Simulating Tonic/Postural Activations in Speech Production
Bryan Gick1,2, Connor Mayer3
1 University of British Columbia, 2 Haskins Laboratories, 3 University of California, Los Angeles

Biomechanical Modeling using Artisynth
- 3D finite-element method (FEM) model; www.artisynth.org [Bedi et al., 2012]
- FEM dynamics enables realistic collision detection and tissue compression

Simulation methods
- Vowels/sibilants:
 - Jaw-hyoid tongue model (Stavness et al. 2012)
 - Facial expression: FEM face model

Simulation results
- DR (R&E 2009) vs JP (R&E 2009)

Tonic/Postural Vowels (local overlap):
- V only

Tonic/Postural Sibilants (non-local overlap):
- Harmony can work the same way (cf. Turkish labial harmony, e.g. Boyce 1990)
- Segmental content of intervening material is irrelevant

Tonic/Postural Emotion Expression: Smile vs. Lip Closure (global overlap):
- Lip Closure with Neutral Expression
- Lip Muscles

Introduction: Synergies, Posture & Superposition
- Spatially Fixed Muscle Synergies (SFMS, Safavynia and Ting 2012)
- Neuromuscular modules are functionally defined in the nervous system to govern a basic, natural body action (e.g., Berinker et al., 2009).

- “Orality” as tonic setting (Benguerel 1977):
- Different temporal types:
 - Transient
 - Sequential

- Overlapping Innervation Wave Theory (Ioos, 1948)

We use biomechanical simulation to test superposition of tonic/postural devices in 3 contexts:
Local: coarticulation in adjacent sounds (e.g., a vs. i)
- Simulate/replicate EMA results of Recasens & Espinosa (2009)
Non-local: long-distance interactions (e.g., /s/ vs. /s/)
- Simulate effect across intervening segment(s)

Motion Expression:
- affects every sound in a language
- cf. articulatory setting (Gick et al. 2004)

References

Artisynth

Tonic/Postural Activations are pervasive in speech
- Superposition works across different scales with no extrinsic model of coarticulation
- Built-in mechanics of the human body can handle coarticulatory interactions with simple overlap
 - no advance planning
 - no contextual information
- Simple temporal overlap of muscle activations in a biomechanically realistic simulation produces plausible, idiosyncratic coarticulation patterns
 - Locally (shown for canonical VCV combinations)
 - Non-locally (shown for sibilant harmony)
 - Globally (shown for emotion expression)
- “Tug-of-war” requires greater activation to achieve lip closure

FUTURE WORK:
- Continue to seek examples of tonic/postural devices in speech
- Continue EMG validation studies
- Simulate a wider range of phenomena
(e.g., articulatory settings, laryngeal states, etc.)
- What about SUPPRESSION/INHIBITION?

Discussion
- Tonic/postural activations are pervasive in speech
- Superposition works across different scales with no extrinsic model of coarticulation
- Built-in mechanics of the human body can handle coarticulatory interactions with simple overlap
 - no advance planning
 - no contextual information
- Simple temporal overlap of muscle activations in a biomechanically realistic simulation produces plausible, idiosyncratic coarticulation patterns
 - Locally (shown for canonical VCV combinations)
 - Non-locally (shown for sibilant harmony)
 - Globally (shown for emotion expression)
- “Tug-of-war” requires greater activation to achieve lip closure

Acknowledgement
We acknowledge the contributions of our many collaborators, in particular, Ian Stavness (U. Saskatchewan), Sid Fels and members of the UBC HCI Lab, and members of the TRMC/IMAG lab and GISPA lab. Grenoble have contributed to Artisynth; also, Teriina Chan, Yang Fu, Bruce Furin and others of the UBC SRL have helped with validation. Research funded by NSERC and NIH.

NB: We use no explicit model of coarticulation – just a body