
A Probabilistic Ranking Learner for

Phonotactics

Daniel M. Albro

January 6, 2000

1 The Problem – Phonotactic Learning

1.1 Phonotactics Comes Early

One of the first tasks children face in the process of acquiring their first
languages is to develop a characterization of which sound sequences are legal
or illegal in their native languages. Knowledge of this characterization—
phonotactics—develops at or before 10 months of age (Jusczyk et al. 1994).

Knowledge they (seem to) have: distributional protocategories (surface
inventory), ability to recognize their language, more or less.

Knowledge they don’t (seem to) have: morphology, semantics, syntax.

1.2 The Input

1.2.1 Surface forms

• Consists of surface phonetic forms to which the children may or may
not have attached a meaning (so we can’t assume any sort of semantic
bootstrapping, morphemic knowledge, etc).

• We can’t assume knowledge of relationships among forms, and therefore
we can’t assume knowledge of underlying forms.

• This means positive data only—what forms exist—whereas phonotactic
learning is also trying to determine what forms don’t exist.

1

1 THE PROBLEM – PHONOTACTIC LEARNING 2

1.2.2 Noise

• Most of these phonetic forms represent legal sequences in the target
languages, but some do not. These illegal inputs may be due to slips
of the tongue, ambient noise, foreign language contact (e.g., foreign
language television), or any number of other factors.

1.3 Existing Algorithms

Existing algorithms can be put into three categories:

1. Not robust, and not capable of dealing with phonotactics: Tesar’s ear-
lier Constraint Demotion algorithms (Tesar & Smolensky 1993; Tesar
1997) fail (become overly permissive, crash, or fail to terminate) in the
presence of noise, and are not designed to deal with the phonotactic
learning situation, where underlying forms are unknown.

2. Robust, but not capable of dealing with phonotactics: Boersma’s algo-
rithm (Boersma 1997) succeeds in learning OT grammars in the pres-
ence of noise, but it does not deal correctly with the phonotactic situ-
ation.

3. Not robust, but capable of dealing with phonotactics: The algorithms of
Tesar and Prince (Prince & Tesar 1999) and of Hayes (Hayes 1999) can
learn phonotactics (some comparisons later), but fail in the presence of
noise.

1.4 Goal

The (immediate) goal of this research program is to develop an algorithm
that is both robust in the presence of noise and capable of learning constraint
rankings relevant to phonotactic knowledge.

Ideally, then, the Probabilistic Error-Driven Phonotactic Ranking Algo-
rithm begins with a set of Optimality Theoretic constraints, divided into
faithfulness and phonotactic (markedness) constraints, and assigns proba-
bilities to each pairwise ranking possibility (for example, the probability of
some constraint A outranking a constraint B) such that given a set of input
data with no noise, the most probable ranking (in fact, the only possible
ranking) will accept the smallest possible superset of the input data, given

2 THE ALGORITHM 3

the initial constraints. Given a set of input data with linguistic noise, the
space of probable rankings defined by the output of the algorithm is such
that any given grammar selected from the ranking space will tend to accept
sequences that occurred fairly often in the input data and will tend to reject
sequences that were not found with any frequency in the input data.

2 The Algorithm

The basic goal of the algorithm is to determine the probability for each single-
pair constraint ranking A � B that the ranking is necessary in the grammar
accepting the smallest possible subset of the input forms. (In the current im-
plementation these rankings are conceived of as being applied atop a set of
base strata in which markedness constraints outrank faithfulness constraints,
and faithfulness constraints are ranked such that the least permissive con-
straints are on top).

2.1 Overall:

1. (“Parameter Estimation”): Learn how to learn phonotactics (find out
the likelihood of getting evidence for various ranking pairs, given ran-
domized input grammars).

2. (“Ranking Reinforcement”): Input surface forms and reinforce pairwise
rankings found necessary to accept those surface forms.

3. (“Calculation of P (H|O)”): Calculate the probability of necessity for
each possible pairwise ranking, given the observed inputs from step 2.

4. Return to step 1, if necessary.

2.2 Parameter Estimation:

Repeat ad nauseam:

1. Generate a random input.

2. Generate a random ranking (Keep track for each pair C1, C2 of the
number of estimation trials with ranking C1 � C2 vs. C2 � C1.)

2 THE ALGORITHM 4

3. Generate an output by running the input through UCOTP (Albro 1998)
with the given ranking.

4. Create the mirror image of that output as an input.

5. Determine a minimally permissive set of pairwise rankings that pro-
duces just the expected output.

6. Reinforce (by incrementing a counter) the individual C1 � C2 pairs in
the set of rankings produced.

When a minimal number of trials of each pairwise ranking has been run,
calculate the Bayesian Estimation parameters as follows:

pH|H =
re
H

ne
H

pH =
re
H

ne

(H represents a pairwise ranking hypothesis, e.g. that C1 � C2 is necessary,
pH|H is the probability that the C1 � C2 is found to be necessary by the
algorithm when confronted with a random output from a grammar in which
C1 � C2 holds, pH is the probability that the algorithm finds C1 � C2

necessary regardless of whether C1 � C2 holds in the input grammar, re
H is

the number of estimation reinforcements of H, ne
H is the number of estimation

trials in which ranking H holds in the input grammar, and ne is the total
number of estimation trials).

2.3 Ranking Reinforcement

When the algorithm has performed enough estimation and receives actual
surface forms, it follows steps 4–6 of the estimation algorithm for each surface
form, thus gathering a value rH for each pairwise ranking possibility.

2 THE ALGORITHM 5

2.4 Calculation of P (H|O)

Probability of necessity of a pairwise ranking (call this H) given an observed
number of reinforcements is calculated via Bayes’ Theorem:

P (H|O) =
P (O|H)P (H)

P (O)
=

P (O|H)P (H)

P (O|H)P (H) + P (O|H)P (H)

where P (H) is initially 0.5 (it could be continuously adjusted by Bayesian
updating to ease computation, if necessary);

P (O|H) =

(

n

m

)

pm(1 − p)n−m

(it’s a binomial distribution), where p is the value pH|H calculated during
estimation, n is the number of observed inputs, and m is the number of
reinforcements of the hypothesis (rH); and

P (O|H) =

(

n

m

)

pm(1 − p)n−m

where p = pnpH , that is, the expected probability of noise (I’ve used 0.1) pn

times the probability in general of reinforcement of this hypothesis .

Note that the binomial terms

(

n

m

)

cancel out, a fact which makes these

equations much more feasible to compute.

2.5 Determination of Strictest Rerankings from a Ba-

sic Ranking

1. Take the base ranking (markedness constraints on top, other constraints
sorted in order of increasing permissiveness (number of segment time
slices allowed by the constraint)) and generate an output from the UR
mirror image of the input SR.

2. Use the standard tableau method to compare violations of the expected
vs. actual output. This gives a set of reranking pairs which is generally
more permissive than necessary

3 CASE STUDIES 6

(C1 or C2 or . . . � C4 and C5 and . . .)

3. Apply all of the rerankings to the current ranking. Then generate a new
output, and return to step 2, unless the expected output was generated.

4. Sort the resultant rankings Ci � Cj by the desirability of Ci as a
top ranker (prefer markedness constraints over faithfulness constraints,
prefer strict faithfulness constraints over permissive faithfulness con-
straints).

5. Moving in this order, from the least to the most acceptable rerankings,
try to remove each ranking Ci � Cj from the set of necessary rankings.
This is possible if applying the remaining rankings to the base ranking
still produces the expected output (and only the expected output).
This step can introduce new rankings, in which case we return to step
3.

3 Case Studies

3.1 The “azba” problem

• The algorithm of Tesar and Prince (Prince & Tesar 1999) (and also
that of Hayes (Hayes 1999)) relies on a constraint specificity metric
that defines one constraint as more “stringent” as another if it accepts
a proper subset of the candidates accepted by the other.

• The algorithm presented here uses a different metric which rates the
permissiveness of a constraint by the number of segment time slices the
constraint neglects to penalize—this metric is a more direct expression
of the idea that grammars should be as strict as possible (constraints are
chosen by their raw ability or inability to reduce the size of candidate
spaces).

Tesar and Prince provide the following example of where their specificity
metric can cause failure to learn the strictest grammar.

Given a language in which voicing is not distinctive in fricatives, but
voicing is distinctive in stops, and fricatives can be voiced in regressive as-
similation, how do we determine that voiced fricatives are not permitted

3 CASE STUDIES 7

except in regressive assimilations? Example forms: ba, pa, ab, ap, sa, as,

*za, *az, aspa, azba, apsa, *abza, *absa, *apza, *azpa.

Constraints (using their terminology):

M:Agree(voi) Adjacent obstruents agree in voicing
M:*b Stops must be voiceless
M:*z Fricatives must be voiceless
F:stop-voi/Ons Preserve stop voicing in surface onsets
F:stop-voi Preserve stop voicing
F:fr-voi/Ons Preserve fricative voicing in surface onsets
F:fr-voi Preserve fricative voicing

The following inputs to the learner will not pass through the base gram-
mar (which is something like the above in Tesar and Prince’s system, where
there are two strata) and thus will provide evidence for rerankings: /ba/,
which generates [pa]; /ab/, which generates [ap]; and /azba/, which gener-
ates [aspa]. /ba/→[pa] is evidence of F:stop-voi or F:stop-voi/Ons �
M:*b, /ab/→[ap] is evidence of F:stop-voi � M:*b, and /azba/→[aspa]
is evidence of F:stop-voi or F:stop-voi/Ons or F:fr-voi � M:*b and
M:*z. Tesar and Prince’s basic algorithm, which ignores constraint permis-
siveness, chooses F:stop-voi in all instances of choice here. Such a choice
allows [abza], so it’s too permissive a grammar. If their algorithm attempts to
account for constraint permissiveness, it can’t distinguish between F:stop-
voi/Ons � M:*z and F:fr-voi � M:*z, since neither faithfulness con-
straint accepts a proper subset of the candidates accepted by the other.
However, F:fr-voi � M:*z is too permissive—it allows [z] in all positions.
The algorithm presented here correctly chooses F:stop-voi/Ons, since it
can be shown to apply to a smaller number of time slices, and thus leads to
more restrictive grammars.

3.2 Pseudo-Korean

Hayes (1999) illustrates his algorithm using a subset of Korean in which the
only permissible surface segments are [d], [t], [

���
], and [a]. Of these, [d] only

appears in intervocalic position, and [
���

] never appears word-finally. This
state of affairs is accounted for by virtue of the following constraints (Hayes’
terminology):

3 CASE STUDIES 8

*[-son, +voice] Obstruents are voiceless by default
*[+voice][-voice][+voice] *Voiceless segments between voiced ones
*[+spread glottis] *Aspiration
*[+voice, +spread glottis] Voicing is incompatible with aspiration
Ident(asp)/ V Preserve underlying aspiration before vowels
Ident(asp) Preserve underlying aspiration
Ident(voice)/ V Preserve underlying voicing before vowels
Ident(voice) Preserve underlying voicing

Given a diet of correct surface forms, Hayes’ algorithm comes up with the
following ranking: *[+voice, +spread glottis] � Ident(asp)/ V �
*[+voice][-voice][+voice], *[+spread glottis] � *[-son, +voice]
� Ident(asp), Ident(voice), Ident(voice)/ V.

The PEDPRA algorithm comes up with the same ranking (modulo dif-
ferences in notation due to the use of UCOTP, and some additional con-
straints, as usual for UCOTP). However, when given (extremely rarely, to
simulate noise) illegal inputs such as [data] or [a

���
], Hayes’ algorithm will

produce a grammar that promotes Ident(asp) above *[+spread glot-
tis], and Ident(voice)/ V above *[+voice][-voice][+voice] and *[-
son, +voice]. In this same situation, the PEDPRA algorithm generates
probabilities for rankings that are such that most of the time the ranking
matches the one Hayes’ algorithm gets with no noise given, but extremely
rarely the promotions are possible.

3.3 Diola-Fogny

A first-year phonology problem. Diola-Fogny is a West Atlantic language
spoken in Senegal (Sapir 1965). Consonants are:

[p] [t] [c] [k]
[b] [d] [�] [�]
[m] [n] [�] [�]
[f] [s] [h]

[l]
[�]

[w] [j]
Essentially all phonemes appear in all positions, there are no consonant

clusters of greater than size two, and consonant clusters are of the form
nasal plus nasal and nasal plus obstruent, where the initial nasal is always

REFERENCES 9

homorganic to the second. Valid inputs given to the system were as follows:
[�����], [��� ��� � �	��
], [famfan], [��������� �], [������� �����], [famb], and [���
��
�� � �],
which derive from / ����� /, / ��� ���
 ���
 /, / ���������� /, / ������ ����� � /, / ��� � ��� ����� /,
/famb/, and / ���
�� � �
�� � � /, respectively.

Constraints given to the system included the following (in base grammar
order):

*TerneryClusters No consonant clusters of size greater than 2
*ObsGem Consonant clusters must contain at least one sonorant
*HeterorganicCluster Consonant clusters must agree in place
*Struc Penalize all segments
Ident(place)/ V Preserve place before surface vowels
Max(C)/ # Preserve consonants prepausally
Max(C)/ V Preserve consonants before surface vowels
Max(C)/(V) (V) Preserve consonants adjacent to a vowel
Ident(place) Preserve place
Max(C) Preserve consonants

From these, the system derives the following rerankings from the base
grammar: Ident(place) � *Struc, Max(C)/ V � *Struc, Max(C)/ #
� *Struc, Max(C)/(V) (V) � *Struc. Not too exciting, but it covers
the generalities...

References

Albro, Daniel M., 1998. Evaluation, implementation, and extension of
Primitive Optimality Theory. Master’s thesis, UCLA.

Boersma, Paul, 1997. How we learn variation, optionality, and probability.
[ROA #221].

Hayes, Bruce P., 1999. Phonological aquisition in optimality theory: the
early stages. [Rutgers Optimality Archive #327].

Jusczyk, Peter W., Paul A. Luce, & Jan Charles-Luce. 1994. In-
fants’ sensitivity to phonotactic patterns in the native language. Journal

of Memory and Language 630–645.

Prince, Alan, & Bruce Tesar, 1999. Learning phonotactic distributions.
[Rutgers Optimality Archive #353].

REFERENCES 10

Sapir, J. David. 1965. A Grammar of Diola-Fogny .

Tesar, Bruce, 1997. Multi-recursive constraint demotion. [Rutgers Opti-
mality Archive #197].

——, & Paul Smolensky. 1993. The learnability of Optimality Theory: an
algorithm and some basic complexity results. Technical report, Depart-
ment of Computer Science and Institute of Cognitive Science, University
of Colorado, Boulder. [Rutgers Optimality Archive #2].

