
POSCLASS: An Automated Morphological Analyzer

Daniel M. Albro

June 18, 1996

1 Introduction

Upon facing a new set of language data, the morphologist is posed with a difficult task.
Words must be split into morphemes, and the morphemes must be glossed and their dis-
tribution accounted for. This process can often become quite tedious and involved. The
purpose of this project was to automate a portion of the task, and to provide a basis for
future automations. The program described herein is intended to take as input glossed,
phonemic word samples and produce as output a table of individually glossed morphemes
within their position classes. For example, a file of Esperanto data might look like this:

esperas [HOPE,-past,-future]

esperos [HOPE,-past,+future]

esperadas [HOPE,-past,-future,+continuous]
...

and the resulting table might look like this:

Position Morphemes

1 esper ([HOPE])
2 ad ([+continuous])
3 as ([-past,-future]) os([-past,+future])

In this paper, we will discuss the desired behavior of the program and the characteris-
tics of the actual program itself; we will then examine how closely the program comes to
exhibiting the desired behavior and what changes might be desirable in the future.

2 Development

The project was divided into three stages. First, the program would take as its input a list
of words that have already been divided up into morphemes, and as its output it would
produce a table of position classes. For our Esperanto example, the input would look like
this:

esper-as

esper-os

esper-ad-as

1

...

and the corresponding output would be:

Position Morphemes

1 esper
2 ad
3 as os

Once position classes worked, the next stage would be to take as input a file with non-
divided words paired with glosses in one-to-one correspondence with the morphemes. That
is, for each morpheme in each word, there would be exactly one feature in the gloss. The
Esperanto example, then, might look as follows1:

esperas [HOPE,+present]

esperos [+future,HOPE]

esperadas [HOPE,+present,+continuous]...

and the result would be the following:

Position Morphemes

1 esper ([HOPE])
2 ad ([+continuous])
3 as ([+present]) os([+future])

The third (and, so far, final) stage of the project was to allow as much flexibility as possible
in the specification of glosses. Thus, the Esperanto example might legitimately be as given
in the first paragraph.

3 The Program

In order to understand the characteristics of the POSCLASS program, we must understand
how it behaves with respect to the user (i.e., its usage), how it reacts to different input
data, and what algorithms were used to produce the results described.

The first thing to know, which affects all the rest, is that POSCLASS was implemented
in the object-oriented scripting language Python. This language was chosen because it is
a high-level language well-suited to rapid prototyping, it allows object-oriented design, it
does not require compilation (and thus it saves development time), it has modules that
are well-suited for the sorts of string manipulation done here, and it is available on UNIX,
MS-DOS, and Macintosh computers. In the future, the code may be translated into C or
C++ in order to increase the program’s speed.

A second defining characteristic of POSCLASS is that it deals basically with inflectional
and not derivational morphology. To the extent that derivational morphology can be made
to look like inflectional morphology, the program can deal with it, but morphemes are
viewed as adding features to a lexical entry in the manner of inflection rather than as
changing one lexical entry into another in the manner of derivation.

1The order of the features should not matter

2

3.1 Usage

At the present time, POSCLASS is not particularly user-friendly. To use it, the user must
first create a file laying out the input data. The input data file must consist of one line per
word, each line consisting of a word and (optionally, if the word is pre-split) a gloss for the
word. The word and its gloss must be separated from each other by white space, that is,
spaces or tabs. The file may not contain anything other than such lines.

3.1.1 Word Specification

The word must be either pre-split into morphemes, with the morphemes separated by
dashes, or be one long string of unindividuated morphemes. All “phonology” must have
been undone. That is, the morphemes must be simply concatenated together, with no
metathesis interspersing morphemes (non-concatenative morphology cannot be handled by
the program as it currently exists), and no allomorphs. The words may not contain dashes
(except to separate morphemes), underscores (), spaces, tabs, or carriage returns. All
other characters are acceptable.

The pre-split words are used when the program is simply taking morphemes and figuring
out their position classes. In the case that pre-split words are being used, the user must be
careful to disambiguate morphemes that sound the same, but are in different distribution.
For example, in the language Zoque, yah signifies both “causative” and “plural”, but the
first meaning precedes the root and the second follows the root. In this case, it is necessary
to write something like:

yah(caus)-ken-u

ken-yah(pl)-u

to disambiguate them.
The non-pre-split words are used when the program is taking word, gloss pairs and de-

termining what morphemes exist, how they should be glossed, and how they are distributed.
In this case, homophonous morphemes will automatically be distinguished by their glosses.

3.1.2 Gloss Specification

The gloss specification format used in POSCLASS is essentially that of the Andersonian
framework. It consists of a lexical entry specifier, a set of outer features, and a set of
inner features. The lexical entry specifier is a word in all capital letters indicating the root
semantics of the word being glossed. For example, DOG might be used to indicate that
the word is a member of the noun paradigm for dogs (e.g., canis [DOG,+nom]). The outer
features describe semantic or grammatical features of the word or, if the word is a verb,
semantic or grammatical features of the subject of the verb. The inner features describe
semantic or grammatical features of the object of a verb. Features may begin with any
letter other than capital “O”, and must not be comprised entirely of upper-case letters, lest
they be confused with lexical entry specifiers. They may not contain commas, underscores,
spaces, tabs, or carriage returns.

A gloss must be contained within square brackets, and each subpart of the gloss must
be separated from the others by commas. No white space (spaces or tabs) may appear

3

anywhere within the gloss. Inner features appear within an inner set of square brackets, of
which there may be only one per gloss. Thus, a gloss must begin with a left square bracket,
followed by zero or more outer features and zero or one lexical entry specifier, followed
by an optional inner left square bracket, which is followed by zero or more inner features,
followed by an inner right square bracket, all followed by zero or more outer features and
possibly a lexical entry specifier, then finally terminated by a right square bracket. The
gloss must have one and only one lexical entry specifier.

3.1.3 Running the Program

Once a data input file has been specified, the user runs the program upon that input
by typing (at the command line), posclass, optionally followed by -c to indicate that
only determination of position classes from pre-split morphemes is desired, followed by the
name of the input file. For example, if the file esperanto-split.inp were to contain words
in Esperanto that are split into morphemes by dashes, the user would enter posclass -c

esperanto-split.inp to analyze the data. For a hypothetical file esperanto-glossed.inp
that contained glossed non-split words of Esperanto, the user would enter posclass
esperanto-glossed.inp. To save the program’s output to a file, the user may add “>”
followed by a filename to the end of the command line.

The output of the program is a lot of text indicating to some extent what the program
is doing, followed by two position class tables indicating what the program figured out.
There is usually some ambiguity as to what position class a particular morpheme belongs
in, and therefore the program outputs two tables, the first indicating the leftmost possible
position for each morpheme, and the second indicating the rightmost possible position for
each.

3.2 Examples

This section will work through three “real-world” examples to give a clearer picture of what
the program does. These examples will be in the languages Zoque, English, and Kharia.

3.2.1 Zoque

The Zoque example is actually two examples: first of the position class analyzer, and second
of one-morpheme-per-feature analysis. The first example takes the paradigm for “LOOK”
and splits the words into morphemes:

ken-u

ken-pa

y-ken-hay(ben)-u

y-ken-hay(ben)-pa

y-yah(caus)-ken-u

ken-yah(pl)-u

y-ken-hay(ben)-yah(pl)-u

y-ken-hay(ben)-t.o?y-u

ken-t.o?y-u

4

ken-t.o?y-pa

ken-t@?-u

y-ken-u

y-ken-pa

y-ken-hay(ben)-pa

y-ken-hay(ben)-t.o?y-u

ken-yah(pl)-t@?-u

ken-ke?t-pa

ken-ke?t-u

y-ken-hay(ben)-ke?t-u

y-ken-hay(ben)-yah(pl)-t@?-ke?t-u

ken-ke?t-pa

ken-ke?t-u-tih

ken-u-tih

y-ken-hay(ben)-u-tih

y-yah(caus)-ken-at@h-u

y-yah(caus)-ken-at@h-yah(pl)-u

na-y-ken-at@h-yah(pl)-u

na-y-ken-at@h-yah(pl)-ke?t-u-tih

hay(neg)-ken-a

hay(neg)-ken-a-tih

hay(neg)-ken-ke?t-a-tih

ken-u-a?a

ken-pa-a?a

ken-yah(pl)-u-a?a

ken-ke?t-u-a?a

ken-u-?k

ken-u-?k-a?a

ken-yah(pl)-pa-?k-a?a

ken-yah(pl)-pa-m@y

ken-u-Seh

ken-pa-mah

ken-pa-hs@?N

y-ken-hay(ben)-yah(pl)-t@?-ke?t-u-Seh-tih

y-ken-u-?k

ken-yah(pl)-ke?t-u-hs@?N

ken-u-ha

hay(neg)-ken-a-mah

hay(neg)-ken-a-a?a

hay(neg)-ken-a-hs@?N-tih

hay(neg)-ken-a-tih

ken-hay(ben)-u-a?a

ken-hay(ben)-ke?t-u-a?a

ken-pa-mah-ha

y-yah(caus)-ken-at@h-yah(pl)-t@?-u-tih

5

y-ken-u-a?a

y-ken-u-Seh

y-ken-ke?t-pa-tih

ken-?aNheh-u

y-ken-?aNheh-pa

y-ken-?aNheh-u-a?a

y-ken-?aNheh-yah(pl)-ke?t-u-tih

ken-yah(pl)-t.o?y-u

ken-u-a?a-hs@?N

ken-ke?t-u-a?a-Seh

y-ken-u-hs@?N-mah

y-ken-ke?t-u-a?a-tih

y-yah(caus)-ken-hay(ben)-yah(pl)-ke?t-u-?k-a?a

ken-yah(pl)-ke?t-u-Seh-tih

y-ken-ke?t-pa-tih-ha

The user, upon entering this data as zoque.txt, would run POSCLASS by entering posclass

-c zoque.txt > zoque.out. The corresponding output (in zoque.out) is as follows:

Position classes:

Table 0

1: na hay(neg)

2: y

3: yah(caus)

4: ken

5: ?aNheh hay(ben) at@h

6: yah(pl)

7: t.o?y t@?

8: ke?t

9: a u pa

10: ?k m@y

11: a?a

12: hs@?N Seh

13: mah tih

14: ha

Table 1

15: ha m@y

14: tih

13: mah Seh

12: hs@?N

11: a?a

10: ?k

6

9: a u pa

8: t.o?y ke?t

7: t@?

6: yah(pl)

5: ?aNheh hay(ben) at@h

4: ken

3: yah(caus) hay(neg)

2: y

1: na

Notice that it is necessary to read the second table from bottom to top, and that yah and
hay had to be disambiguated.

The second Zoque example glosses the morphemes. The words correspond to those
above, but this time they are not split into morphemes, and the words are glossed as
described above:

kenu [LOOK,+past]

kenpa [LOOK,-past]

ykenhayu [LOOK,+ben,+past,+3serg]

ykenhaypa [LOOK,+ben,-past,+3serg]

yyahkenu [LOOK,+caus,+past,+3serg]

kenyahu [LOOK,+plur,+past]

ykenhayyahu [LOOK,+past,+plur,+ben]

ykenhayt.o?yu [LOOK,+ben,+3serg,+desid,+past]

kent.o?yu [LOOK,+desid,+past]

kent.o?ypa [LOOK,+desid,-past]

kent@?u [LOOK,+intent,+past]

ykenu [LOOK,+past,+3serg]

ykenpa [LOOK,-past,+3serg]

ykenhaypa [LOOK,-past,+ben,+3serg]

ykenhayt.o?yu [LOOK,+ben,+past,+3serg,+desid]

kenyaht@?u [LOOK,+plur,+intent,+past]

kenke?tpa [LOOK,-past,+repet]

kenke?tu [LOOK,+repet,+past]

ykenhayke?tu [LOOK,+3serg,+ben,+repet,+past]

ykenhayyaht@?ke?tu [LOOK,+3serg,+ben,+plur,+intent,+repet,+past]

kenke?tpa [LOOK,+repet,-past]

kenke?tutih [LOOK,+repet,+past,+just]

kenutih [LOOK,+past,+just]

ykenhayutih [LOOK,+3serg,+ben,+past,+just]

yyahkenat@hu [+3serg,+caus,LOOK,[+indef],+past]

yyahkenat@hyahu [LOOK,+3serg,+caus,[+indef],+plur,+past]

naykenat@hyahu [LOOK,+recip,+3serg,[+indef],+plur,+past]

naykenat@hyahke?tutih [LOOK,+recip,+3serg,[+indef],+plur,+repet,+past,+just]

haykena [LOOK,+neg,+negtense]

haykenatih [LOOK,+neg,+negtense,+just]

7

haykenke?tatih [LOOK,+neg,+negtense,+repet,+just]

kenua?a [LOOK,+past,+perf]

kenpaa?a [LOOK,-past,+perf]

kenyahua?a [LOOK,+plur,+past,+perf]

kenke?tua?a [LOOK,+repet,+past,+perf]

kenu?k [LOOK,+past,+tempsubord]

kenu?ka?a [LOOK,+past,+tempsubord,+perf]

kenyahpa?ka?a [LOOK,+plur,-past,+tempsubord,+perf]

kenyahpam@y [LOOK,+plur,-past,+locsubord]

kenuSeh [LOOK,+past,+similsubord]

kenpamah [LOOK,-past,+durative]

kenpahs@?N [LOOK,-past,+potential]

ykenhayyaht@?ke?tuSehtih [LOOK,+3serg,+ben,+plur,+intent,+repet,+past,+similsubord,+just]

ykenu?k [LOOK,+3serg,+past,+tempsubord]

kenyahke?tuhs@?N [LOOK,+plur,+repet,+past,+potential]

kenuha [LOOK,+past,+interrog]

haykenamah [LOOK,+neg,+negtense,+durative]

haykenaa?a [LOOK,+neg,+negtense,+perf]

haykenahs@?Ntih [LOOK,+neg,+negtense,+potential,+just]

haykenatih [LOOK,+neg,+negtense,+just]

kenhayua?a [LOOK,+ben,+past,+perf]

kenhayke?tua?a [LOOK,+ben,+repet,+past,+perf]

kenpamahha [LOOK,-past,+durative,+interrog]

yyahkenat@hyaht@?utih [LOOK,+3serg,+caus,[+indef],+plur,+intent,+past,+just]

ykenua?a [LOOK,+3serg,+past,+perf]

ykenuSeh [LOOK,+3serg,+past,+similsubord]

ykenke?tpatih [LOOK,+3serg,+repet,-past,+just]

ken?aNhehu [LOOK,+complet,+past]

yken?aNhehpa [LOOK,+3serg,+complet,-past]

yken?aNhehua?a [LOOK,+3serg,+complet,+past,+perf]

yken?aNhehyahke?tutih [LOOK,+3serg,+complet,+plur,+repet,+past,+just]

kenyaht.o?yu [LOOK,+plur,+desid,+past]

kenua?ahs@?N [LOOK,+past,+perf,+potential]

kenke?tua?aSeh [LOOK,+repet,+past,+perf,+similsubord]

ykenuhs@?Nmah [LOOK,+3serg,+past,+potential,+durative]

ykenke?tua?atih [LOOK,+3serg,+repet,+past,+perf,+just]

yyahkenhayyahke?tu?ka?a [LOOK,+3serg,+caus,+ben,+plur,+repet,+past,+tempsubord,+perf]

kenyahke?tuSehtih [LOOK,+plur,+repet,+past,+similsubord,+just]

ykenke?tpatihha [LOOK,+3serg,+repet,-past,+just,+interrog]

Notice here that there is one feature per morpheme in the input, and that the order of
the features in the gloss is not significant. Notice also that object features, here +indef
only, are specified inside square brackets. For this input file, the user would type posclass
zoque-glossed.txt and receive (along with a great deal of preceding text (deleted) indi-
cating what the program is doing) the following output:

8

Position classes:

Table 0

1: hay ([+neg]) na ([+recip])

2: y ([+3serg])

3: yah ([+caus])

4: ken ([LOOK])

5: hay ([+ben]) at@h ([O+indef]) ?aNheh ([+complet])

6: yah ([+plur])

7: t@? ([+intent]) t.o?y ([+desid])

8: ke?t ([+repet])

9: a ([+negtense]) pa ([-past]) u ([+past])

10: m@y ([+locsubord]) ?k ([+tempsubord])

11: a?a ([+perf])

12: Seh ([+similsubord]) hs@?N ([+potential])

13: mah ([+durative]) tih ([+just])

14: ha ([+interrog])

Table 1

14: m@y ([+locsubord]) ha ([+interrog])

13: mah ([+durative]) tih ([+just])

12: Seh ([+similsubord]) hs@?N ([+potential])

11: a ([+negtense]) a?a ([+perf])

10: ?k ([+tempsubord])

9: pa ([-past]) u ([+past])

8: t.o?y ([+desid]) ke?t ([+repet])

7: t@? ([+intent])

6: yah ([+plur])

5: hay ([+ben]) at@h ([O+indef]) ?aNheh ([+complet])

4: ken ([LOOK])

3: hay ([+neg]) yah ([+caus])

2: y ([+3serg])

1: na ([+recip])

Each morpheme receives a single feature as its gloss, and the tables come out more or less
the same as in the pre-split example, with some slight shifts due to different processing
orders. Note that object features are indicated by a preceding capital “O”, which is why
input features may not begin with “O”.

3.2.2 English

We will now show how POSCLASS can learn the present tense verb system of English.
This example, while much shorter than the previous, illustrates a few loosenings of the
one-gloss-per-morpheme rule. Here, we show that POSCLASS can handle identical words

9

with different glosses and multiple features per morpheme. It also shows that the program
can handle multiple paradigms (in this case, “LOOK” and “COOK”) in one file. The input
file, english.txt, is as follows:

look [LOOK,+me,-you,-plur]

look [LOOK,-me,+you,-plur]

looks [LOOK,-me,-you,-plur]

look [LOOK,+me,-you,+plur]

look [LOOK,-me,+you,+plur]

look [LOOK,-me,-you,+plur]

cook [COOK,+me,-you,-plur]

cook [COOK,-me,+you,-plur]

cooks [COOK,-me,-you,-plur]

cook [COOK,+me,-you,+plur]

cook [COOK,-me,+you,+plur]

cook [COOK,-me,-you,+plur]

The corresponding output table is as follows:

1: cook ([COOK]) look ([LOOK])

2: s ([-me,-you,-plur])

Table 1

2: s ([-me,-you,-plur])

1: cook ([COOK]) look ([LOOK])

3.2.3 Kharia

The Kharia example is perhaps the most complicated of all. In it, there are overlapping
feature specifications (some morphemes are specified by sets of features whose intersection
is not empty). The input data consists of a partial paradigm of gil “to beat”:

giliN [BEAT,-past,-perf,-habit,-futvp,-him,-you]

gilem [BEAT,-past,-perf,-habit,-futvp,-him,+you]

gile [BEAT,-past,-perf,-habit,-futvp,+him,-you]

giltiN [BEAT,-past,-perf,+habit,-futvp,-him,-you]

giltem [BEAT,-past,-perf,+habit,-futvp,-him,+you]

gilte [BEAT,-past,-perf,+habit,-futvp,+him,-you]

giloj [BEAT,+past,-perf,-habit,-futvp,-him,-you]

gilob [BEAT,+past,-perf,-habit,-futvp,-him,+you]

gilog [BEAT,+past,-perf,-habit,-futvp,+him,-you]

gilsigiN [BEAT,-past,+perf,-habit,+futvp,-him,-you]

gilsigem [BEAT,-past,+perf,-habit,+futvp,-him,+you]

gilsige [BEAT,-past,+perf,-habit,+futvp,+him,-you]

gilsigDiN [BEAT,-past,+perf,-habit,-futvp,-him,-you]

gilsigDem [BEAT,-past,+perf,-habit,-futvp,-him,+you]

10

gilsig [BEAT,-past,+perf,-habit,-futvp,+him,-you]

gilsigtiN [BEAT,-past,+perf,+habit,-futvp,-him,-you]

gilsigtem [BEAT,-past,+perf,+habit,-futvp,-him,+you]

gilsigte [BEAT,-past,+perf,+habit,-futvp,+him,-you]

gilsig’oj [BEAT,+past,+perf,-habit,-futvp,-him,-you]

gilsig’ob [BEAT,+past,+perf,-habit,-futvp,-him,+you]

gilsig’og [BEAT,+past,+perf,-habit,-futvp,+him,-you]

The output table is as follows:

Position classes:

Table 0

1: gil ([BEAT])

2: sig ([+perf])

3: ’ ([+past,+perf]) t ([+habit]) D ([-past,+perf,-habit,-futvp,-him])

e ([+futvp,+him])

4: o ([+past])

5: iN ([-past,-him,-you]) em ([-past,+you]) b ([+past,+you])

e ([+perf,+habit,+him]) e ([-past,-perf,+him]) g ([+past,+him])

j ([+past,-him,-you])

Table 1

5: iN ([-past,-him,-you]) em ([-past,+you]) b ([+past,+you])

e ([+perf,+habit,+him]) e ([-past,-perf,+him]) g ([+past,+him])

j ([+past,-him,-you]) e ([+futvp,+him])

4: D ([-past,+perf,-habit,-futvp,-him]) o ([+past])

3: ’ ([+past,+perf]) t ([+habit])

2: sig ([+perf])

1: gil ([BEAT])

Note that the morpheme e shows up three times in the output, even though it is in some
sense the same morpheme. This is because the actual distribution is something like “e
appears as the exponent of -past,+him in all cases except the present perfect”, but the
program does not handle exceptions, so it just lists all of the different places where e can
appear. The other thing to note is that the program does not include redundant features.
One might want to say, for example, that em signifies [-past,-him,+you] rather than simply
[-past,+you], but the latter is sufficient to characterize the distribution of em, so the program
conservatively chooses the latter. This points out the fact that users of the program should
not take its output as the gospel truth, but rather look to see if slight variations might be
appropriate. For example, with the Zoque data, the user might want to use the glosses to
combine the two position class tables into a single table that puts morphemes with similar
meanings into the same classes wherever possible, and here, the user might want to add
features to the glosses for each morpheme.

11

3.3 Internals

We will now move from what the program does to how it does it. The actual code can
be seen in Appendix A. First, we will look at how morphemes are arranged into position
classes, and then we will move on to analysis of word, gloss pairs.

3.3.1 Position Class Analysis

Position class analysis takes as its input pre-split words and outputs a position class table.
It uses an incremental algorithm with an order of growth roughly linear with the number
of input words. That is, it fully processes each word as it comes in and does not need to re-
member previously-heard words. For each word, the program produces a list of morphemes
by dividing around the dashes and then updates two position class tables with the list of
morphemes. The order of the morphemes within a word is presumed to be mandatory; that
is, if the morphemes in a word appear in a given order in the input, it is assumed that no
other order of those morphemes is grammatical.

Internally, the two position class tables are stored as a single lookup-list, where each
morpheme is matched with a pair of values: the position class in the first table, and the
position class in the second table. The first table contains the leftmost possible position
for each morpheme, and the second table contains the rightmost. The way this is done
is to update the first table with the list of morphemes generated by splitting up a word,
then reverse the order of morphemes and use the same code to update the second table.
Thus, the table update code always puts each morpheme as far to the left as it can, and
the second table is produced by looking at each word backwards.

The table update code works as follows. Loop over the morphemes in the word. If the
current morpheme has not yet been entered into the table, record that it has no bounding
elements. Look at the morphemes that are coming up after this morpheme in the current
word. If one of them has already been entered, put the current morpheme in the table to
the left of all already entered morphemes from the current word that are to the right of
the current morpheme in the current word, but just to the right of the previous morpheme
entered from the current word, if any. If necessary, bump the higher morphemes up to leave
room for this one and note that the current morpheme is a left bound for them. If none
of the upcoming morphemes has yet been entered, however, enter the current morpheme
just after the previous morpheme entered from the current word, if any, and note that
the previously entered morpheme is a left bound for the current morpheme. If, however,
the current morpheme had already been entered into the table, check to make sure that
its position in the current word is consistent with its position in the table. If it is not
consistent, output an error message and ignore the current morpheme. Otherwise, if the
previously recorded position of the current morpheme is less than or equal to the position
of the previously recorded morpheme, move the current morpheme just after the previously
recorded one and record the previously recorded morpheme as a left bound for the current
one. If necessary, bump up the morphemes to the right of the previously entered morpheme
to make room for the current one (this is necessary if one of the morphemes to the right
is a bound for the current morpheme in the other table or if the current morpheme is a
left-boundary for one of the morphemes to the right). Move on to the next morpheme and
do the same, until all of the morphemes in the word have been processed.

12

Written as an algorithm, the above looks as follows:

for morph in morphemes:

if morph not yet entered:

then note: morph has no bounding elements

guess: no upcoming morphemes are in the table

after the last entered

for upcoming in morphemes after morph:

if upcoming has been entered already:

then if upcoming is in the table just after the last entered

then bump all morphemes above upcoming up one

bump upcoming up one

place morph in the position class where upcoming was.

note: morph is a left bound for upcoming

note: there was a morpheme like we guessed there wasn’t.

break out of the loop.

end if

end if

next upcoming

if morph hasn’t been inserted yet:

then note: the previous morpheme is a bound for morph

place morph just after the previously inserted morpheme

end if

else if in the first table and the placement of morph is inconsistent:

then output error message

continue on to the next morpheme

end if

if the previous position of morph is at or before

the position at which a morpheme was last added

then note: the previously entered morpheme is a bound for morph

if morph entering the position after the previously entered morpheme

would violate recorded boundaries

then bump everything at that position and above right

end if

place morph at the position after the previously entered morpheme

end if

end if

next morph

3.3.2 Word, Gloss Pair Analysis

In order to analyze word, gloss pairs into morphemes with position classes, POSCLASS

reads all of the word, gloss pairs in the input file into a single list. It then splits up
the gloss representations into lists of features, with the inner features marked with an
initial “O” and reünites the gloss lists back with the corresponding words. Thus, for exam-
ple, yyahkenatehu [+3serg,+caus,LOOK,[+indef],+past] turns into (’yyahkenatehu’,

[’+3serg’, ’+caus’, ’LOOK’, ’O+indef’, ’+past’]).
The program then loops through each word, gloss pair in turn. It figures out which

morpheme corresponds to the root of the word by finding the greatest common substring
of all words glossed as having the same lexical entry specification as the current word.
The program then adds the root to the position class chart by sending the position class
analyzer (described above) a word containing just the root. Note that in the word, gloss

13

pair analysis part of the program, the words sent to the position class analyzer will always
consist of morphemes followed by parenthetical glosses. For example, the root for “LOOK”
in Zoque would be sent to the position class analyzer as “ken ([LOOK])”.

Once the root has been found, the program tries out every conceivable combination of
the remaining features, making a paradigm for each combination and trying to see whether
a single morpheme corresponds to any of the feature combinations. Feature combinations
are tried in the order left-appearing features before right-appearing, smaller combinations
before larger. Feature combinations that have been tried before are ignored. Essentially,
the program collects all of the words that have a particular combination of features and
then tries to see what the greatest common substring of the word list is, with the greatest
common substring search being limited to “unanalyzed material”—that is, the parts of each
word that have not already been identified as associated morphemes. For example, if yah,
ken, and y have already been identified, and we are looking for the morpheme corresponding
to +continuous, we take all of the words marked as +continuous, subtract out yah, ken, and
y from each of them, and find the largest common substring from the remainder. If one and
only one greatest common substring is found corresponding to a given feature combination,
it is chosen as the morpheme corresponding to that feature combination. Each word in
the paradigm is then glued back together in the original order, using only the previously
analyzed morphemes and the new morpheme, and sent to the position class analyzer to
update the position classes.

The algorithm for analyzing word, gloss pairs has an order of growth in time that rises
exponentially (factorially) with the average number of features assigned to each word, due
to the necessity to check each possible feature combination for each word.

4 Results and Discussion

Now that we have seen how the program as it currently exists works, we can examine what
it’s limitations are. Currently, the program is perhaps overly conservative. For example,
if a particular morpheme showed up whenever the features -me, -you showed up, and
the features -me, -you only appeared together, the program would guess that -me was
responsible for the morpheme rather than both of them. It also does not handle cases
where the presence of a particular feature combination causes a morpheme not to appear,
for example in Georgian, where only one morpheme is allowed as a prefix or suffix to each
stem, so there is an ordered hierarchy of features—if the most privileged set of features is
present, then the morphemes corresponding to less privileged features don’t appear. Finally,
the program does not handle cases where one feature corresponds to multiple morphemes,
as in a circumfix situation.

In the future, several modifications to the program might be possible and desirable.
First of all, of course, it would be nice to fix the shortcomings listed above. However, it
could very well be the case that fixing them, if even possible, would involve a total rewrite
of the algorithms involved. In addition to fixing the shortcomings above, however, there
are many capabilities that could be added to the program. For one thing, a nice user
interface could be added, and for another, extended capabilities could be added. For ex-
ample, if POSCLASS were to be combined with a program such as KIMMO, one could
take actual phonetic transcriptions of words, use KIMMO to reverse the phonology, and

14

then use POSCLASS to analyze the morphology. An even more ambitious plan might be
to automatically analyze the phonology. For example, if the phonetic form were read into
an autosegmental tree structure via the algorithm used in the AMAR program, greatest
common substrings could be computed by a “sloppy” algorithm that mandates simply that
the substrings have most of the same features and connections. This would eliminate most
of the problems of allomorphy, while not requiring an explicit abstract underlying repre-
sentation. Another possible modification might be to extend the program to automatically
output Andersonian disjunctive blocks and rules instead of position classes.

A Code

A.1 posclass

#!/usr/local/bin/python

from posclass import *

def output_message():

print ’Usage:’

print ’\tposclass [-c|-p] <file>’

print ’where:’

print ’\t-c\tsignifies that we are to find position classes from pre-split morphemes,’

print ’\t-p\tsignifies that we are to parse unsplit morphemes, and’

print ’\t<file>\tis the input data file.’

print

prs = MorphemeParser()

if len(sys.argv) == 2:

if sys.argv[1][0] == ’-’:

output_message()

else:

prs.parse_morphemes(sys.argv[1])

elif len(sys.argv) == 3:

if sys.argv[1] == ’-c’:

prs.get_posclasses(sys.argv[2])

elif sys.argv[1] == ’-p’:

prs.parse_morphemes(sys.argv[2])

else:

output_message()

else:

output_message()

A.2 posclass.py

$Id: posclass.py,v 1.7 1996/06/17 23:57:28 albro Exp albro $

import sys

import string

import regex

import tparsing

15

Regular expression that separates out a morpheme and its glosses

from a string containing both. For example, a matching

string might be "bob ([+human,+noun,+name])".

morph_rx.match("bob ([+human,+noun,+name])") would

return something other than -1, and then

morph_rx.group(1) would return "bob",

morph_rx.group(2) would return "[+human,+noun,+name]".

MORPH_REGX = ’^\([^]+\) (\[\(.+\)\])$’

morph_rx = regex.compile(MORPH_REGX)

Regular expression that matches a string entirely composed of

one or more uppercase letters.

UPC_REGX = ’^[’+string.uppercase+’]+$’

upc = regex.compile(UPC_REGX)

Regular expression to find non-whitespace strings within

square brackets. (Entire string must be of the form

[......])

STRSQ_REGX = ’^\[\([^’+string.whitespace+’]+\)\]$’

sqbraks = regex.compile(STRSQ_REGX)

Matches strings with a left square bracket in them.

SIMPL_REGX = ’.*\[.*’

simpl = regex.compile(SIMPL_REGX)

In a line of the form ...[...]..., figures out what

precedes the square brackets, what is contained within them,

and what follows them.

INRSQ_REGX = ’^\(.*\)\[\(.*\)\],?\(.*\)$’

inrsqbraks = regex.compile(INRSQ_REGX)

class PosClassTable:

"""Class that handles position classes.

Handles position classes as two tables, one wherein the

morphemes are put as far left in the table as they could

possibly go, and one wherein the morphemes are put as far

right in the table as they could possibly go. With enough

data, this representation settles out into a single consistent

table.

"""

posclass = {} # The actual data, morpheme -> (tbl1, tbl2)

bounds = {} # The bounding morphemes for each morpheme. ([], [])

As a tuple left-bounds, right-bounds.

def insert_at(self, pos, the_morph, tbl):

"""

Insert the_morph at pos in tbl, moving all others above that

point upwards.

"""

for morph in self.posclass.keys():

position = self.posclass[morph]

if position[tbl] > pos:

self.set_class(morph, position, position[tbl]+1, tbl)

if self.posclass.has_key(the_morph):

16

position = self.posclass[the_morph]

self.set_class(the_morph, position, pos, tbl)

else:

position = (-1, -1)

self.set_class(the_morph, position, pos, tbl)

self.last_used = pos

def bump_right(self, pos, tbl):

""" Move everything in tbl at or above pos to the right.

"""

for morph in self.posclass.keys():

position = self.posclass[morph]

if position[tbl] >= pos:

self.set_class(morph, position, position[tbl]+1, tbl)

def set_class(self, morph, position, new_pos, tbl):

"""Set the position class of morph in tbl to be new_pos.

position should be the previous position class (as a tuple

of table0, table1), or (-1, -1) if there was no previous

position class.

"""

if tbl == 0:

self.posclass[morph] = (new_pos, position[1])

else:

self.posclass[morph] = (position[0], new_pos)

def has_real_key(self, morph, tbl):

"""Returns 1 if morph has a true, specified position class in

table tbl, otherwise returns 0

"""

if self.posclass.has_key(morph):

if self.posclass[morph][tbl] > -1:

return 1

return 0

def can_infringe(self, morph1, morph2, tbl):

"""Can morph1 move into a box with morph2 in tbl?

"""

Cannot if morph2 is a bound for morph1 in the other

table. Also cannot if morph1 is a bound for morph2

in the *same* table.

bounds1 = self.bounds[morph1]

bounds2 = self.bounds[morph2]

other = 1

if tbl == 1:

other = 0

if morph2 in bounds1[other]:

return 0

else:

if morph1 in bounds2[tbl]:

return 0

else:

17

return 1

def can_enter_box(self, morph, box, tbl):

"""Can morph move into box box in tbl?

"""

We can do it only if morph can infringe upon all of the

elements of box.

can_enter = 1

for occ in self.posclass.keys():

if self.posclass[occ][tbl] == box:

if not self.can_infringe(morph, occ, tbl):

can_enter = 0

break

return can_enter

def morpheme_in_disguise(self, idx, morphs):

"""Detects whether the morpheme at idx is in conflicting

distribution with earlier records. This indicates that

one of the morphemes is actually two morphemes that are

pronounced identically. Returns a list of morphemes

that might be in disguise.

"""

mi = morphs[idx]

if not self.bounds.has_key(mi):

return []

Appears right of an element of the right bounds?

left = morphs[0:idx]

for morph in left:

if morph in self.bounds[mi][1]:

return [morph]

Appears left of an element of the left bounds?

right = morphs[idx+1:len(morphs)]

for morph in right:

if morph in self.bounds[mi][0]:

return [morph]

No? Then it’s okay.

return []

def update_table(self, tbl, morphs):

"""Updates the position class table number tbl with

the data from morphs, which is an ordered list of the

morphemes in an input word.

"""

self.last_used = 0

i = 0

while i < len(morphs):

if not self.has_real_key(morphs[i], tbl):

self.bounds[morphs[i]] = ([], [])

inserted = 0

for j in range(i+1, len(morphs)):

if self.has_real_key(morphs[j], tbl):

18

Make sure it’s after the last one, and

before this one, but as far left as possible

pos = self.posclass[morphs[j]]

if pos[tbl]-1 == self.last_used:

self.insert_at(pos[tbl], morphs[i], tbl)

self.set_class(morphs[j], pos, pos[tbl]+1, tbl)

self.bounds[morphs[j]][tbl].append(morphs[i])

inserted = 1

break

if inserted == 0:

if self.posclass.has_key(morphs[i]):

pos = self.posclass[morphs[i]]

else:

pos = (-1, -1)

if self.last_used > 0:

self.bounds[morphs[i]][tbl].append(morphs[i-1])

self.last_used = self.last_used + 1

self.set_class(morphs[i], pos, self.last_used, tbl)

else:

Here, we should check to see if it is actually another

morpheme in disguise --- it is if it appears explicitly

left of an element of its left bounds or explicitly right

of its right bounds.

The morphemes that preceded morphs[i] = morphs[0:i]

The morphemes that follow morphs[i] = morphs[i+1:len(morphs)]

if tbl == 0:

mids = self.morpheme_in_disguise(i, morphs)

if len(mids) > 0:

print "The relative positions of morphemes",

print "’%s’ and ’%s’ are" % (morphs[i], mids[0]),

print "ambiguous. This"

print ’signifies that there are actually two’,

print ’morphemes with the same phonological form,’

print "being either ’%s’ or ’%s’. " % (morphs[i],

mids[0]),

print "These should be distinguishable by the",

print "semantics,"

print ’so please disambiguate the offending morpheme’,

print ’in’

print ’the input and rerun. Meanwhile, the morpheme’,

print ’will be ignored.’

i = i + 1

continue

Back to the normal code.

pos = self.posclass[morphs[i]]

if pos[tbl] <= self.last_used:

self.bounds[morphs[i]][tbl].append(morphs[i-1])

self.last_used = self.last_used + 1

if not self.can_enter_box(morphs[i], self.last_used, tbl):

self.bump_right(self.last_used, tbl)

self.set_class(morphs[i], pos, self.last_used, tbl)

else:

self.last_used = pos[tbl]

19

i = i + 1

def process(self, word):

"""

Collect precedence data from word, which is a word divided

into morphemes by the separator ’_’

"""

print ’Processing word’, word

morphs = string.split(word, ’_’)

self.update_table(0, morphs)

morphs.reverse()

self.update_table(1, morphs)

def table_max(self, tbl):

"""Returns the maximum position class in tbl.

"""

max = 0

for morph in self.posclass.keys():

if self.posclass[morph][tbl] > max:

max = self.posclass[morph][tbl]

return max

def display(self):

"""Outputs a human-readable representation of the position

class tables.

"""

print ’Position classes:’

print

for tbl in range(2):

print ’Table’, tbl

print

max = self.table_max(tbl)

for i in range(1, max+1):

if tbl == 0:

print ’%d: ’ % i,

else:

print ’%d: ’ % (max - i + 1),

for morph in self.posclass.keys():

if self.posclass[morph][tbl] == i:

print morph, ’ ’,

print

if tbl == 0:

print

else:

print ’-----------’

def split_word(self, word, glosses):

"""

Split up *word*, finding the parts that are in or not in

the position class table.

20

"""

Collect a list of the pre-discovered morphemes already there.

in_it_list = []

for key in self.posclass.keys():

result = morph_rx.match(key)

if result == -1:

print ’Error: Unidentified morpheme’, key

sys.exit(1)

else:

morph = morph_rx.group(1)

gloss = morph_rx.group(2)

key_glosses = string.split(gloss, ’,’)

if string.find(word, morph) >= 0:

To be excluded, it either has to have the right

glosses or be the root morpheme.

add_it = 1

First, test if it is the root morpheme:

if upc.match(gloss) == -1:

Not the root morpheme. Therefore test

to see if el is in the glosses.

for el in key_glosses:

if el not in glosses:

add_it = 0

break

if add_it == 1:

in_it_list.append((morph, key_glosses, key,

self.posclass[key][0]))

Make a template based on the position classes.

key_list = []

tmplt = ’_’

max = self.table_max(0)

for i in range(1, max+1):

for el in in_it_list:

if el[3] == i:

tmplt = tmplt + el[0] + ’_’

key_list.append(el[2])

Use it!

T = tparsing.Template(tmplt, ’_’)

try:

(matches, lastidx) = T.PARSE(word)

except ValueError, msg:

print ’Something weird:’, msg

sys.exit(1)

return (matches, key_list, tmplt)

class Glosses:

"""

Class that keeps track of a paradigm (all of the forms related to

a single ’semantic’ entity - e.g., DOG). Contains methods that

21

use the paradigm information to figure out information about the

morphology.

"""

glosses = []

analyzed= {}

morphs = {}

submitted = {}

def __init__(self, pclass):

"""Method called upon creation of a class object. lex is the

lexical entry name, e.g. ’LOOK’

"""

self.glosses = []

self.analyzed = {}

self.morphs = {}

self.submitted = {}

self.pclass = pclass

def add_gloss(self, word, gloss):

"""Adds a word-gloss pair to the paradigm.

"""

self.glosses.append((word, gloss))

def display(self):

"""Outputs a vaguely human-readable form of the paradigm.

"""

print ’--------’

print ’Glosses:’

for el in self.glosses:

print ’ %s: ’ % el[0],

print el[1]

def greatest_common_strings(self, list):

"""

Find the greatest common strings of list. That is, return

the set of strings that are found as substrings of all strings

in list, where the set only contains the largest possible such.

"""

Determine the shortest string in the list

min = sys.maxint

mel = ’’

for el in list:

if len(el) < min:

min = len(el)

mel = el

Test each permutation, descending downward.

results = []

width = min

success = 0

while width > 0:

i = 0

j = i + width

while j <= min and success == 0:

22

in_all = 1

for el in list:

if string.find(el, mel[i:j]) < 0:

in_all = 0

break

if in_all != 0:

results.append(mel[i:j])

success = 1

i = i + 1

j = i + width

width = width - 1

if success == 0:

for i in range(len(mel)):

in_all = 1

if string.find(el, mel[i]) < 0:

in_all = 0

break

if in_all != 0:

results.append(mel[i])

success = 1

return results

def gcs_multiples(self, mlist):

"""

Find the greatest common strings of list. That is, return

the set of strings that are found as substrings of all strings

in list, where the set only contains the largest possible such.

"""

Make new list:

list = []

for el in mlist:

list.append(string.join(el[0], ’_’))

Determine the shortest string in the list

min = sys.maxint

mel = ’’

for el in list:

if len(el) < min:

min = len(el)

mel = el

Test each permutation, descending downward.

results = []

width = min

success = 0

while width > 0:

i = 0

j = i + width

while j <= min and success == 0:

if string.find(mel[i:j], ’_’) < 0:

in_all = 1

for el in list:

if string.find(el, mel[i:j]) < 0:

23

in_all = 0

break

if in_all != 0:

results.append(mel[i:j])

success = 1

i = i + 1

j = i + width

width = width - 1

if success == 0:

for i in range(len(mel)):

if mel[i] != ’_’:

in_all = 1

if string.find(el, mel[i]) < 0:

in_all = 0

break

if in_all != 0:

results.append(mel[i])

success = 1

return results

def min_tuple(self, size, tuple):

"""Return the minimal indices corresponding to tuple within size.

"""

indices = []

for i in range(size):

indices.append(-1)

for i in range(tuple):

indices[i] = i

indices[tuple] = tuple - 1

return indices

def next_indices(self, indices, size, tuple):

"""Returns the next set of indices of a permutation.

Example: if size is 3, should return [0],[1],[2],[0,1],

[0,2], [1,2], [0,1,2], in that order.

(Actually, [0,-1,-1], [1,-1,-1], [2,-1,-1],...)

"""

while tuple < size:

for i in range(tuple, -1, -1):

indices[i] = indices[i] + 1

if indices[i] < size:

for j in range(i+1, tuple+1):

indices[j] = indices[j-1] + 1

if indices[tuple] < size:

return (indices, tuple)

if indices[0] >= (size - 1):

tuple = tuple + 1

if tuple < size:

indices = self.min_tuple(size, tuple)

24

If we get this far, this means there aren’t any more

possibilities

return ([], -1)

def display_analyzed(self):

print ’Analyzed Features =’,

i = 1

for key in self.analyzed.keys():

if i == 4:

print

i = 1

if len(self.analyzed[key][0]) > 0:

print key, ’=’, self.analyzed[key][0], ’;’,

i = i + 1

print ’...’

def parse_word(self, word, the_glosses):

"""Given a fully built-up paradigm, figure out what morphemes

are in word and where the morpheme boundaries are. Use this

information to update the position classes.

"""

glist = the_glosses[:]

Remove the paradigm identifier

for i in range(len(glist)):

if upc.match(glist[i]) != -1:

self.try_features(glist[i], [glist[i]])

del glist[i]

break

print ’Glosses =’, glist

self.display_analyzed()

print ’Morphs =’, self.morphs

if len(glist) < 1:

return

Now try to analyze everything else.

tuple = 0

size = len(glist)

indices = self.min_tuple(size, tuple)

(indices, tuple) = self.next_indices(indices, size, tuple)

while tuple > -1:

test = []

for i in range(tuple+1):

test.append(glist[indices[i]])

features = string.join(test, ’,’)

self.try_features(features, test)

25

(indices, tuple) = self.next_indices(indices, size, tuple)

def try_features(self, features, test):

"""Test a particular set of features against a word to extract

morphemes.

features is a string representation, *test* is the list of

features.

"""

if not self.analyzed.has_key(features):

min_word, paradigm = self.test_features(test)

if len(min_word) == 0:

self.analyzed[features] = (’’, paradigm)

else:

print ’Found Morpheme’, min_word

result = morph_rx.match(min_word)

if result == -1:

print ’Internal Error’

sys.exit(1)

simple = morph_rx.group(1)

self.analyzed[features] = (simple, paradigm)

if self.morphs.has_key(simple):

ftr_list = self.morphs[simple]

found_one = 0

idx = 0

print ’This paradigm is’, paradigm

for ftr in ftr_list:

print ’Paradigm for’, simple, ftr, ’is’,

print self.analyzed[ftr][1]

if self.analyzed[ftr][1] == paradigm:

Same paradigms, therefore this is

a new feature...

Do something about that.

found_one = 1

break

idx = idx + 1

if found_one:

print ’Added a spec.’

if self.pclass.posclass.has_key(min_word):

pc = self.pclass.posclass[min_word]

old_word = simple + ’ ([’ + ftr + ’])’

del self.pclass.posclass[old_word]

del self.pclass.posclass[min_word]

newwrd = simple + ’ ([’ + ftr + features + ’])’

self.pclass.posclass[newwrd] = pc

self.analyzed[ftr+features] = (newwrd,

paradigm)

self.morphs[simple][idx] = ftr+features

else:

self.morphs[simple].append(features)

else:

26

self.morphs[simple] = [features]

def assemble_paradigm(self, test):

"""Assemble a paradigm including the features in test.

"""

paradigm = []

for gpair in self.glosses:

all_in = 1

for el in test:

if el not in gpair[1]:

all_in = 0

break

if all_in == 1:

paradigm.append(gpair)

return paradigm

def test_features(self, test):

"""Test the features in test to see if they correspond to a

unique morpheme in the paradigm. If so, find where the morpheme

fits into the words in which it is found, and submit the

words to the position class analyzer. Note that only identified

morphemes will be sent.

"""

1. Assemble a paradigm including the features in test.

paradigm = self.assemble_paradigm(test)

2. X-out the parts (morphemes) of the paradigm that have already been

found/analyzed.

str_list = []

for el in paradigm:

str_list.append(self.pclass.split_word(el[0], el[1]))

3. Find the greatest common strings in the paradigm.

gcs = self.gcs_multiples(str_list)

4. Resubmit the paradigm members with the new morpheme to the

MorphemeParser object to help determine position classes.

if len(gcs) == 1:

There was one and only one corresponding morpheme.

Therefore, we will submit it as the morpheme

corresponding to the features.

newmorph = gcs[0] + ’ ([’+string.join(test, ’,’)+’])’

Check to see if any full matches are available.

full_matches_available = 0

for el in str_list:

for i in range(len(el[0])):

if el[0][i] == gcs[0]:

full_matches_available = 1

break

if full_matches_available == 1:

break

for el in str_list:

27

if string.find(el[2], ’_’+gcs[0]+’_’) == -1:

pos = -1

Try first to find an exact match:

for i in range(len(el[0])):

if el[0][i] == gcs[0]:

pos = i

break

if pos == -1 and full_matches_available == 0:

Then settle for a partial one.

for i in range(len(el[0])):

if string.find(el[0][i], gcs[0]) != -1:

pos = i

break

if pos != -1:

new_word = ""

for i in range(pos):

new_word = new_word + el[1][i] + ’_’

new_word = new_word + newmorph

for i in range(pos, len(el[1])):

new_word = new_word + ’_’ + el[1][i]

if not self.submitted.has_key(new_word):

self.pclass.process(new_word)

self.submitted[new_word] = None

return (newmorph, paradigm)

else:

The features didn’t correspond to anything. Return

the empty string.

return (’’, paradigm)

def find_morphemes(self):

"""Figure out all of the morphemes in the paradigm.

This is the top-level function for this class.

"""

Figure out the morphemes in each word.

for el in self.glosses:

print ’Parsing morphemes in’, el[0]

self.parse_word(el[0], el[1])

self.pclass.display()

class MorphemeParser:

"""

Class that does morpheme parsing.

"""

def __init__(self):

"""Called upon creation of an object of this class.

"""

self.pclass = PosClassTable() # Create a position class object.

self.paradigms = Glosses(self.pclass)

def get_posclasses(self, file):

"""Given a file named *file* which contains a number of lines,

each line containing as its leftmost element a word split into

28

morphemes by dashes, determines the position classes.

"""

Open the file.

try:

f = open(file, ’r’)

except IOError:

print ’Error opening file.\n’

sys.exit(1)

Read and process each line

try:

ln = f.readline()

while ln != ’’:

words = string.split(ln)

if len(words) != 0:

word = string.join(string.split(words[0], ’-’), ’_’)

self.pclass.process(word)

ln = f.readline()

except EOFError:

print ’End.’

Display the result.

self.pclass.display()

Close the file.

f.close()

def parse_glosses(self, list):

"""

Parse the glosses in list and enter them into the corresponding

paradigm. List contains pairs of (word, gloss).

"""

new_list = []

lineno = 0

for el in list:

Keep track of the line number, for error display purposes.

lineno = lineno + 1

Make sure that the gloss is inside square brackets.

result = sqbraks.match(el[1])

if result == -1:

print ’Malformed gloss in line’, lineno

sys.exit(1)

Get the stuff inside the square brackets.

inside = sqbraks.group(1)

Check to see if there is an object specification.

result = simpl.match(inside)

gloss_in = []

if result == -1:

If not, just split up the glosses by commas.

gloss_out = string.split(inside, ’,’)

else:

29

Otherwise, get the stuff inside and surrounding the

inner square brackets.

result = inrsqbraks.match(inside)

if result == -1:

print ’Malformed gloss in line’, lineno

sys.exit(1)

left, cntr, right = inrsqbraks.group(1,2,3)

Split each part up by commas. gloss_in will be the

stuff inside the brackets, and gloss_out will be the

stuff outside of them.

gloss_l = string.split(left, ’,’)

gloss_r = string.split(right, ’,’)

gloss_in = string.split(cntr, ’,’)

gloss_out = gloss_l

gloss_out[len(gloss_out):len(gloss_out)] = gloss_r

Make a list of all the glosses for the current word.

glos_l = []

Add the outer glosses.

for gel in gloss_out:

if gel != ’’:

glos_l.append(gel)

Add the inner glosses, marking them with the first

letter ’O’, for ’Object’.

for gel in gloss_in:

if gel != ’’:

glos_l.append(’O’+gel)

Actually add the rest of the glosses to the paradigm.

self.paradigms.add_gloss(el[0], glos_l)

def parse_morphemes(self, file):

"""Read *file*, which should be a group of lines, each line

containing a phonemic description of a word (not broken into

morphemes, but with all obscuring phonological rules undone)

and a gloss for the word. The form of the gloss is as follows:

[outer_feature*,[inner_feature*],outer_feature*], where

outer_feature can either be a word in all capital letters

(represents a semantic entity such as DOG) or a feature, which

can be more or less anything except a word in all capital letters,

although it cannot contain square brackets, commas, or white space.

An inner_feature can only be a feature. The outer_features

represent either features of the subject of a verb or features

of the word as a whole. The inner_features represent features

of the object of a verb.

"""

Open the file.

try:

f = open(file, ’r’)

except IOError:

print ’Error opening file.\n’

30

sys.exit(1)

Read the file and assemble a list of (word, gloss) pairs.

try:

word_list = []

ln = f.readline()

while ln != ’’:

words = string.split(ln)

if len(words) > 1:

word_list.append((words[0],words[1]))

ln = f.readline()

except EOFError:

print ’End.’

Parse the glosses into the corresponding paradigms

self.parse_glosses(word_list)

Find the morphemes in each paradigm.

self.paradigms.display()

self.paradigms.find_morphemes()

Close the file.

f.close()

31

