
Some Learning Algorithms for Phonotactics

Daniel M. Albro

June 13, 2000

1 The Problem – Phonotactic Learning

1.1 Background

One of the first tasks children face in the process of acquiring their first
languages is to develop a characterization of which sound sequences are legal
or illegal in their native languages. Knowledge of this characterization—
phonotactics—develops at or before 10 months of age (Jusczyk et al. 1994).

Knowledge they (seem to) have: ability to recognize their own language,
knowledge of its surface segment inventory.

Knowledge they don’t (seem to) have: morphology, semantics, syntax.

1.2 Goal

• Learning of phonotactic information expressed by Optimality Theoretic
constraint rankings

• An algorithm that is

– robust in the face of noisy data or variation

– capable of learning constraint rankings from surface-only data

1

2 EXEMPLIFICATION 2

1.3 Existing Algorithms

Previous algorithms can be put into three categories:

1. Not robust, not suited for phonotactics: Tesar’s earlier Constraint De-
motion algorithms (Tesar & Smolensky 1993; Tesar 1997) fail (become
overly permissive, crash, or fail to terminate) in the presence of noise,
and are not designed to deal with the phonotactic learning situation,
where underlying forms are unknown (they tend to overgeneralize due
to the absence of negative evidence).

2. Robust, but not suited for phonotactics: Boersma’s Gradient Learning
Algorithm (Boersma 1997).

3. Not robust, but suited for phonotactics: The algorithms of Prince and
Tesar (1999) and of Hayes (1999) can learn phonotactics (some com-
parisons to my algorithm later), but fail in the presence of noise.

1.4 The EDBPR Algorithm—Robust and Suited for
Phonotactics

The Error-Driven Bayesian Phonotactic Ranking (EDBPR) Algorithm is im-
plemented on top of the author’s UCOTP (Albro 1998) implementation of
Primitive Optimality Theory (Eisner 1997). It uses Bayesian reasoning to
deal with noisy data/variation.

2 Exemplification

2.1 Of Phonotactic Learning

Comments on phonotactic learners in general:

• Given: valid surface forms recast as underlying forms

• Produce: a ranking that allows as outputs of generation the smallest
possible superset of the forms encountered during learning. This rank-
ing takes URs similar to the forms encountered during learning and
produces unchanged surface forms, but changes other URs into forms
similar to those encountered during learning.

2 EXEMPLIFICATION 3

• Such a ranking has these characteristics: Markedness constraints are
ranked as high as possible and faithfulness constraints as low as possi-
ble. Given this, when choosing among faithfulness constraints to pro-
mote above markedness constraints, it is better to promote constraints
that are specific than to promote generally applicable faithfulness con-
straints. This is because faithfulness constraints have the effect of al-
lowing (some) URs to pass through unchanged. Specific faithfulness
constraints apply to fewer URs, and thus promoting them provides less
of a chance to overgeneralize.

2.1.1 The azba problem

• From Prince & Tesar (1999), an example of how their constraint speci-
ficity metric (and that of Hayes (1999)) is inadequate for learning the
most conservative ranking in some cases.

• Concerns a fictional language similar in some respects to Greek and
Russian. Voicing is distinctive in stops, but not in fricatives, and voiced
fricatives are only found in regressive assimilations.

• Problem: find a grammar that doesn’t allow voiced fricatives in too
many places.

• Example words:

– [pa], [ba]

– [ap], [ab]

– [sa], *[za]

– [as], *[az]

– [apsa], *[abza], *[apza], *[absa]

– [aspa], [azba], *[asba], *[azpa]

• Constraints (in the most restrictive ranking, their terminology):

2 EXEMPLIFICATION 4

M:Agree(voi) Adjacent obstruents agree in voicing
M:*b Stops must be voiceless
M:*z Fricatives must be voiceless
F:stop-voi/Ons Preserve stop voicing in surface onsets
F:stop-voi Preserve stop voicing
F:fr-voi/Ons Preserve fricative voicing in surface onsets
F:fr-voi Preserve fricative voicing

• Learning is error-driven, so it requires input of forms the strict grammar
rejects. These are [ba], [ab], and [azba].

– /ba/→[pa] is evidence of F:stop-voi or F:stop-voi/Ons �
M:*b

– /ab/→[ap] is evidence of F:stop-voi � M:*b

– /azba/→[aspa] is evidence of F:stop-voi or F:stop-voi/Ons
or F:fr-voi � M:*b and M:*z

• Tesar and Prince’s basic algorithm (Biased Constraint Demotion), which
ignores constraint specificity, chooses F:stop-voi in all instances of
choice here. Such a choice allows [abza], so it’s too permissive a gram-
mar.

• Because of this, they modify their algorithm to preferentially promote
faithfulness constraints that are more specific. They define specific
as follows (my words): Constraint C1 is more specific than C2 if C1

applies to a strict subset of the candidates C2 applies to. However,
given this definition, the algorithm can’t distinguish between F:stop-
voi/Ons � M:*z and F:fr-voi � M:*z, since neither faithfulness
constraint accepts a proper subset of the candidates accepted by the
other. However, F:fr-voi � M:*z is too permissive—it allows [z] in
all positions.

• It turns out that the UCOTP implementation provides a straightfor-
ward way to determine a numerical rating of how much of the possi-
ble overall candidate set (that is, the set of all possible words in any
language) a constraint might apply to. OTP represents phonological
structures in terms of gestural scores, and, essentially, it is possible to

2 EXEMPLIFICATION 5

determine for any OTP constraint how many different types of ver-
tical slices (time-slices) within a gestural score the constraint might
affect. This specificity metric corresponds more directly to the idea
that rerankings should keep as small a grammar as possible—a fur-
ther improvement, not yet made, but, I think, possible, would measure
specificity on the candidate set available at the point in the ranking
where a constraint is to be placed.

• In the metric used here F:stop-voi/Ons is more specific than F:fr-
voi, and the algorithm presented here thus correctly chooses it, since
it can be shown to apply to a smaller number of time slices, and thus
leads to more restrictive grammars.

2.2 Of Robustness in the Face of Noise and/or Varia-
tion

2.2.1 An example from Hayes (1999): Pseudo-Korean

• A subset of Korean in which the only permissible surface segments are
[d], [t], [th], and [a].

• Of these, [d] only appears in intervocalic position, and [th] never ap-
pears word-finally.

• This state of affairs is accounted for by virtue of the following con-
straints (Hayes’ terminology):

*[-son, +voice] Obstruents are voiceless by default
*[+voice][-voice][+voice] *Voiceless segments between voiced ones
*[+spread glottis] *Aspiration
*[+voice, +spread glottis] Voicing is incompatible with aspiration
Ident(asp)/ V Preserve underlying aspiration before vowels
Ident(asp) Preserve underlying aspiration
Ident(voice)/ V Preserve underlying voicing before vowels
Ident(voice) Preserve underlying voicing

2 EXEMPLIFICATION 6

2.2.2 Hayes’ algorithm

• Given a diet of correct surface forms, Hayes’ algorithm comes up with
the following ranking strata:

*[+voice, +spread glottis] 1
Ident(asp)/ V 2
*[+voice][-voice][+voice] 3
*[+spread glottis]
*[-son, +voice] 4
Ident(asp) 5
Ident(voice)/ V
Ident(voice)

(Table 1)

• However, when given illegal inputs such as [data] or [at
h], even once in

a data set consisting of millions of words, Hayes’ algorithm will produce
a grammar that promotes Ident(asp) above *[+spread glottis],
and Ident(voice)/ V above *[+voice][-voice][+voice] and *[-
son, +voice].

2.2.3 What the EDBPR Algorithm does

1. Estimate likelihood of getting evidence for all possible relaxations of
the strictest possible grammar (expressed as pairwise ranking proba-
bilities P (C1 � C2)) by running Monte Carlo trials with randomly-
ranked input grammars. That is, we generate random rankings and
random URs, run the URs through the rankings and find the strictest
grammars that accept the resulting surface forms, keeping track of how
often particular relaxations C1 � C2 occur. This simulates trying to
learn all possible phonotactic systems and thus seeing what evidence
for rerankings from the strictest grammars is likely in general.

2. For each input word, determine the strictest grammar that accepts it
and note which relaxations were necessary.

3. Using the likelihoods from (1) and the number of times each pairwise
reranking was necessary in (2), calculate the probability of each pair-
wise reranking.

2 EXEMPLIFICATION 7

2.2.4 What results from this?

• If the Monte Carlo trials show that across all possible phonotactic sys-
tems evidence for a particular relaxation (ranking pair) is rare, then the
learner needs to encounter only a few examples in their own language
that force that relaxation before the learner decides the relaxation is
necessary, since crosslinguistically rare words are unlikely to appear in
linguistic noise.

• If a particular relaxation is evidenced quite frequently during the ran-
dom trials, then it is also deemed likely to show up in noise, so it takes
a large number of exemplifications before the learner decides it is a
necessary ranking in its language.

2.2.5 Output in the case of Pseudo-Korean

Given 200 random valid Pseudo-Korean surface forms, the EDBPR algorithm
came up with the rankings shown in figure 1 (each with 100% certainty):

*[+voice, +spread glottis]

*[+spread glottis]

*[−son, +voice]

*[+voice][−voice][+voice]

Ident(sgl)/__V

Ident(−son)

(Figure 1)

These are essentially consistent with the output of Hayes’ algorithm. Given
those same words, but with the illegal form [data] thrown in, the learner
adds the ranking pairs Ident(voice)/ V� *[-son, +voice] and *[-son,
+voice] � *[+voice][-voice][+voice]. As it happens, in the Monte

A THE EDBPR ALGORITHM 8

Carlo trials the learner discovers that the first ranking pair is often evi-
denced, but the second is not. At the end, the first ranking pair is given a
likelihood of 0.00013 and the second a likelihood of 0.98. Since the likelihood
of *[+voice][-voice][+voice] � *[-son, +voice] was calculated to be
1.0, the probabilities are scaled to 0.49 and 0.51, respectively. If the form
[at

h] is also given, the learner adds the ranking pair Ident(+spread glot-
tis) � *[+spread glottis], which is frequently enough evidenced in the
Monte Carlo trials that it is given a likelihood of 0. The resulting ranking
diagram is thus as follows (figure 2):

*[+voice, +spread glottis]

*[−son, +voice]

0.49

Ident(−son)

Ident(+vce)/__V

0.51

0.000013

Ident(+sgl)

0.0

Ident(+sgl)/__V

*[+voice][−voice][+voice]

*[+spread glottis]

(Figure 2)

With this output, the learner would be expected to find [ata] fairly acceptable
(in speech it would be in free variation with [ada] as a realization of /ata/),
[da] extremely marginally acceptable, and [at

h] not acceptable at all.

A The EDBPR Algorithm

The basic goal of the algorithm is to determine the probability for each single-
pair constraint ranking A� B that the ranking is necessary in the grammar
accepting the smallest possible subset of the input forms. (In the current im-
plementation these rankings are conceived of as being applied atop a set of
base strata in which markedness constraints outrank faithfulness constraints,
and faithfulness constraints are ranked such that the least permissive con-
straints are on top).

A THE EDBPR ALGORITHM 9

A.1 Overall:

1. (“Parameter Estimation”): Learn how to learn phonotactics (find out
the likelihood of getting evidence for various ranking pairs, given ran-
domized input grammars).

2. (“Ranking Reinforcement”): Input surface forms and reinforce pairwise
rankings found necessary to accept those surface forms.

3. (“Calculation of P (H|O)”): Calculate the probability of necessity for
each possible pairwise ranking, given the observed inputs from step 2.

4. Return to step 1, if necessary.

A.2 Parameter Estimation:

Repeat ad nauseam:

1. Generate a random input.

2. Generate a random ranking (Keep track for each pair C1, C2 of the
number of estimation trials with ranking C1 � C2 vs. C2 � C1.)

3. Generate an output by running the input through UCOTP (Albro 1998)
with the given ranking.

4. Create the mirror image of that output as an input.

5. Determine a minimally permissive set of pairwise rankings that pro-
duces just the expected output.

6. Reinforce (by incrementing a counter) the individual C1 � C2 pairs in
the set of rankings produced.

When a minimal number of trials of each pairwise ranking has been run,
calculate the Bayesian Estimation parameters as follows:

pH|H =
re
H

ne
H

pH =
re
H

ne

A THE EDBPR ALGORITHM 10

(H represents a pairwise ranking hypothesis, e.g. that C1 � C2 is necessary,
pH|H is the probability that the C1 � C2 is found to be necessary by the
algorithm when confronted with a random output from a grammar in which
C1 � C2 holds, pH is the probability that the algorithm finds C1 � C2

necessary regardless of whether C1 � C2 holds in the input grammar, re
H is

the number of estimation reinforcements of H, ne
H is the number of estimation

trials in which ranking H holds in the input grammar, and ne is the total
number of estimation trials).

A.3 Ranking Reinforcement

When the algorithm has performed enough estimation and receives actual
surface forms, it follows steps 4–6 of the estimation algorithm for each surface
form, thus gathering a value rH for each pairwise ranking possibility.

A.4 Calculation of P (H|O)

Probability of necessity of a pairwise ranking (call this H) given an observed
number of reinforcements is calculated via Bayes’ Theorem:

P (H|O) =
P (O|H)P (H)

P (O)
=

P (O|H)P (H)

P (O|H)P (H) + P (O|H)P (H)

where P (H) is initially 0.5 (it could be continuously adjusted by Bayesian
updating to ease computation, if necessary);

P (O|H) =

(

n

m

)

pm(1− p)n−m

(it’s a binomial distribution), where p is the value pH|H calculated during
estimation, n is the number of observed inputs, and m is the number of
reinforcements of the hypothesis (rH); and

P (O|H) =

(

n

m

)

pm(1− p)n−m

where p = pnpH , that is, the expected probability of noise (I’ve used 0.1) pn

times the probability in general of reinforcement of this hypothesis .

Note that the binomial terms

(

n

m

)

cancel out, a fact which makes these

equations much more feasible to compute.

B SOME PROPOSED MODIFICATIONS TO EDBPR 11

A.5 Determination of Strictest Rerankings from a Ba-
sic Ranking

1. Take the base ranking (markedness constraints on top, other constraints
sorted in order of increasing permissiveness (number of segment time
slices allowed by the constraint)) and generate an output from the UR
mirror image of the input SR.

2. Use the standard tableau method to compare violations of the expected
vs. actual output. This gives a set of reranking pairs which is generally
more permissive than necessary

(C1 or C2 or . . .� C4 and C5 and . . .)

3. Apply all of the rerankings to the current ranking. Then generate a new
output, and return to step 2, unless the expected output was generated.

4. Sort the resultant rankings Ci � Cj by the desirability of Ci as a
top ranker (prefer markedness constraints over faithfulness constraints,
prefer strict faithfulness constraints over permissive faithfulness con-
straints).

5. Moving in this order, from the least to the most acceptable rerankings,
try to remove each ranking Ci � Cj from the set of necessary rankings.
This is possible if applying the remaining rankings to the base ranking
still produces the expected output (and only the expected output).
This step can introduce new rankings, in which case we return to step
3.

B Some Proposed Modifications to EDBPR

B.1 A Faster Strictest Rankings Algorithm

The algorithm presented above for finding the strictest rankings that accept
some input or set of inputs is perhaps not as efficient as it might be. It works
by first running an overgenerating version of Tesar’s Error-Driven Constraint
Demotion algorithm, which involves running the UCOTP output generation
algorithm repeatedly until the proper output is obtained, and then eliminat-
ing constraint rankings one by one by running output generation for each

B SOME PROPOSED MODIFICATIONS TO EDBPR 12

one. Output generation can be slow, so it would be better to minimize this.
Proposed here is a Biased Recursive Constraint Demotion algorithm based
on a Linear-time Recursive Constraint Demotion algorithm gleaned from an
anonymous review paper. That algorithm works as follows:

1. For each losing candidate, create a disjunction of constraints for which
the winning candidate does better. While building these, maintain for
each constraint a list of the disjunctions that mention it, and for each
disjunction maintain a list of the constraints that disjunction outranks
(constraints for which the losing candidates do better). For each con-
straint, also maintain the number of disjunctions that outrank it.

2. Make a list undom of all constraints with 0 outranking disjunctions.

3. Set stratum ← 0

4. Until all constraints are ranked

(a) Remove the first constraint in the list undom, and call it C1. If
there is no such constraint, fail.

(b) For each disjunct that mentions C1

i. For each constraint Co outranked by the disjunct

A. Reduce the number of disjunctions outranking Co by one.

B. If this falls to 0, add Co to undom

ii. (this disjunct may now be considered inactive)

(c) Set stratum of C1 to stratum

(d) Increment stratum

This algorithm is by itself not suitable for this problem, since it will tend
to put the faithfulness constraints on top, but biasing it is fairly simple. The
only thing that needs to be done is to keep the undom list sorted in the
following way:

1. Rank the constraints from least to most permissive (use the specificity
metric above, or another one to be presented). Keep track of this
ranking.

2. To assign an order in undom between two constraints C1 and C2:

C A METHOD FOR LEARNING CONSTRAINTS, GIVEN NON-NOISY DATA13

(a) If C1 has some active disjuncts that mention it and C2 doesn’t,
put C1 first (and vice versa).

(b) Otherwise, order C1 and C2 according to the permissiveness rank-
ing assigned in step (1).

The strictest-ranking algorithm then works by taking assigning the strictest
possible ranking initially, seeing what outputs are produced by the input us-
ing that ranking, and if non-optimal outputs are produced, using them as
candidates in the Biased RCD described above. The output of Biased RCD
is a new ranking. Apply the ranking, produce outputs, and continue in this
way until the expected output (and only that output) is achieved. This al-
gorithm is no longer a linear RCD, of course, but is more on the order of
O(n2 log n).

B.2 A slightly different permissiveness metric

(This one is technical (and vague), and might be skipped). A possible method
for determining permissiveness is to go directly with the idea that a constraint
is strict if it allows few identity outputs to go through, and lax otherwise.
Basically, we can produce as an input an FSM that represents a slice of
all possible identity candidates, regardless of input (the length of this slice
should be just long enough to allow all constraint WFSAs to be exercised).
This slice represents a finite number of candidates. Constraints can then be
transformed such that no state is marked initial, and markedness constraints
are then judged in terms of the number of identity candidates they allow
through. Faithfulness constraints must be further transformed from corre-
spondence constraints to anti-correspondence constraints, and then can be
measured against each other in the same way that markedness constraints
were.

C A Method for Learning Constraints, Given

Non-Noisy Data

If we look at the Biased RCD algorithm, we can see that as it works it builds
up a knowledge-base about how the constraints must be outranked. That is,
for each constraint, we accumulate a set of disjunctions of constraints that
must outrank it. If we assume noisy data, we can’t fully trust this knowledge,

C A METHOD FOR LEARNING CONSTRAINTS, GIVEN NON-NOISY DATA14

because any given input that contributed to it might not have been valid. If
we instead focus on a situation in which noise is not present (or assume that
some filtering device is possible), we can use this knowledge to get a more
powerful learning algorithm for phonotactics. Presumably, this knowledge
will remain useful as well (in exactly its current form) when moving on past
the phonotactic stage, whereas the knowledge embodied in simple ranking
pairs, as in the algorithm above might not continue to be as useful.

If we assume the constant build-up of a knowledge-base as described
above, we can lay out an algorithm that, in addition to determining phono-
tactic constraint rankings, also can create new phonotactic constraints (or
faithfulness constraints) and adds them to the system. Here it is:

1. Start with a constraint set that is capable (in some ranking) of passing
through all identity constraints (i.e., it should have the basic Max,
Dep, and Ident constraints, at least).

2. Compute the strictest possible ranking that accepts the inputs. (If this
algorithm is to be conceived as iterative, this would be “some limited
prefix of the input sequence”). This creates a database of conjuncts
((a ∨ b ∨ c)� d) ∧ ((a ∨ b)� e), etc.

3. Compute a desirability value for this grammar, according to the fol-
lowing metric: take the initial set of “identity candidates” described
in section B.2 and pass it through the grammar (with the constraints
modified to have no initial state), then count the number of candidates
that made it out.

4. Consider possible next steps:

(a) Create a new constraint from some set of constraint templates and
add it to the top (if a phonotactic) or bottom (if a faithfulness
constraint) of the grammar. We can keep our knowledge base
correct in the presence of this new constraint by adding the new
constraint to each disjunct.

(b) Remove a constraint that is not mentioned in any disjunct. This
will not affect the knowledge base.

5. For each move we can compute the desirability value for the resulting
grammar as before (possibly after processing some data with it to firm
the ranking).

D AN MDL-LIKE METHOD FOR LEARNING PHONOTACTIC GRAMMARS IN THE PRESENCE OF NOISE15

6. This defines a search space, with a neighborhood of grammars around
each grammar. We can search this space using whatever strategy we
like—possibly hill-climbing or simulated annealing.

D An MDL-like Method for Learning Phono-

tactic Grammars in the Presence of Noise

Contemplation of the previous algorithm leads to a possible method for deal-
ing with noise, using a Minimal-Description Length-type approach, rather
than using Bayesian estimation. The algorithm is basically the same as the
previous one, except that:

1. We don’t keep an expanding knowledge-base about constraint rankings.
Instead, we keep track of all of the inputs.

2. The metric is as follows: desirability(G) = code-length(G) +
∑

word bad-
ness(word), where the “badness” of a word is something like 0.9(accepted(word))+
0.1(perturbation-distance(SG(word), G)), where accepted returns 1 if a
word is accepted by the grammar, and 0 otherwise, SG(word) returns
the strictest ranking of the constraints in G that accepts word, and
the perturbation distance between two grammars is a string-edit dis-
tance between the rankings, where the string edit operation is a ranking
switch between two adjacently-ranked constraints.

3. Possible grammar modifications (i.e., the definition of the neighbors of
a grammar) are as follows:

(a) Add a constraint to the grammar, as before.

(b) Remove a constraint from the grammar (this should be restricted
to constraints that weren’t in the initial constraint set).

(c) Swap the ranking of two adjacently-ranking constraints.

Modification of the metric parameters should allow variation of the algo-
rithm’s sensitivity to noise.

REFERENCES 16

References

Albro, Daniel M., 1998. Evaluation, implementation, and extension of
Primitive Optimality Theory. Master’s thesis, UCLA.

Boersma, Paul, 1997. How we learn variation, optionality, and probability.
[ROA #221].

Eisner, Jason. 1997. Efficient generation in primitive Optimality Theory.
In Proceedings of the ACL.

Hayes, Bruce P., 1999. Phonological aquisition in optimality theory: the
early stages. [Rutgers Optimality Archive #327].

Jusczyk, Peter W., Paul A. Luce, & Jan Charles-Luce. 1994. In-
fants’ sensitivity to phonotactic patterns in the native language. Journal
of Memory and Language 630–645.

Prince, Alan, & Bruce Tesar, 1999. Learning phonotactic distributions.
[Rutgers Optimality Archive #353].

Tesar, Bruce, 1997. Multi-recursive constraint demotion. [Rutgers Opti-
mality Archive #197].

——, & Paul Smolensky. 1993. The learnability of Optimality Theory: an
algorithm and some basic complexity results. Technical report, Depart-
ment of Computer Science and Institute of Cognitive Science, University
of Colorado, Boulder. [Rutgers Optimality Archive #2].

