X = S’ and from Y ~ S’ follows Y =S, (1) if
X > G €Rand &~ B thenY — B € R' for some Y such that X ~ Y, and (2)
if Y - B € R and  ~ @ then X — & € R for some X such that X ~ Y.

We give an example of a forward simulation. Let G and G’ be the follow-
ing grammars.

S —ASB|AB S —» ATB|ASC|AC
A —b T — ATC|AC
(2.22) B —b A —a
B —b
C —b

The start symbol is S in both grammars. Then the following is an R—simulation.

(2.23) ~:= {(A,A), (B,B),(S,S),(B,C),(S,T)}

Together with ~ also the converse relation ~™~ is an R—simulation. If ~ is an
R-simulation and (&; : i < n+ 1) is a G—derivation there exists a G'~derivation
<[§i :i < n+1) such that & ~ B[ for every i < n+ 1. We can say more exactly
that if (&;,C, &, ) is an instance of a rule from G where C = (x,k,) then
there is a context D = (A,,A,) such that (Ei,D,Bi+1) is an instance of a rule
from G'. In this way we get that for every B = (B, <,,£) € Ly(G) there is
a€=(B,<,C,U) € Ly(G") such that £(x) = u(x) for every leaf and £(x) ~
w(x) for every nonleaf. Analogously to a rule simulation we can define a
simulation of derivation by requiring that for every G—derivation I" there is a
G'—derivation A which is equivalent to it.

Proposition 2.20 Let G, and G, be slender CFGs and ~ C N, X N, be an
R—simulation. Then for every G —derivation (@, : i < n) there exists a G,—
derivation <ﬁ i < n) such that ¢ ~ [3 i<n O

We shall look at two special cases of simulations. Two grammars G and G’ are
called equivalent if there is a bijection b: NUA — N'UA such that b(x) =
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for every x € A, b(S) = ' and b induces a bijection between G—derivations
and G'—derivations. This notion is more restrictive than the one which re-
quires that b is a bijection between the sets of rules. For it may happen that
certain rules can never be used in a derivation. For given CFGs we can easily
decide whether they are equivalent. To begin, we bring them into a form in
which all rules are used in a derivation, by removing all symbols that are not
reachable and not completable. Such grammars are equivalent if there is a
bijection b which puts the rules into correspondence. The existence of such a
bijection is easy to check.

The notion of equivalence just proposed is too strict in one sense. There
may be nonterminal symbols which cannot be distinguished. We say G is
reducible to G’ if there is a surjective function b: NUA —» N'UA’ such that
b(S) =S, b(x) = x for every x € A and such that b maps every G—derivation
onto a G'—derivation, while every preimage under b of a G’—derivation is a G—
derivation. (We do not require however that the preimage of the start symbol
from G’ is unique; only that the start symbol from G has one preimage which
is a start symbol of G'.)

Definition 2.21 G is called reduced if every grammar G' such that G is re-
ducible onto G' can itself be reduced onto G.

Given G we can effectively construct a reduced grammar onto which it can
be reduced. We remark that in our example above G’ is not reducible onto G.
For even though ~~ is a function (with A+— A, B— B,C+—B,S+— S, T+— S)
and ASB can be derived from S in one step, ATB cannot be derived from S
in one step. Given G and the function ~~ the following grammar is reduced
onto G.

S — ASB | ATB | ASC | ATC | AB | AC

T — ASB | ATB | ASC | ATC | AB | AC
(224) A—a

B—b

C—b

Now let G be a CFG. We add to A two more symbols, namely ( and ), not
already contained in A. Subsequently, we replace every rule X — @ by the
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rule X — (" @"). The so—constructed grammar is denoted by G”.

G Gb
S — AS|SB|AB S — (AS)]| (SB) | (AB)
(2.25) A = a A — (a)
B — b B — (b)

The grammar G generates the language a*b™. The string aabb has several
derivations, which correspond to different trees.

(2.26) (S,AS,ASB,AABB,...,aabb)
' (S,SB,ASB,AABB,...,aabb)

If we look at the analogous derivations in G” we get the strings
(2.27) ((a) (((a) (b)) (1)), (((a) ((a) (1)) (b))

These are obviously distinct. Define a homomorphism e by e(a) :=a, ifa € A,
¢:)—€ande: ) — €. Then it is not hard to see that

(228)  L(G) =e[L(G")]

Now look at the class of trees L(G) and forget the labels of all nodes which are
not leaves. Then the structure obtained shall be called a bracketing analysis
of the associated strings. The reason is that the bracketing analyses are in
one—to—one correspondence with the strings which L(G?) generates. Now we
will ask ourselves whether for two given grammars G and H it is decidable
whether they generate the same bracketing analyses. We ask ourselves first
what the analogon of a derivation of G is in G”. Let 7X7j be derivable in G,
and let the corresponding G”—string in this derivation be 7”X7”. In the next
step X is replaced by a. Then we get 7&j, and in G the string 7 (&) 8°. If
we have an R—simulation to H then it is also an R—simulation from G? to H”
provided that it sends the opening bracket of G” to the opening bracket of H”
and the closing bracket of G? to the closing bracket of H. It follows that if
there is an R—simulation from G to H then not only we have L(G) = L(H)
but also L(G?) = L(H?).

Theorem 2.22 We have L(G") = L(H") if there is an R—simulation from G
to H.
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The bracketing analysis is too strict for most purposes. First of all it is not
customary to put a single symbol into brackets. Further, it makes no sense
to distinguish between ((X¥)) and (X), since both strings assert that X is a
constituent. We shall instead use what we call constituent analyses. These
are pairs (¥,&) in which X is a string and € an exhaustively ordered con-
stituent structure defined over X. We shall denote by L.(G) the class of all
constituent analyses generated by G. In order to switch from bracketing anal-
yses to constituent analyses we only have to eliminate the unary rules. This
can be done as follows. Simply replace every rule p =Y — ¢, where |&| > 1,
by the set p?:={Z — &:Z=*Y}. R> := J(p?: p €R). Finally, let G> :=
(S,N,A,R”). Every rule is strictly productive and we have L.(G) = L.(G”).
(Exception needs to be made for S — &€, as usual. Also, if necessary, we shall
assume that G~ is slender.)

Definition 2.23 A CFG is in standard form if every rule different from S — €
has the form X — Y with |Y| > 1 or the form X — a. A grammar is in 2—
standard form or Chomsky Normal Form if every rule is of the form S — &,
X =YY, orX —a.

(Notice that by our conventions a CFG in standard form contains the rule
X — € for X =S, but this happens only if S is not on the right hand side of a
rule.) We already have proved that the following holds.

Theorem 2.24 For every CFG G one can construct a slender CFG G" in
standard form which generates the same constituent structures as G.

Theorem 2.25 For every CFG G we can construct a slender CFG G€ in
Chomsky Normal Form such that L(G°) = L(G).

Proof. We may assume that G is in standard form. Let p =X = Y)Y, ---Y _,
be arule withn > 2. Let Z0,Z¢,...,ZP  be new nonterminals. Replace p by
the rules

229  p§ =X Y20, pf =20 - V2P, ..,
prf—Z = 2573 - Yn—ZYn—l

Every derivation in G of a string & can be translated into a derivation in
G* by replacing every instance of p by a sequence pg,py,...,p,_;. For the
converse we introduce the following priorisation 7 on the rules. Let Z lP be
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always before ¥;. However, in ZP . =Y, ,¥, | we choose the leftmost pri-
orisation. We show G - X iff G " X. For if (o : i < p+1) is a leftmost
derivation of X in G, then replace every instance of a rule p by the sequence
Pg- Pi> and so on until pS ,. This is a G°—derivation, as is easily checked.
It is also a 7—derivation. Conversely, let (B, : j < g+ 1) be a G°~derivation
which is priorized with 7. If §; | is the result of an application of the rule p,
k<n—2,theni+2 < g+1and B, is the result of an application of pf, ; on
B.,1» which replaced exactly the occurrence Z, of the previous instance. This
means that every p; in a block of instances of pg, py,...,p,_, corresponds to
a single instance of p. There exists a G—derivation of X, which can be obtained
by backward replacement of the blocks. It is a leftmost derivation. O

For example, the right hand side grammar is the result of the conversion
of the left hand grammar into Chomsky Normal Form.

S — ASBBT | ABB S —AX|AV
V — BB
X —8Y
Y —BZ
Z —BT
(2.30) T — CTD|CD T —CW|CD
W —TD
A —a A —a
B —b B —b
C —c¢ C —c¢
D —d D —d

Definition 2.26 A CFG is called invertible if from X — &t € RandY — &t € R
it follows that X =Y.

For an invertible grammar the labelling on the leaves uniquely determines
the labelling on the entire tree. We propose an algorithm which creates an
invertible grammar from a CFG. For simplicity a rule is of the form X — Y
or X — X. Now we choose our nonterminals from the set 2(N) — {@}. The
terminal rules are now of the form X — X, where X = {X : X — X € R}. The
nonterminal rules are of the form X — Y Y, ---Y, , with

(2.31) X={X:X =YY, ---Y _, €RforsomeY, €Y}

Further, we choose a start symbol, X, and we take the rules X — X for every
X, for which there are X; € X; with § — X € R. This grammar we call G'.
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It is not difficult to show that G’ is invertible. For let Y,Y,---Y,_, be the
right hand side of a production. Then there exist Y; € Y,, i <n, and an X such
that X — Y is a rule in G. Hence there is an X such that X — Y is in G'.
X is uniquely determined. Further, G' is in standard form (Chomsky Normal
Form), if this is the case with G.

Theorem 2.27 Let G be a CFG. Then we can construct an invertible CFG
G' which generates the same bracketing analyses as G. O

The advantage offered by invertible grammars is that the labelling can be
reconstructed from the labellings on the leaves. The reader may reflect on the
fact that G is invertible exactly if G? is.

Definition 2.28 A CFG is called perfect if it is in standard form, slender,
reduced and invertible.

It is instructive to see an example of a grammar which is invertible but not
reduced.

G H
AS|BS|A|B S — CS|C

2.32) C — al|b

S —
A —
B —

[o )

G is invertible but not reduced. To this end look at H and the map A — C,
B+ C, S— S. This is an R—simulation. H is reduced and invertible.

Theorem 2.29 For every CFG we can construct a perfect CFG which gen-
erates the same constituent structures.

Finally we shall turn to the so—called Greibach Normal Form. This form most
important for algorithms recognizing languages by reading the input from left
to right. Such algorithms have problems with rules of the form X — Y~ &, in
particular if ¥ = X.

Definition 2.30 Ler G = (S,N,A,R) be a CFG. G is in Greibach (Normal)
Form if every rule is of the form S — € or of the form X — x"Y.

Proposition 2.31 Let G be in Greibach Normal Form. If X |- . then ¢ has
a leftmost derivation from X in G iff & = y"Y for some y € A* and Y € N*
and ¥ =€ only if Y = X.
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The proof is not hard. It is also not hard to see that this property characterizes
the Greibach form uniquely. For if there is a rule of the form X — Y "7 then
there is a leftmost derivation of Y "% from X, but not in the desired form. Here
we assume that there are no rules of the form X — X.

Theorem 2.32 (Greibach) For every CFG one can effectively construct a
grammar G in Greibach Normal Form with L(G8) = L(G).

Before we start with the actual proof we shall prove some auxiliary state-
ments. We call p an X—production if p = X — & for some @&. Such a pro-
duction is called left recursive if it has the form X — X~ ﬁ Letp=X—>a
be a rule; define R™" as follows. For every factorisation & = &, Y@, of &
and every rule Y — B add the rule X — &;" B ~@, to R and finally remove
the rule p. Now let G™P := (S,N,A,R™P). Then L(G~P) = L(G). We call this
construction as skipping the rule p. The reader may convince himself that the
tree for G™P can be obtained in a very simple way from trees for G simply by
removing all nodes x which dominate a local tree corresponding to the rule
p., that is to say, which are isomorphic to §),. (This has been defined in Sec-
tion 1.6.) This technique works only if p is not an S—production. In this case
we proceed as follows. Replace p by all rules of the form S — E where E
derives from & by applying a rule. Skipping a rule does not necessarily yield
a new grammar. This is so if there are rules of the form X — Y (in particular
rules like X — X).

Lemma 2.33 Let G = (S,N,A,R) be a CFG and let X — X0, i < m, be all
left recursive X—productions as well as X — 3 » J < n, all non left recursive

X—productions. Now let G' := (S, NU{Z},A,R"), where Z ¢ NUA and R'
consists of all Y—productions from R with Y # X as well as the productions

X—)Bj j<n, Z—0, i<m,

(2.33) — i . )
X—=B"Z j<n, Z—o"Z i<m.

Then L(G') = L(G).

Proof. We shall prove this lemma rather extensively since the method is rela-
tively tricky. We consider the following priorisation on G'. In all rules of the
form X — ;and Z — @; we take the natural ordering (that is, the leftmost

ordering) and in all rules X — EjZ as well as Z — @,Z we also put the left
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to right ordering except that Z precedes all elements from ¢ ; and Ei, respec-
tively. This defines the linearisation «. Now, let M (X) be the set of all ¥ such
that there is a leftmost derivation from X in G in such a way that 7 is the first
element not of the form X~3. Likewise, we define P(X) to be the set of all
¥ which can be derived from X priorized by « in G' such that ¥ is the first
element which does not contain Z. We claim that P(X) = M(X). It can be
seen that

@34 MEX)=UB-(Ua) =rX)

j<n i<m

From this the desired conclusion follows thus. Let X € L(G). Then there exists
a leftmost derivation I' = (A, : i < n+ 1) of X. (Recall that the A; are instances
of rules.) This derivation is cut into segments X;, i < 0, of length k;, such that

235  L=A;:Y k<j<l+ Y k)
p<i p<i+l1

This partitioning is done in such a way that each X; is a maximal portion of
I of X—productions or a maximal portion of Y—productions with ¥ # X. The
X-segments can be replaced by a «€—derivation Ei in G', by the previous con-
siderations. The segments which do not contain X—productions are already
G'—derivations. For them we put E[ :=X,. Now let T be result of stringing
together the fi. This is well-defined, since the first string of /Z\L- equals the first
string of X, as the last string of Ei equals the last string of X;. TisaG'-
derivation, priorized by «. Hence ¥ € L(G'). The converse is analogously
proved, by beginning with a derivation priorized by «. O

Now to the proof of Theorem 2.32. We may assume at the outset that G is
in Chomsky Normal Form. We choose an enumeration of N as N = {X, : i <
p}. We claim first that by taking in new nonterminals we can see to it that we
get a grammar G' such that L(G') = L(G) in which the X,—productions have
the form X, — x~Y or X —X j’“? with j > i. This we prove by induction on
i. Let i be the smallest i such that there is a rule X; — X j“? with j <1i. Let

Jo be the largest j such that Xio —X j“? is a rule. We distinguish two cases.
The first is j, = i,. By the previous lemma we can eliminate the production
by introducing some new nonterminal symbol Z; . The second case is j, <.
Here we apply the induction hypothesis on j. 'We can skip the rule X —

X. i ~Y and introduce rules of the form (a) X; i XY Y with k > Jo- In thlS

way the second case is either eliminated or reduced to the first.
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Now let P:={Z, : i < p} be the set of newly introduced nonterminals. It
may happen that for some j Z; does not occur in the grammar, but this does
not disturb the proof. Let finally P;:={Z; : j <i}. At the end of this reduction
we have rules of the form

(2.36a) X, = XY (j>1i)
(2.36b) X, —x"Y (x € A)
(236c) Z, W (W e (NUP)™(eUZ))

It is clear that every X, |—production already has the form X, | — XY If
some X pfz—production has the form (2.36a) then we can skip this rule and

get rules of the form X, , — XY Inductively we see that all rules of the form
can be eliminated in favour of rules of the form (2.36b). Now finally the rules
of type (2.36¢). Also these rules can be skipped, and then we get rules of the
form Z — x~Y for some x € A, as desired.

For example, let the following grammar be given.

S — SDA|CC A - a
(2.37) D — DC|AB B - b
C — ¢

The production S — SDA is left recursive. We replace it according to the above
lemma by

(2.38) S—CCZ, Z—DA, Z—DAZ
Likewise we replace the production D — DC by
(2.39) D—ABY, Y—»C, Y—CY

With this we get the grammar

- cc|ccz
— DA |DAZ
— AB|ABY
— C|cY

(2.40)

< O N n
Q W =
114
o o e

Next we skip the D—productions.

Llld

cc | ccz

ABA | ABYA | ABAZ | ABYAZ
AB | ABY

c|cy

(2.41)

< U N
QW =
114
o o e



Recognition and Analysis 117

Next D can be eliminated (since it is not reachable) and we can replace on the
right hand side of the productions the first nonterminals by terminals.

S — cC|cCZ
(2.42) Z — aBA|aBYA|aBAZ|aBYZ
Y — cfeY

Now the grammar is in Greibach Normal Form.

Exercise 54. Show that for a CFG G it is decidable (a) whether L(G) = &,
(b) whether L(G) is finite, (c) whether L(G) is infinite.

Exercise 55. Let G' be the invertible grammar constructed from G as defined
above. Show that the relation ~ defined by

(2.43) X~Y & YeX

is a backward simulation from G’ to G.

Exercise 56. Let (B, <,[,£) be an ordered labelled tree. If x is a leaf then Tx
is a branch and can be thought of in a natural way as a string (Tx, >,#). Since
the leaf x plays a special role, we shall omit it. We say, a branch expression
of B is a string of the form (Tx — {x},>,£), x a leaf of B. We call it {(x).
Show that the set of all branch expressions of trees from Lj(G) is regular.

Exercise 57. Let G be in Greibach Normal Form and X a terminal string of
length n > 0. Show that every derivation of X has exactly the length n. How
long is a derivation for an arbitrary string &?

3. Recognition and Analysis

CFLs can be characterized by special classes of automata, just like regular
languages. Since there are CFLs that are not regular, automata that recognize
them cannot all be finite state automata. They must have an infinite memory.
The special way such a memory is organized and manipulated differentiates
the various kinds of nonregular languages. CFLs can be recognized by so—
called pushdown automata. These automata have a memory in the form of
a stack onto which they can put symbols and remove (and read them) one
by one. However, the automaton only has access to the symbol added most
recently. A stack over the alphabet D is a string over D. We shall agree that
the first letter of the string is the highest entry in the stack and the last letter
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corresponds to the lowest entry. To denote the end of the stack, we need a
special symbol, which we denote by #. (See Exercise 43 for the necessity of
an end—of—stack marker.)

A pushdown automaton steers its actions by means of the highest entry
of the stack and the momentary memory state. Its actions consist of three
successive steps. (1) The disposal or removal of a symbol on the stack. (2)
The moving or not moving of the read head to the right. (3) The change into
a memory state (possibly the same one). If the automaton does not move the
head in (2) we call the action an e-move. We write A, in place of AU {€}.

Definition 2.34 A pushdown automaton over A is a septuple
(2.44) R=(0,iy,A,F,D,#,0)

where Q and D are finite sets, iy € Q, # € D and F C Q, as well as
(2.45) 0: OXDxA;— (O xD")

a function such that 6(q,a,d) is always finite. We call Q the set of states, i
the initial state, F the set of accepting states, D the stack alphabet, # the
beginning of the stack and 0 the transition function.

We call 3 := (g,d), where g € Q and d € D*, a configuration. We now write
246)  (p,d) > (p'd)

if for some 671 d= Z"cfl, d = E’“cfl and (p',é) € 6(p,Z,x). We call this a
transition. We extend the function & to configurations. {p’ d ) € 5(p,67,x)
is also used. Notice that in contrast to a pushdown automaton a finite state
automaton may not change into a new state without reading a new symbol.
For a pushdown automaton this is necessary in particular if the automaton
wants to clear the stack. If the stack is empty then the automaton cannot work
further. This means, however, that the pushdown automaton is necessarily
partial. The transition function can now analogously be extended to strings.
Likewise, we can define it for sets of states.

2~

(2.47) 333 <& there exists 3” with 3 EN 3" BN 3
If 3 EN 3' we say that there is a A—computation for X from j to 3'. Now

(2.43) L(R) := {X: for some q € F,7 € D*: (i, #) EN (9,2)}
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We call this the language which is accepted by K by state. We call a push-
down automaton simple if from (g,7) € 6(p,Z,a) follows [Z7a| <2.1Itis an
exercise to prove the next theorem.

Proposition 2.35 For every pushdown automaton K there is a simple push-
down automaton £ such that L(£) = L(R).

For this reason we shall tacitly assume that the automaton does not write arbi-
trary strings but a single symbol. In addition to L(R) there also is a language
which is accepted by K by stack.

(2.49) L*(R) := {X: for some g € Q: (i, #) EN (q,€)}

The languages L(R) and L*(8) are not necessarily identical for given K. How-
ever, the set of all languages of the form L(&) for some pushdown automaton
equals the set of all languages of the form L*(8&) for some pushdown automa-
ton. This follows from the next theorem.

Proposition 2.36 For every pushdown automaton R there is an £ with L(R) =
L*(£) as well as a pushdown automaton I with L*(K) = L(IN).

Proof. Let & = (Q,i,,A,F,D,#,0) be given. We add to Q two states, g, and
qy- g; shall be the new initial state and F £:={q ) Further, we add a new
symbol b which is the beginning of the stack of £. We define §%(g,,b,€) :=
{(iy,#"b)}. There are no more §*transitions exiting g;. For ¢ # 4,9y and
Z #b 6%(q,2,%) := 6%(q,Z,x), x € A. Further, if ¢ € F and Z # b, we put
8%(q,Z,€) == 86%(q,Z,¢) U{(q,,€)} and otherwise 8%(q,Z,€) = 8%(q,Z,¢).
Finally, let 5£(qf,Z,x) := & for x € A and 5£(qf,Z, €)= {(qf,e)} for Z €

DU {b}. Assume now ¥ € L(R). Then there is a &—computation (i,,#) —

—_ 2

(g,d) for some g € F and so we also have an £-computation (g;,b) = (4, d).
Since <Qf"j> 5 (q;,€) we have X € L*(£). Hence L(R) C L*(£). Now, con-

versely, let X € L*(£). Then (g;,b) EN (p, €) for a certain p. Then b is deleted
only at last since it happens only in g 7 and so p = qs- Further, we have

(g;,) EN (g,d"b) for some state ¢ € F. This means that there is an £—com-

putation (i, #7b) EN (g,d"b). This, however, is also a &—computation. This
shows that L*(£) C L(R) and so also the first claim. Now for the construc-
tion of 9. We add two new states, g / and ¢g;, and a new symbol, b, which
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shall be the begin of stack of 9%, and we put F™ := {q,}. Again we put
™(g;,b,x) := @ for x € A and §™(g;,b,€) := {(iy,#7b)}. Also, we put
8M(q,Z,x) == 8%(q,Z,x) for Z #b and 6™ (q,b,¢) := {{q;,€)}, as well as
8™(q,b,x) := @ for x € A. Further, SW(qf,Z,x) := @. This defines §™. Now
consider an X € L°(R). There is a A—computation (i, #) EXN (p, €) for some p.
Then there exists an £—computation

2500 {gph) > (p,0) 5 (g.€)

Hence X € L(91). Conversely, let X € L(91). Then there exists an £-computa-

tion (g;,b) EN (q f,J> for some d. One can see quite easily that d = &. Further,
this computation factors as follows.

@5 {gib) 5 (i, #79) 5 (p,b) 5 (g, €)

Here p € Q, whence p # g 4 But every 9l-transition from i to p is also

a R-transition. Hence there is a R—computation (i, #) EN (p,€). From this
follows X € L*(R), and so L*(R) = L(9M). 0

Lemma 2.37 Let L be a CFL over A. Then there exists a pushdown automa-
ton R such that L = L*(R).

Proof. We take a CFG G = (S,N,A,R) in Greibach Form with L = L(G).
We assume that € € G. (If € € L(G), then we construct an automaton for
L(G) — {€} and then modify it slightly.) The automaton possesses only one
state, i, and uses N as its stack alphabet. The beginning of the stack is S.

(2.52)  8(ig,X,x) := {{ip,Y) : X = x"Y €R}

This defines & := ({i,},i,,A, {iy},N,S,5). We show that L = L*(R). To this
end recall that for every X € L(G) there is a leftmost derivation. In a grammar
in Greibach Form every leftmost derivation derives strings of the form Y.
Now one shows by induction that G - Y iff (io,?) € 6(iy,S,Y). O

Lemma 2.38 Let R be a pushdown automaton. Then L*(R) is context free.

Proof. Let & = (Q,i,,A,F,D,#,05) be a pushdown automaton. We may as-
sume that it is simple. Put N := Q x D x (QU{S}), where S is a new symbol.
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S shall also be the start symbol. We write a general element of N in the form
[4,A, p]. Now we define R := R* UR"UR® UR?, where

R :={S—[iy,#q]: q€Q}
(2.53) R ={[p,Z,q] = x: (r,e) € 8(p,Z,x)}
' RS = {lp,Z,q] = x[r,Y,q] : (nY) € d(p,Z,x)}
R® ={[p,Z,q] = [P, X,1][nY.,q]: (p',XY) € S(p,Z,¢€)}

The grammar thus defined is called G(2(). We claim that for every X € A*,
every p,q € Qandevery Z€ D

(2.54) P, Z,q|FgX & (q,€) € 6(p,Z,X)

This suffices for the proof. For if X € L(G) then we have [i,,#,q] -, X and
so because of (2.54) (g, €) € 6(i,,#,%), which means nothing but X € L*(R).
And if the latter holds then we have [ij,#,q] F; X and so S I X, which is
nothing else but X € L(G).

Now we show (2.54). It is clear that (2.54) follows from (2.55).

(255) [pazaQ] l_é yﬁ[qOJYOaQJ[ql’YUQZ] [qulamelaQ]
s <907Y0Y1 "'Ym_1> € 0(p,Z,y)

(2.55) is proved by induction. O

On some reflection it is seen that for every automaton K there is an au-
tomaton £ with only one accepting state which accepts the same language.
If one takes £ in place of R then there is no need to use the trick with a new
start symbol. Said in another way, we may choose [i,,#,¢] as a start symbol
where ¢ is the accepting state of £.

Theorem 2.39 (Chomsky) The CFLs are exactly the languages which are
accepted by a pushdown automaton, either by state or by stack.

From this proof we can draw some further conclusions. The first conclusion
is that for every pushdown automaton & we can construct a pushdown au-
tomaton £ for which L*(£) = L*(R) and which contains no e-moves. Also,
there exists a pushdown automaton 9t such that L*(9t) = L*(K) and which
contains only one state, which is at the same time an initial and an accepting
state. For such an automaton these definitions reduce considerably. Such an
automaton possesses as a memory only a string. The transition function can
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be reduced to a function § from A x D* into finite subsets of D*. (We do not
allow e—transitions.)

The pushdown automaton runs along the string from left to right. It recog-
nizes in linear time whether or not a string is in the language. However, the
automaton is nondeterministic.

Definition 2.40 A pushdown automaton R = (Q,i,A,F,D,#, ) is determin-
istic if for every q € Q, Z € D and x € A we have |6(q,Z,x)| < 1 and for all
q € Q and all Z € D either (a) 6(q,Z,€) = & or (b) 8(q,Z,a) = S for all
a € A. A language L is called deterministic if L = L(2L) for a deterministic
automaton . The set of deterministic languages is denoted by A.

Deterministic languages are such languages which are accepted by a deter-
ministic automaton by state. Now, is it possible to build a deterministic au-
tomaton accepting that language just like regular languages? The answer is
negative. To this end we consider the mirror language {¥x” : ¥ € A*}. This
language is surely context free. There are, however, no deterministic automata
that accept it. To see this one has to realize that the automaton will have to put
into the stack the string ¥¥' at least up to X in order to compare it with the re-
maining word, %’ . The machine, however, has to guess when the moment has
come to change from putting onto stack to removing from stack. The reader
may reflect that this is not possible without knowing the entire word.

Theorem 2.41 Deterministic languages are in DTIME (n).

The proof is left as an exercise.

We have seen that also regular languages are in DTIME(n). However,
there are deterministic languages which are not regular. Such a language is
L={%c¥" : %€ {a,b}*}. In contrast to the mirror language L is deterministic.
For now the machine does not have to guess where the turning point is: it is
right after the symbol c.

Now there is the question whether a deterministic automaton can recog-
nize languages using the stack. This is not the case. For let L = L*(8), for
some deterministic automaton K. Then, if Xy € L for some ¥ # € then X & L.
We say that L is prefix free if it has this property. For if ¥ € L then there
exists a A—computation from (g, #) to (g,€). Further, since £ is determin-

istic: if (qy,#) — 3 then 3 = (g, €). However, if the stack has been emptied
the automaton cannot work further. Hence Xy ¢ L. There are deterministic
languages which are not prefix free. We present an important class of such
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languages, the Dyck—languages. Let A be an alphabet. For each x € A let x be
another symbol. We write A := {x: x € A}. We introduce a congruence 6 on
3(AUA). It is generated by the equations

(2.56) aa 0 €

for all a € A. (The analogous equations aa 0 € are not included.) A string
X € (AUA)* is called balanced if X 0 €. X is balanced iff X can be rewritten
into € by successively replacing substrings of the form xx into €.

Definition 2.42 D, denotes the set of balanced strings over an alphabet con-
sisting of 2r symbols. A language is called a Dyck—language if it has the form
D, for some r (and some alphabet A UA).

The language XML (Extensible Markup Language, an outgrowth of HTML)
embodies like no other language the features of Dyck—languages. For every
string X it allows to form a pair of tags <x¥> (opening tag) and </X> (clos-
ing tag). The syntax of XML is such that the tags always come in pairs. The
tags alone (not counting the text in between) form a Dyck Language. What
distinguishes XML from other languages is that tags can be freely formed.

Proposition 2.43 Dyck—languages are deterministic but not prefix free.

The following grammars generate the Dyck—languages:
(2.57) S—8S|xSx|¢

Dyck-languages are therefore context free. It is easy to see that together with
X,¥ € D, also Xy € D,. Hence Dyck-languages are not prefix free. That they
are deterministic follows from some general results which we shall establish
later. We leave it to the reader to construct a deterministic automaton which
recognizes D,. This shows that the languages which are accepted by a de-
terministic automaton by empty stack are a proper subclass of the languages
which are accepted by an automaton by state. This justifies the following
definition.

Definition 2.44 A language L is called strict deterministic if there is a deter-
ministic automaton K such that L = L*(R). The class of strict deterministic
languages is denoted by A°.

Theorem 2.45 L is strict deterministic if L is deterministic and prefix free.



124 Context Free Languages

Proof. We have seen that strict deterministic languages are prefix free. Now
let L be deterministic and prefix free. Then there exists an automaton & which
accepts L by state. Since L is prefix free, this holds for every X € L, and for

every proper prefix ¥ of X we have that if (g, #) 2 (¢,¥) then g is not an ac-
cepting state. Thus we shall rebuild £ in the following way. Let 6, (g,Z,x) :=
5%(q,Z,x) if ¢ is not accepting. Further, let §, (g, Z,x) := @ if g € F and x € A;
let 6,(¢,Z,¢) :=={{(q,€)}, Z € D. Finally, let £ be the automaton which re-
sults from & by replacing 6% with 0,. £ is deterministic as is easily checked.
Further, an £-computation can be factored into an S—computation followed
by a deletion of the stack. We claim that L(R) = L*(£). The claim then fol-
lows. So let X € L(R). Then there exists a A—computation using X from (g, #)
to (q, 17) where g € F. For no proper prefix y of X there is a computation into
an accepting state since L is prefix free. So there is an £—computation with X
from (g,,#) to (¢,7). Now (q,¥) 5 (g,€) and so ¥ € L*(£). Conversely, as-
sume X € L*(£). Then there is a computation (g, #) = (g,€). Let Y € D* be

X

the longest string such that {g,,#) = (g,¥). Then the £-step before reaching

(¢,Y) is a f—step. So there is a A—computation for ¥ from (g0, #) to (q,Y),

and so X € L(R). O
The proof of this theorem also shows the following.

Theorem 2.46 Let U be a deterministic CFL. Let L be the set of all X € U for
which no proper prefix is in U. Then L is strict deterministic.

For the following definition we make the following agreement, which shall
be used quite often in the sequel. We denote by & the prefix of & of length
k in case @& has length at least k; otherwise (K& := @.

Definition 2.47 Let G = (S,N,A,R) be a grammar and I1 C go(NUA) a par-
tition. We write o« = B if there is an M € 11 such that o, 3 € M. 11 is called
strict for G if the following holds.

® Aell

@ ForC,C' € N and &,%,,7, € (NUA)*: if C=C" and C — @y, as well
as C' — @Y, € R then either

(a) Y, Y, # € and (1)71 = (1)72 or
(b) y =" =¢€and C=C".
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Definition 2.48 A CFG G is called strict deterministic if there is a strict
partition for G.

We look at the following example (taken from (Harrison, 1978)):

S — aA|aB C — bCla
(2.58) A — aha|bC D — bDc|c
B — aB|bD

IT= {{a,b,c},{S},{A,B},{C,D}} is a strict partition. The language gener-
ated by this grammar is {a"bfa",a"bkck : k,n > 1}.

We shall now show that the languages generated by strict deterministic
grammars are exactly the strict deterministic languages. This justifies the
terminology in retrospect. To begin, we shall draw a few conclusions from
the definitions. If G = (S,N,A,R) is strict deterministic and R’ C R then
G' = (S,N,A,R') is strict deterministic as well. Therefore, for a strict de-
terministic grammar we can construct a weakly equivalent strict determinis-
tic slender grammar. We denote by & =7 ¥ the fact that there is a leftmost
derivation of length n of 7 from d&.

Lemma 2.49 Let G be a CFG with a strict partition I1. Then the following is
true. For C,C' € N and &,%,,7, € (NUA)*: if C=C' and C = 8., as well
as C' =7 &%, then either

® 7,7 # € and (1)71 = (1)72 or
@ 71 =7z=£andC:C’_
The proof is an easy induction over the length of the derivation.

Lemma 2.50 Let G be slender and strict deterministic. Then if C =] D@
we have C Z D.

Proof. Assume C =/ D¢. Then because of Lemma 2.49 we have for all
k> 1: C =" D7 for some 7. From this it follows that there is no terminating
leftmost derivation from C. This contradicts the fact that G is slender. O

It follows that a strict deterministic grammar is not left recursive, that is,
A :>LIr A @ cannot hold. We can construct a Greibach Normal Form for G in
the following way. Let p = C — a ¥ be a rule. If o € A then we skip p by
replacing it with the set of all rules C — 7} ¥ such that @ — 7} € R. Then
Lemma 2.49 assures us that I is a strict partition also for the new grammar.
This operation we repeat as often as necessary. Since G is not left recursive,
this process terminates.



126  Context Free Languages

Theorem 2.51 For every strict deterministic grammar G there is a strict de-
terministic grammar H in Greibach Normal Form such that L(G) = L(H).

Now for the promised correspondence between strict deterministic languages
and strict deterministic grammars.

Lemma 2.52 Let L be strict deterministic. Then there exists a deterministic
automaton with a single accepting state which accepts L by stack.

Proof. Let 2 be given. We add a new state g into which the automaton
changes as soon as the stack is empty. O

Lemma 2.53 Let U be a deterministic automaton with a single accepting
state. Then G(21) is strict deterministic.

Proof. Let 2 = (0, i,A,F,D,#,5). By the preceding lemma we may assume
that F = {g,}. Now let G(2) defined as in (2.53). Put

o,BEA
259 a=B & or a=[q,2,q),=1[4.2,9"]
for some ¢,q',4" € 0,Z € D.

We show that = is a strict partition. To this end, let [¢,Z,q'] — @7, and
[9,Z,4"] — @7, be two rules. Assume first of all 7;,7, # €. Case 1. & = €.
Consider ¢; := (V7. If {, € A then also {, € A, since 2 is deterministic. If
on the other hand {; ¢ A then we have §, = [¢,Y,,q,] and {, = [q,Y,,q}],
and so §; = {,. Case 2. & # €. Let then 1 := (V@. If 1 € A, then we now
have Cl = [ql‘aYi7q1'+1] and CZ = [ql‘,YNQZ-H] for some ql‘aqlq_laQZ'-H € Q This
completes this case.

Assume now %, = €. Then &%, is a prefix of &%,. Case 1. & = €. Then
0% = €, hence 7, = €. Case 2. & # €. Then it is easy to see that }, = €.
Hence in both cases we have 7, = €, and so ¢' = ¢". This shows the claim. O

Theorem 2.54 Let L be a strict deterministic language. Then there exists a
strict deterministic grammar G such that L(G) = L.

The strategy to put a string onto the stack and then subsequently remove it
from there has prompted the following definition. A stack move is a move
where the machine writes a symbol onto the stack or removes a symbol from
the stack. (So the stack either increases in length or it decreases.) The au-
tomaton is said to make a turn if in the last stack move it increased the stack
and now it decreases it or, conversely, in the last stack move it diminishes the
stack and now increases it.
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Definition 2.55 A language L is called an n—turn language if there is a push-
down automaton which recognizes every string from L with at most n turns.
L is ultralinear if it is an n—turn language for some n € @.

Notice that a CFL is n—turn exactly if there is an automaton which accepts L
and in which for every string X every computation needs at most n turns. For
given any automaton K which recognizes L, we build another automaton £
which has the same computations as K except that they are terminated before
the n 4 1st turn. This is achieved by adding a memory that counts the number
of turns.

We shall not go into the details of ultralinear languages. One case is worth
noting, that of 1-turn languages. A CFG is called linear if in every rule X —
@ the string & contains at most one occurrence of a nonterminal symbol. A
language is linear if it is generated by a linear grammar.

Theorem 2.56 A CFL is linear iff it is I-turn.

Proof. Let G be a linear grammar. Without loss of generality a rule is of the
form X — aY or X — Ya. Further, there are rules of the form X — £. We
construct the following automaton. D := {#} UN, where # is the beginning
of the stack, Q := {+,—,q}, iy := +, F := {q}. Further, for x € A we put
O(+,X,x) .= {(+,Y)} if X > x¥Y € R and §(+,X,€) = {(+,Y)} if X —
Yx€R;let 6(—,Y,x) :=={(—,€)} if X —» Yx € R. And finally 6({+,X,x)) :=
{(—=,€)} if X = x € R. Finally, 6(—, #,¢) := {(g,€)}. This defines the au-
tomaton K(G). It is not hard to show that K(G) only admits computations
without stack moves. For if the automaton is in state 4 the stack may not
decrease unless the automaton changes into the state —. If it is in —, the stack
may not increase and it may only be changed into a state —, or, finally, into
g. We leave it to the reader to check that L(R(G)) = L(G). Therefore L(G) is
a l1-turn language. Conversely, let & be an automaton which allows compu-
tations with at most one turn. It is then clear that if the stack is emptied the
automaton cannot put anything on it. The automaton may only fill the stack
and later empty it. Let us consider the automaton G(8) as defined above.
Then all rules are of the form X — x¥ with x € Ag. Let Y = YyY,---Y,_,. We
claim that every Y,—production for i > 0 is of the form ¥; = a or ¥, — X. If not,
there is a computation in which the automaton makes two turns, as we have
indicated above. (This argument makes tacit use of the fact that the automa-
ton possesses a computation where it performs a transition to ¥; = [p,X, ]
that is to say, that it goes from p to ¢ where X is the topmost stack symbol.
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If this is not the case, however, then the transitions can be eliminated without
harm from the automaton.) Now it is easy to eliminate the rules of the form
Y. — X by skipping them. Subsequent skipping of the rules ¥; — a yields a
linear grammar. O

The automata theoretic analyses suggest that the recognition problem for
CFLs must be quite hard. However, this is not the case. It turns out that the
recognition and parsing problem are solvable in O(n?) steps. To see this, let
a grammar G be given. We assume without loss of generality that G is in
Chomsky Normal Form. Let X be a string of length n. As a first step we try
to list all substrings which are constituents, together with their category. If X
is a constituent of category S then X € L(G); if it is not, then X & L(G). In
order to enumerate the substrings we use an (n+ 1) x (n+ 1)-matrix whose
entries are subsets of N. Such a matrix is called a chart. Every substring
is defined by a pair (i, j) of numbers, where 0 <i < j < n+ 1. In the cell
(i, j) we enter all X € N for which the substring x;x; | -+-x;_, is a constituent
of category X. In the beginning the matrix is empty. Put d :=i— j. Now
we start by filling the matrix starting at d = 1 and counting up to d = n.
For each d, we go from i = 0 until i = n —d. So, we begin with d = 1 and
compute for i =0, i =1, i = 2 and so on. Then we set d := 2 and compute
for i =0, i = 1 etc. We consider the pair (d,i). The substring x;---x;, , is a
constituent of category X iff it decomposes into substrings y = x;---x;, , and
=X, 41" Xy q Such that there is a rule X — YZ where Y is a constituent of
category Y and 7 is a constituent of category Z. This means that the set of all
X € N which we enter at (i,i +d) is computed from all decompositions into
substrings. There are d — 1 < n such decomposition. For every decomposition
the computational effort is limited and depends only on a constant ¢ ; whose
value is determined by the grammar. For every pair we need ¢ ;- (n+ 1) steps.
Now there exist (;) proper subwords. Hence the effort is bounded by c; - n.

In Figure 8 we have shown the computation of a chart based on the word
abaabb. Since the grammar is invertible any substring has at most one cate-
gory. In general, this need not be the case. (Because of Theorem 2.27 we can
always assume the grammar to be invertible.)

S — SS|AB|BA
(2.60) A — AS|SA|a
B — BS|SB|b

The construction of the chart is as follows. Let C.(i, j) be the set of all non-

terminals X such that X - x;x; 41X Further, for two nonterminals X
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Figure 8. A Chart for abaabb

andY X @Y :={Z:Z — XY € R} and for sets U,V C N let
61) UoV:=J(Xxor:XeUyY eV)

Now we can compute C.(i, j) inductively. The induction parameter is j — i.
If j—i=1then C.(i,j) = {X : X = x €R}. If j—i> 1 then the following
equation holds.

262)  C(i, )= | Cili,k) ©Cylk, j)

i<k<j

We always have j —k,k—i < j—i. Now let X € L(G). How can we find a
derivation for X? To that end we use the fully computed chart. We begin with
X and decompose it in an arbitrary way; since X has the category S, there must
be arule S — XY and a decomposition into X of category X and y of category
Y.OrX=a€ A and S — ais arule. If the composition has been found, then
we continue with the substrings X and ¥ in the same way. Every decomposition
needs some time, which only depends on G. A substring of length i has i < n
decompositions. In our analysis we have at most 2n substrings. This follows
from the fact that in a properly branching tree with n leaves there are at most
2n nodes. In total we need time at most d; - n? for a certain constant d which
only depends on G.

From this it follows that in general even if the grammar is not in Chom-
sky Normal Form the recognition and analysis only needs O(n?) steps where
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at the same time we only need O(n?) cells. For let G be given. Now trans-
form G into 2—standard form into the grammar G2. Since L(G*) = L(G), the
recognition problem for G is solvable in the same amount of time as G2. One
needs O(n?) steps to construct a chart for ¥. One also needs an additional
O(n?) steps in order to create a G—tree for ¥ and O(n) steps to turn this into a
derivation.

However, this is not already a proof that the problem is solvable in O(n?)
steps and O(n?) space, for we need to find a Turing machine which solves the
problem in the same time and space. This is possible; this has been shown
independently by Cocke, Kasami and Younger.

Theorem 2.57 (Cocke, Kasami, Younger) CFLs have the following multi-
tape complexity.

® CFL C DTIME(n®).
@ CFL C DSPACE(n?).

Proof. We construct a deterministic 3 tape Turing machine which only needs
O(n?) space and O(n®) time. The essential trick consists in filling the tape.
Also, in addition to the alphabet A we need an auxiliary alphabet consisting
of B and Q as well as for every U C N a symbol [U] and a symbol [U]V. On
Tape 1 we have the input string, ¥. Put C(i, j) := C.(i, j). Let X have length n.
On Tape 1 we construct a sequence of the following form.

(2.63) QB"QB"'Q---QBBQBQ

This is the skeleton of the chart. We call a sequence of Bs in between two Qs a
block. The first block is being filled as follows. The string X is deleted step by
step and the sequence B" is being replaced by the sequence of the C(i,i+ 1).
This procedure requires O(n?) steps. For every d from 1 to n— 1 we shall fill
the d + 1st block. So, let d be given. On Tape 2 we write the sequence

Q[C(0, )][C(0,2)]---[C(0,d)]™
(2.64) ~Q[C(1,2)][C(1,3)]---[C(1,d+1)]"---
~Q[C(n—d,n—d+1)|[C(n—d,n—d+2)]---[C(n—d,n)]Q
On Tape 3 we write the sequence
Q[C(0,d)][C(1,d)]---[C(d —1,d)]”

(2.65) ~Q[C(1,d+ 1)][C(2,d+1)]---[C(d,d+1)]"---
~Q[C(n—d,n)][C(n—d+ 1,n)]---[C(n—1,n)]Q
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From this sequence we can compute the d + Ist block quite fast. The au-
tomaton has to traverse the first block on Tape 2 and the second block on
Tape 3 cogradiently and memorize the result of C(0, j) © C(j,d+1). When it
reaches the end it has computed C(0,d + 1) and can enter it on Tape 1. Now
it moves on to the next block on the second and the third tape and computes
C(1,d+2). And so on. It is clear that the computation is linear in the length
of the Tape 2 (and the Tape 3) and therefore needs O(n?) time. At the end
of this procedure Tape 2 and 3 are emptied. Also this needs quadratic time.
At the end we need to consider that the filling of Tapes 2 and 3 needs O(n?)
time. Then for every d the time consumption is at most O(n?) and in total
O(n?). For this we first write Q and position the head of Tape 1 on the ele-
ment [C(0, 1)]. We write [C(0, 1)] onto Tape 2 and [C(0, 1)]¥ onto Tape 1. (So,
we ‘tick off” the symbol. This helps us to remember what we did.) Now we
advance to [C(1,2)] copy the result onto Tape 2 and replace it by [C(1,2)]V.
And so on. This only needs linear time; for the symbols [C(i,i+ 1)] we rec-
ognize because they are placed before the Q. If we are ready we write Q onto
Tape 2 and move on Tape 1 on to the beginning and then to the first symbol
to the right of a ‘ticked off” symbol. This is [C(1,2)]. We copy this symbol
onto Tape 2 and tick it off. Now we move on to the next symbol to the right
of the symbol which has been ticked off, copy it and tick it off. In this way
Tape 2 is filled in quadratic time. At last the symbols that have been ticked
off are being ticked ‘on’, which needs O(n?) time. Analogously the Tape 3 is
filled. O

Exercise 58. Prove Proposition 2.35.

Exercise 59. Prove Theorem 2.41. Hint. Show that the number of e-moves
of an automaton 2L in scanning of the string ¥ is bounded by ki - |X|, where kg
is a number that depends only on 2. Now code the behaviour of an arbitrary
pushdown automaton using a 2—tape Turing machine and show that to every
move of the pushdown automaton corresponds a bounded number of steps of
the Turing machine.

Exercise 60. Show that a CFL is O—turn iff it is regular.

Exercise 61. Give an algorithm to code a chart onto the tape of a Turing ma-
chine.

Exercise 62. Sketch the behaviour of a deterministic Turing machine which
recognizes a given CFL using O(n?) space.
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Exercise 63. Show that {w#w’ : # € A*} is context free but not deterministic.

Exercise 64. Construct a deterministic automaton which recognizes a given
Dyck-language.

Exercise 65. Prove Theorem 2.46.

4. Ambiguity, Transparency and Parsing Strategies

In this section we will deal with the relationship between strings and trees.
As we have explained in Section 1.6, there is a bijective correspondence be-
tween derivations in G and derivations in the corresponding graph grammar
¥G. Moreover, every derivation A = (A, : i < p) of G defines an exhaustively
ordered tree B with labels in N UA whose associated string is exactly @,
where A, | =(a, |,C, |,@p). If @) is not a terminal string, the labels of
the leaves are also not all terminal. We call such a tree a partial G—tree.
Definition 2.58 Let G be a CFG. @ is called a G—constituent of category A
if At 0. Let B be a G-tree with associated string X and y a substring of
X. Assume further that ¥ is a G—constituent of category A and X = D(¥). The
occurrence D of ¥ in X is called an accidental G-constituent of category A
in ‘B if it is not a G—constituent of category A in 8.

We shall illustrate this terminology with an example. Let G be the following
grammar.

S — SS|AB|BA
(2.66) A — AS|SA|a
B — BS|SB|b

The string X = abaabb has several derivations, which generate among other
the following bracketing analyses.

2.67)  (a(b(a((ab)b)))), ((ab)(((a(ab))b)))
We now list all G—constituents which occur in ¥:

A : a,aab,aba,baa,abaab
(2.68) B:b,abb
S : ab,aabb,abaabb
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Some constituents occur several times, for example ab in (€,aabb) and also
in (aba,b). Now we look at the first bracketing, (a(b(a((ab)b)))). The con-
stituents are a (contexts: (€,baabb), (ab,abb), (aba,bb)), b, ab (for exam-
ple in the context: (aba,b)), abb in the context (aba,&), aabb, baabb and
abaabb. These are the constituents of the tree. The occurrence (€,aabb) of
ab in ababb is therefore an accidental occurrence of a G—constituent of cate-
gory S in that tree. For although ab is a G—constituent, this occurrence in the
tree is not a constituent occurrence of it. Notice that it may happen that ¥ is a
constituent of the tree B but that as a G—constituent of category C it occurs
accidentally since its category in B is D # C.

Definition 2.59 A grammar G is called transparent if no G—constituent oc-
curs accidentally in a G-string. A grammar which is not transparent will be
called opaque. A language for which no transparent grammar exists will be
called inherently opaque.

An example shall illustrate this. For any given signature €, Polish Notation
can be generated by a transparent grammar.

(2.69)  §—Fg 5 Fouy =/

()
This defines the grammar I, for PN,,. Moreover, given a string X generated
by this grammar, the subterm occurrences of X under a given analysis are in
one to one correspondence with the subcontituents of category S. An occur-
rence of an n—ary function symbol is a constituent of type F,. We shall show
that this grammar is not only unambiguous, it is transparent.

Let X = xyx, ---x,_, be a string. Then let y(X) := ¥, 7(x;), where for
every f € F, y(f) := Q(f) — 1. (So, if Q(f) =0, y(f) = —1.) The proof of
the following is left as an exercise.

Lemma 2.60 X € PN, iff (a) Y(X) = —1 and (b) for every proper prefix ¥ of
X we have y(¥) > 0.

It follows from this theorem that no proper prefix of a term is a term. (How-
ever, a suffix of a term may again be a term.) The constituents are therefore
all the substrings that have the properties (a) and (b). We show that the gram-
mar is transparent. Now suppose that X contains an accidental occurrence of
a term y. Then this occurrence overlaps properly with a constituent 7. With-
out loss of generality ¥y = #i”V and 7 = V" w (with @, w # €). It follows that
y(V) = y(¥) — (i) < 0 since y(i) > 0. Hence there exists a proper prefix i,
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of ii such that ##i; = —1. (In order to show this one must first conclude that
the set P(X) := {y(P) : P is a prefix of X} is a convex set for every term X. See
Exercise 68.)

Theorem 2.61 The grammar I, is transparent. O

Now look at the languages a*b and a*. Both are regular. There is a trans-
parent regular grammar for a*b. It has the rules S — aB, B — AB | b. a™ is
on the other hand inherently opaque. For any CFG must generate at least two
constituents of the form a” and a?, ¢ > p. Now there exist two occurrences
of a” in a? which properly overlap. One of them must be accidental.

Proposition 2.62 a™ is inherently opaque. a

It can easily be seen that if L is transparent and € € L, then L = {€}. Also, a
language over an alphabet consisting of a single letter can only be transpar-
ent if it contains no more than a single string. Many properties of CFGs are
undecidable. Transparency is different in this respect.

Theorem 2.63 (Fine) Let G be a CFG. It is decidable whether or not G is
transparent.

Proof. Let k be the constant from the Pumping Lemma (1.81). This constant
can effectively be determined. By Lemma 2.64 there is an accidental occur-
rence of a constituent iff there is an accidental occurrence of a right hand
side of a production. These are of the length p + 1 where p is the maximum
productivity of a rule from G. Further, because of Lemma 2.66 we only need
to check those constituents for accidental occurrences whose length does not
exceed p? + p. This can be done in finite amount of time. O

Lemma 2.64 G is opaque iff there is a production p = A — @& such that &
has an accidental occurrence in a partial G—tree.

Proof. Let @ be a string of minimal length which occurs accidentally. And
let C be an accidental occurrence of @. Further, let ¢ = 7, 0t%,, and let A — o
be a rule. Then two cases may occur. (A) The occurrence of & is accidental.
Then we have a contradiction to the minimality of @. (B) The occurrence of
@ is not accidental. Then 7j := 7,A7, also occurs accidentally in C(7})! (We
can undo the replacement A — ¢ in the string C(@) since & is a constituent.)
Also this contradicts the minimality of @. So, @ is the right hand side of a
production. O
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Lemma 2.65 Let G be a CFG without rules of productivity —1 and let &, ¥
be strings. Further, assume that ¥ is a G—constituent of category A in which
& occurs accidentally and in which ¥ is minimal in the following sense: there
is no 1 of category A with (1) || < |¥| and (2) 1} &5 ¥ and (3) @ occurs
accidentally in 7). Then every constituent of length > 1 overlaps with the
accidental occurrence of .

Proof. Let Y = G, 1 G,, |7}| > 1, and assume that the occurrence of 7} is a
constituent of category A which does not overlap with ¢. Then & occurs
accidentally in & := G,AG,. Further, |8| < |7], contradicting the minimality
of 7. O

Lemma 2.66 Let G be a CFG where the productivity of rules is at least 0 and
at most p, and let & be a string of length n which occurs accidentally. Then
there exists a constituent ¥ of length < np in which & occurs accidentally.

Proof. Let A |- 7 be minimal in the sense of the previous lemma. Then we
have that every constituent of ¥ of length > 1 overlaps properly with ¢&. Hence
7 has been obtained by at most n applications of rules of productivity > 0.
Hence || < np. |

The property of transparency is stronger than that of unique readability,
also known as unambiguity, which is defined as follows.

Definition 2.67 A CFG G is called unambiguous if for every string X there
is at most one G—tree whose associated string is X. If G is not unambiguous, it
is called ambiguous. A CFL L is called inherently ambiguous if every CFG
generating it is ambiguous.

Proposition 2.68 Every transparent grammar is unambiguous.
There exist inherently ambiguous languages. Here is an example.
Theorem 2.69 (Parikh) The language L is inherently ambiguous.
(2.70) L:={a""c":n,m e o}U{a"d"c" :n,m € 0}

Proof. L is context free and so there exists a CFG G such that L(G) = L.
We shall show that G must be ambiguous. There is a number k& which satis-
fies the Pumping Lemma (1.81). Let n := k!(:= []~_, /). Then there exists a
decomposition of a?"b*'¢" into

(2.71) "X, "V, 7y, 7%
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in such a way that |if,| < k. Furthermore, we may also assume that || < k.
It is easy to see that X, ¥, may not contain occurrences of a, b and ¢ at the
same time. Since it contains a, it may not contain c. So we have X, = a” and
¥, = b” for some p. We consider a maximal constituent of (2.71) of the form
a?b? . Such a constituent must exist. (X,7V,7y, is of that form.) In it there
is a constituent of the form a?~*b? ' for some i < k. This follows from the
Pumping Lemma. Hence we can pump up a’ and b’ at the same time and get
strings of the form

(272) a2p+ki b2p+ki c3q

while there exists a constituent of the form a?? <= p2P+4i=s for certain r,s <
k. In particular, for k := p/i we get

(2.73) a’Ppr i

Now we form a decomposition of a*'b*'¢" into

(2.74) i, "X, V,"¥," %,

in such a way that |Z,|,|V,| < k. Analogously we get a constituent of the form
b2’ 5~ for certain r,s' < k. These occurrences overlap. For the left
hand constituent contains 3p — s many occurrences of b and the right hand
constituent contains 3p — s’ many occurrences of b. Since 3p —s+3p—s' =
6p — (s +s') > 3p, these constituents must overlap. However, they are not
equal. But this is impossible. So G is ambiguous. Since G was arbitrary, L is
inherently ambigous. g

Now we discuss a property which is in some sense the opposite of the
property of unambiguity. It says that if a right hand side occurs in a con-
stituent, then under some different analysis this occurrence is actually a con-
stituent occurrence.

Definition 2.70 A CFG has the NTS—property if from C \- &, B ~a, and

B— E € R follows: C 't 0,," B~ 0. A language is called an NTS-language
if it has an NTS-grammar.

The following grammar is not an NTS—grammar.

(2.75) X—aX, X—a

For we have X |- aa but it does not hold that X - Xa. In general, regular gram-
mars are not NTS. However, we have
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Theorem 2.71 All regular languages are NTS—languages.

Proof. Assume that L is regular. Then there exists a finite state automaton
A= (A,0,q,,F,8) such that L = L(A). Put N := {S*}U{L(p,q) : p,q € O}.
Further, put G := (S*,N,A,R), where R consists of

S* - L(qy,9) (qeF)
(2.76) L(p,q) — L(p,r)L(ng)
L(p,q) — a (q € 6(p,a))

Then we have L(p,q) - X iff g € 0(p,X), as is checked by induction. From
this follows that 8* I ¥ iff X € L(). Hence we have L(G) = L. It remains

to show that G has the NTS—property. To this end let L(p,q) 5 &;," [_3"‘562

and L(r,s) f. We have to show that L(p, q) Fg @, "L(r,5)" 0. In order to
do this we extend the automaton 2 to an automaton which reads strings from
NUA. Here g € 6(p,C) iff for every string ¥ with C I-; ¥ we have g € 6(p, ).
Then it is clear that ¢ € §(p,L(p,q)). Then it still holds that L(p, q) - & iff
g € 8(p, ¢). Hence we have r € 6(p, ¢, ) and g € (s, @,). From this follows
that L(p,q) k-5 L(p,r)L(r,s)L(s,q) and finally L(p,q) - &,L(r,s)@,. O

If a grammar has the NTS—property, strings can be recognized very fast.
We sketch a pushdown automaton that recognizes L(G). Scanning the string
from left to right it puts the symbols onto the stack. Using its states the au-
tomaton memorizes the content of the stack up to k symbols deep, where K is
the length of a longest right hand side of a production. If the upper part of the
stack matches a right hand side of a production A — & in the appropriate or-
der, then & is deleted from the stack and A is put on top of it. At this moment
the automaton rescans the upper part of the stack up to k symbols deep. This
is done using a series of empty moves. The automaton pops k symbols and
then puts them back onto the stack. Then it continues the procedure above. It
is important that the replacement of a right hand side by a left hand side is
done whenever first possible.

Theorem 2.72 Let G be an NTS—grammar. Then G is deterministic. Further-
more, the recognition and parsing problem are in DTIME (n).

We shall deepen this result. To this end we abstract somewhat from the push-
down automata and introduce a calculus which manipulates pairs & F X of
strings separated by a turnstile. Here, we think of ¢ as the stack of the au-
tomaton and X as the string to the right of the reading head. It is not really
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necessary to have terminal strings on the right hand side; however, the gener-
alization to arbitrary strings is easy to do. There are several operations. The
first is called shift. It simulates the reading of the first symbol.

. n kFxy
(2.77) shift: TxFy
Another operation is reduce.

|_
|_

Hl =1

o
(2.78) reduce p: e

:Sl =i

Here p = X — @& must be a G—rule. This calculus shall be called the shift—
reduce—calculus for G. The following theorem is easily proved by induction
on the length of a derivation.

Theorem 2.73 Let G be a CFG. 8 &= X iff there is a derivation of & & € from
€k X in the shift-reduce—calculus for G.

This strategy can be applied to every language. We take the following gram-
mar.

S — ASB|c
(2.79) A - a
B — b

Then we have S I-; aacbb. Indeed, we get a derivation shown in Table 4. Of
course the calculus does not provide unique solutions. On many occasions
we have to guess whether to shift or whether to reduce, and if the latter, then
by what rule. Notice namely that if some right hand side of a production is a
suffix of a right hand side of another production we have an option. We call
a k—strategy a function f which tells us for every pair & F X whether or not
we shall shift or reduce (and by which rule). Further, f shall only depend (1)
on the reduction rules which can be at all applied to & and (2) on the first k
symbols of X. We assume that in case of competition only one rule is chosen.
So, a k—strategy is a map R x [J;,_, A’ to {s,r}. If & F % is given then we
determine the next rule application as follows. Let B be a suffix of & which
is reducible. If f (B )%) = s, then we shift; if f (ﬁ )%) = r then we apply

reduction to [3 This is in fact not really unambigous. For a right hand side
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Table 4. A Derivation by Shifting and Reducing

€ I aacbb

a Facbb

A Facbb

Aa Fcbb
"AA Fcbb
“AAc Fbb
"AAS Fbb
AASbFb

AASBFDb
AS Fb

ASb ke

ASB Fe¢

S e

of a production may be the suffix of a right hand side of another production.
Therefore, we look at another property.

(2.80)  Ifp, =X, =B, € Rand p, =X, = B, €R, p, # p,,
and if |y| < k then f(Bl,jz') or f(Ez,y) is undefined.

Definition 2.74 A CFG G is called an LR(k)-grammar if not S =+ S and if
for some k € o there is a k—strategy for the shift-and—reduce calculus for G.
A language is called an LR(k)-language if it is generated by some LR(k)—
grammar.

Theorem 2.75 A CFG is an LR(k)—grammar if the following holds: Sup-
pose that 1,0, X, and 1,0,%, have a rightmost derivation and that with p :=
1,8, |+ k we have

@81 Ve =PH,0,%,

Then ﬁl = ﬁZ’ 6‘1 = 6‘2 and (k))_c'l = (k)x2'

This theorem is not hard to show. It says that the strategy may be based indeed
only on the k—prefix of the string which is to be read. This is essentially the



140  Context Free Languages

property (2.80). One needs to convince oneself that a derivation in the shift—
reduce—calculus corresponds to a rightmost derivation, provided reduction is
scheduled as early as possible.

Theorem 2.76 LR(k)-languages are deterministic.

We leave the proof of this fact to the reader. The task is to show how to extract
a deterministic automaton from a strategy. The following is easy.

Lemma 2.77 Every LR(k)-language is an LR(k + 1)-language.

So we have the following hierarchy.
(2.82) LR(0) C LR(1) C LR(2) C LR(3)...
This hierarchy is stationary already from k = 1.

Lemma 2.78 Let k > 0. If L is an LR(k + 1)-language then L also is an
LR(k)-language.

Proof. For a proof we construct an LR(k)—grammar G~ from an LR(k+ 1)—
grammar G. For simplicity we assume that G is in Chomsky Normal Form.
The general case is easily shown in the same way. The idea behind the con-
struction is as follows. A constituent of G~ corresponds to a constituent of
G which has been shifted one letter to the right. To implement this idea we
introduce new symbols, [a,X,b], where a,b € A, X € N, and [a,X, €], a € A.
The start symbol of G~ is the start symbol of G. The rules are as follows,
where a, b, c range over A.

S — £ if S+ € €ER,

S — ala,S,¢€ a€aA,

[a,X,b] — [a,Y,c][c,Z,b] ifX —>YZER,
(2.83) .

[a,X,€] — [a,Y,c][c,Z,e] ifX —>YZER,

[a,X,b] — b if X - a€R,

[a,X,€] — € if X >a€eR.

By induction on the length of a derivation the following is shown.

(2.84a)  [a,X,b]t . Ob & Xtgal
(2.84b) [a,X, €]k O & Xtgao



Ambiguity, Transparency and Parsing Strategies 141

From this we can deduce that G~ is an LR(k)—grammar. To this end let 7}, &, X,
and 7},0,%, be rightmost derivable in G, and let p := |1}, &, | + k as well as

(2.85) ()5, 8,%, = V1,07,

Then afj, &, X, = 1j; 0, bX, for some a,b € A and some 7}{, ¢ with a7}, = 17jjc
= = b - A S A= I I 1 =

Eor ce€A ﬁnd c(_J'c1 = oyb. Furghermorf, we have an,o,x, = 1N,0,bXx,, an, =

f5c and c@, = @ for certain 75 and @}. Hence we have

2.86)  HDflE bR, = PHURIEMR,

and p+1 = |f|&[| + k + 1. Furthermore, the left hand and the right hand

string have a rightmost derivation in G. From this it follows, since G is an

LR(k+ 1)—-grammar, that 7j| = 7j}, and @] = &4, as well as *+Dpg, = -+1pg,.

From this we get 7}, = 7,, &, = &, and W%, = ¥)%,, as required. O
Now we shall prove the following important theorem.

Theorem 2.79 Every deterministic language is an LR(1)-language.

The proof is relatively long. Before we begin we shall prove a few auxiliary
theorems which establish that strictly deterministic languages are exactly the
languages that are generated by strict deterministic grammars, and that they
are unambiguous and in LR(0). This will give us the key to the general theo-
rem.

We still owe the reader a proof that strict deterministic grammars only
generate strict deterministic languages. This is essentially the consequence of
a property that we shall call left transparency. We say @ occurs in 7, 0. 7},
with left context 7, .

Definition 2.80 Let G be a CFG. G is called left transparent if a constituent
may never occur in a string accidentally with the same left context. This
means that if X is a constituent of category C in ¥, Xy, and if 7 := y, Xy, is
a G—string then X also is a constituent of category C inZ.

For the following theorem we need a few definitions. Let B be a tree and
n € ® a natural number. Then (W98 denotes the tree which consists of all
nodes above the first n leaves from the left. Let P the set of leaves of 9B, say
P={p;:i<gq}, and let p; C p;iff i < j. Then put N, := {p, : i <n}, and
O, :=1N,. MY .= (On,r,<,C), where < and [C are the relations relativized
to O,,. If £ is a labelling function and ¥ = (B, £) a labelled tree then let )T :=
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(M. ¢ 1 0,). Again, we denote £ | O, simply by £. We remark that the set
R, := W98 — ("=DsB is linearly ordered by <. We look at the largest element
z from R,,. Two cases arise. (a) z has no right sister. (b) z has a right sister.
In Case (a) the constituent of the mother of z is closed at the transition from
(=198 to ("B, Say that y is at the right edge of ¥ if there is no z such that
y C z. Then TR, consists exactly of the elements which are at the right edge
of ("B and R, consists of all those elements which are at the right edge of
()98 but not contained in *~9B. Now the following holds.

Proposition 2.81 Let G be a strict deterministic grammar. Then G is left
transparent. Furthermore: let ¥, = (B ,£,) and T, = (%B,,4,) be partial
G-—trees such that the following holds.

@ If C; is the label of the root of T, then C; = C,.
@ M%) ="k(T,).

Then there is an isomorphism f: "t)B | — (0B, such that £,(f(x)) =
¢,(x) in case x is not at the right edge of ") | and £,(f(x)) = £,(x) other-
wise.

Proof. We show the theorem by induction on n. We assume that it holds for
all k <n.If n =0, it holds anyway. Now we show the claim for . There exists
by assumption an isomorphism f,: (V%8 = (”)‘Bz satisfying the conditions
given above. Again, putR,  , := ("‘H)‘Bl — (")‘Bl. At first we shall show that
4, (fu(x)) = £,(x) for all x ¢ TR, . From this it immediately follows that
4, (fu(x)) = £,(x) for all x € TR, | — R, since G is strict deterministic.
This claim we show by induction on the height of x. If 4(x) = 0, then x is
a leaf and the claim holds because of the assumption that T, and T, have
the same associated string. If 2(x) > O then every daughter of x is in TR, |.
By induction hypothesis therefore £, (f,(y)) = £,(y) for every y < x. Since G
is strict deterministic, the label of x is uniquely fixed by this for £,(f,(x)) =
£, (x), by induction hypothesis. So we now have £, ( f,,(x)) = £, (x). This shows
the first claim. Now we extend f, to an isomorphism f, , ; from ("‘H)SBI onto
(+1)98,, and show at the same time that £, (f,(x)) = £, (x) for every x € TR,
This holds already by inductive hypothesis for all x R, ;. So, we only have
to show this for x € R, , ;. This we do as follows. Let u, be the largest node in
R, . Certainly, u is not the root. So let v be the mother of u. f, is defined
on v and we have £, (f,(v)) = ¢,(v). By assumption, £,(f,(x)) = £, (x) for all
x T u. So, we first of all have that there is a daughter x,, of f,(v) which is not
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in the image of f,. We choose x;, minimal with this property. Then we put
Jry1(1g) := x,. Now we have £, (f,, (1)) = £, (uy). We continue with u, in
place of v. In this way we obtain a map f,,; from (”)‘Bl UR, = ("H)‘Bl
to "B, with £,(f,,,(x) = £,(x), if x €R,,, and £,(f,,(x)) = £,(x)
otherwise. That f, ., is surjective is seen as follows. Suppose that u is the
leaf of %, in R, . Then x, = f, ., (u,) is not a leaf in B,, and then there
exists ax,, | in "B, — WV, We have 4, (f, | (x,)) = £, (u,). Let x, be the
leaf in L. By Lemma 2.50 £, (x,) # £,(x,) and therefore also £, (x,) # £, (u,).
However, by assumption x,, is the n+ st leaf of B, and likewise u, is the
n+ 1st leaf of B, from which we get £, (u,) = £,(x,) in contradiction to
what has just been shown. O

Theorem 2.82 Let G be a strict deterministic grammar. Then L(G) is unam-
biguous. Further, G is an LR(0)—grammar and L(G) is strict deterministic.

Proof. The strategy of shifting and reducing can be applied as follows: ev-
ery time we have identified a right hand side of a rule X — i then this is
a constituent of category X and we can reduce. This shows that we have a
O-strategy. Hence the grammar is an LR(0)—grammar. L(G) is certainly un-
ambiguous. Furthermore, L(G) is deterministic, by Theorem 2.76. Finally,
we have to show that L(G) is prefix free for then by Theorem 2.45 it follows
that L(G) is strict deterministic. Now let Xy € L(G). If also X € L(G), then by
Proposition 2.81 we must have y = €. O

At first sight it appears that Lemma 2.78 also holds for k = 0. The con-
struction can be extended to this case without trouble. Indeed, in this case we
get something of an LR(0)—grammar; however, it is to be noted that a strategy
for G~ does not only depend on the next symbol. Additionally, it depends on
the fact whether or not the string that is yet to be read is empty. The strategy
is therefore not entirely independent of the right context even though the de-
pendency is greatly reduced. That LR(0)-languages are indeed more special
than LR(1)-languages is the content of the next theorem.

Theorem 2.83 (Geller & Harrison) Let L be a deterministic CFL. Then the
following are equivalent.

@ L is an LR(0)-language.
@ IfXe L XVe Landy € L then also yV € L.

® There are strict deterministic languages U and V such that L=U -V *.
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Proof. Assume @. Then there is an LR(0)—grammar G for L. Hence, if X — ¢
is a rule and if 7) @y is G—derivable then also 7} Xy is G—derivable. Using
induction, this can also be shown of all pairs X, ¢ for which X + ¢&. Now
let X € L and XV € L. Then S I X, and so by the previous - S¥. Therefore,
since S - y we have I ¥V. Hence @ obtains. Assume now @. Let U be
the set of all X € L such that ¥ ¢ L for every proper prefix ¥ of X. Let V be
the set of all ¥ such that XV € L for some X € U but Xw ¢ L for every X € U
and every proper prefix w of ¥. Now, V is the set of all y € V* — {¢} for
which no proper prefix is in V* — {€}. We show that U - V* = L. To this end
let us prove first that L C U - V*. Let #i € L. We distinguish two cases. (a)
No proper prefix of # is in L. Then i € U, by definition of U. (b) There is
a proper prefix X of # which is in L. We choose X minimally. Then X € U.
Let ii = XV. Now two subcases arise. (A) For no proper prefix w, of v we
have ¥w,, € L. Then vV € V, and we are done. (B) There is a proper prefix
w, of V¥ with Xw, € L. Let Vv =1 V,. Then, by @, we have XV, € L. (In @,
put Xw, in place of X and in place of y put X and for w put V,.) XV, has
smaller length than XV. Continue with XV, in the same way. At the end we
get a partition of V = w,w,---w,_, such that w; € V for every i < n. Hence
LCU-V*. Wenow show U-V* C L. Letii = X" [],,, w;. If n =0, then if =%
and by definition of U we have i € L. Now let n > 0. With @ we can show
that X~ [],_,_; W; € L. This shows that i € L. Finally, we have to show that
U and V are deterministic. This follows for U from Theorem 2.46. Now let
X,y€U.Thenby @ P:={V:XV € L} = {V:yV € L}. The reader may convince
himself that P is deterministic. Now let V be the set of all ¥ for which there
is no prefix in P — {€}. Then P = V* and because of Theorem 2.46 V is strict
deterministic. This shows ®. Finally, assume ®. We have to show that L is an
LR(0)-language. To this end, let G, = (S,N,,A,R,) be a strict deterministic
grammar which generates U and G, = (S,,N,,A,R,) a strict deterministic
grammar which generates V. Then let G, := (S;,N; UN,U{S;,S,},A,R;) be
defined as follows.

It is not hard to show that G, is an LR(0)-grammar and that L(G;) =L. O

The decomposition in @ is unique, if we exclude the possibility that V = &
and if we require that U = {€} shall be the case only if V = {€}. In this way
we take care of the cases L = & and L = U. The case U =V may arise. Then
L =UT™. The semi Dyck languages are of this kind.
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Now we proceed to the proof of Theorem 2.79. Let L be deterministic.
Then put M := L-{$}, where $ is a new symbol. M is certainly determin-
istic; and it is prefix free and so strict deterministic. It follows that M is
an LR(0)-language. Therefore there exists a strict deterministic grammar G
which generates M. From the next theorem we now conclude that L is an
LR(1)-language.

Lemma 2.84 Let G be an LR(0)-grammar of the form G = (S,NU{$},A,R)
withRC N x (NUA)*U(NUA)*-$) and L(G) C A*$, and assume that there
is no derivation 8 = S$ in G. Then let H := (S,N,A,R'), where

(288) R:= {A>G:A—>GER,GE(NUA)*}
U{A—>a:A—0a$eR}

Then H is an LR(1)-grammar and L(H) - $ = L(G).

For a proof consider the following. We do not have S :>zr S in H. Further: if
S =7 0 in H then there exists a D such that S =7 @D in G, and if S =7 B
in G then we have = & D and S = @ in H. From this we can immediately
conclude that H is an LR(1)—grammar.

Finally, let us return to the calculus of shifting and reducing. We generalize
this strategy as follows. For every symbol ¢ of our grammar we add a symbol
a. This symbol is a formal inverse of «; it signals that at its place we look
for an o but haven’t identified it yet. This means that we admit the following
transitions.

nookx
(2.89) 7?7 7

We call this rule cancellation. We write for strings @& also ¢&. This denotes

the formal inverse of the entire string. If & = [],, &; then o = [T, &,_;-
Notice that the order is reversed. For example AB = B"A. These new strings
allow to perform reductions on the left hand side even when only part of the
right hand side of a production has been identified. The most general rule is
this one.

nXakx
@o0) 2L

nT kX

This rule is called the LC-rule. Here X — &7 must be a G-rule. This means
intuitively speaking that veco is an X if followed by 7. Since 7 is not yet there
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we have to write 7. The LC—calculus consists of the rules shift, reduce and
LC. Now the following holds.

Theorem 2.85 Let G be a grammar. 0. = X holds iff there is a derivation of
et € from &\ X in the LC—calculus.

A special case is @ = €. Here no part of the production has been identified,
and one simply guesses a rule. If in place of the usual rules only this rule is
taken, we get a strategy known as top—down strategy. In it, one may shift,
reduce and guess a rule. A grammar is called an LL(k)-grammar if it has
a deterministic recognition algorithm using the top—down—strategy in which
the next step depends on the first k£ symbols of X. The case k = 0 is of little
use (see the exercises).

This method is however too flexible to be really useful. However, the fol-
lowing is an interesting strategy. The right hand side of a production is divided
into two parts, which are separated by a dot.

S — A.SBjc.
2.91) A = a.
B — b.

This dot fixes the part of the rule that must have been read when the corre-
sponding LC—rule is triggered. A strategy of this form is called generalized
left corner strategy. If the dot is at the right edge we get the bottom—up strat-
egy, if it is at the left edge we get the top—down strategy.

Exercise 66. Let R be a set of context free rules, S a symbol, N and A finite
sets, and G := (S,N,A,R). Show that if =} € and G is transparent then G is
a CFG. Remark. Transparency can obviously be generalized to any grammar
that uses context free rules.

Exercise 67. Show Theorem 2.76.

Exercise 68. Prove Lemma 2.60. Show in addition: If X is a term then the set
P(X) := {y(y) : ¥ is a prefix of X} is convex.

Exercise 69. Show the following: If L is deterministic then also L/{X} as well
as {X}\L are deterministic. (See Section 1.2 for notation.)

Exercise 70. Show that a grammar is an LL(0)—grammar if it generates ex-
actly one tree.

Exercise 71. Give an example of an NTS-language which is not an LR(0)—
language.
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Table 5. The Generalized LC-Strategy

S I aacbb
Sa Facbb
SA lFacbb
BS Facbb
BSa Fcbb
BSA Fcbb
BBS Fcbb
BBSckbb
BBSSFbb
BB Fbb
BBb Fb
BBB b

B Fb

Bb Fe¢

BB ¢

€ Fe

5. Semilinear Languages

In this section we shall study semilinear languages. The notion of semilin-
earity is important in itself as it is widely believed that natural languages are
semilinear. Whether or not this is case, is still open (see Section 2.7). The
issue of semilinearity is important, because many grammar formalisms pro-
posed in the past only generate semilinear languages (or else are generally so
powerful that they generate every recursively enumerable set). Even though
semilinearity in natural languages is the rule rather than the exception, the
counterexamples show that the grammar formalisms do not account for natu-
ral language in a satisfactory way.

In this chapter we shall prove a theorem by Ginsburg and Spanier which
says that the semilinear subsets of " are exactly the sets definable in Pres-
burger Arithmetic. This theorem has numerous consequences, in linguistics
as well as in mathematics. The proof given here differs substantially from the
original one.

Definition 2.86 A commutative monoid or commutative semigroup with unit
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is a structure (H,0,+) in which the following holds for every x,y,z € H.

x+0=x
(2.92) x+(y+z2)=(x+y)+z
X+y=y+x

Notice that because of associativity we may dispense with brackets. Alterna-
tively, any term can be arbitrarily bracketed without affecting its value. We
define the notation u -x as follows: 0-x:=0and (U+1)-x:=p-x+=x.
(Later on we shall drop -.) Then pt-x,+V-xy = (L + V) - x5, and u- (v-x,) =
(1v) - x,, simply by definition. Furthermore, - (x+y) = (1 -x) + (i -y), by
induction on . This can be generalized.

Lemma 2.87 In a commutative semigroup, the following holds.

(2.93) (Y viex) =Y (uv)-x,
i<m <m
294 Y px+ Y vix=Y (g+v)x
i<m i<m <m

Proof. Induction on m. The case m = 1 has been dealt with. Now:

295  w-( Y, vix)=w-() Vi X+ Vi x)

i<m+1 i<m
=W (Y Vi) + s (Vi Xm)
i<m
- Z ('uvi) X+ (,LLVm) “Xm
i<m
= Z (,LLVl.) X
i<m+1
Also
(2.96) Y wext ) v
i<m+1 i<m+1
=X By % B %) + CF V% Vi)
i<m i<m
=(X 1%+ ) Vi x) + (o + Vin)
i<m i<m
= Z(“i+vi)xi+ (I'Lm+Vm) *Xm
i<m
= ) (m+v)y

i<m+1



Semilinear Languages 149

This finishes the proof. g

We shall denote by M(A) set underlying the commutative monoid freely
generated by A. By construction, M(A) := (M(A),0,+) is a commutative
semigroup with unit. What is more, 9t(A) is freely generated by A as a com-
mutative semigroup. We now look at the set ®” of all n—long sequences of
natural numbers, endowed with the operation + defined by

(2.97) (x;ri<n)y+(y;ri<n):=(x;+y:i<n)

This also forms a commutative semigroup with unit. Here the unit is the se-
quence 0 consisting of n 0s. We denote this semigroup by Q". For the follow-
ing theorem we also need the so—called Kronecker symbol.

1 ifi=j,

0 otherwise.

(298) &)= {

Theorem 2.88 Let A = {qa, : i < n}. Let h be the map which assigns to each
element a; the sequence &; = (8} : j < n). Then the homomorphism which
extends h is an isomorphism from 9M(A) onto Q.

Proof. Let 6 be the smallest congruence relation on Tmg,(A) (with Q: 0~
0,4+ — 2) which satisfies (2.92). It follows from Lemma 2.87 by induction
on the level of the term 7 that for € Tmg,(A) there is a u 6 ¢ of the form

(2.99) u= Zki -a;
i<n

If (2.99) obtains, put g(r) := (k; : i < n). Now, it is immediately seen that
6 = kerg, whence Tm,(A)/6 =2 Q". On the other hand, Tm, (A)/6 = 9M(A),
since it is easily shown that the first is also freely generated by A. Namely,
suppose that v : a; — n; is a map from A into 0N. Let ¥: Tm,(A) — N be the
extension of v. Then, since 91 is a monoid, 8 C kerv, so that we can define a
map g : Tmg(A) = Nsuch that V= goh,. O

This theorem tells us that free commutative semigroups can be thought of
as vectors of numbers. A general element of M(A) can be written down as
Yicnki-a; where k; € o.

Now we shall define the map u: A* — M(A) by

u(e) =0
(2.100) u(a) =a
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This map is a homomorphism of monoids and also surjective. It is not injec-
tive, except in the case where A consists of one element only. The map u is
called the Parikh map. We have

2.101) pu (Hfi) =Y u(®)

i<k i<k

Definition 2.89 Two languages LM C A* are called letter equivalent if we
have pu[L] = u[M].

Definition 2.90 Elements of M(A) will also be denoted using vector arrows.
Moreover, if ¥ € @" we write X(i) for the i component of X. A set U C M(A)
is called linear if for some o € @ and some i, 7, € M(A)

(2.102) U= {i+ Zki-ﬁi:ko,...,ka_lea)}
<o

The V; are called cyclic vectors of U. The smallest o for which U has such
a representation is called the dimension of U. U is said to be semilinear if
U is the finite union of linear sets. A language L C A* is called semilinear if
W[S] is semilinear.

We can denote semilinear sets rather compactly as follows. If U and V are
subsets of M(A) then write U +V := {X+y:X € U,y € V}. Further, let X +
U :={X+¥y:y€U}. So, vectors are treated as singleton sets. Also, we write
nU := {nX : n € w}. Finally, we denote by @U the union of all nU, n € .
With these abbreviations we write the set U from Definition 2.90 as follows.

(2.103) U =ii+wvy+ oV, + -+ ov,_,
This in turn we abbreviate by

(2.104)  U=ii+ ) o,

i<a
Finally, for V = {¥, : i < a}

(2.105)  Z(U;V):=U+ ) oV,

i<o

Lemma 2.91 The following holds.
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@ L(U;V)UL(U,V)=X(UUuU,V).
@ X(U;V)+ XUV =X2(U+U"VUV').
® wi(U;V)=2({0};UUV).

Theorem 2.92 (Parikh) A language is semilinear iff it is letter equivalent to
a regular language.

Proof. (=) It is enough to show this for linear languages. Suppose that 7[L]
L({u};V),V ={V, i <n}. Pick a string X and ¥,, i < n, such that 7(X) =
and 7(y;) =V, for all i < n. Put

-
u

2.106) M=% (|J7)*

i<n

Clearly, M is regular and letter equivalent to L. (<=) By induction on the
length of the regular term R we shall show that u[L(R)] is semilinear. This is
clear for R =a; or R = €. Itis also clear for R=§,US,. Now letR=S§, - §,.
Using the equations (SUT)-U =S-UUT-U andU-(SUT)=U-SUU-T, we
can assume that S, and S, are linear. Then by definition u[L(S,)] = X({#};C,)
and U[L(S,)] = Z({V};C,), for certain i, ¥, and sets C, and C,. Then, using
Lemma 2.91, we get

(2.107)  u[L(R)] =XL({u};C)) +Z({V}:Cy) =2({i+V}:C,UG,)

Now, finally, R=S*.If S=T UU, then R= (T*-U*)*, so that we may again
assume that S is linear, say, S = X({ii};C) for some # and C. By Lemma 2.91

(2.108)  u[L(R)] = wZ({@i};C) = £({0};:{#}uC)

Hence R too is linear. This ends the proof. O
We draw a useful conclusion from the definitions.

Theorem 2.93 Let A be a (possibly infinite) set. The set of semilinear lan-
guages over A form an AFL with the exception that the intersection of a semi-
linear language with a regular language need not be semilinear.

Proof. Closure under union, star and concatenation are immediate. We have
to show that semilinear languages are closed under homomorphisms and in-
verse homomorphisms. The latter is again trivial. Now let v: A — A* be a
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homomorphism. v induces a map k,: 9(A) — 9M(A). The image under K,
of a semilinear set is semilinear. For given a string X € A* we have u(v(X)) =
K, (1 (X)), as is easily checked by induction on the length of X. Let M be linear,
say M =ii+Y,_, -V, Then

(2.109)  [M] = Kk(i) + Y oK, (¥)
i<k
From this the claim follows. Hence we have u[v[L]] = «,[u[L]]. The right
hand side is semilinear as we have seen. Finally, take the language L :=
{a?b? ;i€ w}u{bv/a’: j € w}. Lis semilinear. LNa*b* = {a’b? :i € 0}
is not semilinear, however. O
Likewise, a subset of Z" ((Q") is called linear if it has the form

(2.110) Vo + 2V, + ZV,y+ -+ LV,
for subsets of Z" as well as

Q.111) ¥y + Q¥ +Q¥, +---+ Q¥

for subsets of Q*. The linear subsets of (' are nothing but the affine sub-
spaces. A subset of 0" (Z", @) is called semilinear if it is the finite union of
linear sets.

Presburger Arithmetic is defined as follows. The basic symbols are 0, 1, +,
<and =, m € ®—{0,1}. Then Presburger Arithmetic is the set of first order
sentences which are valid in Z := (Z,0,1,4+,<,(=,: | <m € m)), where
a =, b iff a— b is divisible by m (for FOL see Sections 3.8 and 4.4).

Negation can be eliminated. Notice namely that = (x,=x,) is equivalent to
(xo<x )V (x,<x4), 7(x)<x;) to (x,=x,)V(x,<x,) and ~(x,=,x,) is equiv-
alent to V., <,nXo=n (x,+n). Here, n is defined by 0 := 0, n+ 1 := (n+1).
We shall use x,<x, for (x,<x;)V(xy=x,). Moreover, multiplication by a
given natural number also is definable: put O := 0, and (n+ 1)t := (nt+t).
Every term in the variables x;, i < n, is equivalent to a term xy+) ,_, a;X;,
where b,a; € w, i <n. A subset S of Z" is definable if there is a formula
¢(xy,%,,-..,%, ;) such that

Q.112)  S={(k:i<n) €Z":LE @lky,ky,---,k ]}

1% n—1

The definable subsets of Z" are closed under union, intersection and comple-
ment and permutation of the coordinates. Moreover, if S C 7Z."t1 is definable,
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S0 is its projection

(2.113)  m,[S] :={(k; : i <n) : there is k, € Z such that
(k; i <n+1) €S}

The same holds for definable subsets of @", which are simply those definable
subsets of Z" that are included in @". Clearly, if S C Z" is definable, so is
SNnw".

Lemma 2.94 Suppose that a+ Y, p.x; = b+ Y., q;X; is a linear equation
with rational numbers a, b, p; and q; (i < n). Then there is an equation

2114 g+ Y ux;=h+) vx

i<n i<n
with the same solutions, but with positive integer coefficients such that g-h =
0 and for every i < n: v,u; = 0.

Proof. First, multiply with the least common denominator to transform the

equation into an equation with integer coefficients. Next, add —p,x; to both

sides if p; < 0, unless g; < p; < 0, in which case we add —g,x;. Now all co-

efficients are positive. Next, for every i < n, substract g,x; from both sides if

p; > q; and p.x; otherwise. These transformations preserve the set of solu-

tions. O
Call an equation reduced if it has the form

2.115) g+ Y kx;= Y kx
i<m m<i<n

with positive integer coefficients g and k;, i < n. Likewise for an inequa-
tion. Evidently, modulo renaming of variables we can transform every ratio-
nal equation into reduced form.

Lemma 2.95 The set of solutions of a reduced equation is semilinear.

Proof. Let 1 be the least common multiple of the k;. Consider a vector of the
form ¢; ; = (u/k;)é; + (u/k;)é;, where i <mand m < j <n. Then if V' is a
solution, so is ¥+ ¢; ; and conversely. Put C:= {¢; ; :i <m < j <n} and

(2.116) P:= {ﬁ:g+ Y k(i)=Y kii(i),u(i) <u/kl}

i<m m<i<n

Both P and C are finite. Moreover, the set of solutions is exactly X(P;C). O
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Lemma 2.96 The set of solutions of a reduced inequation is semilinear.

Proof. Assume that the inequation has the form

QUD g+ Y kx< Y Ky

i<m m<i<n

Define C and P as before. Let E := {&; : m < i < n}. Then the set of solutions
is X(P;CUE). If the inequation has the form

Q2118) g+ Y kx> Y Ky,

i<m m<i<n
The set of solutions is X(P;CUF), where F := {¢, : i < m}. O

Lemma 2.97 Let M C Q" be an affine subspace. Then M Z" is a semilinear
subset of 7"

Proof. Let V;, i < m+ 1, be vectors such that
(21190 M=9,+Q¥, +QV, +---+Q¥,_,

We can assume that the V; are linearly independent. Clearly, since Qw =
Q(Aw) for any nonzero rational number A, we can assume that ¥, € Z", i < m.
Now, put

(21200 Vi={F+ Y AV:0<A <1}

0<i<m
VNZ"is finite. Moreover, if ¥, + Y ;,, K;V; € Z" then V) + Yo, K V; € Z"
if x; — k] € Z. Hence,
@121) M= (W+Z¥ +-- +Zv,)
wev
This is a semilinear set. O

Lemma 2.98 Let M C Z." be a semilinear subset of Z.". Then M N @" is semi-
linear.

Proof. It suffices to show this for linear subsets. Let V;, i < m+ 1, be vectors
such that

(2.122) M =7Vy+ZV,+Zv,+-+7Z¥,_,
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Put w, := —V,, 0 <i < m. Then

(2.123) M =V)+ oV, + 0V, +--+ 0V, | +0OW +--+ 0w,
Thus, we may without loss of generality assume that

(2.124) M =V,+ oV, +ov,+ -+ 0V,

Notice, however, that these vectors are not necessarily in @". For i starting at
1 until n we do the following.

Let x'; := ¥;(i). Assume that for 0 < j < p we have x’; > 0, and that for
p < j < m we have xz. > 0. (A renaming of the variables can achieve this.)
We introduce new cyclic vectors ¢ ik forO0< j< pand p <k <m.Letu the
least common multiple of the |x|, for all 0 < s < m where xi # 0.

(2.125) &= (/)7 + (1 /)7,

Notice that the s—coordinates of these vectors are positive for s < i, since this
is a positive sum of positive numbers. The ith coordinate of these vectors is
0. Suppose that the ith coordinate of

2.126) W=V + Y AV,
o<j<m
is >0, where A ; € oforall 0 < j <m. Suppose further that for some k > p we
have A, > v, +m(/|x;|). Then there must be a j < p such that A, > (u/x}).
Then put A/ := A, for r # j,k, Aj:= A;— (u/x}) and A; := A, + (14 /x}). Then
2.127) W=7, + Y A
v 0<j<m

Moreover, A; < A, for all j < p, and A; < 4. Thus, by adding these cyclic
vectors we can see to it that the coefficients of the v, for p < k < m are
bounded. Now define P to be the set of all w which have a decomposition

2.128) w=¥+ ) A7 €0
o<j<m

where 1; < vé -+m| /x| for all 0 < j < m. Then

2.129) Mno"=|]J <ﬁ+ Y AT+ ) Kj,kzj,k>

iiep o<j<p 0<j<p<k<m
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with all A i K 2 0. Now we have achieved that all jth coordinates of vectors
are positive. O
The following is now immediate.

Lemma 2.99 Let M C Q" be an affine subspace. Then MN " is a semilinear
subset of @".

Lemma 2.100 The intersection of semilinear sets is again semilinear.

Proof. It is enough to show the claim for linear sets. So, let S, and §; be
linear. Then there are C = {ii; : i <m} and C; = {V;:i < n} and ii and ¥ such
that S, = X({ii};C,) and S, := £({V};C,). Notice that w € S,N S, iff there
are natural numbers «; (i < m) and 7Lj (j < n) such that

(2130)  w=ii+ Y ki, =V+ Y A7
i<m i<n

So, we have to show that the set of these w is semilinear.

The equations are now taken as linear equations with k;, i < m and A,,
i < n, as variables. Thus we have equations for m+n variables. We solve these
equations first in Q*". The solutions form an affine subspace V C Q/"*" =
Q" ®Q". By Lemma 2.99, V N @™ is semilinear, and so is its projection
onto @™ (or to ®" for that matter). Let it be J,, L;, where for each i < p,
L; C o™ is linear. Thus there is a representation of L; as

2131)  L;=6+0f,+-+ o7,
Now put

(2132) W= {ii+ ) R()i,: X €L}

i<m
From the construction we get that

(2133)  S,nS, =W,

i<p
Define vectors §; := Y, N;(j)d;, i < yand 7:=7¢+ Yicm é(j)ﬁ[ Then
2.134) W, =7+ g+ +0F,_,

So, the W, are linear. This shows the claim. O
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Lemma 2.101 IfS C " is semilinear, so is its projection T,[S|.

We need one more prerequisite. Say that a first—order theory T has quantifier
elimination if for every formula ¢@(X) there exists a quantifier free formula
% (X) such that T F @(X) < x(X). We follow the proof of (Monk, 1976).

Theorem 2.102 (Presburger) Presburger Arithmetic has quantifier elimina-
tion.

Proof. It is enough to show that for every formula (3x,) ¢(¥,%,) with ¢(¥,x)
quantifier free there exists a quantifier free formula  (¥) such that

(2.135)  ZF (v%) (3xy) (9(F,x,) ¢ 2(F))

We may further eliminate negation (see the remarks above) and disjunctions
inside @ (¥,x) (since (3x,) (avf) is equivalent with ((3x,) @)V ((3xy) B).
Finally, we may assume that all conjuncts contain x,. For if & does not con-
tain x, free, (3x,) (aAB) is equivalent to (A (3x,)B). So, ¢ can be as-
sumed to be a conjunction of atomic formulae of the following form:

(2.136)  (3xg) (A, mixo=tM\ i, Nxo <t AN, 1 x>t

My = LI
A/\i<sni XO_miti )

Since s=,t is equivalent with ns=,,nt, so after suitable multiplication we may
see to it that all the n;, n}, n’ and n"" are the same number v.
= / I
2.137)  (3xy) (Nic, VEG=TAN\io, VEQ<STIA <, VEQ> T
Mics VE=n,T")

We may rewrite the formula in the following way (replacing vx, by x, and
adding instead the condition that x, is divisible by V).

(2.138) (3x,) (XOEVOA/\i<pX0=TiA/\i<qxo<TiIA/\i<rxo>Ti”
Mics®o=n,T")

Assume that p > 0. Then the first set of conjunctions is equivalent with the
conjunction of A, j<p T=T; (Which does not contain x,) and x,=7,. We may
therefore eliminate all occurrences of x by 7, in the formula.

Thus, from now on we may assume that p = 0. Furthermore, notice that
(x7<OAx,<7) is equivalent to (xy<OAGET)V(x,<TAT<0). This means that
we can assume g < 1, and likewise that r < 1. Next we show that we can
actually have s < 1. To see this, notice the following.
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Let u,v,w,x be integers, w,x > 1, and let p be the least common multiple of
w and x. Then ged(p/w, p/x) = 1, and so there exist integers m,n such that
1 =m-p/w+n-p/x.1t follows that the following are equivalent.

@ y=u (mod w) and y=v (mod x)

@ u=v (mod ged(w,x)) andy =m(p/w)u+n(p/x)v (mod p).

The Euclidean algorithm yields numbers m and n as required (see (Jones,
1955)). Now suppose that the first obtains. Then y —u = ew and y — v = fx for
some numbers e and f. Then u —v = fx— ew, which is divisible by gcd(x, w).
So,u=v (mod gcd(w,x)). Furthermore,

(2.139)  y—m(p/w)u—n(p/x)v =m(p/w)y+n(p/x)y
—m(p/w)u—n(p/x)v
=m(p/w)(y—u)
+n(p/x)(y—v)
=m(p/w)em+n(p/x)fn
=0 (mod p)

So, the second holds. Conversely, if the second holds, then for some k& we
have u — v = kged(w,x). Then

(2.140)  y—u=y—m(p/w)u—n(p/x)u
=y—m(p/w)u—n(p/x)v—n(p/x)k-gcd(m,n)
=0 (mod w)

Analogously y=v (mod x) is shown.

Using this equivalence we can reduce the congruence statements to a con-
junction of congruences where only one involves x,.

This leaves us with 8 possibilities. If r = 0 or s = 0 the formula is actu-
ally trivially true. So, (3x,) (x4<7), (3x,) (V<xy), (Ix,) (xg=,&), as well
as (3x,) (xy<TA%,=,8) and (3xy) (V<x,A%,=,E) can all be dropped or
replaced by T. Finally, (3x,) (x,<TAV<x,) is equivalent with v+1<7 and
(3x() (x7<TAV<KYAX,=, ) is equivalent with \/,_,, (T+1+i<OAT+1+i=,8).
This shows the claim. g

Theorem 2.103 (Ginsburg & Spanier) A subset of ®" is semilinear iff it is
definable in Presburger Arithmetic.
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Proof. (=) Every semilinear set is definable in Presburger Arithmetic. To see
this it is enough to show that linear sets are definable. For if M is a union of
N, i < p, and each N, is linear and hence definable by a formula ¢;(X), then
M is definable by V/;_, ¢;(X). Now let M =V + oV, +--- + @V, | be linear.
Then put

Q2141)  (F) := @x,) @x,, ) @x, 0 1) (AranOSE,
MNicn FO*E j X V(0) =%))

@(X) defines M. (<) Let @(X) be a formula defining S. By Theorem 2.102,
there exists a quantifier free formula x (X) defining S. Moreover, as we have
remarked above, ¥ can be assumed to be negation free. Thus, ¥ is a disjunc-
tion of conjunctions of atomic formulae. By Lemma 2.100, the set of semilin-
ear subsets of ®" is closed under intersection of members, and it is also closed
under union. Thus, all we need to show is that atomic formulae define semi-
linear sets. Now, observe that x=,,x, is equivalent to (3x,) (xy=x,+mx,),
which is semilinear, as it is the projection of x,=x,+mx, onto the first two
components. O

Exercise 72. Let |A| = 1. Show that 3(A) is isomorphic to 9t(A). Derive from
this that there are only countably many semilinear languages over A.

Exercise 73. Let L C A*. Call L almost periodical if there are numbers p
(the modulus of periodicity) and n, such that for all X € L with length > n,
there is a string ¥ € L such that || = |¥| 4+ p. Show that a semilinear language
is almost periodical.

Exercise 74. Let A = {a,b}. Further, let U := a* Ub*. Now let N C M(A) be
a set such that N — U is infinite. Show that there are 2¥0 many languages L
with u[L] = N. (The cardinality of A* is X, hence there can be no more than
2%0 such languages. The exercise consists in showing that there are no less of
them either.)

Exercise 75. Show that semilinear languages have the following pumping
property: For every semilinear set V C " there exists a number n such that if
V€V has length > n, there exist w and X such that V=w+Xand w+ wXCV.

Exercise 76. Let Q C @. Let V, C ®? be defined by
(2.142) Vg :={(m,n) :m#norme Q}

Show that V, satisfies the pumping property of the previous exercise. Show
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further that V, is semilinear iff € is.

Exercise 77. Show that for every sentence ¢ of Presburger Arithmetic it is
decidable whether or not it is true in Z. Hint. Use quantifiers elimination and
the fact that the elimination is constructive.

6. Parikh’s Theorem

Now we shall turn to the already announced embedding of context free tree
sets into tree sets generated by UTAGs. (The reader may wonder why we
speak of sets and not of classes. In fact, we shall tacitly assume that trees
are really tree domains, so that classes of finite trees are automatically sets.)
Let G = (S,N,A,R) be a CFG. We want to define a tree adjunction grammar
Ad; = (C;,N,A,A;) such that Ly(G) = Lgz(Ad,;). We define C to be the set
of all (ordered labelled) tree (domains) %8 which can be generated by L;(G)
and which are centre trees and in which on no path not containing the root
some nonterminal symbol occurs twice. Since there are only finitely many
symbols and the branching is finite, this set is actually finite. Now we define
A,. Let A; contain all adjunction trees By, X € N, (modulo identification of
YO,Y1 with Y for all Y € N) such that (1) By can be derived from X in yG,
(2) no symbol occurs twice along a path that does contain the root. Also A is
finite. It is not hard to show that Lz(Ad;) C Lg(G). The reverse inclusion we
shall show by induction on the number of nodes in the tree (domain). Let 8
be in Ly(G). Either there is a path not containing the root along which some
symbol occurs twice, or there is not. In the second case the tree is in C.
Hence B € Lz(Ad;) and we are done. In the first case we choose an x € B of
minimal height such that there is a y < x with identical label; let the label be
X. Consider the subtree {{ induced by the set ({x —]y) U{y}. We claim that
U € A For this we have to show the following. (a) {{ is an adjunction tree,
(b) U can be deduced from X, (c) no symbol symbol occurs twice along a path
which does not contain x. Ad (a). A leaf of 4 is either a leaf of 8 or = y. In the
first case the label is a terminal symbol in the second case it is identical to that
of the root. Ad (b). If 9B is a tree of YG then 4l can be derived from X. Ad (c).
Let 7 be a path which does not contain x and let u,v € 7 nodes with identical
label and u < v. Then v < x, and this contradicts the minimality of x. Hence
all three conditions are met. So we can disembed 4. This means that there is a
tree B’ such that 9B is derived from B’ by adjoining 4[. We have B’ € Ly(G)
and by induction hypothesis B’ € L;(Ad;). Hence B € Ly(Ad;), which had
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to be shown.

Theorem 2.104 (Joshi & Levy & Takahashi) Every set of labelled ordered
tree domains generated by a CFG is also one generated by a UTAG. a

Now we shall prove Parikh’s Theorem for UTAGs. Let & be a letter and B
a tree. Then 04 (B) is the number of nodes whose label is o. If 9B is an
adjunction tree then the label of the root is not counted. Now let (C,N,A, A)
beaUTAGand C={¢;:i<a}, A={2;:j<p}

Lemma 2.105 Let B’ result from B by adjoining the tree 2. Then 64 (B') =
0a(B) + 0 ().

The proof of this lemma is easy. From this it follows that we only need to
know for an arbitrarily derived tree how many times which tree has been
adjoined and what the starting tree was. So let B be a tree which resulted
from &, by adjoining 2 ; p; times, j < B. Then

(2.143)  04(B) = 04(€)+ Y P, a(?L))
i<p

Let now u(B) :=Y ., 6,(8B) -a. Then

acA
(2.144)  p(B)=p(€)+ Y p;-u(B))
i<fp

We define the following sets

(2.145)  T;=p(€)+ Y ou)
j<B

Then p[Lgz((C,A))] C U, Z;- However, equality need not always hold. We
have to notice the following problem. A tree 2 ; can be adjoined to a tree B
only if its root label actually occurs in the tree 8. Hence not all values of
(UZX,; are among the values under u of a derived tree. However, if a tree can
be adjoined once it can be adjoined any number of times and to all trees that
result from this tree by adjunction. Hence we modify our starting set of trees
somewhat. We consider the set D of all pairs (k,W) such that k < a, W C 8
and there is a derivation of a tree that starts with €, and uses exactly the trees
from W. For (k,W) € D

2.146)  L(k,W)=p(€)+ Y o-u()
JjEW
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Then L := |J(L(k,W) : (k,W) € D) is semilinear. At the same time it is the
set of all u(*B) where B is derivable from (C,N,A, A).

Theorem 2.106 Ler L be the language of an unregulated tree adjunction
grammar then L is semilinear. O

Corollary 2.107 (Parikh) Let L be context free. Then L is semilinear. O

This theorem is remarkable is many respects. We shall meet it again several
times. Semilinear sets are closed under complement (Theorem 2.103) and
hence also under intersection. We shall show, however, that this does not hold
for semilinear languages.

Proposition 2.108 There are CFLs L, and L, such that L, N L, is not semi-
linear.

Proof. Let M, := {a"0" :n € o} and M, := {b"a>" : n € o}. Put
(2.147) L, :=bMja* L, =M

Because of Theorem 1.67 L, and L, are context free. Now look at L, N L,. It
is easy to see that the intersection consists of the following strings.

(2.148)  ba’, ba’b’a*, ba’b’a*ba®, ba2b2a4b4a8b8al6,...

The Parikh image is {(2"t? —2)a+ (2"*' — 1)b: n € ®}. This set is not
semilinear, since the result of deleting the symbol b (that is, the result of
applying the projection onto a*) is not almost periodical. O

We know that for every semilinear set N C M(A) there is a regular gram-
mar G such that u[L(G)] = N. However G can be relatively complex. Now
the question arises whether the complete preimage p —'[N] under u is at least
regular or context free. This is not the case. However, we do have the follow-
ing.

Theorem 2.109 The full preimage of a semilinear set over a single letter
alphabet is regular.

This is the best possible result. The theorem becomes false as soon as we
have two letters.

Theorem 2.110 The full preimage of ®(a+b) is not regular; it is however
context free. The full preimage of @(a+b+ c) is not context free.
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Proof. We show the second claim first. Let
(2.1499) W:=u 'ow(a+b+c)]

Assume that W is context free. Then the intersection with the regular lan-
guage a*b*c* is again context free. This is precisely the set {a"b"c” : n € w}.
Contradiction. Now for the first claim. Denote by b(X) the number of occur-
rences of a in X minus the number of occurrences of b in X. Then V := {X:
b(X) = 0} is the full preimage of @(a+b). V is not regular; otherwise the
intersection with a*b* is also regular. However, this is {a"b" : n € ®}. Con-
tradiction. However, V is context free. To show this we shall construct a CFG
G over A = {a,b} which generates V. We have three nonterminals, S, A, and
B. The rules are

S — SS|AB|BA
(2150) A — AS|SA|a
B — BS|SB|b

The start symbol is S. We claim: S -, X iff b(X) = 0, A+, X iff b(X) = 1 and
B - X iff b(X) = —1. The directions from left to right are easy to verify. It
therefore follows that V C L(G). The other directions we show by induction
on the length of ¥. It suffices to show the following claim.
If b(X) € {1,0,—1} there are ¥ and Z such that |¥|, |Z] < |¥| and such that ¥ = §7
as well as |[b(y)|,|6(2)] < 1.

Hence let ¥ = [,_, x; be given. Define k(¥, j) := b(V)X), and K := {k(, /) :
Jj<n+1}. Asis easily seen, K = [m,m'] with m < 0. Further, k(¥,n) = b(X).
(a) Let b(X) = 0. Then put ¥ := x, and 7 := [],.,.,x;- This satisfies the
conditions. (b) Let b(X) = 1. Case 1: x, = a. Then put again ¥ := x, and
7 1= [lp<icn¥;- Case 2: x, = b. Then k(¥,1) = —1 and there is a j such
that k(¥, j) = 0. Put y :=[],;x;, Z:= [1;<;c, X;- Since 0 < j < n, we have
[¥],|Z] < |X|. Furthermore, b(¥) = 0 and b(Z) = 1. (c) b(X) = —1. Similar to
(b). O

Exercise 78. Let |A| = 1 and Ad be a UTAG. Show that the language gener-
ated by Ad over A* is regular.

Exercise 79. Prove Theorem 2.109. Hint. Restrict your attention first to the
case that A = {a}.
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Exercise 80. Let N C M(A) be semilinear. Show that the full preimage is of
Type 1 (that is, context sensitive). Hint. It is enough to show this for linear
sets.

Exercise 81. In this exercise we sketch an alternative proof of Parikh’s The-
orem. Let A = {a, : i < n} be an alphabet. In analogy to the regular terms we
define semilinear terms. (a) a;, i < n, is a semilinear term, with interpreta-
tion {¢,}. (b) If A and B are semilinear terms, so is A @ B with interpretation
{li+7V:i€A,Ve B}, AUB, with interpretation {ii : ii € A or ii € B} and wA
with interpretation {kii : k € w,ii € A}. The first step is to translate a CFG
into a set of equations of the form X; = C;(X,X,,...,X, q_l), g the number of
nonterminals, C; semilinear terms. This is done as follows. Without loss of
generality we can assume that in a rule X — @&, & contains a given variable
at most once. Now, for each nonterminal X let X — @, i < p, be all the rules

of G. Corresponding to these rules there is an obvious equation of the form
(2.151) X=AU(B®X)orX=A

where A and B are semilinear terms that do not contain X. The second step is
to prove the following lemma:

Let X =AU (B®X)U(C® wX), with A, B and C semilinear terms not con-
taining X. Then the least solution of that equation is AU@BU®C. IfB& X is
missing from the equation, the solution is AU wC, and if C ® wX is missing
the solution is AU @B.

Using this lemma it can be shown that the system of equations induced by G
can be solved by constant semilinear terms for each variable.

Exercise 82. Show that the UTAG ({€},{S},{a,b,c,d},{2}) generates ex-
actly the strings of the form X¥dc”, where X is a string of n a’s and n b’s such
that every prefix of X has at least as many a’s as b’s.

EVZAN
I\
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Show also that this language is not context free. (This example is due to (Joshi
etal., 1975).)

7. Are Natural Languages Context Free?

We shall finish our discussion of CFLs by looking at some naturally arising
languages. We shall give examples of languages and constructions which are
definitely not context free. The complexity of natural languages has been
high on the agenda ever since the introduction of this hierarchy. Chomsky’s
intention was in part to discredit structuralism, which he identified with the
view that natural languages always are context free. By contrast, he claimed
that natural languages are not context free and gave many examples. It is
still widely believed that Chomsky had won his case. (For an illuminating
discussion read (Manaster-Ramer and Kac, 1990).)

It has emerged over the years that the arguments given by Noam Chomsky
and Paul Postal against the context freeness of natural languages were faulty.
Gerald Gazdar, Geoffrey Pullum and others have repeatedly found holes in
the argumentation. This has finally led to the bold claim that natural lan-
guages are all context free (see (Gazdar et al., 1985)). The first to deliver a
correct proof of the contrary was Riny Huybregts, only shortly later followed
by Stuart Shieber. (See (Huybregts, 1984) and (Shieber, 1985).) Counterev-
idence from Bambara was given by Culy (1987). Of course, it was hardly
doubted that from structural point of view natural languages are not con-
text free (see the analyses of Dutch and German within GB, for example, or
(Bresnan er al., 1987)), but it was not shown decisively that they are not even
weakly context free.

How is a proof the non context freeness of a language L possible? A typi-
cal method is this. Take a suitable regular language R and intersect it with L.
If L is context free, so is LN R. Now choose a homomorphism 4 and map the
language LN R onto a known non—CFL. We give an example from the paper
by Stuart Shieber. Look at (2.152) — (2.154). If one looks at the nested infini-
tives in Swiss German (first rows) we find that they are structured differently
from English (last rows) and High German (middle rows). (Instead of a gloss,
we offer the following parallels: das =~ dass = that, hdlfe = helfen =
help, aastriche =~ anstreichen = paint, huus = Haus = house, mer
=~ wir = we, 10nd = lassen = let, chind = Kinder = children.)

(2.152) Jan sdit, das Hans es huus aastricht.
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Jan sagt, dass Hans das Haus anstreicht.
Jan says that Hans is painting the house.
(2.153) Jan sdit, das mer em Hans es huus hdlfed
aastriche.
Jan sagt, dass wir Hans das Haus anstreichen
helfen.
Jan says that we help Hans paint the house.
(2.154) Jan sdit, das mer d’chind em Hans es huus
1ond hélfe aastriche.
Jan sagt, dass wir die Kinder Hans das Haus
anstreichen helfen lassen.
Jan says that we let the children help Hans
paint the house.
(2.155) *Jan sdit, das mer de Hans es huus hdlfed
aastriche.
(2.156) *Jan sdit, das mer em chind em Hans es huus

1ond hdlfe aastriche.

By asking who does what to whom (we let, the children help, Hans paints)
we see that the constituents are quite different in the three languages. Subject
and corresponding verb are together in English (see (2.157a)), in High Ger-
man they are on opposite sides of the embedded infinitive (see (2.157b), this
is called the nesting order). Swiss German, however, is still different. The
verbs follow each other in the reverse order as in German (so, they occur in
the order of the subjects, see (2.157c)). This is called the crossing order.

(2.157a) S, V,S,V, S5V ...
(2.15Tb)  §, 8,85 ... v, L, V,
(2.157c) 8, 8,8, ... V, V, V...

Now we assume — this is an empirical assumption, to be sure — that this is
the general pattern. It shall be emphasized that the processing of such sen-
tences becomes difficult with four or five infinitives. Nevertheless, the result-
ing sentences are considered grammatical.
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Now we proceed as follows. The verbs require accusative or dative on
their complements. The following examples show that there is a difference
between dative and accusative. In (2.155) de Hans is accusative and the com-
plement of aastriche, which selects dative. The resulting sentence is un-
grammatical. In (2.156), em chind is dative, while 16nd selects accusative.
Again the sentence is ungrammatical. We now define the following regular
language (recall the definition of ¢ from Section 1.2).

(2.158) R:=Jan¢sdit”,odasomer
o((em~OUd’ Ude"0)"(chind"OUHans"0O))*
“esohuus

¢(laa”0OUlénd"OUhd1fe " O)"* " aastriche™.

This is defined over the standard alphabet. It is not hard to see (invoking the
Transducer Theorem, 6.40) that the corresponding language over the alphabet
of lexemes is also regular. We define the following mapping from the lexemes
(denoted by their strings). v sends d’, de, 1aa and 16nd to a, em and hdlfe
to d, everything else inculding the blank is mapped to €. The claim is that

(2.159)  h[SNR] = {Z¥:¥€a-(aUd)*}

To this end we remark that a verb is sent to d if it has a dative object and to
a if it has an accusative object. An accusative object is of the form de N or
d’ N (N anoun) and is mapped to a by v. A dative object has the form em NV,
N anoun, and is mapped onto d. Since the nouns are in the same order as the
associated infinitives we get the desired result.

In mathematics we find a phenomenon similar to Swiss German. Consider
the integral of a function. If f(x) is a function, the integral of f(x) in the
interval [a, b] is denoted by

(2.160) / ’ f(x)dx

This is not in all cases well formed. For example, fol x~Ydx is ill formed, since
there Riemann approximation leads to a sequence which is not bounded,
hence has no limit. Similarly, lim,_,..(—1)" does not exist. Notice that the
value range of x is written at the integral sign without saying with what vari-
able the range is associated. For example, let us look at

(2.161) Lb /cdf(x,y)dxdy
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The rectangle over which we integrate the functionisa <x<bandc <y <d.
Hence, the first integral sign corresponds to the operator dx, which occurs first
in the list. Likewise for three integrals:

bO bl b2
(2.162) / / / Sy, %) dxydx, dx,
Gy Jap Jap

where the value range is a; < x; < b, for all i < 3. Consider the following
functions:

(2.163)  f(xg,---»%) == [ [

i<n
with a; € {—1, 1}, i < n. Further, we allow for the interval [a;, /] either [0, 1]
or [1,2]. Then an integral expression

hO hl hn—l
(2.164) / / / fxgoXy,ee oy X,y )dxydx, -+ -dx,_,
Gy a4 -1

is well formed iff a; > 0 for all i < n such that o; = —1. The dependencies
are crossing, and the order of elements is exactly as in Swiss German (con-
sidering the boundaries and the variables). The complication is the mediating
function, which determines which of the boundary elements must be strictly
positive.

In (Kac et al., 1987), it is argued that even English is not context free. The
argument applies a theorem from (Ogden er al., 1985). If L is a language, let
L, denote the set of strings that are in L and have length n. The following
theorem makes use of the fact that a string of length n possesses n(n+ 1)/2
proper substrings and that n(n+1)/2 < n? for all n > 1. Denote by "¢ the
smallest integer > c.

Theorem 2.111 (Interchange Lemma) Let L be a CFL. Then there exists a
real number c; such that for every natural number n > 0 and every set Q C L,
there is a k > F‘Q|/(CLI’l2)—], and strings X, ¥,, Z;, i <k, such that

@ foralli<i<k:|%|=|%]| ;| =¥ and |Z,| = |Z}].
@ foralli < k:|y,|,|XZ;| >0,
® foralli<k:Xy7Z €Q, and

@ foralli,j < k:X,¥;Z; € L.



Are Natural Languages Context Free? 169

Proof. Let G be a CFG that generates L. Let ¢; := |N|. We show that ¢, satis-
fies the above conditions. Take any set Q C L,. Then there is E C Q of cardi-
nality > 2|Q|/(n+ 1)n and numbers k > 0 and £ > 0 such that every member
of E possesses a decomposition X¥7 where X has length &, ¥ has length £, and
(¥,Z) is a constituent occurrence of ¥ in the string. It is then clear that there
is a subset F C E of cardinality > 2|Q|/((n+ 1)n|N|) > |Q|/(c;n*) such
that all (¥,7) are constituent occurrences of identical nonterminal category.
The above conditions are now satisfied for . Moreover, |F| > |Q|/(c,n*)7,
which had to be shown. O

Note that if the sequence of numbers L,/ n? is bounded, then L satisfies
the conditions of the Interchange Lemma. For assume that there is a ¢ such
that for all n we have L,/n*> < c. Then ¢, := sup{|L,|/n* : n € N} < c. Then
for every n and every subset Q of L,, "|Q|/(c;n*)7 < T|L,|/(c;n*)7 < 1.
However, with k = 1 the conditions above become empty.

Theorem 2.112 Let L C A* be a language such that (|Ly|/n?), oy is a bound-
ed sequence. Then L satisfies the conditions of the Interchange Lemma. This
is always the case if |A| = 1.

Kac, Manaster—Ramer and Rounds use constructions with respectively

shown below, in which there is an equal number of nouns and verb phrases to

be matched. In these constructions, the nth noun must agree in number with

the nth verb phrase.

(2.165) This land can be expected to sell itself/
*themselves.

These woods can be expected to sell *itself/

themselves.

(2.166) This land and these woods can be expected to rent
itself and sell themselves respectively.

(2.167)  *This land and these woods can be expected to rent
themselves and sell itself respectively.

(2.168) This land and these woods and this land can be
expected to sell themselves and rent themselves
respectively.

The problematic aspect of these constructions is illustrated by (2.168). There
need not be an exact match of NPs and VPs, and when there is no match,



170  Context Free Languages

agreement becomes obscured (though it follows clear rules). Now let

(2.169) A :=(thisolandUtheseowoods)¢and
¢ (thisoland”OUtheseowoods~O)"
“canobeoexpectedoto
o(rentUsell)o (itself"OUthemselves O)"
~ando (rent Usell)o (itself O Uthemselves 0O)"

“respectively”.

and let D be the set of strings of A that contain as many nouns as they contain
pronouns. B is that subset of D where the ith noun is 1and iff the ith pronoun
is itself. The empirical fact about English is that the intersection of English
with D is exactly B. Based on this we show that English is not context free.
For suppose it were. Then we have a constant ¢, satisfying the Interchange
Lemma. (We ignore the blanks and the period from now on.) Let n be given.
Choose Q := B,,, the set of strings of length 7 in B. Notice that [B,,| > 2(*~8)/2
for all n. Therefore, for some n, |B,| > 2n*c; so that 7|B,|/c;n*" > 2. This
means that there are ¥, X,, Z;, Z, and ¥, and ¥, such that B, contains X,¥,Z,
as well as X,¥,7,, but X,,Z, and X,y,Z, are also grammatical (and therefore
even in By,). It is easy to see that this cannot be.

The next example in our series is modelled after the proof of the non con-
text freeness of ALGOL. It deals with a quite well known language, namely
predicate logic. Predicate logic is defined as a language over a set of relation
and function symbols of varying arity and a set of variables {x,:i € ®}. In
order to be able to conceive of predicate logic as a language in our sense,
we code the variables as consisting of sequences x @, where & € {0,1}*. We
have x& = x E iff & = B . (Leading zeros are not suppressed. The numbers are
usually put as subscripts, but we shall not do that here.) We restrict ourselves
to the language of pure equality. The alphabet is {V,3, (,),=,%,0,1,A,7,=}.
The grammar rules are as follows.

(2.170)  F=Q(F) |=(F) | (F)A(F) | (F)=+(F) |P
P— V=V
Q— (VWOF | (3NF
V—x|xZ
Z—0Z|1Z|0]1
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Here F stands for the set of formulae P for the set of prime formulae Q for
the set of quantifier prefixes, V the set of variables and E for the set of strings
over 0 and 1. Let X be a formula and C an occurrence of a variable x¢. We
now say that this occurrence of a variable is bound in X if it is an occurrence
D of a formula (Qx¢)¥ in X with Q € {V,3} which contains C. A formula is
called a sentence if every occurrence of a variable is bound.

Theorem 2.113 The set of sentences of predicate logic of pure equality is not
context free.

Proof. Let L be the set of sentences of pure equality of predicate logic.
Assume this set is context free. Then by the Pumping Lemma there is a &k
such that every string of length > k has a decomposition #XVyw such that
iiX'7¥'Z € L for all i and |[¥7¥] < k. Define the following formulae.

(2.171) (Vx@) (xG=x0)

All these formulae are sentences. If & is sufficiently long (for example, longer

than k) then there is a decomposition as given. Since XVy must have length < k

X and ¥ cannot both be disjoint to all occurrences of ¢. On the other hand, it

follows from this that X and ¥ consist only of 0 and 1, and so necessarily they

are disjoint to some occurrence of @. If one pumps up X and y, necessarily

one occurrence of a variable will end up being unbound. O
We can strengthen this result considerably.

Theorem 2.114 The set of sentence of predicate logic of pure equality is not
semilinear.

Proof. Let P be the set of sentences of predicate logic of pure equality. As-
sume that P is semilinear. Then let P, be the set of sentences which contain
only one occurrence of a quantifier, and let this quantifier be 3. u[P,] is the
intersection of u[P] with the set of all vectors whose 3—component is 1 and
whose V—component is 0. This is then also semilinear. Now we consider the
image of u[P,] under deletion of all symbols which are different from x, 0
and 1. The result is denoted by Q,. O, is semilinear. By construction of P,
there is an & € {0,1}* such that every occurrence of a variable is of the form
x@. If this variable occurs k times and if & contains p occurrences of 0 and
q occurrences of 1 we get as a result the vector kx + kp0O + kqgl. It is easy
to see that k must be odd. For a variable occurs once in the quantifier and
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elsewhere once to the left and once to the right of the equation sign. Now we
have among others the following sentences.

(Ix&) (xA=x)
(2.172) (Ixa) ((xG=xa) A (xO=x03))
(3xa) ((xG=x0)A ((x8=x0) A (xC=x{)))

Since we may choose any sequence & we have
(2173)  Q, ={(2k+3)(x+p0+q1) : k,p,q € ®}

Q, is an infinite union of planes of the form (2k+3)(x+ w0+ w1). We show:
no finite union of linear planes equals Q. From this we automatically get a
contradiction. So, assume that Q, is the union of U;, i < n, U; linear. Then
there exists a U; which contains infinitely many vectors of the form (2k+ 3)x.
From this one easily deduces that U, contains a cyclic vector of the form mx,
m > 0. (This is left as an exercise.) However, it is clear that if v € O then we
have mx+v & Q,, and then we have a contradiction. O

Now we shall present an easy example of a ‘natural’ language which is
not semilinear. It has been proposed in somewhat different form by Arnold
Zwicky. Consider the number names of English. The stock of primitive names
for numbers is finite. It contains the names for digits (zero up to nine) the
names for the multiples of ten (ten until ninety), the numbers from eleven
and twelve until nineteen as well as some names for the powers of ten:
hundred, thousand, million, billion, and a few more. (Actually, using
Latin numerals we can go to very high powers, but few people master these
numerals, so they will hardly know more than these.) Assume without loss
of generality that million is the largest of them. Then there is an additional
recipe for naming higher powers, namely by stacking the word million. The
number 10% is represented by the k—fold iteration of the word million. For
example, the sequence

(2.174) one million million million million

names the number 10%*. (It is also called octillion, from Latin octo ‘eight’,
because there are eight blocks of three zeros.) For arbitrary numbers the
schema is as follows. A number in digital expansion is divided from right
to left into blocks of six. So, it is divided as follows:

(2.175) oyt x 10°+ 0, x 1012+
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where o; < 10° for all i. The associated number name is then as follows.
(2.176)  ---oM,omillionomilliono ), omilliono7j,

where 7); is the number name of ¢,. If o;; = 0 the ith block is omitted. Let Z be
the set of number names. We define a function ¢ as follows. @(million) =b;
¢(0) := &, all other primitive names are mapped onto a. The Parikh image
of @[Z] is denoted by W. Now we have

Q177 W= {koa—l—klb Tk, > (Lkoz/%)}

Here, Lk_ is the largest integer < k. We have left the proof of this fact to the
reader. We shall show that W is not semilinear. This shows that Z is also not
semilinear. Suppose that W is semilinear, say W = (J,_, N; where all the N;,
are linear. Let

@178)  N=u;+ Y. o)
J<p;

i<n

for certain u; and v; = Afa+ ulb. Suppose further that for some i and j we
have A} # 0. Consider the set

2.179)  P:=u;+ 0V = {u;+kAja+kub:k € o}

Certainly we have P C N; C W. Furthermore, we surely have u; # 0. Now
put § := Af/uf. Then

(2.180) P ={u;+kuj(a+{b): k€ w}

Lemma 2.115 For every € > 0 almost all elements of P have the form pa—+
gb where q/p < { +¢.

Proof. Let u; = xa+ yb. Then a general element of the set P is of the form
(x+kA})a+ (y+ kut)b. We have to show that for almost all k the inequality

(2.181) x+w< +¢
. = €
y4kp; —

is satisfied. Indeed, if k > -2, then

ute’
X‘|‘k}Ll X‘|‘k}Ll X X
(2.182) L < =+ <+ ———=C+¢
y+hku =kl ks ix/uie

This holds for almost all k. O
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Lemma 2.116 Almost all points of P are outside of W.

Proof. Let n,, be chosen in such a way that (L"OZ/ gJ) > ny(¢ +1). Then for all

n > n, we also have (L”é%) >n({ +1). Let pa+gb € W with p > n,,. Then
we have % > { + ¢, and therefore pa+gb ¢ P.Put H := {pa+gb: p>ny}.
Then PNH = &. However W N —H is certainly finite. Hence W N P is finite,
as required. O

Now have the desired contradiction. For on the one hand no vector is a
multiple of a; on the other hand there can be no vector ma + nb with n # 0.
Hence W is not semilinear.

Notes on this section. The question concerning the complexity of vari-
able binding is discussed in (Marsh and Partee, 1987). It is shown there that
the language of sentences of predicate logic is not context free (a result that
was ‘folklore’) but that it is at least an indexed language. (Indexed languages
neeed not be semilinear.) On the other hand, it has been conjectured that if we
take V to the set of formulae in which every quantifier binds at least one free
occurrence of a variable, the language V' is not even an indexed language. See
also Section 5.6. Philip Miller (1991) argues that Swedish and Norwegian are
not context free, and if right branching analyses are assumed, they are not
even indexed languages.

Exercise 83. Formalize the language of functions and integral expressions.
Prove that the language of proper integral expressions is not context free.

Exercise 84. Show the following: Let U be a linear set which contains in-
finitely many vectors of the form ka. Then there exists a cyclic vector of the
form ma, m > 0. Hint. Notice that the alphabet may consist of more than one
letter.

Exercise 85. Show that W has the claimed form.

Exercise 86. Show that the set V is not semilinear.

k
(2.183) V= {k0a+k1b Tk < (5’)}

Hint. Evidently, no linear set C V may contain a vector kb. Therefore the
following is well-defined.

(2.184) }/::max{%:i<n,j<pl}

J
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Show now that for every € > 0 almost all elements of W are of the form
xa+ yb where y < (y+ €)x. If we put for example € = 1 we now get a con-
tradiction.

Exercise 87. Prove the unique readability of predicate logic. Hint. Since we
have strictly speaking not defined terms, restrict yourself to proving that the
grammar given above is unambiguous. You might try to show that it is also
transparent.

Exercise 88. Let Q C @. Put Lo, := {a"b" :m #norm € Q}. Then n[L,| =
Vg as defined in Exercise 76. Show that L, satisfies the properties of Theo-
rem 1.82 and of Theorem 2.111. It follows that there are 2o many languages
over a and b that satisfy these criteria for context freeness and are not even
semilinear.






Chapter 3
Categorial Grammar and Formal Semantics

1. Languages as Systems of Signs

Languages are certainly not sets of strings. They are systems for commu-
nication. This means in particular that the strings have meaning, a meaning
which all speakers of the language more or less understand. And since natu-
ral languages have potentially infinitely many strings, there must be a way to
find out what meaning a given string has on the basis of finite information.
An important principle in connection with this is the so—called Principle of
Compositionality. It says in simple words that the meaning of a string only
depends on its derivation. For a CFG this means: if p = 8 — a0 -~ 0, _,
is a rule and i; a string of category «; then V := iiyii,---ii,_; is a string of
category 3 and the meaning of ¥ depends only on the meaning of the #; and
p. In this form the principle of compositionality is still rather vague, and we
shall refine and precisify it in the course of this section. However, for now
we shall remain with this definition. It appears that we have admitted only
context free rules. This is a restriction, as we know. We shall see later how
we can get rid of it.

To begin, we shall assume that meanings come from some set M, which
shall not be specified further. As before, exponents are members of A*, where
A is a finite alphabet. (Alternatives to this assumption will be discussed later.)

Definition 3.1 An interpreted (string) language over the alphabet A and
with meanings in M is a relation J C A* x M. The string language asso-
ciated with J is

3.1) L(J) :={X: there is m € M such that (X,m) € I}

The meanings expressed by J are

(3.2) M(J) :={m: there is X € A* such that (X,m) € J}

Alternatively, we may regard a language as a function from A* to @(M).

Then L(f) := {X: f(X) # @} is the string language associated with f and
M(f) := Ugey- f(X) the set of expressed meanings of f. These definitions are
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not equivalent when it comes to compositionality. In the original definition,
any particular meaning of a composite expression is derived from some par-
ticular meanings of its parts, in the second the totality of meanings is derived
from the totality of the meanings of the parts.

We give an example. We consider the number terms as known from ev-
eryday life as for example ((3+5) *2). We shall write a grammar with which
we can compute the value of a term as soon as its analysis is known. This
means that we regard an interpreted language as a set of pairs (¢, x) where ¢ is
an arithmetical term and x its value. Of course, the analysis does not directly
reveal the value but we must in addition to the rules of the grammar specify
in which way the value of the term is computed inductively over the analysis.
Since the nodes correspond to the subterms this is straightforward. Let T be
the following grammar.

T — (T+T) | (T-T) | (T*T) | (T/T)
(3.3) T — Z|(-2)
Z — 0]1]2]---]9

(This grammar only generates terms which have ciphers in place of decimal
strings. But see Section 3.4.) Let now an arbitrary term be given. To this term
corresponds a unique number (if for a moment we disregard division by 0).
This number can indeed be determined by induction over the term. To this end
we define a partial interpretation map /, which if defined assigns a number to
a given term.

(X)) = IX)+I1())
H(G-) = 1F)-1()
() = IX)xI{)
I(GEY)) = I®)=1F)
(3.4 (X)) = -IX)
1(0) =0
1(1) = 1
1(9) =9

If a function f is undefined on x we write f(x) = . We may also regard x
as a value. The rules for % are then as follows. If at least one argument is x,
so is the value. Additionally, a/0 = % for all a. If X is a term, then I(X) is
uniquely defined. For either X is a cipher from O to 9 or it is a negative cipher,



Languages as Systems of Signs 179

orX = (¥, ®,) for some uniquely determined y,, ¥, and ® € {+,-,*,/}.In
this way one can calculate /(¥) if one knows I(¥,) and I(¥,). The value of a
term can be found by naming a derivation and then computing the value of
each of its subterms. Notice that the grammar is transparent so that only one
syntactical analysis can exist for each string.

The method just described has a disadvantage: the interpretation of a term
is in general not unique, for example if a string is ambiguous. (For example,
if we erase all brackets then the term 3+5%2 has two values, 13 or 16.) As
explained above, we could take the meaning of a string to be a set of numbers.
If the language is unambiguous this set has at most one member. Further, we
have I(X) # @ only if X is a constituent. However, in general we wish to avoid
taking this step. Different meanings should arise only from different analyses.
There is a way to implement this idea no matter what the grammar is. Let U
be the grammar which results from 7 by deleting the brackets of 7'.

T — T+T|T-T|T*T|T/T
(3.5) T — Z|-2Z
Z = o|1|2]-|9

The strings of U can be viewed as images of a canonical transparent grammar.
This could be (3.3). However, for some reason that will become clear we shall
choose a different grammar. Intuitively, we think of the string as the image
of a term which codes the derivation tree. This tree differs from the structure
tree in that the intermediate symbols are not nonterminals but symbols for
rules. The derivation tree is coded by term in Polish Notation. For each rule
p we add a new symbol R,. In place of the rule p = A — & we now take
the rule A — Rp(_)'c. This grammar, call it V, is transparent (see Exercise 89).
X € L(V) is called a derivation term. We define two maps { and 1. { yields a
string for each derivation term, and t yields an interpretation. Both maps shall
be homomorphisms from the term algebra, though the concrete definition is
defined over strings. { can be uniformly defined by deleting the symbols
R,. However, notice that the rules below yield values only if the strings are
derivation terms.

CRpGy--- T, ) :=E(ay)" ()™=~ C(t,_))
{(a) =«

In the last line, o is different from all R,. We have assumed here that the
grammar has no rules of the form A — € even though a simple adaptation can

(3.6)
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help here as well. Now on to the definition of 1. In the case at hand this is
without problems.

l(R+_'_(')+5ﬁ) = l((:):‘o) + l(‘:’:ﬁ)
1R_,0p-ay) = 1(ad,)—1(0)
(3.7 LR Oy*xay) = 1(0) x1(a,)
LR, Gy/0y) = 1(0)+1(y)
1(R_-@) —1(a)

Here we have put the derivation term into Polish Notation, since it is uniquely
readable. However, this only holds under the condition that every symbol is
unique. Notice, namely, that some symbols can have different meanings —
as in our example the minus symbol. To this end we have added an addi-
tional annotation of the symbols. Using a superscript we have distinguished
between the unary minus and the binary one. Since the actual language does
not do so (we write ‘=’ without distinction), we have written R_, if the rule
for the unary symbol has been used, and R_, if the one for the binary symbol
has been used.

The mapping 1 is a homomorphism of the algebra of derivation terms into
the algebra of real numbers with x, which is equivalent to a partial homomor-
phism from the algebra of terms to the algebra of real numbers. For exam-
ple the symbol R, is interpreted by the function +: R, x R, — R,, where
R, :=RU{x} and « satisfies the laws specified above. In principle this alge-
bra can be replaced by any other which allows to interpret unary and binary
function symbols. We emphasize that it is not necessary that the interpreting
functions are basic functions of the algebras. It is enough if they are poly-
nomial functions (see (Hendriks, 2001) on this point). For example, we can
introduce a unary function symbol d whose interpretation is duplication. Now
2x = x+x, and hence the duplication is a polynomial function of the algebra
(R,+,-,0, 1), but not basic. However, the formal setup is easier if we inter-
pret each function symbol by a basic function. (It can always be added, if
need be.)

This exposition motivates a terminology which sees meanings and strings
as images of abstract signs under a homomorphism. We shall now develop
this idea in full generality. The basis is formed by an algebra of signs. Recall
from Section 1.1 the notion of a strong (partial) subalgebra. A strong subal-
gebra is determined by the set B. The functions on B are the restrictions of the
respective functions on A. Notice that it is not allowed to partialize functions
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additionally. For example, (A, E) with E(f) = & is not a strong subalgebra of
2 unless I1(f) = @.

A sign is a triple 6 = (e, c,m) where e is the exponent of &, usually some
kind of string over an alphabet A, c the category of ¢ and m its meaning. Ab-
stractly, however, we shall set this up differently. We shall first define an alge-
bra of signs as such, and introduce exponent, category and meaning as values
of the signs under some homomorphisms. This will practically amount to the
same, however. So, we start by fixing a signature (F,Q). In this connection
the function symbols from F are called modes. Over this signature we shall
define an algebra of signs, of exponents, of categories and meanings. An al-
gebra of signs over (F, Q) is simply a O—generated partial algebra 2( over this
signature together with certain homomorphisms, which will be defined later.

Definition 3.2 A (partial) Q-algebra A = (A,I1) is called n-generated if
there is an n—element subset X C A such that the smallest strong subalgebra
containing X is 2.

Definition 3.3 The quadruple (A, €,7y, 1) is called a sign grammar over the
signature Q if A is a O—generated partial Q—algebra and €: A — €, y: A —
€ and p: A — IM homomorphisms to certain partial Q—algebras such that
the homomorphism (€,7y, 1) is injective and strong. 2 is called the algebra
of signs, & the algebra of exponents, € the algebra of categories and I the
algebra of meanings.

This means in particular:

== Every sign o is uniquely characterized by three things:

* its so—called exponent £(0),

* its (syntactical) category y(c) (which is also often called its
type),

* its meaning L(0).

= To every function symbol f € F corresponds an Q(f)-ary function f¢
in &, an Q(f)-ary function f¢ in € and an Q(f)-ary function f™ in
M.

© Signs can be combined with the help of the function % any time their
respective exponents can be combined with the help of £, their respec-
tive categories can be combined with ¢ and their respective meanings
with ™. (This corresponds to the condition of strongness.)



182  Categorial Grammar and Formal Semantics

In the sequel we shall write f€ in place of ¢, f7 in place of f¢ and f* in
place of f™. This will allow us to suppress mentioning which actual algebras
are chosen. If o is a sign, then (g(c),y(0), (o)) is uniquely defined by
o, and on the other hand it uniquely defines ¢ as well. We shall call this
triple the realization of ¢. Additionally, we can represent ¢ by a term in the
free Q—algebra. We shall now deal with the correspondences between these
viewpoints.

Let Tm, = (PN, {g¥™a : g € F}), where PNy, is the set of constant Q-
terms written in Polish Notation and

(3.8) gxmﬂ(fo,...,fg(g)il) =g¢" ] %

i<Q(g)
Em, is a freely O—generated Q-algebra. The elements of PN, are called
structure terms. We use s, t, u and so on as metavariables for structure terms.
We give an example. Suppose that N is a O—ary mode and S a unary mode.
Then we have N*™a = N and $¥™a : ¥+— §™¥. This yields the following strings
as representatives of structure terms.

(3.9) N, SN, SSN, SSSN, . ..

We denote by h: M %5 N the fact that & is a partial function from M to N.
We now define partial maps €: PNy 4 E, Y: PNg 5 C and fi: PNy Am
in the following way.

(B.10)  E(g7™ (g5, 500 1)) = 8°(E(80) - €5 () 1)

Here, the left hand side is defined iff the right hand side is and then the two
are equal. If we have a O—ary mode g, then it is a structure term &€(g) =g* € E.
Likewise we define the other maps.

(3.1D ')./(ngQ (50, - asg(g)_l)) = 87(7(50), D) 1/(5Q(g)_1))
(3.12) (g5, S0 1)) = &M (11(50), - (50 1)

As remarked above, for every sign there is a structure term. The converse
need not hold.

Definition 3.4 We say, a structure term s is orthographically definite if €(s)
is defined. s is syntactically definite if ¥(s) is defined and semantically defi-
nite if [L(s) is defined. Finally, s is definite if s is orthographically, syntacti-
cally as well as semantically definite.
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Figure 9. Synopsis

Definition 3.5 The partial map v := (€,7, 1) is called the unfolding map.

The reader is referred to Figure 9 for a synopsis of the various algebras and
maps between them. In the sequel we shall often identify the structure term
s with its image under the unfolding map. This will result in rather strange
types of definitions, where on the left we find a string (which is the structure
term, by convention) and on the right a triple. This abuse of the language
shall hopefully present no difficulty. 2 is isomorphic to the partial algebra
of all (&(s),7(s),ft(s)), where s is a definite structure term. This we can
also look at differently. Let D be the set of definite structure terms. This set
becomes a partial Q—algebra together with the partial functions g*™e | D. We
denote this algebra by Def. Def is usually not a strong subalgebra of Tm,.
Forlet j: 5+ 5 be the identity map. Then we have j(g®% (s, ... ,Eg(g)il)) =

3™ (j(s0)s-- -, j(ﬁg(g)_ 1)) The right hand side is always defined, the left
hand side need not be.

The homomorphism v | D (which we also denote by ) is however strong.
Now look at the relation ® := {(s,,5,) : v(s,) = v(s,)}. ® is a congruence
on Def; for it clearly is an equivalence relation and if 5; ® u; for all i < Q(f)
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then f(3) is defined iff f(1i) is. And in this case we have f(5) ® f(ii). We can
now put:

G13) {51011 < Q) = [F((s;:1 < Q)OS

This is well-defined and we get an algebra, the algebra Def/®. The following
is easy to see.

Proposition 3.6 2 = Def/0.

So, Def/O is isomorphic to the algebra of signs. For every sign there is a
structure term, but there might also be several. As an instructive example we
look at the sign system of triples of the form (, T,285), where &J is the
arrangement of hands of an ordinary clock (here showing 4:45), T a fixed
letter, and 285 the number of minutes past midnight/noon that is symbolized
by this arrangement. So, the above triple is a sign of the language, while
(, T,177) is not, since the hands show 3:10, which equals 190 minutes,
not 177. We propose two modes: N (the zero, O—ary) and S (the successor
function, unary). So, the unfolding of N is (, T,0), and the unfolding of S is
the advancement by one minute. Then v(8) is a total function, and we have

(3.14)  v(N) = v(s"N)

From this one easily gets that for every structure term s, v(s) = v(S7%s).
Hence every sign has infinitely many structure terms, and so is inherently
structurally ambiguous. If instead we take as meanings the natural numbers
(say, the minutes that elapsed since some fixed reference point) and N* := 0
as well as S* := An.n+ 1 then every structure term represents a different
sign! However, still there are only 720 exponents. Only that every exponent
has infinitely many meanings.

We shall illustrate the concepts of a sign grammar by proceeding with our
initial example. Our alphabet is now

(315) R::{0713"'597+7_7*a/7(5)}

The algebra & consists of R* together with some functions that we still have
to determine. We shall now begin to determine the modes. They are R,, R_,,
R«, R /> which are binary, R_,, V, which are unary, and — finally — ten O-ary
modes, namely Z, Z4,...,Zq.

We begin with the O—ary modes. These are, by definition, signs. For their
identification we only need to know the three components. For example, to
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the mode Z corresponds the triple (0,Z,0). This means: the exponent of the
sign Z, (what we get to see) is the digit O; its category is Z, and its meaning
the number 0. Likewise with the other O—ary modes. Now on to the unary
modes. These are operations taking signs to make new signs. We begin with
R_,. On the level of strings we get the polynomial RZ,, which is defined as
follows.

(3.16)  R%(F):= (-D)

On the level of categories we get the function

T ifc=72,
(317 RY,(0) ::{ ne=e
- % otherwise.

Here % is again the symbol for the fact that the function is not defined. Finally
we have to define R* . We put

(3.18) RH (x) := —x

Notice that even if the function x — —x is iterable, the mode R_, is not. This
is made impossible by the categorial assignment. This is an artefact of the
example. We could have set things up differently. The mode V finally is de-
fined by the following functions. V&(X) := X, V#(x) :=x and V¥(c) :=R_,(c).
Finally we turn to the binary modes. Let us look at R /- RY is the partial (!)
binary function + on R. Further, we put

(3.19) Rj()'c',j/') = (X/y)

as well as

T ifc=d=T,

*  otherwise.

(320)  Rl(c,d):= {

The string RyR,Z3Z5Z, defines — as is easily computed — a sign whose
exponent is ((3+5)*7). By contrast, R ,ZyZ, does not represent a sign. It is
syntactically definite but not semantically, since we may not divide by 0.

Definition 3.7 A linear system of signs over the alphabet A, the set of cate-
gories C and the set of meanings M is a set ¥ C A* X C X M. Further, let S be

a category. Then the interpreted language of ¥ with respect to this category S
is defined by

(3.21) S(X) :={(¥,m) : (¥,S,m) € £}
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We added the qualifying phrase ‘linear’ to distinguish this from sign systems
which do not generally take strings as exponents. (For example, pictograms
are nonlinear.)

A system of signs is simply a set of signs. The question is whether one
can define an algebra over it. This is always possible. Just take a O—ary mode
for every sign. Since this is certainly not as intended, we shall restrict the
possibilities as follows.

Definition 3.8 Let ¥ C E X C X M be a system of signs. We say that ¥ is
compositional if there is a finite signature Q and partial Q—algebras € =
(E,{f®:feF}), €=(C,{fC: feF}), M= (M, {f™: f€F}) such that
all functions are computable and ¥ is the carrier set of the O—generated par-
tial (strong) subalgebra of signs from € x € x M. X is weakly compositional
if there is a compositional system X' such that L =Y NE X C x M.

Notice that X' C E' x C' x M" for certain sets E’, C' and M'. We remark that
a partial function f: M" s M in the sense of the definition above is a com-
putable total function f*: M? — M, such that f* | M" = f. So, the compu-
tation always halts, and we are told at its end whether or not the function is
defined and if so what the value is.

Two conditions have been made: the signature has to be finite and the
functions on the algebras computable. We shall show that however strong
they appear, they do not really restrict the class of sign systems in comparison
to weak compositionality.

We start by drawing some immediate conclusions from the definitions. If
o is a sign we say that (¢(0),y(0),u(o)) (no dots!) is its realization. We
have introduced the unfolding map v above.

Proposition 3.9 Let (U, €,7, ) be a compositional sign grammar. Then the
unfolding map is computable.

Simply note that the unfolding of a structure term can be computed induc-
tively. This has the following immediate consequence.

Corollary 3.10 Let X be compositional. Then ¥ is recursively enumerable.

This is remarkable inasmuch as the set of all signs over E x C x M need not
even be enumerable. For typically M contains uncountably many elements
(which can of course not all be named by a sign)!

Theorem 3.11 A system of signs is weakly compositional iff it is recursively
enumerable.



Languages as Systems of Signs 187

Proof. Let X C E x C x M be given. If ¥ is weakly compositional, it also is
recursively enumerable. Now, let us assume that X is recursively enumerable,
say X = {(e;,c;,;m;) : 0 < i € w}. (Notice that we start counting with 1.) Now
let V be a symbol and A := {(V",V",V") : n € w} a system of signs. By prop-
erly choosing V we can see to it that ANX = & and that no V" occurs in E, C
or M.Let F :={Zy,Z,,Z,}, Q(Z,) := 0, Q(Z,) := 1 and Q(Z,) := 1.

Z0 = <V,V,V>,

2,(0) = JTLVTLVE) ifo= (L),
! * otherwise,

' (e;,c;,m;) if o= (Vi Vi Vi),
Zy(0) = )
* otherwise.

This is well-defined. Further, the functions are all computable. For example,
the map V' > ¢; is computable since it is the concatenation of the computable
functions V' + i, i+ {e,,c;,m,) with (e;,c;,m.) — e;. We claim: the system of
signs generated is exactly AUZX. For this we notice first that a structure term is
definite iff it has the following form. (a) t = Z’iZo, or(b)tr= ZQZ’iZO. In Case
(a) we get the sign (VT v+ y7*1) [in Case (b) the sign (e, 1,c;pq,m, ).
Hence we generate exactly AUZ. So, X is weakly compositional. O

Notice that the algebra of exponents uses additional symbols which are
only used to create new objects which are like natural numbers. The just
presented algebra is certainly not very satisfying. (It is also not composi-
tional.) Hence one has sought to provide a more systematic theory of cat-
egories and their meanings. A first step in this direction are the categorial
grammars. To motivate them we shall give a construction for CFGs that dif-
fers markedly from the one in Theorem 3.11. The starting point is once again
an interpreted language J = {(¥, f(X)) : X € L}, where L is context free and f
computable. Then let G = (S,N,A,R) be a CFG with L(G) = L. PutA' := A,
C':= NU{S"} and M' := M UA*. For simplicity we presuppose that G is
already in Chomsky Normal Form. For every rule p of the formp =A — X
we take a O—ary mode R, which is defined as follows:

(323)  R,:= (%A%

For every rule p of the form p = A — B C we take a binary mode R, defined
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by

(3.24)  Rp((%,B,%),(5,C.5)) = (¥3,A,X¥)
Finally we choose a unary mode S:

(325)  S((%,8,%) = (%87, /(%))

Then J is indeed the set of signs with category S¥. As one can see, this al-
gebra of signs is more perspicuous. The strings are just concatenated. The
meanings, however, are not the ones we expect to see. And the category as-
signment is unstructured. This grammar is not compositional, since it still
uses nonstandard meanings. Hence once again some pathological examples,
which will show that there exist nonrecursive compositional systems of signs.

Suppose that A is a decidable system of signs. This means that there are
countable sets £, C and M such that either i) A=FE xC X M, or (i) A = &,
or (iii) there are two computable functions,

(326)  de:®—>»A,  do:®—» (EXCxM—A)

In particular, E, C and M are finite or countable. Also, we can find a bijec-
tion O, : K — A, where k = |A|. (Simply generate a list d, (i) for i =0, 1,...
and skip repeated items.) Its inverse is also computable. Now we look at the
projections 7, : {e,c,m) — e, T, : {(e,c,m) — ¢ and 7, : (e,c,m) > m.

Definition 3.12 Let A be a system of signs. A is called enumerative if the
projections T,, T;, and T, are either bijective and computable or constant.

Here is an enumerative subsystem of English. Take E to be the set of number
names of English (see Section 2.7), C = {v}, where v is the category of
numbers, and M = @. Now let € be the set of signs (X, Vv,n), where X names
the number » in English. It is straightforward to check that € is enumerative.

Let A be enumerative. We introduce two modes, N (zeroary) and S (unary)
and say that

N:=6.(0)
S(0) :=&(8, ' (o) +1)

This generates A, as is easily verified. This, however, is not compositional,
unless we can show that the S can be defined componentwise. Therefore put

(328)  s%(e):={° 1 if , iS.Constant,
my(S(my ' (e))) otherwise.

(3.27)
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This is computable if it is decidable whether or not e is in the image of 7,,.
So, the set 7;[A] must be decidable. Similarly S* and S are defined, and are
computable if 7, [A] and 7, [A], respectively, are decidable.

Definition 3.13 A is called modularly decidable if A, 7)[A], 7, [A] and m,[A]
are decidable.

Theorem 3.14 Suppose that A is modularly decidable and enumerative. Then
A is compositional. O

Theorem 3.15 (Extension) Let X C E X C X M be a recursively enumerable
set of signs. Let A C ¥ be modularly decidable and enumerative. Assume
that E is finite iff 7, is constant on A; similarly for C and M. Then ¥ is
compositional.

Proof. We first assume that £, C and M are all infinite. By Theorem 3.14, A is
compositional. Further, X is recursively enumerable. So there is a computable
function & : @ —» X. Moreover, 8, ! is also computable, and so Eo 5,1 :A— X
is computable. Add a unary mode F to the signature and let

F&(e) :=my((§ 0 871) (5 (e)))
(329 F(c):=m((§0 b, )(m ' (0))
Fé(m) :=m,((§ 08, (7, ' (m)))

(On all other inputs the functions are not defined.) This is well-defined and
surjective. (F& FY,F*) is partial, computable, and defined only on A. Its full
image is X. Now assume that one of the projections, say 7, is constant. Then
E is finite, by assumption on X, say E = {e, : i < n} for some n. Then put
L, :=XN({e;} x CxM). L, is also recursively enumerable. We do the proof
as before, with an enumeration ; : @ — X, in place of §. Assume n new unary
modes, G;, and put

(e]
(e]

G; (e) :=e;
6f () :=m (&0 87 (m7 ' (c))
Gf (m) :=my((§ 0 8. ) (my ' (m)))

All (Gf,G?,G!') are computable, partial, and defined exactly on A, which they
map onto X,. O

(3.30)
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In this construction all occurring signs are in X. Still, we do want to say
that the grammar just constructed is compositional. Namely, if we apply F¢
to the string ¥ we may get a string that may have nothing to do with X at
all. Evidently, we need to further restrict our operations, for example, by not
allowing arbitrary string manipulations. We shall deal with this problem in
Section 5.7.

Compositionality in the weak sense defines semantics as an autonomous
component of language. When a rule is applied, the semantics may not ‘spy’
into the phonological form or the syntax to see what it is supposed to do.
Rather, it acts autonomously, without that knowledge. Its only input is the
semantics of the argument signs and the mode that is being applied. In a sim-
ilar way syntax is autonomous from phonology and semantics. That this is
desirable has been repeatedly argued for by Noam Chomsky. It means that
syntactic rules apply regardless of the semantics or the phonological form. It
is worthwile to explain that our notion of compositionality not only makes se-
mantics autonomous from syntax and phonology, but also syntax autonomous
from phonology and semantics and phonology autonomous from syntax and
semantics.

Notes on this section. The notion of sign defined here is the one that is
most commonly found in linguistics. In essence it goes back to de Saussure
(1965), published posthumously in 1916, who takes a linguistic sign to con-
sist of a signifier and denotatum (see also Section 5.8). De Saussure therewith
diverged from Peirce, for whom a sign was a triadic relation between the sig-
nifier, the interpreting subject and the denotatum. (See also (Lyons, 1978) for
a discussion.) On the other hand, following the mainstream we have added to
de Saussure signs the category, which is nothing but a statement of the com-
binatorics of that sign. This structure of a sign is most clearly employed, for
example, in Montague Grammar and in the Meaning—to—Text framework of
Igor Mel’Cuk (see for example (Mel’¢uk, 2000)). Other theories, for example
early HPSG and Unification Categorial Grammar also use the tripartite dis-
tinction between what they call phonology, syntax and semantics, but signs
are not triples but much more complex in structure.

The distinction between compositionality and weak compositionality turns
on the question whether the generating functions should work inside the lan-
guage or whether they may introduce new objects. We strongly opt for the
former not only because it gives us a stronger notion. The definition in its
informal rendering makes reference to the parts of an expression and their
meanings — and in actual practice the parts from which we compose an ex-
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pression do have meanings, and it is these meanings we employ in forming
the meaning of a complex expression.

Exercise 89. Let G = (S,N,A,R) be a CFG. Put N' := NU{R,, : p € R}, and
R”:={X - Ry&:p=X— & €R}, G':=(5,N,A,R). Show that G’ is
transparent.

Exercise 90. Show that English satisfies the conditions of Theorem 3.15.
Hence English is compositional!

Exercise 91. Construct an undecidable set A such that its projections 7,[A],
m,[A] and 7,[A] are decidable. Construct a A which is decidable but not its
projection 7,[A].

Exercise 92. Show that the functions postulated in the proof of Theorem 3.15,
Zy and my, do exist if X is recursively enumerable.

Exercise 93. Say that ¥ C £ X C x M is extra weakly compositional if
there exists a finite signature Q and Q-algebras &', €' and M’ over sets
E' D E,C' D C and M' D M, respectively, such that ¥ is the carrier set of
the O—generated partial subalgebra of €' x €' x 9t which belong to the set
E x Cx M. (So, the definition is like that of weak compositionality, only that
the functions are not necessarily computable.) Show that ¥ is extra weakly
compositional iff it is countable. (See also (Zadrozny, 1994).)

2. Propositional Logic

Before we can enter a discussion of categorial grammar and type systems, we
shall have to introduce some techniques from propositional logic. We seize
the opportunity to present boolean logic using our notions of the previous
section. The alphabet is defined to be A, := {p,0,1, (,),L,~}. Further, let
T :={P},and M := {0, 1}. Next, we define the following modes. The zeroary
modes are

(3.31) X5 = (p&,P,0), Y, :=(p&,P1), M :=(L,P0)

Here, & ranges over (possibly empty) sequences of 0 and 1. (So, the signature
is infinite.) Further, let D be the following function:

D0 1
(3.32) 011 1
110 1
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The binary mode M+ of implication formation is spelled out as follows.
(3.33)  M.((x,Pm),(¥,P0)) := ((3+),P,1 D 6)

The system of signs generated by these modes is called boolean logic and is
denoted by Y. To see that this is indeed so, let us explain in more conven-
tional terms what these definitions amount to. First, the string language L we
have defined is a subset of A%, which is generated as follows.

@ If & € {0,1}*, then pc € L. These sequences are called propositional
variables.

@ 1lel
® If %,y € L then (¥4y) € L.

X is also called a well-formed formula (wff) or simply a formula iff it be-
longs to L. There are three kinds of wifs.

Definition 3.16 Let X be a well-formed formula. X is a tautology if (X, P,0) ¢
Y. X is a contradiction if (X,P,1) ¢ Xg. If X is neither a tautology nor a
contradiction, it is called contingent.

The set of tautologies is denoted by Tautg(~+, L), or simply by Tautg if the
language is clear from the context. It is easy to see that X is a tautology iff
(X¥=+_1) is a contradiction. Likewise, X is a contradiction iff (¥+_L) is a tautol-
ogy. We now agree on the following convention. Lower case Greek letters are
proxy for well-formed formulae, upper case Greek letters are proxy for sets
of formulae. Further, we write A; ¢ instead of AU{¢} and @;y in place of
{02}

Our first task will be to present a calculus with which we can generate all
the tautologies of X. For this aim we use a so—called Hilbert style calculus.
Define the following sets of formulae.

@0) (@=+(y=9))

(al) (o= CQy=x))+((p=+y)+(p-+x)))
(@2) (L-¢)

(@3) (((p=L)-+1)-=¢)

The logic axiomatized by (a0) — (a3) is known as classical or boolean logic,
the logic axiomatized by (a0) — (a2) as intuitionistic logic. To be more pre-
cise, (a0) — (a3) each are sets of formulae. For example:

(3.35) (a0) = { (@~ (y=9)) : @,y €L}

(3.34)
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We call (a0) an axiom schema and its elements instances of (a0). Likewise
with (al) — (a3).

Definition 3.17 A finite sequence I1 = (5, : i < n) of formulae is a B-proof
of ¢ if(a) 6,_, = @ and (b) for all i < n either (bl) J; is an instance of (a0) —
(a3) or (b2) there are j,k < i such that §, = (5j-05i). The number n is called
the length of T1. We write -8 @ if there is a B—proof of ¢.

The formulae (a0) — (a3) are called the axioms of this calculus. Moreover,
this calculus uses a single inference rule, which is known as Modus Ponens.
It is the inference from (¢@-=Y) and ¢ to ). The easiest part is to show that
the calculus generates only tautologies.

Lemma 3.18 If B ¢ then ¢ is a tautology.

The proof is by induction on the length of the proof. The completeness part
is somewhat harder and requires a little detour. We shall extend the notion of
proof somewhat to cover proofs from assumptions.

Definition 3.19 A B-proof of ¢ from A is a finite sequence I1 = (8, : i < n)
of formulae such that (a) 8,_, = @ and (b) for all i < n either (bl) 6, is an
instance of (a0) — (a3) or (b2) there are j,k < i such that 6, = (51--'5,-) or

(b3) 6, € A. We write A FB ¢ if there is a B—proof of ¢ from A.

To understand this notion of a hypothetical proof, we shall introduce the no-
tion of an assignment. It is common to define an assignment to be a function
from variables to the set {0, 1}. Here, we shall give an effectively equivalent
definition.

Definition 3.20 An assignment is a maximal subset A of
(3.36) {Xz:ae(ur)pu{y,:ae(0Ul)'}
such that for no & both XY, € A.

(So, an assignment is a set of zeroary modes.) Each assignment defines a
closure under the modes M, and M., which we denote by X5 (A).

Lemma 3.21 Let A be an assignment and ¢ a well-formed formula. Then
either (@,P,0) € £5(A) or (¢,P, 1) € £5(A), but not both.

The proof is by induction on the length of X. We say that an assignment A
makes a formula ¢ true if (¢,P, 1) € Z5(A).
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Definition 3.22 Let A be a set of formulae and ¢ a formula. We say that @
follows from (or is a consequence of) A if for all assignments A: if A makes

all formulae of A true then it makes @ true as well. In that case we write
AFE .

Our aim is to show that the Hilbert calculus characterizes this notion of con-
sequence:

Theorem 3.23 AFB ¢ iff AE 0.

Again, the proof has to be deferred until the matter is sufficiently simplified.
Let us first show the following fact, known as the Deduction Theorem (DT).

Lemma 3.24 (Deduction Theorem) A; ¢ -8 y iff AFB (@-y).

Proof. The direction from right to left is immediate and left to the reader.
Now, for the other direction suppose that A; ¢ B y. Then there exists a proof
I1= (5, :i<n) of x from A; . We shall inductively construct a proof IT' =
(6} : j <m) of (¢=x) from A. The construction is as follows. We define I1;
inductively.

(337) Iy=e, I, :=I%,

where X, i < n, is defined as given below. Furthermore, we will verify in-
ductively that IT, | is a proof of its last formula, which is (¢=§,). Then
IT := II, will be the desired proof, since 5n_1 = X. Choose i < n. Then
either (1) 6; € A or (2) 0 is an instance of (a0) — (a3) or (3) §, = ¢ or
(4) there are j,k < i such that §, = (8,+6,). In the first two cases we put
L, :=(5;, (6;74(9=8)), (¢~+5)). In Case (3) we put

(3.38) L= (((@=((@=90)=0))+((p+(@=¢))+(9=9))),
(o= ((p=9)=9)),
((p+ (=) )=+ (p+9)),
(=2 (p~9)),
(p=9))

Y, is a proof of (@-¢), as is readily checked. Finally, Case (4). There are
J»k <isuch that § = (6,#6;). Then, by induction hypothesis, (¢+6;) and
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(¢+6,) = (¢=(8;46;)) already occur in the proof. Then put

(339) L= {((@+(548))+((9+8)+(9+5))),
((@=8))+(9+6)),
(9=6))

It is verified that IT, , is a proof of (¢-3,). O
A special variant is the following.

Lemma 3.25 (Little Deduction Theorem) For all A and ¢: AFB ¢ if and
only if A; (p+L) FB L.

Proof. Assume that A -B ¢. Then there is a proof IT of ¢ from A. It follows
that TI™((¢p=L),1) is a proof of L from A; (¢ -L). Conversely, assume
that A; (p+L) FB L. Applying DT we get A B ((@-+L1)-+1). Using (a3)
we get AFB ¢. O

Proposition 3.26 The following holds.
® @B o.
@ IfAC A and AFB @ then also A' B ¢.
® IfFAFB @ and ;¢ FB y then T;AFB y.

This is easily verified. Now we are ready for the proof of Theorem 3.23.
An easy induction on the length of a proof establishes that if A FB ¢ then
also AF ¢. (This is called the correctness of the calculus.) So, the converse
implication, which is the completeness part needs proof. Assume that A ¥B ¢.
We shall show that also A ¥ ¢. Call a set © consistent (in F-B) if £ B 1.

Lemma 3.27  © Let A; (Q=)) be consistent. Then either A; (@=1) is
consistent or A; ) is consistent.

@ Let A; ((@=))=L) be consistent. Then also A; @; (x=L) is consistent.

Proof. ®. Assume that both A; (¢=+L1) and A; ) are inconsistent. Then we
have A; (@+L) FB L and A;x FB L. So AFB ((¢-L)~L1) by DT and, us-
ing (a3), A FB ¢. Hence A; (=) FB ¢ and so A; (p+x) B x. Because
A;x FB L, we also have A; (p-y) FB L, showing that A; (¢-y) is inconsis-
tent. @. Assume A;@; (x=+L1) is inconsistent. Then A; @; (x-=L) FB 1. So,
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A FB ((x=L1)-+1), by applying DT. So, A; ¢ FB x, using (a3). Applying
DT we get A B (@-%). Using (a3) and DT once again it is finally seen that
A; ((p=+x)=1) is inconsistent. O

Finally, let us return to our proof of the completeness theorem. We assume
that A¥B @. We have to find an assignment A that makes A true but not ¢. We
may also apply the Little DT and assume that A; (¢-=_1) is consistent and find
an assignment that makes this set true. The way to find such an assignment is
by applying the so—called downward closure of the set.

Definition 3.28 A set A is downward closed iff (1) for all (p=)) € A either
(p=L1) € Aor y € Aand (2) for all formulae ((Q=))+L) € Aalso ¢ € A
and (x+1) € A

Now, by Lemma 3.27 every consistent set has a consistent closure A*. (It is
an exercise for the diligent reader to show this. In fact, for infinite sets a little
work is needed here, but we really need this only for finite sets.) Define the
following assignment.

(3.40) A = {(p&,P1): (pa-~L) does not occur in A*}
U{(p&,P,0) : (pa-=L) does occur in A*}

It is shown by induction on the formulae of A* that the so—defined assignment
makes every formula of A* true. Using the correspondence between syntactic
derivability and semantic consequence we immediately derive the following.

Theorem 3.29 (Compactness Theorem) Let ¢ be a formula and A a set of
formulae such that A= @. Then there exists a finite set A' C A such that A' E @.

Proof. Suppose that A £ ¢. Then A FB ¢. Hence there exists a proof of ¢
from A. Let A be the set of those formulae in A that occur in that proof. A/
is finite. Clearly, this proof is a proof of ¢ from A’, showing A’ FB ¢. Hence
A Eo. O

Usually, one has more connectives than just L and +. Now, two effectively
equivalent strategies suggest themselves, and they are used whenever conve-
nient. The first is to introduce a new connective as an abbreviation. So, we
might define (for well-formed formulae)

(3.41) —Q:=¢@-1

(3.42) oVy:=(p2Ll)=y
(3.43) oANY = (p+(x~L))~L
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After the introduction of these abbreviations, everything is the same as be-
fore, because we have not changed the language, only our way of referring
to its strings. However, we may also change the language by expanding the
alphabet. In the cases at hand we will add the following unary and binary
modes (depending on which symbol is to be added):

(3.44) ML ((X,P,m)) = ((~%),P,—7)
(345)  My((X,Pn),(7,P,0)) = ((Xvi),P,nU6)
(3.46) MA((X, P m), (¥, P, 0)) := ((3A)),P,n N 0)
ulo 1 njo 1 =
(3.47) o‘o 1 0‘00 0‘1
111 110 1 110

For A, + and - we need the postulates shown in (3.48), (3.49) and (3.50),
respectively:

(3.48) (= (= (oAy))), (e (y=+(yAp))),
(CoAy) =), ((pAY) +y)
(3.49) (= (ovy), (y=+(ovy)),

(CCovyn) )+ (=x)), ((Covy) +x)+(y=x))
(3.50) (Ce=y) 2 ((qy)+(=9))),(@+(=(29)))

Notice that in defining the axioms we have made use of + alone. The formula
(3.51) is derivable.

(3.51) ((=2(=9))=9)

If we eliminate the connective L and define A - ¢ as before (eliminating the
axioms (a2) and (a3), however) we get once again intuitionistic logic, unless
we add (3.51). The semantics of intuitionistic logic is too complicated to be
explained here, so we just use the Hilbert calculus to introduce it. We claim
that with only (a0) and (al) it is not possible to prove all formulae of Tautg
that use only -. A case in point is the formula

(3.52) ((Co=x)=0)=0)

which is known as Peirce’s Formula. Together with Peirce’s Formula, (a0)
and (al) axiomatize the full set of tautologies of boolean logic in +. The
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calculus based on (a0) and (al) is called H and we write A FH X to say that
there is a proof in the Hilbert calculus of ¥ from A using (a0) and (al).
Rather than axiomatizing the set of tautologies we can also axiomatize the
deducibility relation itself. This idea goes back to Gerhard Gentzen, who used
it among other to show the consistency of arithmetic (which is of no concern
here). For simplicity, we stay with the language with only the arrow. We shall
axiomatize the derivability of intuitionistic logic. The statements that we are
deriving now have the form ‘A k- ¢’ and are called sequents. A is called the
antecedent and ¢ the succedent of that sequent. The axioms are

(3.53) (ax) ok o
Then there are the following rules of introduction of connectives:

AFo  Aylky
A (o) F y

Aoy
AF (p=x)

Notice that these rules introduce occurrences of the arrow. The rule (I-) in-
troduces an occurrence on the right hand side of I+, while (=) puts an occur-
rence on the left hand side. (The names of the rules are chosen accordingly.)
Further, there are the following so—called rules of inference:

AF ¢ 0,0k y Al o
AOF y AOF ¢

(3.54) I (=D

(3.55) (cut)

(mon)

The sequents above the line are called the premisses, the sequent below the
lines the conclusion of the rule. Further, the formulae that are introduced by
the rules (=I) and (I=) are called main formulae, and the formula ¢ in (cut)
the cut—formula. Let us call this the Gentzen calculus. It is denoted by K.

Definition 3.30 Let A& @ be a sequent. A (sequent) proof of length n of
AF ¢ in H is a sequence I1 = (X, & x;: i < n+ 1) such that (a) £, = A,
Xn = @, (b) for all i < n+ 1 either (ba) £, & y; is an axiom or (bb) L, & ¥,

follows from some earlier sequents by application of a rule of H.

It remains to say what it means that a sequent follows from some other se-
quents by application of a rule. This, however, is straightforward. For exam-
ple, AF (p-=yx) follows from the earlier sequents by application of the rule
(I=) if among the earlier sequents we find the sequent A; ¢ F x. We shall
define also a different notion of proof, which is based on trees rather than
sequences. In doing so, we shall also formulate a somewhat more abstract
notion of a calculus.
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Definition 3.31 A finitary rule is a pair p = (M, &), where M is a finite
set of sequents and & a single sequent. (These rules are written down using
lower case Greek letters as schematic variables for formulae and upper case
Greek letters as schematic variables for sets of formulae.) A sequent calculus
8 is a set of finitary rules. An 8—proof tree is a triple T = (T,>,{) such
that (T,<) is a tree and for all x: if {y, 1 i < n} are the daughters of T,
({€(y;) : i < n},L(x)) is an instance of a rule of 8. If r is the root of T, we say
that T proves £(r) in 8. We write

(3.56) DAk

to say that the sequent Av @ has a proof in 8.

We start with the only rule for L, which actually is an axiom.
(3.57) 1D Lko

For negation we have these rules.

Ak AokE L
. ) ——— I-) —————
(3.58) (<D A () F L () AF (Ro)
The following are the rules for conjunction.
Aoy y AFe Aby

3.5 I I
(3.59) (AD) A Cony) F 7 an) AF Cory)
Finally, these are the rules for v.

wn MeFx  Avky

A (pvy) F x

(3.60)

(I,V) Al——(p (L,V) M—W

! Ak (pvy) 2 Ak (pvy)

Let us return to the calculus HH. We shall first of all show that we can weaken
the rule system without changing the set of derivable sequents. Notice that
the following is a proof tree.

eFe yhy
(3.61) (p=y);oky

(p=y) F (@=y)
This shows us that in place of the rule (ax) we may actually use a restricted
rule, where we have only p; I p;. Call such an instance of (ax) primitive.
This fact may be used for the following theorem.
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Lemma 332 35 AF (p=x) iﬁfg{» Aok x.

Proof. From right to left follows using the rule (I+). Let us prove the other di-
rection. We know that there exists a proof tree for A (¢@-+y) from primitive
axioms. Now we trace backwards the occurrence of (¢-)) in the tree from
the root upwards. Obviously, since the formula has not been introduced by
(ax), it must have been introduced by the rule (I+). Let x be the node where
the formula is introduced. Then we remove x from the tree, thereby also re-
moving that instance of (I+). Going down from x, we have to repair our proof
as follows. Suppose that at y < x we have an instance of (mon). Then instead
of the proof part to the left we use the one to the right.

YF (o)) Lok y

(3:62) Lok (p2y) LOeky

Suppose that we have an instance of (cut). Then our specified occurrence of
(=) is the one that is on the right of the target sequent. So, in place of the
proof part on the left we use the one on the right.

Ay Oy (¢=+)) Ay O;0yky

(3.63) A0 F (p=x) AB®; oy

Now suppose that we have an instance of (=#I). Then this instance must be as
shown to the left. We replace it by the one on the right.

AT Ay (o)) AT Ao,y

The rule (=#I) does not occur below x, as is easily seen. This concludes the
replacement. It is verified that after performing these replacements, we obtain
a proof tree for A; ¢ F . |

Theorem 3.33 AFH ¢ iff %5 Ak o.

Proof. Suppose that A" ¢. By induction on the length of the proof we shall

show that 35 A k- ¢. Using DT we may restrict ourselves to A = &. First, we
shall show that (a0) and (al) can be derived. (a0) is derived as follows.

oFo
oy ko
(3.65) oF (y9)
F (o= (y=¢))




Propositional Logic 201

For (al) we need a little more work.

vy xkFyx

oFo v (yx)ky

(3.66) ok @ (Qry); (y+x) Fyx
P+ (y=x)): (p+y); 0k x

If we apply (I+) three times we get (al). Next we have to show that if we
have %5 @ ¢ and Lok (x=¢) then Lok x- By DT, we also have
% ¢ I x and then a single application of (cut) yields the desired conclusion.

This proves that Lok ¢. Now, conversely, we have to show that LAk (o)
implies that A FH ¢. This is shown by induction on the height of the nodes
in the proof tree. If it is 1, we have an axiom: however, @ F" ¢ clearly holds.
Now suppose the claim is true for all nodes of depth < i and let x be of depth
i. Then x is the result of applying one of the four rules. (#I). By induction
hypothesis, A FH @ and A; y F" . We need to show that A; (p-+y) FH y.
Simply let IT; be a proof of ¢ from A, I, a proof of x from A; y. Then I1; is
a proof of y from A; (p=+y).

(3.67) I :=T]((p=y),y) I,

(I»). This is straightforward from DT. (cut). Suppose that IT, is a proof of ¢
from A and IT, a proof of ¥ from ©; ¢. Then ITT'I1, is a proof of ¥ from A; ¢,
as is easily seen. (mon). This follows from Proposition 3.26. O

Call a rule p admissible for a calculus 8 if any sequent A k- ¢ that is
derivable in § + p is also derivable in S. Conversely, if p is admissible in S,
we say that p is eliminable from S + p. We shall show that (cut) is eliminable
from J, so that it can be omitted without losing derivable sequents. As cut—
elimination will play a big role in the sequel, the reader is asked to watch the
procedure carefully.

Theorem 3.34 (Cut Elimination) (cut) is eliminable from H.
Proof. Recall that (cut) is the following rule.

AFo Opky

(3.68) (cut) AOF

Two measures are introduced. The degree of (3.68) is

(3.69)  d:=|A[+|0[+]o]+ x|
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The weight of (3.68) is 2¢. The cut-weight of a proof tree T is the sum
over all weights of occurrences of cuts (= instances of (cut)) in it. Obviously,
the cut-weight of a proof tree is zero iff there are no cuts in it. We shall
now present a procedure that operates on proof trees in such a way that it
reduces the cut—weight of every given tree if it is nonzero. This procedure is
as follows. Let T be given, and let x be a node carrying the conclusion of an
instance of (cut). We shall assume that above x no instances of (cut) exist.
(Obviously, x exists if there are cuts in T.) x has two mothers, y, and y,. Case
(1). Suppose that y, is a leaf. Then we have £(y,) =@ F ¢, l(y,) =0O;0 F x
and £(x) = ;¢ F x. In this case, we may simply skip the application of cut
by dropping the nodes x and y,. This reduces the degree of the cut by 2-|¢|,
since this application of (cut) has been eliminated without trace. Case (2).
Suppose that y, is a leaf. Then £(y,) = x F x, £(y,) = AF ¢, whence ¢ = x
and £(x) = AF ¢ = £(y,). Eliminate x and y,. This reduces the cut—weight
by the weight of that cut. Case (3). Suppose that y, has been obtained by
application of (mon). Then the proof is as shown on the left.

Ak @ AFo  Opky
(3.70) ANFo Ok AOF x
AAN;OF AAN;OF

We may assume that A’ > 0. We replace the local tree by the one on the right.
The cut weight is reduced by

(3.71) DA+ HOH [+ x| _olAl+IO1+H ol +x| 5
Case (4). £(y,) has been obtained by application of (mon). This is similar to

the previous case. Case (5). E(yl) has been obtained by (=I). Then the main
formula is not the cut formula.

AFp Athko
(3.72) A (p-+D) F o O,k x
A;0; (p+1) F

And the cut can be rearranged as follows.

AFp Atk Ok y
(3.73) A®OFp AO;Thy
AO; (p=1) F g
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Here, the degree of the cut is reduced by |(p+7)| — || > 0. Thus the cut-
weight is reduced as well. Case (6). £(y,) has been obtained by (=I). Assume

o # (p=1).

O;0kp O;¢;Thy
(3.74) Ak o O;p; (p+1) F
A;0; (p=1) F g

In this case we can replace the one cut by two as follows.

A AFo Otk g

(3.75) AO F p AO;T F y

If we now apply (=I), we get the same sequent. The cut-weight has been
diminished by

(376)  21AHIOIHpI+Ie+3 _ plal+iel+lpl _ plal+lel+r 5 ¢

(See also below for the same argument.) Suppose however ¢ = (p-+1) ¢ ©.
Then either ¢ is not the main formula of £(y,), in Case (1), (3), (5), or it
actually is the main formula, and then we are in Case (7), to which we now
turn. Case (7). £(y,) has been introduced by (I=). If the cut formula is not
the main formula, we are in cases (2), (4), (6) or (8), which we dealt with
separately. Suppose however the main formula is the cut formula. Here, we
cannot simply permute the cut unless £(y,) is the result of applying (<I). In
this case we proceed as follows. ¢ = (p-+7) for some p and 7. The local
proof is as follows.

Aipkr OFp Otk y
(3.77) AF (p=1) O, (p+1) Fy
AOF g

This is rearranged in the following way.

ApkT ®Fp (Ol o4
(3.78) AOF T AO;Th gy
AOF

This operation eliminates the cut in favour of two cuts. The overall degree
of these cuts may be increased, but the weight has been decreased. Let d :=
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|A;@|, p :=|(p=+1)|. Then the first cut has weight 247+l The two other
cuts have weight

(3.79)  24HPIHITl o T < pdHIPIHITHR < pdtpH]

since p > |p|+ || > 0. (Notice that 2¢+¢ 4-24+d = 2a.(2¢ 4.24) < 24.2¢+d —
20tetd if ¢ d > 0.) Case (8). £(y,) has been obtained by (I+). Then y =
(p=7) for some p and 7. We replace the left hand proof part by the right
hand part, and the degree is reduced by |(p=+1)| —|7| > 0.

O p;pkt Abe  O:p:ipkcz
(3.80) Al ¢ 0,0 F (p-1) A;®;pk T
A;OF (p=1) A;®F (p=1)

So, in each case we managed to decrease the cut-weight. This concludes the
proof. O

Before we conclude this section we shall mention another deductive cal-
culus, called Natural Deduction. It uses proof trees, but is based on the De-
duction Theorem. First of all notice that we can write Hilbert style proofs also
in tree format. Then the leaves of the proof tree are axioms, or assumptions,
and the only rule we are allowed to use is Modus Ponens.

(3.81)  (MP) (‘p””l)y ¢

This, however, is a mere reformulation of the previous calculus. The idea
behind natural deduction is that we view Modus Ponens as a rule to elimi-
nate the arrow, while we add another rule that allows to introduce it. It is as
follows.

v
(3.82) I+ )
However, when this rule is used, the formula ¢ may be eliminated from the
assumptions. Let us see how this goes. Let x be a node. Let us call the set
A(x) :=={(»£(y)) : y > x,y leaf} the set of assumptions of x. If (I2) is used
to introduce (@-+y), any number of assumptions of x that have the form
(y, @) may be retracted. In order to know what assumption has been effec-
tively retracted, we check mark the retracted assumptions by a superscript
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(e. g. (p\/ ). Here are the standard rules for the other connectives. The fact that
the assumption ¢ is or may be removed is annotated as follows:

[]
(3.83) (I+) . (E~) M
v v
(o=y)

Here, [¢] means that any number of assumptions of the form ¢ above the node
carrying @ may be check marked when using the rule. (So, it does not mean
that it requires these formulae to be assumptions.) The rule (E-) is nothing
but (MP). First, conjunction.

o Yy (pAy) (pAy)
(3.84) (IA) o) (E\n) — Y (E,N) — v

The nextis L:

1
3.85 El) —
(3.85) (EL) p

For negation we need some administration of the check mark.

(0]
: ¢ (=p)
(3.86) I-) 1 (EA) -
()

So, using the rule (Im) any number of assumptions of the form ¢ may be
check marked. Disjunction is even more complex.

_ 9 v
@I,V) VD LV) T
(3.87) (o] [v]
(EV) P
(pvy) x x
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In the last rule, we have three assumptions. As we have indicated, whenever
it is used, we may check mark any number of assumptions of the form ¢ in
the second subtree and any number of assumptions of the form y in the third.

We shall give a characterization of natural deduction trees. A finitary rule
is a pair p = ({x,[A,] : i < n}, @), where for i < n, ; is a formula, A; a finite
set of formulae and @ a single formula. A natural deduction calculus 91 is
a set of finitary rules. A proof tree for 0N is a quadruple T = (T, >, £, €) such
that (T, <) is a tree, € C T a set of leaves and T is derived in the following
way. (Think of C as the set of leaves carrying discharged assumptions.)

w T = ({x},2,4,0), where £: x — ¢.

ww Thereis arule ({);[A,]:i <n},7), and T is formed from trees S, i < n,
with roots s;, by adding a new root node r, such that £g (y;) = x;, i <n,
£(x) = y. Further, C; = U,.,,Cs UU,., N;» where N, is a set of leaves

of S, such that for all i < n and all x € N;: éSi(x) €A,

(Notice that the second case includes n = 0, in which case T = ({x}, @, £, {x})
where £(x) is simply an axiom.) We say that T proves £(r) in 91 from {£(x) :
x leaf,x € C}. Here now is a proof tree ending in (a0).
oV
(3.88) o)
(p=+(y=9))

Further, here is a proof tree ending in (al).

(+(yy))VY oV (pry)V oV

(y=x) v
(3.89) (¢fx)
(Cory)=+(p=)))

(Co=+(y=x)) =+ ((p=2y)=+(=x)))

A formula depends on all its assumptions that have not been retracted in the
following sense.

Lemma 3.35 Let T be a natural deduction tree with root x. Let A be the set

of all formulae y such that (y,y) is an unretracted assumption of x and let
@ :=£(x). Then AFH .
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Proof. By induction on the derivation of the proof tree. O

The converse also holds. If A FH ¢ then there is a natural deduction proof
for ¢ with A the set of unretracted assumptions (this is Exercise 99).

Notes on this section. Proofs are graphs whose labels are sequents. The
procedure that eliminates cuts can be described using a graph grammar. Un-
fortunately, the replacements also manipulate the labels (that is, the sequents),
so either one uses infinitely many rules or one uses schematic rules.

Exercise 94. Show (a) (@+(y=x)) FB (y=(p-+x)) and (b) (pay) F
(wA@), where H' is H with the axioms for A added.

Exercise 95. Show that a set ¥ is inconsistent iff for every ¢: £ B ¢.

Exercise 96. Show that a Hilbert style calculus satisfies DT for =+ iff the
formulae (a0) and (al) are derivable in it. (So, if we add, for example, the
connectives 7, A and V together with the corresponding axioms, DT remains
valid.)

Exercise 97. Define ¢ =~ w by ¢ FH y and w " ¢. Show that if ¢ ~ y then
(a) for all A and x: A;@ F y iff A;yw FH x, and (b) for all A: AFH ¢ iff
ARy,

Exercise 98. Let us call Int the Hilbert calculus for +, 1, =, v and A. Fur-
ther, call the Gentzen calculus for these connectives J. Show that A "t ¢ iff

E»Al—(p.

Exercise 99. Show the following claim: If A" @ then there is a natural de-
duction proof for @ with A the set of unretracted assumptions.

Exercise 100. Show that the rule of Modus Tollens is admissible in the natural
deduction calculus defined above (with added negation).

(3.90) Modus Tollens: ((p_.q/)( ) (y)

3. Basics of A—Calculus and Combinatory Logic

There is a fundamental difference between a term and a function. The term
x% 4 2xy is something that has a concrete value if x and y have a concrete
value. For example, if x has value 5 and y has value 2 then x* 4 2xy = 25+
20 = 45. However, the function f: Z x Z — Z: {x,y) ~ x> + 2xy does not
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need any values for x and y. It only needs a pair of numbers to yield a value.
That we have used variables to define f is of no concern here. We would have
obtained the same function had we written f: (x,u) ~ x* 4+ 2xu. However,
the term x> 4 2xu is different from the term x? + 2xy. For if u has value 3, x
has value 5 and y value 2, then x? + 2xu = 25+ 30 = 55, while x* +2xy = 45.
To accommodate this difference, the A—calculus has been developed. The A—
calculus allows to define functions from terms. In the case above we may
write f as

(391)  f:=Axyx®+2xy

This expression defines a function f and by saying what it does to its argu-
ments. The prefix ‘Axy’ means that we are dealing with a function from pairs
(m,n) and that the function assigns this pair the value m? + 2mn. This is the
same as what we have expressed with (x,y) — x> 4 2xy. Now we can also
define the following functions.

(3.92) Ax.Ay.x* + 2xy, Ay Ax.x® + 2xy

The first is a function which assigns to every number m the function Ay.m? +
2my; the latter yields the value m? 4+ 2mn for every n. The second is a function
which gives for every m the function A.x.x? 4 2xm; this in turn yields n” + 2nm
for every n. Since in general m? + 2mn # n’ + 2nm, these two functions are
different.

In A—calculus one usually does not make use of the simultaneous abstrac-
tion of several variables, so one only allows prefixes of the form ‘Ax’, not
those of the form ‘Axy’. This we shall also do here. We shall give a general
definition of A—terms. Anyhow, by introducing pairing and projection (see
Section 3.6) simultaneous abstraction can be defined. The alphabet consists
of a set F of function symbols (for which a signature  needs to be given as
well), A, the variables V := {x, : i € o} the brackets (, ) and the period *.’.

Definition 3.36 The set of A—terms over the signature Q, the set of AQ~
terms for short, is the smallest set Tm, (V) for which the following holds:

® Every Q—term is in Tm, o (V).
@ IfM,N € Tm, (V) then also (MN) € Tm, 4 (V).

® IfM € Tm, , and x is a variable then (Ax.M) € Tm, , (V).
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If the signature is empty or clear from the context we shall simply speak of
A—terms.

Since in @ we do not write an operator symbol, Polish Notation is now am-
biguous. Therefore we follow standard usage and use the brackets ( and ).
We agree now that x, y and z and so on are metavariables for variables (that
is, for elements of V). Furthermore, upper case Roman letters like M, N are
metavariables for A—terms. One usually takes F to be &, to concentrate on the
essentials of functional abstraction. If F = &, we speak of pure A—terms. It
is customary to omit the brackets if the term is bracketed to the left. Hence
MNOP is short for (((MN)O)P) and Ax.MN short for ((Ax.(MN)) (and
distinct from ((Ax.M)N)). However, this abbreviation has to be used with
care since the brackets are symbols of the language. Hence xyxx is not a
string of the language but only a shorthand for ((xyx()x,), a difference that
we shall ignore after a while. Likewise, outer brackets are often omitted and
brackets are not stacked when several A—prefixes appear. Notice that (xx,)
is a term. It denotes the application of x to itself. We have defined occur-
rences of a string X in a string ¥ as contexts (i, V) where XV = y. Q—terms
are thought to be written down in Polish Notation.

Definition 3.37 Let x be a variable. We define the set of occurrences of x in
a AQ—term inductively as follows.

@ If M is an Q—term then the set of occurrences of x in the AQ—term M
is the set of occurrences of the variable x in the Q—term M.

@ The set of occurrences of x in (MN) is the union of the set of pairs
((i,¥N)), where (ii,V) is an occurrence of x in M and the set of pairs
((Mii,V)), where (ii,V) is an occurrence of x in N.

@ The set of occurrences of x in (\x.M) is the set of all {(Ax.i,V)),
where (i, V) is an occurrence of x in M.

So notice that — technically speaking — the occurrence of the string x in the
A—prefix of (Ax.M) is not an occurrence of the variable x. Hence x does
not occur in (Ax,.x,) as a AQ-term although it does occur in it as a string!

Definition 3.38 Let M be a A—term, x a variable and C an occurrence of x
in M. C is a free occurrence of x in M if C is not inside a term of the form
(Ax.N) for some N; if C is not free, it is called bound. A A—term is called
closed if no variable occurs free in it. The set of all variables having a free
occurrence in M is denoted by fr(M).
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A few examples shall illustrate this. In M = (Ax.(xyx4)) the variable
xy occurs only bound, since it only occurs inside a subterm of the form
(Axy.N) (for example N := (x4%,)). However, x, occurs free. A variable
may occur free as well as bound in a term. An example is the variable x in
(2o (Ax4.%p)).

Bound and free variable occurrences behave differently under replace-
ment. If M is a A-term and x a variable then denote by [N/x]M the result
of replacing x by N. In this replacement we do not simply replace all occur-
rences of x by N; the definition of replacement requires some care.

N ifx=y,

y  otherwise.

(3.93a) [N/x]y:= {

(3.93b) [N/x1f(S) :== f(IN/Xsgs -5 IN/Xsg 1)
(3.93¢) [N/x](MM") := (([N/x]M)([N /x}M"))
(3.93d)  [N/x](Ax.M) := (\x. M)
(3.93e) [N/x](\y.M) := (Ay.[N/x]M)

ify#xand: y & fr(N) or x & fr(M)
(3.93f)  [N/x](\y.M) := (\z.[N/x][z/y]M)

ify # x,y € fr(N) and x € fr(M)

In (3.93f) we have to choose z in such a way that it does not occur freely
in N or M. In order for substitution to be uniquely defined we assume that
z = x;, where i is the least number such that z satisfies the conditions. The
precaution in (3.93f) of an additional substitution is necessary. For let y = x4
and M = x,. Then without this substitution we would get

(3.94) (x4 /%0] A%y .x1) = A%y . [%4/%4]%) = A%y .%4)

This is clearly incorrect. For (Ax,.x,) is the function which for given a
returns the value of x. However, (Ax4.x,) is the identity function and so it
is different from that function. Now the substitution of a variable by another
variable shall not change the course of values of a function.

(3958) M=M
(395b) M=N=N=M
(395¢c) M=NN=L=M=L
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(395d) M=N= (ML)= (NL)
(395%) M=N= (LM) = (LN)
(3.95f) (M) = (\y.y/x]M)  y ¢ fr(M)  (o—conversion)

(3.95g) (M.M)N = [N/x]M (B—conversion)
(3.95h) (uM)=M  x¢fr(M) (n—conversion)
(3.951) M=N= (Ax.M)= (Ax.N) (§-rule)

We shall present the theory of A—terms which we shall use in the sequel. It
consists in a set of equations M = N, where M and N are terms. These are
subject to the laws above. The theory axiomatized by (3.95a) — (3.95g) and
(3.95i) is called A, the theory axiomatized by (3.95a) —(3.95i) An). Notice that
(3.95a) — (3.95¢) simply say that = is a congruence. A different rule is the
following so—called extensionality rule.

(3.96) Mx=Nx=M=N (ext)

It can be shown that X 4 (ext) = Av. The model theory of A—calculus is some-
what tricky. Basically, all that is assumed is that we have a domain D together
with a binary operation e that interprets function application. Abstraction is
defined implicitly. Call a function 8 : V — D a valuation. Now define [M]P
inductively as follows.

(3.97a) %) = B(x,)

(3.97b) [(MN)]P = [MIP(N)P)
(3.97¢) [P e := [M]Ple=4]

—

(Here, a € D.) (3.97c) does not fix the interpretation of (Ax.M) uniquely on
the basis of the interpretation of M. If it does, however, the structure is called
extensional. We shall return to that issue below. First we shall develop some
more syntactic techniques for dealing with A—terms.

Definition 3.39 Let M and N be A—terms. We say, N is obtained from M
by replacement of bound variables or by o—conversion and write M ~ 4 N
if there is a subterm (\y.L) of M and a variable 7z which does not oc-
cur in L such that N is the result of replacing an occurrence of (A\y.L) by
(Az.[z/y]L). The relation > is the transitive closure of ~ 4. N is congruent
to M, in symbols M =4 N, if both Mo N and N>og M
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Similarly the definition of f—conversion.

Definition 3.40 Let M be a A—term. We write M ~~ B N and say that M con-
tracts to N if N is the result of a single replacement of an occurrence of
(O\x.LYP) in M by ([P/x]L). Further, we write Mv g N if N results from M
by a series of contractions and M =g NifM >g N and Nl>ﬁ M.

A term of the form ((Ax.M)N) is called a redex and [N/x|M its contrac-
tum. The step from the redex to the contractum represents the evaluation of
a function to its argument. A A—term is evaluated or in normal form if it
contains no redex.

Similarly for the notation ~ , > >ap and =, 8- Call M and N af3—equiva-
lent (afn—equivalent) if (M,N) is contained in the least equivalence rela-
tion containing &5 (> n)’

Proposition 3.41 A= M =N iff M and N are of—equivalent. \n =M = N
iff M and N are o n—equivalent.

If Mv, B N and N is in normal form then N is called a normal form of M.
Without proof we state the following theorem.

Theorem 3.42 (Church, Rosser) Let L,M,N be A—terms such that L> z M

and Lbaﬁ N. Then there exists a P such thatMDaﬁ P and Nbaﬁ P.

B

The proof can be found in all books on the A—calculus. This theorem also
holds for > B

Corollary 3.43 Let N and N' be normal forms of M. Then N =, N'.

The proof is simple. For by the previous theorem there exists a P such that
Ny, B Pand N'> ap P. But since N as well as N’ do not contain any redex and
o—conversion does not introduce any redexes then P results from N and N’
by o—conversion. Hence P is ot—congruent with N and N’ and hence N and
N' are a—congruent.

Not every A—term has a normal form. For example

(3.98) ((Axg - (x9x0) ) (A% . (x5%4)))
Dﬁ ( (>\Xo . (XOXO)) (>\XO . (XOXO) ) )
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Or

(3.99) (g - ((xgxg) %)) Ay ((xpxg)%;)))
> (COAxg . ((x0%5)%1)) (Axg - ((x0%5)%4)))%4)
Dﬁ(((()\xo- ((XOXO)Xl)) (7\X0- ((XOXO)Xl)))Xl)Xi)

The typed A—calculus differs from the calculus which has just been presented
by an important restriction, namely that every term must have a type.

Definition 3.44 Let B be a set. The set of types over B, Typ_,(B), is the small-
est set M for which the following holds.

® BC M.
@ IfoeMand B € M then o« — B € M.

In other words: types are simply terms in the signature {—} with Q(—) =2
over a set of basic types. Each term is associated with a type and the struc-
ture of terms is restricted by the type assignment. Further, all Q—terms are
admitted. Their type is already fixed. The following rules are valid.

@ If (MN) is a term of type Y then there is a type o such that M has the
type oo — v and N the type 7.

@ If M has the type 7y and x is a variable of type a then (Ax, .M) is of
type o¢ — 7.

Notice that for every type o there are countably many variables of type «.
More exactly, the set of variables of type ¢ is V¥ := {x :i € ®}. We shall
often use the metavariables x, y, and so on. If @ # f then also x, # Xg
(they represent different variables). With these conditions the formation of
A—terms is severely restricted. For example (Ax.(xy%,)) is not a typed
term no matter which type x, has. One can show that a typed term always
has a normal form. This is in fact an easy matter. Notice by the way that if the
term (x,+x4) has type a and x; and x, also have the type «, the function
(Axy. (Axq . (x4+%4))) has the type & — (o — ). The type of an Q—term
is the type of its value, in this case ¢. The types are nothing but a special
version of sorts. Simply take Typ_, (B) to be the set of sorts. However, while
application (written e) is a single symbol in the typed A—calculus, we must
now assume in place of it a family of symbols og of signature (& — 3, o, B)
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for every type o, 3. Namely, M ogN is defined iff M has type @ — B and
N type «, and the result is of sort (= type) . While the notation within
many sorted algebras can get clumsy, the techniques (ultimately derived from
the theory of unsorted algebras) are very useful, so the connection is very
important for us. Notice that algebraically speaking it is not A but Ax,, that
is a member of the signature, and once again, in the many sorted framework,
Ax,, turns into a family of operations ABx . of sort (B, — B). That is to say,
APx, is a function symbol that only forms a term with an argument of sort (=
type) B and yields a term of type o« — f3.

We shall now present a model of the A—calculus. We begin by studying
the purely applicative structures and then turn to abstraction after the intro-
duction of combinators. In the untyped case application is a function that is
everywhere defined. The model structures are therefore so—called applicative
structures.

Definition 3.45 An applicative structure is a pair A = (A, e) where o is a
binary operation on A. If e is only a partial operation, (A,e) is called a
partial applicative structure. 2 is called extensional if for all a,b € A:

(3.100) a=biffforallccA:aec=bec

Definition 3.46 A typed applicative structure over a given set of basic types
B is a structure ({Aq : @ € Typ_(B)},®) such that (a) Ay is a set for every
o, (b)AgNAg =2 if o # B and (c) aeb is defined iff there are types o0 — f3
and o such that a EAa—>ﬁ and b € A, and then ae b EAB.

A typed applicative structure defines a partial applicative structure. Namely,
put A := [J,Aq; then e is nothing but a partial binary operation on A. The
typing is then left implicit. (Recovering the types of elements is not a trivial
affair, see the exercises.) Not every partial applicative structure can be typed,
though.

One important type of models are those where A consists of sets and e is
the usual functional application as defined in sets. More precisely, we want
that A, is a set of sets for every a. So if the type is associated with the set S
then a variable may assume as value any member of S. So, it follows that if
B is associated with the set 7' and M has the type B then the interpretation of
(Axq.M) is a function from S to 7. We set the realization of o — f to be the
set of all functions from S to 7. This is an arbitrary choice, a different choice
(for example a suitable subset) would do as well.
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Let M and N be sets. Then a function from M to N is a subset F of the
cartesian product M x N which satisfies certain conditions (see Section 1.1).
Namely, for every x € M there must be a y € N such that (x,y) € F and if
(x,y) € F and (x,y') € F then y = y'. (For partial functions the first condition
is omitted. Everything else remains. For simplicity we shall deal only with
totally defined functions.) Normally one thinks of a function as something
that gives values for certain arguments. This is not so in this case. F' is not a
function in this sense, it is just the graph of a function. In set theory one does
not distinguish between a function and its graph. We shall return to this later.
How do we have to picture F as a set? Recall that we have defined

(3.101) MxN={(x,y):xeM,ye N}

This is a set. Notice that M x (N x O) # (M x N) x O. However, the mapping
(3.102) % {x,(»2)) — ((x,¥),2): M X (NxO) = (M xN)x O

is a bijection. Its inverse is the mapping

(3.103)  x : {({(x,3),2) = (x,(1»2)): (M XN)xO—Mx(NxO0)

Finally we put

(3.104) M — N:={F CM XN :F afunction }

Elsewhere we have used the notation N¥ for that set. Now functions are also
sets and their arguments are sets, too. Hence we need a map which applies a
function to an argument. Since it must be defined for all cases of functions
and arguments, it must by necessity be a partial function. If x is a function
and y an arbitrary object, we define app(x,y) as follows.

z if(yz)€x,
* if no z exists such that (y,z) € x.

(3.105)  app(x,y) := {

app is a partial function. Its graph in the universe of sets is a proper class,
however. It is the class of pairs ({F,x),y), where F is a function and (x,y) € F.
Note that if F € M — (N — O) then

(3.106) FCMx(N—0)CMx(NxO)
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Then x[F] C (M x N) x O, and one calculates that x[F] C (M xN) — O.In
this way a unary function with values in N — O becomes a unary function
from M x N to O (or a binary function from M, N to O). Conversely, one can
see that if F € (M x N) — O then X[F] € M — (N — O).

Theorem 3.47 Let V,, be the set of finite sets. Then (V,app) is a partial
applicative structure.

In place of V, one can take any V). where x is an ordinal. However, only if K
is a limit ordinal (that is, an ordinal without predecessor), the structure will be
combinatorially complete. A more general result is described in the following
theorem for the typed calculus. Its proof is straightforward.

Theorem 3.48 Let B be the set of basic types and M,, b € B, arbitrary sets.
Let My be inductively defined by M, _, 5 := (Mﬁ)Ma. Then

(3.107)  ({My: a € Typ_,(B)},app)

is a typed applicative structure. Moreover, it is extensional.

For a proof of this theorem one simply has to check the conditions.

In categorial grammar, with which we shall deal in this chapter, we shall
use A—terms to name meanings for symbols and strings. It is important how-
ever that the A—term is only a formal entity (namely a certain string), and
it is not the meaning in the proper sense of the word. To give an example,
(Axy. (Ax4 .x5+x,)) is a string which names a function. In the set uni-
verse, this function is a subset of N — (N — N). For this reason one has
to distinguish between equality = and the symbol(s) =/=. M = N means
that we are dealing with the same strings (hence literally the same A—terms)
while M = N means that M and N name the same function. In this sense
(Axy . (Axq .x5+%4)) (%) (x5) # X+, but they also denote the same value.
Nevertheless, in what is to follow we shall not always distinguish between a
A—term and its interpretation, in order not to make the notation too opaque.

The A—calculus has a very big disadvantage, namely that it requires some
caution in dealing with variables. However, there is a way to avoid having to
use variables. This is achieved through the use of combinators. Given a set V
of variables and the zeroary constants S, K, I, combinators are terms over the
signature that has only one more binary symbol, . This symbol is generally
omitted, and terms are formed using infix notation with brackets. Call this
signature I.
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Definition 3.49 An element of Tmp(V) is called a combinatorial term. A
combinator is an element of Tm.(D).

Further, the redex relation > is defined as follows.

(3.1082) IXpX
(3.108b) KXYpX
(3.108¢c) SXYZvXZ(YZ)
(3.108d) XpX
(3.108¢) ifXpYandYp>Zthen X>Z
(3.108f) if XY then (XZ2) 1> (YZ)
(3.108g) if XY then (ZX) > (ZY)
Combinatory logic (CL) is (3.108a) — (3.108e). It is an equational theory if
we read > simply as equality. (The only difference is that > is not symmetric.
So, to be exact, the rule ‘if X =Y then Y = X’ needs to be added.) We note
that there is a combinator C containing only K and S such that C> I (see
Exercise 104). This explains why I is sometimes omitted.

We shall now show that combinators can be defined by A—terms and vice
versa. First, define
(3.1092)  |:= (\x;.x%4)
Define a translation % by X*:=XforXe v, st .= S, Kt = K, I* := . Then
the following is proved by induction on the length of the proof.
Theorem 3.50 Let C and D be combinators. If C D then C* >
CL+C=Dthen\+C* =D

B D*. Also, if

The converse translation is more difficult. We shall define first a function [x]
on combinatory terms. (Notice that there are no bound variables, so var(M) =
fr(M) for any combinatorial term M.)

(3.110a)  [x]x:=1.

(3.110b)  [x]M :=KM, if x & var(M).

(3.110c)  [x]Mx := M, if x & var(M).

(3.110d)  [x]MN := s ([x]M]) ([x]N), otherwise.
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(So, (3.110d) is applied only if (3.110b) and (3.110c) cannot be applied.) For
example [x4]x;xy = S([x4]x4) ([%4]xy) = SI(Kxy). Indeed, if one applies
this to x4, then one gets

3.111) ST (Kxy)xy > Ixg (Kxgxq) >xq (Kxgxq) > XX,
Further, one has
(3.112) U:=[x,]([xq]x %) = [2,]ST(Kxy) = S(K(SI))K

The reader may verify that Uxyx, >x,x,. Now define * by x* :=x, x € V,
(MN)* := (M*N*) and (Ax.N)" := [x]N*.

Theorem 3.51 Let C be a closed A—term. Then A\ = C = CX.

Now we have defined translations from A—terms to combinators and back. It
can be shown, however, that the theory A is stronger than CL under translation.
Curry found a list A ; of five equations such that X is as strong as CL + A

in the sense of Theorem 3.52 below. Also, he gave a list A, such that CL +
A B is equivalent to An = XA+ (ext). A B also is equivalent to the first—order

postulate (ext): (Vxy)((Vz)(xez=yeoz) > x=y).
Theorem 3.52 (Curry) Let M and N be A—terms.

® If\FM =N then CL4+A, +M"* = N¥,

B

@ If\yEM =N then CL+A nI—M"=N".

B

There is also a typed version of combinatorial logic. There are two basic
approaches. The first is to define typed combinators. The basic combinators
now split into infinitely many typed versions as follows.

Combinator Type

I, oa—=a
(3.113) Ka,ﬁ o—(f—a)
SeBy (a=(B—=7)—>{(a=pB)—=(x—=7)

Together with e they form the typed signature I'*. For each type there are
countably infinitely many variables of that type in V. Typed combinatorial
terms are elements of Tmp.(V), and typed combinators are elements of
Tmp.. Further, if M is a combinator of type o« — 8 and N a combinator
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of type o then (MN) is a combinator of type . In this way, every typed
combinatorial term has a unique type.

The second approach is to keep the symbols I, K and S and to let them
stand for any of the above typed combinators. In terms of functions, I takes
an argument N of any type o and returns N (of type ). Likewise, K is defined
on any M, N of type a and f3, respectively, and KMN = M of type «. Also,
KM is defined and of type B — o. Basically, the language is the same as in
the untyped case. A combinatorial term is stratified if for each variable and
each occurrence of I, K, S there exists a type such that if that (occurrence of
the) symbol is assigned that type, the resulting string is a typed combinatorial
term. (So, while each occurrence of I, K and S, respectively, may be given
a different type, each occurrence of the same variable must have the same
type.) For example, B := S(KS)K is stratified, while SII is not.

We show the second claim first. Suppose that there are types «, 3, 7, 0, €

such that ((S,, gyl 5)I¢) is atyped combinator.

(8,5, I)  Io)
(3.114) (a—=(B—=7) 00 €€
= (= p) = (2 —=7))

Then, since S, 5, is applied to Iy we must have d—=d=a—(f—7),
whence o = (f — 7). So, (84,5.,15) has the type

G115 (B=7MN—=B)—=>((B=7—=7

This combinator is applied to I, and so we have (B —y) — B =€ — &,
whence  — v = € = 3, which is impossible. So, SII is not stratified. On the
other hand, B is stratified. Assume types such that S im0 (K a, ﬁS 75, HKicisa
typed combinator. First, K , B is applied to S o This means that

(3.116) a=(y—=(06—=¢)—=>(y—=06)—(r—9)
The result has type

3.117)  B—=((y—=(6—¢€)—=>((y—=90)—(y—¢))
This is the argument of S L6 Hence we must have

3.118) ¢—(n—0)
=B ((r=>(6—¢€)—>(r—=98) = (r—¢))
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So,{=B,n=y— (8 > ¢€),0=(y— ) = (y— €). The resulting type
is ({ = n) — (¢ — 6). This is applied to K, i of type 1 — (k — 1). For this
to be well-defined we must have t - (k > 1) = — n,ort=¢ = f3 and
K—>1=1n=7y— (6 — €). Finally, this results in k =y, 1= =0 — €.
So, &, 7, 6 and € may be freely chosen, and the other types are immediately
defined.

It is the second approach that will be the most useful for us later on. We
call combinators implicitly typed if they are thought of as typed in this way.
(In fact, they simply are untyped terms.) The same can be done with A—terms,
giving rise to the notion of a stratified A—term. In the sequel we shall not
distinguish between combinators and their representing A—terms.

Finally, let us return to the models of the A—calculus. Recall that we have
defined abstraction only implicitly, using Definition (3.97c¢) repeated below:

(3.119) [(Ax.M)]ﬁ 0q:— [M]B[x::a]

In general, this object need not exist, in which case we do not have a model
for the A—calculus.

Definition 3.53 An applicative structure 2 is called combinatorially com-
plete if for every term t in the language with free variables from {x:i < n}
there exists a 'y such that for all b; € A, i < n:

(3.120) (- ((veb,)eb,)e---0b, ) =t(by,...,b, ;)

1 ¥n—1

This means that for every term ¢ there exists an element which represents this
term:

(B.121)  (Axy. Axy. - (A%, 1(Xgs--orX, 1)) )

Thus, this defines the notion of an applicative structure in which every ele-
ment can be abstracted. It is these structures that can serve as models of the
A—calculus. Still, no explicit way of generating the functions is provided. One
way is to use countably many abstraction operations, one for every number
i < @ (see Section 4.5). Another way is to translate A—terms into combinatory
logic using [—] for abstraction. In view of the results obtained above we get
the following result.

Theorem 3.54 (Schonfinkel) 2l is combinatorially complete iff there are el-
ements k and s such that

(3.122) ((kea)eb)=a (((sea)eb)ec) =(aec)e(bec)
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Definition 3.55 A structure 24 = (A, e,k,s) is called a combinatory algebra
ifAFkexey=xsexeyez=xeze(yez). Itisa A-algebra (or extensional)
if it satisfies A B (A B ) in addition.

So, the class of combinatory algebras is an equationally definable class. (This
is why we have not required |A| > 1, as is often done.) Again, the partial
case is interesting. Hence, we can use the theorems of Section 1.1 to create
structures. Two models are of particular significance. One is based on the
algebra of combinatorial terms over V modulo derivable identity, the other
is the algebra of combinators modulo derivable identity. Indirectly, this also
shows how to create models for the A—calculus. We shall explain a different
method below in Section 4.5.

Call a structure (A, e, k,s) a partial combinatory algebra if (i) sexey is
always defined and (ii) the defining equations hold in the intermediate sense,
that is, if one side is defined so is the other and they are equal (cf. Section 1.1).
Consider once again the universe V,,. Define

(3.123) &= {(x,(y,x)) 1 x,y € Vy}
(3.124)  5:= {{x,(y,{z,app(app(x,2),appP(1:2)))) : X, 1,2 € Vo }

(V,app, &,s) is not a partial combinatory algebra because app(app(€,x),y)
is not always defined. So, the equation (ke x) @y = x does not hold in the
intermediate sense (since the right hand is obviously always defined). The
defining equations hold only in the weak sense: if both sides are defined, then
they are equal. Thus, V,, is a useful model only in the typed case.

In the typed case we need a variety of combinators. More exactly: for all
types &, B and y we need elements kg € A5, 6 = @ — (f — o) and s; € Ay,
n=(a—(B—7)— (a¢—pB)— (a— 7)) such that for all a € A, and
beA g We have

(3.125)  (ksea)eb=a

andforeveryaeAOH(ﬁ_) bEAOHﬁ and c € A, we have

v
(3.126)  ((spea)eb)ec=(aec)e(bec)
We now turn to an interesting connection between intuitionistic logic and

type theory, known as the Curry—Howard—Isomorphism. Write M : ¢ if M is
a A—term of type ¢. Notice that while each term has exactly one type, there
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Table 6. Rules of the Labelled Calculus

'EM:o
Cx:xFM: o
'kEM:9 Ax:0,0FN:y

(axiom) x:@kx:@ M)

(cun AT,OF [M/xN:B

(E-) 'EM:(p+x) AFN:o
T,AF (MN) ¢

(1) Cx:oF-M:y

' (M) 2 (o))

are infinitely many terms having the same type. The following is a Gentzen—
calculus for statements of the form M : ¢. Here, I', A, ® denote arbitrary sets
of such statements, x, y individual variables (of appropriate type), and M, N
terms. The rules are shown in Table 6. First of all notice that if we strip off
the labelling by A—terms we get a natural deduction calculus for intuitionistic
logic (in the only connective ). Hence if a sequent {M,: ¢@,:i<n}FN:x

is derivable then 25 {¢;:i <n}F x, whence {@;:i<n} " x. Conversely,
given a natural deduction proof of {¢, : i < n} I x, we can decorate the proof
with A—terms by assigning the variables at the leaves of the tree for the axioms
and then descending it until we hit the root. Then we get a proof of the sequent
{M;: ¢;:i <n}F N:y inthe above calculus.

Now we interpret the intuitionistic formulae in this proof calculus as types.
For a set I of A—terms over the set B of basic types we put

(3.127) || :={¢ € Typ_,(B) : thereis M € T of type ¢}

Definition 3.56 For a set I" of types and a single type @ over a set B of basic
types we put I’ HA O if there is a term M of type ¢ such that every type of a
variable occurring free in M is in T

Returning to our calculus above we notice that if
(3.128) {M;:¢;:i<n}FN:g

is derivable, we also have {@, : i < n} FA y. This is established by induction
on the proof. Moreover, the converse also holds (by induction on the deriva-
tion). Hence we have the following result.
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Theorem 3.57 (Curry) I'H* ¢ iff T HH o.

The correspondence between intuitionistic formulae and types has also been
used to obtain a rather nice characterization of shortest proofs. Basically, it
turns out that a proof of ' = N : ¢ can be shortened if N contains a redex.
Suppose, namely, that N contains the redex ((Ax.M)U). Then, as is easily
seen, the proof contains a proof of A (Ax.M)U) : x. This proof part can
be shortened. To simplify the argument here we assume that no use of (cut)
and (M) has been made. Observe that we can assume that this very sequent
has been introduced by the rule (I+) and its left premiss by the rule (E+) and
A=ANUA"
ANx:ybEM:y
(3.129) A'F . M) : (y=y) AHU vy
AANF (x.MYU) @

Then a single application of (cut) gives this:

ANMFU: vy ANax:ykEM:y
AN AN"F[M/X]U : g

(3.130)

While the types and the antecedent have remained constant, the conclusion
now has a term associated to it that is derived from contracting the redex.
The same can be shown if we take intervening applications of (cut) and (M),
but the proof is more involved. Essentially, we need to perform more com-
plex proof transformations. There is another simplification that can be made,
namely when the derived term is explicitly a—converted. Then we have a
sequent of the form I' (Ax.Mx) : (¢-)). Then, again putting aside inter-
vening occurrences of (cut) and (M), the proof is as follows.

FT'FOx.M):o—=x vy:oky:o
(3.131) Ly:oF My) : x
' \y.My) : (p=x)

This proof part can be eliminated completely, leaving only the proof of the
left hand premiss. An immediate corollary of this fact is that if the sequent
{x;: @;:i<n}F N:yis provable for some N, then there is an N’ obtained
from N by a series of a—/f— and n—normalization steps such that the sequent
{x; 1 @, i <n}F N':y is also derivable. The proof of the latter formula is
shorter than the first on condition that N contains a subterm that can be 3— or
n-reduced.
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Notes on this section. A—abstraction already appeared in (Frege, 1962)
(written in 1891). Frege wrote €.f(g). The first to study abstraction system-
atically was Alonzo Church (see (Church, 1933)). Combinatory logic on the
other hand has appeared first in the work of Moses Schonfinkel (1924) and
Haskell Curry (1930). The typing is reminiscent of Husserl’s semantic cat-
egories. More on that in Chapter 4. Suffice it to say that two elements are
of the same semantic category iff they can meaningfully occur in the same
terms. There are exercises below on applicative structures that demonstrate
that Husserl’s conception characterizes exactly the types up to renaming of
the basic types.

Exercise 101. Show that in ZFC, M x (N x O) # (M X N) x O.

Exercise 102. Find combinators G and C such that GXYZ > X(ZYZ) and
CXYZ>XZY.

Exercise 103. Determine all types of G and C of the previous exercise.

Exercise 104. We have seen in Section 3.2 that (¢-=¢) can be derived from
(a0) and (al). Use this proof to give a definition of I in terms of K and S.

Exercise 105. Show that any combinatorially complete applicative structure
with more than one element is infinite.

Exercise 106. Show that e, £ and s defined on V, are proper classes in V.
Hint. It suffices to show that they are infinite. However, there is a proof that
works for any universe V., so here is a more general method. Say that C C V.
is rich if for every x € V,., x €t C. Show that no set is rich. Next show that e,
€ and s are rich.

Exercise 107. Let ({A, : @ € Typ_,(B)},e) be a typed applicative structure.
Now define the partial algebra (A,e) where A := [J,Aq. Show that if the ap-
plicative structure is combinatorially complete, the type assignment is unique
up to permutation of the elements of B. Show also that if the applicative struc-
ture is not combinatorially complete, uniqueness fails. Hint. First, establish
the elements of basic type, and then the elements of type b — ¢, where b,c € C
are basic. Now, an element of type b — ¢ can be applied to all and only the
elements of type c. This allows to define which elements have the same basic

type.

Exercise 108. LetV :={p&: & € {0,1}*}. Denote the set of all types of com-
binators that can be formed over the set V by C. Show that C is exactly the
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set of intuitionistically valid formulae, that is, the set of formulae derivable in
HH.

4. The Syntactic Calculus of Categories

Categorial grammars — in contrast to phrase structure grammars — specify
no special set of rules, but instead associate with each lexical element a finite
set of context schemata. These context schemata can either be defined over
strings or over structure trees. The second approach is older and leads to the
so called Ajdukiewicz—Bar Hillel-Calculus (AB), the first to the Lambek—
Calculus (L). We present first the calculus AB.

We assume that all trees are strictly binary branching with exception of the
preterminal nodes. Hence, every node whose daughter is not a leaf has exactly
two daughters. The phrase structure rule X — Y Z licenses the expansion of
the symbol X to the sequence YZ. In categorial grammar, the category Y
represents the set of trees whose root has label Y, and the rule says that trees
with root label Y and Z, respectively, may be composed to a tree with root
X. The approach is therefore from bottom to top rather than top to bottom.
The fact that a tree of the named kind may be composed is coded by the so
called category assignment. To this end we first have to define categories.
Categories are simply terms over a signature. If the set of proper function
symbols is M and the set of O-ary function symbols is C we write Cat,,(C)
rather than Tm,,(C) for the set of terms over this signature. The members are
called categories while members of C are called basic categories. In the AB—
Calculus we have M = {\,/}. (L also has e.) Categories are written in infix
notation. So, we write (a/b) in place of /ab. Categories will be denoted
by lower case Greek letters, basic categories by lower case Latin letters. If
C ={a,b,c} then ((a/b)\c), (c/a) are categories. Notice that we take the
actual strings to be the categories. This convention will soon be relaxed. Then
we also use left associative bracketing as with A—terms. So, a/b/c/b/a will
be short for ((((a/b)/c)/b)/a). (Notice the change in font signals that
the way the functor is written down has been changed.) The interpretation
of categories in terms of trees is as follows. A tree is understood to be an
exhaustively ordered strictly binary branching tree with labels in Cat\7 /(C )s
which results from a constituent analysis. This means that nonterminal nodes
branch exactly when they are not preterminal. Otherwise they have a single
daughter, whose label is an element of the alphabet. The labelling function £
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must be correct in the sense of the following definition.

0 0

(3.132)
Y (Y\9) /7 Y

Call a tree 2-standard if a node is at most binary branching, and if it is
nonbranching iff it is preterminal.

Definition 3.58 Let A be an alphabet and {: A — W(Cat\y /(C)) be a func-
tion for which §(a) is always finite. Then  is called a category assign-
ment. Let ¥ = (T,<,C,t) be a 2—standard tree with labels in Cat, /(C).
% is correctly C-labelled if (1) for every nonbranching x with daughter y

L(x) € E(£(y)), and (2) for every branching x which immediately dominates
Yoo ¥y and y, Ty, we have: £(y,) = (U(x)/L(y,)) or £(y,) = (L(yy)\L(x)).

Definition 3.59 The quadruple K = (S,C,A, {) is an AB-grammar if A and
C are finite sets, the alphabet and the set of basic categories, respectively,
SeCand§: A— ((O(Cat\, /(C)) a category assignment. The set of labelled
trees that is accepted by K is denoted by Lg(K). It is the set of 2—standard
correctly {-labelled trees with labelling £: T — Cat, /(C) such that the root
carries the label S.

We emphasize that for technical reasons also the empty string must be as-
signed a category. Otherwise no language which contains the empty string is
a language accepted by a categorial grammar. We shall ignore this case in the
sequel, but in the exercises will shed more light on it.

AB-grammars only allow to define the mapping . For given §, the set
of trees that are correctly {—labelled are then determined and can be enumer-
ated. To this end we need to simply enumerate all possible constituents. Then
for each preterminal x we choose an appropriate label y € {(4(y)), where
y < x. The labelling function therefore is fixed on all other nodes. In other
words, the AB—grammars (which will turn out to be variants of CFGs) are
invertible. The algorithm for finding analysis trees is not very effective. How-
ever, despite this we can show that already a CFG generates all trees, which
allows us to import the results on CFGs.

Theorem 3.60 Ler K = (S,C,A, ) be an AB—grammar. Then there exists a
CFG G such that Lg(K) = Lg(G).
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Proof. Let N be the set of all subterms of terms in {(a), a € A. N is clearly
finite. It can be seen without problem that every correctly labelled tree only
carries labels from N. The start symbol is that of K. The rules have the form

(3.133)  y—(y/6) &
(3.134) y—=8 (8\p)
(3.135)  y—a (ve(a)

where ¥, 0 run through all symbols of N and a through all symbols from A.
This defines G := (S,N,A,R). If ¥ € L;z(G) then the labelling is correct, as is
easily seen. Conversely, if ¥ € Lg(K) then every local tree is an instance of
a rule from G, the root carries the symbol S, and all leaves carry a terminal
symbol. Hence ¥ € Ly(G). O

Conversely every CFG can be converted into an AB—grammar; however,
these two grammars need not be strongly equivalent. Given L, there exists a
grammar G in Greibach Normal Form such that L(G) = L. We distinguish
two cases. Case 1. € € L. We assume that S is never on the right hand side of
a production. (This can be installed keeping to Greibach Normal Form; see
the exercises.) Then we choose a category assignment as in Case 2 and add
{(€) ;= {S}. Case 2. € ¢ L. Now define

(3.136)  Lgla) :={X/Y,_ /- /1 [Yy: X »a"[]Y;€ R}

i<n
Put K := (S,Ng;,A, (). We claim that L(K) = L(G). To this end we shall
transform G by replacing the rules p = X — a™ [],, Y; by the rules

GA37)  ZP —aY,, ZP—ZyY,, ..., ZP_ =Y, Y,

This defines the grammar H. We have L(H) = L(G). Hence it suffices to show
that L(K) = L(H). In place of K we can also take a CFG F’; the nonterminals
are N. We show now that that F' and H generate the same trees modulo the
R-simulation ~C Ny X Ng, which is defined as follows. (a) For X € N; we
have X ~Y iff X =Y. (b) ZP ~ Wit W=X/Y, ,/--- /Y, and p =X —
Y,"Y,"---7Y, | for certain Yj, i < j < n. To this end it suffices to show that
the rules of F' correspond via ~ to the rules of H. This is directly calculated.

Theorem 3.61 (Bar-Hillel & Gaifman & Shamir) Let L be a language. L
is context free iff L = Ly(K) for some AB—grammar: O
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Notice that we have used only /. It is easy to see that \ alone would also have
sufficed.

Now we look at Categorial Grammar from the standpoint of the sign gram-
mars. We introduce a binary operation ‘-’ on the set of categories which sat-
isfies the following equations.

(3.138)  (y/8)-6 =1y, 0-(0O\Y) =7y

Hence 0 - 1) is defined only when 1 = (8\y) or 6 = (y/n) for some y. Now
let us look at the construction of a sign algebra for CFGs of Section 3.1.
Because of the results of this section we can assume that the set 7' is a subset
of Cat\7 /(C) which is closed under -. Then for our proper modes we may
proceed as follows. If a is of category 7y then there exists a context free rule
p = Y — a and we introduce a O—ary mode R, := (4, ¥,a). The other rules can
be condensed into a single mode

(3.139)  A({F,1,%), (¥, B,¥)) = (3,7 B,XY)

(Notice that A is actually a structure term, so should actually write v(A) is
place of it. We will not do so, however, to avoid clumsy notation.)

However, this still does not generate the intended meanings. We still have
to introduce S¥ as in Section 3.1. We do not want to do this, however. Instead
we shall deal with the question whether one can generate the meanings in a
more systematic fashion. In general this is not possible, for we have only as-
sumed that f is computable. However, in practice it appears that the syntactic
categories are in close connection to the meanings. This is the philosophy
behind Montague Semantics.

Let an arbitrary set C of basic categories be given. Further, let a set B of
basic types be given. From B we can form types in the sense of the typed A—
calculus and from C categories in the sense of categorial grammar. We shall
require that these two are connected by a homomorphism from the algebra of
categories to the algebra of types. Both are realized over strings. So, for each
basic category ¢ € C we choose a type ¥.. Then we put

o(c) :=7.
(3.140)  o((y/8)):= (c(8)=5(y)
o ((8\)) := (o(8)-5(7)

Let now 2 = ({Ay: a € Typ,(B)},e) be a typed applicative structure. ¢ de-
fines a realization of B in 2 by assigning to each category ¥ the set A o(y)

)
)
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which we also denote by "y". We demonstrate this with our arithmetical
terms. The applicative structure shall be based on sets, using app as the inter-
pretation of function application. This means that A gy = Ay — A B Con-
sequently, " (y/8) T="(6\y) 7 ="0" — Ty". There is the basic category
Z, and it is realized by the set of numbers from O to 9. Further, there is the
category T which gets realized by the rational numbers Q — for example.

. Z':=40,1,...,
(3.141) rz7 0,1 9
T:=Q

+: Q xQ — Q is a binary function. We can redefine it as shown in Sec-
tion 3.3 to an element of Q — (Q — @), which we also denote by +. The syn-
tactic category which we assign to + has to match this. We choose ((T\T)/T).
Now we have

(3.142) TUT\T)/T)"'=Q— (Q— Q)

as desired. Now we have to see to it that the meaning of the string 5+7 is
indeed 12. To this end we require that if + is combined with 7 to the con-
stituent +7 the meaning of + (which is a function) is applied to the number 7.
So, the meaning of +7 is the function x — x+ 7 on Q. If we finally group +7
and 5 together to a constituent then we get a constituent of category T whose
meaning is 12.

If things are arranged in this way we can uniformly define two modes for
AB, Ay and A.

(3.143a) A ((X, a, M), (¥, B,N)) := (
(3.143b)  A((X,a, M), (¥, B,N)) :=

We further assume that if @ € A has category « then there are only finitely
many M € " which are meanings of a of category o. For each such mean-
ing M we assume a O—ary mode (a, &, M). Therewith AB is completely stan-
dardized. In the respective algebras 3, € and 91 there is only one binary
operation. In 3 it is the concatenation of two strings, in ¥ it is cancellation,
and in 9 function application. The variability is not to be found in the proper
modes, only in the O—ary modes, that is, the lexicon. Therefore one speaks of
Categorial Grammar as a ‘lexical’ theory; all information about the language
is in the lexicon.
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Definition 3.62 A sign grammar (2, €,7y, 1) is called an AB-sign grammar
if the signature consists of the two modes Ay and A, and finitely many O-ary
modes M,, i < n such that

@ Mtv = <fiayi7N[>’ i<n,
@ 3= (A", (X :i<n)),
® T=(Cat, ,(C),", (¥ :i <n)) for some set C,

@ M= ({My:acTyp_(B)},e,(N,:i<n))is an expansion of a typed
applicative structure by constants,

® and N, € Mo(y.)’ i<n.

Notice that the algebra of meanings is partial and has as its unique operation
function application. (This is not defined if the categories do not match.) As
we shall see, the concept of a categorial grammar is somewhat restrictive with
respect to the language generated (it has to be context free) and with respect
to the categorial symbols, but it is not restrictive with respect to meanings.

We shall give an example. We look at our alphabet of ten digits. Every
nonempty string over this alphabet denotes a unique number, which we name
by this very sequence. For example, the sequence 721 denotes the number
721, which in binary is 101101001 or LOLLOLOOL. We want to write an AB—
grammar which couples a string of digits with its number. This is not as easy
as it appears at first sight. In order not to let the example appear trivial we
shall write a grammar for binary numbers, with L in place of 1 and 0 in place
of 0. To start, we need a category Z as in the example above. This category is
realized by the set of natural numbers. Every digit has the category Z. So, we
have the following O—ary modes.

(3.144)  Z,:=(0,Z,0)  Z,:=(L,Z1)

Now we additionally agree that digits have the category Z\Z. With this the
number LOL is analyzed in this way.

L 0 L
Z (Z\Z) (Z\2)

(3.145) 7
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This means that digits are interpreted as functions from ® to w. As one easily
finds out these are the functions Ax,.2x, +k, k € {0,1}. Here k must be the
value of the digit. So, we additionally need the following zeroary modes.
(3.146) M, := (0, (Z\Z),Ax,.2x,)

(3.147) M, := (1, (Z\Z),Axy.2x,+ 1)

(Notice that we write Ax,.2x, and not (Ax, . (2*x) ), since the latter is a
string, while the former is actually a function in a particular algebra.) How-
ever, the grammar does not have the ideal form. For every digit has two dif-
ferent meanings which do not need to have anything to do with each other.

For example, we could have introduced the following mode in place of — or
even in addition to — M, .

(3.148) M, := (0, (Z\2), Axy.2x, + 1)

We can avoid this by introducing a second category symbol, T, which stands
for a sequence of digits, while Z only stands for digits. In place of M, we now
define the empty modes N, and N :

(3.149) N, = (€, (T/Z),Axy.X)

(3.150) Ny := (g, ((T/T)/Z),Ax;.Axy.2x; +x;)

For example, we get LOL as the exponent of the term
(3.151)  AJAN,A AN, AN, Z, Z0Z,
The meaning of this term is calculated as follows.
(AsA N, A AN ANGZ ZoZ )M
=N (Wi (NG (25))(25)) (2)
—N‘f 3 (g (1))(0))(1)
W (o) D) 0D
(.152) =N (1)(0)(1)
=N ((Axy A (20, +3)) (1) (0)) (1)
—N4(2)(1)
=(Ax;-Axg.(2x; +x)) (2)(1)
=5

(v
i (
(
(
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This solution is far more elegant than the first. Despite of this, it too is not
satisfactory. We had to postulate additional modes which one cannot see on
the string. Also, we needed to distinguish strings from digits. For comparison
we show a solution that involves restricting the concatenation function. Put

{x’v ify €A,

(3.153) Xxy:= )
undefined otherwise.

Now take a binary symbol P and set
(3.154)  P((x,Z,m),(¥,Z,n)) = (X*¥,Z,2m+n)

One could also define two unary modes for appending a digit. But this would
mean making the empty string an exponent for 0, or else it requires another
set of two digits to get started. A further problem is the restricted functionality
in the realm of strings. With the example of the grammar 7" of the previous
section we shall exemplify this. We have agreed that every term is enclosed
by brackets, which merely are devices to help the eye. These brackets are
now symbols of the alphabet, but void of real meaning. To place the brackets
correctly, some effort must be made. We propose the following grammar.

0y := (+, ((T\U) /T), Ax, . Axy.X, + X,)

0, = (=, ((T\U) /T), Ax;.AXy.Xy — X;)

05 := (/, ((T\U) /T), Ax;.Axy.Xo /X, )

04 := (*, ((T\U) /T), Ax;.Axy.X0X,)
(3.155) O := (-, (U/T), Ax,. — x,)

0g := ((, (L/U), Axy.x,)

0, := (), (L\T), Ax,.x,)

Zy = (L, T,0)

z,:=(0,T,1)

The conception is that an operation symbol generates an unbracketed term
which needs a left and a right bracket to become a ‘real’ term. A semantics
that fits with this analysis will assign the identity to all these. We simply
take Q for all basic categories. The brackets are interpreted by the identity
function. If we add a bracket, nothing happens to the value of the term. This
is a viable solution. However, it amplifies the set of basic categories without
any increase in semantic types as well.
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The application of a function to an argument is by far not the only pos-
sible rule of composition. In particular Peter Geach has proposed in (Geach,
1972) to admit further rules of combination. This idea has been realized on
the one hand in the Lambek—Calculus, which we will study later, and also in
combinatory categorial grammars. The idea to the latter is as follows. Each
mode in Categorial Grammar is interpreted by a semantical typed combina-
tor. For example, A, acts on the semantics like the combinator U (defined in
Section 3.3) and A, is interpreted by the combinator I. This choice of com-
binators is — seen from the standpoint of combinatory logic — only one of
many possible choices. Let us look at other possibilities. We could add to
the ones we have also the functions corresponding to the following closed
A—term.

(3.156) B := (Axy. (Axy . (Axqy. (x5(x4%5)))))

BMN is nothing but function composition of the functions M and N. For
evidently, if x,, has type y then x, must have the type B — ¥ for some f and
x, the type o« — B for some . Then Bxyx, > (Ax,. (%, (x1%5))) is of type

o — 7. Notice that for each «, 8 and ¥ we have a typed A—term B By

(3.157) B x5 O, g (x5 (5, x3))0)))

aBy =

However, as we have explained earlier, we shall not use the explicitly typed
terms, but rather resort to the implicitly typed terms (or combinators). We
define two new category products @ and © by

(3.158a) (y/BYe (B/a) = (y/ov)
(3.158b) (B/a) e (B\Y) = (y/v)
(3.158¢c)  (y/B) @ (a\B) := (a\p)
(3.158d) (a\B) e (B\Y) := (a\p)

Further, we define two new modes, B, and B, as follows:

(3.159) By ((¥,a,M),(¥,B,N)) := (X"§,®5,BMN)
(3.160)  B((X,a,M),(¥,B,N)) := (X"¥,00 B, BNM)

Here, it is not required that the type of M matches « in any way, or the type
of N the category . In place of BNM we could have used VMN, where

(3.161) V= (axy. (xg - (Axy - (x4 (x5%)))))
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We denote by CCG(B) the extension of AB by the implicitly typed combi-
nator B. This grammar not only has the modes A, and A but also the modes
B, and B.. The resulting tree sets are however of a new kind. For now, if x is
branching with daughters y, and y,, x can have the category a/y if y, has the
category o/ and y, the category /7. In the definition of the products &
and © there is a certain arbitrariness. What we must expect from the seman-
tic typing regime is that the type of 6(a® 3) and 6(f © ) equals n — 0 if
o(a)={— 6and o(B) =n — ¢ for some 1, § and 6. Everywhere else the
syntactic product should be undefined. However, in fact the syntactic prod-
uct has been symmetrified, and the directions specified. This goes as follows.
By applying a rule a category (here §) is cancelled. In the category 11/6 the
directionality (here: right) is viewed as a property of the argument, hence of
6. If 0 is not cancelled, we must find 0 being selected to the right again. If,
however, it is cancelled from 1/6, then the latter must be to the left of its
argument, which contains some occurrence of 0 (as a result, not as an argu-
ment). This yields the rules as given. We leave it to the reader to show that
the tree sets that can be generated from an initial category assignment { are
again all context free. Hence, not much seems to have been gained. We shall
next study another extension, CCG(P). Here

(3.162)  P:= (Axy. (Axy. (Axy. (Ax5. (x5 (x1%X9)%3)))))

In order for this to be properly typed we may freely choose the type of x, and
x5, say 3 and 7. Then x4 is of type Yy — (B — ) for some & and x, of type
0 — o for some a. x4 stands for an at least binary function, x, for a function
that needs at least one argument. If the combinator is defined, the mode is
fixed if we additionally fix the syntactic combinatorics. To this end we define
the products >, < as in Table 7. Now we define the following new modes:

(3.163) P, ((X,a,M),(¥,B,N)) := (¥"¥,a > ,PMN)
(3.164)  P.((X,a,M),(¥,B,N)) := (¥"¥, < §,PNM)

We shall study this type of grammar somewhat closer. We take the following
modes.

M, = (A, ((c/a)/c), Axy.Ax . Xy +x))
M; := (B, ((c/b)/c), Axy.Ax,.xyx,)
(3.165) M, :=(a,a,l)



Table 7. The Products > and <

The Syntactic Calculus of Categories

235

(a/d) > (/B = (a/B)/Y
/B’y < (6\a) = ((a/B)/Y)
(a/d) > ((B\O)Y/7) = (B\)/P
(B\OY/y) < (b6\a) = ((B\a)/P
(a/d) > (NAG/B)) = (N\(a/B))
(N/B)) < (6\a) = (N\(a/B))
(a/d) > (N\(B\6)) = (A\(B\ad))
(N\(B\S)) < (6\a) = (N\(B\a))
M, = (b,b,2)

M, := (C, (c/a),Axy.xy)

Take the string ABACaaba. It has two analyses, shown in Figure 10. In both
analyses the meaning is 5. In the first analysis only the mode A, has been
used. The second analysis uses the mode P,. Notice that in the course of the
derivation the categories get larger and larger (and therefore also the types).

Theorem 3.63 There exist CCG(P)—grammars which generate non context
free tree sets.

We shall show that the grammar just defined is of this kind. To this end we
shall make a few more considerations.

Lemma 3.64 Let o0 =1, /N,/N5, B = N3/N4/N5 and ¥ = N5/Ng/N;. Then

(3.166) a>(B>y)=(a>p)>y

Proof. Proof by direct computation. For example, o> =1,/n,/N5/N4/Ns-
a

In particular, > is associative if defined (in contrast to ‘-”). Now, let us look
at a string of the form XCa¥, where X € (AUB)*, ¥ € (aUb)* and h(X) = 57,
where : A+— a,B+— b. An example is the string AABACabaaa. Then with the
exception of XC all prefixes are constituents. For prefixes of X are constituents,
as one can easily see. It follows easily that the tree sets are not context free.
For if X # ¥ then XCah(¥") is not derivable. However, ¥Cah(”) is derivable.
If the tree set was context free, there cannot be infinitely many such X, a
contradiction.
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A B A ¢ a a b a
((c/a)/c) ((c/b)/c) ((c/a)/c) (c/a) a a b a
: ((c/a)/c) c R
(c/a) a
((c/B)/C) c
(c/b) b
((c/a)/c) c :
(c/a) a
c
A B A (¢ a a b a
(Cc/a)/c) ((c/b)/c) ((c/a)/c) (c/a) a a b a
: (((c/b)/a)/c) (c/a) a : : :
((((c/a)/v)/a)/c) c
(((c/a)/v)/a) a
((c/a)/b) b
(c/a) a

Figure 10. Two Analyses of ABACaaba

So, we have already surpassed the border of context freeness. However,
we can push this up still further. Let 91 be the following grammar.

= (A, (c\(c/a)), Axy.Ax;.xy+ X))

:= (B, (c\(c/b)), Axy.Ax,.x,-X)
(3.167) N, :=(a,a,l)

= (b,b,2)

= (C, ¢, Axy.X)

Theorem 3.65 1 generates a non context free language.

Proof. Let L be the language generated by M. Put M := C(AUB)*(aUb)*. If L
is context free, so is LN M (by Theorem 2.14). Define 4 by h(A) := h(a) := a,
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h(B) := h(b) := Db as well as h(C) := €. We show:
(3.168) X € LNM iff (a) X € L and (b) h(X) = y¥ for some y € (aUb)*

Hence h[LNM] = {y¥: ¥ € (aUb)*}. The latter is not context free. From
this follows by Theorem 1.67 that LN M is not context free, hence L is not
context free either. Now for the proof of (3.168). If A = (9, : i < n) then let
c¢/A denote the category ¢/J,/8,/---/0,_,. Then we have:

(3.169)  c\(c/A)>c\(c/A,) =c\(c/A:A)

Now let CXy be such that ¥ € (AUB)* and ¥ € (aUDb)*. It is not hard to see
that then CX is a constituent. (Basically, one can either multiply or apply. The
complex categories cannot be applied to the right, they can only be applied
to the left, so this can happen only with C. If one applies (c\(c/a)) to c
one gets (c/a), which cannot be multiplied by > with any other constituent
formed. It cannot be applied either (assuming that the string is not CAa, in
which case CA does become a constituent under this analysis), because noth-
ing on the right of it has category a. Now let X := xx, -+-x,_,. Further, let
d;:=aif x; = A and d; := b if x; = B, i < n. Then the category of X equals
c\(c/A) withA=(d,_, ,:i < n). Hence CXis a constituent of category c/A.
This means, however, that y, has the category d,, (because d, is the last in the
list hence the first to be discharged), y, the category d, and so on. But if y, has
the category d, then h(x;) =y,, as is easily checked. This yields that h(X) = y.
If on the other hand this is the case, the string is derivable. O

Hence we now have a grammar which generates a non context free lan-
guage. CCGs are therefore stronger than AB—grammars.

There is a still different way to introduce CCGs. There we do not enlarge
the set of combinatorial rules but instead introduce empty modes.

e, v/e/(v/B)/(B/),B)

B, := (
sy BT iea(a\v)/(v/ﬁ)/(a\ﬁ)ﬂ
2=
B, 1= (

&,v/a/(B\v)/(B/a),V)
&, (a\n)/(B\7)/(e\1),V)

Here we do not have four but infinitely many modes, one for each choice
of a, B and 7. Only in this way it is possible to generate non context free
languages. Lexical elements that have a parametric (= implicitly typed) set
of categories (together with parametric meanings) are called polymorphic.
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Particularly interesting cases of polymorphic elements are the logical con-
nectors, and and not. Syntactically, they have the category (a\o)/o and
o/ o, respectively, where o can assume any (non parametric) category. This
means that two constituents of identical category can be conjoined by and to
another constituent of the same category, and every constituent can be turned
by not to a constituent of identical category.

Notes on this section. Although we have said that the meanings shall be
functions in an applicative structure, we sometimes put strings in their place.
These strings only denote these functions. This is not an entirely harmless af-
fair. For example, the string (Ax,.x,+1) and the string (Ax, .x,+1) denote
the same function. In fact, for reduced terms terms uniqueness holds only up
to renaming of bound variables. It is standard practice in A—calculus to con-
sider A—terms ‘up to renaming of bound variables’ (see (Pigozzi and Salibra,
1995) for a discussion). A possible remedy might be to use combinators. But
here the same problem arises. Different strings may denote the same function.
This is why normalisation becomes important. On the other hand, strings as
meanings have the advantage to be finite, and thus may function as objects
that can be stored (like codes of a Turing machine, see the discussion of Sec-
tion 4.1).

Exercise 109. Let {: A, — @(Cat, ,(C)) be a category assignment. Show
that the correctly labelled trees form a context free tree set.

Exercise 110. Show that for every CFG there exists a weakly equivalent
grammar in Greibach Normal Form, where the start symbol S does not oc-
cur on the right hand side of a production.

Exercise 111. Let {: A, — ‘(O(Cat\ /(C)) be a category assignment. Further,
let S be the distinguished category. {’ is called normal if {(g) = S and no
{(a) contains an « of the form y/B,/---/B,_, with B; =S for some i < n.
Show that for any ( there is a normal {’ such that ' and { have the same
language.

Exercise 112. Let L C A* be context free and f: A* — M a computable func-
tion. Write an AB-sign grammar whose interpreted language is {(X, f(¥X)) :
X€eL}.

Exercise 113. Let (2, €,7, 1) be an AB—sign grammar. Show for all signs
(¥, 0, M) generated by that grammar: M has the type o (). Hint. Induction
on the length of the structure term.
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Exercise 114. Show that the CCG(B) grammars only generate context free
string languages, even context free tree sets. Hint. Show the following: if A is
an arbitrary finite set of categories, then with B one can generate at most |A|"
many categories.

Exercise 115. Suppose we defined a product o on categories as follows. @ o 3
is defined whenever (a) o @ B is defined (and has the same value), or (b) @ © 8
is defined (and has the same value). Show that this does not allow to unam-
biguously define the semantics. (Additional question: why does this problem
not arise with -?) Hint. Take ot = 8 = (y/7).

5. The AB-Calculus

We shall now present a calculus to derive all the valid derivability statements
for AB—grammars. Notice that the only variable element is the elementary
category assignment. We choose an alphabet A and an elementary category
assignment {. We write [a] ¢ for the set of all unlabelled binary constituent
structures over A that have root category ¢ under some correct {—labelling.
As { is completely arbitrary, we shall deal here only with the constituent
structures obtained by taking away the terminal nodes. This eliminates § and
A, and leaves a class of purely categorial structures, denoted by [a]. Since
AB-grammars are invertible, for any given constituent structure there exists
at most one labelling function (with the exception of the terminal labels).
Now we introduce a binary symbol o, which takes as arguments correctly
{-labelled constituent structures. Let (X, X, £) and (Y,2),m) such constituent
structures and X NY = &. Then let

BT (X, X,0) 0 (Y,D,m) :=(XUY,XUYU{XUY},n)
£(z) ifze X,

(3.172) n(z) =4 m(z) ifz€9),
0X)-m(Y) ifz=XUY.

(In principle, o is well defined also if the constituent structures are not binary
branching.) In case where X NY # & one has to proceed to the disjoint sum.
We shall not spell out the details. With the help of o we shall form terms over
A, that is, we form the algebra freely generated by A by means of o. To every
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term we inductively associate a constituent structure in the following way.

(3.173a) ot := ({0},{{0}}, ({0}, o))
(3.173b)  (sor)k :=skor*

Notice that o has been used with two meanings. Finally, we take a look at
[a]. It denotes classes of binary branching constituent structures over A. The
following holds.

(3.174a)  [at/B]o[B] C [o]
(3.174b)  [B]o[B\a] € [a]

We abstract now from A and §. In place of interpreting o as a constructor
for constituent structures over A we now interpret it as a constructor to form
constituent structures over Cat\’ /(C) for some given C. We call a term from
categories with the help of o a category complex. Categories are denoted
by lower case Greek letters, category complexes by upper case Greek letters.
Inductively, we extend the interpretation [—] to structures as follows.

(3.175)  [[oA]:=[I]o[A]

Next we introduce yet another symbol, I-. This is a relation between structures
and categories. If " is a structure and o a category then I' - o denotes the
fact that for every interpretation in some alphabet A with category assignment
{ [T] C [a]. We call the object I' F o a sequent. The interpretation that we
get in this way we call the cancellation interpretation. Here, categories are
inserted as concrete labels which are assigned to nodes and which are subject
to the cancellation interpretation.

We shall now introduce two different calculi, one of which will be shown
to be adequate for the cancellation interpretation. In formulating the rules we
use the following convention. I'[a] above the line means in this connection
that I" is a category complex in which we have fixed a single occurrence of «.
When we write, for example, I'[A] below the line, then this denotes the result
of replacing that occurrence of ¢ by A.

'-a Ala]F B

(ax) ola (cut) AT]F B
Toakp I'Fa  ABJFy
G170 ) g VD —agaetiky
aoT kB I'Fa  ABlky
BV Traps OV TATeaplFy
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We denote the above calculus by AB + (cut), and by AB the calculus without
(cut). Further, the calculus consisting of (ax) and the rules (\-I) and (/-I) is
called AB™.

Definition 3.66 Let M be a set of category constructors. A categorial se-
quent grammar is a quintuple

(3.177)  G=(s,C,{,A,8)

where C is a finite set, the set of basic categories, S € C the so called distin-
guished category, A a finite set, the alphabet, {: A — (Cat,,(C)) a cate-
gory assignment, and 8 a sequent calculus. We write \~ ;, X if for some category

. . . - 8
complex T whose associated string via § is X we have ~ Tk 8.

We stress here that the sequent calculi are calculi to derive sequents. A se-
quent corresponds to a grammatical rule, or, more precisely, the sequent I' - o
expresses the fact that a category complex of type I'is a constituent that has
the category o by the rules of the grammar. The rules of the sequent calculus
can then be seen as metarules, which allow to pass from one valid statement
concerning the grammar to another.

Proposition 3.67 (Correctness) IfI'F o is derivable in AB™ then [I'] C [a].

AB is strictly stronger than AB™. Notice namely that the following sequent is
derivable in AB:

(3.178)  a bk (B/a)\B

In natural deduction style calculi this corresponds to the following unary rule:

3179 —%

(B/e)\B

This rule is known as type raising, since it allows to proceed from the cat-
egory o to the “raised” category (8/a)\B. Perhaps one should better call it
category raising, but the other name is standard. To see that it is not derivable
in AB™ we simply note that it is not correct for the cancellation interpretation.
We shall return to the question of interpretation of the calculus AB in the next
section.

An important property of these calculi is their decidability. Given I" and o
we can decide in finite time whether or not I' - « is derivable.



242 Categorial Grammar and Formal Semantics

Theorem 3.68 (Cut Elimination) There exists an algorithm to construct a
proof of a sequent T o in AB from a proof of T' & a in AB + (cut). Hence
(cut) is admissible for AB.

Proof. We presented a rather careful proof of Theorem 3.34, so that here we
just give a sketch to be filled in accordingly. We leave it to the reader to verify
that each of the operations reduces the cut-weight. We turn immediately to
the case where the cut is on a main formula of a premiss. The first case is that
the formula is introduced by (I-/).

Toakp
(3.180) TFpB/a AlB/alky
AllkEy

Now look at the rule instance that is immediately above A[B/a] kF y. There
are several cases. Case (0). The premiss is an axiom. Then y = f3/a, and the
cut is superfluous. Case (1). B/ is a main formula of the right hand premiss.
Then A[ /o] = O[f /ot o E] for some O and E, and the instance of the rule
was as follows.

ZFa OBk vy
OB/acE]Fy

Now we can restructure (3.181) as follows.

Toatk p Gl %
(3.182) Oloalky EF o
OoZ]Fy

(3.181)

Now we assume that the formula is not a main formula of the right hand
premiss. Case (2). Y= {/€ and the premiss is obtained by application of
(I-7).

AlB/a]oe FE
©-183) AB/o] F (e

We replace (3.183) by

Toak
I'B/a AlB/aloek ¢
(3.134) Allloek ¢
AllkFe/¢
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Case (3). Y = €\{ and has been obtained by applying the rule (I-\). Then
proceed as in Case (2). Case (4). The application of the rule introduces a
formula which occurs in A. This case is left to the reader.

Now if the left hand premiss has been obtained by (\—I), then one proceeds
quite analogously. So, we assume that the left hand premiss is created by an
application of (\-I).

I'Fa AB]Fy
(3.185) AlB/aolkFy O[y]F S
O[A[B/aol]|F &

We can restructure (3.185) as follows.

ABIFy Ok S
(3.186) T'Fa  ORAPB]F6
OA[B/aoI] F &

Also here one calculates that the degree of the new cut is less than the degree
of the old cut. The case where the left hand premiss is created by (\-I) is
analogous. All cases have now been looked at. O

Corollary 3.69 AB + (cut) is decidable. O

AB gives a method to test category complexes for their syntactic category. We
expect that the meanings of the terms are likewise systematically connected
with a term and that we can determine the meaning of a certain string once
we have found a derivation for it. We now look at the rules of AB to see how
they can be used as rules for deducing sign—sequents. Before we start we
shall distinguish two interpretations of the calculus. The first is the intrinsic
interpretation: every sequent we derive should be correct, with all basic parts
of it belonging to the original lexicon. The second is the global interpretation:
the sequents we derive should be correct if the lexicon was suitably expanded.
This only makes a difference with respect to signs with empty exponent. If a
lexicon has no such signs the intrinsic interpretation bans their use altogether,
but the global interpretation leaves room for their addition. Adding them,
however, will make more sequents derivable that are based on the original
lexicon only.

We also write X : @ : M for the sign (X¥,,M). If X, o or M is irrele-
vant in the context it is omitted. For the meanings we use A—terms, which
are however only proxy for the ‘real’ meanings (see the discussion at the
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end of the preceding section). Therefore we now write (Ax.xy) in place of
(Ax,. (xpx4)). A sign complex is a term made of signs with the help of o.
Sequents are pairs I' - 7 where I is a sign complex and 7 a sign. 6 maps
categories to types, as in Section 3.4. If X : & : M is derivable, we want that
M is of type o(a). Hence, the rules of AB should preserve this property. We
define first a relation I between sign complexes. It proceeds by means of the
following rules.

(3.187) TI[X:a/B:Moy:B:N]=T[X"y:a:(MN)]
(3.188) I[X:B:Moy:B\o:N]>=T[X"y:a:(NM)
Since M and N are actually functions and not A—terms, one may exchange

any two A—terms that denote the same function. However, if one considers
them being actual A—terms, then the following rule has to be added:

(3.189) TIX:a:M]>T[xX:a:N] ifM=N

For I a sign complex and o a sign put I' I ¢ iff [ >* ¢. We want to design
a calculus that generates all and only the sequents I' - o such that T'IF ©.

To begin, we shall omit the strings and deal with the meanings. Later we
shall turn to the strings, which pose independent problems. The axioms are
as follows.

(3.190) (ax) a:MkFa:M
where M is a term of type o (). (cut) looks like this.

F'Foa:N  Ala:xy|FB:M
AILTE B2 [N/xy M

(3.191)  (cut)

So, if Al : x] is a sign complex containing an occurrence of « : x,, then
the occurrence of this sign complex is replaced and with it the variable x, in
M. So, semantically speaking cut is substitution. Notice that since we cannot
tell which occurrence in M is to be replaced, we have to replace all of them.
We will see that there are reasons to require that every variable has exactly
one occurrence, so that this problem will never arise. (We could make this a
condition on (cut). But see below for the fate of (cut).) The other rules are
more complex.

'Fa:M A[ﬁ:xc]l-y:N

3.192 . |
G120 VD praty TP e, M)/ N
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This corresponds to the replacement of a primitive constituent by a complex
constituent or the replacement of a value M(x) by the pair (M, x). Here, the
variable Xp e is introduced, which stands for a function from objects of type
7N to objects of type {. The variable x, has, however, disappeared. This is
a serious deficit of the calculus (which has other advantages, however). We
shall below develop a different calculus. Analogously for the rule (\-I).

'Fa:M AFB/o:N
AoTF B : (NM)
'Fa:M AFa\B:N
ToAF B: (NM)

(E-/)
(3.193)

(E-\)
Lemma 3.70 The rule (E-/) is derivable from (cut) and (/-1). Likewise, the
rule (E-/) is derivable from (cut) and (/-1).
Proof. The following is an instance of (/-I).

ﬁ:xcl-ﬁ:xc o:xy b a:x,

3.194
( ) Oc/ﬁzxg_WOB:xcl-oc:x,7

Now two cuts, with o : M o : M and with B: NF B : N, give (E-/). O
Thus, the rules (3.187) and (3.188) are accounted for.
The rules (I-/) and (I-\) can be interpreted as follows. Assume that I is
a constituent of category ot/f3.

Too:xyFB:M

Here, the meaning of I is of the form M and the meaning of « is N. Notice
that AB forces us in this way to view the meaning of a word of category o/ 3
to be a function from n—objects to {—objects. For it is formally required that
I" has to have the meaning of a function. We call the rules (I-/) and (I-\)
also abstraction rules. These rules have to be restricted, however. Define for
a variable x and a term M, focc(x, M) to be the number of free occurrences of
x in M. In the applications of the introduction rules, we add a side condition:

(3.196)  In (I-/) and (I-\) : focc(x,,M) < 1

(In fact, one can show that from this condition already follows focc(x,, M) =
1, by induction on the proof.) To see the need for this restriction, look at the
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following derivation.
(B/ojou:Moa:xy)oa:xy b B (Mxy)xy

B/ojoa:Moa:xy b B/a: Axy.(Mxy)xy
B/ajoa:MEB/ojo: Axy.Axy.((Mxy)xy)

The first is obtained using two applications of the derivable (E-/).
This rule must be further restricted, however, as the next example shows.
In the rule (\-I) put A :=y:= .

a:xpbkoxy ﬁ:xcl-ﬁ:xg

(3.197) /B xg 0B x Fa(x %)

Using (I-/), we get

a/ﬁ:xc_)nOB :xC'_a:(xC—me)
o/B X Fo/B: (lxg.(xc_mx;))

Now Ax,.x,_, x, is the same function as x ton: On the other hand, by apply-
ing (I-\) we get

(3.198)

o/B :xg_mo[} :xgl-a:(xg_mxc)
B DXy F(a/B)\o : ()Lx§—>n'(x5—>nx5))

This is the type raising rule which we have discussed above. A variable x , can
also be regarded as a function, which for given function f taking arguments
of type ¢ returns the value f(x C)' However, x, is not the same function as
(kxg_m.(xc_mxg)). (The latter has the type (B — o) — o.) Therefore the
application of the rule is incorrect in this case. Moreover, in the typed A—
calculus the equation x, = (lxg —m'(xC —mxé)) is invalid.

To remedy the situation we must require that the variable which we have
abstracted over appears on the left hand side of F in the premiss as an ar-
gument variable and not as a variable of a function that is being applied to
something. So, the final form of the right slash—introduction rule is as follows.

(3.199)

Toa:xyFB:M Xy an argument variable,

(3.2000 (I-/) TFpB/a: (Ax,;.M)  and focc(x;,M) <1

How can one detect whether x;, is an argument variable? To this end we re-
quire that the sequent I' - /o be derivable in categorial AB~. This seems
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paradoxical. For with this restriction the calculus seems to be as weak as
AB™. Why should one make use of the rule (I-/) if the sequent is anyway
derivable? To understand this one should take note of the difference between
the categorial calculus and the interpreted calculus. We allow the use of the
interpreted rule (I-/) if I' - B/ is derivable in the categorial calculus; or, to
be more prosaic, if I" has the category 8/ and hence the type @ — 3. That
this indeed strengthens the calculus can be seen as follows. In the interpreted
AB™ the following sequent is not derivable (though it is derivable in AB). The
proof of this claim is left as an exercise.

(3.201) «a/B xp o, b o/B :kxc.xg_mx;
We assign to a sign complex a sign as follows.

§(X:a:M):= (X a,M)
(3202) §(X:a/B:Moy:B:N):=A
§(

=l
=
[¢]
<y
=
—
R
32
Il
=
A A\

It is easy to see that if ' - o : M is derivable in the interpreted AB then
§(') = (X, a,M') for some M’ = M. (Of course, M and M' are just notational
variants denoting the same object. Thus they are identical qua objects they
represent.)

The calculus that has just been defined has drawbacks. We will see below
that (cut) cannot be formulated for strings. Thus, we have to do without it. But
then we cannot derive the rules (E-/) and (E-\). The calculus N obviates the
need for that.

Definition 3.71 The calculus N has the rules (ax), I-/), (E-/) (I-/) and
(E-\).

In (the interpreted) N, (cut) is admissible. (The proof of that is left as an
exercise.)

Now let us turn to strings. Now we omit the interpretation, since it has
been dealt with. Our objects are now written as X : o where X is a string and
o a category. The reader is reminded of the fact that ¥/X denotes that string
which results from ¥ by removing the postfix X. This is clearly defined only if
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y = #"~X for some i, and then we have /X = ii. Analogously for X\¥.

(ax) X:oakFX:o

IoX:aky:B 'EX:a AFRY:B/a
(3.203) I=/) THy/%:B/a (E~/) AoTFy %: B
(1) X:oolkFy:B (E-\) 'kX:a ARy:a\p

CEX\y:a\p

The cut rule is however no more a rule of the calculus. There is no formulation
of it at all. Suppose we try to formulate a cut rule. Then it would go as follows.

'kx:a Ay:alFZ:B
AIlTF[y/XZ: B

Here, [y/X]Z denotes the result of replacing ¥ for X in Z. So, on the strings
(cut) becomes constituent replacement. Notice that only one occurrence may
be replaced, so if X occurs several times, the result of the operation [y/X]Z is
not uniquely defined. Moreover, X may occur accidentally in 7! Thus, it is not
clear which of the occurrences is the right one to be replaced. So the rule of
(cut) cannot even be properly formulated. On the other hand, semantically it
is admissible, so for the semantics we can do without it anyway. However,
the same problem of substitution arises with the rules (/-I) and (\-I). Thus,
they had to be eliminated as well.

This completes the definition of the sign calculus N. Call E the calculus
consisting of just (/-E) and (\-E). Based on Lemma 3.70 the completeness
of E for I is easily established.

IFocARX"Y: B

(3.204)

Theorem 3.72 ~ T+ 6 iff T I .

N is certainly correct for the global interpretation, but it is correct for the
intrinsic interpretation? The answer is actually yes! The fact is that the intro-
duction rules are toothless tigers: they can only eliminate a variable that has
never had a chance to play a role. For assume that we have an N—proof. If
(I-/) is used, let the highest application be as follows.

Toe:a:xyFy:B:M

Then the sequent above the line has been introduced by (E—/):

I'ky:B/o:N g:a:xpkeaix

(3.206) Fog:a:xy Fy:B:Nxy
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Here, Nx; = M. Since (Ax,.M) = (Ax,.Nx,) = N, this part of the proof can
be eliminated.

Theorem 3.73 The rules (1-/) and (I-\) are admissible in E.

In the next section, however, we shall study the effect of adding associativity.
In presence of associativity the introduction rules actually do considerable
work. In that case, to regain correctness, we can either ban the introduction
rules, or we can restrict the axioms. Given an AB—sign grammar 2l we can
restrict the set of axioms to

(3.207)  (axy) v(f)Fv(f) where f € F and Q(f) =0

For an AB—grammar does not possess any modes of the form (€, a,xo) where
X 18 a variable.

Exercise 116. Prove the correctness theorem, Proposition 3.67.

Exercise 117. Define a function p from category complexes to categories as
follows.

pla):=

3.208
( ) p(ToA):

p(T) - p(4)

Show that I' F « is derivable in AB™ iff p(I') = a. Show that this also holds
for AB™ 4 (cut). Conclude from this that (cut) is admissible in (categorial!)
AB™. (This could in principle be extracted from the proof for AB, but this
proof here is quite simple.)

Exercise 118. Show that every CFL can be generated by an AB—grammar
using only two basic categories.

Exercise 119. Show the following claim: in the interpreted AB ™ —calculus no
sequents are derivable which contain bound variables.

Exercise 120. Show that (cut) is admissible for N.

6. The Lambek—Calculus

The Lambek—Calculus, L, is in many respects an extension of AB. It has
been introduced in (Lambek, 1958). In contrast to AB, in L categories are
not interpreted as sets of labelled trees but as sets of strings. This means
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that the calculus has different laws. Furthermore, L possesses a new category
constructor, pair formation; it is written e and has a counterpart on the level
of categories, also denoted by that symbol. The constructors of the classical
Lambek—calculus for categories therefore are \, / and e. Given an alphabet
A and an elementary category assignment { we denote by { o }g the set of all
strings over A which are of category o with respect to {. Then the following
holds.

{aep}, :={a}, -{B},

(3.209)
{FOA}g = {F}g ) {A}g

Since we have the constructor e at our disposal, we can in principle dispense
with the symbol o. However, we shall not do so. We shall formulate the cal-
culus as before using o, which makes it directly comparable to the ones we
have defined above. Hence as before we distinguish terms from structures.
We write I' F B if {T'} ¢ € {oc}g. We shall axiomatize the sequents of . In
order to do so we add the following rules to the calculus AB (without (cut)).

ITA, o (A, 0 A)] - I(A, 0A,) oA F
@S 0a)on Fa @2 T4 o(a,0h) Fa
o1y  L@oBlFy 1) LFa AFp
[aeBlFy oAl aef

This calculus is called the Lambek—Calculus, or simply L. Further, we put
NL :=AB+ (I-e) + (e-I) and NL™ := AB™ + (e-I) 4+ (I-e). NL is also called
the Nonassociative Lambek—Calculus.

Theorem 3.74 (Lambek) (cut) is admissible for L.
Corollary 3.75 (Lambek) L with or without (cut) is decidable.

For a proof we only have to look at applications of (cut) following an appli-
cation of the new rules. Assume that the left hand premiss has been obtained
by an application of (assl).

[[0,0(0,00,)]Fa
(3210)  I7(©,00,)08,]F« Ala] B
A[F[(®1 ° ®2) o ®3]] FB
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This proof part we reformulate into the following one.

IO, 0(0,00,)]F « Alo]F B
(3.211) AT'®,0(0,00;)]|F B
Al[(©,00,)005])]F

Analogously if the left hand premiss has been obtained by using (ass2). We
leave it to the reader to treat the case where the right hand premiss has been
obtained by using (assl) or (ass2). We have to remark here that by reformu-
lation we do not diminish the degree of the cut. So the original proof is not
easily transported into the new setting. However, the depth of the application
has been diminished. Here, depth means (intuitively) the length of a longest
path through the proof tree from the top up to the rule occurrence. If we as-
sume that I'[@, o (®, 0 @;)] F « has depth i and Ala] - B depth j then in
the first tree the application of (cut) has depth max{i, j} + 1, in the second
however it has depth max{i, j}.

Let us look at the cases of introduction of e. The case of (e—I) on the left
hand premiss is easy.

I[6,06,]F o
(3.212) I[6,e0,]Fa Ala)Fy
AlI'6, 0 6,]] v
I[[6,00,]Fo Ala]kFy
~ A[F[G1 o 62]] Fy
A[T'[6, 0 6,]] v

Now for the case of (I-e) on the right hand premiss.

SR e, o,
(3.213) ko Ala)Fy
Al Fy

In this case y = 6, @ 0,. Furthermore, A = ®, 0 ®, and the marked occurrence
of o either is in ®, or in ®,. Without loss of generality we assume that it is
in ©,. Then we can replace the proof by

'kFa  O,[o]F6
(3.214) CHINECA 0,Fo,
@1[F]o®2|— 6,06,
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We have 0, [I'] o ®, = A[I'] by hypothesis on the occurrence of . Now we
look at the case where the left hand premiss of cut has been introduced by
(I-e). We may assume that the right hand premiss has been obtained through
application of (e—I). The case where « is a side formula is once again easy.
So let o be main formula. We get the following local tree.

0, ko 0,F6, Al6,00,]Fy
(3.215) ©,00,F 6,6, A[6,e6,]Fy ~
Al®,00,]Fy
0,k 9, Al6,00,]Fy
@,F6, Al©, 06, Fy
A[®1 o @2] Fy

In all cases the cut—weight (or the sum of the depth of the cuts) has been
reduced.

We shall also present a different formulation of L using natural deduction
over ordered DAGs. Here are the rules:

(I-e) a B (E—e) (s:i

(oo B) B
(o]
) —— E PP
[of]
: (a/B) P
O i
(a/B)

These rules are very much like the natural deduction rules for intuitionistic
logic. However, two differences must be noted. First, suppose we disregard
for the moment the rules for . (This would incidentally give exactly the nat-
ural deduction calculus corresponding to AB.) The rules must be understood
to operate on ordered trees. Otherwise, the difference between then rules for
/ and the rules for \ would be obliterated. Second, the elimination rule for
e creates two linearly ordered daughters for a node, thus we not only create
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ordered trees, we in fact create ordered DAGs. We shall not spell out exactly
how the rules are interpreted in terms of ordered DAGs, but we shall point
out a few noteworthy things. First, this style of presentation is very much lin-
guistically oriented. We may in fact proceed in the same way as for AB and
define algorithms that decorate strings with certain categorial labels and pro-
ceed downward using the rules shown above. Yet, it must be clear that the so
created structures cannot be captured by constituency rules (let alone rules of
a CFG) for the simple reason that they are not trees. The following derivation
is illustrative of this.

(ae(a\y)/B)eB
ae(a\y)/B B
(3217) @ (a\v)/B B
’ a\y
Y

Notice that if a rule has two premisses, these must be adjacent and follow
each other in the order specified in the rule. No more is required. This allows
among other to derive associativity, that is, (xe3) ey - ace (3 e y). How-
ever, notice the role of the so—called assumptions and their discharge. Once
an assumption is discharged, it is effectively removed, so that the items to its
left and its right are now adjacent. This plays a crucial role in the derivation
of the rule of function composition.

o/B B/y Al

(3.218) : B
o

aly

As soon as the assumption ¥ is removed, the top sequence reads a/f3,3/7.

The relationship with L is as follows. Let I" be a sequence of categories.
We interpret this as a labelled DAG, which is linearly ordered. Now we suc-
cessively apply the rules above. It is verified that each rule application pre-
serves the property that the leaves of the DAG are linearly ordered. Define a
category corresponding to a sequence as follows.

o' =«

(5219 (0, A)® := e A®
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First of all we say that for two sequences A and A’, A’ is derivable from A in
the natural deduction style calculus if there is a DAG constructed according to
the rules above, whose topmost sequence is A and whose lowermost sequence
is A'. (Notice that assumptions get discharged, so that we cannot simply say
that A is the sequence we started off with.) The following is then shown by
induction.

Theorem 3.76 Let A and ® be two sequences of categories. © is derivable
from A iff A+ ®° is derivable in L.

This shows that the natural deduction style calculus is effectively equivalent
to L.

L allows for a result akin to the Curry—Howard-Isomorphism. This is an
extension of the latter result in two respects. First, we have the additional type
constructor e, which we have to match by some category constructor, and
second, there are different structural rules. First, the new type constructor is
actually the pair—formation.

Definition 3.77 Every A—term is a A*—term. Given two A*—terms M and N,
(M,N), p,(M) and p,(M) also are A°*~terms. Further, the following equa-
tions hold.

(32200 p,((MN) =M,  p,((M,N))=N.

p,(U) and p,(U) are not defined if U is not of the form (M,N) for some M
and N. The functions p, and p, are called the projections.

Notice that antecedents of sequents no longer consist of sets of sequences.
Hence, I', A, ® now denote sequences rather than sets. In Table 8 we display
the new calculus. We have also put a general constraint on the proofs that
variables may not be used twice. To implement this constraint, we define the
notion of a linear term:

Definition 3.78 A term M is strictly linear if for every variable x and every
subterm N, focc(x,N) < 1. A term is linear if it results from a strictly linear
term M by iterated replacement of a subterm M' by [p,(N)/x][p,(N)/y]M’,
where N is a linear term.

The calculus above yields only linear terms if we start with variables and
require in the rules (I-e), (E-/), (E-\) that the sets of free variables be dis-
joint, and that in (I-/) and (I-\) the variable occurs exactly once free in M.
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Table 8. L with A—Term Annotation

(ax) x:okx:o

'bM:9 Ax:0,0FN:B
(cut) AT,0F [M/xN: P

'kM:a/B AFN:B [x:BHEM:«
(E~/) [LAFMN : o a=/) T'FAxM:a/B

I'EM:B\a AFN:p x:B,THEM:«a
(E-V) ATFMN:a =V Ax.M: B\«
(E—o) I'FM:0ef Ax:o,y:B,0FU:yw

AT,6F [, /X0, M) : v
(Le) I'bM:a0 AEN:B

T,AF (M,N): e p

In this way we can ensure that for every sequent derivable in L there actually
exists a labelling such that the labelled sequent is derivable in the labelled
calculus. This new calculus establishes a close correspondence between lin-
ear A*—terms and the so—called multiplicative fragment of linear logic, which
naturally arises from the above calculus by stripping off the terms and leav-
ing only the formulae. A variant of proof normalization can be shown, and all
this yields that L has quite well-behaved properties.

In presence of the rules (ass1) and (ass2) e behaves exactly like concatena-
tion, that is, it is a fully associative operation. Therefore we shall change the
notation in what is to follow. In place of structures consisting of categories we
shall consider finite sequences of categories, that is, strings over Cat\m /(C )
We denote concatenation by comma, as is commonly done.

Now we return to the theory of meaning. In the previous section we have
seen how to extend AB by a component for meanings which computes the
meaning in tandem with the category. We shall do the same here. To this end
we shall have to first clarify what we mean by a realization of o e 3. We shall
agree on the following.

(3221) Taef:=Ta'x"B™
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The rules are tailored to fit this interpretation. They are as follows.

F[Al o (A20A3)] Fo:M

(222 F[(A oA oA Fa: M

This means that the restructuring of the term is without influence on its mean-
ing. Likewise we have

F[(Al OAZ) oA3] Fo:M

(229 A o(A,0h ) Fa:M

So, for ¢ we assume the following rule.

F[a:anﬁ:xﬁ]l-y:M

(3.224) F[(X.ﬁ] |"}’ [P1(Za.ﬁ)/x“’pZ(ZWB)/xﬁ]M

(3.224) says that in place of a function of two arguments a and 8 we can
form a function of a single argument of type o e 3. The two arguments we
can recover by application of the projection functions. The fourth rule finally
tells us how the type/category o e f3 is interpreted.

'ba:M AFB:N
FoAFaef:(M,N)

(3.225)

Here we have the same problem as before with AB. The meaning assignments
that are being computed are not in full accord with the interpretation. The
term (x, (x,x,)) does not denote the same function as ((xx,)x,). (Usually,
one of them is not even well defined.) So this raises the question whether it
is at all legitimate to proceed in this way. We shall avoid the question by
introducing a totally different calculus, sign based L (see Table 9), which
builds on the calculus N of the previous section. The rules (assl) and (ass2)
are dropped. Furthermore, (e-I) is restricted to I' = &. These restrictions are
taken over from N for the abstraction rules. Sign based L has the global side
condition that no variable is used in two different leaves. This condition can
be replaced (up to a—conversion) by the condition that all occurring terms are
linear. In turn, this can be implemented by the adding suitable side conditions
on the rules.

Sign based L is not as elegant as plain categorial L. However, it is se-
mantically correct. If one desperately wants to have associativity, one has to
introduce combinators at the right hand side. So, a use of the associativity
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Table 9. The Sign Based Calculus L

(ax) )?:OC:)C;")?I(XIX;, {=0(a)
/) I'oX: o L xg Fy:B:N X, an argument variable,
I'ky/x:B/a: /lxg.N focc(xC,N) <1
-\ i« X ol'Fy:B:N X, an argument variable,
CEX\Y: o\B: Ax,.N foce(x,,N) < 1
E-/) 'EX:a:M  AFy:B/a:N
AoTHYX:B:NM
E-\) 'Ex:o:M AFY:a\B:N
[oAFX"Y:B:NM
(D) X’:a:xc0§:ﬁ:ynl—22y:M
Xy aeB iz, FZiyilp (e /X Pa(2egy) [y IM
(Le) 'EX:a:M AFy:B:N

FoAFX"y:aef: (M,N)

rule is accompanied in the semantics by a use of C with CMNP = M (NP).
We shall not spell out the details here.

Exercise 121. Assume that in place of sequents of the form o b o for arbi-
trary o only sequents ¢ k¢, ¢ € C, are axioms. Show that with the rules of L
o o can be derived for every o.

Exercise 122. Let G = (C,S,A,{,NL ") be a categorial sequent grammar.
Show that the language {X : I-; X} is context free.

Exercise 123. Show that the sequent /B o /v F a/7 is derivable in L but
not in AB. What semantics does the structure o/f3 o B/ have?

Exercise 124. A loop is a structure (L,-,\, /) where Q(-) = Q(\) = Q(/) =2
and the following equations hold for all x,y € L.

(3.226)  x-(x\y) =y, (/x)-x=y

The categories do not form a loop with respect to \, / and - (!), for the
reason that - is only partially defined. Here is a possible remedy. Define
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~C Cat, , /(C )? to be the least congruence such that

(3.227) (aep)/B = «, B\(Bea)=~

Show that the free algebra of categories over C factored by = is a loop. What
is - B in the factored algebra?

Exercise 125. Show that the following rules are admissible in L.

I'[6,00,]F '-a/p

RIGLL LS Lra/p kA
I'[6,00,]F« TofFa

(3.228) (e-E) BoTF a

(E-/) (E-\)

7. Pentus’ Theorem

It was conjectured by Noam Chomsky that the languages generated by L are
context free, which means that L is in effect not stronger than AB. This was
first shown by Mati Pentus (see (Pentus, 1997)). His proof makes use of the
fact that L has interpolation. We start with a simple observation. Let & :=
(G,-,7',1) be a group and y: C — G. We extend 7 to all types and structures
as follows.

Y(OCOB) = }/(OC) . V(ﬁ)
(3.229) Y(o/B) == y(ox)- ’Y(ﬁ)_l

v(B\e) :=(B)™" - Y(e)

’Y(FOA) = '}/(1") '}/(A)

We call y a group valued interpretation.

Theorem 3.79 (Roorda) IfT'F « is derivable in L then for all group valued
interpretations vy Y(I') = y(«).

The proof is performed by induction over the length of the derivation and is
left as an exercise. Let C be given and ¢ € C. For a category o over C we

define
ooy = 4L =0
0 otherwise.
o,

(3.230)  o.(ce ) :=o.(a)+ 0.(B)
o.(a/B) = o.(a)+ o.(B)
o.(B\@) = o.(a) + o.(B)
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Likewise we define

(3.231) loo| := ) o ()

ceC

(3.232)  w(a):={ceC:o.(a) >0}

These definitions are extended in the canonical way to structures. Let A be a
nonempty structure (that is, A # €) and I'[—] a structure containing a marked
occurrence of a substructure. An interpolant for a sequent I'/A] k- a in a
calculus § with respect to A is a category 0 such that

® 0.(0) <min{o.(I') +o.(a),0.(A)}, forall ¢ € C,
@ Al 0 is derivable in 8,
@ I'[6] F «a is derivable in 8.

In particular 7(0) C n(T"o @) N 7(A) if O satisfies these conditions. We say
that 8 has interpolation if for every derivable I'JA] I o there exists an inter-
polant with respect to A.

We are interested in the calculi AB and L. In the case of L we have to
remark that in presence of full associativity the interpolation property can
be formulated as follows. We deal with sequents of the form I' F o where
I" is a sequence of categories. If I' = @,,A,®, with A # € then there is an
interpolant with respect to A. For let A° be a structure in o which corresponds
to A (after omitting all occurrences of o). Then there exists a sequent I'° - o
which is derivable and in which A° occurs as a substructure.

Interpolation is shown by induction on the derivation. In the case of an
axiom there is nothing to show. For there we have a sequent @ k- o and the
marked structure A has to be «. In this case & is an interpolant. Now let
us assume that the rule (I-/) has been applied to yield the final sequent. Fur-
ther, assume that the interpolation property has been shown for the premisses.
Then we have the following constellation.

T[AJoat B

(3.233) T@A[FBja

We have to find an interpolant with respect to A. By induction hypothesis
there is a formula 6 such that I'[6] o o - B and A I 6 are both derivable and
0.(0) < min{o.(I'caof),o.(A)} for all ¢c € C. Then also I'[0] I /o and
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A} 0 are derivable and we have 6.(6) < min{o.(I'o3/a),0.(A)}. Hence
0 also is an interpolant with respect to A in I'JA] - B /o. The case of (I-\) is
fully analogous.

Now we look at the case that the last rule is (/-I).

r'p Ala]lFy

7 BN

Choose a substructure Z from Afa/f oT']. Several cases have to be distin-
guished. (1) Z is a substructure of T, that is, I' = I'"'[Z]. Then there exists an
interpolant 6 for I''[Z] I B with respect to Z. Then 6 also is an interpolant for
Aloe/ B oT'[Z]] F y with respect to Z. (2) Z is disjoint with &t/ o . Then we
have A[of] = A'[Z, a] (with two marked occurrences of structures) and there is
an interpolant 6 with respect to Z for A’[Z, ] I y. Also in this case one calcu-
lates that O is the desired interpolant. (3) Z = o/ . By induction hypothesis
there is an interpolant 6, for I' = 8 with respect to I, as well as an interpolant
6, for Ala] = y with respect to a. Then 6 := 6,/6, is the interpolant. For we
have

(3235)  0.(0) = 0.(6,) + 5.(6))
< min{o,(AcY),0c(a)} + min{o.(B),0c(I)}
<min{o.(AoT0y),0.(xx/B)}

Furthermore,

0,F B ol 6,

a/ﬁ e} GZ l— 9,«
a/BF6,/6,

(4) Z=0[o/B oT]. Then A[oc/B o] = A'[@[ct/ B o I]] for some A’. Then by

hypothesis there is an interpolant for A'[@[c]] F y with respect to @[c]. We

show that 6 is the desired interpolant.

I'kpB OlajF 6

O[a/BoT|F 6

I'o, A6 Fy
A[6,/6,0oT 7y

(3.236)

(3.237)

A'6]Fy

In addition

(3.238)  0.(0) <min{o.(A'07y),0.(Oa])}
< min{GC(AI ° 'Y), GC(@)[OC/ﬁ o F])}

This ends the proof for the case (/-I). The case (\-I) again is fully analogous.
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Theorem 3.80 AB has interpolation. O

Now we move on to L. Clearly, we only have to discuss the new rules. Let
us first consider the case where we add e together with its introduction rules.
Assume that the last rule is (e-I).

oo Bl y

Choose a substructure Z of I'[a o ]. (1) Z does not contain the marked occur-
rence of oce . Then I'[oc e B] =T"[Z, ot @ B], and by induction hypothesis we
get an interpolant 6 for I'[Z, a o B] I y with respect to Z. It is easily checked
that 0 also is an interpolant for I''[Z, cc e 8] F y with respect to Z. (2) Let
Z=0[aef]. Then I'[ace B] =I"[O[cx e B]]. By induction hypothesis there is
an interpolant 6 for I'[®[a o B]] - y with respect to @[ o ], and it also is
an interpolant for I'[@[a e B]] F v with respect to @[ e 3]. In both cases we
have found an interpolant.
Now we turn to the case (I-e).

'-a AFB

(3.240) ToAF aep

There are now three cases for Z. (1) I' = I''[Z]. By induction hypothesis there
is an interpolant 6, for I"[Z] - a with respect to Z. This is the desired inter-
polant. (2) A = A’[Z]. Analogous to (1). (3) Z =T o A. By hypothesis there is
an interpolant 6, for I' - a with respect to I' and an interpolant 6, for A+ f3
with respect to A. Put 6 := 6, e 6,.. This is the desired interpolant. For

0,Fa 6. Fp
(3.241) F'F_oegl_eA.;e’ 6,00, e
¢ 0,00, Faef

In addition it is calculated that 6,.(6) < min{oc.(a e 3),0.(ToA)}.

This concludes a proof of interpolation for NL. Finally we must study L.
The rules (assl), (ass2) pose a technical problem since we cannot proceed
by induction on the derivation. For the applications of these rules change
the structure. Hence we change to another system of sequents and turn —
as discussed above — to sequents of the form I' - a where I is a sequence
of categories. In this case the rules (assl) and (ass2) must be eliminated.
However, in the proof we must make more distinctions in cases. The rules
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(I-/) and (I-\) are still unproblematic. So we look at a more complicated
case, namely an application of the rule (/-I).

'kp AlalFy
Ale/B,TTEy

We can segment the structure A[e/B,T7] into A',a/B,T,A"”. Let a subse-
quence Z be distinguished in A',ot/B,I',A”. The case where Z is fully con-
tained in A’ is relatively easy; likewise the case where Z is fully contained in
A". The following cases remain. (1) Z=A,,/B,T’|, where A’ = A,,A, for
some A, and I' =T",I’, for some I';. Even if Z is not empty A, as well as I
may be empty. Assume I'; # €. In this case 6, an interpolant for I" - 8 with
respect to I', and 6, an interpolant of A[a] F y with respect to A,, c. (Here it
becomes clear why we need not assume A, # €.) The following sequents are
therefore derivable.

I,k 6, r,6,FpB
Ay, ok 6, Ay, 0, A"k y

(3.242)

(3.243)

Now put 6 := 6,/6,. Then we have on the one hand

A,ok6,  T,,6,FB
(3.244) A, a/B.T,,6,F6,
A,,a/B.T, F 6,/6,

and on the other

I,F6, Ay, OrI,IA” Fy
Ay,0,/6,,T,,A"Fy

(3.245)

The conditions on the numbers of occurrences of symbols are easy to check.
(2) As Case (1), but I, is empty. Let then 6, be an interpolant for I' - 8 with
respect to I' and 6, an interpolant for Ay, A, o, A" =y with respect to A, .
Then put 6 := 6,/6,. 0 is an interpolant for the end sequent with respect to
Z.

0,FpB A, a6,
(3.246) A,a/B,6,F 6,
A,a/BF6,./6,

'O, A,6,A"Fy
Ao, er/ezaraAll l_ 7

(3) Z does not contain the marked occurrence of /. In this case Z =T",,A,
for some final part I', of I and an initial part A, of A”. T, as well as A| may
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be assumed to be nonempty, since otherwise we have a case that has already
been discussed. The situation is therefore as follows with Z =15, A,.

r,I,FB N0, ALA FY
Alaa/BaF17F27A17A2 l_ 7

(3.247)

Let 6, be an interpolant for I'}, I, = B with respect to I", and 6, an interpolant
for A',ot, A, A, F y with respect to A,. Then the following are derivable

I,k 6, r,6,FpB

(3.248) A6, A a,6,Aky

Now we choose 6 := 6, e §,. Then we have both

r,F6, AF6,

(3.249) EATGe6

and
r,6,Fp AN, o, 6,,A Fy
(3.250) A’,a/ﬁ,Fl,QE,Q,,AZI-y
A’,oc/[i,I“I,GZoQ,,A2 Fy

In this case as well the conditions on numbers of occurrences are easily
checked. This exhausts all cases. Notice that we have used e to construct
the interpolant. In the case of the rules (I-e) and (e—I) there are no surprises
with respect to AB.

Theorem 3.81 (Roorda) L has interpolation. O

Now we shall move on to show that L is context free. To this end we introduce
a series of weak calculi of which we shall show that together they are not
weaker than L. These calculi are called L,,, m < o. The axioms of L,, are
sequents I' F o such that the following holds.

® I'= B,, B, or I' = B, for certain categories 3, and f3,.
@ T'F o is derivable in L.
@ lal,|B],1B,| < m.

(cut) is the only rule of inference. The main work is in the proof of the fol-
lowing theorem.
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Theorem 3.82 (Pentus) LetI"= B, B,,...,B,_,- I'F a is derivable in L, iff
@ |B;| <mforalli<m,
@ |a| < mand
® I'k o is derivable in L.

We shall show first how to get from this fact that L-grammars are context
free. We weaken the calculi still further. The calculus LE has the axioms of
L,, but (cut) may be applied only if the left hand premiss is an axiom.

Lemma 3.83 For all sequents T\ o the following holds: T' & o is derivable
in LY iff T a is derivable in L,

The proof is relatively easy and left as an exercise.
Theorem 3.84 The languages accepted by L—grammars are context free.

Proof. Let L = (S,C,{,A,L) be given. Let m be larger than the maximum
of all ||, @ € {(a), a € A. Since A as well as {(a) are finite, m exists. For
simplicity we shall assume that C = | J{n(a) : a € {(a),a € A). Now we put
N:={o:|a| <m}.G:=(S,N,A,R), where

R:= {a—a:ae(a)}
(3.251) U{a—B:a,BEN,~BFal
U{a — BB, : o, By, B, EN,’\L”ﬁoam Fa}

Now let L X, X =x,"x, " +-+x,_,. Then for all i < n there exist an o; € {(x;)
such that I' - S is derivable in L, where I' := o, ;,...,a,_,. By Theo-
rem 3.82 and Lemma 3.83 I' k- S is also derivable in LE. Induction over
the length of the derivation yields that -, o, ;" --- "0, | and hence also
F; X. Now let conversely -, X. We extend the category assignment { to
{tAUN — Cat\’.y/(C) by putting {*(et) := {a} while {T A= {. By
induction over the length of the derivation of ¢ one shows that from -, & we
get L+ a. O
Now on to the proof of Theorem 3.82.

Definition 3.85 A category o is called thin if o.(a) < 1 for all c € C. A
sequent ' a is called thin if the following holds.
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® T'F «a is derivable in L.
@ All categories occurring in I as well as o are thin.
® o.(I'a) <2forall c €C.

For a thin category o we always have |a| = |m(a)|. We remark that for a thin
sequent only o.(I", &) = 0 or = 2 can occur since o, (T, &) always is an even
number in a derivable sequent (see Exercise 127). Let us look at a thin sequent
I'[A] F a and an interpolant 6 of it with respect to A. Then 6.(0) < 0.(A) < 1.
For either ¢ € m(A), and then ¢ ¢ 7(0), whence 6.(0) = 0. Or ¢ € 7(A); but
then ¢ € (I, ), and so by assumption o.(A) = 1.

(3.252)  0.(A,0) <o.(A)+0.(0) <o (A, ) +0.(0) <2+1

Now o,(A) 4 0,(0) is an even number hence either 0 or 2. Hence A I 6 also
is thin. Likewise it is shown that I'[0] F « is thin.

Lemma 3.86 LetI',0,AF o be a sequent and c,d € C two distinct elemen-
tary categories. Further, let ¢ € (') N w(A) as well as d € n(®) N ().
ThenT',0,A & « is not thin.

Proof. Let §;(C) be the free group generated by the elementary categories.
The elements of this group are finite products of the form cf)o -céz ----- cfz":i,
where ¢; # ¢;, | fori <n—1ands; € Z—{0}. (If n = 0 then the empty product
denotes the group unit, 1.) For if ¢, = ¢, the term cgo -c‘;l can be shortened
to c‘éﬂﬂl. Look at the group valued interpretation Y sending every element of
C to itself. If the sequent was thin we would have (') - y(©) - y(A) = y(«).
By hypothesis the left hand side is of the form w-c¢*!-x-d*!.y. ¢tz for
certain products w, x,y,z. The right hand side equals 7 - d*! - u for certain ¢, u.
Furthermore, we know that terms which stand for w, x, y, z as well as t and u
cannot contain ¢ or d if maximally reduced. But then equality cannot hold. O

Lemma 3.87 Let o, ..., 0, & @, be thin, n > 0. Then there is a k with
0<k<n+land (o) Cm(oy_)Um(oy, ).

Proof. The proof is by induction on n. We start with n = 1. Here the sequent
has the form oy, o, F a,. Let ¢ € w(a;). Then o.(or;) = 1 since the sequent
is thin. And since o.(¢, 0, 0,) = 2, we have o.(¢, ) = 1, whence ¢ €
n(a,) U m(a,). This finishes the case n = 1. Now let n > 1 and the claim
proved for all m < n. Case a. n(,®,,...,0, ,) Nw(®,) = @. Then we
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choose k := n. For if ¢ € (o) then o.(¢y,...,¢,_,) =0, and so we have
oc(e,_ )+ oc(a,, ) = 1. Hence we get ¢ € m(e,_;) U (e, ). Case b.

n(ay, 0y,..., 0, 5) N () # @. Then there exists an elementary category
c with ¢ € w(a,...,a,_,) and ¢ € w(ey,). Put I := of, 0,...,00,_;, A=

ay. Let 6 be an interpolant for I';A ko, | with respect to I'. Then I' - 6
and 6,a, k- o, are thin. By induction hypothesis there exists a k such that
m(ay) Cr(oy_)Um(oy,,),ifk<n—1,or w(ey) C 7(0y_,)Um(O) in case
k=n—1.1f k <n—1 then k is the desired number for the main sequent. Let
now k =n— 1. Then

(3.253) m(a, ;) Cw(o,_,)Um(6) C (e, ) Um(oy) Um(ex,, )

We show that k in this case too is the desired number for the main sequent. Let
n(o,_)Nx(a,, ) #2,sayd € n(a,_;)N7r(c,, ). Thensurely d & (),
so d # c. Therefore the sequent is not thin, by Lemma 3.86. Hence we have

n(o,_)Nm(e,, )=, and so (e, ;) C m(o, ,) Um(at,). O

Lemma 3.88 Let I' v be an L—derivable thin sequent in which all cate-
gories have length < m. Then T\ vy is already derivable in L,,.

Proof. Let I' = o, ay,..., 0, ; put o, :=y. If n < 2 then I' - y already is
an axiom of L,,. So, let n > 2. By the previous lemma there is a k such that
m(ay) C m(oy_ ) Un(oy,,). Case 1. k < n. Case la. |n(a,_;) N7w(ey)| >
|T(oy ) N(oy)| Put E := o, ..., 04 5, O = y,...,&,_;, and A=
oy _,,0,. Let 0 be an interpolant for =,A, ® - o, with respect to A. Then the
sequent

(3.254) oy 5, 0,05 5.0, F o0y

" Y n—1
is thin. Furthermore

(3.255)  m(0) C(m(oy_,)Un(y)) N7(E,0,0)
(m(og,_)N7(E,0,0,)) U(n(og) N7(E,0,a)).

Let ¢ € m(ey_,). Then o.(0y_,) =1 and o.(E,04_,,0,0,,) = 2, from
which o.(E, ¢;,0,,) = 1. Hence either o.(o;,) = 1 or 0.(8,0,a,) = 1.
Since ¢ was arbitrary we have

(3.256)  w(ey)N7(E,0,0,) =m(ey_ ;) — (m(ey,_ ;) N7(ey))
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By choice of k, (o) N7(E, 0, o) = 7(0y) N7(0y, ). Hence

n(0)=(n(oy_,)N7(E,0,0,))(x(a,) N7T(E,0,0))

(3257 Clnloy) — (w{oy,_,) Nw(04)) U () N 7(04 )
So

17(0)] = 7oy )|+ |m(ey ) N w(ey)| +|m(oy) N (g, )|
(3.258) < |7E(Otk_1)|

<m

(Note that |m(cy_ )| = |ey|.) Therefore also |0 < m and so o, , 0 F 6 isan
axiom of L,,. Hence, by induction hypothesis E, 0,0 F o, is derivable in L,,.
A single application from both sequents yields the main sequent. It is there-
fore derivable in L,,. Case 1b. |m(0,_;) N7(0y)| < |m(0y) N 7(e, )| Here
one puts £ := 0,...,0_, Ai=04,04, 1, O:=04,...,0, | and proceeds
as in Case la. Case 2. k=n—1.So, w(a,_,) C m(e,_,)Um(y). Also here we
distinguish to cases. Case 2a. |w(c, ,)N7(a, )| >|m(e, ;)N 7(e)|. This
case is similar to Case la. Case 2b. |7(a, _,)N7(e,_,)| <|m(e,_,)Nw(os,)|.
Here put A := o),..., 0, ,, ®:=a,_,.Let 6 be an interpolant for A,® - o,
with respect to A. Then A 6 as well as 6,a,_, I a, are thin. Further we
have

n(6) Cx(A) N (7(e,_,) Um(ay))
A)nm(e, ) U (7(A) N 7(0))

(3.259) =(n(
=(7(e, ) N7(et,_y)) U (m(0,) — (m(et,_;) N7(0ry))).
As in Case la we conclude that
7(8)] = [7(a, ) N7(e, )| +|m(e)| = |7(ot, ;) N7 ()]
(3.260) <|m(on)|
<m
Hence 6, ¢, , F o, is an axiom of L,,. By induction hypothesis, A I 6 is
derivable in L,,. A single application of (cut) yields the main sequent, which
is therefore derivable in L,,. O

Finally we proceed to the proof of Theorem 3.82. Let |y;| < m for all i < n,
and |a| < m. Finally, let y,%,-.-,%,_; I o be derivable in L. We choose
a derivation of this sequent. We may assume here that the axioms are only
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sequents of the form ¢ I ¢. For every occurrence of an axiom ¢ - ¢ we choose
a new elementary category ¢ and replace this occurrence of ¢ b ¢ by ¢ ¢.
We extend this to the entire derivation and so we get a new derivation of a
sequent %,,%,,.-.,%,_; F &. We get 6.(0) + ¥, 0c(%;) = 2, if ¢ occurs at all
in the sequent. Nevertheless, the sequent need not be thin, since it may contain
categories which are not thin. However, if 6.(0) = 2 for some 6 and some c,
then c is not contained in any other category. We exploit this as follows. By
successively applying interpolation we get the following sequents, which are
all derivable in L.

Nk 6, 903’\1’5’\2,---,?’” Fa
/)71|- 0, 60,91,572,... I-Oc
(3.261) : :
il\n F6, 6y,6,,-..,6,_ 1I—oc
60’617 " n 1|_7 }/l-OC

It is not hard to show that 6.(6;) < 1 for all ¢ and all i < n. So the sequent
6y,0;,---,0,_, F vis thin. Certainly |y| < |&| = |a| < m as well as |6;] <
|0;] = |@;| < m forall i < n. By Lemma 3.88 the sequent 6,,0,,...,6, kv
is derivable in L,,. The sequents )7: k6, i<n,aswellas Yy 0, are axioms of
L... Hence %, %y, ---,7%,_, b O is derivable in L,,. We undo the replacement in
the derivation. This can in fact be done by applying a homomorphism (substi-
tution) ¢ which replaces ¢ by c. So, we get a derivation of ¥y, %;,.--,%,_; F %
in L,,. This concludes the proof of Theorem 3.82.

We remark that Pentus has also shown in (Pentus, 1995) that L is complete

with respect to so—called L—frames.

Definition 3.89 An L—frame is a free semigroup of the form (A" ,-). A valu-
ation is a function v : C — @(A™). v is extended to categories and sequents
as follows:

V(oo BY) = v(@) - v(B)
W((a/B)) = v(a)//v(B)

G202 L (B\@) = v(B)\(@)
v(ToA) :=v()-v(A)

I'F «a is true under v if v(I') C v(«). It is valid in an L-frame if it is true
under all valuations.
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Theorem 3.90 (Pentus) ~ ['F o iff T & « is valid in all Lframes.

A survey of this subject area can be found in (Buszkowski, 1997).
Exercise 126. Prove Theorem 3.79.

Exercise 127. Let I' F « be derivable in L, ¢ € C. Show that o.(I') + o.(@)
is an even number.

Exercise 128. Prove Lemma 3.83.

Exercise 129. Show that if N I't o, I'F o is valid in all L—frames.

8. Montague Semantics I

Until the beginning of the 1970s semantics of natural languages was consid-
ered a hopeless affair. Natural language was thought of as being completely
illogical so that no formal theory of semantics for natural languages could
ever be given. By contrast, Montague believed that natural languages can be
analysed in the same way as formal languages. Even if this was too optimistic
(and it is quite certain that Montague did deliberately overstate his case) there
is enough evidence that natural languages are quite well-behaved. To prove
his claim, Montague considered a small fragment of English, for whose se-
mantics he produced a formal account. In this section we shall give a glimpse
of the theory shaped by Montague. Before we can start, we have to talk about
predicate logics and its models. For Montague has actually built his seman-
tics somewhat differently than we have done so far. In place of defining the
interpretation in a model directly, he defined a translation into A—calculus
over predicate logic, whose interpretation on the other hand is fixed by some
general conventions.

A language of first—order predicate logic with identity has the following
symbols:

@ a set R of relation symbols, a disjoint set F' of function symbols,
@ a countably infinite set V := {x, : i € w} of variables,

® the equality symbol =,

@ the booleans —, A, V, =,

® the quantifiers Vv, 3.
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As outlined in Section 1.1, the language is defined by choosing a signature
(Q,Z). Then ris a E(r)—ary relation symbol and f a Q(f)-ary function sym-
bol. Equality is always a binary relation symbol (so, Z(=) = 2). We define the
set of terms as usual. Next we define formulae (see also Section 2.7).

® Ift, i< E(r), are terms then r(z,,... ’ts(r)—l) is a formula.

@ Ift, and ¢, are terms then f,=t, is a formula.

® If ¢ and y are formulae, so are (1), (AY), (pvy) and (@-y).
@ If ¢ is a formula and x € V, then (Vx) ¢ and (3x) ¢ are formulae.

A {Q,Z)-structure is a triple (M,{f™ : f € F},{r™ : r € R}) such that
P M) — M for every f € F and r™ C MEU) for every r € R. Now let
B:V — M. Then we define (9, B) E ¢ for a formula by induction. To begin,
we associate with every 7 its value ] under .

(3.263)

Now we move on to formulae. (In this definition, y ~, B, for x € V, if B(y) #
Y(v) only if y = x.)

(M, B) E (sp=s1) = [So] [51]
(M, B)Er() & ([s;] i ( r)) er™
(M, B) E (1) = (M,

(
(m B)
Gacay THRIF (pAy) e OMLB)E @ and (M, B) E v
(M, B)
(

bl

(M, B) E (pvy) & Foor(MB)Fvw
(M, B) F (@=y) 1= (M, B) ¥ @ or (M, B) Fy
(M, B)E (A ¢ :& thereis B/ ~, B : (M, B')E
(M, B)E (V)¢ 1 forall B/ ~, B : (M, B')E

In this way formulae are interpreted in models.

Definition 3.91 Let A be a set of formulae, and ¢ a formula. Then A E @ if
Sor all models (M, B): if (M, B) E 8 for every & € A, then also (M, B) E ¢.
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For example, the arithmetical terms in +, 0 and * with the relation < can
be interpreted in the structure N where +N = 4 and *N = . are the usual
operations, O = 0 and <N =<. Then for the valuation § with B(x,) =7 we
have:

(3.265) (N, B) F (vxy) (Vx,) ((xg*x;)=x,+(x,=1Vx,=1))

This formula says that B(x,) is a prime number. For a number w is a prime
number iff for all numbers # and v: if u-v=wthen u =1 or v= 1. We compare
this with (3.265). (3.265) holds if for all B’ different only on x, from B

(3.266)  (N,B') F (Vx;) ((xp*x;)=x,+(xy=1Vx,=1))
This in turn is the case if for all B” different only on x, from '
(3267) (N, B") E ((xg¥x,)=xy (x=1Vx,=1))

This means: if u := B"(x,), v:= B"(x;) and w := B"(x,) and if we have

w=u-v, then u = 1 or v = 1. This holds for all # and v. Since on the other

hand w = B(x,) we have (3.265) iff B(x,), that is to say 7, is a prime number.
The reader may convince himself that for every 3

(3.268) (N, B) F (Vxy) (3x,) (Vx,) (Vx3)
(xo<xq A((xy*x3)=x,+(x5=1Vx5=1)))

This says that for every number there exists a prime number larger than it.

For later use we introduce a type e. This is the type of terms. e is real-
ized by M. Before we can start designing a semantics for natural language we
shall have to eliminate the relations from predicate logic. To this end we shall
introduce a new basic type, ¢, which is the type of truth values. It is realized
by the set {0,1}. An n—place relation r is now replaced by the characteris-
tic function 7* from n—tuples of objects to truth values, which is defined as
follows.

(3269)  r®(xg,xymnay ) =16 1Ty )

This allows us to use A—calculus for handling the argument places of r. For
example, from the binary relation r we can define the following functions r
and r,.

(3.270)  r,:= lxe.lye.r‘(xe,ye)
(3271)  ry:= lxe.lye.r‘(ye,xe)
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So, we can define functions that either take the first argument of r*® first, or
one which takes the first argument of r® second.

Further, we shall also interpret -, A, V and =+ by the standard set—theoretic
functions —, N, U and D, respectively:

| - njo 1 ulo 1 D0
(32720 01 00 0 00 1 01
110 10 1 1|11 1

Syntactically speaking - has category 7/¢ and A, v and =+ have category
(£\t)/t. Finally, also the quantifiers must be turned into functions. To this end
we introduce the function symbols II and L of type ((e — ) — t). Moreover,
(X) is true iff for all x X(x) is true, and Z(X) is true iff for some x X (x)
is true. (Vx) ¢ is now replaced by II(Ax.¢), and (3x) ¢ by Z(Ax.¢). So,
ignoring types for the moment, we have the equations

(3.274) I=Axy. A%y .Z(AX, . %4)

We shall however continue to write Vx.¢ and 3x.¢. This definition can in
fact be used to define quantification for all functions. This is the core idea
behind the language of simple type theory (STT) according to Church (1940).
Church assumes that the set of basic categories contains at least . The symbol
- has the type r — , while the symbols A, v and =+ have type t — (r — 1).
(Church actually works only with negation and conjunction as basic symbols,
but this is just a matter of convenience.) To get the power of predicate logic
we assume for each type a a symbol II* of type (@ — t) — ¢ and a symbol
1% of type @ — (¢ — t). Put 8 := Typ_,(B).

Definition 3.92 A Henkin frame is a structure
(3.275) H=({Dy:aec8},o,—,NA{n%: €8}, {1%: a8}
such that the following holds.
@ ({Dy: a € 8},9) is afunctionally complete typed applicative structure.

@ D,={0,1}, —: D, = D, and N: D, — (D, — D;) are complement and
intersection, respectively.

® Foreverya € Dy_,, n*ea=1iff foreveryb € Dy: bea = 1.
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@ For every a € Dy_,,, if there is a b € Dy, such that ae b =1 then also
ae(1“ea) =1.

A valuation into a Henkin frame is a function 8 such that for every variable x
of type a B(x) € Dy. For every N of type , (), B) F N iff [N]? = 1. Further,
for a set I of expressions of type ¢ and every N of type ¢, I' E N if for every
Henkin frame and every valuation f3:if ($), 8) F M for all M € T then (), 8) F
N.

m® is the interpretation of II* and 1% the interpretation of %. So, 7% is
the device discussed above that allows to define the universal quantifier for
functions of type o — . 1% on the other hand is a kind of choice or ‘witness’
function. If a is a function from objects of type & into truth values then 1* e a
is an object of type «, and, moreover, if a is at all true on some b of type c,
then it is true on 1* e a. In Section 4.4 we shall deliver an axiomatization of
STT and show that the axiomatization is complete with respect to these mod-
els. The reason for explaining about STT is that every semantics or calculus
that will be introduced in the sequel can easily be interpreted into STT.

We now turn to Montague Semantics. To begin we choose a very small
base of words.

(3.276)  {Paul,Peter,sleeps,sees}

The type of (the meaning of) Paul and Peter is e, the type of sleeps is
e — t, the type of sees ¢ — (e — ). This means: names are interpreted
by individuals, intransitive verbs by unary relations, and transitive verbs by
binary relations. The (finite) verb s1eeps is interpreted by the relation sleeps’
and sees by the relation see’. Because of our convention a transitive verb
denotes a function (!) of type e — (¢ — 1). So the semantics of these verbs is

(3.277)  sleeps > Ax..sleep’(x.)
(3.278) sees — Ax,.Ay..see’ (e, x.)

We already note here that the variables are unnecessary. After we have seen
how the predicate logical formulae can be massaged into typed A—expressions,
we might as well forget this history and write sleep’ in place of the function
Ax,.sleep’(x.) and see’ in place of Ax,.Ay,.see’ (ve,x.). This has the additional
advantage that we need not mention the variables at all (which is a moot point,
as we have seen above). We continue in this section to use the somewhat more
longwinded notation, however. We agree further that the value of Paul shall
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be the constant paul’ and the value of Peter the constant peter’. Here are
finally our O—ary modes.

Paul, e, paul’)
Peter, e, peter’)
sleeps, e\, Ax,.sleep’(x.))

(
(3.279) é
(sees, (e\t)/e, Axe.Aye.see'(ye,Xe))

The sentences Peter sleeps or Peter sees Peter are grammatical, and
their meaning is sleep’(paul’) and see’ (peter’, peter’).

The syntactic categories possess an equivalent in syntactic terminology. e
for example is the category of proper names. The category e\? is the category
of intransitive verbs and the category (e\r)/e is the category of transitive
verbs.

This minilanguage can be extended. For example, we can introduce the
word not by means of the following constant mode.

(3.280)  (not,(e\r)\(e\t), Aoy -Axe.mx,_; (xe))

The reader is asked to verify that now sleeps not is an intransitive verb,
whose meaning is the complement of the meaning of sleeps. So, Paul
sleeps not is true iff Paul sleeps is false. This is perhaps not such a
good example, since the negation in English is formed using the auxiliary do.
To give a better example, we may introduce and by the following mode.

(3.281)  (and,((e\r)\(e\1))/(e\1),

xxe—)t -AJ’e—n Aze Xe—st (Ze) AYeost (Ze) )

In this way we have a small language which can generate infinitely many
grammatical sentences and which assigns them correct meanings. Of course,
English is by far more complex than this.

The real advance that Montague made was to show that one can treat quan-
tification. Let us take a look at how this can be done. (Actually, what we are
going to outline right now is not Montague’s own solution, since it is not
in line with Categorial Grammar. We will deal with Montague’s approach to
quantification in Chapter 4.) Nouns like cat and mouse are not proper names
but semantically speaking unary predicates. For cat does not denote a single
individual but a class of individuals. Hence, following our conventions, the
semantic type of cat and mouse is e — ¢. Syntactically speaking this cor-
responds to either ¢/e or e\tz. Here, no decision is possible, for neither Cat
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Paul nor Paul cat is a grammatical sentence. Montague did not solve this
problem; he introduced a new category constructor //, which allows to dis-
tinguish a category ¢ //e from t /e (the intransitive verb) even though they are
not distinct in type. Our approach is simpler. We introduce a category n and
stipulate that o(n) := e — . This is an example where the basic categories
are different from the (basic) semantic types. Now we say that the subject
quantifier every has the sentactic category (7/(e\t))/n. This means the fol-
lowing. It forms a constituent together with a noun, and that constituent has
the category 7/(e\t). This therefore is a constituent that needs an intransitive
verb to form a sentence. So we have the following constant mode.

(3.282)  (every, (t/(e\t))/n,AXe_ys Aot Ve (Xeoys (Xe) = Yooyt (%e)))
Let us give an example.

(3.283) every cat sees Peter

The syntactic analysis is as follows.

every cat sees Peter
(t/(e\))/n__ n (e\)fe e
25 1/(\) A

t

This induces the following constituent structure.
(3.285)  ((every cat) (sees Peter))

Now we shall have to insert the meanings in place of the words and calculate.
This means converting into normal form. For by convention, a constituent
has the meaning that arises from applying the meaning of one immediate part
to the meaning of the other. That this is now well-defined is checked by the
syntactic analysis. We calculate in several steps. sees Peter is a constituent
and its meaning is

(3.286)  (Ax..Ay..see'(ye,x.))(peter') = Ay,.see' (v., peter')
Further, every cat is a constituent with the following meaning

(AXomst - AYemst-(VXeXoyr (Xe) = Vet (Xe))) (lxe.cat' (xe))
(3.287) =AYy Ve (Axe.cat! (x)) (xe) = Yooy (Xe))

=AY et VXer(cat! (Xe) = Yoys (Xe))
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Now we combine these two:

(AYerss-Vxe-cat! (xe) = Yooy (xe)) (Aye-see’ (ve, peter'))
(3.288)  =Vx..(cat'(x.) = (Ly..se€ (., peter'))(x.))
=Vx,.(cat'(x.) — see'(x,, peter’))

This is the desired result. Similarly to every we define some:

(3.289) (some, (1/(e\t)) /1, AXesy - AYersy-Fxe-(Xoss (Xe) A Ve (Xe)))

If we also want to have quantifiers for direct objects we have to introduce new
modes.

(every,((e\r)/((e\t)/e))/n,
lxe_,,.lye_)(e_n) AYe VX (Xoyy (Xe) = Yes(e—t) (xe) (ve)))

(some, ((e\1)/((e\1)/e))/n,

)Lxe—n-lyeﬁ(e%,) AYe- e (X (xe) — Yeos(e—st) (xe) (e)))

(3.290)

(3.291)

For every cat as a direct object is analyzed as a constituent which turns
a transitive verb into an intransitive verb. Hence it must have the category
(e\t)/((e\t)/e). From this follows immediately the category assignment for
every.

Let us look at this using an example.

(3.292) some cat sees every mouse

The constituent structure is as follows.

(3.293)  ((some cat) (sees (everymouse))))

The meaning of every mouse is, as is easily checked, the following:
(B294)  AY, (- AYeVxe(mouse'(xe) = ¥, (%) (ve))
From this we get for sees every mouse

Aye-Vx.(mouse'(x,) = (Axe-Aye-see’ (ve,Xe)) (xe) (ve))

3.295
( ) =Ay..Vx.(mouse'(x,) — see' (ye,x.))

some cat is analogous to every cat:

(3.296)  Ayeoy-Ite-(cat! (xe) A Yoy (xe))
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We combine (3.296) and (3.295).
(AYes-Fxe-(cat! (xe) A ey (xe)))
(Ay..Vx..(mouse' (x.) — see’(ye,xc)))
=3x,.(cat’ (x.) A (Ay..Vx..(mouse’ (x,) — see’ (e, x.))) (x.))
=3x,.(cat'(x.) A Vz,.(mouse'(z.) — see’ (x¢,2)))

(3.297)

One can see that the calculations require some caution. Sometimes variables
may clash and this calls for the substitution of a variable. This is the case for
example when we insert a term and by doing so create a bound occurrences of
a variable. The A—calculus is employed to do this work for us. (On the other
hand, if we used plain functions here, this would again be needless.)

Montague used the cancellation interpretation for his calculus, hence the
sequent formulation uses the calculus E. We have seen that this calculus can
also be rendered into a sign grammar, which has two modes, forward appli-
cation (Ay) and backward application (A.). In syntactic theory, however, the
most popular version of grammar is the Lambek—Calculus. However, the lat-
ter does not lend itself easily to a compositional interpretation. The fault lies
basically in the method of hypothetical assumptions. Let us see why this is
so. An adjective like big has category n/n, and its type is (e — 1) — (e — 7).
(This is not quite true, but good enough for illustration.) This means that it
can modify nouns such as car, but not relational nouns such as friend or
neighbour. Let us assume that the latter have category n/g (where g stands
for the category of a genitive argument). Now, in Natural Deduction style
Lambek—Calculus we can derive a constituent big neighbour by first feed-
ing it a hypothetical argument and then abstracting over it.

big neighbour
n/n : big' n/g : neighbour’ g:y
(3.298) : n : neighbour'(y)

n : big' (neighbour'(y))
n/g: Ay.big'(neighbour'(y))
This allows us, for example, to coordinate big neighbour and friend and
then compose with of mine. Notice that this proof is not available in E.

There also is a sign based analogue of this. Introduce binary modes L, and
L¢:

L>(<5C'7 (X,M), 6;, %xY)) = <)?/?, (X/')/, (AXY'MXY»

(3.299) R - - =
L<(<X, (X,M), <ya %xY)) = <y\x7 Y\aa ()’xV'MxY»
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A condition on the application of these modes is that the variable x, actually
occurs free in the term. Now introduce a new O—ary mode with exponent (C),
which shall be a symbol not in the alphabet.

(3.300) Vi = (@,Oc,x%[)
Consider the structure term
(3.301) L>A>BgA>Nng:OVg:O

Here, Bg := (big,n/n,big') and Nb :=neighbour,n/g, neighbour’). On con-
dition that it is definite, it has the following unfolding.

(3.302)  (big neighbour,n/g,Ax, .big'neighbour'(x,))

These modes play the role of hypothetical arguments in Natural Deduction
style derivations. However, the combined effect of these modes is not ex-
actly the same as in the Lambek—Calculus. The reason is that abstraction
can only be over a variable that is introduced right or left peripherally to
the constituent. However, if we introduce two arguments in succession, we
can abstract over them in any order we please, as the reader may check (see
the exercises). The reason is that (C) bears no indication of the name of the
variable that it introduces. This can be remedied by introducing instead the
following O—ary modes.

(3303) Ty, = (©g 0 ¥q,)

Notice that these empty elements can be seen as the categorial analogon of
traces in Transformational Grammar (see Section 6.5). Now the exponent
reveals the exact identity of the variable and the Lambek—Calculus is ex-
actly mirrorred by these modes. The price we pay is that there are structure
terms whose exponents are not pronounceable: they contain elements that
are strictly speaking not overtly visible. The strings are therefore not surface
strings.

Notes on this section. Already in (Harris, 1963) the idea is defended that
one must sometimes pass through ‘nonexistent’ strings, and TG has made
much use of this. An alternative idea that suggests itself is to use combina-
tors. This route has been taken by Steedman in (1990; 1996). For example,
the addition of the modes By and B assures us that we can derive the these
constituents as well. Steedman and Jacobson emphasize in their work also
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that variables can be dispensed with in favour of combinators. See (Jacobson,
1999; Jacobson, 2002) (and references therein) for a defense of variable free
semantics. For a survey of approaches see (Bottner and Thiimmel, 2000).

Exercise 130. Write an AB—grammar for predicate logic over a given signa-
ture and a given structure. Hint. You need two types of basic categories: e and
t, which now stand for ferms and truth—values.

Exercise 131. The solutions we have presented here fall short of taking cer-
tain aspects of orthography into account. In particular, words are not sepa-
rated by a blank, sentences do not end in a period and the first word of a
sentence is written using lower case letters only. Can you think of a remedy
for this situation?

Exercise 132. Show that with the help of L, and L, and the O—ary modes V, .,
it is possible to derive the sign

(3.304)  (give,(e\t)/e/e,Ax.Ay.Az.give'(z)(x)(y))

from the sign

(3.305)  (give,(e\t)/e/e,Ax.Ay.Az.give'(z)()(x))

Exercise 133. We have noted earlier that and, or and not are polymorphic.
The polymorphicity can be accommodated directly by defining polyadic op-
erations in the A—calculus. Here is how. Call a type o t—final if it has the
following form: (a) & =t, or (b) @ = B — ¥, where ¥ is t—final. Define A,
Vo and 1y by induction. Similarly, for every type « define functions L, and
Il of type @ — ¢ that interpret the existential and universal quantifier.

Exercise 134. A (unary) generalized quantifier is a function from proper-
ties to truth values (so, it is an object of type (e — t) — t). Examples are some
and every, but there are many more:

(3.306) more than three
(3.307) an even number of
(3.308) the director’s

First, give the semantics of each of the generalized quantifiers and define a
sign for them. Now try to define the semantics of more than. (It takes a
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number and forms a generalized quantifier.)

Exercise 135. In CCG(B), many (but not all) substrings are constituents. We
should therefore be able to coordinate them with and. As was noted for exam-
ple by Eisenberg in (1973), such a coordination is constrained (the brackets
enclose the critical constituents).

(3.309)  *[John said that I]and [Mary said that she]
is the best swimmer.
(3.310)  [John said that I]and [Mary said that she]

was the best swimmer.

The constraint is as follows. X¢and ¢y o7 is well-formed only if both X¥¢7 and
yo7 are. The suggestion is therefore that first the sentence XoZoandoyoZ?
is formed and then the first occurrence of 7o is ‘deleted’. Can you suggest
a different solution? Note. The construction is known as forward deletion.
The more common backward deletion gives XoZ7¢and ¢y, and is far less
constrained.



Chapter 4
Semantics

1. The Nature of Semantical Representations

This chapter lays the foundation of semantics. In contrast to much of the cur-
rent semantical theory we shall not use a model-theoretic approach but rather
an algebraic one. As it turns out, the algebraic approach helps to circumvent
many of the difficulties that beset a model-theoretic analysis, since it does
not try to spell out the meanings in every detail, only in as much detail as is
needed for the purpose at hand.

In this section we shall be concerned with the question of feasibility of in-
terpretation. Much of semantical theory simply defines mappings from strings
to meanings without assessing the question whether such mappings can actu-
ally be computed. While on a theoretical level this gives satisfying answers,
one still has to address the question how it is possible that a human being can
actually understand a sentence. The question is quite the same for computers.
Mathematicians ‘solve’ the equation x> = 2 by writing x = £+/2. However,
this is just a piece of notation. If we want to know whether or not 3VZ <6,
this requires calculation. This is the rule rather than the exception (think of
trigonometric functions or the solutions of differential equations). However,
hope is not lost. There are algorithms by which the number /2 can be approx-
imated to any degree of precision needed, using only elementary operations.
Much of mathematical theory has been inspired by the need to calculate dif-
ficult functions (for example logarithms) by means of elementary ones. Evi-
dently, even though we do not have to bother any more with them thanks to
computers, the computer still has to do the job for us. Computer hardware
actually implements sophisticated algorithms for computing nonelementary
functions. Furthermore, computers do not compute with arbitrary degree of
precision. Numbers are stored in fixed size units (this is not necessary, but
the size is limited anyhow by the size of the memory of the computer). Thus,
they are only close to the actual input, not necessarily equal. Calculations
on the numbers propagate these errors and in bad cases it can happen that
small errors in the input yield astronomic errors in the output (problems that
have this property independently of any algorithm that computes the solu-
tion are called ill-conditioned). Now, what reason do we have to say that a
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particular machine with a particular algorithm computes, say, v/2? One an-
swer could be: that the program will yield exactly v/2 given exact input and
enough time. Yet, for approximative methods — the ones we generally have
to use — the computation is never complete. However, then it computes a
series of numbers a,, n € @, which converges to v/2. That is to say,if € > 0
is any real number (the error) we have to name an n, such that for all n > n,:
|a, — \/§| < g, given exact computation. That an algorithm computes such
a series is typically shown using pure calculus over the real numbers. This
computation is actually independent of the way in which the computation
proceeds as long as it can be shown to compute the approximating series. For
example, to compute /2 using Newton’s method, all you have to do is to
write a program that calculates

4.1) a,, = a, — (> —2)/2a,

For the actual computation on a machine it matters very much how this series
is calculated. This is so because each operation induces an error, and the
more we compute the more we depart from the correct value. Knowing the
error propagation of the basic operations it is possible to compute exactly,
given any algorithm, with what precision it computes. To sum up, in addition
to calculus, computation on real machines needs two things:

1 a theory of approximation, and
1= a theory of error propagation.

Likewise, semantics is in need of two things: a theory of approximation,
showing us what is possible to compute and what not, and how we can com-
pute meanings, and second a theory of error propagation, showing us how we
can determine the meanings in approximation given only limited resources
for computation. We shall concern ourselves with the first of these. More-
over, we shall look only at a very limited aspect, namely: what meanings can
in principle be computed and which ones cannot.

We have earlier characterized the computable functions as those that can
be computed by a Turing machine. To see that this is by no means an innocent
assumption, we shall look at propositional logic. Standardly, the semantics of
classical propositional logic is given as follows. (This differs only slightly
from the setup of Section 3.2.) The alphabet is {(,),p,0,1,7,A} and the set
of variables V :=p(0U1)*. A function 8 : V — 2 is called a valuation. We
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extend f8 to a mapping 8 from the entire language to 2.

B(p) = B(p) (pev)
4.2) B((=9)) :=—P(0)
B(Coax)) :=B(@)NB(x)

To obtain from this a compositional interpretation for the language we turn
matters around and define the meaning of a proposition to be a function from
valuations to 2. Let 2" be the set of functions from V to 2. Then for every
proposition @, [¢@] denotes the function from 2" to 2 that satisfies

4.3) [@](B) = B(o)

(The reader is made aware of the fact that what we have performed here is
akin to type raising, turning the argument into a function over the function
that applies to it.) Also [@] can be defined inductively.

[p]:=={B:B(p) =1} (pev)
(4.4) ()] :=2" —[¢]
[Cpax)] :=[o]N[x]

Now notice that V is infinite. However, we have excluded that the set of basic
modes is infinite, and so we need to readjust the syntax. Rather than working
with only one type of expression, we introduce a new type, that of a register.
Registers are elements of G := (0U1)*. Then V = p- G. Valuations are now
functions from G to 2. The rest is as above. Here is now a sign grammar for
propositional logic. The modes are E (O-ary), Py, Py, V, J, (all unary), and J,
(binary). The exponents are strings over the alphabets, categories are either R
or P, and meanings are either registers (for expressions of category R) or sets
of functions from registers to 2 (for expressions of category P).

(4.5a) = (&,R,€)

(4.5b) Po((¥ ,R,m (¥°0,R,5°0)
(4.5¢) P, ((X,R,¥)) := (X" 1,R,y"1)
(4.5d) V({X,R,X)) := (p, P, [pY])
(4.5¢) I (%, P,M)) := ((-%),P2" — M)
(4.5f) IA((X,P,M),(¥,P,N)) := ((ZAY), PMﬂN)



284  Semantics

It is easily checked that this is well-defined. This defines a sign grammar
that meets all requirements for being compositional except for one: the func-
tions on meanings are not computable. Notice that (a) valuations are infinite
objects, and (b) there are uncountably many of them. However, this is not
sufficient as an argument because we have not actually said how we encode
sets of valuations as strings and how we compute with them. Notice also that
the notion of computability is defined only on strings. Therefore, meanings
too must be coded as strings. We may improve the situation a little bit by
assuming that valuations are functions from finite subsets of G to 2. Then at
least valuations can be represented as strings (for example, by listing pairs
consisting of a register and its value). However, still the set of all valuations
that make a given proposition true is infinite. On the other hand, there is an
algorithm that can check for any given partial function whether it assigns 1
to a given register (it simply scans the string for the pair whose first member
is the given register). Notice that if the function is not defined on the register,
we must still give an output. Let it be #. We may then simply take the code
of the Turing machine computing that function as the meaning the variable
(see Section 1.7 for a definition). Then, inductively, we can define for every
proposition ¢ a machine T, that computes the value of ¢ under any given
partial valuation that gives a value for the occurring variables, and assigns #
otherwise. Then we assign as the meaning of ¢ the code T(p‘ of that Turing
machine. However, this approach suffers from a number of deficiencies.

First, the idea of using partial valuations does not always help. To see
this let us now turn to predicate logic (see Section 3.8). As in the case of
propositional logic we shall have to introduce binary strings for registers,
to form variables. The meaning of a formula ¢ is by definition a function
from pairs (90, B) to {0, 1}, where 9 is a structure and 8 a function from
variables to the domain of 91. Again we have the problem to name finitary or
at least computable procedures. We shall give two ways of doing so that yield
quite different results. The first attempt is to exclude infinite models. Then
M, and in particular the domain M of 9, are finite. A valuation is a partial
function from V to M with a finite domain. The meaning of a term under such
a valuation is a member of M or = . (For if x, is in ¢, and if 8 is not defined
on xq then P is undefined.) The meaning of a formula is either a truth value
or %. The truth values can be inductively defined as in Section 3.8. M has to
be finite, since we usually cannot compute the value of Vx,.¢(xy) without
knowing all values of x,.

This definition has a severe drawback: it does not give the correct results.
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For the logic of finite structures is stronger than the logic of all structures. For
example, the following set of formulae is not satisfiable in finite structures
while it has an infinite model. (Here 0 is a O—ary function symbol, and s a
unary function symbol.)

Proposition 4.1 The theory T is consistent but has no finite model.
(4.6) T := {(Vx,) (15x,=0), (Vx() (Vx,) (sxy=sX+x,=%x,) }

Proof. Let 91 be a finite model for 7. Then for some n and some k > O:
s"T%0 = §"0. From this it follows with the second formula that s*0 = 0. Since
k > 0, the first formula is false in 9. There is, however, an infinite model for
these formulae, namely the set of numbers together with 0 and the successor
function. O

We remark here that the logic of finite structures is not recursively enu-
merable if we have two unary relation symbols. (This is a theorem from
(Trakhténbrodt, 1950).) However, the logic of all structures is clearly recur-
sively enumerable, showing that the sets are very different. This throws us
into a dilemma: we can obviously not compute the meanings of formulae in
a structure directly, since quantification requires search throughout the en-
tire structure. (This problem has once worried some logicians, see (Ferreirds,
2001). Nowadays it is felt that these are not problems of logic proper.) So,
once again we have to actually try out another semantics.

The first route is to let a formula denote the set of all formulae that are
equivalent to it. Alternatively, we may take the set of all formulae that follow
from it. (These are almost the same in boolean logic. For example, ¢ <>
can be defined using — and A; and ¢ — X can be defined by ¢ <> (9@ A x).
So these approaches are not very different. However the second one is tech-
nically speaking more elegant.) This set is again infinite. Hence, we do some-
thing different. We shall take a formula to denote any formula that follows
from it. (Notice that this makes formulae have infinitely many meanings.)
Before we start we seize the opportunity to introduce a more abstract theory.
A propositional language is a language of formulas generated by a set V of
variables and a signature. The identity of V is the same as for boolean logic
above. As usual, propositions are considered here as certain strings. The lan-
guage is denoted by the letter L. A substitution is givenby amap o: V — L.
o defines a map from L to L by replacement of occurrences of variables by
their c—image. We denote by @€ the result of applying o to ¢.
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Definition 4.2 A consequence relation over L is a relation - C (L) X L
such that the following holds. (We write A & @ for the more complicated

(A 9) €l
D oF .
@ IfAF @ and A C A then A+ ¢.
® IfAF yand Ly F @, then A; X F .

F is called structural if from A& @ follows A° & @° for every substitution. -
is finitary if At @ implies that there is a finite subset A' of A such that A' + @.

In the sequel consequence relations are always assumed to be structural. A
rule is an element of (L) x L, that is, a pair p = (A, @). p is finitary if A
is finite; it is n—ary if |A| = n. Given a set R of rules, we call % the least
structural consequence relation containing R. This relation can be explicitly
defined. Say that y is a 1-step R—consequence of X if there is a substitution
o and some rule (A, @) € R such that A° C ¥ and y = ¢°. Then, an n-step
consequence of X is inductively defined.

Proposition 4.3 A FX ¢ iff there is a natural number n such that ¢ is an
n—step R—consequence of A.

The reader may also try to generalize the notion of a proof from a Hilbert
calculus and show that they define the same relation on condition that the
rules are all finitary. We shall also give an abstract semantics and show its
completeness. The notion of an Q—algebra has been defined.

Definition 4.4 Let L be a propositional logic over the signature Q. A matrix
for L and & is a pair M = (A, D), where AU is an Q—algebra (the algebra of
truth values) and D a subset of A, called the set of designated truth values.
Let h be a homomorphism from Tmg (V) into IM. We write (M, h) E ¢ if
h(@) € D and say that @ is true under h in 9. Further, we write A=y @ if
for all homomorphisms h: Tmg (V) — A: if h[A] C D then h(@) € D.

Proposition 4.5 If M is a matrix for L, Fgy is a structural consequence re-
lation.

Notice that in boolean logic 2 is the 2—element boolean algebra and D = {1},
but we shall encounter other cases later on. Here is a general method for
obtaining matrices.
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Definition 4.6 Let L be a propositional language and - a consequence rela-
tion. Put A" := {@ : A @}. A is deductively closed if A= A". It is consistent
if A™ # L. It is maximally consistent if it is consistent but no proper superset
is.

A matrix & is canonical for - if & = (Tm,(V),A") for some set A. (Here,
Tmg, (V) is the canonical algebra with carrier set L whose functions are just
the associated string functions.) It is straightforward to verify that - C F .
Now consider some set A and a formula such that A ¥ ¢. Then put G :=
(Tm(V),A") and let h be the identity. Then h[A] = A C A", but h(¢@) ¢ A"
by definition of A". So, A ¥ & @. This shows the following.

Theorem 4.7 (Completeness of Matrix Semantics) Let - be a structural
consequence relation over L. Then

4.7) F= ﬂ(hez & canonical for +)

(The reader may verify that an arbitrary intersection of consequence rela-
tions again is a consequence relation.) This theorem establishes that for any
consequence relation we can find enough matrices such that they together
characterize that relation. We shall notice also the following. Given F and
9 = (A, D), then Fgy D F iff D is closed under the consequence. (This is
pretty trivial: all it says is that if A ¢ and % is a homomorphism, then if
h[A] C D we must have h(¢) € D.) Such sets are called filters. Now, let
M = (A, D) be a matrix, and ® a congruence on 2. Suppose that for any
x: [x]® C D or [x]@ND = &. Then we call ® admissible for 9t and put
M/O := (A/O,D/0), where D/O := {[x]® : x € D}. The following is easy
to show.

Proposition 4.8 Let 9t be a matrix and ® an admissible congruence on M.
Then l=m/® = Fgp-

Finally, call a matrix reduced if only the diagonal is an admissible congru-
ence. Then, by Proposition 4.8 and Theorem 4.7 we immediately derive that
every consequence relation is complete with respect to reduced matrices. One
also calls a class of matrices X a (matrix) semantics and says X is adequate
for a consequence relation & if - = Mgy 4 Foy.

Now, given L and |-, the system of signs for the consequence relation is
this.

(4.8) Ly :={(XR,X) X e G}U{(X,Ry) : X+ ¥}
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How does this change the situation? Notice that we can axiomatize the con-
sequences by means of rules. The following is a set of rules that fully axiom-
atizes the consequence. The proof of that will be left to the reader (see the
exercises), since it is only peripheral to our interests.

@92  py={{(=(=p»},p)

(4.9b) Pan = {p}, (2 (=p)))

(4.9¢) pu := {{p, (=p) },p0)

(4.9d) pe = {{p,p0}, (pAPO) )

(4.9e)  pyy:={{(pApO)},p)

(4.9f) Pp1 = ({(pAPO) },p0)

492)  pmp = {{p, (+(pA(p0)))},pO)

With each rule we can actually associate a mode. We only give examples,
since the general scheme for defining modes is easily extractable.

4.10)  Fg (%P, (<(=))) :== (%, P,7)
4.11)  Fc((X,PY),(¥,RZ)) :== (X, P, (FAD)

If we have =+ as a primitive symbol then the following mode corresponds to
the rule p,,,, Modus Ponens.

4.12)  Fnp((X, P, (57D)), (X, P5)) := (X, P.2)

This is satisfactory in that it allows to derive all and only the consequences
of a given proposition. A drawback is that the functions on the exponents are
nonincreasing. They always return X. The structure term of the sign (%, P, )
on the other hand encodes a derivation of ¥ from X.

Now, the reader may get worried by the proliferation of different seman-
tics. Aren’t we always solving a different problem? Our answer is indirect.
The problem is that we do not know exactly what meanings are. Given a nat-
ural language, what we can observe more or less directly is the exponents.
Although it is not easy to write down rules that generate them, the entities are
more or less concrete. A little less concrete are the syntactic categories. We
have already seen in the previous chapter that the assignment of categories
to strings (or other exponents, see next chapter) are also somewhat arbitrary.
We shall return to this issue. Even less clearly definable, however, are the
meanings. What, for example, is the meaning of (4.13)?

4.13) Caesar crossed the Rubicon.
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The first answer we have given was: a truth value. For this sentence is ei-
ther true or false. But even though it is true, it might have been false, just
in case Caesar did not cross the Rubicon. What makes us know this? The
second answer (for first—order theories) is: the meaning is a set of models.
Knowing what the model is and what the variables are assigned to, we know
whether that sentence is true. But we simply cannot look at all models, and
still it seems that we know what (4.13) means. Therefore the next answer is:
its meaning is an algorithm, which, given a model, tells us whether the sen-
tence is true. Then, finally, we do not have to know everything in order to
know whether (4.13) is true. Most facts are irrelevant, for example, whether
Napoleon was French. On the other hand, suppose we witness Caesar walk
across the Rubicon, or suppose we know for sure that first he was north of
the Rubicon and the next day to the south of it. This will make us believe
that (4.13) is true. Thus, the algorithm that computes the truth value does not
need all of a model; a small part of it actually suffices. We can introduce par-
tial models and define algorithms on them, but all this is a variation on the
same theme. A different approach is provided by our last answer: a sentence
means whatever it implies.

We may cast this as follows. Start with the set L of propositions and a
set (or class) M of models. A primary (or model theoretic) semantics is
given in terms of a relation FC L x M. Most approaches are variants of the
primary semantics, since they more or less characterize meanings in terms of
facts. However, from this semantics we may define a secondary semantics,
which is the semantics of consequence. A F ¢ iff for all M € M: if M = &
for all 8 € A then M E ¢. (We say in this case that A entails ¢.) Secondary
semantics is concerned only with the relationship between the objects of the
language, there is no model involved. It is clear that the secondary semantics
is not fully adequate. Notice namely that knowing the logical relationship
between sentences does not reveal anything about the nature of the models.
Second, even if we knew what the models were: we could not say whether a
given sentence is true in a given model or not. It is perfectly conceivable that
we know English to the extent that we know which sentences entail which
other sentences, but still we are unable to say, for example, whether or not
(4.13) is true even when we witnessed Caesar cross the Rubicon. An example
might make this clear. Imagine that all I know is which sentences of English
imply which other sentences, but that I know nothing more about their actual
meaning. Suppose now that the house is on fire. If I realize this I know that
I am in danger and I act accordingly. However, suppose that someone shouts
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(4.14) at me. Then I can infer that he thinks (4.14) is true. This will certainly
make me believe that (4.14) is true and even that (4.15) is true as well. But
still I do not know that the house is on fire, nor that I am in danger.

“4.14) The house is on fire.

4.15) I am in danger.

Therefore, knowing how sentences hang together in a deductive system has
little to do with the actual world. The situation is not simply remedied by
knowing some of the meanings. Suppose I additionally know that (4.14)
means that the house is on fire. Then if I see that the house is on fire then
I know that I am in danger, and I also know that (4.15) is the case. But I
still may fail to see that (4.15) means that I am in danger. It may just mean
something else that is being implied by (4.14). This is reminiscent of Searle’s
thesis that language is about the world: knowing what things mean is not con-
stituted by an ability to manipulate certain symbols. We may phrase this as
follows.

Indeterminacy of secondary semantics. No secondary semantics can fix the
truth conditions of propositions uniquely for any given language.

Searle’s claims go further than that, but this much is perhaps quite uncon-
troversial. Despite the fact that secondary semantics is underdetermined, we
shall not deal with primary semantics at all. We are not going to discuss what
a word, say, 1ife really means — we are only interested in how its meaning
functions language internally. Formal semantics really cannot do more than
that. In what is to follow we shall sketch an algebraic approach to seman-
tics. This contrasts with the far more widespread model-theoretic approach.
The latter may be more explicit and intuitive, but on the other hand it is quite
inflexible.

We begin by examining a very influential principle in semantics, called
Leibniz’ Principle. We quote one of its original formulation from (Leibniz,
2000) (from Specimen Calculi Coincidentium, (1), 1690). Eadem vel Coin-
cidentia sunt quae sibi ubique substitui possunt salva veritate. Diversa quae
non possunt. Translated it says: The same or coincident are those which can
everywhere be substituted for each other not affecting truth. Different are
those that cannot. Clearly, substitution must be understood here in the con-
text of sentences, and we must assume that what we substitute is constituent
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occurrences of the expressions. We therefore reformulate the principle as fol-
lows.

Leibniz’ Principle. Two expressions A and B have the same meaning iff in ev-
ery sentence any occurrence of A can be substituted by B and any occurrence
of B by A without changing the truth of that sentence.

To some people this principle seems to assume bivalence. If there are more
than two truth values we might interpret Leibniz’ original definition as saying
that substitution does not change the truth value rather than just truth. (See
also Lyons for a discussion.) We shall not do that, however. First we give
some unproblematic examples. In second order logic (SO, see Chapter 1), the
following is a theorem.

4.16)  (Vx)(Vy)(x =y« (VP)(P(x) ¢ P(y)))

Hence, Leibniz’ Principle holds of second order logic with respect to terms.
There is general no identity relation for predicates, but if there is, it is defined
according to Leibniz’ Principle: two predicates are equal iff they hold of the
same individuals. This requires full second order logic, for what we want to
have is the following for each n € w (with P, and Q,, variables for n—ary
relations):

(4-17) (VPn)(in)(Pn = Qn A (V)_C.) (Pn()_é) A Qn()_é)))

(Here, X abbreviates the n—tuple x,,,...,x,_,.) (4.16) is actually the basis for
Montague’s type raising. Recall that Montague identified an individual with
the set of all of its properties. In virtue of (4.16) this identification does not
conflate distinct individuals. To turn that around: by Leibniz’ Principle, this
identification is one—to—one. We shall see in the next section that boolean al-
gebras of any kind can be embedded into powerset algebras. The background
of this proof is the result that if there are two elements x, y in a boolean
algebra 9% and for all homomorphisms /: B — 2 we have h(x) = h(y), then
x =Y. (More on that in the next section. We have to use homomorphisms here
since properties are functions that commute with the boolean operations, that
is to say, homomorphisms.) Thus, Leibniz’ Principle also holds for boolean
semantics, defined in Section 4.6. Notice that the proof relies on the Axiom
of Choice (in fact the somewhat weaker Prime Ideal Axiom), so it is not alto-
gether innocent.
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We use Leibniz’ Principle to detect whether two items have the same
meaning. One consequence of this principle is that semantics is essentially
unique. If u: A* LM L i A* LM are surjective functions assigning mean-
ings to expressions, and if both satisfy Leibniz’ Principle, then there is a
bijection : M — M’ such that 4’ = wou and . = 7' o u/. Thus, as far as
formal semantics is concerned, any solution is as good any other.

As we have briefly mentioned in Section 3.5, we may use the same idea
to define types. This method goes back to Husserl, and is a key ingredient to
the theory of compositionality by Wilfrid Hodges (see his (2001)). A type is
a class of expressions that can be substituted for each other without chang-
ing meaningfulness. Hodges just uses pairs of exponents and meanings. If
we want to assimilate his setup to ours, we may add a category U, and let
for every mode f, f*(U,...,U) := U. However, the idea is to do without
categories. If we further substract the meanings, we get what Hodges calls a
grammar. We prefer to call it an H-grammar. (The letter H honours Hodges
here.) Thus, an H-grammar is defined by some signature and correspond-
ing operations on the set E of exponents, which may even be partial. An
H-semantics is a partial map ¢ from the structure terms (!) to a set M of
meanings. Structure terms § and t are synonymous if ¢ is defined on both
and pi(s) = u(t). We write s =, t to say that s and t are synonymous. (Notice
that s =, s iff 4 is defined on s.) An H-semantics v is equivalent to u if
=, = =y. An H-synonymy is an equivalence relation on a subset of the set
of structure terms. We call that subset the field of the H-synonymy. Given
an H-synonymy =, we may define M to be the set of all equivalence classes
of =, and set u=(s) := [s]= iff s is in that subset, and undefined otherwise.
Thus, up to equivalence, H-synonymies and H-semantics are in one—to—one
correspondence. We say that =’ extends = if the field of =’ contains the field
of =, and the two coincide on the field of =.

Definition 4.9 Let G be an H-grammar and | an H-semantics for it. We
write s ~, §' iff for every structure term t with a single free variable x, [s /x|t
is u—meaningful iff [s'/x]t is u—meaningful. The equivalence classes of ~
are called the |L—categories.

This is the formal rendering of the ‘meaning categories’ that Husserl defines.

Definition 4.10 v and its associated synonymy is called u—Husserlian if for
all structure terms s and s': if s =, §' then s ~, §'. W is called Husserlian if
it is u—Husserlian.
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It is worthwhile to compare this definition with Leibniz’ Principle. The lat-
ter defines identity in meaning via intersubstitutability in all sentences; what
must remain constant is truth. Husserl’s meaning categories are also defined
by intersubstitutability in all sentences; however, what must remain constant
is the meaningfulness. We may connect these principles as follows.

Definition 4.11 Ler Sent be a set of structure terms and A C Sent. We call s
sentential if s € Sent, and true if s € A. U is Leibnizian if for all structure
terms wand w': w=, v’ iff for all structure terms s such that [u/x]s € A also
[u'/x]s € A and conversely.

Under mild assumptions on u it holds that Leibnizian implies Husserlian.
The following is from (Hodges, 2001).

Theorem 4.12 (Hodges) Let 1 be an H-semantics for the H-grammar G.
Suppose further that every subterm of a l—meaningful structure term is again
U—meaningful. Then the following are equivalent.

@ For each mode f there is an Q(f)-ary function f*: M) — M such
that W is a homomorphism of partial algebras.

@ If's is a structure term and u;, v; (i <n) are structure terms such that
[u,/x; i< n]s and [v;/x; : i < n]s are both p—meaningful and if for all
i<nu; =y, then

[u;/x;:i<nls=y [v;/x;:i<nls.

Furthermore, if | is Husserlian then the second already holds if it holds for
n=1.

It is illuminating to recast the approach by Hodges in algebraic terms. This
allows to compare it with the setup of Section 3.1. Moreover, it will also
give a proof of Theorem 4.12. We start with a signature Q. The set Tm, (X)
forms an algebra which we have denoted by Tm,(X). Now select a subset
D C Tmg(X) of meaningful terms. It turns out that the embedding i: D »—
Tmg(X): x — x is a strong homomorphism iff D is closed under subterms.
We denote the induced algebra by ©. It is a partial algebra. The map u: D —
M induces an equivalence relation = ,. There are functions f*: M) — M
that make M into an algebra 901 and u into a homomorphism iff =, is a weak
congruence relation (see Definition 1.21 and the remark following it). This is
the first claim of Theorem 4.12. For the second claim we need to investigate
the structure of partial algebras.
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Definition 4.13 Let A be a partial Q—-algebra. Put x <y y (or simply x < 'y)
if for all f € Pol,(A): f(x) is defined iff f(y) is defined.

Proposition 4.14 Let 2 be a partial Q—-algebra. (a) <y is a strong congru-
ence relation on . (b) A weak congruence on U is strong iff it is contained
in =y.

A

Proof. (a) Clearly, < is an equivalence relation. So, let f € F and a; < ¢, for
all i < Q(f). We have to show that f(a@) < f(c), that is, for all g € Pol, (2):
g(f(@)) is defined iff g(f(<)) is. Assume that g( f(d)) is defined. The function
g(f(xg,ays--- 7“9(1‘)—1)) is a unary polynomial %, and h(a,) is defined. By
definition of <, h(c,) = g(f(cq,ay,--- ,aQ(f)il)) is also defined. Next,

(4.18) hy(x)) := f(g(co,xl,az,...,ag(f)_l))

is a unary polynomial and defined on a,. So, it is defined on ¢, and we have
hi(c,) = f(g(co,cl,az,...,ag(f)_l)). In this way we show that f(g(c)) is
defined. (b) Let ® be a weak congruence. Suppose that it is not strong. Then
there is a polynomial f and vectors @,& € A%V) with a, @ ¢, (i < Q(f)) such
that f(d) is defined but f(Z) is not. Now, for all i < Q(f),

(4.19) f(ao,...,ai_l,ai,ciﬂ,...,cg(f)_l)
@f(ao,...,al.fl,ci,ciH,...,cQ(f)_l)

if both sides are defined. Now, f(a) is not ®—congruent to f(¢). Hence there
is an i < Q(f) such that the left hand side of (4.19) is defined and the right
hand side is not. Put

(4.20) h(x) ::f(ao,...,ai_l,x,ci+1,...,cQ(f)fl)

Then h(a;) is defined, h(c;) is not, but ¢; ® ¢;. So, ® ¢ <. Conversely, if © is
strong we can use (4.19) to show inductively that if £(&) is defined, so are all
members of the chain. Hence f(c) is defined. And conversely. O

Proposition 4.15 Let 2 be a partial algebra and ® an equivalence relation
on . O is a strong congruence iff for all g € Pol,(A) and all a,c € A such
that a © c: g(a) is defined iff g(c) is, and then g(a) © g(c).

The proof of this claim is similar. To connect this with the theory by Hodges,
notice that ~; is the same as <g. =, is Husserlian iff =, Cx4,.
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Proposition 4.16 =, is Husserlian iff it is contained in X4 iff it is a strong
congruence.

Propositions 4.14 and 4.15 together show the second claim of Theorem 4.12.

If o is the only operation, we can actually use this method to define the
types (see Section 3.5). In the following sections we shall develop an alge-
braic account of semantics, starting first with boolean algebras and then going
over to intensionality, and finally carrying out the full algebraization.

Notes on this section. The idea that the logical interconnections between
sentences constitute their meanings is also known as holism. This view and
its implications for semantics is discussed by Dresner (2002). We shall briefly
also mention the problem of reversibility (see Section 4.6). Most formalisms
are designed only for assigning meanings to sentences, but it is generally
hard or impossible to assign a sentence that expresses a given content. We
shall briefly touch on that issue in Section 4.6.

Exercise 136. Prove Proposition 4.8.

Exercise 137. Let p = (A, ¢) be a rule. Devise a mode M, that captures the
effect of this rule in the way discussed above. Translate the rules given above
into modes. What happens with O—ary rules (that is, rules with A = @)?

Exercise 138. There is a threefold characterization of a consequence: as a
consequence relation, as a closure operator, and as a set of theories. Let - be
a consequence relation. Show that A — A" is a closure operator. The closed
sets are the theories. If |- is structural the set of theories of - are inversely
closed under substitutions. That is to say, if 7 is a theory and o a substi-
tution, then 6~![T] is a theory as well. Conversely, show that every closure
operator on #(%mg,(V)) gives rise to a consequence relation and that the con-
sequence relation is structural if the set of theories is inversely closed under
substitutions.

Exercise 139. Show that the rules (4.9) are complete for boolean logic in A
and .

Exercise 140. Show that for any given finite signature the set of predicate log-
ical formulae valid in all finite structures for that signature is co-recursively
enumerable. (The latter means that its complement is recursively enumer-
able.)

Exercise 141. Let L be a first—order language which contains at least the sym-
bol for equality (=). Show that a first—order theory T in L satisfies Leibniz’
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Principle if the following holds for any relation symbol r
@21) T {(x=y) i <E(r)} O G@rG))
and the following for every function symbol f:

422) T {G=y) i< Q)N (FD=FGN

Use this to show that the first—order set theory ZFC satisfies Leibniz’ Prin-
ciple. Further, show that every equational theory satisfies Leibniz’ Principle.

2. Boolean Semantics

Boolean algebras are needed in all areas of semantics, as is demonstrated in
(Keenan and Faltz, 1985). Boolean algebras are the structures that correspond
to propositional logic in the sense that the variety turns out to be generated
from just one algebra: the algebra with two values 0 and 1, and the usual
operations (Theorem 4.33). Moreover, the calculus of equations and the usual
deductive calculus mutually interpret each other (Theorem 4.36). This allows
to show that the axiomatization is complete (Theorem 4.39).

Definition 4.17 An algebra (B,0,1,—,N,U), where 0,1 € B, —: B— B and
N,U: B> — B, is called a boolean algebra if it satisfies the following equa-
tions for all x,y,z € B.

(asN) xN(yNz) =(xNy)Nz (asU) xU(yUz) = (xUy)Uz

(coN) xNy =yNx (coU) xUy =yUx

@idn) xNx =X (idu) xUx =X

(abN) xN(yUx) =x (abU) xU(yNx)=x

(din) xN(yUz) = (div) xU(ynz) =
(xNy)U(xNz) (xUy)N(xUz)

(li—) xN(—x) =0 (uil) xU(—x) =1

(nen) xN1 =x (ne0) xUO =x

(dmN) —(xNy) =(=x)U(-y)  (@dmU)—(xUy) = (=x)N(-y)
(dn—) —(—x) =x

The operation N is generally referred to as the meet (operation) and U as the
join (operation). —x is called the complement of x and O the zero and 1 the
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one or unit. Obviously, the boolean algebras form an equationally definable
class of algebras.

The laws (asN) and (asU) are called associativity laws, the laws (coN)
and (coU) commutativity laws, (idN) and (idU) the laws of idempotence
and (abN) and (abU) the laws of absorption. A structure (L,N,U) satisfy-
ing these laws is called a lattice. If only one operation is present and the
corresponding laws hold we speak of a semilattice. (So, a semilattice is a
semigroup that satisfies commutativity and idempotence.) Since N and U are
associative and commutative, we follow the general practice and omit brack-
ets whenever possible. So, rather than (xN (yNz)) we simply write xNyNz.
Also, (xN (yNx)) is simplified to xNy. Furthermore, given a finite set S C L
the notation (J(x : x € S) or simply S is used for the iterated join of the
elements of S. This is uniquely defined, since the join is independent of the
order and multiplicity in which the elements appear.

Definition 4.18 Let £ be a lattice. We write x <y ifxUy =y.

Notice that x <y iff xNy = x. This can be shown using the equations above.
We leave this as an exercise to the reader. Notice also the following.

Lemma 4.19 ® < is a partial ordering.
@ xUy<ziffx<zandy<z
® z<xNyiffz<xandz < y.

Proof. @ (a) xUx = x, whence x < x. (b) Suppose that x < y and y < x. Then
we get xUy =x and yUx =y, whence y = xUy = x. (c) Suppose that x <y
andy <z.ThenxUy=yand yUz=zand soxUz=xU(yUz) = (xUy)Uz=
yUz=2z @LetxUy < z. Then, since x < xUy, we have x < z by (Dc); for the
same reason also y < z. Now assume x < zand y < z. ThenxUz=yUz =z
and so z=zUz=(xUz)U(yUz) = (xUy) Uz, whence xUy < z. @ Similarly,
using x < yiff xNy =x. O

In fact, it is customary to define a lattice by means of <. This is done as
follows.

Definition 4.20 Let < be a partial order on L. Let X C L be an arbitrary set.
The greatest lower bound (glb) of X, also denoted (X, is that element u such
that for all z: if x > z for all x € X then also u > 7 (if it exists). Analogously,
the least upper bound (lub) of X, denoted by \JX, is that element v such that
forall z: if x < z for all x € X then also v < z (if it exists).
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Notice that there are partial orderings which have no lubs. For example, let
L={{0,1,2,3},<), where

(4.23) <:={(0,0),(0,2),(0,3),(1,1),(1,2),(1,3),(2,2),(3,3) }

Here, {0, 1} has no lub. This partial ordering does therefore not come from
a lattice. For by the facts established above, the join of two elements x and y
is simply the lub of {x,y}, and the meet is the glb of {x,y}. It is left to the
reader to verify that these operations satisfy all laws of lattices. So, a partial
order < is the order determined by a lattice structure iff all finite sets have a
least upper bound and a greatest lower bound.

The laws (diN) and (diU) are the distributivity laws. A lattice is called
distributive if they hold in it. A nice example of a distributive lattice is the
following. Take a natural number, say 28, and list all divisors of it: 1, 2, 4, 7,
14, 28. Write x < y if x is a divisor of y. (So, 2 < 14,2 < 4, butnot 4 < 7.)
Then N turns out to be the greatest common divisor and U the least common
multiple. Another example is the linear lattice defined by the numbers < n
with < the usual ordering. N is then the minimum and U the maximum.

A bounded lattice is a structure (L,0,1,N,U) which is a lattice with re-
spect to N and U, and in which satisfies (neN) and (neU). From the definition
of <, (neN) means that x < 1 for all x and (neU) that 0 < x for all x. Every
finite lattice has a least and a largest element and can thus be extended to a
bounded lattice. This extension is usually done without further notice.

Definition 4.21 Let £ = (L,N,U) be a lattice. An element x is join irre-
ducible in £ if for all y and z such that x =y Uz either x =y or x =z. X
is meet irreducible if for all y and z such that x = yN z either x =y or x = z.

It turns out that in a distributive lattice irreducible elements have a stronger
property. Call x meet prime if for all y and z: from x > y Nz follows x > y or
x > z. Obviously, if x is meet prime it is also meet irreducible. The converse
is generally false. Look at M, shown in Figure 11. Here, ¢ > aNb(= 0), but
neither ¢ > a nor ¢ > b holds.

Lemma 4.22 Let £ be a distributive lattice. Then x is meet (join) prime iff x
is meet (join) irreducible.

Let us now move on to the complement. (1iN) and (uiU) have no special name.
They basically ensure that —x is the unique element y such that xNy = 0 and
xUy = 1. The laws (dmN) and (dmU) are called de Morgan laws. Finally,
(dn—) is the law of double negation.
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Figure 11. The Lattice M,

Lemma 4.23 The following holds in a boolean algebra.
O x<yiff —-y<—x

@ x<yiffxN(~=y) =0 iff (~x) Uy =1.

Proof. ® x <y means xUy =y, and so —y = —(xUy) = (—x) N (—y), whence
—y< —x.From —y< —xwenow getx=——x< ——y=y. @If x < ythen
xNy=x, and so xN (—y) = (xNy) N (—y) =xN0 = 0. Conversely, suppose
that xN (—y) =0. ThenxNy = (xNy)U(xN(—y)) =xN{yU(—y)) =xN1=x.
So, x < y. Itis easily seen that xN (—y) = 0 iff (—x) Uy = 1. O

We can use the terminology of universal algebra (see Section 1.1). So, the
notions of homomorphisms and subalgebras, congruences, of these structures
should be clear. We now give some examples of boolean algebras. The first
example is the powerset of a given set. Let X be a set. Then (X)) is a boolean
algebra with & in place of 0, X in place of 1, —A =X — A, N and U the
intersection and union. We write 3(X) for this algebra. A subalgebra of this
algebra is called a field of sets. Also, a subset of (X) closed under the
boolean operations is called a field of sets. The smallest examples are the
algebra 1 := (), consisting just of one element (&), and 2 := P({S}), the
algebra of subsets of 1 = {@}. Now, let X be a set and B = (B,0,1,N,U, —)
be a boolean algebra. Then for two functions f,g: X — B we may define —f,
fNgand fUg as follows.

(=) = =f(x)
4.24)  (fUg)(x) = flx)Ugl(x
(fNeg) ) := flx)Nglx)

Further, let 0: X -+ B: x+—0and 1: X — B: x+ 1. It is easily verified that
the set of all functions from X to B form a boolean algebra: (BX,0,1,—,N,U).

(%)

Ug
ng
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We denote this algebra by 8% . The notation has been chosen on purpose: this
algebra is nothing but the direct product of B indexed over X. A particular
case is B = 2. Here, we may actually think of f: X — 2 as the characteristic
function yx,, of a set, namely the set f71(1). It is then again verified that

Xy = —Xars Xaan = Xar O X Xppon = X Y Xy~ So we find the following.
Theorem 4.24 2X is isomorphic to B(X).

We provide some applications of these results. The intransitive verbs of En-
glish have the category e\t. Their semantic type is therefore ¢ — . This in
turn means that they are interpreted as functions from objects to truth values.
We assume that the truth values are just 0 and 1 and that they form a boolean
algebra with respect to the operations N, U and —. Then we can turn the inter-
pretation of intransitive verbs into a boolean algebra in the way given above.
Suppose that the interpretation of and, or and not is also canonically ex-
tended in the given way. That is: suppose that they can now also be used for
intransitive verbs and have the meaning given above. Then we can account
for a number of inferences, such as the inference from (4.25) to (4.26) and
(4.27), and from (4.26) and (4.27) together to (4.25). Or we can infer that
(4.25) implies that (4.28) is false; and so on.

(4.25) Claver walks and talks.
(4.26) Claver walks.

4.27) Claver talks.

(4.28) Claver does not walk.

With the help of that we can now also assign a boolean structure to the tran-
sitive verb denotations. For their category is (e\t)/e, which corresponds to
the type ¢ — (e — t). Now that the set functions from objects to truth values
carries a boolean structure, we may apply the construction again. This allows
us then to deduce (4.30) from (4.29).

4.29) Claver sees or hears Patrick.

4.30) Claver sees Patrick or Claver hears Patrick.

Obviously, any category that finally ends in ¢ has a space of denotations as-
sociated to it that can be endowed with the structure of a boolean algebra.
(See also Exercise 133.) These are, however, not all categories. However, for
the remaining ones we can use a trick used already by Montague. Montague
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was concerned with the fact that names such as Peter and Susan denote
objects, which means that their type is e. Yet, they fill a subject NP posi-
tion, and subject NP positions can also be filled by (nominative) quantified
NPs such as some philosopher, which are of type (e — ¢) — ¢. In order to
have homogeneous type assignment, Montague lifted the denotation of Peter
and Susan to (e — t) — 7. In terms of syntactic categories we lift from e to
t/(e\t). We have met this earlier in Section 3.4 as raising. Cast in terms of
boolean algebras this is the following construction. From an arbitrary set X
we first form the boolean algebra J3(X) and then the algebra 2%X),

Proposition 4.25 The map x +— x' given by x'(f) := f(x) is an embedding
of X into 2BX).

Proof. Suppose that x # y. Then xT(x{x}) =X (x) = 1, while yT(x{x}) =

Xy (y) = 0. Thus x" # y. O
To see that this does the trick, consider the following sentence.

“4.31) Peter and Susan walk.

We interpret Peter now by peter’’, where peter’ is the individual Peter. Sim-
ilarly, susa n't interprets Susan. Then (4.31) means

(peter' Nsusan’™) (walk')
(4.32) =(peter'" (walk')) N (susan'’ (walk’))
=walk’(peter’) Nwalk’(susan’)

So, this licenses the inference from (4.31) to (4.33) and (4.34), as required.
(We have tacitly adjusted the morphology here.)

(4.33) Peter walks.
4.34) Susan walks.

It follows that we can make the denotations of any linguistic category a
boolean algebra.

The next theorem we shall prove is that boolean algebras are (up to iso-
morphism) the same as fields of sets. Before we prove the full theorem we
shall prove a special case, which is very important in many applications. An
atom is an element x # 0 such that for all y < x: either y = 0 or y = x. At(*8)
denotes the set of all atoms of *B.
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Lemma 4.26 In a boolean algebra, an element is an atom iff it is join irre-
ducible.

This is easy to see. An atom is clearly join irreducible. Conversely, suppose
that x is join irreducible. Suppose that 0 <y < x. Then

435 x=(xNy)UxN(-y)=yUxn(-y))

By irreducibility, either y = x or xN (—y) = x. From the latter we get x < —y,
ory < —x, using Lemma 4.19. Since also y < x, y < xN(—x) = 0. So, y =0.
Therefore, x is an atom. Put

(4.36) x:={y€At(B) :y<x}

The map x +— X is a homomorphism: X = At(2() —X. For let u be an atom.
For any x, u = (uNx)U (uN(—x)); and since u is irreducible, u = uNx or
u=uN(—x), which gives u < x or u < —x. But not both, since u > 0. Second,
xNy=ZxN7y, as is immediately verified.

Now, if B is finite, X is nonempty iff x # 0.

Lemma 4.27 If B is finite, x = | Jx.

Proof. Put x’ := [ JX. Clearly, x' < x. Now suppose x' < x. Then (—x') Nx #£0.

Hence there is an atom u < (—x' ) Nx, whence u < x. But u jé x', a contradic-

tion. O
A boolean algebra is said to be atomic if x is the lub X for all x.

Theorem 4.28 Let B be a finite boolean algebra. The map x — X is an iso-
morphism from B onto P(At(B)).

Now we proceed to the general case. First, notice that this theorem is false
in general. A subset N of M is called cofinite if its complement, M — N, is
finite. Let Q be the set of all subsets of @ which are either finite or cofinite.
Now, as is easily checked, €2 contains &, @ and is closed under complement,
union and intersection. The singletons {x} are the atoms. However, not every
set of atoms corresponds to an element of the algebra. A case in point is
{{2k} : k € w}. Its union in  is the set of even numbers, which is neither
finite nor cofinite. Moreover, there exist infinite boolean algebras that have
no atoms (see the exercises). Hence, we must take a different route.

Definition 4.29 Let B be a boolean algebra. A point is a homomorphism
h: B — 2. The set of points of B is denoted by Pt(B).
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Notice that points are necessarily surjective. For we must have #(0%) = 0 and
h(1%) = 1. (As a warning to the reader: we will usually not distinguish 1%
and 1.)

Definition 4.30 A filter of *B is a subset that satisfies the following.
® 1€F.
@ Ifx,y€ F thenxNy€F.
® IfxeFandx<ytheny€F.

A filter F is called an ultrafilter if F # B and there is no filter G such that
FCGCB.

A filter F is an ultrafilter iff for all x: either x € F or —x € F. For suppose
neither is the case. Then let F* be the set of elements y such that there is a
u € F with y > unx. This is a filter, as is easily checked. It is a proper filter: it
does not contain —x. For suppose otherwise. Then —x > uNx for some u € F.
By Lemma 4.23 this means that 0 = # N x, from which we get u < —x. So,
—x € F, since u € F. Contradiction.

Proposition 4.31 Let h: B — A be a homomorphism of boolean algebras.
Then F, := h=Y(1%) is a filter of 8. Moreover; for any filter F of B, ©
defined by x @ y iff x <> y € F is a congruence. The factor algebra B /@, is
also denoted by B /F and the map x — [x]® by hp.

It follows that if 2: B — 2 then A = B /F,. Now we specialize 2 to 2. Then
if h: 9B — 2, we have a filter h=!(1). It is clear that this must be an ultrafil-
ter. Conversely, given an ultrafilter U, B/U = 2. We state without proof the
following theorem. A set X C B has the finite intersection property if for
every finite S C X we have (S # 0.

Theorem 4.32 For every subset of B with the finite intersection property
there exists an ultrafilter containing it.

Now put x:= {h € Pt(*B) : h(x) = 1}. It is verified that

—

—x=-X
(4.37) xNy=xNy
xUy=xUy
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To see the first, assume & € —x. Then h(—x) = 1, from which A(x) = 0, and
so h ¢ X, that is to say h € —Xx. Conversely, if 4 € —x then h(x) # 1, whence
h(—x) = 1, showing i € Zx. Second, h € xNy implies A(xNy) = 1, so h(x) =
1 and h(y) = 1, giving h € X as well as & € . Conversely, if the latter holds
then A(xNy) = 1 and so & € xNy. Similarly with U.

Theorem 4.33 The map x — X is an injective homomorphism from B into
the algebra B(Pt(*B)). Consequently, every boolean algebra is isomorphic
to a field of sets.

Proof. It remains to see that the map is injective. To that end, let x and y be two
different elements. We claim that there is an /: B — 2 such that h(x) # h(y).
For we either have x £ y, in which case xN (—y) > 0; or we have y £ x, in
which case yN —x > 0. Assume (without loss of generality) the first. There is
an ultrafilter U containing the set {x N (—y)}, by Theorem 4.32. Obviously,
x€UbutygU. Then hy, is the desired point. O

We point out that this means that every boolean algebra is a subalgebra of
a direct product of 2. The variety of boolean algebras is therefore generated
by 2. The original representation theorem for finite boolean algebras can be
extended in the following way (this is the route that Keenan and Faltz take).
A boolean algebra B is called complete if any set has a least upper bound
and a greatest lower bound.

Theorem 4.34 Let B be a complete atomic boolean algebra. Then B =

P(AL(B)).

It should be borne in mind that within boolean semantics (say, in the spirit of
Keenan and Faltz) the meaning of a particular linguistic item is a member of a
boolean algebra, but it may at the same time be a function from some boolean
algebra to another. For example, the denotations of adjectives form a boolean
algebra, but they may also be seen as functions from the algebra of common
noun denotations (type e — ¢) to itself. These maps are, however, in general
not homomorphisms. The meaning of a particular adjective, say tall, can in
principle be any such function. However, some adjectives behave better than
others. Various properties of such functions can be considered.

Definition 4.35 Let B8 be a boolean algebra and f: B — B. f is called
monotone iff for all x,y € B: if x <y then f(x) < f(y). f is called antitone if
for all x,y € B: if x <y then f(x) > f(y). f is called restricting iff for each
X € B f(x) <x. fis called intersecting iff for each x € B: f(x) =xN f(1).
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Adjectives that denote intersecting functions are often also called intersec-
tive. An example is white. A white car is something that is both white and
a car. Hence we find that white’ is intersecting. Intersecting functions are
restricting but not necessarily conversely. The adjective tall denotes a re-
stricting function (and is therefore also called restricting). A tall student is
certainly a student. Yet, a tall student is not necessarily also tall. The problem
is that tallness varies with the property that is in question. (We may analyze
it, say, as: belongs to the 10 % of the longest students. Then it becomes clear
that it has this property.) Suppose that students of sports are particularly tall.
Then a tall student of sports will automatically qualify as a tall student, but
a tall student may not be a tall student of sports. On the other hand, if stu-
dents of sports are particularly short, then a tall student will be a tall student
of sports, but the converse need not hold. There are also adjectives that have
none of these properties (for example, supposed or alleged). We will return
to sentential modifiers in the next section.

We conclude the section with a few remarks on the connection with theo-
ries and filters. Let Q be the signature of boolean logic: the O—ary symbols T,
L, the unary — and the binary V and A. Then we can define boolean algebras
by means of equations, as we have done with Definition 4.17. For reference,
we call the set of equations BEq. Or we may actually define a consequence
relation, for example by means of a Hilbert—calculus. Table 10 gives a com-
plete set of axioms, which together with the rule MP axiomatize boolean
logic. Call this calculus PC. We have to bring the equational calculus and the
deductive calculus into correspondence. We have a calculus of equations (see
Section 1.1), which tells us what equations follow from what other equations.
Write ¢ <> x in place of (¢ — x) A (x — @).

Theorem 4.36 The following are equivalent.
D FPC o o p.
@ For every boolean algebra U: AE ¢ = y.
® BEqlF ¢ =y%.

The proof is lengthy, but routine. @ and @ are equivalent by the fact that an
algebra is a boolean algebra iff it satisfies BEq. So, ® < ® needs proof. It
rests on the following

Lemma 4.37 (a) FPC @ iff FP¢ T & o.
(b) BEqF @ =x iff BEQF T = ¢ < .
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Table 10. The Axioms of Propositional Logic

@0)  py— (p; = py)

@l)  (py— (py = P2)) = ((pg = py) = (Po = P2))
@2)  ((po = p1) = Py) = Py

@) L —p,

(a4)  -py—=(py— 1)

@5  (pp— L) —=-p,

(a6) T

@7)  py— (P, = (PgAPy))

@8)  (pyApy) = Py

@) (poApy) = py

(al0) py— (pyV py)

(all) Py — (P()VP1)

@l12)  ((poVpy) = Py) = ((Po = P2) APy = P)))

Proof. (a) Suppose that -PC ¢. Since FP¢ ¢ — (T — @) we get FP¢ T — ¢.
Similarly, from FP¢ T we get FP¢ ¢ — T. Conversely, if -P¢ T < @, then
with (a8) we get FP¢ T — ¢ and with (a6) and MP, FPC ¢. (b) We can take
advantage of our results on BAs here. Puta A b:= (—aUb) N (aU—Db). The
claim boils downtoa Ab=1iffa=b. Now,ifa A b= 1, then —aUb =1,
from which a < b, and also alU —b =1, from which b < a. Together this gives
a=b>b. Conversely, ifa=b then —aUb=—-bUb=1andaU—-b=aU—a=1,
showinga A b= 1. O

The next thing to show is that if BEq- T = ¢ — x; T = ¢ then also
BEq+ T = yx. Finally, for all ¢ of the form (al) — (al2), BEq+ T = ¢. This
will show that FP€ ¢ implies BEq - T = ¢. @ is an immediate consequence.
For the converse direction, first we establish that for all basic equations ¢ = ¥
of BEq we have -PC ¢ « y. This is routine. Closure under substitution is
guaranteed for theorems. So we need to show that this is preserved by the
inference rules of Proposition 1.12, that is:

(4.38a) FPC o @
(4.38b) oy o0
(4.38¢) e X vE T ooy

438d)  {@ e x:i<QNIFFC (@)« F()



Boolean Semantics 307

In the last line, f is one of the basic functions. The verification is once again
routine. We shall now show that the so—defined logic is indeed the logic of
the two element matrix with designated element 1. By DT (which holds in
PQ), ¢ <> x iff @ FPC x and x FPC .

439 0% :={{p,x): F*C oy}

O is a congruence on the term algebra. What is more, it is admissible for
every deductively closed set. For if X is deductively closed and ¢ € X, then
also y € X for every y ® ¢, by Modus Ponens.

Lemma 4.38 Tm,(V)/O% is a boolean algebra. Moreover, if ¥ is a deduc-
tively closed set in Smq, (V) then £/OF is a filter on Tmg(V)/O7. If L is
maximally consistent, £/@ is an ultrafilter. Conversely, if F is a filter on
Tmg(V)/OF, then hgl,[F) is a deductively closed set. If F is an ultrafilter,
this set is a maximally consistent set of formulae.

Thus, FPC is the intersection of all £ AP where 2 is a boolean algebra and
F a filter. Now, instead of deductively closed sets we can also take maximal
(consistent) deductively closed sets. Their image under the canonical map
is an ultrafilter. However, the equivalence ®, := {(x,y) :x <>y €U} is a
congruence, and it is admissible for U. Thus, we can once again factor it out
and obtain the following completeness theorem.

PC _
Theorem 4.39 ™~ =F 241}

This says that we have indeed axiomatized the logic of the 2—valued algebra.
What is more, equations can be seen as statements of equivalence and con-
versely. We can draw from this characterization a useful consequence. Call a
propositional logic inconsistent if every formula is a theorem.

Corollary 4.40 PC is maximally complete. That is to say, if an axiom or rule
p is not derivable in PC, PC+ p is inconsistent.

Proof. Let p = (A, @) be a rule that is not derivable in PC. Then by Theo-
rem 4.39 there is a valuation § which makes every formula of A true but ¢
false. Define the following substitution: 6(p) := T if B(p) =1, and 6(p) :=
1 otherwise. Then for every x € A, 6(x) <> T, while 6(¢) <> L. Hence, as
PC derives o () for every x € A, it also derives 6(¢), and so L. On the other
hand, in PC, everything follows from L. Thus, PC+ p is inconsistent. O
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Notes on this section. The earliest sources of propositional logic are the
writing of the Stoa, notably by Chrysippos. Stoic logic was couched in terms
of inference rules. The first to introduce equations and a calculus of equations
was Leibniz. The characterization of < in terms of union (or intersection) is
explicitly mentioned by him. Leibniz only left incomplete notes. Later, de
Morgan, Boole and Frege have completed the axiomatization of what is now
known as Boolean logic.

Exercise 142. Show that x < y iff xNy = x.

Exercise 143. For a lattice £ = (L,N,U) define £¢ := (L,U,N). Show that
this is lattice as well. Obviously, £4¢ = €. £ is called the dual lattice of £.
The dual of a lattice term ¢¢ is defined as follows. x? := x if x is a variable,
(tut) =N, (1N =1 Ur. Evidently, £ s =1 iff £4F 57 =14,
Deduce that s = ¢ holds in every lattice iff s = ¢/ holds in every lattice.

Exercise 144. (Continuing the previous exercise.) For a boolean term define
additionally 09 := 1, 14 := 0, (=) := —t¢ and B¢ := (B,1,0,U,N, —) for
B = (B,0,1,N,U,—). Show that B¢ = 9. This implies that B F s = ¢ iff
BEs! =19,

Exercise 145. Prove Lemma 4.22.

Exercise 146. Let < be a partial ordering on L with finite lubs and glbs.
Define xUy := lub{x, y}, and xNy := glb{x, y}. Show that (L,N,U) is a lattice.

Exercise 147. Let Z be the set of entire numbers. For i, j €  and j < 2 let
R, ;:={m- 20+ j:m€ Z}. Let H be the set of subsets of Z generated by all
finite unions of sets of the form R; ;. Show that H forms a field of sets (hence
a boolean algebra). Show that it has no atoms.

3. Intensionality

Leibniz’ Principle has given rise to a number of problems in formal seman-
tics. One such problem is its alleged failure with respect to intensional con-
texts. This is what we shall discuss now. The following context does not admit
any substitution of A by a B different from A without changing the truth value
of the entire sentence.

(4.40) The expression ‘A’ is the same expression as ‘B’.
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Obviously, if such sentences were used to decide about synonymy, no expres-
sion is synonymous with any other. However, the feeling with these types of
sentences is that the expressions do not enter with their proper meaning here;
one says, the expressions A and B are not used in (4.40) they are only men-
tioned. This need not cause problems for our sign based approach. We might
for example say that the occurrences of A where A is used are occurrences
with a different category than those where A is mentioned. If we do not as-
sume this we must exclude those sentences in which the occurrences of A or
B are only mentioned, not used. However, in that case we need a criterion for
deciding when an expression is used and when it is mentioned. The picture is
as follows. Let S(x) be shorthand for a sentence S missing a constituent x. We
call them contexts. Leibniz’ Principle says that A and B have identical mean-
ing, in symbols A = B, iff S(A) <> S(B) is true for all S(x). Now, let £ be the
set of all contexts, and IT the set of all contexts where the missing expression
is used, not mentioned. Then we end up with two kinds of identity:

4.41) A=, B:& (VS(x) € T)(S(A) « S(B))
(442)  A=qB:& (VS(x) € N)(S(A) & S(B))

Obviously, =5 C =p. Generalizing this, we get a Galois correspondence here
between certain sets of contexts and equivalence relations on expressions.
Contexts outside of IT are called hyperintensional. In our view, (4.40) does
not contain occurrences of the language signs for A and B but only occur-
rences of strings. Strings denote themselves. So, what we have inserted are
not the same signs as the signs of the language, and this means that Leib-
niz’ Principle is without force in example (4.40) with respect to the signs.
However, if put into the context the meaning of ¢_ ’, we get the actual
meaning of A that the language gives to it. Thus, the following is once again
transparent for the meanings of A and B:

4.43) The expression ‘A’ has the same meaning as the

expression ‘B’.
A hyperintensional context is
(4.44) John thinks that palimpsests are leaflets.

What John thinks here is that the expression palimpsest denotes a special
kind of leaflet, where in fact it denotes a kind of manuscript. Although this
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is a less direct case of mentioning an expression, it still is the case that the
sign with exponent palimpsest is not an occurrence of the genuine English
language sign, because it is used with a different meaning. The meaning of
that sign is once again the exponent (string) itself.

There are other problematic instances of Leibniz’ Principle, for example
the so—called infensional contexts. Consider the following sentences.

4.45) The morning star is the evening star.

(4.46) John believes that the morning star is the
morning star.

“4.47 John believes that the morning star is the
evening star.

(4.48) The square root of 2 is less than 3/2.

(4.49) John believes that the square root of 2 is
less than 3/2.

It is known that (4.45) is true. However, it is quite conceivable that (4.46)
may be true and (4.47) false. By Leibniz’ Principle, we must assume that the
morning star and the evening star have different meaning. However,
as Frege points out, in this world they refer to the same thing (the planet
Venus), so they are not different. Frege therefore distinguishes reference (Be-
deutung) from sense (Sinn). In (4.45) the expressions enter with their refer-
ence, and this is why the sentence is true. In (4.46) and (4.47), however, they
do not enter with their reference, otherwise John holds an inconsistent be-
lief. Rather, they enter with their senses, and the senses are different. Thus,
we have seen that expressions that are used (not mentioned) in a sentence
may either enter with their reference or with their sense. The question is
however the same as before: how do we know when an expression enters
with its sense rather than its reference? The general feeling is that one need
not be worried by that question. Once the sense of an expression is given,
we know what its reference is. We may think of the sense as an algorithm
that gives us the reference on need. (This analogy has actually been pushed
by Yannis Moschovakis, who thinks that sense actually is an algorithm (see
(Moschovakis, 1994)). However, this requires great care in defining the no-
tion of an algorithm, otherwise it is too fine grained to be useful. Moschovakis
shows that equality of meaning is decidable, while equality of denotation
is not.) Contexts that do not vary with the sense only with the reference of
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their subexpression are called extensional. Nonextensional contexts are in-
tensional. Just how fine grained intensional contexts are is a difficult matter.
For example, it is not inconceivable that (4.48) is true but (4.49) is false. Since
V2 < 1.5 we expect that it cannot be otherwise, and that one cannot even be-
lieve otherwise. This holds, for example, under the modal analysis of belief
by Hintikka (1962). Essentially, this is what we shall assume here, too. The
problem of intensionality with respect to Leibniz’ Principle disappears once
we realize that it speaks of identity in meaning, not just identity in denota-
tion. These are totally different things, as Frege rightly observed. Of course,
we still have to show how meaning and denotation work together, but there is
no problem with Leibniz’ Principle.

Intensionality has been a very important area of research in formal se-
mantics, partly because Montague already formulated an intensional system.
The influence of Carnap is clearly visible here. It will turn out that equating
intensionality with normal modal operators is not always helpful. Neverthe-
less, the study of intensionality has helped enormously in understanding the
process of algebraization.

LetA:={(,),p,0,1,A,~,0}, where the boolean symbols are used as be-
fore and [ is a unary symbol, which is written before its argument. We form
expressions in the usual way, using brackets. The language we obtain shall
be called L;,. The abbreviations ¢ — x and ¢ <+ y as well as typical short-
hands (omission of brackets) are used without warning. Notice that we have
a propositional language, so that the notions of substitution, consequence re-
lation and so on can be taken over straightforwardly from Section 4.1.

Definition 4.41 A modal logic is a subset L of L,, which contains all boolean
tautologies and which is closed under substitution and Modus Ponens. L is
called classical if from @ <> x € L follows that Q¢ < Oy € L, monotone if
from @ — x € L follows U — Uy € L. L is normal if for all ¢, € L), (a)
O(p—x)— (Oe—0yx) €L, (b)ifo € Lthen Do € L.

The smallest normal modal logic is denoted by K, after Saul Kripke. A quasi-
normal modal logic is a modal logic that contains K. One also defines

@450) 0@ :=-(0(9))

and calls this the dual operator (see Exercise 144). (I is usually called a
necessity operator, ) a possibility operator. If ¢ is an axiom and L a (nor-
mal) modal logic, then L+ @ (L& @) is the smallest (normal) logic containing
LU{¢@}. Analogously the notation L+ T, L& T for a set I' is defined.
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Definition 4.42 Let L be a modal logic. Then &, is the following conse-
quence relation. A=, @ iff @ can be deduc